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Abstract 

Approximate Multi-Parameter Inverse Scattering 

Using Pseudodifferential Scaling 

by 

Rami N ammour 

I propose a computationally efficient method to approximate the inverse of the nor­

mal operator arising in the multi-parameter linearized inverse problem for reflection 

seismology in two and three spatial dimensions. 

Solving the inverse problem using direct matrix methods like Gaussian elimination 

is computationally infeasible. In fact, the application of the normal operator requires 

solving large scale PDE problems. However, under certain conditions, the normal 

operator is a matrix of pseudo differential operators. This manuscript shows how 

to generalize Cramer's rule for matrices to approximate the inverse of a matrix of 

pseudo differential operators. Approximating the solution to the normal equations 

proceeds in two steps: 

• First, a series of applications of the normal operator to specific permutations 

of the right hand side. This step yields a phase-space scaling of the solution. 



III 

Phase space scalings are scalings in both physical space and Fourier space . 

• Second, a correction for the phase space scaling. This step requires applying 

the normal operator once more. 

The cost of approximating the inverse is a few applications of the normal operator 

(one for one parameter, two for two parameters, six for three parameters). 

The approximate inverse is an adequately accurate solution to the linearized in­

verse problem when it is capable of fitting the data to a prescribed precision. Other­

wise, the approximate inverse of the normal operator might be used to precondition 

Krylov subspace methods in order to refine the data fit. 

I validate the method on a linearized version of the Marmousi model for constant 

density acoustics for the one-parameter problem. For the two parameter problem, 

the inversion of a variable density acoustics layered model corroborates the success 

of the proposed method. Furthermore, this example details the various steps of the 

method. I also apply the method to a ID section of the Marmousi model to test the 

behavior of the method on complex two-parameter layered models. 
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Chapter 1 

Introduction 

In this thesis, I review a method to approximately solve the linearized inverse problem 

of constant density acoustics, work I have accomplished as part of my masters thesis. 

I propose a generalization for variable density acoustics and other multi-parameter 

inverse problems. Finally, I propose how the method to solve the linearized inverse 

problem accelerates the convergence of iterative methods aimed at solving the full 

nonlinear inverse problem (referred to as full waveform inversion methods). Previous 

work was limited to 2D (two spatial dimensions); however, I also propose extensions 

to 3D and discuss the similarities between the two approaches and the challenges 

specific to 3D wave propagation. 

The model problem for this work is the variable density acoustic wave equation, the 

simplest model describing the reaction of the earth to acoustic excitation (explosions, 

1 
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air gun ... ): 

1 82p 1 
p(x)c2 (x) 8t2 (x, t) - \7 . p(x) \7p(x, t) = f(x, t), (1.1 ) 

where p(x) is the density field, c(x) the velocity field, and p(x, t) the pressure field 

varying as a function of time; f(x, t) represents the source of acoustic energy. Note 

that the formulation is the same in 2D and 3D. 

Assuming the earth was at equilibrium before the forcing is put to effect (causal 

source), the pressure field satisfies: 

p(x, t) _ 0, t « 0 
(1.2) 

f(x, t) - 0, t « o. 

The physical setting of the experiment will invariably involve some boundary condi-

tions, for example, at the sea surface in the case of a marine geophysical experiment. 

It is advantageous to think of equation (1.1) as defining a map that associations 

the earth properties (density and velocity fields), to the measurements of the pressure 

at the surface. Group density and velocity parameters together to form the parameter 

m = [p, c]. The map I have in mind is: 

S[m] = plsurjace. (1.3) 

I refer to S as the nonlinear forward map, it maps the model to the measurement of 

the pressure at the surface plsurjace. The pressure at the surface is measured using a 

recording device, like geophones or hydrophones. 

The advantage of this abstraction is that it describes any model of the earth in the 

same way. The generalization to elasticity, for example. falls under the same rubric, 
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with m standing for the elastic coefficients and density. The methods proposed in this 

thesis often extend to models of seismic wave propagation other than variable density 

acoustics (1.1). The behavior of these methods depends not so much on the specific 

equations chosen to model seismic waves, but rather on properties of the forward map 

shared by various models. 

The inverse problem aims at solving for the model parameters, given the measure­

ments of the pressure at the surface: Given d, solve for m such that S[m] = d. Note 

that though the wave equation itself is linear, the dependence of the solution on the 

model parameters is nonlinear. The inverse problem is therefore nonlinear. 

The linearization of the inverse problem assumes a natural splitting of the model 

parameters into a background ma and a perturbation 6m, 

m=ma+ 6m. (1.4) 

The background is given and it is required to solve for the the perturbation 6m. The 

formal derivative of the nonlinear forward map at ma maps the perturbation 6m to 

6p: 

F[ma]6m = 6p. (1.5) 

The linearized forward map F is referred to as Born Modeling. The linearized forward 

problem is: given 6d, find 6m such that F6m = 6d. I discuss the details of the 

linearized inverse problem in the chapter devoted to linearization. 

The acoustic wave equation models the dependence of the response of the earth 

on two parameters (density and velocity). One simplification assumes a constant 
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density field, constant density acoustics. The constant density approximation is valid 

when the acoustic waves are reflected from a region that exhibits negligible density 

contrast relative to velocity contrasts. Allowing for multi-parameter descriptions of 

the earth models allows for a better description of the underlying physics. However, 

it comes at the expense of introducing ill-conditioning in the inverse problem, thus 

making it more difficult to solve accurately. This manuscript begins by describing 

one parameter inversions and then multi-parameter extensions. 

Finally, an approximate solver for the linearized inverse problem may yield one way 

to accelerate the convergence of iterative methods for the nonlinear inverse problem 

(referred to as full waveform inversion methods or FWI in short). I explain this in 

the section on full waveform inversion. 

I summarize the structure of this thesis in the following diagram. 

Invcr~c Prohlclll 

FWI FWI 
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1.1 Organization of the Thesis 

This thesis comprises six chapters. The first chapter is a general introduction. A brief 

review of the theory of the linearized inverse problem and the existing literature con­

stitute the second chapter. The third chapter introduces the proposed method. The 

results chapter, chapter four, comprises the numerical tests that validate the method 

presented in chapter three and test its limitations. Possible future developments 

constitute the subject of chapter five. Chapter six presents the conclusions. 



Chapter 2 

Theory and Literature Review 

2.1 Introduction 

This chapter describes the linearization of the inverse problem in the abstract setting, 

with emphasis on the case of variable density acoustics. Solving the linearized inverse 

problem requires solving the normal equations. The efficient approximation of the 

inverse of the normal operator relies on its pseudodifferential nature. For one param­

eter inversion, the application of the normal operator on one input vector suffices to 

infer its action and represent its approximate inverse from a class of pseudo differential 

operators. The extension to p-parameters generalizes this result and requires more 

applications of the normal operator. 

6 
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2.2 Linearization of the Inverse Problem 

The linearization of the inverse problem splits the model parameters into a smooth 

part mo and a rough perturbation 6m, 

m=mo+6m. (2.1) 

We assume that the background reference model mo is given and the inverse problem 

is to recover 6m. 

The nonlinear Forward map is thus approximated by, 

S[m] = S[mo + 6m] ~ S[mo] + F[mo]6m. (2.2) 

The linear operator F is known as Born modeling. Formally F is the derivative of 

the nonlinear map at mo, it measures the sensitivity of S to small variations in the 

model. The conditions under which the right hand side of equation (2.2) provides a 

good approximation to its left hand side are discussed in Stolk (2000). The fact that 

the background velocity is smooth (and some suitable conditions on mo) implies that 

F is generically asymptotically invertible (Stolk, 2000), in 2D (an invertible Fourier 

integral operator). The same result is conjectured for 3D. The smooth part of the 

velocity field models the kinematics in the problem; it controls the large scale behavior 

of the propagation of the wave: travel times, positioning of reflectors .... The rough 

part describes the nature of the reflection decided by the amplitude and nature of the 

discontinuities in the earth parameters. 
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The linearized inverse subproblem: Given d, mo find 6m so that, 

F[mo]6m ~ d - S[mo] := 6d. (2.3) 

The linearized subproblem is an approximation due to the linearization process, 

and equation (2.3) is interpreted in a least squares sense to arrive at the normal 

equations: 

F*[mo]F[mo]6m = F*[mo]6d. (2.4) 

The operator F* is adjoint to F, and is known as the migration operator. The 

operator F* F is called the normal operator or the Hessian. The right hand side of 

(2.4) is the migrated image mmig = F*6d. 

Au explicit linearization of the acoustic wave equation for example yields: 

1 fP6p 1 26c [Ppo 1 6p 
-, -- - \7. -\76p = --, - -\7-. \7po 
Poc6 at2 Po Poc8 at2 Po Po (2.5) 

6p 0, t« 0, 

where Po and Co are the background density and velocity fields, respectively. The first 

order perturbations to Po and Co are 6p and 6c, respectively. 

The linear forward map is therefore, 

T 

( 6C 6P) F6m=F -,- =6p, 
c p 

(2.6) 

where 6p is obtained by solving (2.5). Note that the solution 6p is linear in the model 

perturbation 6m. 

The solution of the linearized inverse problem requires solving the normal equa-

tions (2.4), equivalently inverting the normal operator. In reality, the application of 
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the normal operator as seen from equation (2.5) and its adjoint requires the solution 

of large scale PDE problems. The process of applying the normal operator amounts 

to modeling followed by a migration. These processes typically require computations 

that can take days or weeks on computer clusters. Also the problem is large scale: 

in 2D the fields are length i=::::: 106 , giving the normal operator a 106 x 106 matrix rep­

resentation. These numbers prohibit explicitly storing the normal operator to invert 

it using direct matrix methods like Gaussian elimination. Krylov subspace methods 

are used to solve (2.4), but the expensive application of F* F limits the number of af­

fordable iterations since these methods require at least one application of the normal 

operator per iteration. 

The properties of the normal operator have been studied in the literature on 

the subject (Beylkin, 1985; Rakesh, 1988). For one parameter inversion (constant 

density acoustics), the normal operator is a pseudodifferential operator under specific 

conditions when the background velocity field is smooth, and no ray multipathing 

occurs (Beylkin, 1985; Rakesh, 1988). Stolk (2000) proves that the normal operator 

is the sum of a pseudodifferential operator and a non-microlocal part. He discusses 

the conditions under which the non-microlocal part is a Fourier integral operator 

and can be analyzed as such. Stolk (2000) concludes by proving that the normal 

operator is generically a pseudodifferential operator plus a smoother Fourier integral 

operator correction in 2D. The smoother error is of lower frequency order in high 

frequency asymptotics. In the more general case, the normal operator is a p x p matrix 
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of pseudodifferential operators for p-parameter inversion, when scattering preserves 

polarization as in P to P or S to S scattering (Beylkin and Burridge, 1990). The 

limitation to polarization preserving scattering is necessary, otherwise the normal 

operator maps one reflector to multiple reflectors in different places (one for each 

polarization). The normal operator would not preserve singularities in such case, and 

is therefore not a pseudo differential operator. Symes (1998) provides an explicit proof 

that the normal operator is a two by two matrix of pseudodifferential operators for 

the variable density acoustics case, under some restrictions on ray geometry. Namely, 

the simple ray geometry condition, which excludes refracted rays from the sources to 

the receivers. 

