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Abstract

On the Parametrization of Ill-posed Inverse Problems 

Arising from Elliptic Partial Differential Equations

by

Fernando Guevara Vasquez

Electric impedance tomography (EIT) consists in finding the conductivity inside 

a body from electrical measurements taken at its surface. This is a severely ill-posed 

problem: any numerical inversion scheme requires some form of regularization. We 

present inversion schemes that address the instability of the problem by proper sparse 

parametrization of the unknown conductivity.

To guide us, we consider a consistent finite difference approach to an inverse 

Sturm-Liouville problem arising in EIT for layered media. The method first solves a 

model reduction problem for the differential equation where the reduced model pa­

rameters are essentially averages of the conductivity over the cells of a grid depending 

on the conductivity. Fortunately the dependence is weak. Thus one can efficiently 

estimate conductivity averages by using the grid for a reference conductivity. This 

simple inversion method converges to the true solution as the number of measure­

ments increases. We analyze the sensitivity of the reduced model parameters to small 

changes in the conductivity, and introduce a Newton-type iteration to improve the 

reconstructions of the simple inversion method. As an added bonus, our method can 

benefit from a priori information if available.

We generalize both methods to the 2D EIT problem by considering finite vol­

umes discretizations of size determined by the mesurement precision, but where the 

node locations are to be determined adaptively. This discretization can be viewed 

as a resistor network, where the resistors are essentially averages of the conductivity 

over grid cells. We show that the model reduction problem of finding the smallest
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resistor network (of fixed topology) that can predict meaningful measurements of the 

Dirichlet-to-Neumann map is uniquely solvable for a broad class of measurements. 

We propose a simple inversion method that, as in the simple method for the inverse 

Sturm-Liouville problem, is based on an interpretation of the resistors as conductivity 

averages over grid cells, and an iterative method that improves such reconstructions 

by using sensitivity information on the changes in the resistors due to small changes in 

the conductivity. A priori information can also be incorporated to the latter method.
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1

C hapter 1 

In troduction  and background

This Thesis focuses on the numerical solution of inverse problems arising in ellip­

tic partial differential equations, where one wishes to determine the coefficients in 

the equation from boundary measurements. Specifically we look at the Electrical 

Impedance Tomography (EIT) problem, where the goal is to determine the conduc­

tivity function inside a domain f] from simultaneous measurements of electric currents 

and voltages at the boundary of the domain. As we see in Section 1.1, this problem is 

known to be uniquely solvable, but is severely ill-posed, meaning that the conductivity 

does not depend continuously on the data. Therefore any numerical reconstruction 

method needs some form of regularization. We introduce reconstruction methods 

that obtain fast and stable reconstructions using proper sparse parametrizations of 

the unknown conductivity.

Clearly, any numerical inversion method for the EIT problem requires some para­

metrization of the unknown conductivity. Since the EIT problem is severely ill-posed, 

noise in the measurements severely limits the number of parameters that we can hope 

to recover. The idea of regularization by means of sparse representation of the un­

known in some preassigned basis of functions has been proposed for linear inverse 

problems [37]. But the question remains how to choose a good basis of functions,
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2

specially when we do not have any a priori information about the unknown quantity. 

We looked at bases consisting of characteristic functions of cells in a grid partition­

ing the domain where the size of the grid is to be determined from the noise in 

the measurements and the location of the grid points is to be determined adaptively 

as part of the inverse problem. Adaptivity is key because we know from resolution 

studies (see Section 1.2) that the resolution at which we can expect to reconstruct 

the conductivity is higher close to the surface of measurements than deep inside the 

domain.

To guide us in the solution of the EIT problem, we consider in Chapter 2 an 

inverse Sturm-Liouville problem (a type of inverse spectral problem) arising in EIT 

for layered media. We improve the method of Borcea, Druskin and Knizhnerman 

[19, 20], which is a consistent finite differences based approach that is probably the 

first rigorous result for finding a parametrization that takes into account the resolution 

limits of the problem. By rigorous we mean that convergence to the true solution as 

the number of measurements increases has been established [20]. In a nutshell, the 

method first finds the parameters of a reduced model for the differential equation. The 

parameters can be viewed as averages on a grid that alas depends on the conductivity. 

Fortunately, the dependence is weak, i.e. changing the conductivity does not change 

significantly the grid. This leads to a simple inversion procedure based on interpreting 

the averages on the precomputed grid for a reference conductivity. Our contribution 

is to use a sensitivity analysis of the reduced model parameters to perturbations in 

the conductivity, in the context of a Newton-type iterative procedure, to improve the 

reconstructions of [19, 20] when only a limited number of measurements are available. 

Moreover, our method can incorporate a priori information about the conductivity if 

it is available in the form of a penalty functional.

Then in Chapter 3, we extend the inversion methods of Chapter 2 to the EIT
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3

problem in dimension two. First we solve the model reduction problem of finding 

the smallest resistor network of fixed topology that can predict meaningful measure­

ments of the Dirichlet-to-Neumann map. We have established that for a broad class 

of measurements, this model reduction problem admits a unique solution. Then as 

in [19, 20] we interpret the reduced model parameters, i.e. the resistors, as averages 

of the conductivity over the grid cells of a finite volume discretization. Assuming the 

grid depends weakly on the conductivity, we estimate averages of the conductivity on 

a precomputed grid. However, we must be careful because unlike the inverse spectral 

problem, the EIT problem is severely ill-posed. Thus no m atter how many measure­

ments we take, the measurement precision severely limits the number of parameters 

we hope to recover. So we limit the size of the network according to the measurement 

precision. Finally we show that the same Newton-type iterative technique can be 

used to improve the reconstructions of this simple method and to incorporate a priori 

information about the true solution.

Chapters 2 and 3 have few cross-references and are meant to be standalone. There­

fore, there is some overlap in the explanations of both chapters, specially for the 

Newton-type iterative method. Finally we conclude in Chapter 4 with some remarks 

and ideas for future work.

1.1 E lectr ica l Im p ed an ce T om ography

The goal of Electrical Impedance Tomography (EIT) is to infer electrical properties 

(such as the conductivity) inside of a body from measurements of the voltages and 

the electric current density on its boundary. Among the applications for this inverse 

problem are: medical imaging [27], geophysical prospection [92] and non-destructive 

testing of materials [69].
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This Thesis focuses on a static (DC) setup for EIT, which we now describe. Let 

D be a simply connected, bounded and open domain of M.d with d > 2 and let the 

(electric) conductivity cr(x) be a positive, bounded function defined in D. The electric 

potential u satisfies the following elliptic second order partial differential equation 

inside the domain D,

V • [crVu] =  0, (1.1)

which means neither current sinks nor current sources exist inside Q. The Dirichlet- 

to-Neumann (DtN) map A(ftN : H l/2{dD) —► H ~l/2(dD) maps Dirichlet boundary 

conditions (voltages at the boundary) to the resulting current density at the boundary:

A ° tNV = x v { o V u ) \ Qil, (1.2)

where u is the potential satisfying (1.1) with Dirichlet boundary condition u \qq = V

and n(x) is the outward pointing, unit normal vector to the boundary at x € dD. The

DtN map is well-defined because the potential at the interior is uniquely determined 

by Dirichlet boundary conditions. We can now pose the EIT  problem.

P ro b lem  1.1. Find the conductivity a inside the domain Q. from the Dirichlet-to- 

Neumann map A f tN.

Equivalently, the DtN map in Problem 1.1 can be exchanged by the Neumann-to- 

Dirichlet (NtD) map A)ftD : H~1̂ 2(dfl) —> H l/2{dTl) that maps current densities at 

the boundary (Neumann boundary conditions) satisfying the compatibility condition 

f dQ I(x)dx. =  0 to voltages at the boundary,

A%tDI  = U\dn, (1.3)

where the potential u satisfies (1.1) with Neumann boundary condition n  • (aVu)  |gn =  I.
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With such boundary conditions, the potential is defined up to an additive constant 

(or rather grounding potential), which we choose by requiring that f &Q ujdn(x)dx = 0.

Formulating Problem 1.1 with either the NtD or the DtN map is equivalent be­

cause the NtD map is the generalized pseudo-inverse of the DtN map, so the two maps 

carry the same information. Next we show through a review of the main theoretical 

results for EIT, that although under certain conditions the EIT problem admits a 

unique solution, it is a severely ill-posed problem.

1.1.1 U n iq u en ess resu lts for E IT

The question of uniqueness for the EIT problem was first addressed in the landmark 

paper by Calderon [23], where the injectivity of the linearized DtN map is established. 

For the non-linear problem, Kohn and Vogelius [71] proved that an infinitely smooth 

bounded conductivity is uniquely identifiable at the boundary from the DtN map. 

Thus for analytic conductivities (or even piecewise analytic [72]), uniqueness at the 

interior is guaranteed in R2. Independently, Druskin [43, 48] proved uniqueness for 

piecewise constant and piecewise analytic conductivities in a unbounded domain of 

R3, with measurements given on a two dimensional plane.

Sylvester and Uhlmann [107] used Calderon’s complex exponential harmonic func­

tions to show uniqueness for the nonlinear problem in dimension three and higher, 

provided the conductivity is infinitely smooth. Their result was later extended to less 

smooth conductivities (e.g. [88, 22]), always in dimension three and higher.

In dimension two, the focus of Chapter 3, the first results (e.g. [106, 103, 104, 105]) 

were local in nature, i.e. only valid for conductivities belonging to very particular 

classes of functions and sufficiently close conductivities. Nachman [89] brought for­

ward the first global result in dimension two by producing a constructive uniqueness 

proof for W 2,p conductivities with p > 1. Very recently the uniqueness question
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in dimension two was laid to rest by Astala, Paivarinta, and Lassas [8] since they 

established uniqueness for L°° conductivities.

Our account of uniqueness results for EIT is not meant to be exhaustive. We 

point instead to the thorough reviews of e.g. Uhlmann [111] or Borcea [18].

1.1.2 T h e in herent in sta b ility  o f  EIT

The EIT problem is ill-posed in the sense that the conductivity in the interior does 

not depend continuously on the data (which can be either the DtN or NtD map). 

There are several ways to exhibit the discontinuity of the inverse map, but to fix 

ideas we start with a heuristic reasoning. In order to find the conductivity a, we first 

need to find the potential u inside Q. Actually the potential u solves the Cauchy 

problem for the elliptic equation (1.1), with the Neumann and Dirichlet conditions 

acting as initial data. Such problems are known to be exponentially ill-posed, as the 

classical example of Hadamard [57] shows (see e.g. [51, p54]).

An example in dimension two due to Alessandrini [2] shows that the inverse map

A  D t N —> a is not continuous by giving a sequence of simple conductivities that are 

piecewise constant and radially symmetric on the unit disk, so that the DtN map can 

be computed explicitly. The sequence is such that converges to A®tN in the

H l/2(dVl) —> H ~ll2{dVt) norm but ||cr^ — l||L°°(f2) = C > 0. A similar conclusion 

can be reached for the NtD map. For example Dobson [40] used homogenization 

techniques to show the discontinuity of the inverse map A ^ tD —> a in the topology 

induced by the L2(dfl) —> L2(dQ) norm for the NtD map and the L°°(D) norm for 

the conductivity.

A quantitative estimate of the discontinuity of the inverse map was given by 

Alessandrini [2] in the form of logarithmic estimates for A%tN —> a when the con­

ductivities are smooth enough in dimension three and higher. His results were sub­
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sequently generalized to encompass dimension two and less regular conductivities by 

Liu [76] and Barcelo et al. [12]. The logarithmic estimates by Alessandrini [2] and 

Liu [76] state that for d > 2 there are constants C > 0 and 8 e  (0,1) such th a t1

Iki — ^Hloo^) <  C  ^ln ^1 +  ||ACTi — ACT2 \\Hi/2(da} H-i/2(dn ^  i (1-4)

for smooth enough conductivities <j\ and a^- Furthermore, Alessandrini [4] gave an 

example where (1.4) is tight. Recently Mandache [80] proved that these logarithmic 

estimates are in fact optimal, and he gave bounds on the exponent 8.

Logarithmic estimates suggest one requires exponentially accurate data to get an 

acceptable L°°(Q) error in the reconstructed conductivity. However, these estimates 

are too pessimistic because of their global nature. For example, the conductivity is 

determined at the boundary in a stable way from the measurements [71, 108, 88]. 

Additionally, one can expect to distinguish better the values of the conductivity that 

are closer to the boundary than deep inside 0 , as we see next.

1.2 A d a p tiv e  d iscretiza tion s for ill-p osed  inverse problem s

We now review inversion methods for EIT (or related ill-posed inverse problems) 

where, as in the methods we introduce in this Thesis, the parametrization of the un­

known quantity is chosen to account for the intrinsic resolution limits of the problem.

We start in Section 1.2.1 with the notion of distinguishability, which quantifies 

the resolution of EIT in the realistic case of noisy data and thus helps in determining 

a discretization for the conductivity. One way of estimating the distinguishability is 

described in Section 1.2.2. Then Section 1.2.3 is devoted to multilevel methods which 

solve the inverse problem on a coarse grid to help the inversion on a finer grid.

: Here the norm [[ • operator norm from H 1/,2(dfl) to H ~ 1//2(dQ).
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In Chapter 3 we shall use an adaptive method for inverse Sturm-Liouville problems 

[19, 20] to guide us in finding adaptive discretizations for the conductivity in EIT. 

The review of the inversion algorithm [19, 20] is left to Section 2.2.

1.2.1 D istin g u ish a b ility

How many details of the conductivity can we expect from an imperfect knowledge of 

the data in EIT? To understand this, Isaacson [65, 54] considered the set of perturba­

tions 5a that cannot be distinguished from a background conductivity a° at a noise 

level 5 in the measurements,

Vs =  { 6a e  L“ (f!) such that ||A « ffo -  A « D||I1(an| l3(8n) < i}  . (1.5)

For all practical purposes, the indistinguishable set2 Vs is the nullspace of the forward 

map a —>• A ^ tD at a measurement precision of 5.

To study the set Vs, Isaacson [65] and independently Seagar et al. [96, 97] de­

termined which circular inclusions are distinguishable from a constant background 

conductivity defined on the unit disk. For such simple conductivities, analytic formu­

las can be derived for the NtD maps with and without inclusion. For example if the 

inclusion is concentric, the analysis yields the singular values Sk(r) of the “voltage 

difference map” A ^ ^ Sa. — for an inclusion of radius r. The radius r\ of the

smallest circular inclusion at the center distinguishable at a noise level 5 can thus be 

found by solving s\(r) = 5, which gives r\ «  \ A / ( 2 +  5). The analysis by Seagar et 

al. [96, 97] covers circular inclusions that are not necessarily centered.

Moreover, Dobson [40, 41] gives upper and lower bounds to the indistinguishable

2In all generality, the operator norm in (1.5) should be replaced by the H 1̂ 2(dfl)
operator norm which is harder to manipulate than the norm used in (1.5). However, both norms 
give similar results if 5cr|an =  0 (see [54]).
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set in the linearized EIT problem around a constant conductivity. The originality of 

his approach is to use a wavelet basis for capturing simultaneously information about 

the localization and the size of the largest indistinguishable perturbations. Specifically 

he confirms that the perturbations that are near the center are exponentially harder 

to distinguish than those near the boundary. However, there are no generalizations 

or implementations of Dobson’s ideas, and this remains an open research area.

A heuristic for discretizing the conductivity based on distinguishability is proposed 

by Gisser, Isaacson, and Newell [54] and used in [26] for reconstructions from NtD map 

measurements collected on N  uniformly spaced electrodes. The idea is to discretize 

the conductivity as a piecewise constant function on a grid that is uniform in angle 

with as many angular subdivisions as electrodes. The total number of degrees of 

freedom in the grid is chosen to be the number of independent measurements that 

can be done with N  electrodes, i.e. N ( N  — l ) /2 .3 The number N  of electrodes can 

be estimated from the measurement precision by assuming the grid is uniform in the 

radial direction, with smallest radial subdivision being the radius rq given as above.

The use of distinguishability is taken further in the layer peeling algorithm of 

Somersalo et al. [99]. Basically, the conductivity is first estimated on a layer close to 

the boundary from the NtD map. Then the layer is peeled off by estimating the NtD 

map on the domain without the layer. Reiterating the procedure, one can estimate 

the conductivity layer by layer. To obtain good reconstructions, the radius rq of layer 

k (counting outwards from the center) is in [99] the radius of the smallest feature 

at the center that can be distinguished by an excitation of frequency k. Clearly 

the radius r*, comes from the singular values sk(r) of the voltage difference map 

for circular inclusions by solving Sfc(r) =  S, since on closer inspection the singular

3The measured NtD map is an N x N  matrix with zero row sum, so it is determined by N ( N —1)/2 
of its entries, e.g. its strict upper triangular part.
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functions corresponding to Sk(r) are the trigonometric functions cos(kO) and sin(kQ). 

Positioning the layers in this way puts more layers close to the boundary than near 

the center, since higher frequencies penetrate less than lower frequencies. This is in 

concordance with the expected resolution loss away from the boundary.

The gridding techniques of this Section are heuristic, since they are based on 

distinguishability estimates of single inclusions on a constant background. However, 

the forward map a  —> A ^ tD is non-linear, and hence the effect of several inclusions is 

not the sum of the effects of each inclusion considered separately.

1.2.2 A  loca l reso lu tion  estim a te

We review the study of MacMillan, Manteuffel, and McCormick [79] on the resolution 

limits of EIT and the discretization of the conductivity that can be derived from it.

Main theoretical results

Let a and a* be conductivities belonging to a set where injectivity of the NtD map 

has been established (Section 1.1.1). In the following a* is understood as the true 

conductivity of the domain fl, and a as a trial conductivity. MacMillan et al. [79] 

start by defining a local norm on the set of conductivities by

. .  . .  I L qVtC • Vwodxl , .

I M U  ; =  s u p  i j t t  n n — — ’ ( L 6 )
h , h € I  l l J l l l f f - i / 2 ( 0 n )  II 2 l l £ r - 1/ 2( 9Q )

where u\ and u\ solve the PDE (1.1) with conductivity a* and Neumann boundary 

conditions Ij G T  and J2 6 l  respectively. Here X  represents the set of functions 

in H~l/2(dn)  that are orthogonal to the constants. The injectivity of the NtD map
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together with the following inequalities guarantee that || • Ĥ* is indeed a norm [79]:

Vmin \\<7 — |U  < — Act. <  hmax 11̂  ~  & \\a* , (1-7)

where
• ^*(x) j  cr*(x)Vmm = mm — and r]m&x =  max —7̂ .xefi cr(x) xen cr(x)

The inequalities (1.7) rely on an identity due to Alessandrini [3] and can be thought 

of as a coercivity bounds for the NtD map. Moreover, the inequalities (1.7) have 

been generalized to encompass the loss of precision due to having a discrete set of 

measurements [79]. Strictly speaking (1.7) are not coercivity bounds for two reasons. 

First, the “constants” 77min and r]max depend on a and a*, but given enough a priori 

information on a*, upper and lower bounds on r)min and r?max can be derived. In some 

situations, for instance high contrast media, such bounds may end up being too loose 

to be useful. Second, the norm used in the bound depends on <r*, which is unknown.

The norm || • Ĥ , automatically incorporates resolution information about the 

problem. This is because the quantity —Vu\ ■ V u \  that weights 7 in (1.6) also 

appears in the linearization about a* of the quadratic form Qa*(I, J ) =  ( /,  A ^ .^J), 

and from e.g. Dobson’s [41] resolution studies of the linearized NtD map, the product 

Vu\  • V«2 is larger close to the boundary than deep inside the domain.

Grid construction

The inequalities (1.7) readily give upper and lower bounds for the set of indistinguish­

able perturbations for the non-linear EIT problem. MacMillan et al. [79] construct

grids for the conductivity based on these resolution estimates, which are meant to

illustrate the resolution loss towards the center of the domain. To our knowledge 

there are no reconstruction methods using such grids.
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The proposed representation for the conductivity in [79] is a piecewise constant 

function on a grid specified by angular and radial subdivisions of the unit disk, ob­

tained by taking a = 1 and a* =  a +  8a in (1.7), where the perturbations 8a are 

the characteristic functions of grid cells. The radial dimension of a cell is essentially 

determined as the smallest such that 8a is distinguishable in the sense of estimate 

(1.7), whereas the angular dimension comes from fixing the cell’s “aspect ratio” .

Instead of using the grid described here to represent the conductivity, MacMillan 

et al. [78] solve an optimization problem with a functional obtained with the so- 

called first order system least squares (FOSLS) method. The functional incorporates 

resolution limits because of a weighting term similar to the one weighting 7 in (1.6).

1.2.3 M u ltilev e l inversion

We review inversion methods that use a coarse discretization to stabilize the inversion 

on a finer discretization.

