INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher

quality 6” x 9" black and white photographic prints are
available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1338748

Efficient simulation and utilization of a parallel digital signal
processing architecture

Foundoulis, William James, M.S.

Rice University, 1989

U-M1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

RICE UNIVERSITY

EFFICIENT SIMULATION AND UTILIZATION OF A PARALLEL
DIGITAL SIGNAL PROCESSING ARCHITECTURE

by

WILLIAM JAMES FOUNDOULIS

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

APPROVED, THESIS COMMITTEE:;

Ert Jump, Profea of

Electrical and Computer Engineering,
Co-Chairman

J%es B. %incla]r, Associate Professor of

Electrical and Computer Engineering,

Peter J. Varman, Assistant Professor of
Electrical and Computer Engineering

Houston, Texas
May, 1989

Efficient Simulation and Utilization of a Parallel
Digital Signal Processing Architecture
by
William James Foundoulis

Abstract

In this study we discuss the development and validation of an efficient and accurate
execution-driven simulation of the Texas Instruments Odyssey System, a parallel config-
uration of digital signal processors. We also evaluate the performance of a high-level
parallel programming interface, Odyssey Concurrent C, designed to effectively utilize the
parallelism available in the Odyssey architecture. Parallel versions of three dissimilar al-
gorithms—merge sort, 2-dimensional convolution, and successive over-relaxation—have
been run on both the Odyssey and the simulator. Quantitative differences between perfor-
mance results obtained on the Odyssey and those predicted by simulation are enumerated,
and shown to validate the accuracy of the execution-driven approach. The simulation
is also shown to be efficient relative to the degree of accuracy obtainable Finally the

Odyssey Concurrent C utilities are shown to provide a flexible and effective mechanism

for managing parallelism in the Odyssey environment.

Acknowledgements

I wish to thank the many faculty, friends, and family who have helped to make
this effort possible. Drs. Jump and Sinclair, my committee directors, have always been
available for questions/comments/suggestions, and were exceptionally patient when work
was progressing very slowly. Dr. Peter Varman was kind enough to lighten my grading
load during this busy semester, as well as serve on my committee. And a special thanks
to Dr. Joe Cavallaro, who has provided keen insights into the unique pressures facing

a new faculty member.

I am also indebted to the co-workers with whom I have shared this experience. The
invaluable assistance of Rick Covington and Sridhar Madala was critical to this work, and
was always given freely despite their own pressing deadlines. Also, Trinanjan Chatterjee,
Bill Dawkins, Vijay Debbad, Kshitij Doshi, Sandhya Dwarkadas, Steve Ingels, Grant
Lauderdale, Varun Mehta, Rajat Mukherjee, and Nigel Waites have been the source of

innumerable enlightening discussions during my stay here.

Finally, I would like to express my heartfelt thanks to my parents, whose support

through many difficult years has been unwavering.

2.1

22

2.3

24

3.1

3.2

33

34

4.1

4.2

4.3

4.4

4.5

4.6

Table of Contents

Overview

Odyssey System Architecture
Introduction

Processors

Memory

Interconnection Network

Odyssey Concurrent C

Introduction

Design Factors

OCC Primitives

Programmer’s View

Performance Measurements

Sunimary :
The Rice Parallel Processing Testbed
Introduction

Concurrent C

CSIM

ASIM and ASIMP

Profiling

Odyssey Architecture Modeling

12

12

15

16

16

17

18

18

22

5 Algorithms

5.1 Introduction

52 Merge Sort

53 2-Dimensional Convolution
54 Successive Over-Relaxation
6 Results

6.1 Introduction

6.2 Sources of Error

6.3 Validation

64 Prediction

7 Conclusions

7.1 Summary of Results

72 Future Work

References

25

25

26

28

37

37

37

41

54

61

61

63

65

Chapter 1

Overview

With the recent emphasis on parallel processing and the availability of true concurrent
machines, the need has arisen for methédologies concerned with using, analyzing, and
evaluating parallel architectures. This thesis deals with the effective use of an existing
parallel processing architecture as well as the efficient and accurate simulation and

performance evaluation of that architecture.

The architecture discussed here is tﬁe Texas Instruments Odyssey System, a parallel
machine consisting of digital signal processing chips interconnected through a shared-
bus communications network. A high-level parallel programming interface, Odyssey
Concurrent C, has been developed in order to more easily program the Odyssey. The
simulation of the Odyssey runs on the Rice Parallel Processing Tgstbed, a software tool
used to simulate the execution of concurrent algorithms running on parallel architectures.