Pseudodifferential operators provide a generalization of differential operators. They 

are defined by their action on a function u E CO'(JRn): 

Qu(x) = J q(x, ~)u(~)eix.'; d~, (2.7) 

is the symbol of the pseudodifferential operator, and u = Flu] is the Fourier transform 

of u. 

The correspondence between the pseudo differential operator and its symbol is 

stressed using the notation Q = op(q), which reads: Q is the the pseudo differential 

operator whose symbol is q. 

Symbols are required to obey the following set of estimates: There exists m E JR 
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(referred to as the order of the operator) so that for any compact set K c JRn, and 

0;,(3 nonnegative multi-indices, there exist constants CK ,a.,j3, such that 

(2.8) 

for all x E K and ~ E JRn. Such estimates are satisfied by smooth q( x,~) that are 

positively homogeneous of order m in~. Positive homogeneity means that, given 

r E JR, r > 0, 

(2.9) 

Homogeneous symbols satisfy (2.8); however, it should be noted that (2.8) is satisfied 

by a more general class of symbols not treated in this thesis. By allowing such general 

classes of symbols pseudo differential operators generalize differential operators. 

In fact, we can allow for more general symbols that admit a polyhomogeneous 

expansion. That is, there exist homogeneous qk E Coo (JRn x JRn \ {O} ) of degree k ::; m, 

for which 

N-l 

q I"V L qm-j ,in the sense, q - L qm-j is a symbol of order m - N. (2.10) 
j=O 

Pseudodifferential operators of order m generalize a differential operator of order m 

as operators between Sobolev spaces: 

The first term in the polyhomogeneous expansion qm is called the principal symbol 

of q, and the remainder of the expansion maps Hg to a smoother space Hto~m+l. 
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Properties of pseudo differential operators are thus defined up to smoother error, which 

in the frequency domain corresponds to a lower order in frequency, at high frequency. 

In order to be able to compose pseudodifferential operators, we will assume that 

supports are compact, that is, the set {x E]Rn: (x,~) E supp(q) for some ~ E ]Rn\{o}} 

is compact. 

For a complete account on pseudo differential operators and their applications in 

solutions of PDEs, please consult (Taylor, 1981). 

Pseudodifferential operators act in phase-space. They are determined to leading 

order in frequency by their principal symbol qm(x,~) depending on both the spatial 

variable x and the momentum or Fourier variable ~. The action of pseudo differential 

operators preserves the singularities of the distributions on which it acts. However 

the amplitudes and Fourier spectra of these singularities will be modified depending 

on: 

• Spatial position of the singularity, 

• Orientation of the singularity (referred to as dip), 

• The order m of the pseudodifferential operator. 

We say that pseudodifferential operators act by scaling the input vector. To under­

stand this behavior it is enough to compare 8m and F*d = F* F 8m from equation 

(2.4) (Figures 2.1 and 2.2), derived from called the Marmousi model (Versteeg and 

Grau, 1991). Recall that F* F is a pseudo differential operator under some circum-
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stances, which include this example. Note that the inverse and the migrated image 

are related by the normal operator. The original Marmousi model is smoothed and 

split into a smooth part and a residual 5m. The normal operator uses wave equation 

methods to apply F (Born modeling) and F* (reverse time migration). It is obvi-

ous that the positions of the reflect ors or discontinuities are preserved. The normal 

operators acts by scaling the amplitudes of 5m. 

100 

~ 200 
<l) 

"'d 300 

.S 
,...q 400 

~ fr 500 

Q 600 

800L-.-,;.........l,....;oo~O':""':';':';~ 
500 1000 1500 

Offset index 

0.5 

0.4 

0.3 

0.2 

0.1 

-0.1 

-0 .2 

-0.3 

-0.4 

-0.5 

2000 

Figure 2.1: 5m, input to normal oper-

ator 

100 

~ 200 

<l) 

"'d 300 
~ 

• ...-t 

,...q 400 

~ fr 500 

Q 
600 

-2 

-4 

700 
-6 

800 

500 1000 1500 2000 

Offset index 

Figure 2.2: mmig = F*5d = (F* F)5m , 

normal operator applied to the input. 

The sense in which a pseudodifferential operator (and hence the normal opera-

tor) acts , by locally scaling the amplitudes of the discontinuities while preserving 

their position, is explained by the asymptotic expansion lemma for pseudodifferential 

operators (Taylor, 1981) (page 184). Let X(x) be a smooth function compactly sup-

ported inside a ball, and w(x) a smooth function with non-vanishing gradient inside 

the same ball. I call a function of the form x(x)eiwW(x) a localized monochromatic 
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pulse. Then for a pseudodifferential operator Q of order m: 

Q x(x)eiwlJ!(x) = qm(x, wVw(x))x(x)eiwlJ!(x) + O(wm- 1 ), (2.11) 

where w is the frequency and qm is the principal symbol of Q, positively homogeneous 

of order m: 

w > o. (2.12) 

We can even see how the scaling is related to the symbol of the pseudodifferential 

operator from (2.11). 

In seismic images, reflectors are interfaces between two regions of space that ex­

hibit discontinuities or high contrasts in physical parameters. These discontinuities 

account for the high frequency components (rapid changes). The relevant functions 

are of the form a( x) f (w (x)), an amplitude modulated function ofthe phase. The high 

frequency components of these functions correspond to the discontinuities/reflectors. 

The vector Vw (x) is normal to the level sets of the phase function and represents 

dip as it points to a direction normal to the reflector identified with the level set of 

the phase function. This normal vector fails to be well defined in multiple dip events 

(fault, point reflector ... ). 

2.3 Scaling Methods 

The realization that the normal operator acts by scaling the amplitudes of the right 

hand side of equation (2.4) called the migrated image (2.4), lead to the idea that the 
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action of the normal operator may be approximated from its application on a single 

input vector. In the same way diagonal matrices scale all vectors in the same way, 

the normal operator is approximately diagonal in a basis of localized monochromatic 

pulses (justified by equation (2.11)). I call methods that rely on one application 

of the normal operator to approximate it or to approximate its inverse as scaling 

methods, and I refer to the approximations they yield as scaling factors. The choice 

of the migrated image as the input vector was suggested by Symes to Claerbout and 

Nichols as they developed an early scaling method in 1994. The choice of this input 

vector is motivated by the fact that the migrated image contains all relevant directions 

or reflectors. 

Claerbout and Nichols (1994) propose approximating the normal operator and its 

inverse as a multiplication by a smooth function, using the migrated image as input 

vector. The method was then refined by Rickett (2003). 

Guitton (2004) proposes a more general near diagonal approximation of the nor­

mal operator: near diagonal integral operators that are not completely specified by 

Guitton. 

Symes (2008) proposes a correction to the Claerbout and Nichols method: he 

proves that the normal operator is approximated by multiplication by a smooth func­

tion after application of a Laplacian filter of a specific power, the power is predicted 

by the underlying theory and the filter is completely specified, in contrast to Guit­

ton's method. However, the method cannot approximate the inverse of the normal 
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operator in places of the image that admit multiple dip events (faults, point reflectors 

... ). The method requires dip to be well defined in all parts of the image thus limiting 

its applicability. This method therefore fails locally in places that admit a fault or a 

point reflector, for example. 

Herrmann et al. (2008b) approximately diagonalize the normal operator in a frame 

of approximate localized monochromatic pulses, namely curvelets. They rely on the 

asymptotic expansion lemma (2.11) to justify their method. This method is capable 

of resolving multiple dip events. 

Demanet et al. (2011) propose an approximation of the inverse of the normal 

operator, through a number of applications of the normal operator to randomized trial 

functions in curvelet space. In fact, the paper compares the result of the proposed 

method to the pseudo differential scaling methods presented in the next chapter. The 

authors assert that the pseudo differential scaling method with one application of 

the normal operator (only the one parameter case was treated), outperforms the 

randomized trial functions method no matter how many applications of the normal 

operator are effected (Demanet et al., 2011). However, the application to multiple 

trial functions yields an approximation of the inverse of normal operator that can 

be applied to any vector, the authors refer to this property by calling the inverse 

generalizable. The method I propose in this manuscript, approximates the action of 

the inverse of the normal operator to one vector, the right hand side of the normal 

equations (the migrated image). The paper also shows how the performance of scaling 
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methods degrades as the smoothness of the background model is lost (Demanet et al., 

2011). 

I propose a generalization to the method introduced by Symes, a scaling method 

that resolves multiple dip events and skips the explicit diagonalization of the nor­

mal operator and the use of curvelets altogether. The method relies on a truncated 

spherical harmonics expansion of the symbol to approximate its action. The method 

reduces to the method proposed by Symes when the expansion of the symbol consists 

of the first term. I present this method in more detail in the next chapter. 

2.4 Amplitude Versus Offset (AVO) 

The Zoeppritz equations specify how waves are transmitted and reflected at an in­

terface. The study is conducted for the elastic wave equation, and the results spec­

ify the reflection and transmission coefficients in terms of the offset angle (Aki and 

Richards, 1980). These equations are nonlinear in the physical parameters of the 

earth. Nonetheless, they can be solved if one is willing to invest the computational 

cost. 

The complexity of the Zoeppritz equations led to attempts to simplify these equa­

tions while preserving the qualitative predictions of the full Zoeppritz equations. Usu­

ally these simplifications are linearizations in the relative differences of the physical 

parameters from the two sides of the interface. Aki and Richards (1980) present one 

of these linearizations (p. 153). Another simplification widely used in the AVO study 
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is that presented by Shuey (1985). Shuey presents a formulation that demarcates the 

behavior for normal incidence, from intermediate angles (about 30 degrees), to wide 

angles (approach to critical angle) (Shuey, 1985). 

While zero-offset reflection contains information about the acoustic impedance 

only, the variation of the reflection coefficients with offset angle contain information 

about all the elastic parameters (L6rtzer and Berkhout, 1989). In AVO, the Zoeppritz 

equations and their various simplifications are used in an inverse problem sense to 

infer information about the elastic parameters from the variation of the amplitudes 

of the reflection coefficients as a function of offset (or offset angle). 

