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NOMENCLATURE

€ dimension of the center of a test area

maximum y dimension of the area treated by
grid system analysis (Ag)
effective area of a grid element after

correction for sun shadowing and view blockage

area in the mean surface level where the
rough surface energy flux is calculated by

grid system analysis

a rectangular area in the mean surface level

used in flat surface energy flux calculations
area of a square grid element
area blocked from view by an inclined element

maximum & dimension of the area treated by
grid system analysis (Ag)
X intercept of the line which represents the

limit of vision for a particular orientation
of the receiving differential area

correction factor to account for sun shadowing

and view blockage

distance between planes of projection for

apparent area calculations of grid elements

length of the shadowed region in the mean

surface level

length of the occulted region in the mean

surface level



length defined in Figure D-2

flat surface differential shape factor for

the fraction of flux from dAp received at dA

energy flux
flat surface energy flux received at dA

rough surface energy flux received at the
differential area dA

rough surface energy flux received at the
differential area dA from the region .of the .
infinite surface not treated by grid system

analysis

ratio of the rough surface energy flux to

the flat surface energy flux received at dA

the ratio of the rough surface energy flux
to the flat surface energy flux with view

blockage neglected

ratio of the rough surface energy flux to
the flat surface energy flux received at dA

with view blockage and sun shadowing neglected

irradiation of a surface
solar irradiation at the mean earth orbit

perpendicular height of the receiving differ-
ential area from the mean surface level

height deviation of a roughness element from

the mean surface level

height of grid element measured in the plane

of projection
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ha - height of the shadowed portion of an element
S as measured in the plane of projection

ha - height of the occulted portion of an element
v as measured in the plane of projection

I - radiation intensity

J - radiosity of a surface

L -~ length of Ag

R - polar coordinate describing the distance of

a point in the mean surface level from the

origin of the coordinate system

R - distance to the center of a grid element from

th2 origin of the coordinate system

R - distance to the cenger of a test area from
the origin of the coordinate system

r ~ distance between the receiving differential area
and a differential area in the mean surface

level or in a grid element

r, - distance between the receiving differential
area and the center of a grid roughness
element

S - fraction of the area of the element (i,j)

ij
shadowed in sun shadowing

Sl,sz,SB,S4-integrals in the flat surface energy flux
calculation of Appendices A and F

t ~ x dimension of the center of a test area
A4 - fraction of the area of the element (i,3)

ij
occulted in view blockage
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variables used in solution of integrals in

Appendix A

ratio of width to length of area Ag

square grid element dimension in units of H

sun orientation angle measured from the
normal to the mean surface level (see

Figure 2 for positive and negative cases)

angle between the normal to a differential

area in the mean surface level or in a grid
roughness element and the line joining this
differential area with the receiving

differential area

angle between the normal to the receiving
differential area and the line joining this
differential area and a differential area

in the mean surface level or in a grid rough-

ness element

orientation angle of the receiving differen-
tial area (positive and negative values

indicated in Figure 2)

angle between the vertical direction and the
line joining the center of a grid element and

the receiving differential area

angle between the projection of the grid

element normal in the mean surface level and
the line in the mean surface level connecting
the grid element center and the origin of the

coordinate system
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Subscripts
c

ct

viii

angle between the normal to a surface and

the incident solar energy Gg

polar orientation angle of the grid element

normal

angle between a line joining the receiving
differential area and any point in the mean
surface level and the projection of this

line in the mean surface level
wavelength of incident radiation

one of coordinates of non-dimensionalized
rectangular coordinate system in the mean

surface level
3.1415926

azimuthal angle of grid element normal
measured with respect to the direction of

the sun for positive sun angles

one of the coordinates in the non-dimen-
sionalized rectangular coordinate system
in the mean surface level

angular coordinate of the polar coordinate

system in the mean surface level

evaluated at the center of a grid element
evaluated at the center of a test area
row number in grid system

column number in grid system
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I. INTRODUCTION

The moon's unusual environment as compared to an
earth environment gives rise to some basic differences in
the relative importance of the three modes of heat transfer.
Due to the lack of an atmosphere convective heat transfer
is absent in the lunar environment. The lunar material is
of low thermal conductivity so that conductive heat trans-
fer is typically small. Since the role of these two modes
of heat transfer is reduced with respect to a correspon-
ding earth configuration, radiative heat transfer takes
on added significance in the lunar environment. The pre-
dominance of radiative heat transfer makes the radiative
properties and difectional character of these properties
very important to the resulting heat transfer. 1In this
analysis the effects of surface roughness of the lunar
terrain are investigated using a geometric approach to
treat the roughness. The directional character of the
emissions and reflections of the surface is assumed to be
diffuse. With this model the roughness has two basic
effects on the amount of radiation received at a differ-

ential area located above the surface:



1) the radiosity of the surface is not uniform
(variations in the orientation of the surface
with respect to the incident solar energy
causes variations in the radiosity of the
surface).

2) The variations in the surface cause only certain
portions of the surface to be '"seen" at the

receiving differential area.

The result of these two effects is that the energy flux

received at a differential area for this type of surface
will deviate considerably from the flat, diffuse surface
case. To begin this analysis it is of interest to con-

sider some of the basic aspects of surface roughness as

applied to radiative heat transfer.

Generally problems in radiation heat transfer involve
the interaction of radiant energy and a solid interface.
The nature of the interface can have considerable effect
on the resulting interaction and thus influence the heat
transfer. Therefore, the effect of the surface condition
is of interest in the study of heat transfer. For opaque
substances the material near the surface plays the pre-
dominant role in determining the radiative characteristics
of the substance.(l) For this reason the surface condi-
tion such as the geometric aspects and surface films can
have significant effect on the radiative heat transfer

between bodies. To account for these conditions



empirically the radiative properties of a material are
often specified for certain test conditions or particular
methods of preparation of the specimen. In accounting
for surface roughness the method of surface finish is
frequently used as the criteria for the condition of the
surface. This method of surface description is qualita-
tive, but it does give some indication of general surface
geometry present. A look at almost any table of radia-
tive properties shows that surface finish has a signifi-

(2) (3)

cant effect on properties of many engineering material:s.

Criteria for Surface Roughness

In order to discuss surface roughness it is of
interest first to establish a criterion for roughness in
a surface. 1In order to do this consideration is given to
the definition of an optically smooth surface as described
by the Rayleigh criteria. If the reflection of electro-
magnetic waves from a surface containing height variations
h is considered, then the condition that must be satisfied

for the surface to be optically smooth is that

%&cos(ds) -0 (see Chapter 2, Ref. 4)
where

Aw is the wave length of the incident energy
and

a is the angle the incident energy makes with

the normal to the surface.



For this quantity to go to zero h/Aw must tend to zero
(the case of o tending to 90° is a limiting case and
not of great interest here). The important point to
note is that this ratio indicates the degree of rough-
ness in a surface is dependent on the wavelength of the
radiation under consideration. Since this analysis is
concerned with heat transfer the radiation of interest
is that of the visible and thermal spectral bands. As
the range of the wavelength for these bands is from
1071 to 10% microns, very small height variations in

the surface are sufficient to cause the surface to be
considered as rough. In this analysis no attempt is
made to account for, in detail, the effects of height
variations on the order of magnitude of the wavelengths
of interest, and only the major height variations in the
surface (which due to approximations made in the calcu-
lations are restricted to a maximum value of about lO5
times the largest wavelength of interest) are considered.
It is assumed that diffuse emissions and reflections

result from these microscopic height variations

(variations on the order of the radiation wavelengths).



Theoretical Analysis of Surface Roughness

Theoretical analysis and prediction of surface
roughness effects is a very difficult problem and a
considerable amount of work has been done in this area.
As a first step, the idealized case of an optically
smooth surface (i.e., the Rayleigh criteria is zero for
all portions of the surface) has been studied by a
number of investigators. Using electromagnetic wave
theory and the assumption of an optically smooth surface
the radiative properties of a material can be derived
in terms of electrical and optical properties of the
material.(s) This serves as a guide to radiative proper-
ties, but many engineering materials show striking devia-

(5)

tion from these calculated values. There are several

reasons for the deviations, but one important reason is
the geometrical roughness in the surface. As mentioned
above the roughness is related to radiation wavelength
so that materials can fit the idealized predictions in
some regions of the spectrum but deviate in others.(s)
The predicted values from analysis of the optically
smooth case serve a useful purpose as a basis of comparison

for empirical values and also give an indication of the

anticipated trends of the empirical values.



To introduce roughness into a surface a reasonable
first step is to consider a periodic, one-dimensionally
rough surface. A typical pefiodic, one-dimensional
surface consists of an infinite surface which has a
system of parallel ridges and valleys which in cross
section appear as a "saw tooth" profile. Many different
periodic configurations have been uéed for the profile
and among these are sine waves, uniform "V" shaped
grooves, and uniform square shaped grooves. An exten-
sive survey of the analysis of reflection from a one-
dimensionally rough surface can be found in Chapter 4
of Reference (4). Several papers have been written on
the resulting heat transfer for surfaces with one-
dimensional roughness. An example is given in Reference
(6). An example of experimental work done on this type
of surface is given in Reference (7).