M ultigrid m ethods

Borcea [17] devised a non-linear multigrid method for imaging in EIT. Her method 

starts by finding a very good guess of the impedance on a coarse grid. This step in 

itself is relatively stable. Then full multigrid (nested iteration) is used to solve on a 

finer grid the first-order necessary optimality conditions for an output least squares 

type functional, taking as initial guess the coarse grid reconstruction. The numerical 

results are backed by a convergence proof [17]. Other applications of multigrid to 

the EIT are those of McCormick and Wade [83] for the linearized EIT problem and 

Ascher and Haber [7] who speed up the computations in a Newton-type method for 

EIT by solving the linearized problem with multigrid.

In the methods described above, the finest discretization at which the conductivity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

can be obtained is fixed a priori, without accounting for the measurement precision. 

Thus we may end up estimating too many degrees of freedom, making the problem 

harder than it is. For ill-posed linear inverse problems, Kaltenbacher [66] gives rules 

for choosing the finest discretization level in full multigrid (nested iteration) in such a 

way that optimal rates can be achieved for convergence of the reconstructed solution 

to the true one, when the noise level 5 in the data tends to zero. Kaltenbacher and 

Schicho [67] extended this multigrid method to non-linear inverse problems. Numeri­

cal results have been reported for ground water filtration [66, 67] (an inverse problem 

close in formulation to EIT) and an electromagnetic inverse problem [68].

Ascher and Haber [6] have an indirect approach to stabilize inversion with a coarser 

grid: they estimate the regularization parameter in an output least squares type 

functional on a coarse grid, to use it later for fine grid computations.

We remark that none of the methods above explicitly discretizes the conductivity 

with more degrees of freedom where they are needed the most (i.e. the boundary in 

EIT), which is what the following methods do.

Grid refinement

Grid refinement strategies could also be classified as multilevel methods. The main 

idea is to reconstruct the conductivity on a coarse grid, and then use information 

about the obtained solution to refine the grid locally.

Ben Ameur et al. [15, 14] propose a grid refinement method for estimating the hy­

draulic transmissivity in groundwater filtration. They represent the hydraulic trans­

missivity (akin to the conductivity in EIT) as a piecewise constant function that is 

supposed to take a limited number of distinct and unknown values. Then they in­

troduce refinement and coarsening indicators that give the first order effect on an 

output least squares type functional of adding or removing degrees of freedom to a
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given discretization. Numerical results are presented in [15, 14].

A simple grid refinement strategy for the conductivity in EIT was adopted by 

Molinari et al. [87, 86]. First the conductivity is computed on a coarse grid, then the 

grid is refined where the conductivity is steep (|Ver| large), and the new grid is used 

for reconstructions. Numerically, this method gives visually good results for piecewise 

constant conductivities, but the rationale behind it needs to be further investigated.
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C hapter 2 

A consisten t fin ite difference approach to  an  

inverse spectral problem

Our main contribution in this Chapter is to improve a finite differences based re­

construction method [19, 20] for finding an unknown coefficient function in a Sturm- 

Liouville problem from information about the spectrum of the differential operator. 

This so-called inverse Sturm-Liouville problem is a well-known inverse spectral prob­

lem and we dedicate Section 2.1 to reviewing classic theoretical results as well as 

reconstruction methods. We concentrate our review on inversion methods that first 

discretize the Sturm-Liouville problem with e.g. finite differences and then estimate 

the unknown coefficient by solving a discrete inverse eigenvalue problem. Unfortu­

nately, there are fundamental discrepancies in the spectral asymptotics of the contin­

uum differential operator and its finite differences discretization. Thus the solution 

to the discrete inverse eigenvalue problem often does not approximate well the true 

continuum solution.

The inversion method [19, 20] that we review in Section 2.2 overcomes this dif­

ficulty by solving the inverse eigenvalue problem for a Jacobi matrix that can be 

assimilated to Kirchhoff’s matrix for a resistor network, where the resistors are in 

some sense averages of the unknown coefficient over grid cells. Then to estimate the
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unknown coefficient, the averages are interpreted on a grid that is determined a pri­

ori to give exact reconstructions for a reference coefficient function. Convergence of 

this simple procedure to the true solution as the number of measurements increases 

is established in [20], but we are interested in the realistic case where only a finite 

amount of data is available.

To improve upon the method of Section 2.2, we start in Section 2.3 with a sensitiv­

ity analysis of its reconstructions to small perturbations in the unknown coefficient. 

Then we use this extra information to define a Newton like iterative method in Sec­

tion 2.4. The novelty of our approach is to view the inversion method of Section 2.2 

as a non-linear transformation of the data that preconditions the iterations and helps 

with the convergence. In addition, this iterative procedure enables us to introduce 

a priori information about the conductivity by simply adding a correction in the 

orthogonal complement of the sensitivity functions.

2.1 T h e inverse sp ectra l prob lem  and its  link  to  EIT

Inverse spectral problems guide us in developing reconstruction methods for the Elec­

trical Impedance Tomography problem, as we see in Chapter 3. Therefore we con­

nect the EIT problem for layered media to an inverse Sturm-Liouville problem in 

Section 2.1.1. Then we dedicate Section 2.1.2 to quickly review classical approaches 

to solving this and closely related inverse spectral problems.

2.1.1 A n  inverse sp ectra l p rob lem  arising in E IT  for 

layered  m ed ia

Let us consider the EIT problem on the unit disk 0  C IE2, where the unknown 

conductivity is assumed to be layered (i.e. a(r,6) =  cr(r)). Rewriting the EIT
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equation (1.1) in polar coordinates and using the change of variables z — — ln(r), 

gives
i fj (  f)/)i \  3^v

ff(z )a ~ (z ^d) J +  =  °> for z > 0. (2.1)a(z) dz \  dz J 862 

At the boundary dfi, we impose to (2.1) the Neumann data (or electric current 

density) j(9) satisfying the compatibility condition JQ27r j(9)dQ =  0,

f)ll
- < 7 ( 0 )^ ( 0 ,« )= i(0 ) ,  for $ £ [0,27r). (2.2)

Then Fourier transforming (2.1) and (2.2) with respect to 6 we obtain,

8  f  BIT \
—  ( a(z )—- ( z , u )  ) -  u 2a(z)U{z,u) = 0, for z > 0,
az \  az j  (2-3)

-< 7(°)^ -(° ,w ) =  J(w),

where ui is the variable in frequency space corresponding to 9, and upper-case letters 

denote the Fourier transform of quantities that are periodically extended to E  in 6, 

for example

U(z,u) = [  u(z, 9)e~i<ved6.
JM.

To be precise, U(z,u)  is determined in (2.3) up to an additive constant that we fix 

so that U(0, 0) =  0, i.e. we fix the grounding potential with u(0, 9)d9 =  0.

The action of the Neumann-to-Dirichlet map A ^ tD on the current density j{6) is

( A =  «(0;0)  =  i -  f
where F a(u>) is known as the impedance function. For layered media, this function 

completely determines the NtD map. Thus the EIT problem for layered media is 

equivalent to finding the conductivity a given the impedance function F a{uS).
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The inverse spectral problem

We now relate (2.3) to the inverse spectral problem that will occupy us in this Chapter. 

Clearly, the bounded solution to (2.3) decays exponentially in 2 so, for all practical 

purposes, we can simplify the problem by truncating the domain to z £ [0, Z], Z  < 00 

and setting the boundary condition U(Z, u)  =  0. After the rescaling z /Z ,  we may set 

the domain to be [0,1]. After these modifications and by a slight abuse of notation 

we also call the new impedance function F a{u>) =  u(0;tu), where v(z;cu) solves the 

Sturm-Liouville problem

Let be the eigenvalues of the differential operator in (2.4) sorted in

where the norm is induced by the weighted inner product,

( f ,g )a = [  <r(z)f(z)g(z)dz, for arbitrary f , g  e  L2([0,1]). (2.5)

The inverse spectral problem we consider consists in finding the conductivity from 

poles and residues of the impedance function (2.6). More precisely our goal is to solve 

the following inverse problem.

Problem  2.1. Image the conductivity a from the spectral data {—to2,yi(0)2}"=1.

for £ e  [0, 1],
(2.4)

decreasing order, and { y i } ^  its eigenfunctions normalized such that \\yi\\2a =  1

Then the impedance function can be expressed as a rational function,

(2 .6 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Remark 2.2. As opposed to the EIT problem that is addressed in Chapter 3, the 

inverse spectral problem is a well-posed problem. Actually by using spectral data 

directly, we elude the ill-posed analytic continuation step of finding the spectral data 

from the impedance function. Therefore in this Chapter, ill-posedness of Problem 2.1 

is not an issue. Our emphasis here is on efficient discrete methods that converge to 

the true solution. We deal with the ill-posedness of EIT (see Section 1.1.2) later in 

Section 3.2.5, when we generalize the reconstruction methods of Sections 2.2 and 2.4 

to two dimensions.

The spectral measurements of Problem 2.1 are known as truncated measure mea­

surements. Other types of measurements are conceivable, for example measurements 

based on Pade approximants of the impedance function [19, 20]. However, we con­

centrate on the truncated measure measurements.

2.1 .2  R ev iew  o f ex istin g  resu lts for inverse sp ectra l problem s

We focus our review on three aspects: uniqueness results, stability results, and re­

construction methods. Many of the results we review are for inverse Sturm-Liouville 

problems that are equivalent to Problem 2,1 through well-known transformations, 

when the coefficients are smooth enough. For example, with q ~  {\fa)"/ \ fa  the 

differential operator
d2u . . _

L u  =  - ^ ~ q (z )u > (2 '7)

with boundary conditions u'(0) =  it(l) =  0, has eigenvalues —cof and eigenfunctions 

m =  yfoyi, where the —u f  and yt are the eigenvalues and associated eigenfunctions 

of the differential operator in (2.4). Therefore the inverse problem of finding the 

coefficient q from spectral data of L is essentially equivalent to Problem 2.1.1 The

Mo be precise, equivalence holds only if <r(0) and cr'(0) are given.
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operator in (2.7) is said to be in Liouville normal form. For in depth reviews of this 

and other related inverse Sturm-Liouville problems we refer to e.g. Dym and McKean 

[49], Poschel and Trubowitz [94], McLaughlin [84], Levitan [75] or Rundell in [25].

Uniqueness results

Some of the earliest uniqueness results for inverse Sturm-Liouville problems are due 

to Borg [21], Levinson [74], Marcenko [81], and Gel'fand and Levitan [53]. In general, 

the eigenvalues of (2.4) alone are not enough information to determine the unknown 

coefficient. Additional spectral information is needed, such as the eigenvalues of the 

operator under different boundary conditions. For a survey of the different data sets 

that give uniqueness, see for example Rundell in [25] or McLaughlin [84], The spectral 

data we use for Problem 2.1 gives uniqueness as is shown by Coleman and McLaughlin 

[32], who refer to the y»(0)2 as “norming constants” for the eigenfunctions.

Stability results

It is known that inverse Sturm-Liouville problems such as Problem 2.1, are stable 

problems. This means that one can derive bounds for the norm of small perturbations 

of the unknown coefficient (e.g. the conductivity a for Problem 2.1, or the function 

q in the Liouville normal form (2.7)) in terms of the norm of perturbations in the 

spectral data. Examples of such bounds can be found in [61, 85] for the spectral 

problem in Liouville normal form. Hochstadt [61] gives bounds for the L°° norm of 

perturbations in the function q of (2.7) arising from small perturbations in finitely 

many eigenvalues. For the same problem, McLaughlin [85] bounds the L2 norm of 

perturbations in q with the i 2 norm of spectral data perturbations.

For Problem 2.1 with a different type of spectral data, McLaughlin [85] gives 

bounds for the L°° norm of perturbations in the conductivity in terms of the £°° norm
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of perturbations in the spectral data. See Remark 2.2 to contrast this well-posedness 

result with the exponential instability of the EIT problem.

Finally we point to the recent review of stability results for inverse Sturm-Liouville 

problems by M arietta and Weikard [82]. Additionally, they answer the question of 

stability when only finitely many Dirichlet-Dirichlet and Dirichlet-Neumann eigen­

values of (2.7) are known to within a certain precision [82]. This is an important 

question that arises in any numerical reconstruction method.

R econstruction m ethods

The celebrated GelTand and Levitan [53] uniqueness proof is constructive because it 

leads to an integral equation that can be used to recover the unknown coefficient. 

Symes [109] exhibited the equivalence between the Gelfand-Levitan inverse spectral 

problem and a coefficient determination problem for a hyperbolic differential equation, 

thus giving a physical interpretation (with the wave equation) of the Gelfand-Levitan 

integral equation. Other reconstruction techniques that are based on similar integral 

equation formulations of the inverse Sturm-Liouville problem are those of Rundell 

and Sacks [95] and Coleman and McLaughlin [32].

When only a finite amount of spectral data is available, Hald [59] approximates 

the unknown q in the Liouville normal form (2.7) by solving finitely many non-linear 

equations coming from the Rayleigh-Ritz quotient, and proves a local convergence 

result for his method.2 Non-linear equation and optimization techniques can also be 

used to find a function q matching the known spectral data [98, 13, 77].

Another way of solving inverse Sturm-Liouville problems is by approximating 

the differential operator with finite differences or finite elements, and then solving a 

(discrete) inverse eigenvalue problem (see e.g. the recent book by Chu and Golub [31]).

2W ith restrictions on a certain norm of the unknown q.
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Such an approach is useless since on an ad-hoc (e.g. uniform) grid, the discrete and 

continuum differential operators have different asymptotics [31, pl9]. To compensate 

for these discrepancies, the so-called asymptotic correction methods (see e.g. the 

recent review by Andrew [5]) add terms to the spectral data, resulting in a significant 

improvement in the accuracy of the reconstructions.

However, it is not always true that the asymptotics of the discrete and continuum 

differential operators differ; actually the discrepancy is an artifact of the choice of the 

grid used to discretize the differential operator. Indeed, one can choose a grid such 

that the discrete difference operator has the right asymptotics. This is the basic idea 

of the optimal grid method [19, 20] that we describe next.

2.2 O p tim al grids for th e  inverse sp ectra l prob lem

The method we propose in Section 2.4 is based on the inversion scheme of Borcea, 

Druskin and Knizhnerman [19, 20] which we review here. Their method relies on a re­

duced model of the differential equation (2.4). The reduced model dictates a discrete 

difference operator that is uniquely recoverable from the spectral data. The conduc­

tivity can then be estimated from the reduced model, giving reconstructions that 

are guaranteed to converge to the true conductivity as the number of measurements 

increases.

The discrete difference operator is obtained with the finite difference scheme de­

scribed in Section 2.2.1. Actually, the reduced model for equation (2.4) is a resistor 

network with resistors given by averages of the unknown conductivity. The resistors 

can be determined uniquely and efficiently from the data, as is shown in Section 2.2.2. 

Then for a given conductivity, we show in Section 2.2.3 how to find a grid on which 

by design the discrete difference operator matches the spectral data. Finally in Sec­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

tion 2.2.4, we show how to estimate averages of the unknown conductivity by using 

the grid for a known reference conductivity and state the convergence result [20]. 

Later in Section 2.4 we shall improve the reconstructions obtained with this method, 

when only a finite amount of data is available. Optimal grids were originally con­

ceived to obtain efficient forward solvers. This use is briefly reviewed in Appendix A, 

but is technically out of the scope of this Thesis.

2.2.1 T h e d iscretiza tio n  and its  re la tion  to  

th e  resistor netw ork  reduced  m odel

The Sturm-Liouville equation (2.4) is discretized on a staggered grid, with n +  1 

primary nodes Zj. and n + 1 dual nodes Zj, that are to be found as part of the inverse 

problem. The primary nodes serve to discretize the potential v, while its derivatives 

are discretized at the dual nodes. Since this is a staggered grid, primary and dual 

nodes are expected to alternate:

0 =  z0 = zi < Ti < z2 < . . .  < zn < zn < zn+1. (2.8)

Let Vi be the approximation of v{zi\zo). Discretizing (2.4) on this grid gives,

7i
l_

7i

Vj+l ~  Vi _  Vi -  Vi - l  

7* 7*-1
V2 -  Vi

7i
+ 1

oj Vi =  0, i = 2, . . .  n,
(2.9)

-  u  vi = 0, vn+1 = 0,

where 7$ and % are essentially harmonic and algebraic averages over grid cells of the 

conductivity a,

7i = 7T = /  —7-t , and % = hiUi -  /  a(z)dz. (2.10)
<7i J Zi 0 { Z )  J z i - i
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In linear system form, the discretization (2.9) can be rewritten as

( L - w 2I)v = - i - e 1; (2.11)
7i

where I is the n  x n  identity matrix, v =  (vi, • • • , vn)T , ei is the first canonical basis 

vector of Rn and L is the tridiagonal n  x n  matrix, with entries

where 5i}j denotes the Kronecker delta.

Properties o f the discrete differential operator

We collect the spectral properties of L, which are analogous to those of the continuum 

problem (2.4), in the following Lemma.

Lemma 2.3. The matrix L is diagonalizable with LY = Y D , such that

i. The eigenvalues are simple and real so that D =  diag (— . . . ,  — (v^n) with

ii. The matrix Y  o f eigenvectors is orthonormal with respect to the weighted inner

8j,i + —— 2, i — 1 and 1 < j  < n,

1 < i < n  and 1 < j  < n

(2 . 12)

~u\,n > ■> -W j .

product (a, b)~ =  Y^p=i % apbP> f or a  ̂a , b £ Rn.

Proof. Notice the matrix L is similar to a Jacobi matrix4

L =  diag(711/2, . . . , 7; /2) L diag (7, 1,2, . . .  , % 1/2). (2.13)

3Notice the similarity to the continuum weighted inner product (•, •)a in (2.5).
4A Jacobi m atrix is a tridiagonal, real and symmetric m atrix with positive off-diagonal elements 

[30, 110, 39]
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A straightforward calculation reveals that the eigenvalues of L are negative since for 

any nonzero v g R " ,

2 /  \ 2 

v r L v  =  -  V  ( - % =  +  - S ± L =  ) < 0 .
7n7n y  V 7 i 7 i  V 7 i + i7 i /

The eigenvalues of L are simple because L is a Jacobi matrix. Finally the orthogonal­

ity of the eigenvectors of L in the weighted inner product follows from the symmetry 

of L. □

Using Lemma 2.3, we can define an impedance function F ° ( lv) for (2.11) that as 

the continuum impedance function (2.6), is a rational function

J=1 3,™

Remark 2.4. When e.g. the first n poles and residues of the discrete impedance 

function (2.14) match those of the continuum impedance (2.6), the discrete impedance 

converges to the true impedance as n —> oo. Thus the finite difference scheme can be 

seen as a reduced model of the continuum problem (2.4), where the reduced model 

parameters are 7,, %. The quality of the approximation greatly depends on the choice 

of the poles and residues in the discrete impedance. For example, the approximation is 

greatly improved if the discrete impedance is chosen to be a Pade-Chebyshev rational 

approximant of the true impedance [45].

The finite difference schem e as a resistor network

Alternatively, the finite difference scheme (2.11) with n  nodes can be derived from a 

finite volumes discretization of the EIT equation (1.1) on the unit disk with the layered 

conductivity ln(r)). Here we only sketch the discretization, since it is discussed in
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fi =  rx =  1

Figure 2.1: Preview of the finite volumes discretization of Chapter 3. The control 
volumes are in dotted lines and the underlying resistor network is in solid line. Since 
the conductivity cr{— ln(r)) is layered, the network can be obtained by rotating the 
pattern of resistors highlighted in gray about the origin.

more detail in Section 3.1. Roughly speaking, the discretization is done on a staggered 

grid that is the tensor product of a uniform grid in the angular direction and of a grid 

in the radial direction, with radii given by rt = exp(—2;) and rt = exp(—%). In the 

notation of Section 3.1, the discretization is of type Q(2n, An +  1), and an example is 

given in Figure 2.1.5

As we explain in Remark 3.1, the resulting discrete operator is precisely Kirchhoff’s 

matrix for a resistor network of type C(2n,An + 1) (to be defined in Section 3.2.2) 

with resistors R itj, RjJ+i/2- Here the index i is associated with the radial direction 

and j  with the angular direction. Since the medium is layered, we can drop the 

dependence on the angular parameter j  and use Ri, Ri instead, which are also depicted 

in Figure 2.1.

We arrive to the difference scheme (2.11) from the resistor network by taking 

a discrete Fourier transform. The process is analogous to going from the 2D EIT

5The number An +  1 of radii in the network is chosen so th a t the network is uniquely recover­
able from electrical measurements at the boundary (see Section 3.2.2). To eliminate the clutter in 
Figure 2.1, we reduced the number of radii tha t are represented.
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equation for layered media to the Sturm-Liouville equation (2.4), in Section 2.1.1. 