Rutherford and Williams (1989) classify different reflectors according to the qual­

itative variation of the reflection coefficient as a function of offset angles. This classi­

fication consists of three classes of reflectors that exhibit qualitatively different AVO 

behavior. Rutherford and Williams (1989) deal with gas sands encountered in explo­

ration and split them into: 

1. Class 1: High impedance sands, 

2. Class 2: Near zero impedance contrast sands, and 

3. Class 3: Low impedance sands. 

The use of AVO data to approximate the material parameters abounds in the liter­

ature. L6rtzer and Berkhout (1989) presents a statistically Bayesian based approach 

to predict a combination of physical parameters that predicts the AVO variation. The 
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paper stresses the need for multi-component data to alleviate the ill-conditioning of 

the problem and pin down certain parameter combinations that are difficult to re­

solve (Lortzer and Berkhout, 1989). It also quantifies how the resolution of different 

parameters varies as a function of the angle range, and how sensitive the recovery of 

parameters is to calibration parameters used in the statistical approach. 

The method presented in this manuscript is an alternative to AVO analysis in 

that the inverse contains all the info that an AVO study can possibly yield about 

the different parameters. In fact, after approximating the Zoeppritz equations and 

taking into account the uncertainty in the data, AVO analysis yields information 

about anomalies in the physical parameters (usually the Poisson ratio) rather than 

quantitative measures of these parameters. Linearized inversion aims at recovering 

the physical parameters quantitatively. 

2.5 Linearized Multi-Parameter Inversion 

The attempts for multi-parameter inversion are limited in the literature. Bourgeois 

et al. (1989) study the linearized multi-parameter inversion and conclude that the 

success of this procedure relies on an accurate background velocity model. With an 

accurate background model, Bourgeois et al. (1989) conclude that the recovery of 

the impedance is possible in that its inversion yields significant corrections to seismic 

images produced by migration. The results of this paper confirm the well known 

fact that the recovery of the acoustic impedance is a well conditioned problem for 
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variable density acoustics. The recovery of the other parameters remains challenging, 

an aspect of this inverse problem that is alluded to in the subsequent chapters. 

Santosa and Symes (1988) present a study of the inverse problem for a layered 

acoustic fluid. They parametrize the problem in terms of density and incompressibil­

ity. They conclude that the problem is well conditioned away from critical angles of 

reflection and with enough aperture, in the absence of low velocity zones. In the pres­

ence of low velocity zones, the degradation of the conditioning of the inverse problem 

is unavoidable. The study of the conditioning in this paper resembles the condition­

ing study I present on the normal operator in this manuscript. The inverse problem 

studied in (Santosa and Symes, 1988) is effectively one dimensional (layered). The 

method presented here is not limited to 1D; in fact, the formulation is independent 

of dimension. The conditioning study, in this manuscript and the paper, is restricted 

to layered models; these models allow for an analytical study of the conditioning of 

the inverse problem. 

Multi-parameter linearized inversion constitutes part of Minkoff and Symes (1997). 

In fact, they show that the success of linearized multi-parameter inversion relies on 

pinning down other aspects of the inverse problem accurately: source estimation, 

background field approximation, modeling the physics accurately (including elasticity, 

attenuation ... ). Minkoff and Symes (1997) succeed in fitting field data by including 

all the parameters mentioned above. Linearized inversion constitutes one of these 

steps, but relies heavily on all the others. In this thesis, I assumed that the seismic 
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source is known, the background model given and the data were generated using the 

model used to fit them. These steps ensure that linearized multi-parameter inversion 

has the potential of succeeding. 

Charara et al. (1996) invert for P-velocity, S-velocity and density in the linear 

elasticity inverse problem. Though the inversion is nonlinear, the estimation of these 

parameters is done in the linear regime (when the background fields are accurate 

enough). Charara et al. (1996) incorporate constraints on both the data space and 

the model space and use a least squares inversion approach by formulating these 

constraints through covariance matrices, as advocated in (Tarantola, 1987). Some of 

these covariance matrices rely on a priori knowledge, like well data. The inversion 

relies on starting at a good initial model, stressing the role of the accurate background 

model in successful inversion. 

The works presented above are all known as wave equation methods, as they rely 

on a numerical solution of the wave equation to obtain seismic images and data, and 

inversion is formulated in terms of these quantities. Another approach derives explicit 

formulas for the inverse of the linearized forward map, which involves calculating 

geometric optics quantities derived under an asymptotic regime. This work follows 

the approach of Beylkin (1985). These computations usually involve conditions on 

the medium of propagation for the geometric optics quantities to be well defined, and 

this is reflected as an instability in computing these quantities in complex media. The 

method proposed in this manuscript is closer to wave equation methods, in that it 
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does not require any computation of geometric optics quantities. 

Foss et al. (2005) go through the necessary computations to derive the asymptotic 

inverse to the linearized map for anisotropic elastic media. The authors present a 

numerical example of the recovery of a linear combination of the density and two 

other elastic parameters, and they claim that their "framework applies with decent 

accuracy" (Foss et al., 2005). Foss et al. (2005) do not show synthetic examples so it 

is difficult to judge the accuracy of the framework. 

Virieux et al. (1992) take a mixed approach to invert for the P and S impedance 

in linear elasticity. They use geometric optics computations to calculate the forward 

map and an approximation of the Hessian, and a Gauss-Newton iterative method for 

the inversion. The approximation of the Hessian accelerates the convergence of the 

inversion. Virieux et al. (1992) also study the conditioning of the inverse problem, and 

conclude that it is ill-conditioned for single component data; multi-component data 

is necessary for a successful inversion. The authors note that this is in accordance 

with the study of Santosa and Symes (1988) in the special case of a layered fluid. 

The inversion for P and S impedances is successful in the linear regime; the authors 

stress the importance of an accurate background model (Virieux et al., 1992). 

The attempts for linear multi-parameter inversion in the literature that use wave 

equation methods rely on an iterative approach to minimize the least square misfit 

between the measured data and the data predicted by linearized modeling. The 

method proposed here, to use a few applications of the normal operator to produce 
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an approximate inverse, is novel. 



Chapter 3 

Methods 

3.1 Introduction 

This chapter presents the scaling method to approximate the inverse of the nor-

mal operator efficiently for one parameter inversion, and its generalization to multi­

parameter inversion. Cramer's rule for reduces the multi-parameter inversion problem 

to one-parameter inversion. The inverse of the normal operator in the one parame-

ter problem is represented from a class of pseudodifferential operators defined by a 

truncated Fourier expansion of their symbol. The efficient approximation relies on 

an algorithm derived by Bao and Symes (1996) to approximate the action pseudodif­

ferential operators. I refer to this algorithm as the PsiDO algorithm. This algorithm 

was derived in 2D but extends to 3~. The presentation of the method is independent 

of the space dimensions. I derive the generalization to 3D and show the implementa-

24 
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tion of the PsiDO algorithm in 3D. I end this chapter with a discussion of the errors 

committed in each step of the method, and ways to control them. 

3.2 One Parameter Inversion: Pseudodifferential 

Scaling 

Recall that the aim of this manuscript is to solve, 

Nbm = b, (3.1) 

where N = F* F is the normal operator and b = F*bd E Range(N) is the migrated 

image. 

Given band Nb (we refer to Nb as the remigrated image), we seek a scaling factor 

c that minimizes the following objective function: 

c = argminllb - cNb11 2 . (3.2) 
cEwDO 

The advantage of obtaining c lies in the ability to derive an approximate inverse 

bminv, given c: 

(3.3) 

The first equation expresses the solution of equation (3.1), where Nt is the pseudo in-

verse (regularized inverse) of N. 
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One way to construct this approximate inverse is by considering a protected inverse 

of the principal symbol q of the normal operator. That is Nt = op(qt). With qt = q~.\ 

where A is a small positive number. This is a protected inverse that avoids problems 

arising from areas where the symbol is zero. 

The second approximation relies on the quality of the fit in equation (3.2). The 

third uses the property that pseudodifferential operators approximately commute. 

The successive approximations thus yield an approximate inverse bminv = cb. 

The sense in which the scaling factor c approximates the inverse of the normal 

operator is specifically in the sense of (3.3): c scales the amplitudes of the migrated 

image b in the same way the inverse of the normal operator Nt does. The scaling 

factor approximates the action of the inverse of the normal operator on one right 

hand side of the normal equations, namely the migrated image. 

3.3 Multi-Parameter Inversion: Cramer's Rule for 

Pseudodifferential Operators 

The generalization to p parameters formally tries to solve the same problem: 

Nbm = b. (3.4) 

The model m is a collection of p parameters, and the normal operator is therefore 

a p x p matrix of pseudo differential operators in polarization preserving scattering. 

The p migrated images are contained in b. 
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The theory of pseudo differential operators introduces a powerful concept: the 

algebraic relationships between symbols and matrices of symbols can be mapped to 

asymptotic properties for pseudodifferential operators. This concept is powerful since 

matrices of symbols are matrices of scalar functions, with a plethora of identities and 

theorems from linear algebra to choose from. This work uses a version of Cramer's 

rule to devise an inversion scheme for multi-parameter inversion. 

For this end, we recall the definition of the adjugate of a matrix A, denoted by 

Adj(A) (Strang, 1988). Defined as the transpose of the matrix of cofactors of A. In 

our case, the transpose may be ignored, as the matrix A and thus its adjugate, are 

symmetric positive definite. When the matrix A is invertible the adjugate may be 

defined as 

Adj(A) := det(A) A-I, (3.5) 

where A-I is the inverse of the matrix A and det(A) is the determinant of the matrix 

A. More generally, the adjugate is defined to be the matrix which satisfies: 

Adj(A) A = A Adj(A) = det(A) I, (3.6) 

where I is the identity matrix. If N = op(A) (N has matrix symbol A), and we define 

the adjugate of N to be Adj(N) = op(Adj(A)), with slight abuse of notation. We can 

map the property (3.6) on matrices to a property on matrices of pseudodifferential 

operators: 

Adj(N) N ~ N Adj(N) ~ det(N) I. (3.7) 
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The equation above features another abuse of notation, with det(N) := op(det(A)). 

The power of (3.7) is revealed when applied to (3.1): 

Adj(N) b = Adj(N) N 6m ~ det(N) 6m. (3.8) 

Equation (3.8) recovers the inverse up to the pseudodifferential operator det(N), 

after the application of the adjugate. The restriction of this approach to I-parameter 

inversion and 2-parameter inversion is particularly simple and elegant. The extension 

to general p-parameters is more involved as shown by the case p = 3, which we discuss 

in the results chapter. 

The problem of recovering 6m is not solved yet. While 6m is recovered up to the 

pseudo differential operator det(N), the inverse of this factor needs to be approximated 

to complete the inversion scheme. For this end, we resort to a method similar to the 

one we previously developed for p := 1. 

First apply the normal operator again, to form: 

N det(N) 6m ~ det(N) N 6m = det(N) b. (3.9) 

Where we have used the fact that scalar pseudo differential operators approximately 

commute with matrices of pseudo differential operators, to commute Nand det(N). 

Now, given band det(N) b, approximate the scaling factor c: 

c = argminllb - cdet(N) b11 2 . (3.10) 
cEwDO 

To minimize this objective function I use a quasi-Newton method: limited memory 

BFGS (lBFGS). Such methods only require a user defined gradient, and approximate 
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the Hessian of the objective function. In my masters thesis, I discuss in detail the 

specific choice to parametrize the scaling factor c, which leads to a derivation of the 

gradient. For details on this part of the method, please consult (Nammour, 2009). 