Since the surface roughness in most manufactured
and natural surfaces is neither periodic nor explicitly
given, the surface can only be described in terms of
statistical properties. Numerous methods of describing
a rough surface in a statistical manner are summarized
in Chapter 5 and 6 of Reference (4). In the analysis
described in Chapter 5 of this reference the basic
assumption involved is that the radius of curvature of

all portions of the surface is large with respect to the



wavelength of the incident energy. Also shadowing of
portions of the surface by adjacent roughness anomalies
is neglected, and the height variations are near the
order of magnitude of the wavelength of the incident
radiation. These approaches are not oriented toward

heat transfer analysis but mainly to the reflection of
radio waves from rough surfaces. The description of the
models of surface roughness are of interest, and some
results apply directly to reflection of thermal radiation.
It is interesting to note that for height variations near
the size of the wavelength the reflections become similar
to the diffuse case. Also in this chapter consideration
is given to a two-dimensionally rough surface. Another
example of an analysis which considers the statistical
aspect of roughness is given in Reference (8). In this
paper the surface is represented as one-dimensionally
rough and the irregularities are "V" shaped with the
slopes of the sides of the "V" determined by a random
distribution. The sides are assumed to be large with
respect to the wavelength, and the sides are assumed to
reflect in a specular fashion. Shadowing and multiple
reflections are included in the analysis of reflection
from this model. The results generally indicate a peak
value at the specular reflection angle with lesser off-
specular reflections depending on the slope distribution

of the model.



Experimental Observation of Lunar Surface

Since the present analysis is oriented toward the
moon's radiative characteristics it is of interest to
consider experimental results for energy fluxes from
the moon's surface. Early earth-bound measurements of
the moon's thermal emissions by Petit and Nicholson(g)
indicated that the moon does not follow Lambert's law
for diffuse emission. This is to say that if the region
observed is assumed to be a flat, diffuse surface and
the incident solar irradiation is conétant then the mea-
sured flux at a fixed distance from the surface should
vary as the cosine of the angle of observation with
respect to the normal to the surface. More recent mea-
surements by Saari and Shorthill(lo) indicate a maximum
energy flux in the general direction of the incident
radiation. Also measurements of reflected energy from

(11) indicate a peak value of

the lunar surface by Orlova
the reflections in the direction of the incident solar
radiation. The cause of this back scattering of energy
is not known, but a possible explanation origihally put
forward by Petit and Nicholson is the surface roughness
of the lunar terrain. For lunar emissions it should be
mentioned that iow conductivity of the lunar material

and the lack of an atmosphere are important aspects of

this explanation. In the current analysis a rough surface



is considered with the simplifying assumption that on a
microscopic scale (on the order of magnitude of the
wavelength of the radiation involved) the surface is

diffuse and the results are compared with the experimental

data for the lunar surface.
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ITI. ASSUMPTIONS

In this analysis several assumptions are made
concerning the nature of the rough surface. First the
material composing the surface is assumed to have a very
low value of thermal conductivity such that heat conduc-
tion in the surface can be neglected. In addition the
surface is assumed to be in a vacuum so that convective
heat transfer is eliminated. The only thermal radiation
incident on the surface is assumed to be a flux of
solar energy. Mutual irradiation between surface irre-
gularities is assumed to be negligible. In this analysis
the surface is assumed to be macroscopically rough, i.e.,
the major height variations are assumed to be several
orders of magnitude larger than the longest wavelength
of radiation involved. The elements forming the rough
surface model are assumed to be both diffuse emitters
and diffuse reflectors, and the absorbtivity of the ele-
ments is assumed to be independent of the direction of
the incident energy. The assumption of diffuseness is
clearly a simplification of the complex problem of the

detailed interaction of radiation with matter aad precludes
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any representation of the height variations on a micro-
scopic basis, i.e., height variations on the order of

the radiation wavelengths under consideration. An
additional assumption required by the method used to
calculate the flux is that the height of the receiving
differential area above the mean surface level is approxi-
mately two orders of magnitude greater than the height

variations in the rough surface.
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ITT. MODEL DESCRIPTION

The model used to describe the rough surface
considers the surface as rough in two directions with
the roughness having a statistical nature. The simpli-
fying assumption of diffuse radiation is retained in
the model. To establish a basis for measurements a
mean surface level is defined. The mean surface level
corresponds to the plane in the rough surface which has
a volume of material above the plane equal to the void
space below the plane. This mean plane serves as a
reference for all roughness height variations and for
dimensions to the surface. The energy flux is calcu-
lated for a differential area located at a height H
above the mean surface level. A coordinate system is
established in the mean surface level with the origin
at the point of intersection of the mean surface level
with a line from the differential area perpendicular to
the mean surface level. The axes are labeled § and ¥
and are in units of H. The orientation of the normal

to the differential area determines the portion of the
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infinite surface which is "visible" and therefore
determines the portion of the surface which can contri-
bute to the energy flux at the differential area. The
normal to the differential area and a line from the
differential area perpendicular to the mean surface
level define a plane which is a plane of symmetry for
the geometry of the configuration. Solar radiation is
assumed to be incident on the infinite surface and the
center of the sun is assumed to lie in the plane of
symmetry. This geometry is indicated in Figures 1 and 2.
At this point it is appropriate to consider an
ideal case which will be used as a reference for all
work done with the rough surface model. The ideal case
consists of considering the mean surface level as an
infinite, flat surface which is a diffuse emitter and
reflector. The ratio of the energy flux from the model
of a rough surface to the energy flux from the ideal
surface will give the effect of surface roughness on the

radiative properties of the surface.

Grid Elements

To model the rough surface a square grid system is
established in the mean surface level by constructing
grid lines parallel and perpendicular to the line of

symmetry. The dimension of the square grid area elements
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is left unspecified for the moment, but it will always

be small with respect to the height dimension H (less
than 1/50 H). Each square grid element is assumed to

be a diffuse emitter and reflector. To account for
height variations in the surface the center of the ele-
ment is fixed at the center of the grid square, and
different orientations are assigned to each element. A
normal to the grid area eliement is established at the
center of the square, and the orientation of the element
is specified by the polar and azimuthal angle of the
normal. The polar angle 0 is measured from the vertical
direction (i.e., perpendicular to the mean surface level)
and the azimuthal angle ¢ is the angle between the pro-
jection of the normal in the mean surface level and the
direction of the sun for positive sun angles. A typical
grid element with the associated angles is given in
Figure 3. The sine of the polar angle determines the
maximum deviation from the mean surface level for each
element. To simulate the height variations in a rough
surface a distribution of values is assigned to the sine
of the polar angle. Two height distributions were inves-
tigated -~ normal and random. A description of the method
used to generate these distributions is given in Appendix E.

To allow for azimuthal orientation variations the value
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of the azimuthal angle ¢ is specified by a random distri-
bution for both cases of height distribution. This random
distribution in direction is consistent with an isotropic
”surfaéé (i.e., there is no preferential direction or
grain in the surface). The range of the azimuthal angle
is restricted such that the element can always be "seen"
at the receiving differential area. This is accomplished
by restricting ¢ between values of g - w, and %? - W,
where W, is the angle measured in the mean surface level
between the line of symmetry and the line joining the
center of the element with the origin of the coordinate
system. This restriction on ¢ insures that the normal to
the element will always have a positive component in the
direction of the receiving differential area. This can
be seen by considering the restrictions on ¢ in Equations
B-2 and B-3 of Appendix B. The general philosophy
followed in constructing the rough surface is that only
the portions of the surface which are irradiated and can
be "seen" at a viewing point can contribute to the energy
flux at that point. Clearly only a portion of the sur-
face has been constructed using the inclined grid elements,
and the incident energy striking the portions of the sur-

face which have not been represented in the model is

neglected with the assumption being that this radiation
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energy cannot reach the viewing point. Likewise, portions
of the surface which are visible but receive little or no
irradiation are of negligible significance to the energy

flux at the receiving differential area.

Sun Shadowing and View Blockage

To complete this model of a rough surface two
additional geometric aspects are considered. The first
is sun shadowing or the blockage of solar irradiation
from a grid element by an adjacent element. Due to the
assumption of the sun being in a plane containing the
line of symmetry, the only elements that contribute to
the shadowing of an element are in a column parallel to
the line of symmetry which contain the element of interest
and are in the direction of the sun. In this analysis
only the first adjacent element of this column is con-
sidered in shadowing, and for this reason has been
termed "first order shadowing". A similar aspect of the
analysis considered is termed "view blockage". By view
blockage is meant the occulting, or blocking from view
at the differential area, a fraction of the element by a
neighboring element. Numerous elements can be effective
in view blockage depending on the location of the element
of interest. Again in this analysis only first order

effects are considered: only the first adjacent and
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diagonally adjacent elements are considered. These
elements are pictured in Figure 4 for various locations
of the element of interest. The effect of each of the
three elements is added together to give the total view
blockage. It is typical that both sun shadowing and
view blockage are present on an element, and in this
case the one causing the larger decrease in area is used
to calculate the effective area of the element.