The end result is that the 7i ,7i we encountered in (2.11) are given in terms of the 

resistor in the network by
h2

% =  -4- and 7* =  Ri,
Ri

where he = 2 ^ / (An +  1). This justifies the “resistor” name for the reduced model 

parameters 7^,7,. We shall see in the next Section that the 7^,7* are determined 

uniquely by the spectral data of Problem 2.1.6

2.2 .2  T h e inverse p rob lem  for th e  resistor netw ork

The discrete (2.14) and continuum (2.6) impedance functions are both rational func­

tions of uj2, with poles and residues determined by the eigenvalues and eigenfunctions 

of the differential operator in (2.4) and the matrix L in (2.11). Therefore, we can 

determine the discrete operator L and, implicitly, the resistor network which is our 

reduced model, by solving a rational approximation problem for the impedance func­

tion. How this is done, depends on what measurements we have. Recall the spectral 

measurements of Problem 2.1 consist of the first n  poles and residues of the continuum 

impedance, therefore we seek a discrete operator with spectrum

-  ^In = -V i  and (Ti,i)2 =  (Vi(0))2, for i = 1 , . . . ,  n. (2.15)

With this choice, the convergence of the discrete impedance function (2.14) to the 

true impedance (2.6) is guaranteed with the algebraic rate: F°(uj) — F a(co) =  0 ( l / n ) .  

Exponential convergence rates can be achieved when the discrete operator is chosen 

such that the discrete impedance is a Pade approximant of the true impedance [45, 19].

®The same conclusion can be reached by using graph theory (see Section 3.3.1), spectral functions 
of beaded strings [64] and complex analysis [64].
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Solving the Jacobi Inverse Eigenvalue Problem

Now let us shift our attention to finding the matrix L from the spectral data (2.15). 

Equivalently, we can find the Jacobi matrix L from the spectral data (see Lemma 2.3). 

This is known as the Jacobi Inverse Eigenvalue Problem (JIEP) [39, 16, 29, 30, 31].

Once we know L, we have solved the inverse problem for the resistor network since 

the resistors 7i ,7i follow immediately from (2.12) and (2.13). Additionally, it can be 

proved that there is a one-to-one correspondence between the spectral data and the 

resistors (see e.g. [39]). The JIEP can be solved efficiently by for example, Stieltjes’s 

method [101, 102] or Lanczos’s method [30, 110, 39]. Here we limit the discussion to 

the latter, because it is the method we use in the numerics.

Let us denote the entries of the Jacobi matrix L as follows,

Li,i = cti, for i =  1, . . . ,  n, and Li+lij =  /%, for i =  1, . . . ,  n  — 1, (2.16)

and let Q be an orthonormal matrix of eigenvectors of L. Then we have

LQ =  QD, (2.17)

where D =  diag (—uf,  —u>2 , ' ' '  ; ~ u,n) is given as data for the inverse problem. The 

other available data are the quantities (Pm)2, which define the vector qi =  Q r ei 

since from (2.13) and because Q is orthonormal we get

„ T  Y T e ,
q i  —  Q  e .

l | Y T e 1||2

Then to find cq, • • • , a n and j3\, ■ ■ ■ , /?n-i> equate the rows in LQ =  QD to obtain

Dq; =  A -iq»-i +  aiCfi +  Aqi+1 ,
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for i = 1 • • -n — 1, and with f30q0 = 0. Then recurrence relations for a j, $ ,  and 

qi+i follow. One note of caution: in floating point arithmetic the unmodified Lanc- 

zos recurrence gives an eigenvector matrix Q with poor orthogonality. This can be 

fixed by reorthogonalizing, and we do it in our implementation. For more details on 

reorthogonalization see e.g. [55, §9.2.3],

2.2.3  O p tim al grid  con stru ction

Let us assume for the moment that the conductivity a is given. The idea here is to de­

termine grid points such that when we discretize equation (2.4) with finite differences 

as in Section 2.2.1, we get an exact matching of the spectral measurements. This is 

possible because the resistors 7i ,7i can be computed from the spectral measurements 

(2.15) by solving the JIEP. Moreover from (2.10), the resistors are averages of a on a 

grid that can be recovered using e.g. a non-linear equation solver.

Algorithm  2.5. Inputs: Conductivity a  and resistors {7j , 7j}”=i- Outputs: Grid 

nodes {zj+1,Zj}^=0.

i. Set zq = Z\ = 0.

ii. For j  =  1, . . .  ,n,  find Zj and Zj+1 (recall (2.10)) such that,

The grid nodes are defined uniquely by the above relations because a is positive,

bounded above and below, so that the functions f *  a(s)ds and / f((cr(.s)) Lds are 

monotonically increasing.

In general, it is not known if the optimal grid for a is properly speaking a grid.
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/ Q\ *  X> X> X> ><P xo XO XO x o  x  o X ol
W  0 z = l

/VA KKOXOX o x o x o x o x o x  o x  *
W  0 z = l

Figure 2.2: Grids obtained by approximating the impedance function F a(u>) for 
a = 1 with: (a) largest 10 poles and residues (see (2.15)) and (b) Pade-Chebyshev 
interpolant with 10 poles and residues. Primary nodes are (o), and dual nodes (x).

In particular, the question of interleaving of primary and dual nodes

0  =  z 0 =  Z i  < Z i  <  Z2 <  . . . <  Zn  < Z n  <  Zn + 1 ,

has not been proved for the general case, but it has been observed in all numerical 

experiments. Also, the grid is known to fill the space [19], meaning that grid nodes 

are dense in [0,1] as n —» oo. For the homogeneous medium (a = 1) and with the 

spectral measurements (2.15), an explicit expression of the grid is known [20]. For 

other smooth enough conductivities, the grid for a is asymptotically close to the grid 

for cr° =  1 when n —> oo [20].

We show in Figure 2.2 the optimal grid for the homogeneous medium for different 

spectral measurements, to illustrate that the grid depends strongly on the type of 

spectral measurements used. Notice that the last primary node zn+i is not located 

at z = 1. However, we have zn+i —> 1 as n —> oo with the same rate as that of the 

convergence of the discrete impedance function to the true impedance [19].

2.2 .4  T h e inverse prob lem  for th e  co n d u ctiv ity

As we saw in the previous Section, if we knew the optimal grid for a and the resistors 

7i,7i, then we would be able to compute exactly the averages defined in (2.10). 

Obviously, this is not a viable inversion method, since the optimal grid depends on
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the unknown conductivity a.

Fortunately, it has been shown in [20] that the grid constructed in Section 2.2.3 

depends weakly on the conductivity, meaning that changes in the conductivity do 

not change significantly the grid.7 So we can interpret the averages (2.10) on a 

grid precomputed for a reference conductivity <7° ,  that is “sufficiently similar” to 

the unknown conductivity a. For the spectral measurements8 (2.15), this inversion 

procedure is summarized in Algorithm 2.6.

A lgorithm  2.6. Inputs: {—of, (yi(0))2}”=1 (spectral data (2.15)). Outputs: {ep, cfi}]Li 

(approximate averages of a).

i. Calculate the grid z®,z^ for <j° =  1 using Algorithm 2.5.

ii. Find 7;, 7; from the spectral data (2.15) by solving the JIEP with e.g. Lanczos 

method.

iii. Obtain the approximate averages a^ai  by substituting the grid z(-, zf, and the 

resistors 7^,7) into (2.10), i.e.

1y. Z9 1 — 2:9
ai = ^o— and &i — —  L, for 1 < i < n.z" -  7i

Algorithm 2.6 was originally proposed by Borcea and Druskin [19] and is a com­

putationally cheap 0 ( n 2) inversion scheme, since the bulk of the work is in finding 

the resistors 7^,71 from the spectral measurements. Moreover, Algorithm 2.6 has 

been proved to give reconstructions that converge to the true conductivity a, under

7A more precise definition of the weak dependence of the grid on the conductivity is given in 
Corollary 6.2 in [20].

8By considering other types of spectral measurements (e.g. Pade-Chebyshev approximations of 
the continuum impedance [19]), reconstructions of smooth conductivities with Algorithm 2.6 can be 
improved. However, the only convergence result available [20] is for the measurements (2.15).
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regularity assumptions on a and as the number of spectral measurements increases 

[20]. The next theorem is a simplified version of the convergence result in [20].

Theorem  2.7 ([20]). Suppose a € S, where S  is some compact set in Z/1 [0,1] 

(resp. in L°°[0,1]) o f conductivities containing <r° =  1. Let {—(wi)2, (yi(0))2}“ 1

then a piecewise constant interpolation cdn) of the approximate averages ep, oij (ob­

tained with Algorithm 2.6) on the grid z°, z£, satisfying o^n\ z i )  = <Ji and a ^ ^ z f )  =  ch 

converges to cr(z) in L l {0,1] (resp. in Z°°[0,1\) as n  —» oo.

2.3 S en sit iv ity  an a lysis o f  th e  op tim al grid inversion

In this Section we determine how the reconstructions of Algorithm 2.6 are affected 

by small perturbations in the conductivity. In other words, we make a sensitivity 

analysis of the mapping that takes us from the conductivity to the spectral data, and 

then to the reconstructions of Algorithm 2.6. We make this linearization with an eye 

on Section 2.4, where the derivatives are used in a Newton-like method to improve 

the reconstructions.

We break up the analysis in the following natural steps, that can be easily pieced 

together using the chain rule. First in Section 2.3.1 we review explicit sensitivity 

formulas [20, 47] for the Jacobi Inverse Eigenvalue Problem (or JIEP, used in Algo­

rithm 2.6 to compute the reduced model from the spectral data, see Section 2.2.2). 

Then in Section 2.3.2 we analyze the sensitivity of the spectral data of Problem 2.1 

with respect to changes in the conductivity. Finally we collect in Section 2.3.3 in­

and {—(wf)2, (^(O))2}?^ be the spectral data for a and cr° respectively. I f  there is a 

constant a  > 0  such that,

and
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teresting properties of the complete conductivity-to-reconstructions of Algorithm 2.6 

mapping.

2.3.1 S en sit iv ity  o f  th e  Jacob i Inverse E igenvalue P rob lem

The first evidence of continuous dependence of the Jacobi matrix with respect to its 

eigenvalues is due to Hochstadt [60], which was followed by the sensitivity bounds of 

Hald [58]. Since the JIEP can be solved by Lanczos method (see e.g. Section 2.2.2), 

bounds can also be obtained from the perturbation analysis for Lanczos recurrences of 

Greenbaum [56]. Here we review the recent analysis of Borcea, Druskin and Knizh- 

nerman [20, 47], who use a discrete Gelfand-Levitan theory [90] to derive explicit 

formulas for the sensitivity of the Jacobi matrix to its spectrum.

Let T° £ RnXn be a symmetric tridiagonal matrix with positive entries, i.e. a 

Jacobi matrix. Let Q° =  [q1; q2, . . . ,  qn] be an orthonormal matrix of eigenvectors of 

T°, and A9, . . . ,  A9, the corresponding eigenvalues.9 Then we have

T°Q° =  Q°D°,

where D° =  diag (A°, • • • , A9).

Recall from Section 2.2.2 that the entries of T° can be uniquely recovered from 

the spectral data efQ ° and D°. Now, let us define the perturbed spectral data 

D = D° +  <5D and e fQ  =  efQ ° +  e f  SQ corresponding to the perturbed matrix 

T  =  T° +  JT. Our convention is to write reference unperturbed quantities with a 

superscript 0 and perturbed quantities without a superscript. The letter S stands for 

small perturbations.

As in (2.16), the a i , . . . , a „  are the diagonal entries of a Jacobi matrix T, and the

9This notation for the eigenvalues is meant to simplify the — (w]lin)2 notation of Lemma 2.3.
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,/3n_i its off-diagonal entries. Furthermore, we use a vector notation for the 

spectral data: r) = QTe\ and A =  (Ai, . . . ,  An)T.

Before stating the results of [47] in Lemma 2.8, let us introduce vectors a G l "  and 

b € En_1, that are in some sense discrete primitives of 5aj and of 5(3j. Specifically 

they are defined by

Sai S h / f t

Soil +  Sex 2
and b =

W i l f t  +  S / h / f l
(2.19)

£ U 6as.

Once we know the expressions for a and b, the perturbations of the entries of the 

matrix T arising from perturbations in the spectrum follow. Indeed we have 5ot\ =  a\ , 

5(51 =  ffibi and ha* =  a* -  a*_i, 5Pi =  i), for i =  2, . . . ,  n.

Lemma 2.8 (Druskin, Borcea, and Knizhnerman [47]). The sensitivity of the entries 

of a Jacobi matrix to small perturbations 5rj and 5A in the spectrum can be written 

in terms of the “discrete prim itives” a and b of 5aj and of5Pj  respectively (2.19):

a =  A^hA +  A v5rj, and b =  B*<5A +  B ̂ 77,

where A \ ,  A v G ]Rn x ” and B a , B ^  G R " _1x” . The entries o f the matrices A \  and A v 

are given fo r i = 1 , . . . ,  n  — 1 and j  =  1 , . . . ,  n by,

n  1

A'l = 1 + fit 5 7  V V
p . .
pjj

2  Q l Q h t  -  1 ,  +  Q h P Q l , ) A *  =  1,J A

= 2 P\ Qi+ljQii 
Q°ij

(2 .20)
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The entries of the matrices B* and are for i =  1, . . . , n  — 1 and j  =  1 ,n,

n 1 r n 0
p>ij _  1 //no \ 2 _ _i£n° O0/  y \0 \0 V^i+lp/ <nO ^J+lp^*+li

0=1 X3 A P -p=i A° -  A°
(2 .21 )

( ^ y ) 2
Q°uj

2.3 .2  S en sit iv ity  o f  th e  sp ectru m  to  th e  co n d u ctiv ity

Now we perform a linearization study of the Sturm-Liouville problem (2.4) we de­

scribed in Section 2.1.1. Let cr° be the reference conductivity. Recall from Sec­

tion 2.1.1 that y^.{z) are the normalized (with respect to the weighted inner product 

(2.5)) eigenfunctions of (2.4). The associated eigenvalues are denoted by A°.10

Let 5a be a small perturbation of cr°, the perturbed conductivity is a — aQjr5a. We 

additionally assume that <5cr(0) =  0, which is equivalent to knowing cr(0), but this can 

be relaxed. We denote by +  5\k and yk = y® +  5yk the perturbed eigenvalues

and associated eigenfunctions. We aim to find the perturbations 5yk(0) and 5Xk, in 

the linearized sense, of the residues and eigenvalues resulting from the perturbation 

5cr of the conductivity. In other words, we are computing the Frechet derivative of the 

eigenvalues and residues to changes in the conductivity.11 We summarize the result 

in the following Lemma.

L em m a 2.9. The sensitivity of the eigenvalue A° with respect to a small perturbation 

in the conductivity a is,

- 5 X k = [  5a(z)((y°k)'(z))2dz + X°k f  5a(z)(y°k(z))2dz. (2.22)
Jo Jo

10This notation for the eigenvalues is different from the notation —{u/f)2 of Section 2.1.1.
11 The Frechet differentiability of the eigenvalues and eigenfunctions with respect to the coefficient 

function can be found in e.g. [94, 32].
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Moreover, the sensitivity of the residue yk(0) to the conductivity is given by,

Syk{0) =  -  j  5a(z)(y0k) ' ( z ) ^ G k(z, 0)dz -  X°k 5a(z)y°k(z)Gk(z, 0)dz

~ \ v m  I  5 a { z M Y ( z ) d z ,  (2.23)

where Gk(z,s) has the series expansion,

7 = 1  j  k
j¥=k

Proof. Write (2.4) with the perturbed quantities, neglect the higher-order terms and 

cancel out the 0(1)  terms, to find the differential equation satisfied by 8yk and SXk:

(a°8yky  -  X°ka°5yk = 8Xka°y°k +  A°k5ay°k -  (6a(y%)')'
(2.25)

( % ) '( 0) =  6yk( 1) =  0.

Multiply (2.25) by yk on both sides and integrate over [0,1] to obtain, after ap­

plying Green’s identity, the expression for SXk in terms of 5a.

Call /  the right-hand side in (2.25). Since the above calculation shows that 

Jo f ( s)yk(s)ds =  0, the solution to (2.25) can be found using a generalized Green’s 

function. The series expansion for the Green’s function can be constructed as in e.g. 

[33, pp. 344-346] by finding the equations satisfied by the Fourier coefficients of 5yk 

on the basis of eigenfunctions

Hence the solution to (2.25) has the form,

Syk(s) = ~ [  f ( s )G k(z, s)dz +  ckyk(s). (2.26)
Jo

The Fourier coefficient ck =  a°(z)5yk(z)yk(z)dz is entirely determined by re­
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quiring the perturbed eigenfunction yk+8yk has norm one in the norm of the perturbed 

inner product. That is,

{a°(z) +  5a(z))(y°k(z) + 8yk(z))2(z)dz = 0. (2.27)
'o

After neglecting the higher-order terms and canceling the 0(1)  terms,

Ch = l  (J°(z)8yk(z)y°k(z)dz =  - ^ £ ( 0) J  Sa(z)(y°k)2(z)dz.

Now in the integral (2.26), the orthogonality of the {yj}JL\ in the weighted inner 

product (2.5) makes the term 8Xka°yk of the right-hand side /  vanish. The final 

expression for 8yk(0) follows from integrating by parts and evaluating at s =  0. □

In the case where <7° — 1, we can sum explicitly the series of the Green’s function 

(2.24), when its second argument is zero. This is the purpose of the next Lemma.

Lem m a 2.10. The following identity for the Green’s function defined in (2.24) holds,

°° yaj ( s)y°j(0) (s -  1) sin(u;£s) cos(n;°s)
’ j _  ^ K ) 2 - K )2 " I  * H ) 2

Proof. Elementary calculations show that for a0 = 1,

urk = ix ^  and yk(z) =  \ / 2 cos(ukz).

For —oj2 not an eigenvalue of the operator the Green’s function,

  ̂ . . sin(u;(l — z)) coshns) for s < z,

sin(a;(l — s)) cos(cuz) for s > z,
OJ cos(ui)
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solves the differential equation,

d 2

8

— G{s, z) +  co2G(s, z )  =  -8{s  -  z)

QsG(0,z) = G( l , z )  = 0.

Moreover, the series expansion of this Green’s function is,

G (S’Z) 2 2 iv2 _ ^ 0)2-
]=1 J

By evaluating at z =  0 and subtracting the k —th term in the last sum, we obtain

_ ^  v°(s)y%Q) , m y M v k i °)
f e ^ 2 - K )2 1 ’ ; +  ^ - ( w g )2

_  sin(u;(l — s)) 2 cos(coks)
uj cos(w) w2 — (tu^)2'

Then the expression of Gk(s, 0) follows by taking the limit as u> —> u>k,

g t ( . , 0) =  lirn ^  -  ,S)1 +  . □(UCOSfw) UJ1 — {u'lY

From the integrals of Lemma 2.9, we can identify sensitivity functions DXk[a°}{z) 

and D(yk(0))[cr°}(z) such that,

8 \ k = (  DXk[a°](z)8a(z)dz and Syk =  f  D(yk(0))[a°](z)5a(z)dz.
J o  J o

By Lemma 2.10, one can derive analytic formulas for these sensitivity functions in 

terms of what are essentially trigonometric functions. These formulas are stated 

without proof in the next Lemma.

L em m a 2.11. The sensitivity functions for perturbations of the spectrum arising
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from perturbations of the conductivity are for a0 = 1 and with u =  n(k — 1/ 2),

2.3 .3  S en sit iv ity  o f  th e  resistors to  th e  co n d u ctiv ity

We do not delve in the details of the calculation of the sensitivities of the resistors with 

respect to the conductivity. We only note that these can be obtained explicitly with 

the chain rule from the sensitivity results of previous Sections and the relationship 

between the resistors and the entries of the Jacobi matrix (2.13). We limit ourselves 

to describing properties of the sensitivity functions that are useful later in Section 2.4.

Let the resistors corresponding to the reference conductivity a0 be 7° and 7°, 

and those for the perturbed conductivity d =  cr° +  <5cr be 7* =  7° +  dpj and = 

7i)+ (̂ 7i- Then we can compute functions D^i[a°](z) and D%[o°\{z) such that for small 

perturbations 5a of the conductivity we have the formal expansions, for i =  1, . . . ,  n,

These sensitivity functions are linear combinations of the sensitivity functions for the

We computed the latter sensitivity functions and report them in Figure 2.3.

We can gather some insight on the meaning of the sensitivity functions by recalling 

that the resistors 7, , 7i of equation (2.10) are essentially averages of the conductivity 

over the cells of the optimal grid z^%  for the perturbed conductivity a (see Sec-

D\k[a°](z) = 2{(jjQk)2 cos(2cnj)z), and 

T>(2/fc(0))[d°](z) =  y/2u°k(z -  1) sm(2uj0kz) -  -^= cos(2u%z).