Approximate the solution of normal equations by: 

8m = Ntb:::;:; Nt cdet(N) b:::;:; cdet(N) Ntb 
(3.11) 

:::;:; cdet(N) 8m := 8minv. 

Thus the scaling factor c is an approximation of the inverse of det(N), in that it is 

applied to det(N) 8m (obtained previously), to approximate 8m. 

Nt is an approximate inverse, one way to define this inverse is by noting that the 

adjugate matrix is a matrix of symbols. Also the determinant of N may be inverted 

in a protected manner, as discussed in the previous section. Putting these two pieces 

together we may define: 

It is also straightforward to see that the one-parameter case is a restriction of this 

general approach to p = l. 

The efficiency of this approach relies on the efficiency of the optimization in (3.10). 

Any optimization scheme will require the application of the pseudodifferential scaling 

factors at each iteration. It is therefore pivotal to use an algorithm that applies 

pseudo differential operators efficiently. Bao and Symes (1996) develop an algorithm 

to efficiently approximate the action of pseudo differential operators, which relies on 
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a spherical harmonics expansion of their symbols. We refer to this algorithm as the 

PsiDO algorithm. 

The advantage of using the PsiDO algorithm is twofold: first its efficiency, and sec­

ond the ability to represent pseudo differential operators that act by spatial, frequency 

and dip dependent scaling capable of resolving multiple dip events. 

3.4 The PsiDO Algorithm 

I present the PsiDO algorithm that allows the efficient representation and approxi­

mation of the scaling factors. As developed by Bao and Symes (1996), the algorithm 

is presented explicitly in 2D. The extension of the PsiDO code to 3D is shown in the 

next section. 

This discussion is restricted to 2D, so we may write x = (x, z). Recall that a 

pseudo differential operator is characterized by its symbol and defined by 

(3.12) 

where qm(x, z,~, 'TJ) is the principal symbol, homogeneous of degree m, and it = F[u] 

is the Fourier transform of u. 

Thus writing ~ = w cos B, 'TJ = w sin B, and using the homogeneity of qm, we have 

(3.13) 

Notice that qm(x,z,B) = qm(x,z,cosB,sinB) is periodic and smooth in B, and 

hence it admits a rapidly converging Fourier expansion. We thus truncate the Fourier 



series, approximating the symbol by its first K + 1 Fourier modes: 

I=K/2 I=K/2 
iim(x, z, 0) ~ L CI(X, z)eilO = L W-ICI(X, z)(~ + iTJ( 

1=-K/2 1=-K/2 

Plugging (3.14) into (3.12) we obtain 

I=K/2 
QmU(X, z) ~ L CI(X, z)F-l[wm-I(~ + iTJ)lu(~, TJ)]. 

1=-K/2 
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(3.14) 

(3.15) 

An error results from truncating the Fourier series. The error analysis that spec-

ifies how this error propagates to the action of a pseudo differential operator is a 

possible future development prospect. 

m-l 

Fourier transform theory identifies wm - l as the symbol of (-V) -2-, and ~ and TJ 

are respectively the symbols of Dx = -iOx and Dz = -iOz. 

Sampling the field u(x, z) and the symbol iim(x, z, 0), 

Uij = u(xo + (i - l)~x, Zo + (j - l)~z), 

Qijk = iim(xo + (i - l)~x, Zo + (j - l)~z, k~O), 

i = 1 ... M J. = 1 ... N k = - K/2 ... K/2 , " '" ". 

Choosing ~~ = (M_1l)AX and ~TJ = (N_1l)AZ yields the unaliased discretizations of 

the symbols of the square root of the negative Laplacian, Dx and Dz: 
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p = -M/2,'" ,M/2, r = -N/2,'" ,N/2. 

Equation (3.15) suggests the following algorithm to estimate Qmu (Bao and Symes, 

1996). All Fourier transforms refer to a discrete Fourier transform. 

2. For each i E [1, M] and j E [1, N], 

A _ A K/2 " _ K/2 
compute Qij - {Qijl}z=-K/2 the dIscrete Founer transform of Qij - {Qijdk=-K/2' 

3. Initialize (QU)ij = 0, for i E [1, M] , j E [1, N], 

For I = -K/2 : K/2 

( ) t {Rl }M,N F-l[nm-l(~ 'Z )1[JA ] a compu e ij i=l,j=l = ~ 'pr :::"pr + Z pr pr 

for p = -M/2,'" ,M/2 and r = -N/2, .. · ,N/2 

(b) accumulate 

End 

A straightforward discretization of (3.12) has a computational complexity of 

O(N4 Iog(N)). The algorithm described above uses the FFT (Fast Fourier Trans-

form), and thus exhibits a complexity of O(K N 2 (log(N) + log(K))). The appeal 

of this approach is that K is independent of N; it depends on the smoothness of 

the symbol. In fact, applications to reflection seismology require that the symbol be 

smooth and slowly varying in 0, thus may be captured accurately by a modest num-

ber of Fourier modes or, more explicitly, a small K. In the examples I show in this 
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manuscript K does not exceed 10. Special care is taken to make sure that increasing 

K results in no significant change in the fit of the objective function (3.10). 

The dependence on dip is captured in the angle variable (), and the method allows 

us to capture multiple dip events by increasing K > 1. 

3.5 Extension to 3D 

The only part that restricts the application of the method to 2D is the PsiDO algo-

rithm written explicitly for 2D. An extension of the PsiDO algorithm to 3D effectively 

opens up the possibility of applying the approximate inversion method to 3D models. 

The 3D extension proceeds in the same fashion as Bao and Symes (1996). First 

write the symbol as: 

(3.16) 

The relationship between w, ¢ and () to ~, (, and 77 is given by the spherical 

coordinates transformation: 

~ = wcos(¢)sin(()) 

(= wsin(¢) sin(()) (3.17) 

77 = w cos( ()) 

The truncated spherical harmonics expansion of ij is then given by 

K [ 

ij(x, y, z, (), ¢) = L L czn(x, y, z)yt((), ¢), (3.18) 
[=0 n=-Z 
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where y;n are the spherical harmonics basis functions. The coefficients can be calcu-

lated as, 

Cln(X,y,z) = 1 ij(x,y,z,(),¢)y;n*dO = 127r d¢ 17r d()sin(())ij(x,y,z,(),¢)y;n*. 

(3.19) 

In order to evaluate the action of the PsiDO algorithm, we need to express 

(21 + 1)(1- n)! nn( (())) in¢ 
( 1 ) , r 1 cos e , 

4n + n . 
(3.20) 

where Pt are the associated Legendre polynomials, which may be calculated by re-

cursion formulas or using an identity known as the Rodrigues' formula. Thus, 

cos(()) = ry 
w 

ein¢ = ein arctan(/~) 

(3.21) 

Thus we can define y;n(~, (, ry) := y;n (arccos (ry/w), arctan (ry/~)). Plugging into the 

action of a pseudodifferential operator, 

K 1 

Qm u(x, y, z) = L L Cln(X, y, z)F-1 {wmy;n(~, (, ry)u(~, (, ry)} , (3.22) 
1=0 n=-I 

The cost of this algorithm is (K + 1)2 applications of the inverse Fourier transform; 

if we use the FFT, the cost would be (K + 1)2 N 3 log(N). 

If we only use this algorithm to approximate scaling factors as discussed in the 

methods chapter, then we only need to represent the associated Legendre polynomials 
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explicitly. The symbol is then parametrized by Cln(X, y, z). In fact, we do not require 

any spherical harmonics transforms. Such transforms are needed if we are given a 

symbol and asked to apply its action, which is not the problem at hand since we 

never have access to the symbol of the normal operator, and we can use directly the 

parametrization (3.18) in forming c. The algorithm for 3D, which I implemented in 

MATLAB, becomes: 

Sample the field u(x, y, z) and the coefficients Cln(X, y, z), 

Uikj = u(xo + (i -1)~x, Yo + (k - l)~y, Zo + (j - l)~z), 

Cikjln = Cln(XO + (i - l)~x, Yo + (k - l)~y, Zo + (j - l)~z), 

i = 1,··· ,M, k = 1,··· ,P, j = 1,··· ,N . 

Choosing ~~ = (M_l1)~x' ~( = (P_~)~y' and ~'f/ = (N_ll)~Z yields the unaliased 

discretizations of the symbols of the square root of the negative Laplacian: 

( Epqr) 
<Ppqr = arctan ::-

~pqr 

p = -M/2,··· ,M/2, q = -P/2,··· ,P/2, r = -N/2,· .. ,N/2 
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1. Compute Upqr = F[Uikj ]. 

2. Initialize (QU)ikj = 0, for i E [1, M] , k E [1, PJ, j E [1, NJ, 

For l = 0: K 

For n = -l : l 

(2l+1)(l-n)! (p'n) (E /n )ein<J>pqr 
47r(l+n)! I pqr pqr 

for p = -M/2, .. · ,M/2, q = -P/2, ... ,P/2, and r = -N/2,.·· ,N/2 

( c) accumulate 

End 

One application of this algorithm is dip filtering. Dip filtering consists of filtering 

out discontinuities with a specific orientation. Pseudo differential operators achieve 

dip filtering since they act in phase space. Moreover, they allow for spatially depen-

dent dip filtering if one wants to target only a certain area of the model. I show 

an example where the Marmousi model (Figure 3.1) is extended to a 3D model by 

spreading along the y-direction. I design a specific pseudo differential operator to filter 

the vertical events. This is achieved by making the symbol vanish along the vertical 

direction. The symbol sin2(O) is one example, easily parametrized by its spherical 

harmonics expansion. The dip-filtered Marmousi model is shown in Figure 3.2. Note 
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how vertical discontinuities are smoothed out to zero, while horizontal discontinuities 

remain untouched. 
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Figure 3.1: A 2D section of the Marmousi model. 
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3.6 Summary 

I summarize the procedure that constitutes the scaling method. 

To solve N 15m = b, 

• Apply Adj(N) on b to form: Adj(N) b ~ det(N) x 

• Apply N to the result to get: N det(N) x ~ det(N) b 

• Represent the scaling factor using the PsiDO algorithm c = Qm[q] 

• Compute the scaling factor c: 

c = argminllb - cdet(N) b11 2 . 
cEwDO 

• Approximate the inverse: Xinv := c det(N) x ~ x 

The method applies in 2D and 3D. 

3.7 Discussion of the error in various steps 

This section discusses the errors committed in each step of the method summarized 

above. 

First, the error committed in applying the adjugate. The adjugate of the symbol 

matrix in equation (3.6) is exact. This is due to the fact that scalar functions com-

mute. The adjugate of the normal operator in equation (3.7) is approximate, since 
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scalar pseudodifferential operators commute approximately. The error committed is 

a commutator error. The commutator of two operators a, b is defined by : 

[a, b] = ab - ba. 