One additional aspect of the range allowed for
the azimuthal angle should be mentioned at this pbint.
As stated earlier only a portion of the surface is con-
structed with the assumption that the neglected portions
of the surface do not contribute to the energy flux at
the observation point. For positive sun angles and in
the region of the surface where view blockage is small
(0O <€ <1 and 0 < ¥ < 1) this approach can lead to
neglection of portions of the surface with large radio-
sities. To compensate for this in the region of
0 <E€Es<1 and 0 <y =1 the azimuthal angle is allowed
to have a range of 21 with positive sun angles. This
allows more of the portions of the surface with large
radiosity to be considered in the flux calculation and
therefore gives a more realistic representation of the

surface.
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Figure 4: Elements involved in first order view
blockage for various locations in the
mean surface level
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IV. ANALYSIS

Basic Equations

The basic calculation made in this analysis is the
guantity of energy flux intercepted at a differential
area for both the model of a rough surface and the ideal
case of a flat, diffuse surface. The ratio of the inter-
cepted flux for the rough case to the flat case is used
as the indication of the effect of surface roughness. To
start the analysis a differential area dAs in a surface
area A which is a source of emitted and reflected radia-

tion is considered. The flux at dAs is defined as

. A
£ = lim aq >
dAs AAS"’O (AAS

where Aq is the quantity of radiation energy leaving LY S

It can be shown from Reference (12) that

dfdAS I cos B
= 5 1
an, 2 (1)
dfdA
where s 1is the portion of the flux from dAs which
da
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is intercepted at dAL . The differential element dA_L is

a portion of the hemisphere of radius r with center at

dAs . The angle B is measured between the normal to dAs
and the line connecting dAS and dAL . I is the intensity
of the radiation from dAs . To consider a differential

area of arbitrary orientation at dA* it is noted that
aa = = cosB‘da

where B’ is the angle between the normal to dA and the
line connecting dA and dAS . So that equation (1) can

be written

4
dfdAS I cosBcosB
da = 2 (2)
af
where by definition s 1is the intercepted flux at
da

dA from the source dAS . The total intercepted flux at

da from area AS is

de dfdA
s _ I S aa
dA A dA s
s
or
4
des I cosBcosp (3)
£, = = j daa
da da A r2 S



The term fdA is the gquantity of interest since it
represents the total incident energy at dA from a

surface AS . The calculation of the intercepted flux
de

s L] . 3
dA( aA ) for the flat, diffuse case is presented in

Appendix A. To calculate the incident flux for the

£

rough surface an element of the rough surface as pic-
tured in Figure 3 is considered. If this element is
isolated in space so that there are no effects of sun
shadowing or view blockage by adjacent elements, a

heat balance can be applied to establish the radiosity
of the element. First the incident energy on the ele-
ment is assumed to be a collimated flux of solar radia-
tion represented by the solar constant Gg - With the
assumptions of no conduction and no convection, conser-

vation of energy states that for this element
J = G (4)

where J = the radiosity of the surface (both
reflected and emitted energy)

and G = the irradiation of the surface.
Now the irradiation of the element is given by

G = Gg cosn (5)

23
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where G, = the solar constant (440 BTU/hr ftz)

and n = the angle between the normal of the element

and incident energy Gy -
This gives
J = G  cos n (6)
It can be shown from Reference (12) with the assumption
of diffuse emission and reflection for the element that
J = Im (7)

So now the incident energy can be related to intensity
of emitted and reflected radiation of the element.

This allows the incident flux at dA to be written as

G cosm cosBcosB’
| da (8)

A - r2 s

Since the element is flat the angle 1 will be constant

over the surface element or

G cosn cosBcosB’
faa = [
m Al r

At this point it can be noted that with the assumptions
made the incident flux from any element is determined by
its orientation with respect to dA, and its radiosity is

determined by the orientation of the element with respect
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to the solar flux. If the absorbtivity with respect to
the solar energy of the roughness elements and the flat
surface reference case is assumed to be constant then
the ratio of the rough surface emitted flux to the flat
surface emitted flux will be the same as the ratio of
the total rough surface flux to the total flat surface
flux. This applies to the reflected fluxes as well.
Also, the temperature of each element is immaterial to
the flux at dA since the temperature of each element
must be such that the emitted energy when added to the
reflected energy will equal the incident energy (i.e.,
conservation of energy).

If only small area elements are considered the
integration to obtain fdA can be simplified by making
the following approximations

cosB e cosBc
7 ’
cosg = cosPB c

r = r
C

for all portions of the area element AS . The subscript
¢ denotes the term evaluated at the center of the element
(the point at which the element is pivoted). These

‘approximations give

4
osncosf _cos
Gsc e Bc Bc

fdA e 5 A (9)
mTY

C
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This equation will be used to calculate the energy from
each rough surface element. It is convenient to convert
equation (7) into the variables used to describe the
orientation of the elements and the dimensions of the
grid system of the mean surface level. This transfor-
mation of variables is carried out in Appendix B. The
final result after adding subscripts to indicate the

grid location is

@

S . .
fdAij = - [coscvscoseij + cosmij51nd531neij]

. 2 2 .
y [xicosy— 31ny][coseij— JEj + X5 s1n6ijcos(cpij + wij)]

[53 + xi + l]z

The total flux from a region of the rough surface is

is a rough surface flux received at dA

where F
dAxy

with sun shadowing and view blockage not included. The
flat surface diffuse case flux faa can be evaluated
from the equations of Appendix A for the same region as

considered in the rough surface analysis and the ratio
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of the two fluxes gives the effect of surface roughness.
As yet the effects of sun shadowing and view blockage
have not been included, but this ratio serves a useful
purpose in confirming some aspects of the analysis as
will be seen in the discussion. To account for sun sha-
dowing and view blockage a factor based on the geometry
of the element involved is multiplied by fij to account
for the reduction in the effective area of the element
due to incomplete irradiation of the element or the
partial visibility of the element at the differential
area dA. So the final form for calculating the rough

surface flux is

T Z Z fan,. Cij
— ij
i3

where Cij is the correction factor for sun shadowing
and view blockage; Faa is a rough surface flux received
at dA with sun shadowing and view blockage included.
The detailed calculations of Cij for sun shadowing and
view blockage are given in Appendix C.

To calculate the contribution of the energy flux
from the region very far from dA an approximation is used.
This approximation is used because-as the region under
consideration becomes farther from dA the higher order

view blockage becomes significant and using only first
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order view blockage leads to substantial error. The
derivation of this approximation is given in Appendix D,
and the method of calculating the flux from the region
outside of A 1is presented in Appendix F. This leads to
the final form for calculating the energy flux from a

rough surface of infinite extent as

+ F
dA£

Fan = Z fam, . Cij
A 13
g
where Ag is the area in the mean surface level treated
by grid system analysis and Faa is the flux from the
2

remaining portion of the infinite surface not treated by

grid system analysis.

Method of Solution

To solve the equations for FdA and Fi! a computer

program was written. The program generated the orienta-
tions of the grid elements in the region Ag . The orien-
tations of three rows of elements were generated and held
in storage. These values provide sufficient information
to calculate the energy flux for the center row, and the
two adjacent rows provide information for first order
sun shadowing and view blockage. After all the elements

in the center row had been evaluated the three rows in
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storage were updated to include one new row, and the
evaluation process was repeated with the new center row.
This process was repeated until the flux at dA from all
the elements in Ag had been evaluated. A second program
was used to calculate the flux at dA from the region
outside of Ag using the approximation of Appendix D and
the method described in Appendix F. This flux was added
to the flux from the region Ag to give the total flux at
da from the model of a rough surface of infinite extent.
This flux was divided by the flux received at dA from the
flat, infinite surface to get the ratio ¥ . Computer
solutions were performed for two height distributions in
the surface -- random and normal. The grid size used
was @ = .02 . Five values of the differential area
orientation angle y were considered. These were y = 0 ,
v = +£30° , and y = +60° . The range of sun angles o
investigated was from -75° to +75° with solutions per-
formed at 15° increments of a_ between these two values.
The programs were written in Fortran IV and were run on
a Burroughs 5500 Digital Computer at the Rice Computer

Center.
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V. DISCUSSION OF RESULTS

Flat Surface Shape Factor Contours

As a first step in considering the results it is
of interest to consider the flat, diffuse case for an
infinite surface. This case serves as a reference for
all the rough surface results and can be used to indi-
cate the relative importance of different regions in
the infinite surface. To accomplish this the shape
factor for a differential area in the infinite surface
at the mean surface level to a differential area located
at a height H above the mean surface level is derived
in Appendix A. If this expression is evaluated for
constant values of shape factor to determine the result-
ing points in the surface, a set of curves of equal
shépe factor result. This set of contours can be plotted
in the mean surface level to give an indication of the
relative importance of different regions in the surface.
In Figures 5, 6 and 7 these sets of contours are plotted
for several values of y used in the final results. These

plots indicate that the most important region is near
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Figure 5: Differential shape factor contours in the
aA = constant)

mean surface level (F

-t

for y = -30°

A

‘::f;iewing limit at 4da
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Figure 6: Differential shape factor contours in the

mean surface level (FdAp* aa = constant)

for y = 0°




Figure 7: Differential shape factor contours in the
mean surface level (FdA -~da = constant)
for y = 30° P

Viewing Limit at da

33
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the line of symmetry. Also the value of the shape factor
falls off quite rapidly as the distance from the origin
of the coordinates gets large. As mentioned in the last
chapter, due to higher order view blockage and to con-
serve computer time only a portion of the infinite surface
is treated with a detailed grid system analysis (dividing
the mean surface level into grid elements and assigning
the orientation from distributions), and the rest is
treated with an approximation derived in Appendix D. If
it is assumed that the rough surface will show similar
trends these plots can be used to show the appropriate
shape of the region for grid system analysis. Clearly
this shape must be consistent with the square grid system
used. The region of detailed analysis is shown super-
imposed on these plots by dashed lines. Figure A-4 of
Appendix A shows the fraction of the flux from the infinite

surface included by this region.