(2.28)

spectrum that are discussed in Section 2.3.2. For the conductivity a0 =  1, Lemma 2.11 

entails that the functions D~ji[a°] and D%[a°] are essentially trigonometric functions.
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F igure  2.3: The sensitivity functions Wi(z) =  —ILy^er0]^ )  and uii(z) = D%[a°]{z) 
are plotted in solid line. For comparison with (respectively w*) the characteristic 
function of the optimal grid interval [2°, z°+1] (respectively [$?_!, S?]) figures in dotted 
line. Here the number of spectral measurements is n — 10 and a0 =  1.

tions 2.2.1 and 2.2.3). Linearizing at cr° the relations (2.10) gives,

fZi+1 _ S a ( s )
S7i = /  / 0( ))2ds +  ° ( S(Zi+1 -  *i)) and

1  (2-29)
674=  /  5cr(s)ds +  C>(5(Fi -  2i_i)),

where the last term in the sums accounts for changes in the grid. As is explained in 

Section 2.2.3 (see also [20]), the grid depends weakly on the conductivity therefore we 

expect the terms in (2.29) accounting for grid changes to be small. By neglecting these
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terms and extending the domain of integration to [0, 1], we obtain by identification 

the following approximations to the sensitivity functions

where X[a,b](z ) stands for the characteristic function of the interval [a, b}. We have 

observed numerically that these approximations hold, at least in some weak sense:

• The sensitivity functions are localized in some weak sense to the support of the 

box functions predicted by (2.30) (e.g. when integrating times some smooth 

function, the integrals are close). The localization stands out particularly well 

in the intervals [0, and [0, z,], as appears from the comparison done in 

Figure 2.3 for a0 = 1.

• For <7° =  1, the functions — D'fi[a°]/,yf and D%[aQ] / ^  integrate like the box 

functions of (2.30),

For J97i[cr°]/7°, the approximation above is actually an equality. The proof 

follows by using the identity 71 =  1/ )C[Li(2!i(0))2-

2.4 A  N ew to n  ty p e  itera tive  a lgorith m  for 

th e  inverse sp ectra l problem

We improve the reconstructions of Algorithm 2.6 by using the sensitivity information 

we derived earlier in Section 2.3. One way of achieving this is to seek a conductiv­

(2.30)

and
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ity that minimizes the misfit with the spectral measurements. This approach has 

been implemented before in e.g. [98, 13, 77]. Our idea is to capitalize on the fast 

inversion Algorithm 2.6 by viewing it as a non-linear transform of the spectral data. 

So instead of minimizing the misfit in the spectral data, we minimize the misfit in 

the reconstructions of Algorithm 2.6. Our method is presented in Section 2.4.1 and 

followed by numerical evidence in Section 2.4.2 that this non-linear transformation is 

beneficial to the convergence of the iterations, because it acts as a preconditioner, in 

some sense.

After the iterative procedure we have a conductivity that fits the data. To first 

order approximation, we may add to the conductivity elements of the orthogonal 

complement of the sensitivity functions without significantly changing the data fit. 

We apply this idea in Sections 2.4.3 and 2.4.4 to introduce a priori information about 

the conductivity after the data fitting.

2.4.1 T h e G a u ss-N ew to n  itera tion

Let us start by defining the mapping Tn : S  —> R2n which takes a conductivity to 

its spectral measurements and then to the reconstructions of Algorithm 2.6.12 Here 

the conductivity is assumed to belong to the set S  of positive functions. Since the 

reconstructions of Algorithm 2.6 are close to the true conductivity, the mapping Tn 

ought to be close to the identity, in some sense.

The basic idea here is to find a conductivity a* minimizing,

mi n^  | |r n(cr) -  r n(<rtrue)||2 . (2.31)

The minimization problem (2.31) is constrained to positive conductivities. We deal

12The ordering of the 2n  approximate averages <jj, to form a vector of R2n is irrelevant, as long 
as we keep the same ordering throughout.
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with this constraint by using the change of variables k =  ln(cr) (sometimes called 

“geometric programming”). To make the new mapping as close to the identity as pos­

sible, we measure the misfit in the logarithm of the reconstructions of Algorithm 2.6. 

Combining these two modifications, we substitute the minimization (2.31) by,

. 1
mm -K 2 r„(«) — r  n(Ktrue) , (2.32)

where f  =  lnoT o exp and KtrUe = ln(crtrue)•

We minimize (2.32) with the Gauss-Newton method. The Jacobian of T(«) =  

ln(r(exp(«;))) can be easily obtained with the chain rule from that of T(cr), which in 

turn is given by the analysis of Section 2.3. The Gauss-Newton iteration boils down 

to finding the update step as the minimal L? norm solution to the linearization of the 

problem around the current iterate. In equations, if K[k) is the current iterate, the 

next iterate K̂ k+1  ̂ is

K(*+i) = Kw  +  (z?r„[«(fe>])+ ( r n (Ktrue) -  rn(«W)), (2.33)

where ^ D rn[/Afc)]j is the pseudo-inverse13 of jDTn[«;^].

Because the Gauss-Newton method is local, choosing a good first iterate can 

speed up the convergence of the iterations. We take for the first iterate a smooth 

interpolation of the reconstruction given by Algorithm 2.6, which we expect to be 

close to the true conductivity. We put together the iterative method as follows.

A lgo rithm  2.12. In p u ts : Spectral measurements {(t/;(0))2, — (tUj)2}”=1 for atrUe- 

O u tp u ts : A reconstructed conductivity a*.

1. Compute =  ln(cd°)), where cd°) is a smooth interpolation of the averages eq, <7j

13The pseudo-inverse, also called the Moore-Penrose generalized inverse, can be defined in the 
context of Hilbert spaces. See e.g. [50, §2].
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obtained by Algorithm 2.6 from the measurements {(yj(0))2, — (cuj)2}”=1.

2. For k =  0,1, . . .  do,

(a) K(k+i) <_ K(fc) +  ( f n(Ktrue) -  f„(/Afc)))

(b) If | f n(«;(fe+1)) -  f n(Ktrue)

3. c* <— exp(/Afe+1)).

< e, stop.
2

2.4 .2  N u m erica l resu lts for th e  G a u ss-N ew to n  iteration

N um erical ap p ro x im a tio n  of th e  Jaco b ian

We represent the conductivity by pointwise values on a uniform grid with N  =  100 

points. On the same grid as the conductivity, we need the values of the sensitiv­

ity functions for the spectrum to perturbations in the conductivity. According to 

Lemma 2.9, to construct these sensitivity functions we do not only require the eigen­

functions of the differential operator in (2.4) and the Green’s functions (2.24), we also 

need their derivatives (on the same grid as the conductivity). However, we use the 

finite difference discretization of Section 2.2.1 which only approximates the values of 

these functions on the primary grid nodes. A quick fix is to work on a finer uniform 

grid with 2N  primary nodes, which allows us to approximate the derivatives using 

central finite differences. Moreover, to approximate the Green’s functions (2.24) we 

need to sum over all the 2N  available eigenfunctions to obtain a good agreement with 

the exact formulas of Lemma 2.10. The values of the conductivity at the nodes where 

it is not defined are found by spline interpolation. Finally we note that most of the 

spectrum calculations are done with the Fortran 90 code of Knizhnerman [45].
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Im p lem en ta tio n  of th e  G auss-N ew ton  a lg o rith m

In our numerics, the number of spectral measurements 2n  is much smaller than the 

number of parameters N  used to discretize the log-conductivity k . Thus the Gauss- 

Newton update (2.33) can be efficiently computed via the identity,

(DTn[ ^ } y  =  DY*n[ ^ }  ( D f n[«(fc)]D f ;[« W ])+. (2.34)

Furthermore, we observed that for the conductivities we considered, the Jacobian 

DYn[ n is full-rank to working precision and well-conditioned, so that the relatively 

small 2n x 2n  matrix DYn[K^]DY^[k^ ]  is invertible and the pseudo-inverse in (2.34) 

could be replaced by the inverse.

Since we assume all along that «(0) =  0 is known (since <r(0) =  1), it is desirable 

for the update that Sk(0) =  0. However there is no guarantee that this is respected, 

due to the space of functions where we look for the update 8 k , namely the span of 

the sensitivity functions (the “columns” of D Y ^ k^ } )  . In fact numerically we have 

Dji[a° ~  1](0) «  —1 and Z?7i[<7° = 1](0) «  1. We remedy this by looking for the

update in the span of the sensitivity functions, shifted by a constant function such

that they are zero at z — 0. This amounts to replacing all the occurrences of the

adjoint in the identity (2.34) by its shifted version.

Note that Rundell in [25, p i 17] recommends to not compute the spectrum of the 

differential operator of (2.4) as part of an inversion method, simply because there 

are inversion methods at least an order of magnitude faster than that. Our method 

does require the computation of the spectrum (and eigenfunctions), of a tridiagonal 

matrix of size 2N  x 2N.  This is a relatively inexpensive operation that does not need 

to be carried out many times since the number of iterations to convergence has always 

been small in our results. Conceivably, one could use a “fixed” or “frozen” Newton’s
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method, i.e. use the Jacobian at the first iterate for all the iterations. However, we 

were not urged to try the modification, considering that with N  =  100 an iteration 

took less than 2 seconds on a PowerPC G4 1GHz, 1GB RAM computer.

T h e  ite ra tio n s

We implemented the method and give a typical convergence history in Figure 2.4. 

Sample reconstructions for piecewise continuous conductivities inspired by [95] are 

included in Figure 2.5. All our reconstructions are based on synthetic spectral mea­

surements generated on a uniform grid with N  — 500 primary points. This grid is 

different from the one used for the conductivity reconstructions to avoid committing 

an inverse crime.

An indication that (2.32) is relatively easy to minimize is that it is not necessary 

to limit the size of the update (2.33) to converge. In optimization this is known as 

a globalization strategy (examples are line search or trust region methods) and it is 

usually built in the method to ensure global convergence.

We also note that numerical convergence is achieved in very few steps, with the 

largest update occurring at the first iteration. Moreover, we observed Gibb’s like 

phenomena close to the discontinuity points of the true conductivity. This would 

be expected if we had sought the update in the span of the sensitivity functions 

for <x°, since then the sensitivity functions are essentially trigonometric functions 

(Lemma 2.11).

A p reco n d itio n in g  of th e  G auss-N ew ton  ite ra tio n ?

Finally we compare the condition number14 of the Jacobian £>rn[cr] to that of the

sensitivity functions of the spectrum to changes in the conductivity (Section 2.3.2).

14The condition number of a matrix (not necessarily square) is defined as the ratio of the largest 
singular value to the smallest one.
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We recall that both functions span the same space, however it appears from the com­

parison of Figure 2.6 that the basis we use in our method is by far better conditioned, 

and does not increase significantly with the number of spectral measurements.

We should be careful to draw conclusions on a non-linear problem from its lin­

earization. Indeed, there are examples of non-linear problems that are ill-posed but 

have well-posed linearizations and vice-versa [50, §10.1].
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(a) initial guess cb°), residual=4.48e-01 (b) iterate e^1), residual=2.04e-02
3,5

3.5

2.5

2.5

0.5 0.5

0.4 0.60.210.2 0.4

(c) iterate residual=1.18e-04 (d) iterate residual=8.33e-09
3.53.5

2.52.5

0.50.5

0.40.8 0.20.2 0.4 1

Figure 2.4: Convergence history for Algorithm 2.12 on a piecewise constant con­
ductivity (dotted line) for n — 7 spectral measurements. Algorithm 2.6 gives the 
values indicated by (o) and (*) at the primary and dual grid points, respectively. The 
initial guess (a) is a smooth interpolation of these values. The reported residual is 
the log-resistor misfit ||Tn(ln(cr)) — r ri(ln(crtr.Ue))Ill-
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(a) residual=8.33e-09 (b) residual=8.73e-09
3.53.5

2.5
2.5

II

0.5

0.5, 0.4 0.61 0.20.2 0.4

(c) residual=1.50e-06 (d) residual=1.13e-07
3.53.5

2.5
2.5

r—H

0.5

0.5, 0.40.20.2 0.4

Figure 2.5: More reconstruction examples for Algorithm 2.12 with different con­
ductivities and number of spectral measurements n. We show the third iterate and 
report the residual | |r n(ln(<7(3))) -  Tn(\n(atrue))\\l. Algorithm 2.6 gives the values 
indicated by (o) and (*) at the primary and dual grid points, respectively. The true 
conductivity appears in dotted line.
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10° I-------■------ 1------ 1------ 1------ 1------ 1------ '------ 1------ 1
5 10 15 20 25 30 35 40 45 50

n

Figure 2.6: Conditioning of the Jacobian DYn[a\ (solid lines) and of the sensitivities 
of the spectrum to changes in the conductivity (dotted lines) for different conductiv­
ities, which are: constant (□), piecewise constant (x ) and piecewise linear (+). The 
sensitivities are discretized on a uniform grid with N  =  200 primary nodes.
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2.4 .3  In trod u cin g  a priori in form ation

Assume we have some a priori information about the true solution, in the form of 

some penalty functional J(a)  that measures how far a is from the desired prior. For 

example, if we know somehow that the true conductivity is piecewise constant, we 

can look specifically for conductivities with small total variation, i.e. that minimize 

J(a)  =  TV(cr).

Recall from the numerics of Section 2.4.2 that the Gauss-Newton iteration con­

verges fast. Actually, the largest correction happens during the first iteration. In 

subsequent iterations, the data fit is improved but the reconstruction does not change 

significantly. Let us then stop the iterations after the first iterate. Equivalently we 

find the minimal L 2 norm solution k l s  to the linearized inverse problem,

DTn[K^}(KLS -  «(°>) =  r n( « w )  -  f n(«(0)). (2.35)

The basic idea of our method is to find a conductivity that minimizes the penalty 

functional while fitting the data. We relax the data fitting requirement by asking 

that it holds only in the linearized sense. To be precise, we seek a conductivity 

k that minimizes the penalty functional and has the form k  =  k l s  + 5 k , with 5 k  e 

null ( j9 rn[fv(°)]). Therefore, we view the introduction of a priori information as adding 

a correction in the orthogonal complement of the sensitivity functions. We look for a 

minimizer of the linearly constrained optimization problem,

min J ( k )

(2.36)
subject to D r n[«;(0)](fi: — k l s ) =  0.

We summarize the procedure as follows.
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Algorithm  2.13. Inputs: { —J f ,  (^(O))2}”  ̂ (spectral data (2.15)) and a penalty 

functional J(k)  encoding the a priori information. Outputs: A reconstructed con­

ductivity a*.

i. Compute =  ln(cfi°)), where is a smooth interpolation of the averages

obtained by Algorithm 2.6 from the spectral measurements.

ii. Carry out the first iteration of Algorithm 2.12, that is compute the least squares 

solution to the linearized EIT problem with misfit measured in the reconstructions 

of Algorithm 2.6:

iii. Find the reconstructed log-conductivity k* — ln(cr*) as a minimizer of (2.36).

2.4 .4  N u m erica l resu lts w ith  a priori in form ation

We applied the method of the previous section to the functional JTy , which favours 

piecewise constant reconstructions, and is defined as follows,

Im plem entation strategies

Since the number of resistors we look for is small, the optimization problem (2.36) has 

only a few linear constraints. We exploit this structure by using an SQP (Sequential 

Quadratic Programming) method, with KKT (Karush-Kuhn-Tucker) systems solved 

by the range space approach [91, Chap. 18]. The globalization strategy we used was 

line search on an t \  type merit function [91, p544].

k l s  ^  K(0) +  ( 0 r n [«(°)]) ( r n (Ktrue) -  r n («(°>0 ,o1))

J t v ( k ) — TV(k) ,  where TV(k)  = f
J o
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Moreover we approximated the non-linear functional Jrv  with the standard smooth 

approximation of the absolute value:

TvM”//(W^dz’ < 2 - 3 7 )

with j3 = 1CT5. In order to regularize the Hessian systems to be solved at each 

iteration, we added 10~8 to their diagonal entries.

The resulting numerical method to minimize (3.24) with the J t v  functional is 

very similar to the so-called lagged diffusivity method [112, pl36], modified to take 

into account the constraints.

R econstructions

The stopping criterion for the iterations was that the gradient of the Lagrangian be 

reduced by 10~6, which occurred in roughly 20 SQP iterations. Typical reconstruc­

tions are reported in Figure 2.7, and were computed using the same data and under 

the same conditions as the Gauss-Newton iterations of Section 2.4.2. The SQP it­

erations took as a whole less than one second for each reconstruction of Figure 2.7, 

under the same computational setup as in Section 2.4.2.

For comparison, we include in Figure 2.8 reconstructions obtained by minimizing 

a TV regularized output least squares (OLS) functional J0is that measures the misfit 

in the spectral data,

J oIs ( k ) = ^ ||A(k) -  \ { K t r u e ) \ \ l  +  \  \\v ( k ) -  T](Ktrue) \ \ 22 +  TV(k), (2.38)

where A(k) denotes the vector of k eigenvalues of the differential operator of (2.4) 

for a = exp(/Q, and similarly rj(k) is the vector of the norming constants yt{0)2 for
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the corresponding k eigenfunctions. The optimization is carried out with Newton’s 

method with Armijo line search on exactly the same spectral data as our method. 

The TV functional was approximated using (2.37) with j3 — 10~4 and we added 10-3 

to the diagonal of the Hessian to stabilize the inversion. These parameters and the 

regularization parameter a  were determined empirically by trying several values until 

obtaining satisfactory reconstructions. We report the number of iterations needed to 

reduce the gradient by a factor of 10-2.

The reconstructions of both methods are very similar. The OLS method converges 

in less iterations than our method. However each OLS iteration is expensive because 

we have to compute the spectrum and derivatives, which is roughly the cost of an 

iteration of Algorithm 2.12. In our method we need to compute the spectrum and 

derivatives only once, which makes it faster.
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n = 7, 12 iterations n =  14, 19 iterations
3.53.5

2.52.5

0.5,0.5 0.2 0.4 0.60.2 0.4

Figure 2.7: Reconstructions from spectral data using Algorithm 2.13 with a TV 
penalty functional, for a piecewise constant conductivity.

k =  7, 9 iterations, a  =  1500 k =  14, 7 iterations, a = 1500
3.53.5

2.52.5

0.5, 0.4 0.60.20.2 0.4 1

F igure  2.8: Reconstructions from spectral data using output least squares with a 
TV regularization term (2.38), for a piecewise constant conductivity. In wall-clock 
time the reconstruction took around 12 seconds for k — 7 and 16 seconds for k =  14.
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C hapter 3

E lectrical im pedance tom ography w ith  circular 

planar graphs

In this Chapter we extend the ideas discussed in Chapter 2 for the one dimensional 

spectral problem (see Section 2.1) to the 2D Electrical Impedance Tomography (EIT) 

problem (see Section 1.1), on domains that can be conformally mapped to a disk. 

To estimate the unknown conductivity a, we follow the same steps as for the one­

dimensional problem. First we solve the model reduction problem of finding the 

smallest resistor network (of fixed topology) that can predict some meaningful mea­

surements of the DtN map. Once we know the network, we estimate the unknown 

conductivity a  with a Gauss-Newton method.

While in inverse spectral problems the size of the resistor networks is determined 

by the number of measurements, the ill-posedness of EIT requires a different decision. 

Noise limits severely the amount of information about a that is carried in the data, 

no matter how many measurement points we take. Typically, the high frequency re­

sponses are buried in the noise, so one can only rely on the low frequency components 

of the data and obtain, therefore, a low resolution image of a.

This chapter is organized as follows: We start by describing in Section 3.1 a 

finite volumes discretization of the EIT problem that leads to resistor networks, our
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reduced model of the elliptic partial differential equation satisfied by the potential. 

The topology of the networks is given by the discretization stencil and the resistors 

are determined by averages of the conductivity on the grid.

Then, in Section 3.2 we show how to determine these reduced models from mea­

surements of the DtN map A^ tN. Specifically, we define in Section 3.2.1 a broad 

class of measurements of the DtN map and prove that they correspond to DtN maps 

of resistor networks. The sparsest such network can be recovered uniquely from the 

meaningful measurements, by solving a discrete inverse problem, as we show in Sec­

tion 3.2.2. By meaningful measurements we mean that when the data is contaminated 

with noise, only part of it carries real information about a. We explain in Section 3.2.5 

how to extract the meaningful data, which we then use to find the resistor network 

with size depending naturally on the level of noise.

Next, in Section 3.3, we recall the definition of the resistors in terms of averages 

of a and we explain how we can estimate it on a precomputed grid, for a sufficiently 

similar reference conductivity a0. The assumption is that, as in the one dimensional 

case, the grids depend weakly on a. It is difficult to show that the reconstructed a 

on the reference grid converges to the true conductivity, in ideal situations and for 

smooth enough a. We prove however in Section 3.3.3 that a necessary condition for 

convergence is to reconstruct on such reference grids.

The reconstructions of a on the reference grids are used in Section 3.4 as starting 

points of a Gauss-Newton iteration that is designed to recover a low resolution image 

of the conductivity, which is the best that we can hope for realistic noise levels, in 

light of the ill-posedness of the problem. Finally, we show in Section 3.4.3 how to 

improve the resolution of the reconstruction by incorporating certain types of a priori 

information about a.
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3.1 F in ite  vo lu m es d iscretiza tion

We discretize the EIT equation using a finite volumes scheme on a staggered tensor 

product grid. We choose this discretization because it leads to reduced models that are 

uniquely recoverable from the measurements, as we explain in detail in Section 3.2.3.