I will explicitly discuss the error for the two parameter case. This discussion 

generalir,es for any p. For two parameters: 

Adj(N)N ~ ( 
N22 -N12 ) ( Nll N12 ) -N12 N]l N12 N22 

C ~) + ( 

0 
= (N22Nll - Ni2) 

[Nll,Nd 

(3.23) 

= det( N) I + ( 0 

[Nll,Nd 

The error committed in approximating Adj(N) N ~ det(N) I is due to commuta-

tors of scalar pseudodifferential operators. The theory of pseudodifferential operators 

predicts that: 

ord([a, b]) S; ord(a) + ord(b) - 1. 

Hence the commutators are lower order in the high frequency asymptotic limit. The 

same commutator error appears in N det(N) x ~ det(N) b. 

Note that the PsiDO algorithms in 2D and 3D introduce two types of errors. 

First, a discretization error due to approximating the continuous Fourier transform 
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by a discrete Fourier transform. If the data is un-aliased, this error is smaller than 

the other errors due to commutators, for example. Second, is the error introduced by 

approximating a symbol by a truncated spherical harmonics expansion. We do not 

have access to the real symbol of the normal operator or its inverse, so we cannot 

measure this error directly. 

Second, the error in fitting the objective function (3.10), is due to the choice of 

parameters in the optimization and whether det(N) is indeed a pseudo differential 

operator. The latter fact is enforced by respecting the underlying theory (smooth 

background, polarized scattering, bandpass source ... ). This error is hard to predict 

a priori; how well the objective function (3.10) is minimized provides a control over 

this error ex post facto. The fact that we only approximate the principal symbol in 

representing the scaling factor c ignores, again, a lower order frequency error. We test 

the error discussed in the previous paragraph, resulting from truncating the spherical 

harmonics expansion of the symbol, by increasing the number of terms in the spherical 

harmonics expansion until the objective function ceases to decrease further. 

Third, the error in approximating the inverse is 

15m = Ntb ~ Nt cdet(N) b = cNt det(N) b + [Nt, c] det(N) b 

= cdet(N) Nt b + c [Nt, det(N)] b + [Nt, c] det(N) b 

= 6minv + c [Nt, det(N)] b + [Nt, c] det(N) b. 

(3.24) 

Again, the error is due to commutators. Note that we have abused notation where we 
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have implicitly defined the commutator between a scalar pseudo differential operator 

and a matrix of pseudodifferential operators, to be the matrix whose entries are the 

commutators between the scalar pseudodifferential operator and the respective entries 

of the matrix. 

In addition to the error being of lower order in frequency, the error committed in 

this step is unavoidable. We never represent the symbol of N explicitly, and thus the 

symbol of Nt is not accessible. The commutator errors involving Nt are unavoidable, 

which justifies throwing away lower order frequency error in all the previous steps as 

they are of the same order as these commutators. 

Some numerical representations of pseudo differential operators go beyond the 

principal symbol representation used in this thesis. Notably, Demanet and Ying 

(2011) in their paper on discrete symbol calculus, propose a numerical approximation 

of the full symbol of a pseudodifferential operator. Their algorithm may be used 

to parametrize the scaling factor c, instead of using the PsiDO algorithms in 2D 

and 3D. Such a parametrization avoids the error in approximating only the principal 

symbol. However, the error of the same order in frequency shown in equation (3.24) 

is unavoidable, for the reasons discussed above. Therefore, the use of an algorithm 

to represent the scaling factor c that goes beyond the principal symbol, only delays 

the error and does not necessarily decrease it. It is for that reason that the PsiDO 

algorithns are sufficient for the purposes of this thesis. 



Chapter 4 

Results 

4.1 Introduction 

In this chapter I summanze the results of the masters thesis concerning constant 

density acoustics inversion. I validate the scaling method for one parameter inver­

sion on the Marmousi benchmark model. The two-parameter case is tested on a set 

of layered examples ranging from simple two layer models, to complex ID sections 

of the Marmousi model with homogeneous and smooth background models. The 

numerical experiments validate the method. A final example shows the limitations 

of this method when a condition for the normal operator to be pseudodifferential 

(smoothness of the background model) is not respected. This chapter also presents 

an analytical example for the three parameter case. The last section is a conditioning 

study of the linearized acoustic inverse problem for the recovery of impedance and 

44 
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density. 

4.2 One parameter inversion: Constant density acous-

tics 

In this case the adjugate is particularly easy, Adj(N) = I, and det(N) = N. This 

approach boils down to approximating e such that 

e = argminllb - eN b11 2 . (4.1 ) 
cEwDO 

I validate one parameter inversion on the 2D Marmousi synthetic benchmark model 

(Versteeg and Grau, 1991). Details of this example and other tests for the one pa-

rameter case constitute the bulk of my Masters thesis (Nammour, 2009). The model 

is smoothed to construct a background model, and the residual is the perturbation 

mtrue (Figure 4.1). The images are windowed and tapered to the window of interest. 

The true model is Born modeled and then migrated to obtain the migrated image 

and the process is repeated to obtain the remigrated image (Figures 4.2 and 4.3). 

These images show the amplitude distortion resulting from the application of the 

normal operator. It is obvious that the amplitudes in the deeper part of the image 

are attenuated, making these regions invisible without amplitude correction. The 

pseudo differential scaling method with K = 1 and K = 5 yields scaling factors that 

I apply to the migrated image to obtain the approximate inverses (Figures 4.4 and 

4.5). The amplitudes are recovered to the right order of magnitude. Moreover, the 
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amplitudes are uniform in depth and compare better to those of the real image. Both 

these results are successful approximate inversions. 

The scaling method with K = 1 cannot resolve multiple dip events, in contrast 

with K = 5. I plot the difference between the two inversion results in figure 4.6 to 

study this feature. It is apparent that the amplitude difference is greatest at the 

locations of multiple dip events, where two reflectors intersect (faults). The high 

amplitude difference appears as brighter or dimmer spots in figure 4.6. 

Please consult (Nammour, 2009), where I present a test of the ability of the scaling 

method to resolve multiple dip events. 
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Figure 4.1: mtrue, true model. 
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Figure 4.4: Inverted model using scaling with K = 1 
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Figure 4.5: Inverted model using scaling with K = 5 
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4.3 Two-parameter case: p==2 

The restriction to two-parameters is appealing because it is the first instance of multi-

parameter inversion. It turns out that it is also particularly simple and elegant. 

In this case, denote 

Its adjugate is then given by 

( N22 -N12 ) Adj(N) = 
-N12 Nl1 

and 

( N"b, - N 12b, ) Adj(N) b = (4.2) 

- N 12b1 + Nl1 b2 

The aim is to express (4.2) as a combination of permutations of indices of band 

applications of N. We will here introduce a notation that allows the manipulation 

of expressions like (4.2). While it seems too involved for p = 2, it will simplify the 

manipulation for p 2:: 3. It is mostly an exercise in representation theory. 

Denote, 

(4.3) 

Note that the symmetry of N allows us to commute i and j if needed. 
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The power of this representation becomes apparent in the following manipulation: 

Adj(N) b := 1221 - 1122 - 2121 + 2112 

= 1221 - 1212 - 2121 + 2112 
( 4.4) 

= (12 - 21)(21) + (21 - 12)(12) 

= (12 - 21)(21 - 12) 

In the first step we commute indices, and afterwards we are using matrix factorization. 

The end result is interpreted as: 

Adj(N) b := (12 - 21)(21 - 12) 

( 4.5) 

= -JNJb = JTNJb, 

where 

Equation (4.5) implies that the application of the adjugate on the migrated image 

requires one application of N and another to approximate the scaling factor. Which 

brings the cost of approximating the inverse for p = 2 to two applications of the 

normal operator. 
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4.4 Setup for numerical experiments 

The experiments all start with a header file specifying the geometry, background fields 

and perturbations. The header file is common to all experiments. Since the examples 

are layered, only one shot is required. The model extends around 1.7 km in depth 

and 6.5 km horizontally. One source is put in the middle and receivers are laid out 

to created an offset ranging [-2.7 km, 2.7 km]. 

The isotropic point source wavelet is a 2.5-5 15-20 trapezoidal bandpass filter, 

used in the first set of experiments. Another high frequency 5-10 40-50 trapezoidal 

bandpass filter is used for the set of Marmousi examples. 

The models are on a 181 by 331 grid with grid spacing 10 m by 20 m for the low 

frequency source. For the high frequency source the models are re-sampled to a 361 

by 801 grid with a 4 m by 8 m grid spacing to limit grid dispersion. 

PML absorbing boundary conditions are imposed on all four sides of the model. 

When a homogeneous background is used, the velocity is vp = 2km/ s, and density 

is dn = 2000kg/m3 . Otherwise a smooth version of the Marmousi model is used (see 

figures 4.15 and 4.16). 

To apply the linearized forward modeling operator F and the migration operator 

F* (reverse time migration) required to apply the normal operator N = F* F, we 

use a (2,4) staggered grid finite difference code based on IWAVE (Sun and Symes, 

201Ob,a; Levander, 1988). 
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4.4.1 Application: Layered variable density acoustics 

As a first application to the two parameter inversion, we construct a variable density 

acoustics model perturbation consisting of a velocity layer and a density layer in a 

different place (see Figures 4.7 and 4.8). The choice of oscillatory layers rather than 

jump discontinuities in the material parameter in this example makes it resemble the 

underlying theory, which is derived for the action of pseudodifferential operators on 

oscillatory wave packets (see the asymptotic expansion lemma (2.11) , for example). 

The background model is homogeneous , with vp = 2km/s and dn = 2000kg/m3 . 
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Figure 4.7: vp, velocity perturbation Figure 4.8: dn , density perturbation 

Migrating the model perturbation shows how migration mixes the effects of the 

two models in the two components of the migrated images (Figure 4.9). We shall 

refer to the migrated images as b1 and b2 , to remain consistent with our notation 
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where the vector of migrated images is b. This example, albeit simple, stresses a new 

challenge of multi-parameter inversion: For one parameter inversion, the events in 

the migrated image corresponded to events in the true model. In multi-parameter 

inversion, events in the migrated images may correspond to an event in one or more 

of the components of the model. It is virtually impossible to tell that these migrated 

images correspond to a model with separate events for velocity and density without 

successful inversion. Applying the scheme outlined above, we form 
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Figure 4.9: Migrated images mixing the contributions from density and velocity, and 

effecting a phase space scaling. 
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The result is shown in Figure 4.10, and shows how one application of the normal 

operator effectively separated the contributions of the velocity and density events. It 

remains to effect an amplitude correction, by approximating an inverse to det(N). 

For this end, we are required to form N det(N) x ~ det(N) b, shown in Figure 4.11. 
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Figure 4.10: The application of the adjugate separates the velocity and density con-

tributions. This result is a phase space scaling of the true model. 