Test Area Results

Now to start the analysis of the rough surface the
model is considered with view blockage neglected. If the
case of o, = 0 ("high noon" sun) is used then sun shadow-
ing will be zero. To analyze different portions of the

rough surface a test area is used. The idea of the test
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area is to use a large enough number of grid elements so
that a reasonable distribution of orientations is contained
within the area and the area is still small enough to
represent only a small portion of infinite surface. 1In
this analysis the test area is a square region containing
625 grid elements (a square 25 x 25 grid units). If the
ratio of the flux from the rough surface model to the flat
surface is calculated for test area locations along the
line of symmetry the resulting values of FdA/fdA can be
plotted as a function of distance from the origin. This
plot is made in Figure 8 for several values of the grid
dimension « . In Appendix D the ratio of the energy flux
is derived for a single inclined element. If this expres-
sion is written with average values of the distribution
determining the orientation of the elements and applied

to a test area the result is equation D-6. It is clear
that the form of the equation will give a straight line.
This line is plotted in Figure 8 as a dashed line. From
this figure it is seen that as o becomes small the

results of the test area analysis approach the results

of equation D-6 very closely. With values of a < .02

the points determined from the test area analysis form a
straight line with slope and intercept very close to the
results of equation D-6. This plot is for a normal height

distribution, but a random distribution gives the same
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Figure 8: Plot of the rough surface energy flux to the
flat surface flux with sun shadowing and view blockage
neglected (FNN) vs. Ryt for a normal digtribution of
heights with grid size as indicated for w,¢ = O
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agreement. Also this agreement is not restricted to the
line of symmetry or to o, = 0 (if sun shadowing is not
included in the analysis). This can be seen in Table D-1
of Appendix D. From these results it is concluded that
for this model of surface roughness the ratio FdA/fdA

is essentially independent of grid size for o = .02,
Also it is concluded that average values of the distribu-
tions are meaningful in calculating the energy flux and
can be used in the approximation of the limiting case as
derived in the second part of Appendix D. It should be
noted that the ratio FdA/fdA tends to infinity as the
distance from the origin tends to infinity. This is phy-
sically unrealistic since it indicates that a rough sur-
face of infinite extent would cause an infinite flux at
the differential area dA . The reason this occurs is that
view blockage has been neglected in the analysis so far.
At this point it should be emphasized that this analysis
does not apply to height variations of the rough sur face
on the order of magnitude of the radiation wavelengths
under consideration. Only macroscopic height variations
are considered. The assumption of diffuse elements com-
posing the rough surface precludes any attempt to describe
height variations on the scale of the radiation wave-=

lengths. Although the grid size is not important to the
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ratio FdA/fdA , the resulting distribution of slopes in
the surface is significant to this ratio. If the maximum
value of the polar angle is restricted to less than 90°,
the ratio is closer to the flat surface case as can be
seen in Figure 13. As the maximum polar angle tends to
zero the results tend to the flat surface case.

To complete the analysis of the rough surface model,
first order view blockage is introduced into the test area
analysis. The equations used to establish the reduction
in effective area of the grid elements are given in
Appendix C. Figures 9 through 12 show the effect of view
blockage on the ratio FdA/fdA . As the distance from the
origin becomes large the ratio begins to increase due to
the neglection of higher order view blockage. For this
reason an approximation is used to calculate the energy
flux from the region far from the origin. This approxima-
tion is derived in Appendix D and the values from this
approximation are also indicated in Figures ¢ through 12.

This model is oriented mainly toward the evaluation
of the flux from the lunar surface subjected to solar
irradiation. To evaluate this model of surface roughness
experimental data is available to compare with the results
of test area analysis. This data is derived from the

results of earth observation of lunar emissions by Saari
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Figure 9: Plots of ¥, 9-’N, and 3NN vs, distance 39

from origin R,. for normal distribution with Wog = O°
."»’NN (sun shadowing and view blockage neglected)
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N
Points represent values of %
— F—1 ° — o= - o
o o, = 0 A @y 45
—— ) ° — = = o
o o = 30 ° a, = 60

~¢— Values of approximation from Appendix D

,_..
o
w-
e
(3]

ot



’ sNN

40
Figure 10: Plots of &, S‘N,and Fy VE- distance from

the origin R, for a random distribution with Wop = 0°
N (sun shadowing and view blockage neglected)

— ——— 9’N (view blockage neglected)

Points represent values of &
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‘Figure 11: Plots of F and Fan VS distance from

the origin R, for normal distribution with

t
= °
wct = 45

gNN (sun shadowing and view blockage
neglected)
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Figure 12: Plots of ¥ and 3NN vs., distance from
the origin R.¢ for random distribution with

— ]
et = 45
gNN (sun shadowing and view blockage
neglected)
Points represent values of ¥
— — - [+ — — - [+
a oy = 30 ® o, = 60

~¢— Values of approximation from Appendix D
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Plot of ¥ vs. Rct for a normal

NN

distribution with various values of maximum

polar

angle and Wog

= 0°

30




44

and Shorthill(lo). In these experimental measurements

the sun angle and orientation of the observation point
were allowed to vary, but since the earth and moon orbits
are essentially in the same plane measurements were made
only for locations corresponding to the line of symmetry
in the mean surface level. The results of Saari and
Shorthill consisted of curves which represented least
square fits to the measured values. A first comparison
of results is given in Figure 14. This plot is of the
limiting case approximation of Appendix D for both
normal and random distributions and the corresponding
data points of Saari and Shorthill. Both distributions
show good agreement with the trend of experimental data,
and the random distribution fits the data a little more
closely in certain portions of the curve. To continue
the comparison Figures 15, 16 and 17 give plots of the
results of the test area analysis and appropriate

experimentally derived curves of Saari and Shorthill.

Infinite Surface Results

Now to consider the final results of this analysis.
The energy flux from the region outlined with dashed lines
in Figures 5, 6 and 7 is calculated using normal and

random height distributions of grid elements and the energy
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flux from the region outside this rectangle is calculated by
the method described in Appendix F. The sum of these

fluxes represents the energy flux from a rough éurface

of infinite extent. The ratio of this sum to the energy
flux from a flat, diffuse surface of infinite extent

gives the value of FdA/fdA for an infinite surface. This
ratio for normal and random height distributions is plotted
in Figures 18 and 19. There are no direct experimental
values for this quantity, but some empirically derived
results for this quantity have been made by Harrison.(l3)
In this work an empirically derived expression developed
by Ashby and Burkhard(l4) for the intensity of radiation
from the lunar surface was used. The data was from the
experimental work of Saari and Shorthill(s) and some

limited thermal radiation measurements by Surveyor I(ls)

on the moon's surface. These data were used as a basis
for a curve fitting process to determine the directional
properties of the intensity of lunar emissions. These
empirically derived equations for lunar intensity were
integrated by Harrison(lB) over a surface which consisted
of a disk of radius = 1000 H where H is the height of

the receiving differential area above this disk to get

a value of the energy flux at the differential area.

This size disk is an infinite surface for all practical

purposes. The ratio of Harrison's empirically derived
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flux to the flux from a flat, diffuse surface is plotted
in Figure 22, Also plotted are the results of the analy-
tical model for this‘ratio with the same orientation of
the differential area for both normal and random height
distributions. The plots show generally good agreement
with the normal distribution showing closer agreement to
Harrison's results. In Figures 20 and 21 the ratio
FdA/fdAis<plotted for normal and random height distribu-
tions considering only the energy flux from region Ag
bounded by the dashed lines in Figures 5, 6 and 7. Com-
parison of these plots with Figures 18 and 19 (the
infinite surface cases) shows only minor modification by
the inclusion of the remaining part of the infinite surface.
A minor point concerning the differential area
orientation angle vy should be explained. The curves of
Figures 18, 19, 20 and 21 labelled v = #30° and +60°
should actually be £30.1137° and +60.1135° respectively.
The reason these curves were calculated at these odd
angles resulted from a method of saving computer time in
the calculations. Only one position of the grid system
with respect to the coordinate axes was used for all values
of vy and to avoid considering fractional grid elements the
values of y were not set equal to #30° and #60° but to the

values of y which were nearest to these values and still

consistent with the grid lines.
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VI. CONCLUSIONS

An analysis of the heat transfer from the model of
a surface which contains roughness but still retains the
simplifying assumption of diffuse reflection and emission
has been investigated. The results indicate a higher flux
in the general direction of the incident energy. This is
consistent with the lunar emission measurements of Saari

1(10). No direct measurements of infinite

and Shorthil
surface case are available, but Harrison's empirical
results for this case show this trend and agree well with
the results of this analysis for the normal distribution
case. From the Figures 9 through 12 it is concluded that
view blockage is an important aspect of the analysis for
the infinite surface case since the flux, when view
blockage is neglected, becomes indeterminate as the dis-
tance from the differential area tends to infinity. The
analysis of both random and normal height distributions
show the same trends in the results with the normal dis-

tribution having a better overall agreement with the

available data. From this similarity of trends it is
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concluded that the exact nature of the roughness height
distribution is not critical to the results indicating
higher fluxes in the incident direction.