For us the domain is the unit disk B{0,1) C R2. In principle other simply 

connected bounded domains with C2 boundary can be considered by conformally 

mapping the domain to B (0,1), but this is not addressed here. The grids we use are 

described in Section 3.1.1. The finite volumes scheme is derived from the conservation 

of currents law in Section 3.1.2.

3.1 .1  T h e staggered  fin ite  vo lu m e grids

For the discretization we use grids that are staggered, i.e. composed of a primary and 

dual grid as shown in Figure 3.1. Both primary and dual grids are tensor products 

of a uniform angular grid and an adaptive, not known a priori, radial grid. The dual 

grid angles are the bisectors of the primary grid angles and these are chosen according 

to the highest frequency that we wish to capture in the potential. The potential is 

discretized on the primary grid points and the current fluxes on the dual grid points.

Following [64], we denote the grids by Q(l, n), where n  is the number of boundary 

nodes and / is the number of primary grid “layers” . A layer is defined as in [64], as a 

minimal subset of edges of the primary grid that is invariant under rotations of the 

grid about the origin by the angle 2ir/n. For example, the primary grid constructed 

by rotating n  times the pattern “0-1” by an angle of j n  about the origin has 1 

layer, “0- 11” has 2 layers, “0- I -1 ” has 3 layers, “0 - 1 -  11” has 4 layers, etc. Here the 

symbol represents an edge in the radial direction and “ I ” an edge in the angular 

direction.
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In our discretizations, the innermost (closest to the origin) primary layer is always 

in the radial direction. The parity of the number of primary layers determines the 

type of the outermost (or boundary) primary layer: it is in the radial direction if and 

only if I is odd. The discretization is slightly different depending on the parity of I, 

as is illustrated with the examples in Figure 3.1.

We label the primary nodes starting from the boundary, so that the radii of the 

primary grid points are,

0 =  r  p/21+1 < r|7/2i <■■■ < r 2 < r i  = l ,

where [to] is the smallest integer larger or equal to to. Similarly, the radii of the dual 

cell boundaries are,

0 < r\i/2\+i < r [l/2j < • • • < f 2 < fi =  l, 

where [roj is the largest integer smaller or equal to to.

3.1 .2  T h e fin ite  vo lu m es schem e

In a finite volumes scheme, we integrate equation (1.1) over the dual cells, and then 

use the divergence theorem to derive the balance of fluxes through the dual cell 

boundaries. These fluxes are approximated using finite differences, and the discrete 

equations can be interpreted as Kirchhoff’s node law for a resistor network with 

topology given by the primary grid.

We denote by uitj the approximation of the potential u at the primary grid nodes 

(ri,jhe), for 1 < i < \ l /2] +  1 and 1 < j  < n, and by Ij the approximation of the 

current density I  = an  • Vu|an at the boundary points (l , jhg),  for 1 < j  < n. For
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?i =  n  =  l Pi =  n  =  1

' J u3,j jU2,j':u l,j «1J

F igu re  3.1: Representative examples of the two kinds of grids we use. The primary 
grid is in solid line and the dual grid in dotted line. In £7(5, 6), the primary boundary 
edges are in the radial direction, whereas in £7(6, 6) they are in the angular direction.

illustration purposes, let us zoom in the dual cell centered at primary node (Ti,jhg), 

depicted in Figure 3.2. The conservation law in this cell is

d u

(3.1)
V • [aVu]d'x = V - ^ d S AD ~

' b c
a ^ d S BC

o r
d u

I u n~'
I a d  o r

f  a  d u  f  a  d u

+ L r d e d S A B - L r M i S c D - °

and the discretization of the fluxes is done as follows. On the cell boundary segment 

AD,  we have

I A D

du  Kj + i / 2)he du
a — dSAD = /  ri- 1a(ri- 1,6) —  (ri- 1,9)d9

d r  J ( j - i / 2 )he dr
r(j+l/2)he \  Qu

/ ri-xcr(ri-i,9)dQ — (p_i,j7 )̂
' U - m h e  I d r

d u  u \

u(r»jhg)  -  u(ri-i, jhe)
X j ( r i )  -  X j ( r i - 1 )
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n-1-

j h e  ( j - \ ) h e

A D
-1 "  —

1 1

u i,j- 1

1
?i J 3' L ~ ----  | _______

Ri,j  i

Ti+l \ i u i+l,j !

F igure  3.2: Cell (i, j )  in the finite volume discretization. The primary grid appears 
in solid line and the dual grid in dotted line.

where the last approximation in the chain is made with finite differences and where 

we used the change of variables

»i
x j ( r ) =

dt
I rU+i/fyho
r t a(t,9)d6

J( j - l / 2 ) hg

Similarly, on the segment A B ,  we have

r’i_1 or(t, (j  +  1/2)hg) du  
t 89

f  ° d u j o
L r S » dSAB =

(:t , O' +  1/2)hg)dt

(£" | ( r . _ ,  0  +  1 / 2 ) * . )

/ ^ - ( r , - i , ( j  +  1/2 )h,)
o c p i

u{rj-1, Q + 1 )he) -  u(ri-i , jhe)
+  l ) h e) -  4> i { j h e )
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where we made the change of variables

■W =  f  ,t ' . f or< =  2 , . . . , L i / 2 J  +  l .
0 dtdhnl

Let us define

(  f ( j + l / 2 ) h e '  1
=  X j ( r i+ i )  -  z ^ r * )  =  /  d t \ t  a ( t , 9 ) d $

J r i + 1 \  J ( j - l / 2 ) h g

-  _1 L r
a i , j h g J r .+l t

for z =  1, . . . ,  fZ/2"| , j  =  1, . . . ,  n  and

^  p ( j + l ) h e /  p n - x  ^  \ \

R i j + 1/2  =  M i  +  1 ) M  -  4>i{jhe) =  /  d a  ( /  d t — 2—
-L'hfl V-M 1 /

(3.2)

-1

i , (  n - 1 d e  1 
-he

\.lr- t

(3.3)

for i =  2, . . . ,  [//2J + 1 , j  =  1 , . . . ,  n. The coefficients ditj and 2 are averages of 

the conductivity on the grid. We now write the discretization of (3.1).

We look first at dual cells containing primary grid nodes {r^jhe)  that are neither 

on the boundary nor at the origin. This happens when 2 < i < [7/2] and 1 < j  < n. 

On these cells, the finite volumes scheme is

~  U i , j  u i + l , j  ~  u i , j  U i , j +1 ~  u i , j  ~  u i , j  _  q (3 4)

R i - i j  R i , j  R itj+1 R i j ^ i

where the operations (+) and (—) on the angular discretization parameter j  are to be 

understood modulo n. The cell containing the origin is a special case, as it contains
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only radial primary layers and the discretization is

~  u W\+i,j  _  Q
j r i  R um,j

It remains to define the stencil for boundary nodes. The discretization is different 

at the boundary, depending on the number of layers I. In the case where I is odd (see 

Figure 3.1 on the left) the stencil is

U2,j Ul'j- +  Ij =  0, for 1 <  j  < n. (3.6)
R hj

When the number of layers I is even (see Figure 3.1 on the right) the stencil is,

U2J ~  UlJ + " W  -  uhl  +  ~  Ul-> + I  =  0, for 1 < j  < n. (3.7)

R em ark  3.1. Equations (3.4) through (3.7) are Kirchhoff’s node law for a circular 

resistor network with topology given by the primary grid and with resistors R itj, 

R i,j+i/2 - The resistors are determined by averages of the conductivity on the grid, as 

stated in (3.2) and (3.3). Some resistors are shown in gray in Figures 3.1 and 3.2.

3.2 From  con tin u u m  D tN  m aps to  resistor netw orks

In this section we consider the model reduction problem of finding the sparsest resis­

tor network that reproduces measurements of the continuum DtN map. We prove the 

solvability of this problem in a few steps. First, we define in Section 3.2.1 a general 

class of measurements of the continuum DtN map. Then, we show that these mea­

surements belong to the set of DtN maps of well-connected networks. After proving 

this consistency result, we obtain the injectivity of the map that takes us from the
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measurements to critical resistor networks. The resistor networks arising in our finite 

volume discretizations can be made critical by choosing appropriately the number of 

layers, for a given number of boundary nodes.

Although, in theory, the determination of the critical networks from the measure­

ments has a unique solution, the problem is ill-posed and the instability gets worse 

as we increase the size of the network. We show however in Section 3.2.5 that, for 

noisy data, only the low frequency components carry information about a and this 

allows us to lump the measurements into those corresponding to the DtN map of 

small resistor networks. The lumping limits naturally the resolution of the image for 

realistic noise levels and is detailed further in Appendix B.4.

3.2.1 T h e m easu red  D tN  m ap

We consider a general class of linear measurements M n(A®tN) E M.nXn of the DtN 

map that as we show in Section 3.2.3 define the DtN map of well-connected resistor 

networks.

D efin ition  3.2. Let <pi, . . . ,  <f>n be a set of n  nonnegative functions in H l/2{dVl), with 

disjoint supports numbered in circular order around the boundary and satisfying 

JdQ(pi =  I -1 The measured DtN map A4n(A^tN) E Mnxn is defined componentwise

xThe condition f gQ fa = 1 on the fa makes M n (Af?tN) an approximation of pointwise measure­
ments of the kernel of the DtN map, as the supp fa become small.

by,

(<h A ° iN(t>j) if i /  j
n

otherwise,
(3,8)

where (•, •) is the H l/2(dVt), H  l/2(dVt) duality pairing.
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/

\

F igu re  3.3: Physically, the measured DtN map M n( ^ tN) can be thought of as 
measurements taken with electrodes at the boundary.

When the <j){ are box functions,2 as shown in Figure 3.3, the measured DtN map 

corresponds precisely to the so called “shunt electrode model” [100]. Indeed, an 

electrode can be idealized by a perfect conductor, and so the potential is constant 

over the support of the electrode. Thus A^ tN(pj is the current density arising from a 

nonzero potential at electrode j .  The current density is measured at electrode i by 

(0* , A f % )  which is the total current flowing out of electrode i.

Since the reduced model we use for the PDE is a resistor network, the diago­

nal elements of M n{A.^tN) are chosen to agree with the compatibility condition for 

networks: the currents flowing out of the network sum to zero.

R em ark  3.3. It is known that the shunt electrode model is a crude model because it 

does not account for the electrode effects on the medium that are observed in practice. 

Instead, one should interpret the readings with the “complete electrode model” [100], 

which does take account of the electrode effects, and then transform the readings to 

the shunt model. Moreover, the electrode models in [100] are actually defined for 

the NtD map, but by convex duality arguments appearing in Appendix B.2, NtD

measurements can be transformed into DtN measurements.

2Box functions are not in H l / 2(d£i), however they can be approximated by continuous functions 
to define A4n (A®tN). Alternatively, some regularity of the kernel of the DtN map can be assumed.
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C(5 , l l )

Figure 3.4: Examples of C(l ,n ) resistor networks. Here I = (n — l ) /2 so that the 
network is critical, and thus uniquely recoverable.

3.2 .2  U n iq u en ess o f  th e  resistor netw ork reduced  m odel

In this section we review resistor networks results [34, 36, 35] that guarantee that the 

resistor networks we use are uniquely determined from their DtN map (Theorem 3.5).

The D tN  map of circular resistor networks

A circular resistor network (R-net) is a planar graph that can be embedded in the 

plane, and that has a resistance value assigned to each edge. We shall consider R-nets 

with topology C(l,n)  given by the topology of the primary grid in the finite volume 

discretization Q(l,n) defined in Section 3.1. Examples of such networks appear in 

Figure 3.4.

In a resistor network, the potentials at the nodes satisfy Kirchhoff’s node law. The 

DtN map is defined as the linear mapping taking potentials at the boundary nodes 

to currents flowing out of the boundary nodes. Let us assume that the network has n 

boundary nodes labeled v\, v2, ■. •, vn. We shall represent the DtN map as a matrix, 

where the *—th column contains the currents flowing out of the network through
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nodes v \ , . .. ,vn, when the potential is one at node Vi and zero at the other nodes.

A circular R-net is said to be well-connected if any two disjoint non-overlapping 

sets P  =  { p i , . . .  ,pk} and Q =  {qi,. ..,Qk} of fc boundary nodes, appearing in the 

order Pi, • • • ,Pk, Qkr • • > 9i on the boundary, are connected by k disjoint paths. Curtis 

et al. [36] proved that the DtN map for a well-connected circular resistor network with 

n boundary nodes and positive, bounded, resistors belongs to a subset fln of Rnxn 

defined as follows,3

Definition 3.4. The set f ln is the set of matrices A £ Rnxn such that,

i. The matrix A  is symmetric.

ii. The matrix A  has zero row sum, i.e. A l  =  0.

iii. All circular minors M  of A, that is all submatrices M  =  A(p1;. . .  ,p&; qi, . . . ,  q/.) 

where the distinct indices P i , . . .  ,Pfc, <&,•••, <71 appear in order when {1, . . . ,  n} is 

laid down on a circle, are totally negative, or equivalently det(—M) > 0.4

We show later in Section 3.2.3 that the measurements M.n{A^tN) of the DtN map, 

defined by (3.8), belong to Cln.

Recoverable resistor networks

A resistor network is said to be recoverable when its resistors can be uniquely recovered 

from its DtN map. A network is recoverable if and only if it is critical [36, Lemma 

13.2], meaning that the network is well-connected and that the removal of any edge 

makes the network not well-connected.

In general it is not possible to find both the resistors and the topology of the

network from the DtN map. This is because all graphs that are Y  — A equivalent have

3The Q,n notation is borrowed from [36] and should not be confused with the domain Cl.
4Since we work with well-connected networks only, we do not need to relax the determinantal 

inequality to a non-strict one, as is done in [36].
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AY

F igure  3.5: At the nodes p, q, r, the Y  on the left is electrically equivalent to the A 
on the right. A R-net can be transformed through a sequence of these transformations 
into another R-net with the same DtN map (adapted from [36, §5]).

the same DtN map. Two graphs are Y  — A equivalent if there is a sequence of Y  — A 

or A — Y  transformations taking one graph to the other. A h  - A  transformation 

takes a Y  at an interior node s (Figure 3.5 left) to a A (Figure 3.5 right). Both 

configurations are electrically indistinguishable at the nodes p,q,r.  Also note that 

Y  — A (or A — Y)  transformations preserve the number of edges.

The next theorem essentially shows that under certain assumptions on the num­

ber of layers, the resistor network underlying the finite volumes discretization of 

Section 3.1 is uniquely recoverable from its DtN map.

T h eo rem  3.5. All recoverable resistor networks with an odd number n of boundary 

nodes are Y  — A equivalent to a resistor network with topology C(l = (n — l)/2,n).

Proof. This follows from Proposition 2.3 and Corollary 9.4 in [35]. □

Note that the size of recoverable networks is fixed by the number of measurement 

points and that the number of resistors is nl =  n(n — l ) / 2, which is exactly the 

number of “independent” measurements in the DtN map.5

The following elementary Lemma shows why we consider only an odd number of 

boundary points in Theorem 3.5.

5Since the DtN map of a R-net with n boundary nodes is symmetric and has zero row sum, all 
its entries are determined by the n (n  — l) /2  entries above the diagonal.
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case n  =  2 mod 4

F igu re  3.6: Critical graphs for an even number n of boundary points. The construc­
tion is slightly different depending on n  mod 4 (taken from [35, pp20-24]).

L em m a 3.6. For n even, there is no I such that C(l,n) is a critical graph.

Proof. A critical graph with n boundary nodes has n(n — l ) /2 edges. This can be 

verified for the critical graphs with topologies given in Figures 3.4 and 3.6 by counting 

edges. Moreover, all critical graphs with n boundary nodes are Y  — A equivalent (see 

[36, §5]), and therefore they all have the same number of edges.

If n is even, the number of edges in a critical graph with n  boundary nodes is 

n(n  — l ) /2 =  n/2  mod n. However the number of edges in C (l ,n ) is nl = 0 mod n. 

Therefore C(l,n)  is not a critical graph when n is even. □

To illustrate Lemma 3.6, we give examples of critical graphs with an even number 

of boundary nodes in Figure 3.6.

R ecoverable R -n e ts  an d  th e  fin ite  volum es d isc re tiza tio n

We now justify our choice of a finite volumes discretization. Other discretization 

methods such as the finite elements method with P\ triangular elements or Q\ quadri­

lateral elements, yield networks that are not critical and thus not recoverable. This
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F igure  3.7: Part of the R-net coming from a P\ (linear) finite element discretization 
with triangular elements. This discretization gives a R-net that is not critical, and 
therefore not recoverable. Specifically, the slanted edges are redundant.

is illustrated in Figure 3.7 for Pi triangular finite elements. However through careful 

choice of the quadrature rule (mass lumping), one can transform certain finite ele­

ment methods (e.g. Qi elements) into a difference scheme that can also be viewed as 

a C(l,n)  resistor network. By the uniqueness of the solution to the model reduction 

problem, such a scheme is equivalent to ours.

3.2 .3  C o n sisten cy  o f th e  m easu rem ents w ith  th e  R -n et m odel

Here we prove the solvability of the model reduction problem, which we state as 

follows.

T heorem  3.7. For a smooth enough positive, bounded conductivity a, the measured 

DtN map M n{AfftN) (Definition 3.2), is the DtN map of a well-connected R-net.

Now from the uniqueness results of Section 3.2.2 we deduce the following corollary 

involving the R-nets coming from the finite volumes discretization of Section 3.1.

C oro llary  3.8. For a smooth enough positive bounded conductivity a, and for n 

odd, there is a unique resistor network of type C(l = (n — l ) / 2 ,n) with DtN map 

M n(A°tN).
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Proof. This corollary is a direct consequence of Theorem 3.7 and Theorem 3.5. □

The proof of Theorem 3.7 proceeds by showing that the measured DtN map 

M n(A^tN) belongs to On, the set of DtN maps of well-connected R-nets defined 

in Definition 3.4. That M n{A^tN) is a symmetric n  x n matrix with zero row sum 

follows trivially from Definition 3.2 and the self-adjointness of A®tN. The technical 

part is to show that all the circular minors of M n(A^tN) are totally negative (see e.g. 

[36, §10] for a definition), and the rest of this Section is devoted to proving this result.

To establish the total negativity of the circular minors of the measured DtN map, 

we use a characterization of the kernel of the DtN map due to Ingerman and Morrow 

[62], Recall that the kernel K a : 5 0  x 5 0  —► R of the DtN map is such that for 

/  <= H ^ 2(dQ),

(A?iA7 ) ( x ) =  [  -M x ,y )/(y )d y .
JdQ

We require some terminology to review the results in [62]. A set of 2n distinct 

points of 5 0  ( x i , . . . ,  x n; y i , . . . ,  yn) is called a circular pair if x i , . . . ,  xn, yn, . . . ,  yi 

are consecutive on the circle. Similarly, a set of 2n  nonnegative functions (Ad,. . . ,  X n; 

Yi , . . . ,  Yn), with respective supports R, . . . ,  / n, J\, . . . ,  Jn in 50 , is called a circular 

pair of functions if their supports are disjoint and are consecutive on the circle when 

numbered A , . . . ,  Jn, Jn, . . . ,  Jj,  and additionally if each function integrates to one.

D efin ition  3.9. A kernel K  : 5 0  x dVt —► R is said to have Property ( P I )  if and only 

if, for all circular pairs (x1;. . . ,  x n, y i , . . . ,  y n) the following determinantal inequality 

holds

det({-A '(x i ,y i)}ij=i,...,n) > 0. (3.9)

D efin ition  3.10. A kernel K  : 5 0  x 5 0  —» E  is said to have Property (P2) if 

and only if, for all circular pairs of functions (Ad,. . .  , X n, Y i , . . .  ,Yn) the following
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determinantal inequality holds

det ( { - /  X i(x)Yj (y )K (x ,y )dx .dy \  J > 0. (3.10)
y L J d £ l x d d  J i , j = l J

Note that both determinantal inequalities above are equivalent to saying that 

the matrices in the determinants are totally positive. Also, it is possible to take 

pointwise measurements of the kernel A CT(x , y) of the DtN map whenever the kernel is 

continuous away from the diagonal x  =  y, which occurs at least for C 2 conductivities 

(see [62]).

It is clear from Definition 3.2 that to show the total negativity of the circular 

minors of M.n(A®tN), it suffices to show that the kernel of the DtN map satisfies 

(P2). The main result in [62] is that the kernel K a of the DtN map for a conductivity 

a € C'2(fl) satisfies ( PI ) .  We have extended this result to more general measurements 

by showing the equivalence between ( p i )  and (P 2). which is stated in the next 

theorem.

Theorem  3.11. Let K  : <9D x dLl —■> R be some kernel continuous away from the 

diagonal, and such that limy_>x iL (x ,  y ) =  —oo. Then ( PI )  holds for K  if and only 

i f (P2) holds for K.