The final step corrects the amplitudes of det(N) x by undoing the effect of det(N), 

which yields an approximate inverse. This final step complements the separation we 

obtained earlier with an amplitude correction. Figure 4.12 shows that the approx-
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Figure 4.11: Scaling of the migrated images by det(N), used to undo the determinant 

imate inverse compares favorably with the true model. An interesting observation 

about this result is the fact that the velocity model is better recovered than the 

density model: traces of the velocity event in the density model are more apparent 

than that the density event in the velocity model. This observation is in accordance 

with the theoretical fact that the recovery of velocity in variable density acoustics is 

better conditioned than the recovery of density. Please consult the section about the 

conditioning of the normal operator at the end of this chapter for an explanation of 

this fact. 
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4.4.2 Extended layers with smooth non-homogeneous back­

ground 

To investigate the effect of finite bandwidth on the method, I create a model with 

two extended layers (Figures 4.13 and 4.14). This time the background model is not 

homogeneous; it is rather a smoothed out version of a 1D trace of the Marmousi 

model, shown in Figures 4.15 and 4.16. 

The migrated images only detect the edges of the constant layers as expected, 

which is due to the finite bandwidth of the source. However, the application of the 

adjugate still succeeds in separating the effect of the velocity and density contri­

butions. The approximate inverse obtained compares well with the model, there is 

significant loss of amplitude due to the finite bandwidth (see figure 4.19). 

The source used to generate all the numerical experiments up to this one is the 

low frequency source described in the numerical experiments setup. If instead we use 

a "high frequency source", a trapezoidal bandpass filter [5 Hz, 10 Hz, 40 Hz, 50 Hz], 

the amplitude loss is decreased, with the high frequency source as seen in Figures 

4.22 and 4.23. This explains a better fit of the data for the high frequency source 

than the low frequency source (see figures 4.24 and 4.25). The high frequency source 

fits 70% of the data, whereas the low frequency source only fits 50%. 
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Figure 4.19: The approximate inverse. Shows how the contributions from velocity 

and density are separated. The loss of amplitude is due to the low frequency source. 



62 

2.-----.-----~----~----~------.---~.-----~.----.-----,,-----. 

1.5 

,..-.... 
00 --....... 
S 
~ 

----Q) 
'\j 
;:j 

.~ 
.--4 
p.. 
S 

<t: 

0.5 

O ~----------------~~~~+=--~~~~J 

-0 .5~----~----~----~----~------~----~----~~--~------~--~ 

o 20 40 60 80 100 120 140 160 180 200 

Dept h index 

Figure 4.20: Inverted velocity versus real velocity; note the amplitude loss due low 

frequency source. 



63 

2000~----~----~----~----~~----~----~----~----~------~----. 

1500 

,...--.., 
M 

~ ---... 1000 b.O 
~ 
'---" 

(l) 

""d 
;::::l 
.~ ......... 500 0. 
S 
~ 

0 

-500 

-1000L-----~----~-----L----~------L-----~-----L----~------L---~ 
o 20 40 60 80 100 120 140 160 180 200 

Depth index 

Figure 4.21: Inverted density versus real density; note the amplitude loss due to low 

frequency source. 



"...--.., 

(/) 

-....... 
S 
~ 
'----'" 

Cl) 

'""d 
;=j 
.~ 
~ 

P.. 
S 

<r:: 

2 I I I 

1.5 -

i-

0.5 r 

- ~ A v v o 

V 

-0.5 -

-1 I I I 

o 50 100 150 

I I 

f\ 

V v ~ ~ 

I 

200 
I 

250 

Depth index 

64 

I I 

-

-

-

M/\ -v 

-

I I 

300 350 400 

Figure 4.22: Inverted velocity versus real velocity; note the reduced amplitude loss 

with a high frequency source. 



...--... 
C"? 

~ 
-............ 
bO 

,..!:s::1 
'--/ 

Q) 
'\j 
~ 
~ 
.......... 
0. 
S 
~ 

2000 

1500 -

1000 -

500 -

0 

-500 r 

-1000 
o 

I 

I 

50 

I I 

1\/1 
V 

I I 

100 150 

65 

I I I 

-

-

-

r (\/\~I\ /\. " ,..." .A -V v V 

V 
-

I I I I 

200 250 300 350 400 

Depth index 
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with a high frequency source. 



o 200 400 600 800 1000 1200 
O~----~~----~------~-----+--~--~----~ 

~ 
C,) 

'U 
.S 

C,) 

200 

400 

600 

S 
~ 800 

1000 

1200 

1400 

Trace index 

66 

Figure 4.24: The difference between the predicted data and the actual data for low 

frequency source (left), plotted on the same scale as the data (right) (50% data fit). 

The data fit is not as good as the high frequency source, explaining the amplitude 
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Figure 4.25: The difference between the predicted data and the actual data for high 

frequency source (left), plotted on the same scale as the data (right) (70% data fit). 

This gives a better data fit than the low frequency source, explaining the reduced 

amplitude loss in the inverted model. 
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4.4.3 Marmousi model with homogeneous background 

The next test involves a complex model, a 1D section of the Marmousi model with 

a constant background. I zero out part of the velocity perturbation around 1000 

m depth and the density perturbation around 700 m (see figures 4.26 and 4.27, to 

obtain a qualitative test like the separation test discussed above. The complexity of 

the model requires a high frequency source to be able to resolve the details and obtain 

an accurate result. 

The inverted velocity and density results are shown and compared to the real 

velocity and density in figures 4.31 and 4.32. The inverted velocity is better than 

density, as expected. The ill-conditioning of density inversion is unavoidable for 

complex models, as explained in the last section of this chapter. The inverted velocity 

passes our qualitative test and is zero around the zero inclusion at 1000 m; the density 

tends to do the same but with considerably less accuracy. 

The inverted result predicts the data well; the difference between the predicted 

data and the actual data are plotted with the same scale in figure 4.33. The difference 

is considerably fainter than the data, showing that the predicted data fits the bulk of 

the data. The inverted model fits 60% of the data. 
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Figure 4.26: vp, velocity perturbation Figure 4.27: dn , density perturbation 
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Figure 4.29: The application of the adjugate separates the velocity and density con-

t ributions reasonably well for the velocity; the density result is worse. This result is 

a phase space scaling of the true model. 
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Figure 4.30: The approximate inverse. 
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Figure 4.32: Inverted density versus real density. The result is worse than the velocity 

result; the ill-conditioning in the density inversion is unavoidable for complex models. 
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Figure 4.33: The difference between the predicted data and the actual data (left) , 

plotted on the same scale as the data (right) (60% data fit). Note how the difference 

is considerably fainter; the inverted model succeeds in predicting the bulk of the data. 
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4.4.4 Marmousi model with smooth background 

The same velocity and density perturbations used in the previous section are used 

here. This time, however, the background velocity and density fields are smooth 

rather than homogeneous (see figures 4.15 and 4.16). The background velocity 

increases linearly, which causes the production of diving waves (refracted waves). The 

existence of these waves is forbidden by the underlying theory: the normal operator 

is pseudo differential for purely reflective data. The parts of the data which contain 

diving waves have to be removed carefully to obtain sensible results, which we do as 

part of the pre-processing. 

One can see that the velocity inversion (figure 4.39) is comparable to the previous 

section. The inverted density, however, is less accurate (figure 4.40). The data fit is 

still satisfactory for the near offset data. It becomes worse for the far offset data (see 

figure 4.41, residual error in the data versus the data, plotted on the same scale). This 

is due to the density fit. The velocity events control the amplitude of small offsets, 

whereas the density events predict the amplitude of large offset data. The inverted 

model in this case is only able to fit 40% of the data. 
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Figure 4.34: vp, velocity perturbation Figure 4.35: dn, density perturbation 
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Figure 4.36: Migrated images mixing the contributions from density and velocity, 

and effecting a phase space scaling. The migrated images only detect the edges of the 

layers. 



0 200 400 600 
0 

200 

1.0 400 

0.5 
600 

800 

-0 .5 

000 

-1 .0 
Xl0 5 

1200 

1400 

Offset (m) 

800 

S 
'---"" 

,..q 
~ 
P; 
C,) 

Q 

200 

400 

-1 

-2 

-3 000 

Xl0 7 

1200 

1400 

79 

~====3S 
~------------------~ 

Offset (m) 

Figure 4.37: The application of the adjugate separates the velocity well; the density 

result is not as good. This result is a phase space scaling of the true model. 
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(J) 

o 
o 

200 

400 

600 

s 
~ 800 

1000 

1200 

1400 

200 

83 

400 600 800 1000 1200 

Thace index 

Figure 4.41: The difference between the predicted data and the actual data (left), 

plotted on the same scale as the data (right) (40% data fit). The inverted model 

explains the bulk of small offset data; the bad density fit leads to a poor fit of large 
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4.4.5 Layers with non-smooth background 

I modify the layered example by using a non-smooth velocity background that features 

a reflective event around 800 m depth (see figure 4.44). Within the bandwidth 

considered, introducing a fast oscillation in the background model, renders it non­

smooth. The background wave field thus contains a reflection from that event. The 

normal operator is not a pseudodifferential operator for a non-smooth background, 

violating an assumption of the method. The commutator error discussed in (3.23) 

becomes in fact larger than the det(N) I term. There is no control on the commutator 

of general linear operators (not even matrices), that states that it is small with respect 

to the product of the operators. This is corroborated by the result of the application 

of the adjugate numerically (see figure 4.47). It is hard to infer anything from the 

application of the adjugate. The result is no longer a scaling of the target model. 

The commutator error now becomes sizable. 

This test rules out the use of this method for a non-smooth background. Even 

for the one parameter case, the relationship between band N b ceases to be pseu­

dodifferential and the scaling factor is not an approximate inverse. This is why the 

velocity has to be separated into a smooth background and perturbation at each step, 

as discussed in the section about full waveform inversion. 

The background model being non-smooth for band limited data means that it 

has variations on the order of a wavelength. These experiments are done using the 

low frequency source. Using the background velocity field and the frequency band of 
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the source, we can predict a characteristic wavelength. For this specific model, with 

a minimum frequency of 5 Hz and an average velocity of 2300 mis, we can predict 

that the characteristic wavelength is about 460 m. If the variations of the background 

model occur at a distance greater than that characteristic wavelength, the background 

is considered smooth and the method applies. If not, an assumption of the method is 

violated and the method fails. I repeat the same experiment as above with 4 different 

background velocity fields. These background fields are ramps increasing from 2 km/s 

to 2.6 km/s over distances ranging from 1000 m to 250 m, I refer to those functions as 

ramp 1 to ramp 4 (see figures 4.48, 4.49, 4.50 and 4.51). The background density is 

constant dn = 2000kglm3 . The variation in the background velocity field for ramp 1 

occurs at a distance larger than the characteristic wavelength, while the variation for 

ramp 4 occurs at a distance shorter than the characteristic wavelength. The method 

succeeds for ramp 1 background model, degrades gradually, and fails for ramp 4. This 

is captured by the results for the application of the adjugate shown in figures 4.52, 

4.53, 4.54 and 4.55. The significant difference happens for a transition zone of 500 m 

(ramp 3), close to the characteristic wavelength as discussed above. 
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the application of the adjugate fails! 
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4.5 Conditioning of the normal operator 

This section studies the conditioning of the normal operator. The general form of 

the symbol of the normal operator for variable density acoustics in 2D derived in 

(Symes, 1998). These notes explain in detail how to represent the symbol of the 

normal operator as a function of the opening angle () (the angle between the incident 

and reflected ray) defined in terms of position variables and Fourier variables. We 

use this form since it is adequate for the analysis of the conditioning of the normal 

operator. For a detailed derivation, please consult (Symes, 1998). 