As further study a possible extension of the
analysis would be to consider the case of the sun not
in the plane of symmetry. This would require more com-
puter time for solution because some of the basic symmetry
is lost in this case. Another extension would be to con-
sider non-planar roughness elements (i.e., hemispherical
or pyramid shaped roughness elements). An additional
investigation of interest would be to retain the planer
grid elements but restrict the maximum polar angle allowed
to some value less than 90° as was used in this analysis.
This case would be of interest 1f a rough surface were
covered with an unconsolidated layer of dust or sand
which would have maximum slope determined by the particle's

angle of internal friction.
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APPENDIX A

Energy Flux From a Rectangle in the Mean Surface Level

From equation (3) the heat flux at dA from a flat,

diffuse surface of area Ap can be written as

!
£ _ I cosBcosB da (a~1)
an N 2 P
p
where Ap = an arbitrary area in the plane of the
mean surface level
dAp = a differential segment of area Ap
I = the intensity of the radiosity from dAp

If the source of incident energy provides a constant,
collimated energy flux of magnitude G and the reflections
and emissions of the surface are diffuse then from

equations (6) and (7)

G, cosm
I = — (a-2)
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And so equation (A-l)can be written

G cosncospcosB’
£ = = da (A-3)
dA 2 P

™ A r
p
where GS = solar constant at the mean earth radius

from the sun

n = angle between the incident solar flux and

the normal to dAp

For an area in the mean surface level n is constant over
the entire area and equal by definition to the sun angle
@ . So equation(A-3)becomes

s

G cdsas cosBcosB’
—_— _ da (a-4)

™ A r
P

To evaluate the integral the geometry in Figure A-1l is
considered. The rectangle is assumed to be oriented so
that each pair of sides is parallel to one of the coor-
dinate axes. The center of the rectangle is allowed to
have an arbitrary location in the mean surface level. 1In
this derivation the normal to the receiving differential
area dA will be allowed to have a value of the angle ¥

i

between -‘g and 2 - Since the area is in the mean

surface level equation(A-4)is applicable. Now to evaluate
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cospB cosp’

r2 for this case the geometry in Figure A-2 is

considered. Using rectangular coordinates

osB L
C = 1
,ng + x2 + 1
1
r = J§2+x2+1

The projection of the normal N’ on the line joining da
and dA_ is N'cosp’ and from geometry of Figure A-3 this

can be written

7

N'cosp’ = N'cosycosB’’ + N’siny(-cosB)

where

X

J2 e %+

cosp’’ =

and from above

_ 1
L
\/§2+X2+1

cosB = %

So now cosB’ can be written

xcosy — siny

= !
J€2+x2+1

4

cosB (A-5)
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This gives

cospcosB’ _ Xcosy - siny
2 (gz + X2 + 1)2
And since
da = dy d ’
o X d§

equation (A-4) can be written

G cosog xcosy - siny
fan = — 5 5 5 dy dg (A=6)
™ A (E" + %~ + 1)
p

Before evaluating the limits of integration it should be
pointed out that for the area Ap to contribute to the
heat flux at dA the area must be in the "field of view"

at dA as indicated in Figure A-1l., The viewing limit for
any angle vy is determined by equation (A-5) for cosg’ = 0.

This requires
Xmin = AR Y

where Xmin 1S the smallest value of % in Ap, for the
entire area A_ to be in the field of view. In this
derivation Ap is assumed to be in the field of view

(this can be adjusted by redefining the area Ap such that
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., = tany). Now rewriting equation (A-6) with the
Xmin Y

limits of integration from Figure A-1,

L
G cosag [ [ xcosy - siny
£ = ——— dg dy
da 2 2 2
™ x_ E_ (E" + %~ + 1)
or
g X, £, X,
G cosy / / x dy dg G siny // dyx dg
£ = — - :
da 2 2 2 2 2
+ 1
T g Y. (% + %" + 1) ™ E_“x_ (87 + x
and in abbreviated form
fdA = G cosy Sl - G siny 82

Using equation (14.133) from Reference (10) gives for the

first integration of Sy

g g

+ +
| 5= =
25, = - +
L (§2+x3_+1) (§2+XE+1)

g

Equation (14.125) from (16) gives

1 _ g, 1 1 g_
251 = an -\ = —————+tan
A)x_ + 1 ,,/xf + 1 XE + 1 A/x_ + 1
1 _ g 1 - g_
- tan 1 + tan 1
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Now for integral 82 using equation (14.125) of (16) gives

s f§+ X :X'ng
204 @ e e
- X~
X4
+f t '1( X ) ae
an
5 (g2 4+ 1)3/2 (g2 + 1)/2
X_
or in abbreviated form
28, = B85 * Syp
S2A is of the form
g
[
S = dEg
28 e (52 18 +p)
which can be written
g g
a .I'+ dg a ."+ dg
S —_ -
2 pP-1 4 e b2 -1 % &+’



or
1 g 1 _ g

SZA= — tan 1(§) * - — tan 1(@) +
g X-. g

1 \§+

+x_A/x3+l tan- «/X +l/ Xy x++1 ,\/

To complete the integration of S, it is noted that S,

is of the form

u -1
2S = ————— tan "~ (au) du
e
1l - u2

where

- 1l -u
2S = -,\/Il—u2 tan l(au) +af 55
(1 + a"u™)

2B

letting

1/2
v = (1-u?) 2 i‘———z”’-—l-
a
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From equation (197) of Reference (17) this becomes

2g _ _af w2 dw
2B W2 + (a2+ 1)] (wo+ 1)

where u

This can be written as

25 = _(_a_i_l_Lf.______L/'_d_v_v__
2B 2
w+(a+1) aJw + 1

and from equation (14.125) of Reference (10) is

Rewriting this in terms of E gives

g g
+ 2 +

28 J2 1 J2e 1 . a 241 :

g
1 -1 +
+ 3 tan ~(§) g
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or £

2B

Now combining S and S and some manipulation gives

2A 2B

25

N
Il

3 1 (/gf + 1> 1 (A/.gf + 1)
—|tan - - tan _—
1

X X4




So the final form of fdA is

G _cosa_cosvy
) s

21

G_coso_siny g_
+
2m §2 +1
. /2 '
_ E” + 1
+ §+ tan 1(-——————
gi + 1 X4
X - g
¢ —= |tan 1(__+_.__
A)XE + 1 A)xz + 1
X - g_
+ —F— | tan l(-————-—-—
/2 ! 72 '
X + 1 X + 1
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To consider the fraction of the infinite, flat surface
flux provided by a finite area in the mean surface level,
the following special case is investigated. If y = 0
and the rectangle location is such that one side is
colinear with the g axis (x_ = 0) and another side is

colinear with the x axis (§_ = 0) then equation (A-7)

becomes
G_cosdo _ 1 _ g
fdA = —=2—2 |tan 1(§+) - ———— tan 1‘(———1;——-)
2m A)xi + 1 A/xi + 1

Letting Xy = L. and §+ = Zx+ = ZL with rearrangement

gives
£ 1 _ 1 _ ZL
fdA = s tan l(ZL) - —— tan l(————)
L Ggeosag 2w L2+ 1 JL2+ 1

The infinite flat surface case (L -+ « for any non-zero

value of Z) gives

(note that this case represents only one gquadrant of the

coordinate system (E,%) and therefore is 1/4 instead of
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1/2 as would be the case for the entire surface.) The
ratio of these two quantities is plotted in Figure A-4
with Z as parameter. This plot shows how the finite

area case tends to the infinite area case.

Contour Plots for a Differential Area in the Mean
Surface Level

From equation (A-4) it is clear that

G Ccosa cospcosp’

f =
dAp dA - r2

where fdA T the heat flux per square foot received

P
at dA from a differential area dAp . Rearranging and

evaluating terms with rectangular coordinates £,x gives

£ .

da_- dAa 1 cosy - sin
="X2Y2 :

GSCOSdS m (E°+ % + 1)

The quantity on the right (actually this is a differential
shape factor) gives the relative importance to the heat
flux at dA of a differential area in the mean surface
level as a function of position in the mean surface level.
Contour plots of this quantity for several values of ¥y are

given in Figures 5, 6 and 7. These curves are of interest
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in establishing the shape of the region in the mean

surface level to be treated by the grid system analysis.

Sizing of Aq

The area Ag is the area in the mean surface level
which is treated by grid system analysis in calculating
rough surface heat flux. The remaining portion of the
infinite surface is treated by an approximation derived
in Appendix D with the method explained in Appendix F.

The area is actually a function of y , but for this analy-
sis only the case of ¥y = 0 will be considered. First it
is assumed that the rough surface results will be similar
to the flat surface results for the fraction of the
infinite surface flux contributed by a finite rectangular
region. Obviously this is not exactly correct, but the
plots of Figures 9 through 12 indicate this assumption

is not too unreasonable. There are several considerations
in sizing Ag . First the computer time required for solu-
tions is proportional to the area Ag . Secondly the
maximum length L is restricted by neglection of second
order view blockage. The maximum value of L for which
this becomes significant is difficult to calculate, but

a value between 4 and 5 is reasonable. Thirdly, the agree-

ment of limiting values and grid analysis results at the



boundaries of Ag is important, but the plots in Figures
9 and 10 indicate close agreement for R greater than
about 3. From the second consideration the value of L
was set at 4.5. To determine the value of Z Figure A-4
and contour plots of Figures 5, 6 and 7 are considered.
Figure A-4 shows that for Z greater than about .6 the
addition of area adds little to the total flux. The
contour plots confirm this conclusion and from computer
time considerations, the value of Z was set at about .6
(the value must be compatible with the grid size used).
Rectangles of those dimensions are drawn on the contour

plots of Figures 5, 6 and 7.