In order to prove Theorem 3.11, let us first show an intermediary Lemma involving 

the weaker properties (W P1) and (W P2), which are obtained by replacing the 

strict inequalities in the Definitions 3.9 and 3.10 by non-strict inequalities. Note 

that the assumptions on K  in the following lemma are relaxed compared to those of 

Theorem 3.11: the singularity of the kernel on the diagonal is not required.

Lemma 3.12. Let K  : dLl x dLl —> R be some continuous kernel away from the 

diagonal. Then (W P 1 )  holds for K  if and only if  (W P 2)  holds for K.
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Proof. We use the techniques of Lemma 6.1 in [62]. Let K  be a kernel satisfying the 

assumptions of the theorem. Let us start by assuming (W P1) holds. If (X i , . . . ,  X n, 

Yi , . . . ,  Yn) is some circular pair of functions, using the combinatorial definition of the 

determinant, and reducing the domain of integration to the support of the functions 

involved, we may write,

det I \ -  j X i (x )Y j(y )K (x ,y )dxdy  ^

=  e  w w n f - / ,
ren(l,...,n ) i= 1 \

X i ( x i ) y T(i) ( y T(i) ) / f ( x i , y T(i) ) d x id y T(i) ] , (3.11)
ren(l,...,n) i= l \  ■J i ' XJr(i)

where 11(1, . . . , n) is the set of all n\ permutations of 1, . . .  ,n, and the sign of a 

permutation r  is defined by,

+1 if r  is equivalent to an even number of transpositions,
sgn (r) =  |

-1 if r  is equivalent to an odd number of transpositions.

Now, we rewrite the product of integrals as one single integral, which with some 

reordering yields,

sgn J j

|^ [ - K ( x i ,  yT(i}) ) ( J J  Xi(xi)Yi(yi)  ) d x ^ y i  • • • dxndyn.

ren(l,...,n) J h x J i  J l n X j ,

,i= 1 /  \ i = l
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Whereby identifying a determinant we get,

det X i(x)Yj (y )K (x ,y )dxdy

/l X J\ J IyxY.Jn
f  det({—77(xj, yj)} ) X i ^ Y f y i )  cbtidyi ■ ■ ■ dxndyn.

(3,12)

Now ( x 1 ; . . . ,  x „ ; y i , . . .  , y n ) is a circular pair of points because x* G p  and y j  G J,  

and J i , . . . ,  In, ,Jn. , J\  do not intersect and are consecutive when laid on a circle. 

Since K  satisfies (W P1), the determinant in the integrand is nonnegative, and so is 

the integrand itself, which proves (W P1) =» (W P2).

To prove (W P2) (W P1), construct a sequence of circular pairs of functions

We can now write a proof of Theorem 3.11, which essentially follows from [62],

Proof of Theorem 3.11. Using (3.12) and strict inequalities in the argument for (W P1) 

(W P2) in Lemma 3.12, it follows that (P I) =*■ (P2). Now assume (P2) holds 

for K,  therefore (W P2) and by Lemma 3.12 also (W P1) hold for K . Moreover 

Ingerman and Morrow [62, §4], proved that provided K  is a kernel continuous away 

from the diagonal and singular on the diagonal, we have (W P1) (P I), which

completes this proof. □

(w |p\  . . . ,  Xn'*', Y iP\  ■ ■ ■, YnP'>) such that for i , j  =  1, • • • , n, we have

X i PI (x)YjP\ y )  K(x ,  y)dxdy  =  K ( x h y,)

Then (W P1) follows from continuity of the determinant. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

3.2 .4  T h e resistor finding prob lem

For recovering the resistors in a critical R-net, we choose the algorithm introduced by 

Curtis et al. [34], which is basically a layer peeling algorithm: it determines the resis­

tors layer by layer from the boundary to the interior of the network by mathematically 

peeling each of the layers.

We prefer the Curtis et al. [34] algorithm over other algorithms such as least 

squares minimization, because it is non-iterative, and we do not have to worry about 

local minima. Other advantages of the Curtis et al. [34] algorithm are that it is fast, 

simple to implement and reasonably stable when recovering small networks.

However, recovering the resistors in the network amounts to solving a Cauchy 

problem for the potential and is therefore an ill-posed (discrete) inverse problem in 

itself. The ill-posedness gets worse as the size of the network to be recovered increases: 

we have typically observed a loss of precision in the resistors of a factor of 10 by going 

from one layer to the next. In the presence of noise, we regularize the problem by 

keeping the network small, as we shall see next.

3.2 .5  T h e resistor netw ork  for n o isy  m easu rem en ts

We regularize the resistor finding problem by restricting the size of the network with 

a criterion based on the noise level of the measurements. To achieve this, we use the 

distinguishability ideas of Isaacson [65] (see also Section 1.2). The main idea is to 

determine which frequencies of the data carry information about the conductivity by 

looking at the singular value decomposition of the difference between the measured 

Neumann-to-Dirichlet (NtD) map and the NtD map for a reference conductivity cr°. 

This criterion has also been implemented in [28].

The reduction in size per se is achieved by lumping measurements made on N
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“electrodes” so as to obtain the DtN map of a resistor network with n < N  boundary 

nodes. The lumping can be seen as a low pass filtering of the data, because it 

essentially discards the higher frequencies in the data, which do not contain any 

valuable information about the conductivity. More details on the implementation of 

the lumping are available in Appendix B.4.

It is easier to carry the analysis of how much information is contained in the data 

with the NtD map. So far we have have worked with the DtN map, but we can always 

process the data to approximate NtD measurements as explained in Appendix B.2.

To determine the size of the R-net (i.e. discretization grid), let us look at excita­

tions that are capable of distinguishing the unknown conductivity a from a reference 

one <7°, with noisy measurements. To this end, let us first consider the “voltage 

difference map” given by A ^ tD — A^JD. Let sk be its singular values, and A(x) its 

corresponding singular functions. Note that we need not distinguish between left and 

right singular functions because they are up to a sign the same for the NtD map, 

because it is symmetric.

It can be shown [54, AIII] that the singular values sk of the voltage difference 

map decay exponentially fast, at least if a and a0 agree in a neighborhood of the 

boundary. For example if a and a° are equal to one for r  G [a, 1], then the singular 

values are O (a 2k/ k ). For a concrete example see Figure 3.8a.

Following Isaacson [65], in the presence of noise, we expect only a few singular 

values of the voltage difference map are above the noise level 5. This means that of 

all possible probing currents with unit L2(dQ) norm, only those that belong to the 

span of the singular functions Ik corresponding to singular values above the noise level 

(sfc > T) give voltage differences that are distinguishable from the measurements:

||A^ W I  -  A^oDI\\L2 > 5, for all I  G span { h , . . . ,  JnJ ,  with \\I\\L2 = 1,
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and where n§ is the largest integer k such that Sk > 8. For all practical purposes, 

probing with the other singular functions Zfc(x), for k > ng, does not add useful infor­

mation. Cherkaeva and Tripp [28] sought the conductivity in span{VtXj • Vtc/}y=1, 

where the Uj are the potentials that the leading n$ singular functions Ij produce when 

the conductivity is cr°. In our method, we use a similar idea to determine the size of 

our discretization of the conductivity (the resistor network).

The first ng singular modes of the voltage difference map are smooth (see for 

example Figure 3.8b), so they can be decomposed reasonably well in the first Ln^/2j 

harmonics {cos(k9), sm(k9)}]^(2̂ , where 6 £ [0, 2tt] is the angle. Actually, when the 

conductivity is layered (i.e. cr(r,9)  =  cr(r)),  the singular functions are precisely the 

harmonics. Therefore we choose a circular resistor network with n$ boundary nodes.6

It follows from the discussion in Section 3.2.3, that when ng is odd, a recoverable 

network with topology C(l,ng), must have / =  (rig — l)/2  layers. When rig is even, 

we take ng + l  instead. So the size of the network, or in other words, the number of 

parameters we solve for is determined by the noise level 8. Network sizes recommended 

by this method for typical noise levels are reported in Table 3.1.

R em ark  3.13. As we explained in Section 3.1.2 and we discuss in detail next, in 

Section 3.3, the resistors of the small networks with topology C(lg,2lg +  1), with 

ls = \ ng/2\ , are averages of the conductivity on a coarse grid Q(lg,2lg + 1). Therefore 

the level of noise limits naturally the resolution of the image.

R em ark  3.14. We do not address the problem of estimating the level of noise in 

the measurements. For this purpose, it is possible to get a rough estimate of the 

noise level by determining where the singular values of the voltage difference map 

stop decaying exponentially.

6We show in Appendix B .l tha t such analysis fails for DtN data, and we give some ideas to 
remedy this situation.
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First three singu lar functions of th e NtD m ap differencesingular v a lu e s  of NtD m ap difference

0 .4
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- 0.2
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-O.i

- 0.1
pi/2 3pi/2100

an gle

(a: Singular values) (b: Leading singular vectors)

Figure 3.8: (a) Singular values of the NtD difference map for conductivities sigX 
(defined in Appendix C) and cr° =  1. We include singular values for the true (solid 
line) and noisy (dotted line) difference maps. The noise level S = 10-3 is also dis­
played. (b) The three leading singular vectors, normalized such that ||//c||L2 =  1. The 
leading singular function A is in solid line, A in dashed line and A in dotted line.

3.3 From  resistor netw orks to  co n d u ctiv ity  averages

Previously in Section 3.2 we established that a resistor network reduced model of the 

PDE problem can be found uniquely from measurements of the DtN map. Now we 

explain how averages of the conductivity can be estimated from the resistors in the 

network.

Given the discretization discussed in Section 3.1, the resistors that match the 

measurements can be interpreted as averages of some conductivity over the grid cells 

of the discretization. Regardless of the grid choice, such a conductivity would match 

the measurements by design. The key is to find a grid for which the averages we 

recover are close to the averages of the unknown conductivity.

We show in Section 3.3.1 how to find the grid for which the recovered averages 

match those of a known, layered conductivity (that is a(r, 9) =  cr(r)). We conjecture 

that the grid depends weakly on the conductivity, meaning that the averages obtained
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by interpreting the resistors that fit measurements of the DtN map, on the grid for a 

layered (reference) conductivity, are close to the averages of the unknown conductivity 

on the same grid.

Our conjecture of weak dependence of the grid on the conductivity is in part 

justified by our numerical results and by showing in Section 3.3.3 that a necessary 

condition for convergence of our inversion scheme is that the grids used for inversion 

are asymptotically close to the precomputed grids for a reference conductivity.

3.3.1 O p tim al grid con stru ction  for layered  co n d u ctiv ities

Let us assume the layered conductivity <j(r) is given. Let us take measurements of the 

DtN map M.n{R®tN) (see Definition 3.2), with n  functions 4>i =  </>(x — Xj), where the 

Xj are n  equally spaced nodes of 90. If we further assume n  is odd, the main result of 

Section 3.2 is that there is a unique resistor network of type C(l = (n — l ) / 2,n) with 

M.n{A.®tN) as its DtN map. By the symmetries of the layered problem, the resistor 

network has to be layered,7 meaning that the resistors Rij,  R i:j+1/2 do not depend on 

the angular parameter j .  Call i?*, Rr the resistors for the layered case and recall from 

equations (3.2) and (3.3) that they are given by,

where I =  (n — l )/2  so that the network is uniquely determined by the measurements.

Now, since the conductivity and the resistors are both known, the grid can be

found from (3.13) with e.g. a nonlinear equation solver. The same idea is used to

7Note th a t Ingerman [64] arrived to the same conclusion for layered conductivities by transforming 
to an inverse spectral problem for beaded strings.

for i = 2, . . . ,  [Z/2J +  1
(3.13)
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obtain the so-called “optimal grids” for a one dimensional inverse spectral problem 

in [63, 19, 20] (see also Section 2.2.3). The term optimal refers here to the fact that, 

by design, the discrete DtN map matches exactly the measurements M.n(A®tN).

In our numerical reconstructions, we use the optimal grid for a(r) =  1. This is 

given by,

n = ? i  = 1,

Dc+i =  exp (—(Ri H b Rk)/hg),  for k = 1, . . . ,  |7/2], (3.14)

rk =  exp he ((j^ ) -1 +  b (.R/c)-1) )  , for k =  2, . . . ,  [1/2J +  1.

Computed grids for / =  5 and 7 appear in Figure 3.9. To define the measurement 

operator M n, we used for </> a smoothed box function and we computed the integrals in 

(3.8) numerically with 200 uniformly spaced points on the boundary and the analytical 

kernel of the DtN map. Note that in our calculations, the grid does not appear to 

depend strongly on the choice of <j>, so unless specified, we use the smoothed box 

functions specified in Appendix C.2 throughout this Thesis.

Also, remark that for the innermost (closest to the origin) layer of resistors to 

appear connected in the grid one would need r\i/2 \+i = 0, however in the grids we 

obtain r\i/2]+i > 0, which could be thought of as a truncation of the domain close to 

the origin. Of course, in the resistor network the innermost branches are all electrically 

connected. Numerically we also observed that as I —> oo, we have r\ij2]+i —> 0.

To have a proper finite volumes discretization, the primary and dual grids need 

to interleave. Although we have not rigorously established this property, we have 

verified it numerically at least for n < 31. We conjecture that in exact arithmetic, 

proper finite volumes discretizations can be obtained through this method for larger 

n, however our reconstructions are coarse (by the very nature of the EIT problem
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Figure 3.9: The finite volume discretization for <7 =  1. The primary grids (R-net) 
are in solid line and the dual grids (control volumes) are in dotted line.

and especially in the presence of noise, see Section 3.2.5) so proving such a result is 

not necessary for our algorithm to work.

3.3 .2  R eco n stru ctin g  averages o f  th e  co n d u ctiv ity

Given measurements A4n(Al̂ tN) of the DtN map for an unknown conductivity a, we 

propose a reconstruction method based on an interpretation of the resistors in the 

R-net reduced model (see Section 3.2) of the EIT equation (1.1) as averages over grid 

cells of cr. Our method is an extension to two dimensions of the optimal grid inversion 

procedure of Borcea, Druskin and Knizhnerman [19, 20]. We present numerical results 

to validate our approach. Note that this is a computationally cheap procedure and 

that we improve upon it later in Section 3.4.
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The reconstruction algorithm

Call the homogeneous conductivity <r° = 1. Following Section 3.3.1, we construct the 

optimal grid for cr°. Recall that the discretization is designed to give an exact match 

for the measurements M.n(A^oN). If we assume that the grid depends weakly on the 

conductivity (we explain the reasons for this assumption in Section 3.3.3), we may 

approximate the averaging relations (3.2) and (3.3) by writing them on the grid for 

the reference conductivity cr°,

f ( j+l / 2)hg  \ 1

Rij  ~  /  d t \ t  f  a(t, 9)d6 J =
,0 \  J ( j - i / 2 ) h e J  &i,j

r ( j+l )he  /  r f - i  „ ( t  a ) \  1  ^

R i , j + 1/2 ~  /  d a l  dt— -—  = ----------Ri,
J  j  he \ J 1 a i,3 + 1/2

(3.15)

where the R $ ,  R (- are the resistors for the homogeneous conductivity <7° and the r f , 

f? are the radii of the grid for cr°. Here j  =  1, ,n  and the ranges for the index i 

are taken as in (3.2) and (3.3). Thus from the resistors it is elementary to estimate 

the averages Ujj+i/2, S /j of the conductivity, as appears in the following Algorithm.

Algorithm  3.15. Inputs: Measurements M n(A®tN) (Definition 3.2), for n odd. 

Outputs: Estimates of the averages crij+1/2, aitj.

i. Calculate the resistors R9 and grid for <x° =  1.

ii. Find the resistors R^j, i?jj+i/2 that match the measurements AAn(A®tN).

iii. Obtain averages of the conductivity over grid cells from (3.15) as follows,

~  _  R°i R -
~  D ’ ‘A,.7+1/2

*M,j+1/2
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Generally one is interested in recovering the conductivity rather than its averages. 

We remedy this in Section 3.4, where we also introduce a priori information about 

the conductivity a.

Num erical results

We present results from an implementation of Algorithm 3.15 on synthetic data sets 

for the conductivities in Figure 3.10, that we define more precisely in Appendix C. 

To verify that we are reconstructing averages of the conductivity, we compare the 

following:

• Averages oyj+i/2, reconstructed from the measurements M n(k®tN) using 

Algorithm 3.15.

• Averages of the conductivity a, computed on the grid for the reference conduc­

tivity cr° by numerical integration.

Reconstructions for noiseless measurements are shown in Figures 3.11 and 3.12. 

In our numerical experiments, we discretize the PDE on a fine uniform grid using 

finite volumes (as in Section 3.1). In that way, we obtain approximate pointwise 

values of the kernel of the DtN map at 100 equally spaced points of dfi, which are 

used to evaluate the integrals in equation (3.8) numerically and thus approximate the 

measurements A i n(A^tN). Actually, the DtN map of a resistor network is the Schur 

complement of the Kirchhoff matrix with respect to the interior variables (see e.g. 

[36]). The Schur complement of a matrix with respect to a set of indices is the matrix 

that remains after doing a Gaussian elimination of the complementary set of indices.

In order to visualize the averages cqj+1/2, &i,j, we interpret them as being pointwise 

values at the intersection between primary and dual grids, i.e. respectively (r.(, (j  +  

l/2)hff) and Such pointwise values are then interpolated linearly by means
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sigX phantom1

Figure 3.10: The conductivities used in the two dimensional numerics. See Ap­
pendix C for a precise definition.

of a Delaunay triangulation. Outside the convex hull of the evaluation points, we 

extrapolate linearly to get values for all x  e  0. Finally, we plot the grids of the finite 

volumes discretization on top, with the convention that dotted lines represent the 

dual grid (control volumes) and solid lines the primary grid (R-net).

To simulate noise in our measurements we added a multiplicative Gaussian noise 

with zero average to the approximation of the kernel of the DtN map. In Table 3.1 

we give the size of the networks to recover that are predicted by the SVD analysis of 

Section 3.2.5, for different noise levels. This heuristic gives only approximate network 

sizes, that do not always give positive resistors with the resistor finding algorithm we 

used (see Section 3.2.4).

Instead of using the method of Section 3.2.5, we preferred to find empirically the 

largest network that gives positive resistors for several realizations of the noise. We 

believe the discrepancies between the empirical network sizes and those in Table 3.1 

are due to the instability of the resistor finding algorithm of Section 3.2.4. The 

reconstructions are shown in Figures 3.14 and 3.13.
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0.1% 0.5% 1% 5%
sigX G( 7,15) C( 4,9) 0(3,7) 0(1,3)
phantoml C(12,25) C (8 ,17) 0 ( 7 , 15) 0(3,7)

Table 3.1: Network sizes for inversion found by the method discussed in Section 3.2.5 
for certain noise levels and conductivities (see Appendix C).

3.3 .3  D o es  th e  grid d ep en d  w eak ly  on  th e  con d u ctiv ity?

In Algorithm 3.15 we made the assumption that the grid we use for inversion is 

essentially independent of the conductivity. By weak dependence we mean that given 

a compact set S  of sufficiently similar conductivities, Algorithm 3.15 on the grid rf, rf 

for a reference conductivity a0 E S  gives reconstructed averages that are close to the 

true ones. We have several reasons to believe that the grid depends weakly on the 

conductivity:

• All the smooth conductivities we tried in our numerical experiments are suf­

ficiently similar to the reference homogeneous conductivity cr° =  1, since the 

reconstructed averages are close to the true averages.

• For the ID inverse spectral problem of Chapter 2, the weak dependence was 

proved rigorously by Borcea et al. [20], Their result is asymptotic as the number 

of measurements increases.

To rigorously prove weak dependence of the grid on the conductivity we need to 

show that a necessary and sufficient condition for the convergence of Algorithm 3.15 

is that the grid used for inversion is asymptotically close (as the number of measure­

ments increases) to the grid for the reference homogeneous conductivity. So far, the 

only result we can prove is necessity. The remaining of this Section is devoted to 

state and prove our necessity result Proposition 3.16.

Let Ti,ri be a grid used in Algorithm 3.15, not necessarily the same as the grid 

for the homogeneous medium. In Proposition 3.16 we consider the following
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reconstructed averages true averages

Figure 3.11: Left: reconstructions of local averages of the smooth conductivity sigX 
(defined in Appendix C) using Algorithm 3.15. Right: true averages of sigX on the 
grid for the reference conductivity a 0 =  1.

convergence notion. Given a compact set S  of conductivities, the reconstructed con­

ductivity of Algorithm 3.15 converges to the true one if,

for i =  1, . . . ,  |7/2"| .

for i = 2, . . . ,  [l/2\ +  1, 

(3.16)

max max — 
<res he

r{j+2)h» r1

J ( i - k ) h n  JTij,

dtdO 
ta(t , 9)

max max —
<t€ S  je{i,...,n} h e

( j - 2)he J n +1 

Aj+i)he , i  d tde
/  /

J j h g  Jn

p=i

t
V r 1

i  P,3-
p=2

-P,3

0 +  2

<  Ci,

<  Cl,
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reconstructed averages true averages

F igure 3.12: Left: reconstructions of local averages of the piecewise constant con­
ductivity phantoml (defined in Appendix C) using Algorithm 3.15. Right: true aver­
ages of phantoml on the grid for the reference conductivity cr° =  1.

where as the number of layers I —> oo, we have e/ > 0 and q —> 0. Having Z —> oo is 

equivalent to having the number of measurements n —> oo, since to get uniqueness of 

the R-net reduced model (Corollary 3.8), we require that n =  2Z +  1.