The symbol A of the normal operator N for variable density acoustics is of the 

form, 

(4.6) 

The opening angle () depends on source position x s , receiver position Xr and spatial 

position x. ~ is the Fourier variable. I suppress the explicit form of the function f(()) 

as the ill-conditioning of the matrix is due to the matrix part of equation (4.6). 

In what follows, we will search for the weight function f(()) that minimizes the 

condition number of the normal operator (the original weight factor predicted by the 

theory may be absorbed into this weight function). This approach yields an optimal 

weight f(()) that renders the normal operator better conditioned. 
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To be explicit, we study the conditioning of matrices of the form: 

[Bmax (1 
N = io dO f(O) 

o sin2 ( ~) 

Denote the eigenvalues of N by ° < Amin < Amax (since the matrix is positive 

definite). Minimize the condition number: 

Amax K,= --
Amin' 

[Bmax 

s.t. f ~ 0, io f(O) dO = 1. 

If the condition number is parametrized in terms of S = Amax + Amin = trace(N) 

and P = AmaxAmin = det(N), then 

S+ JS2 - 4P 
K, = --=-S---y'-;:::;::S2;;::::-=4p:::::: (4.7) 

As a reference, we study the condition number K,r as a function of Omax for f(O) = 

B~ax (correct normalization). Figure 4.56 is a logarithmic plot of the condition 

number of N as a function of Omax. It shows how the condition number increases 

as the maximum offset angle decreases. The main source of ill-conditioning in this 

problem is the maximum offset angle. 

A candidate weighting to ameliorate the condition number of N is one that 

amounts to a low offset/large offset stack: 

f(O) = (1 - a)<5(O) + a<5(O - Omax) , 0:::; a :::; 1. (4.8) 

This type of stack that puts emphasis on large offset and small offset separately has 

been used, since it is known that the different offset ranges give different information 

about the underlying physical parameters. 
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Minimizing"" with the weight given in (4.8), gives 

1 
a=--

2 + /3' 

/3 + 1 + Vf+73 "" . - -------------
mm - (3 + 1 - Vf+73' 

It is interesting to note that the result depicted above predicts that for large offset 

(Bmax --+ 7r), small offsets are weighted double. 

To compare the condition number obtained with this weight to the reference case, 

I plot the ratio "'mjn as a function of Bmax in Figure 4.57. The reduction in condition 
"'r 

number is about 33% of its reference value for low offsets, and 45% for large offsets. 

The reduction in the condition number is not dramatic, which warrants a closer 

look at the asymptotics of the condition number. For small Bmax: 

• Reference case: 
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Amax = 1 + O(e~ax) 

e4 6 Amin = 180 + O(emax) 

_ 180 f'''(e-2) - ""r-~+v max 
max 

• Optimal stacks: 

Amax = 1 + O(e~ax) 

\ . _ e~ax + f'/)(e8 ) 
A m2n - 64 v max 

- ""min = e!4 + 0(1) 
max 

The two cases exhibit the same asymptotics, which explains why the reduction 

in the condition number is not orders of magnitude. Interestingly, the result above 

also predicts that an adequately weighted small offset/large offset stack is better 

conditioned than using the entirety of the offset range! 
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The first order conditions for this problem turn out to emphasize an interesting 

property of this optimization problem. The first order conditions are, 

The solution to this equation yields a different parametrization of the optimization 

problem in terms of L, with L 2: 4: 

which we can note also algebraically, 

Minimizing the condition number amounts to minimizing L = ~. To move along the 

curve that describes the condition number as a function of L, see Figure 4.58. 
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Another important piece of information that we can obtain from the reference case 

is the eigenvector with the largest eigenvalue, which we can calculate analytically. 

The result is not shown here, and the calculations are done using MAPLE. However, 

this calculation reveals the conditioning of the recovery of the interesting physical 

parameters: velocity, density and impedance. The angle that the vector representing 

each of these parameters makes with the eigenvector corresponding to the largest 

eigenvalue, describes the conditioning of the recovery of the parameter at hand. The 

results are shown in Figures 4.59, 4.60 and 4.61. In fact these figures explain the 

assertion made earlier about the recovery of the density being more ill conditioned 

compared to the recovery of the velocity. Figure 4.60 shows that, for small offset 

angle, the density is almost perpendicular to the optimal eigendirection, and therefore 

is aligned with the eigenvector with the smallest eigenvalue. The impedance is the 

best conditioned physical parameter for recovery, as it is aligned with the optimal 

eigendirection for small coverage angle. The velocity is in between, starting off with 

an angle of 45 degrees, and remaining in the mid-range. It is in this sense that the 

recovery of the density is the most ill-conditioned of the three physical parameters 

chosen usually. 
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4.6 Multi-component data 

Another way to ameliorate the conditioning of the normal operator is measuring 

multi-component data. The data considered classically are the measurement of the 

pressure field at the surface. When additional data are available, they may be used to 

better pinpoint the material parameters sought in the inverse problem and accordingly 

improve the condition number of the normal operator. 

We consider the case where the linearized forward map F has the' relative pertur-

bations in the impedance and density to pressure perturbations and averaged vertical 

derivatives of such perturbations. The second set of measurement is available and is 

known as over under cable data, a practical method to measure the vertical gradient 

of the pressure field at the surface. 

F: ( 
8;(x) ) -+ 

~(x) 
p 

( 4.9) 

As usual x s , X r , x are respectively the source, receiver, and spatial positions. tr is time 

sampled at the receiver location, and Zr is the vertical component of X r . A procedure 

similar to the one used in (Symes, 1998) yields an expression for the symbol of the 

normal operator for this specific case of multicomponent data. Surprisingly, it takes 

the form: 

(4.10) 

We can write out a(O) > 0 explicitly. However, it is more interesting to note that 

the effect of the multi-component data improves the condition number by changing 
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the weight in front of the matrix studied in the previous section (the trace is scaled 

by a2 and the determinant is scaled by a4 , hence the eigenvalues are scaled by 

a2 and the condition number remains unchanged). In the case of variable density 

acoustics and for this type of multicomponent data, we can improve the conditioning 

by optimally weighting the matrix as discussed in the previous section. In fact, 

adequately weighting the symbol matrix, as shown in the previous section, emulates 

multi-component data with single-component data! 

4.7 Three-parameter case: p = 3 

When formulating the method explicitly for more than two parameters, the algebra 

becomes a bit more involved; this is why we only show the case p = 3. However the 

procedure is generalizable to any p, albeit tediously. 

The normal operator is denoted by 

Nl1 N12 N 13 

N = N12 N22 N 23 

N 13 N 23 N33 

Its adjugate is, 

Adj(N) = 

(N22 N 33 - Ni3) 

-(N12N 33 - N23 N 13) -(Nu N23 - N13 N 12) 

(NIIN22 - Nf2) 
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We will again introduce special notation that will facilitate subsequent manipu-

lations, so we can write Adj(N) b as a series of swap operations on the entries of b 

followed by applications of N. The entries of Adj(N) b are of the form: 

(4.11) 

where again the adopted notation only shows the indices. Symmetry of Nand ap-

proximate commutativity of its entries, allows us to deduce identities like liji' j' k = 

ljii'j'k = lijj'i'k = li'j'ijk. Using this notation and the previous identities we can 

write: 

Adj(N) b = 122331 - 123231 + 123132 - 121332 + 121233 - 122133 

+ 231231 - 233121 + 233112 - 231132 + 231123 - 232113 

+ 312231 - 313221 + 313122 - 311232 + 311223 - 312123 

= (12) [2331 - 3231 + 3132 - 1332 + 1233 - 2133] 
( 4.12) 

+ (21)[3231 - 2331 + 1332 - 3132 + 2133 - 1233] 

+ (31)[2231 - 3221 + 3122 - 1232 + 1223 - 2123] 

= (-12 + 21)[33(21 - 12) + 23(13 - 31) + 13(32 - 23)] 

+ (31)[22(31 - 13) + 32(12 - 21) + 12(23 - 32)] 

Equation (4.12) is interpreted as follows: 
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2. Form (e2ef -elenN[e3efN(e2ef -elen+e2efN(elef -e3ef)+elefN(e3ef­

e2ef)lb 

4. Sum the last two images to obtain Adj(N) b :::::: det(N) x 

The above procedure amounts to 5 applications of the normal operator N, fol­

lowed by one extra application to approximate det(N), bringing the total cost to 6 

applications of N for p = 3. 

In order to validate the method for this case, I construct an analytical example. 

I choose u to be a vector of oscillatory functions localized at different points, shown 

in figure 4.62: 

sin(30(x _ z))e((-(x-1.5)2- z2)/O.1) 

u = sin(30(z + 2x))e((-X2-(Z-1)2)/O.1) 

sin(30(z + 3x))e((-x2-(Z+1.5)2)/O.1) 

The normal operator is also constructed analytically to be a matrix of pseudod­

ifferential operators given its symbol matrix. The angle () refers to the angle that 

the Fourier vector makes with the horizontal axis. This choice ensures that N is 

symmetric positive definite. 

1 

N = Op cos2 (O) 

cos2 (O) 

cos4(O) + (x2 + 1)2 

sin2 (0) 

cos2(O) sin2(O) + (x2 + z2)(x2 + 1) 

sin2(O) cos2(O) sin2(O) + (x2 + z2)(x2 + 1) sin4(O) + (x2 + z2)2 + (z2 + 1)2 

The right hand side b = N u mixes the three oscillatory packets (see figure 4.63). 
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w IIN22N23UI-N23N22Ulll 
11N22 N 23 Ulii 

5 16 % 

10 9% 

20 5% 

40 2.6 % 

Table 4.1: The relative size of the commutator as a function of the frequency. Results 

corroborate the w-1 decrease predicted by the theory. 

Applying the adjugate, by applying N to the specific permutations of b described 

above, yields the result shown in figure 4.64. Once again, applying the adjugate 

succeeds in separating the contributions from the different wave packets in b. It is 

obvious that the separation is not perfect. The adjugate of N satisfies equation (3.7) 

approximately, since scalar pseudo differential operators commute approximately. The 

theory of pseudo differential operators predicts that relative error is of the order of w- 1 . 