74



75

19497

9doeFINS uRSW aY3 UT

m¢ eIy

:1-¥ sanbrt4g




76

da X
B
B ¥ 4
/ o
g

Figure A-~2: Detail of dAp in the mean surface level

Figure A-3: Detail of angles involved in flux
calculations for da
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Figure A-4: Plot of the ratio of the energy
flux from a rectangle in the mean surface

level of dimension L x ZL to the energy flux
of this rectangle as I, = =
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APPENDIX B

Evaluation of fdA..
ij
If an arbitrary square element of the grid system

with coordinate i and j of the &,y system is considered,

then from equation (7)

G_cosm, .cosB_ cosB’
_ s ij C.. Ca _
fdA.. = ij iy AS (B~1)
i3 r

C, .
1]

where As is not subscripted since in this analysis the
grid elements all have the same size. It is assumed that
the element is within the field of view at the receiving
differential area dA. From Appendix A it was shown that

this will be the case if

X . =2 tano
min

For all practical purposes this will be the case if

NR

Xy ~ 2  tang
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If the element ij is not within the field of view then

f-- - O .
1]

To evaluate equation (B-1) Figure B-1 is considered.
The angle Bc is the angle between the normal Nij and
ij
the line 0’ - P . Evaluation of the projection of the

normal Nij onto this line gives

i
Ncosscij = NVcoseij + NHcosgijcos( 5 ~ eij)
where Nv = vertical component of N
NH = horizontal component of N
or
cosBcij = coseijcoseij + s:.neijcosgijsn.neij (B-2)

From geometry

coseij = 1
2 2 '
J%j Xt 1
5% + x?
sineij = J =
2 2 '
véj * Xy F 1
cosgij = cos(cpij + wij - ) = - cos(cpij + wij)

(B-3)
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Xs
cosw, . = -
ij 5
. + X4
E.
sinwij = J
2 2
g, + X3
SO
1 .
cosB = cosf,. + siné, .
€ij 2 2 ' [ 1] 1]
J%. + %, + 1
j i
. (xicoswij - §jsinwij ]

From Appendix A with subscripts added

X;C0SY -~ siny

CL 5 5 1
+J /gj+ Xgy * 1

’
cos
BC

and

2 2 '
r.. = J%j + x5 * 1
1]
Now using the same method as for cosBc gives
i3

cosn.. = cosa_cosh.. + cosw..sino _sinb..
nlj s ij mlj s ij
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where wij is measured from the positive sun direction.

Equation (B-l1) can be written

S

£ = =
(L

da, .
1]

[cosozscoseij + cosmij51n0551neij]
- = BT sinsyjoon(oy 0,,)]
(xicosy 51ny>[coseij §j + X s1neijcos mij+ w, .

ij
(24 <1

(B-4)



Figure B-1l:

N,. = Ncos#®

Detail of angles involved in calculation
of the flux from a grid area element
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APPENDIX C

Derivation of C..
17

In the derivation of fij the total area of the grid
element is used in determining the energy flux at dA. To
account for shadowing of the sun's rays by an adjacent‘
element and view blockage at the receiving differential
area by an adjacent element, a correction factor based on
the geometry of the element orientations is used to reduce
the grid area element to an effective area for flux cal-

culations. This can be written as

A, = C,. Al
ig 1J

where

Cij is the correction factor for view blockage
and sun shadowing at element ij caused by

adjacent elements

A is the effective area of element ij for

1] flux calculations.

To simplify the analysis for negative sun angles (as < 0)

the value of C; is set equal to the correction for sun
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shadowing or the correction for view blockage,whichever
causes the greatest reduction in area. This is equivalent
to assuming that the same general portion of the grid
element will be subject to sun shadowing and view blockage
which is a good approximation for negative sun angles.

If the sun angle is positive (as > 0) the value of Cij is
set equal to the sum of the sun shadowing and view blockage
corrections. It should be noted that if a, =0 there is

no sun shadowing so Cij is equal to the view blockage

correction factor. This is summarized as follows

¢
(l—V- .) if V.. 2S--
ij ij ij
d SO : C-- = (
s 1j
(L - s8.,.) if S.. > V..
17 1j 13
and
ds > 0 : Cij = (1 - Vij) + (1 - Sij)

The evaluation of vy and Sij is made essentially in the
same manner except that for sun shadowing the geometry
is a little easier because there is only one case to

consider.



85

Derivation of Si_.l

The term Sij represents the fraction of grid element
ij which does not receive solar irradiation due to the
shadow of an adjacent element. For a "high noon" sun
(as = 0) there is no shadowing, but as the absolute magni-
tude of o gets large the shadowing becomes important. For
values of @, near +90° several elements can cause a shadow
on the element of interest. In this analysis only the
shadow caused by the adjacent element is considered and
for this reason is termed first order shadowing. The
first step in calculating the shadow is to calculate the
apparent area (to the sun's direction) of the two elements
involved. This area will be the area in a plane perpen-
dicular to a line joining the center of the element and
the center of the sun. For grid sizes small with respect
to the distance of the sun the two planes will be essen-—
tially parallel. This geometry is shown in Figure C-1l.

If the apparent area of the shadowing element is projected
onto the second plane then the region of overlap will
represent the shadowed portion of the element of interest.
To construct the shape of the apparent area two cases are
considered. If 6 < 45° then the width is set equal to

o (the actual width of the element) and the height is then
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a(sinfcosfcosA + cosfsin))

a 2w - 2

If 8 > 45° the width is

wa = ocosk
and
Aa @ (sinfcoslcosA + cosfsin))
h = T =
a 2w 2 cos(

with the restriction that

o
ha = 2

To calculate the height shadow factor FH from the

geometry of Figure C-2 it is clear

4 L la@)

is sin)
where the subscript (3) represents the (i-1l,3j) element
for negative sun angles (as < 0) and the (i+l,j) element

for positive sun angles, and

hs = ha - (4 - dis) sin)
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The height shadow factor is defined as

SO

with the restriction that if the formula gives a value

> 1 then

(Physically this means that the projection of the
shadowing element height is greater than the height of

the element of interest) and if the value is < 0 then

(i.e., the shadow does not reach the element of interest).

The width shadow factor Fu is given by

where w the apparent width of the shadowing element

a(3) ©

w the apparent width of the shadowed element,

a

with the restriction that the maximum value of FW is 1.
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Now the shadow factor for the ij element can be written

S.. = (F F, )

13 wis Fwlig

Derivation of V..
17

View blockage is treated in the same manner as sun
shadowing except that more than one’ element is significant
in occulting the element of interest. 1In first order view
blockage three elements are considered. These are the two
adjacent elements and one diagonally adjacent element.

The elements considered in various locations in the mean
surface level are shown in Figure C-3. The total occulted
portion of the element of interest is taken to be the sum
of the effects of the three contributing elements. Since
the method of calculating view blockage for each occulting
element is the same only one set of equations will be
derived and the required modifications for the other two
will be given. Again the apparent areas are calculated
but now with respect to the receiving differential area

dA . If the grid size is small with respect to the dis-
tance to dA then the apparent areas can be considered to
be in parallel planes. To show Fhe derivation of vij the
diagonally adjacent element is used. This element is
subscripted with (2) which from Figure C-3 is the (i-1,3j+l)

element. The first set of equations is exactly the same
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as in sun shadowing

Aa = az(sinecosgcosk + cosBsin))
for B < 45°
w_ = ¢«
a
Aa
b, = 2o
for 0§ = 45°
wa = acncg
Aa
h = ——
a 2acos(

Now to calculate F_ Figure C-4 is considered. From

H
geometry the perpendicular distance between the inter-

sections of the apparent area planes with mean surface

level is
d = oa(cosw + sinw)
and h
3. - -=2a)
lv sin)

where the value of w is for the center of element of

interest. The height view blockage factor is defined as

aV
F,, = —
H, 2h,
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and from geometry

ha = ha - (d - di ) sin)
v v

= ha - asin) (cosw + sinw) + ha(2)

SO

ha - asin) (cosw + sinw) + ha(2)

H 2h_

It should be noted that this equation is still correct

if di > d . Again restrictions are placed on F such

H
v v
that if the formula gives a value > 1 then Fiy is set
' \'4
equal to 1 and if a negative value results then Fiy is set
v

equal to 0. Now to calculate the width view blockage
factor. This quantity is a little more complicated than
in sun shadowing since the line joining the centers of
the two elements is not colinear with the projection in
the mean surface of the line connecting dA and center of
the grid element of interest as can be seen in Figure C-5.
For this reason adjustment can be necessary to account

for this aspect. If no adjustment is necessary the equa-

tion for F is the same as for the sun shadowing case

W
v
w
F _ —2a2)
W w



with the restriction on the maximum value to FW =1 ,
v

The test for the necessity of adjustment is

> 0 requires adjustment

w +d4d -w
s

s (2) c
<0 no adjustment

and from Figure C-4

d, = « 1 - 2sinwcosw

The value of F_ with adjustment is
v

) Yo (2) " 2a/1 - 2coswsinw + W,
W, 2wa

Now with these calculations the value of the view

blockage for the diagonal elements is

The other two elements in view blockage are treated in
the same way with different equations for 4 and dc .
The formulas for the other two elements for d and dc

are as follows:
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element (1)
d = osinw

d
c

odcosw

L

element (3)
d = QCOoSW

d = asinw

The final value of view blockage for the element of

interest is the sum of the view blockage by each element

or

Vig = V) tV) t V)

Again a restriction is placed on Vij such that Vij <1.
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Figure C-1: Cross section of two grid elements with
planes of projection for sun shadowing.

Figure C-2: Detail of geometry required in sun
shadowing calculation
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Figure C-3: Elements involved in view blockage for
several locations in the mean surface
level
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Figure C-4:

P

T S— di ——p 2h
h
)-1

Detail of geometry involved in view

blockage calculations

Figure C-5:

Diagonally adjacent elements with
associated geometry for view blockage
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APPENDIX D

Derivation of 3NN Using Average Values of the

Height Distribution

In this analysis a éihgle grid element as shown in
Figure D-~1 is investigated. The flux at dA from the
inclined element is calculated and divided by the flux
of the element if the element were flat (i.e., 6 = 0).