So far we have not defined a reconstructed conductivity. The only information 

from the unknown a we can expect from Algorithm 3.15 are averages and this is 

precisely the only information about the reconstructed conductivity that appears 

in (3.16), through the resistor sums. This weak convergence notion was essentially
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reconstructed averages true averages

Figure 3.13: Left: reconstructions of local averages of the piecewise constant con­
ductivity phantoml (defined in Appendix C) using Algorithm 3.15 with noisy data. 
Right: true averages of phantoml on the grid for the reference conductivity a0 = 1.

introduced in [19, §4] for the ID inverse spectral problem of Chapter 2.

P roposition  3.16. Let S  be a compact set of conductivities containing <x° = 1. Let 

R i j , R,l j+i be the resistors obtained from measurements A4n(Af>tN) . For any choice
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reconstructed averages true averages

Figure 3.14: Left: reconstructions of local averages of the smooth conductivity sigX 
(defined in Appendix C) using Algorithm 3.15 with noisy data. Right: true averages 
of sigX on the grid for the reference conductivity a° =  1.

of positive radii r, , r\ we have,

max max — 
cres j€{i,...,n} he

r U + ^ her i  dtde

max max —<res he t u A~ t ' po+iJ j h e Jri  L p=2

> |ln(ri+1) -ln(r?+1)| ,

>  |ln(fi) - l n ( r f ) | .

(3.17)

Proof. Observe that a = 1 belongs to S.  Hence the left hand side of the first
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inequality in (3.17) is larger than,

1
he

r ^ h° r l dtdo

Jri+1 t -E*S
p= 1

r(j+h)he rr°i+1 d m

' { j - \ ) h e  J r i+1 t
| l n ( r i+1) - l n ( r ? +1)|

Similarly, the left hand side of the second inequality in (3.17) is larger than,

he

•U+Vhe rl dtdQ i 1 

E i he

r'(j+l)he rfi dtd9
=  |ln(fj) — ln(f! □

Owing to Proposition 3.16, it follows that convergence in the sense (3.16) implies 

that the radii of the grid must be asymptotically close to the homogeneous grid, as 

the number of measurements n —> oo. Here, the convergence of the radii is measured 

with the metric defined on (0,1] by |ln (a/6)|. Finally, we note that Proposition 3.16 

is modelled after [19, Proposition 4].

3.4 A  N e w to n -ty p e  itera tiv e  a lgorith m  for 

th e  inverse prob lem

We introduce in this section an iterative Gauss-Newton procedure that takes advan­

tage of the R-net reduced model of Section 3.2 in two ways. First, the reconstruction 

obtained in Section 3.3.2 is used as an initial guess for the iterations. Then instead of 

minimizing the misfit in the DtN data, as would be done in traditional Output Least 

Squares, we minimize the misfit in the reconstructions given by Algorithm 3.15. This 

can be done efficiently because the latter algorithm is computationally inexpensive. 

In doing so, we hope to precondition the EIT problem by solving an inexpensive 

discrete problem. Moreover, the iterative procedure converges to a conductivity that 

basically has the same averages as those found by Algorithm 3.15 and therefore fits 

the data automatically.
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Once the data fitting is done, we introduce a priori information in Section 3.4.3 

by adding a correction in the orthogonal complement of the sensitivity functions that 

need to be computed for the Gauss-Newton procedure.

3.4 .1  T h e G a u ss-N ew to n  itera tion

Let us denote by Tn : S  —> RnO- 1)/2 the mapping8 that takes us from the conduc­

tivity to the DtN map measurements and then to the averages9 <7jj+i/2i cf?;j given by 

Algorithm 3.15.

Given measurements Afn(A ^;^) of an unknown conductivity atrue, we use the 

Gauss-Newton method to find a conductivity minimizing,

llr n(^) -  r n((Jtrue)||2 . (3.18)(7

To be physically meaningful, the conductivity must remain positive. To enforce 

this constraint, we make the change of variables k  =  ln(cr) (sometimes called “geo­

metric programming”). We seek to compare in our cost functional quantities that are 

as similar as possible to our new variable k , s o  we further take the logarithm of Tn. 

Therefore instead of minimizing (3.18), we consider the unconstrained optimization 

problem,
1

mm -  
« 2

rn(«) -  r n (Ktrue) , (3.19)
2

where Tn =  lnoTn o exp and Ktrue =  ln(crtrue).10 Since Algorithm 3.15 gives recon­

structions that are close to the true conductivity, we hope that in some sense, the

Implicitly, we have assumed there is some convention to order the averages as a vector of length 
n(n  — l)/2 . Recall the size of the network is fixed by the requirement th a t the reduced R-net model 
is uniquely recoverable, see Section 3.2.2.

9By Algorithm 3.15, the averages are essentially rescalings of the resistors.
10Let pn (n) be the mapping tha t takes from a log-conductivity to the corresponding resistors. 

Then rn(re) =  Pn(0)/Pn(«9, where the division is understood componentwise. Thus measuring the 
misfit in T„(«) is the same as measuring the misfit in the log-resistors.
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mapping Tn is close to the identity.

We can compute sensitivity functions for the mapping Tn with respect to perturba­

tions in the log-conductivity and obtain the formal expansion around some reference 

log-conductivity k°,

f  n(«) =  f n(«°) +  DVn[K°]6K +  • • • , (3.20)

where k is the perturbed log-conductivity, DFn [k°] is the formal Jacobian of Tn at 

k° and 5k = k — k°. By a similar argument to the inverse spectral spectral problem 

(see Section 2.3.3), we expect the sensitivity functions to be weak approximations 

of characteristic functions of cells. Our computations confirm that the sensitivity 

functions are reasonably well localized, as appears in Figure 3.15. For the latter 

computations, the kernel of the DtN map is approximated pointwise on 100 equally 

spaced points of dFl and smoothed box functions define the measurement operator.

The Gauss-Newton method applied to (3.19), consists in finding the new iterate 

ftO+O from the previous iterate k ^  by

K(k+D =  K(k) +  ( r n( « w )  -  f n(«(*>)), (3.2i)

where is the pseudo-inverse11 of DYu[k This iteration amounts to

finding the update 5 k  =  K̂ k+V> — k ^  as the minimal L2 norm solution to the normal 

equations,

D r n [ K ^ ] D T n [ K ^ ] 5 K  =  ( f n (Ktrue) -  f „ ( ^ ) ) ,

where D F ^ I k ^ ]  is the adjoint of -Drn[/dfc)]. Thus in the iteration (3.21) we find the 

orthogonal projection of the update 5 k  =  K^k+lS> — k ^  onto the span of the sensitivity

11 The pseudo-inverse, also called the Moore-Penrose generalized inverse, can be defined in the 
context of Hilbert spaces. See e.g. [50, §2],
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Figure 3.15: Sensitivity functions for the reconstructed averages of Algorithm 3.15 
to perturbations in the conductivity. The resistor network here is (7(6,13) and the 
reference conductivity is a0 =  1. Since there is a 27t/13 rotational symmetry, only 
sensitivities for <7̂ 1/2 and oyo are plotted. All the sensitivity functions integrate to 1 
(numerically). The cells where the corresponding resistor is averaged are highlighted.

functions.

We start the iterations with a linear interpolation of the averages found by Al­

gorithm 3.15, which in most cases is already close to the true conductivity (Sec­

tion 3.3.2). The choice of a good initial iterate is helpful in the convergence of the 

Gauss-Newton method, because of the local convergence properties of the method. 

The complete algorithm is summarized in Algorithm 3.17 and numerical experiments 

are included and discussed in Section 3.4.2.

A lgorithm  3.17. Inpu ts: Measurements A4„(A^*^) (Definition 3.2) for n  odd and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

some tolerance e for the misfit. Outputs: A reconstructed conductivity a*.

1. Compute /A°) =  ln(cd°)), where cd°) is a linear interpolation of the averages 

crij+ i/2> &i,j obtained by Algorithm 3.15 from the measurements A4n(A^(J))).

2. For k =  0 ,1 , . . .  do,

(a) K&+» <- ( f n(Ktrue) -  f n( « « ) )

(b) If | | r n(/c(fc+1)) -  f n( « w )

3. a* <— exp(/dfe+1)).

< e, stop.
2

3.4 .2  N u m erica l ex p er im en ts  for th e  G a u ss-N ew to n  algorithm  

Im plem entation of the G auss-N ew ton algorithm

In our numerical experiments, n  is much smaller than the number of parameters used 

for k. Thus the pseudo-inverse in the Gauss-Newton iteration (3.21) can be efficiently 

applied with the identity,

(£>?„[«<*>])* =  DT*n[K^} . (3.22)

Furthermore, we observed that for the conductivities we considered, the Jacobian 

DTn[K^} is full-rank to working precision and well-conditioned, so that the relatively 

small matrix DTn[K^]DT^[k^ ]  is invertible and the pseudo-inverse in (3.22) could 

be replaced by the inverse.

One usually recurs to globalization strategies such as line search or trust region to 

guarantee progress to the solution at each iteration of Algorithm 3.17 by essentially 

limiting the size of the update (3.21). We observed that such strategies were not
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necessary and we believe this is because the initial iterate is already close to the true 

conductivity.

The iterations

We give in Figures 3.16 and 3.17 two typical reconstructions obtained by using Al­

gorithm 3.17 on data collected with 100 “electrodes” tainted with 1% multiplicative 

noise with zero mean. We determine the size of the network empirically as the largest 

network that gives positive resistors that do not change substantially with the re­

alizations of the noise. The PDE was discretized using the finite volumes method 

discussed in Section 3.1, on a grid with 100 x 100 dual cells of uniform size, with one 

degree of freedom for the conductivity per dual cell.

As can be seen from the reconstructions, numerical convergence occurs in only 

a few iterations, with the largest update occurring in the first iteration. For all 

practical purposes, this first iterate is already a good reconstruction. Also note that 

the conductivity values are better resolved than with the average reconstructions of 

Algorithm 3.15.

A non-linear preconditioning of the problem?

If we follow the traditional approach of measuring the misfit in the measurements 

directly and use the Gauss-Newton method to find a conductivity that fits the mea­

surements, we would obtain iteration (3.21) where the Jacobian D M n{(j\ of the mea­

surements appears instead of DFn(a). Here we compare condition numbers (ratio 

of largest singular value to smallest) for DTn[a] and D M n[o') and report them in 

Table 3.2.

The condition numbers of D r n[cr] are orders of magnitude smaller than those of 

DM.n[a] and do not change considerably with n or the conductivity. This is why
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n
a

D M n[a\
=  1 

DTn[a)
a =  

D M n[a\
sigX

DVn[a]
a =  phantom 1

D M n[a\ DTn[a]
9 5.55e+02 4.81e+00 5.72e+02 4.80e+00 1.24e+03 4.48e+00

11 5.14e+03 6.01e+00 5.27e+03 5.92e+00 1.13e+04 5.67e+00
13 4.88e+04 7.89e+00 4.95e+04 7.78e+00 9.19e+04 7.56e+00

Table 3.2: Condition number of DFn[<j] (misfit in the cr -̂, (7jj+1/2) compared to that 
of D A i n[cr] (misfit on the measurements directly) for different conductivities defined 
in Appendix C.

we say that measuring the misfit in the the reconstructions of Algorithm 3.15 is a 

preconditioning of the EIT problem. Nevertheless, having better condition numbers 

of the Jacobian does not mean that the Gauss-Newton method converges faster.

Note that in all the cases we considered, the matrices approximating these quan­

tities were full-rank, so that when using identity (3.22), the condition number of the 

systems we need to solve to compute the Gauss-Newton update is actually the square 

of what appears in Table 3.2.
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(a) initial guess a^°\ residual=1.03e-01 (b) iterate residual=1.00e-04

(c) iterate residual=6.62e-ll (d) iterate residual=1.70e-23

Figure 3.16: Convergence history for Algorithm 3.17 on the conductivity sigX (see 
Appendix C), with 1% noise added. The initial guess (a) is given by Algorithm 3.15 
on a (7(4,9) network. The reported residual is the misfit ||r„(ln(<r)) — r n(ln(<Ttr«e))Ill-
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(b) iterate residual=3.10e-03(a) initial guess a^°\ residual=7.61e-01

0.24

(c) iterate a^2\  residual=2.29e-08
0.24

(d) iterate cd3), residual=7.73e-18

Figure 3.17: Convergence history for Algorithm 3.17 on the conductivity phantoml 
(see Appendix C), with 1% noise added. The initial guess (a) is given by Al­
gorithm 3.15 on a (7(4,9) network. The reported residual is the resistor misfit
| |f n(ln(cr)) -  r„(ln(crtrue))Ill-
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3.4 .3  In trod u cin g  a priori in form ation  ab ou t th e  so lu tion

If a priori information about the solution is available, it should be taken into account, 

because the right prior generally improves the quality of the reconstructions. Here 

we assume that the prior is given in the form of a penalty functional J(a)  that mea­

sures how far a is from the desired prior. For example, if we expect that the true 

conductivity is piecewise constant, we can look for a conductivity that has a small 

total variation, i.e. J(a)  =  TV(cr).

As the numerical results of Section 3.4.2 show, the Gauss-Newton iteration con­

verges fast. In fact, after the first iteration, the corrections are so small that the 

image remains virtually unchanged. Therefore, for all practical purposes it is enough 

to keep the first Gauss-Newton iterate, which is the same as finding the minimal 

L2(H) norm solution k l s  to the linearized inverse problem,

D f n[K^}(KLS -  «(°>) =  f n( / w )  -  f n(K(0)). (3.23)

Clearly k  =  k l s  +  8 k  is also a solution to the linearized inverse problem (3.23) 

provided that 5 k  € null (-DTn[/A°)]). Therefore, we can add a priori information by 

simply looking for the correction 5 k  in the orthogonal complement of the sensitivity 

functions (i.e. null (-DTn[/A0)])) that minimizes the penalty functional. This gives us 

the following constrained optimization problem,

min J ( k )
(3.24)

subject to DTn[K^](K — k l s )  =  0.

The data fit of k  is to first order approximation the same as that of k l s . The 

procedure is summarized as follows.
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A lg o rith m  3.18. In p u ts : Measurements (Definition 3.2) for n odd and

a penalty functional J ( k) encoding the a priori information. O u tp u ts : A recon­

structed conductivity a*.

i. Compute k ^  =  ln(cd°)), where cd°) is a linear interpolation of the averages 

&i,j+i/2 ,&i,j obtained by Algorithm 3.15 from the measurements A4„(A^()[).

ii. Carry out the first iteration of Algorithm 3.17, that is compute the least squares 

solution to the linearized EIT problem with misfit measured in the outputs of 

Algorithm 3.15:

k LS K (0) +  ^ f n [ « W ] ) + ( f n ( K true) -  f n ( « ( ° ) ) )  .

iii. Find the reconstructed log-conductivity k* =  ln(cr*) as a minimizer of (3.24).

The idea of solving an optimization problem similar to (3.24) is not new, actually 

it was considered for example, by Dobson and Santosa [42] with J(a)  being a TV 

penalty functional. The biggest difference is that in their approach the sensitivities of 

the data to perturbations in the conductivity are used directly as constraints. This is 

problematic because such sensitivity matrices have a large condition number, so some 

SVD truncation is needed [42]. In the optimization problem (3.24), the sensitivity 

matrix (or numerical approximation of DTn[K^]) has a small condition number for 

two reasons: (1) the size of the reduced model (the R-net) is relatively small and (2) 

we apply the non-linear measurements-to-resistors mapping (which “preconditions” 

in some sense the problem, see Section 3.4.2).

Also because the number of resistors we look for is small, there are only a few con­

straints in the optimization problem (3.24). This can be exploited by the optimization 

algorithm to obtain reconstructions efficiently, as we show next.
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3.4 .4  N u m erica l exp erim en ts w ith  a priori in form ation

We implemented the method of the previous section with the functional Jt v , which 

favours blocky reconstructions and is defined as follows

We note that with the functional Jt v , and without any assumptions on DFQ/d0''] 

a minimizer of (3.24) is defined up to an additive constant. However we observed 

numerically that constants do not belong to the range of the sensitivity functions, 

thus the minimizer of (3.24) is unique.

Im plem entation strategies

To solve the problem (3.24) we resort to an SQP (Sequential Quadratic Programming) 

method where the KKT (Karush-Kuhn-Tucker) systems are solved using the range 

space approach [91, Chap. 18]. This method is well suited for our optimization prob­

lem, because we have only a few linear constraints, and the Hessian of the Lagrangian 

of (3.24) is readily available, positive definite and sparse. For the size of the problems 

we considered (up to 104 variables for the conductivity), sparse direct methods (such 

as UMFPACK in Matlab) are efficient in solving the systems involving the Hessian, 

that need to be computed at each iteration of the optimization algorithm.

To make the convergence global, we controlled the size of the step with a line 

search strategy on an l \  type merit function [91, p544].

Moreover, to minimize the non-differentiable functional Jtv  we recurred to the 

standard trick of approximating the absolute value by a smooth functional,

Jt v (k) = T V ( k), whereT V ( k) =  /  || Vft(x)||2 dx.
J  n
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with (3 =  0.1. We also used the Quasi-Newton approximation to the Hessian of the 

TV functional (i.e. the part of the Hessian that has second derivatives is ignored), 

that is further regularized by adding 10~2 to the diagonal entries.

The resulting numerical method to minimize (3.24) with the Jtv  functional is 

very similar to the so called lagged diffusivity method [112, pl36], modified to take 

into account the constraints.

N oiseless reconstructions

We stopped the iterations when the norm of the gradient of the Lagrangian was 

reduced by 5 • 10-2 , which in all our test cases occurred in no more than 15 SQP 

iterations. As can be seen in Figure 3.18, the typical convergence that we observed 

justify our stopping criterion: much of the progress in reducing the objective function 

is done at the beginning so it is best to terminate the iterations early.

To validate our approach on the ideal noiseless data case, we present in Figure 3.19 

reconstructions with such data. The PDE was discretized on a uniform finite volumes 

grid with 100 x 100 dual cells (see Section 3.1) and measurements are taken at 50 

equally spaced “electrodes” , that are lumped into fewer measurements to regularize 

the problem. The conductivity is sought after on a uniform grid with 50 x 50 cells to 

avoid committing an inverse crime.

3.4 .5  C om parison  o f  our m eth o d  to  o u tp u t least squares

We compare our approach to traditional output least squares (OLS) in Figure 3.20. 

In there, both methods are given noisy data collected at 50 “electrodes”.

To be more specific, let N  be the number of electrodes and MN(h-%tN) the 

measured DtN map. In our implementation of the OLS method, we seek the log-
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(a) Penalty functional. (b) Norm of gradient of the Lagrangian.

F igure  3.18: Typical convergence history of the SQP algorithm for minimizing 
(3.24) with a TV penalty functional.

conductivity k* minimizing,

mm +  (3.25)

where || • ||F is the Frobenius norm for matrices. We determine empirically the regu­

larization parameter a  by minimizing (3.25) for different values of a.

To minimize (3.25) we use the Quasi-Newton approximation to the Hessian of the 

TV functional and we further regularize the Hessian by adding 10-3 to the diagonal 

entries. For the globalization strategy of the iterations, we use Armijo line search. 

The stopping criterion for the operations was to achieve a relative reduction of the 

norm of the gradient of at least 1CT2.

Finally for making the comparison as fair as possible, the conductivity is discreti­

zed on the same 50 x 50 cells of uniform size. This makes the Hessian of the objective 

function in (3.25) a 2501 x 2501 dense matrix that is formed explicitly in our code.

The times included in Figures 3.19 and 3.20 correspond to wall-clock times for 

obtaining reconstructions in Matlab r2006a on a Pentium 4 Linux PC with 2GB of
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10 iterations, 6.0s 6 iterations, 5.4s

F igure 3.19: Reconstructions from noiseless data using Algorithm 3.18 with TV 
penalty functional, for the conductivity phantoml (see Appendix C).