I have checked this theoretical fact numerically by calculating IIN22~%Ul~N23~22Ulll for 
22 23 Ul 

different wand the error decreases like w-1 . The results of this numerical experiment 

are shown in Table 4.1. Roughly speaking, in this case w = 30 (the frequency of the 

pulse). The result degrades if w = 10; see figure 4.65. 



108 

0.8 0.8 0.8 

50 50 50 
0.6 0.6 0.6 

0.4 0.4 0.4 
100 100 100 

0.2 0.2 0.2 

'J ~., 

150 0 150 0 150 , ~r:: 0 
'1~ 

Ir 

-0.2 -0.2 -0 .2 

200 200 200 

-0.4 -0.4 -0 .4 

250 -0.6 250 
-0.6 -0.6 

250 -

-0.8 -0 .8 -0 .8 

300 300 300 1 

100 200 300 100 200 300 100 200 300 

Figure 4.62: U, input vector consisting of three wave packets with different orienta-

tions in different places 
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Figure 4.63: b = N u , result after application of the matrix of pseudodifferential 

operators. The three wave packets are mixed and scaled in phase space 
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Figure 4.64: Adj(N) b with w = 30. At high frequency the adjugate accurately 

separates the different wave packets from b. T his result is a phase space scaling of 

the input u. 
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Figure 4.65: Adj(N) b with w = 10. As the frequency decreases, the error committed 

is of order w- 1 and the same procedure fails to accurately separate the three wave 
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Chapter 5 

Possible Further Developments 

The first item on the list is an application of the method to multi-parameter non­

layered models. A 2D Marmousi variable density acoustics model is one possibility. 

The rest of this chapter discusses untested recent developments and a proposal to 

use the method proposed in this manuscript to precondition full waveform inversion 

methods. 

5.1 Rotations 

This section introduces an approach to limit the number of applications of the normal 

operator to p times for p parameters. 

The requirement to apply the normal operator six times for p = 3 and the trend 

of growth with p becomes costly very fast. It is important to limit the number of the 

applications of the normal operator. The following idea limits the number of these 
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applications to p when the number of parameters is p, and this approach would be 

optimal. 

Recall that we want to solve: 

Nx= b. 

\Vhere N is a p x p symmetric matrix of pseudodifferential operators. 

Let b ~ be the vector that satisfies bi b = 0 pointwise (b is a p vector of scalar 

functions). Then 

Claim 1: (Nb~)T x ~ o. 

I will present a proof and an exact interpretation of this claim shortly. I begin by 

showing how to develop a method to approximate x which only requires p applications 

of the normal operator. 

If {bi, ... ,hi-I} are p - 1 linearly independent vectors perpendicular to b, i.e. 

(b~)Tb = 0 for all i E [1, p-1]. Then {N bi, ... ,N hi-I} are p-11inearly independent 

vectors perpendicular to x, by the claim presented above. The fact that these vectors 

are linearly independent follows from the requirement that N is full rank, as a matrix 

of operators. 

Therefore, x E Ker(span{Nbl, ... ,Nl~-l}). 

Explicitly, b ~ = Rb b. b ~ is a rotation of 90 degrees of the right hand side. 

Rb 1- N b ~ = Rh N Rb b = x'. 

Claim 2: x' = Rh N Rb b = A;r;, where A is a pseudodifferential operator of order 
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2 x ord(N). 

To see this, it is enough to note that b = N x and the rotation are operations 

in space and can be arranged to have zero order; they do not act in the frequency 

domain at all. 

This leads to the following program to approximate x: 

2. Apply N to form:{N bi, ... , N hi-I} 

3. Compute x' = AX E Ker(span{N bi, ... , N hi-I}) 

4. Apply N again, to get N x' = N AX ~ AN x = Ab 

5. Compute a scaling factor c, 

c = argminllb - cAbl1 2 

cE\lIDO 

6. Approximate x by Xinv = C A:1': 

The cost of these steps is p applications of the normal operator. Note that this 

method is equivalent to Cramer's rule for p = 2; the change in the approach only 

affects p 2: 3. 

To complete this section we still have to justify claim 1. The first justification 

uses the asymptotic expansion lemma (2.11). Assume that Xi = L:j Xjieiw\llji (a linear 
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combination of wavepackets). We have dropped the dependence of X and W on the 

spatial variables for brevity. 

Then, using (2.11) to explicitly approximate the action of the normal operator on 

the wave packets, with ord(N) = m, we denote the symbol of N ij as qij. The ith 

entry of b is given by 

0= bIb 

= L qikXjkeiWWjk + O(wm - 1 ) 

kj 

~ ~ ( ~>:kXjkCiW. j» (# qik'X;'k,CiW• j'" ) 

We are now ready to address the claim that (N bl..f x ~ 0: 

(5.1) 

(5.2) 



(N b~f x = L(Nhkci 
i 

ij 

,...., ~ qo oq' X 0 X °eiWWj'k'eiWWli 
,...., ~ lJ jk' J'k' II 

ijk'j'Z 

- ~ q oq' v 0 X 0 eiWWJo'k'eiWWjk 
- ~ kl ik'AJ'k' Jk 

kikj'j 
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Using the fact that qki = qik since the normal operator is symmetric, we can 

identify this last expression with the orthogonality condition between b and b~ and 

conclude: 

The approximate equality means to leading order 111 frequency. We can use the 

fact that wave packets constitute a tight frame for seismic images to leverage these 

calculations into a proof of Claim 1, when dip V'll is well defined everywhere. 

In general, denote by (.,.) the £2 inner product and, let q be a smooth function 



(a test function). Then since q (bd T b = 0, 

= L(q(b~)i' Nijxj) 
ij 

= L (Njiq(bdi' Xj) 

ij 

ij 

j 

ij 
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(5.4) 

ij 

ij 

The fact that [q, Njk](b~)i is smoother than qNjk(b~)i allows us to assume that 

the term involving the commutator is a smoother error, and to leading order: 

for any smooth function q. So we interpret Claim 1 in a weak sense to say that 

(Nb~f:£ is the zero distribution. 

5.2 Full Waveform Inversion 

In this section we take a step back to the original nonlinear inverse problem. I point 

out how the pseudo differential scaling method developed for the linearized inverse 
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problem accelerates the convergence of the optimization for the model m. I present the 

method in the case of one parameter inversion; the generalization to multi-parameters 

follows suit. 

I developed this work with the help of Dr Fuchun Gao in an attempt to precon-

dition his FWI code. 

One way to recover the model m without linearizing around an a-priori known 

background model is trying to optimize for m by trying to fit the data through the 

nonlinear forward map. The objective function is given by 

1 2 
J = 2"IIS[m] - dll . (5.5) 

The gradient of the objective function is, 

9 = F*(S[m]- d), (5.6) 

and the Hessian is, 

H = F* F + ~: (S[m] - d). (5.7) 

Newton's method to minimize the objective function in an effort to recover m will 

have the following updates: 

H - 1 
mk+l = mk - g. (5.8) 

Gauss-Newton's method neglects the second term in equation (5.7) H ~ F* F, 

under assumptions of small residual or mild nonlinearity. Even after this approxi-

mation, it is too expensive to invert the Hessian. The approximation to the inverse 

of the normal operator obtained by the pseudodifferential scaling method serves as 
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a substitute for H-1 . The inverse of the Hessian is usually replaced by a constant 

and the Gauss-Newton method reduces to steepest descent with line search; the scal-

ing factor preconditions the problem and introduces curvature information about the 

objective function, and is expected to accelerate the convergence of the optimization. 

Full waveform inversion does not split the model into a smooth and rough com-

ponent. The approximation of good scaling factor however relies on the fact that the 

velocity field is split into these two parts. We therefore proceed at each step with 

splitting the velocity, 

Apply the normal operator on the rough part to obtain a scaling factor c, 

c = argmin 118mk - cF*[mkOlF[mkOl8mkI12. (5.9) 
CEwDO 

Use the scaling factor thus derived to approximate the inverse of the Hessian, 

(5.10) 

where Cik is a line search parameter to ensure decrease in the objective function. 

This development is independent of the space dimension. 

The justification for using the scaling factor as an approximation to the inverse 

Hessian is somewhat a posteriori. The approximation of the scaling factor requires 

the application of the normal operator and is thus comparable to the expense of 

one iteration of the FWI. The use of the scaling factor is justified if the overall 



120 

number of applications of the modeling and migration operators is decreased when 

using the scaling factor, as opposed to simple steepest descent. Also, the scaling 

factor is dependent on the smooth part of the model, and we may be able to skip 

its approximation at each step if the smooth part remains constant. This last point 

constitutes part of the experiments that we need to conduct as part of the future 

work. 

Also, the scaling factor is an approximation of the inverse only in the part of the 

data that is explained by the linearized theory (no multiples, ... ). It remains to be 

seen how well of an approximation it is on the data that cannot be explained by the 

linearized part exclusively. 

Herrmann et al. (2008a) apply part of this program on the linearized least squares 

problem with satisfactory results on the acceleration of the inversion process. Jang 

et al. (2009) also use the scaling factor they derive from the method of virtual sources 

to precondition full waveform inversion and accelerate the conversion of the nonlinear 

optimization problem. 



Chapter 6 

Conclusion 

I have proposed a method to approximate the inverse of the normal operator arising 

in the linearized multi-parameter inverse problem for reflection seismology in two and 

three spatial dimensions. Under some conditions, the normal operator is a matrix of 

pseudo differential operators. This manuscript shows how to generalize Cramer's rule 

to solve equations involving matrices of pseudo differential operators. 

The method applies the normal operator to permutations of the right hand side 

to produce a phase space scaling of the solution. It then proceeds to correct for the 

phase space scaling. 

The use of Cramer's rule reduces the multi-parameter problem to the one param­

eter problem. Its advantage is that it uses the application of the normal operator as 

a black box. Therefore, it applies to various multi-parameter linearized inverse prob­

lems (variable density acoustics, linear elasticity ... ). It only relies on the fact that 
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the normal operator is a matrix of pseudodifferential operators with a given order. 

The tests shown in the results section validate the success of the method, specif­

ically in separating the influences from different material parameters from a right 

hand side that features a mix of all these contributions. These examples range from 

simple two layer models with constant background to the more complex layered mod­

els with smooth background. In principle the same method should work for laterally 

homogeneous models at a higher computational cost to apply the normal operator. I 

have verified this in my masters thesis for the one-parameter case. 

A final example uses a non-smooth background model, for which the normal op­

erator is no longer a matrix of pseudo differential operators. It shows how the method 

fails as one of the conditions for its success is violated. 

This thesis also proposes a method to limit the number of required applications of 

the normal operator in the possible developments section. This section also contains a 

discussion about using the approximate inverse of the normal operator to precondition 

the nonlinear inverse problem. 
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