From equation (7)

’
. _ GscosncosBccosBc A
da ~ 2 s

™ r
C

For the flat element case from Appendix A

cosm, = cosd,
_ 2 2 .
r, = V%c + Xo * 1
cosBc = f;
c
, XoCOSY - sinvy
cosBc =

2 2 !
J%c + xc + 1
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X
cosw = c
2
EL + X5
and
2 2
Rc = E™ + Xe
then
R _cosucosy - siny
cosBé = -
c
and
2
r, = - + 1
gives
G_cosa_ (R cosw _cosy - siny) az
fdA = S S [ C 5 (D—l)
flat (RCZ: + l)

For the inclined element from Appendix B

Rcsinecosg + cos9

cos =
BC I'c

where ¢ is the azimuthal orientation angle of the grid

element normal with respect to the direction of dA.

R cosw _cosy - sin
c c Y Y

I'4
S =
co Bc rc
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and
cosm, = cos gcosa_ + coscpsinesinotS

These equations give for the inclined element

= cosfcosw spsin@si
fdAinc Gs( fc s tco psing 1nas)

(Rccoswccosy - siny)(Rcsinecosg + cose)oz2

X
2 2
(Rc + 1)
(D-2)
and so
£
F . —inc = (cos@ + cosgsindtane_ ) (R _cos{sinf + cos8)
NN - £ P s c
da
flat
(D-3)

Now rearranging this equation to give yNN in the standard

form of an equation for a straight line in R,

%NN = [cosg51ne(cose + cosw51n6tanas)] Rc

+ c0526 + coscpcosesinetanozS (D-4)

If o, = 0 this simplifies to

. 2
gNN = (cos(cos@sing) Rc + cos™ @ (D-5)
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Now if a test area is considered (i.e., a collection of

grid elements of sufficient number to give a good sample

for the height distribution), and average values for the

distribution for the terms in equation (D-4) are used

then an approximate value of the flux ratio for the

test area can be written
F 2 [(cosg) (sinfcosB)___+ (coscosy) (sinze) tano TR
NN . av av av av st cC

o t

2 .
+ (cos e)av+ (coscp)av(s1necose)aV tana_
(D-6)
where Rc = distance to center of test area. It should
t
be noted that terms of the same or related distributions
are grouped together since, in general, the average value
of the product of two functions is not equal to the
product of the average values of the two functions
2

[e.g., (cos e)av # (cos e)av(cos e)av]. The angles (

and § are related by the equation
¢ = m=- (0 + w)

so that the product of functions of { and ¢ must be taken
before averaging. To obtain the average values the ranges
of interest were divided into 500 segments and the average
values for the height and azimuthal distributions were

calculated. The results are as follows:
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Random Height Distribution

(sine)av = .50000
(cose)aV = .78541
(sin8 cose)av = .33334
(sinze)aV = .,33333
(cosze)av = .66667

Normal Height Distribution

(sine)av = .30159
(cose)av = ,92031

2
(cos G)aV = .86059

., 2
(sin e)aV = .,13941
(sinb cose)av = ,25427

Random Azimuthal Direction Distribution
(cosg)av = (s:n.ng)aV = .63662

2
(cos g)av = .50000

Using these values in equation (D-6) gives for a normal

distribution

gNNc = [.16258 + .1394l(cosgcosm)avtanas] Rct
t

+ .86097 + .25493(coscp)avtano:S
(D-7)
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and for random distribution

yNN = [.21221 + .33333(cosgcosm)avtanas] Rc

ct t

+ .66667 + .33334(coscp)avtanaS (D-8)

For negative sun angles and Wy = 0 the sun and dA have
the same azimuthal direction so that the distribution of

€ is the same as the distribution at ¢ except the values

differ by T .

(cosgcoscp)aV =

and

(coscp)av =

Now equations

This gives

2
= (cos™C), , = = .50000

- (cosg)av = = ,63662

(D-7) and (D-8) can be written

Normal:
Foy = [.16258 - .06971 tanas]Rc + .86097 - .16229 tana
ct t
Random:
gNNc - [.21221 - .16667 tanas]Rct+ .66667 - .21221 tana_
t

where tanas will be negative for negative sun angles.

Plots

of these average value flux ratios agree very closely with

the computer results of test area analysis.

Due to the close



102

agreement a better comparison can be made by tabulating
the measured slopes and intercepts from computer analysis
(as plotted in Figures 9 through 12) and the slopes and
intercepts from the average value distribution results.

These results are listed in Table D-1l.

Derivation of Approximation for % as R Becomes Large

Indicated in Figure D-2 is a single element in an
infinite flat plane. The element is assumed to be oriented
such that the normal is in the plane formed by the line
connecting dA and the center of the element and the line

from dA perpendicular to the mean surface level. From

geometry
1
Rc = tanAc = COt’\c
hs o
di = S <= 32 (51necotAct+ cos0)
v c
= & (R_sin® + cos?®)
-2 c
and
o .
de = 3 (Rcs1n6 + cos@ + 1)
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So the area in the mean surface level which is missing

or blocked from view is

2

o .
AVB = de X o= -5 (RC31ne + cosf + 1)

Now to calculate the area of the element from Figure D-2

and the law of sines with the restriction R > 1(A < 45°)

a/2 - hav /2
sin) = sin[m - (8 + \)]

o
- 2[sin(0 + A)]

o asin)

2 ~hy, = 2 (sinfsin) + cosfsin))
¢ _ - ol

2 av 2(Rcsine + cos9)
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So the visible area of the element is

I
V)

a2 Rcsine 4+ cosf + 1
Rcsine 4+ cos#o

As in the first part of this Appendix G for the mean

surface level is

G = GscosozS
and for the inclined element

G = Gs(cosecosaS - coswsinesinas)

For the inclined element

COSBCCOSBé Rccoswc(Rccose + sinsg)
2 = 2 2
r_ (Rc + 1)

and for the flat region

o vB
— —— 2
= R _ + > (Rc51ne + cosf + 1)
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and

4
s cos
cosscco Bc Rc wq

ri B { [Rc(l + % sinS) + % (cose_- 1)]2 + 1}2

The ratio of the fluxes with view blockage included gives
. a L] d 2 2
(cose - coswc51n6tands) {ERc(l + 5-51n9)+-z(cose-l)] + 1}

[2 + 2]

and for large values of Rc(>> 1)

2 .. 2
o~ i o . o sin 8§
F = [cose s1necoswctands] [1 + 5 sing + 1e

and for small o with respect to 1
F = cosph - coswcsinetanors

So with the above approximations and using average values
of the distribution the ratio of the rough surface flux

to the flat surface flux can be approximated as

F = (cose)av- (sine)avcoswtanas (D-7)
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From experimental data with earth-bound measurements of
the lunar surface made by Saari and Shorthill (Reference 8)
a comparison of experimental results for this quantity can
be made with the approximation for ¥ . This comparison is
plotted in Figure 18. To give a more valid comparison the
curves are for (.’r")av and not for ¥ using the average values
for the distribution. This means that ¥ was obtained by
taking values of cos§ and sin@ from the distribution and
calculating ¥ , and these values of ¥ were averaged with
the modification that negative values of ¥ were set equal
to zero. This makes no change in the portion of the curve
for negative sun angle. The only difference is that for
large positive sun angles (greater than 50°) these results
are higher than the case of using the average values of

the distribution.
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TABLE D-1
as SLOPE INTERCEPT
Average Average
(deg) COmpgter Valug COmpgter Valug
Results Results Results Results
_ o
e =[o°
Norm#l Distribution:

o .166 .1626 .860 .8610
=30 .207 .2028 .955 .9547
=45 .238 .2323 1.022 1.0233
-60 .290 .2833 1.145 1.1421

Randdm Distribution:

0 .218 .2122 . 660 . 6667
-30 .316 .3084 .792 .7892
-45 «387 <3789 .884 .8788
-60 .510 «5009 1.050 1.0342

— o
Wop = 45
Normdl Distributjion:
=30 .196 .190 .915 .939
-60 . 260 . 2622 1.075 1.106
Randqm Distribution:
-30 .293 .279 .760 .770
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Figure D-1: Grid element in mean surface level

Figure D-2: Geometry for approximation to the
limiting case evaluation of flux
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APPENDIX E

Description of Random and Normal Distributions

As mentioned in Chapter III random and normal
distributions were used to determine grid element heights,
and a random distribution was used to determine azimuthal
orientation of the elements for both height distributions.
Although several ranges were used for random functions,
the problem of generating a random distribution can be
reduced to generating a set of random values between 0
and 1. Since a random distribution can only be approxi-
mated, the values used in this analysis should technically
be called pseudorandom numbers. The method used is a
standard congruential method and the algorithm was taken
from Reference (12). The algorithm is listed with per-
tinent data at the end of this Appendix. Now to consider
the method of constructing the normal height distribution.
Following the derivation of Chapter 6 of Reference (13),the
frequency function of interest is a normal distribution.
Due to the uniform grid size there is a maximum value for

thHe deviation from the mean surface level by an element
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for any fixed grid size. The frequency distribution is
used to determine these deviations and since the normal
frequency distribution would have a finite probability

for any height deviation up to infinity, a trunkated

normal distribution was used for the frequency distribution.
The normal distribution was trunkated at 99% (i.e., 99%

of the values in a normal distribution are contained within
the frequency distribution used). The distribution is
shown schematically in Figure E-1. Now to determine the
method of generating values with the 99% normal frequency
distribution. By definition the probability function for

a frequency distribution curve f(x) is

f(x) f (%)

P(h) = p= = (Bpax
f f(x) dx f f(x) dx
o o)

where

hmax = the maximum height deviation from the
mean surface level (1/2 the grid
dimension)

P(h) = probability function

And by definition the cumulative distribution function is

h

NR = f P(X) dx

-— 0O
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and for this distribution

X

NR =f P(x) dx

o)

For the 99% normal distribution
( 2

2 e-X 0 €£sx < Xmax
f(x) = ¢ o/
0 all other x
\
sO 2
f(x) 2 e %
P(X) = o =

f £(x) dx (.99)/m
o

and the cumulative distribution function becomes

h

h
2 -x2
NR(h) = P(x) dx = e dx
.99./m
o

(E-1)

To assign heights to the grid location with the desired
frequency distribution, random numbers are substituted
for NR(h) in equation (E-1). The corresponding value of
h is calculated and assigned to the grid location.
Noting that the right side of equation (E-1) is the

error function[normally written as erf(h)] the equation (E-1)
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becomes

erf(h) = .99 N .