RAM. We remark that Algorithm 3.18 is roughly 5 times faster than the traditional 

OLS approach. However in our OLS implementation, close to 50% of the time is 

spent forming the Hessian and solving for the Newton updates, while the other 50% 

corresponds to the forward problem and derivative computations. Thus, OLS is more 

expensive than our approach even if we could find a more efficient way of computing 

the updates (e.g. with a Krylov based iterative solver). The computational advantage 

of our approach is that we do not need to compute at each iteration the forward 

problem plus derivatives.
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1% noise 5% noise

0.27

10 iterations, 6.1s, C(4,9) 10 iterations, 5.4s, (7(3,7)

' 0.27

3 iterations, 32.8s, a = 0.1 3 iterations, 32.7s, a = 2

0.27

0.27

Figure 3.20: Comparison of the method of Section 3.4.3 with traditional output 
least squares.
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C hapter 4 

Sum m ary and future work

4.1 Sum m ary

In Chapter 3, we extended a finite differences based method for inverse Sturm- 

Liouville problems [19, 20] to EIT in dimension two. We obtained a simple inversion 

algorithm that efficiently estimates averages of the conductivity over grid cells and 

that is simple to implement. A deep rift between inverse Sturm-Liouville problems 

and EIT is that the latter is severely ill-posed. We cope with the ill-posedness in EIT 

in two ways. First, we determine as many parameters as we can expect to recover 

given the noise level in the measurements. Second, we acknowledge the spatial res­

olution limits inherent to the EIT problem by using a grid that is refined near the 

boundary of measurements.

Since both the simple inversion algorithm for inverse Sturm-Liouville problems 

and its extension to EIT are inexpensive, we use them as non-linear transformations 

of the measurements (Sections 2.4 and 3.4). So we setup a Gauss-Newton iterative 

procedure to minimize the misfit in the reduced model parameters instead of the 

conventional misfit in the measurements. We observed for both problems that the 

condition number of the Jacobian of the mapping taking from conductivity to reduced
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model parameters was significantly smaller compared to that of the mapping going 

from the conductivity to the measurements. This leads us to believe that this non­

linear transformation preconditions, in some sense, the problem. The iterative pro­

cedure converged quickly and allowed us to introduce a priori information about the 

true solution in a straightforward and efficient manner, without significantly changing 

the data fit (Sections 2.4.3 and 3.4.3) .

4.2 F uture w ork

First, it may be possible to extend the simple reconstruction algorithm of Section 3.3 

to EIT for low-frequency electric measurements. In this case, one is interested in 

finding the complex conductivity of the medium (also called impedance, see e.g. [18]) 

from voltage and electric current measurements at the boundary. A first step towards 

solving this problem would be to determine if at a fixed frequency it is possible to 

find a network of electric impedances (which play the role of the resistor network) in 

a unique way from the measurements. Perhaps the reconstruction algorithm could 

be also extended to the anisotropic case, where the solution is unique up to a smooth 

diffeomorphism of the domain that is the identity at the boundary (see e.g. [8]).

Sparsity is a notion that naturally arises when studying the resolution limits of 

inverse problems. Indeed, if we know that we cannot resolve all the details of the 

conductivity in EIT, it does not make sense to discretize the unknown with too many 

parameters. Thus we should look for a sparse reconstruction, meaning that it can 

be represented with only a few basis functions. A simple way of enforcing sparsity 

is to limit the number of parameters that we look for with the measurement preci­

sion, which is precisely what is done in e.g. [54, 28] and in Chapter 3. However, the 

unknown remains discretized on the characteristic functions of a grid. This maybe
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be satisfactory for the smooth and piecewise constant conductivities we have worked 

with, but is bound to fail in applications such as crack detection, where the inho­

mogeneities are typically small. Thus we want to explore the use of better adapted 

libraries of functions (e.g. ridgelets [24]) for parametrizing the conductivity and use 

the regularizing properties of sparsity that Daubechies et al. [37] have demonstrated 

at least for linear inverse problems.

The common theme between the iterative methods introduced in Chapters 2 and 3 

is that we use a reduced model of the differential equation that is uniquely recoverable 

from the data as a “preconditioner” in a Newton-type iterative procedure. However, 

such a model may not even exist for other inverse problems, and the interpretation of 

the reduced model parameters as a discretization may not be possible either. There­

fore, we would like to explore relaxations to this requirement that would give more 

flexibility to the methods we have developed. For example, is it possible to devise a 

similar iterative method by simply assuming a reduced model that does not fit the 

data exactly?
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A p pend ix  A  

O ptim al fin ite difference grids for th e  forward 

problem

In this Thesis we have only seen optimal grids in the context of an inversion method. 

To complete the picture, we give a brief overview of the existing work on optimal 

grids for the forward problem, which was the original purpose of optimal grids.

First proposed by Druskin [44], optimal grids are a second order finite difference 

scheme with grid steps chosen to minimize the error in the impedance function (2.6). 

The grid that is used is essentially the same staggered finite difference grid that we 

presented in Section 2.2.1. The key observation is that the impedance function (2.14) 

of the finite difference approximation is also a rational function. Thus the problem of 

finding the grid steps that minimize the error in the impedance function is essentially 

a rational approximation problem. In this respect, Ingerman et al. [63] obtain the grid 

steps from Zolotarev’s closed form, best rational approximation of the inverse square 

root function on an interval [1, 93]. This particular impedance arises in the case of 

a constant conductivity. For other impedance functions, Druskin and Knizhnerman 

[45] use Pade approximants to find close-to-optimal grid steps. Either of the two 

choices gives exponential convergence locally at the point where the impedance is 

defined (z = 0 in (2.3)), and only second order convergence globally.
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Another advantage is that at least in the high frequency limit (u>2 1), us­

ing the grid designed for the homogeneous medium (for the grid construction see 

Section 2.2.3) yields exponential accuracy of the impedance function [19, §5]. Ex­

ponential rates can also be achieved with spectral methods. Actually Druskin and 

Moskow [46] established for elliptic problems the equivalence of optimal grids to a 

spectral Galerkin-Petrov finite element method.

The main advantage of optimal grids is that they can dramatically reduce the 

number of points needed to achieve a certain accuracy in the impedance function. 

This discretization method has been applied to efficiently solve an elliptic problem 

coming from Maxwell’s equation in a geophysical application [38]. With a slight mod­

ification to the rational approximation problem, optimal grids have also been applied 

to hyperbolic problems (wave propagation) [9, 10] and to reduce the computational 

cost of Berenger’s Partially Matched Layers [11] (non-reflecting boundary conditions 

for wave propagation).
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A p p end ix  B  

W orking w ith  D tN  m ap m easurem ents

In this Appendix we complement Chapter 3 with some details we omitted. First in 

Section B .l we explain why trying to find the size of the network from the noise 

level does not work when considering the DtN map measurements. Then we show in 

Section B.2 how convex duality relations can be used to transform NtD to DtN map 

measurements exactly. Finally in Section B.4 we show what we mean by measurement 

lumping, which is a discrete approximation to the measured DtN map.

B . l  T h e singu lar fun ction s o f th e  D tN  m ap difference do not 

alw ays b eco m e sm ooth er  as th e  singular values increase

To obtain the size of the network from the noise level, the key observation in Sec­

tion 3.2.5 was that for the NtD map difference the largest singular values correspond 

to the smoothest singular vectors. This observation does not hold for the DtN map 

as we show next with a simple example.

Consider the DtN map difference A®tN — A®oN for two conductivities a and cr° 

that we assume are equal to a constant on a neighborhood of the boundary. From the 

bounds given in [54, AIII] it can be shown that the DtN map difference is a compact 

operator with rapidly decaying singular values. This happens even if the DtN maps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

by themselves are unbounded operators. Moreover, the singular values of the DtN 

map difference are 0 ( k a 2k).

In Example B .l, we give two simple conductivities a and a 0 for which the leading 

singular functions of the difference A ^ tN —A ^ N are not the smoothest ones. The same 

behavior is illustrated for a more realistic conductivity in Figure B.2. Therefore, we 

cannot make the assumption that the most significant part of the data is low frequency 

and can be represented with only a few points on the boundary.

E xam ple B .l .  Let <7° =  1 and a be,

The singular values s*. of A®tN — A®oN, associated with the singular functions 

sin(kd) and cos(kd) can be computed [65] to be,

a  =  0.95 in an non-standard way, as a function of the frequency k of the respective

frequencies.

B .2  C on vertin g  N tD  m ap m easu rem ents to  

D tN  m ap m easu rem en ts w ith  con vex  d u a lity

In dimension two, the electric current density j is divergence free, so there is a scalar 

field h such that j =  V ±h, where V x =  (d/dy, — d /d x )T. The current density is

a if 0 < r  < a

1 if a < r < 1.

1 + fr(a)a2k

where jx(z) = z — l / z  + l. We display in Figure B.l the singular values for a =  4 and

singular functions. Clearly, the largest singular values do not correspond to the lowest
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Figure B .l:  Singular values of the DtN map difference for cr° = 1 and a defined as 
in Example B .l, with respect to the frequency of the singular function.

related to the electric potential u through Ohm’s law (see e.g. [18, §2.1])

a V u  = j =  V Lh, (B.l)

where a is the electric conductivity.

Now recall that the DtN map is defined as A®tNf  — n • (aVu)  where u solves the 

differential equation with Dirichlet boundary conditions,

V • [(tVu] =  0 in Q and u \qq =  / .

By the duality relation (B.l) we have that h solves the differential equation with 

Neumann boundary conditions,

V- - V ha
1 .=  0 in 0  and n • ( —V h  ) =  —n • V u on dVt.

By using the duality relation (B.l) again we get that Af tNf  — n - V ^ h .  If we assume 

that the domain f2 is the unit disk as we did in Chapter 3, the tangential derivative
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First three s in g u l a r  functions of th e DtN m ap differencesingular v a lu e s  of DtN m ap d ifference
2 ,5

0 .5

-0 .5

- 1 .5
pi/2 3pi/210080

an g le

(a: Singular values) (b: Leading singular vectors)

Figure B.2: (a) Singular values of the DtN difference map for conductivities slgX 
(defined in Section 3.3) and <7° =  1. We include singular values for the true (solid line) 
and noisy (dotted line) difference maps. The noise level <5 =  10-3 is also displayed, 
(b) The three leading singular vectors, normalized such that ||-/fc||i2 =  1. The leading 
singular function Ii is in solid line, J2 in dashed line and / 3 in dotted line.

takes the form n • V x =  —d/d0  where 9 is the angle parametrizing the unit circle in

the usual way. Therefore the NtD map of 1/cr and the DtN map of a are related via 

the duality relation,

a  D t N  _  ^  a  N t D  d  f-r> 0 \

A- -  ~ d 6  ^  W  ( B ' 2 )

The numerical reconstructions methods of Chapter 3 assume the measured DtN 

map defined in (3.8) is known. We now show using the duality relation (B.2) that 

NtD map measurements consistent with the so called “shunt electrode model” [100] 

can be transformed into DtN map measurements.

Let ipi, ' ■ ■ j n be 2n nonnegative functions in with disjoint sup­

ports numbered in circular order around the boundary and such that =  1.

We assume that the NtD map measurements are in the form of the measured NtD
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map M.2n{^aW ) e  R2nx2n that is defined componentwise by,

( f a ,  A ” t D f a )  i f

2 n (B.3)
-  (^ > A^ D^ p) otherwise,

where (•, •) is the H ~1/2(8Q), H 1/2(8Q) duality pairing.

Let /j be the smallest connected component of 8Q containing supp fa2i and supp ip2i- 1 

and the functions fa be defined for i =  1, . . . ,  n  by,

where cq is the angle of some point in the complement of /; in dQ. Thus since the 

functions fak integrate to one, we have supp fa = Ii. Furthermore, the functions 

fa are nonnegative because the fak are numbered by increasing 6. Let us define 

fa = f dQfadx. The functions fa = fa/fa E H l/2(dQ) meet all the requirements 

outlined in Definition 3.2 to define a measured DtN map. In particular they have 

disjoint supports, therefore by the duality relation (B.2) we have for % fa j,

Thus by doing a numerical tangential derivative of the NtD data for a we can 

extract a measured DtN map for 1/a. We illustrate the process with Figure B.3. The 

matrix version of (B.4) is surprisingly simple:

f  —  \ N t D rb \  — / \  NtD® fa
86 a 86 \  86 ’ 86 (B.4)

o V  (fai -  -  fa j - l ) )  ■
PiPj

(B.5)
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0 2 i - l  — 4>2i 0 ;

- \ r M

Figure B.3: How n  measurement functions 0; for the DtN map could be obtained 
from 2n measurement functions ipk of the NtD map.

where Z { A) := A — diag (A l) and D G R2nxn is the matrix given columnwise by

D =  -  e2),/32(e3 -  e4) , . . .  ,/?„(e2n- i  -  e2„)].

Another immediate consequence of (B.4) is that we can formulate corollaries to 

the results we obtained in Section 3.2.3 on the consistency of DtN map measurements 

with the R-net model. Specifically, it would be possible to derive necessary conditions 

for the NtD map based on the necessary conditions of Ingerman and Morrow [62].

B .3  T h e m ollified  D tN  m ap

We consider a particular case of the measurement operator introduced in Defini­

tion 3.2, where the functions 0j are all constructed from a “mother” nonnegative 

function 0, with supp0 C (—1,1) and integrating to one. Let 0 ^  be the rescaled 

0 such that cp(n\9 )  =  (n /7r)0 (0n / 7r). Parametrize the unit circle <9D as usual by an 

angle 9 G [0, 27t), s o  that all x  G dfl can be written x(0), and let 9j = 2irj/n.

Definition B .2. We define the measured DtN map Af[n, 0](ACT) as in Definition 3.2 

with test functions 4>j,

&(0) =  0<”> (9 -  » j ) . (B.6)

In a slight abuse of notation, we use <pj(9) instead of 4>j(x.(9)). By construction,
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we have that the supp f t  C Oj +  (—7r/n, ir/n) are disjoint and that f gQ f td x  = 1.

When the mother function <j) is smooth, then M[n, ft\{Aa) can be seen as pointwise 

measurements of a mollified1 DtN map,

ADtN[a, f t n)] =  A ™  * ( f tn) <g> f t n)) , (B.7)

where f t n\ 0 ) =  f t n\ —9), the symbol <S> denotes the tensor product and the convo­

lution /  * g is understood in the distribution sense (see e.g. [52, Chap. 5]). The 

mollified kernel is then a smooth function defined for (a, ft) € [0, 2 ft  x [0, 27r) by,

K [ a , ^ ] ( a , l 3 )  = { ^ ( -  - a ) , A “ V n)('  - « ) ,  (B.8)

therefore for i ft j ,

=  ( f t , A af t )  =  .

Also, since 0 satisfies J ^ f t f t d t  = 1, the mollified map is, in some sense, an

approximation to the true DtN map. Moreover, as the true DtN map, the mollified

DtN integrates to zero:

( A DtN[a, f t n)], 1 )  =  ( A f tN * ( f t n> <8) f t n)) , 1 )
(B.9)

=  ( f t n) ® f t n\  (A f tN, l ) )  =  0.

B .4  L um ping o f  th e  m easu rem ents

Prom measurements M.[N, ip](A®tN) taken at N  “electrodes” we want to approximate 

measurements M [n, ft\(A®tN) taken at n «  N  electrodes. We propose a simple

1In distribution theory, this is also called regularization; see e.g. [52, §5.2]. To avoid confusions 
with regularization of inverse problems, we prefer not to use this terminology.
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approximation that is guaranteed to be the DtN map of a resistor network with n 

boundary points, at least for measurements devoid of noise.

Let 4>j{9) = (t){n){d — 2irj/n). Clearly when i ^  j ,  the entries of the measured DtN 

map can be approximated by

(M[n,(j)](A^tN)) = A®tN(f)j)
M (B.10)

«  (4>i,ADtN[a,^N̂}(t)j) ,

which is the same as approximating AA\n, 0](A ^tN) with A4[n, <f>*'ip('N/n^](A®tN). If ip 

is smooth, there are only ordinary integrals involved. We can then use M [IV, xp](A®tN)

to approximate k®tN(f)j) with some Cartesian product numerical integration rule

(see e.g. [73, §6.1.4]):

{4>i,h-otN4>j) ~  [  (/>i (-x)(f>j ( y ) K [ a , ^ N)](x , y ) d x dy
J  I i  X  I j

n  (B .ll)

p ,q - 1

where x j = x{2ixj/N), and are the coefficients in an integration rule designed 

such that,
n N

/(x)0i(x)dx «  Y  $ i,p/(xp)> (B'12)
JdQ p=1

We can put the approximation in matrix form,

M [n, cf>}(A°tN) »  Z  (#A4[iV, x/j] (A°tN) $ T) , (B.13)

where Z (A )  := A — diag (A l) and £ E nxJV has entries It is worth noting that 

because of the condition f m  <fii{x)dx =  1, if the integration rules (B.12) are exact for 

constants, then $ 1  =  1 .
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The following lemma gives mild sufficient conditions for the approximation (B.13) 

to be the DtN map of a well-connected resistor network. This is a discrete analogous 

of the consistency result in Section 3.2.3.

L em m a B .3. The approximation Z  ($ M [N , ip\ (A ftiV) <&T) to M[n, 0](A®tN) is the 

DtN map of a well-connected resistor network with n boundary points if the following 

conditions hold,

i. The matrix $  has nonnegative entries.

ii. The sets of indices D = {j  | > 0}; are disjoint and numbered in circular

order when laid down on a circle.

Proof. By construction A := Z  ($.Ad[iV, tp\ (A^tiV) # T) is an n x n symmetric matrix 

with zero row sum. Moreover by a discrete analogous of Lemma 3.11, all circular 

minors of A can be shown to be totally negative using the total negativity of the 

circular minors of A4 [A, ip\ (A^>t"v] and the properties above. Therefore A e f i „  (see 

Definition 3.4), which means that A is the DtN map of a well-connected resistor 

network. □

Since the <frj(9) ~  — 2ttj / n )  are nonnegative and have disjoint supports, the

conditions in Lemma B.3 can be easily satisfied if N  is large enough.
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A p p end ix  C 

Supplem ent for th e  tw o dim ensional num erical 

experim ents

Here we define conductivities that we used throughout the numerics of Chapter 3, as 

well as the smoothed box function that we use in the definition of the measured DtN 

map (Section 3.2.1).

C .l  C o n d u ctiv ity  defin ition s

We depict in Figure 3.10 the conductivities used in the numerical experiments of 

Chapter 3. The precise definition of each conductivity follows.

• Conductivity “sigX” (Figure 3.10 left)

Smooth function that is the superposition of two Gaussian bell functions. Specif­

ically, the conductivity is given by

^(x ) =  1 +  7̂ ( IM i2) ex p (-||A (x  -  a ) |||)  +  ^ ( l l x ll2) ex p (- ||B (x  -  b )|||) , 

where a  =  (0.3,0.3)T, b =  (—0.4, —0.4)T and the matrices A and B are,
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A =  Q diag ( \/2 0 ,1) Qr , B =  Q diag (1, ^20) QT, Q =  ^
v  2

1 1
1 -1

The function ip(t) is a smooth cutoff function that ensures cr|an =  1 by having 

fa t)  =  0 for t > 0.99 and fa t)  =  1 for t < 0.5. The smooth transition from 0 to 

1 on [0.5,0.99] is obtained by an affine mapping of the function exp(l +  1/s2) 

defined on [0, 1].

Conductivity “phantoml” (Figure 3.10 right)

A piecewise constant conductivity that represents a simplified chest phantom 

with conductivities relative to the background close to those of the human body 

during expiration [70, §5.1]. The background conductivity is 1. The lungs are 

simulated by two ellipses with conductivity 1/3 and the heart has conductivity 2. 

These conductivities are dimensionless since we have divided by the conductivity 

of the background medium.

C .2 T h e sm o o th ed  b ox  fun ction

We recall from Section 3.2.1 that the measured DtN map M.n(Aa) consists of mea­

surements taken with n non-negative functions fa defined on the boundary dVL and 

that have disjoint supports. In the numerics, all the fa are patterned from a single 

function and we explain how this is done.

We parametrize the boundary <9Q by an angle 9 G [0,27t], and by a slight abuse 

of notation fa{9) represents fa(fa6)). Then the functions fa are constructed from a 

single function fat) with supp4> C (—1,1), by setting

fa(0) = (n/7r)fa(n/7r)(0 -  2m/n)).
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1

0 0 1•1 0
t

F igu re  C .l :  The smoothed box function 0(f) we use to define the measured DtN 
map, rescaled to have values in [0, 1].

This guarantees that the 0; have disjoint supports since supp 0* C 2iir/n+(—Ti/n, ir/n).

W ith this choice we are sure to get a layered resistor network from a layered 

conductivity. Indeed, when the conductivity cr is layered, the measured DtN map is 

a circulant matrix because of the n —fold rotational symmetry of the setup.

The particular function 0 we chose is the smoothed box function depicted in 

Figure C .l, rescaled so that cf)(t)dt = 1. The function 0(f) appearing in Figure C.l 

is such that 0(f) — 1 for |f| < 0 .1  and 0(f) =  0 for |f| > 0.9. The smooth transition 

from 0 to 1 on [0.1,0.9] and [—0.9,—0.1] is obtained by an affine mapping of the 

function exp(l +  1/ s 2) defined on [0, 1].
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