To solve for h given a value of N, , tabulated values of
erf (h) (from Reference 1l4) were used to construct inter-
polating polynomials giving h as a function of N - To
accomplish this the interval from O to .99 of the func-
tion erf(h) was divided into 6 segments and a 6th order

polynomial was constructed for each interval to give
-1
h = erf “(.99 NR) .

An algorithm for a congruential method for generating

pseudorandom numbers in the open interval (0,1):

IC = starting number (or previous random number)
IB = 3125 % IC

IA = MOD (IB, 67108864)

IcC = TIA

RANDO = IA/67108864.0

where RANDO is a pseudorandom number between 0 and 1.

The starting number used was

IC = 20555724
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f(x)

Figure E-l1: Schematic of the frequency function
for a 99% normal distribution
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APPENDIX F

Determination of Faa Using the Approximation for ¥
2
Derived in Appendix D

From equation (D-7) of Appendix D the ratio of the
rough surface energy flux to the flat surface energy flux
is a function of the angle w . To solve for the rough
surface energy flux the flat surface flux is calculated,
then multiplied by the ratio to give the rough surface
energy flux. Since the ratio is a function of angle w ,
the region of interest was divided into segments of small
angular increments with lines of constant value for w as
boundaries. This is indicated schematically in Figure
F-1 for the possible values of y . There are four possible
cases to consider depending on the value of y . The value
of the angle subtended by the region included in the four

cases 1is determined as follows:

= tan_l(

mlc‘
o |o
~—

i)
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b
-1 _9.> -
tan ( co w(l) cO >0
Wiy ©
T _
5 w(l) cO <0
- I _
Y@3) T 2 T %2 (c, > 0)
-1( Zo u
Wy = tan (bo)‘ 2 (g < 0)
where
e, = tany ,

ag and bo are the maximum ¥ intercept, and

the £ intercept of Ag , respectively.

The angular increments for each case [(1) - (4)] are

determined by

A o i)

e = n
where the value of n used was 25. To calculate the flux
from the entire region not treated by the grid system the
rough surface flux is calculated for each segment and
summed to give the rough surface flux for the entire

region. So to use this procedure the flat surface energy
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flux for the angular segments indicated in Figure F-1 is
needed. Figure F-2 shows the four possible segment con-
figurations that are necessary to solve the problem for
all values of y (orientation of dA). The soluticn of the
flux for case (1) will be worked out and the solutions
for the other three cases will be listed. Figure F-3
shows the geometry involved in case (1). From Appendix A

converting to coordinates w and R equation (A-5) becomes

cosBcosB’ R coswcosy - siny
2 (R? + 1)2

and from equation (A~4) for the kth segment

dBy

G_cosa f (R coswcosy - sinvy)
£ - S___ S

da, - 5 (R% + 1)2

and dAk = Rdw dR

f —

dhy n

Gscosascosy[ R2coswdwdR Gscosassiny/ RAwdR

®2+ )2 n (RZ+ 1)2

By By

or in abbreviated form

coso
GS

s .
fi? = - [cosys3 - 51nyS4]



To solve S3 in part I indicated in Figure F-3

of integration are
w o= w, or w =
a
_ _ -1(_9_) _
w = w = cos R W o=
R = RZ= asecwﬂ’ R = RJZ
R = R = a_secw R = R
u u u
So
R = a_secw W, = cos_1<
u u u
R2
S3 = 5 5 coswdwdR
I (R"+ 1)
R‘e = ao°ecwz wz
and
w R = a_secw
u u u
S R drd
= w
41 (R%+ 1)2
R, = a_secw

117

the limits

= a_8secC
o w

a_secw
(o] u

a
_9>
R
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Performing the first integration gives

u u
2_ ag R2
S = ——e— dR - sinw ———5 dR
31 (R%+ 1)2 L (R%+ 1)2
Ry Ry
Rewriting the first integral with u = R2 and using
equations (14.119), (14.114) and (14.134) from
Reference (10) gives
aotanwu aotanwz
2831 B 2sec2 + 1 ¥ 2sec2 + 1
s Wy 45 Wy
1 _qfa tanw _qf2a . tanw
+ ——— | tan Yo L) . tan 1 2
a2 + 1 ai + 1 a2 + 1
a_secw a_secw
- sinwz = 2 + = £
a_sec wu+ 1l a_sec wz+ 1

-1 -1
+ tan (aosecwu) - tan (aosecwz)
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Now for S4 after one integration gives
I

u u
2s, = — dw - = du
I a_sec”w, + 1 (aosec w + 1)
W, Jw,
W
u
(wu- wz) dw
= 22 * 2 2
(aosec w,+ 1) (aosec w + 1)
Wy
Using sec = 1
cosw
and
coszw = % (L + cos 2w)

reduces the remaining integral into a form which from

equation (14.459) and (14.390) of Reference (10) gives

ag -1 aotanwu
2S = (w.-w,) - tan
4I u 2 5 5
ag + 1 aO + 1
_ a_tanw (W~ w,)
- tan 1{ "o 2 _ u L
2 - 2 2
ag + 1 (aosec wu+ 1)



Now consideration is given to part II as pictured in

Figure F-3. The limits of integration are

w = wz
w = wu
R = R = o

u -
R = R, = a_secw

2 u

This gives
Ru W,
R2
83 = —3 3 coswdwdR
II (R"+ 1)
Ry Wy

and after one integration

S = (sinw_ - sinw,) —_s 5
3II u £ (R2+ 1)2

and from equation (14.134) Reference (10)

(w, = wz)

2S5 =
4 2 2
IT (aosec wu+ 1)

120
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So for the area segment Ak

f . =

By

GSCOSQ’S [
— cosy(s + S ) - siny(s + S >]
31 311 47 41p

and after cancellation this becomes

G cosa T
f = —5— {cosy (51nwu— 31nwz) 3
+ sinw tan-l(a secw,) - sinw tan_l(a secw, )
£ o £ u o u
- a_tanw - a_tanw
+ —Li tan W—u ). tan W oL
2 2 2
aj + 1 aj + 1 aj + 1
a a_tanw
- siny (wu— wz) - 0 tan 1 Q u
a_ + 1 ag + 1
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This gives the solution of the flat surface energy flux
for a segment of case (l1). The solutions of the other

three cases are as follows:

Case (2):
G cosd -1 b
fﬂ = T ox cosy | - s:.nwutan (sinwu>

. -l bO m . N
+ s;nwztan (Siane,) + 5 (s:.nu)u - s:anZ)

b
- siny | (w. - w,) + O
u ') 3
o + 1
-1 A/{;i + 1 tanw, -1 A/Qg + 1 tanw,
. tan B - tan - B

o] o]
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Case (3):
GscosozS n
fiz = T cosy (31nwu - S1nwz) 7
+ sinw tan—l(c secw,) - sinw tan_l(c secw. )
2 o £ u (o) u
c_tanw c_tanw
+ L tan 1 o u - tan 1 £
2 41 2 +1 2 41
c c_tanw
~ siny (wu- wz) - 2 tan 1 o u
cg + 1 c2 + 1
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Case (4):
G cosa, -1
£ = —5o— {cosy sinw ,tan (bocscwz)

. -1/_So ) : -1
+ sinw tan (—coswu - sinw tan (b_cscu, )
- sinw tan—l< "o ) - L tan™t EQEEEE&—

L —coswu > 2

- c. + 1 c. + 1
o o
_ c_tanw - b
- tanl<O :) - siny 2
c2 + 1 2 + 1
o o
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In the computer program the equations of cases 3 and 4
were modified to allow w,  and w, to be equal to n/2 .
This gives the flux for all the possible flat surface
configurations that can be encountered in this analysis.
Now the rough surface energy flux of a segment k for

small angular increments can be written

£

fan [ﬂw=%<a -

v

and to get the total energy flux from the region outside

of A
g
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Figure F-1: Geometry of the regions of the infinite
surface treated by approximation of Appendix D for
the three possible cases of ¥y

_ -

1 J—

%X\A T 7
13 J % % J

&&
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Figure F-2: The four possible
shapes for area elements used in
calculating the energy flux from
the region outside of Ag

Figure F-3: Detail of area element
with geometry required for integration