Specifically, the contributions of this work include the following:

1) The use, testing, debugging, and performance evaluation of a high-level parallel
programming interface designed to make effective use of the architectural features
available in the Odyssey architecture.

2) The development of an efficient and accurate package for simulating and evaluating
the performance of the Odyssey system.

3) The implementation of several concurrent algorithms on the Odyssey, including a

validation of the efficiency and accuracy of the simulation package in 2), and an

analysis of the effectiveness of the Odyssey Concurrent C routines in 1).

The remainder of this thesis is organized as follows. Chapter 2 describes the Odyssey
system architecture. Chapter 3 is a discussion of the Odyssey Concurrent C user interface
which was used to program the Odyssey, and the results of some basic performance
measurements. Chapter 4 is a brief overview of the Rice Parallel Processing Testbed used
to simulate the Odyssey. Especially important here are the final two sections discussing
profiling and architecture modeling. Chapter 5 describes the parallel algorithms which
were implemented on the Odyssey. Chapter 6 is a compilation of the results of running
and simulating these algorithms on the Odyssey, as well as a discussion of the significance
of these results. Finally, Chapter 7 summarizes the important results of the thesis and

discusses some possible extensions to this work.

Chapter 2

Odyssey System Architecture

2.1 Introduction

The Texas Instruments Odyssey System is a parallel configuration of digital signal
processing chips [1] which runs in a NuBus-based environment such as exists on the
Texas Instruments Explorer.! Figure 2.1 shows the important architectural features of
a single board in an Odyssey system. An Odyssey board consists of four processor
modules, each containing a TMS32020 or TMS320C25 processor chip, several types
and speeds of memory, and bus interface circuitry. Processors communicate through a
shared-bus interconnection network which allows every processor access to all off-chip
memory in the system. An Odyssey system may contain anywhere from 1 to 16 boards
for a maximum of 64 processors. Each of these architectural components is discussed in

more detail below. For full documentation on the Odyssey System, see [2].

2.2 Processors

The processors we are currently using on the Odyssey are Texas Instruments
TMS320C25 digital signal processors [3). The TMS320C25 uses a modified Harvard
architecture, meaning program and data spaces are distinct and accessed through separate
buses. The fundamental advantage of the Harvard architecture is that program (code)

and data (operand) fetches can occur simultaneously.

! Odyssey, NuBus, and Explorer are trademarks of Texas Instruments Inc.

e

ODYSSEY BOARD
PROCESSOR MODULE 0 PROCESSOR MODULE 1
TMS320C25 DATA TMS320C25 DATA
PROCESSOR MEMORY PROCESSOR MEMORY
LOCAL LOCAL
BUS BUS
PROGRAM SP BUS PROGRAM SP BUS
MEMORY INTERFACE MEMORY INTERFACE
[} A

SP BUS

SP BUS
y
PROGRAM SP BUS
MEMORY INTERFACE
LOCAL
BUS
TMS320C25 DATA
PROCESSOR MEMORY
PROCESSOR MODULE 2

Y
PROGRAM SPBUS
MEMORY INTERFACE
¥ ¥
LOCAL
BUS
TMS320C25 DATA
PROCESSOR MEMORY
PROCESSOR MODULE 3

SP BUS

TO OTHER BOARDS

Figure 2.1: Odyssey board system architecture.

5

The TMS320C25 was designed primarily for low-level signal and image processing
applications [4]. Consequently, many special hardware and instruction set features
are provided explicitly for this purpose. A hardware instruction pipeline is used to
speed program execution. This, combined with the Harvard architecture, allows many
instructions to be performed in a single cycle. Since the processors on the Odyssey are
clocked at 5 MHz, execution speeds near 5 MIPS can be achieved. The architecture also
supports a mode whereby instructions can be repeated up to 256 times. The instruction
pipeline and repeat mode features allow very efficient multiply/accumulate and block data
move operations to be performed. Efficient block data moves are critically important in

an architecture where several different address spaces are available.

A C compiler (preprocessor, parser, code generator, and assembler/linker) is also
available for the TMS320C25. With minor exceptions, it implements a standard version

of C. For full documentation on the TMS320C25 C compiler, see [5, 6].

2.3 Memory

Several different memory spaces are addressable in the TMS320C25 processor
architecture. Those which exist in an Odyssey board configuration are discussed here. 544
16-bit words of on-chip (zero wait-state) data memory are available on each processor.
This memory can be considered a large register set, and most instructions which use data
residing in on-chip memory can be executed in a single cycle. An additional 64K words
of local (off-chip) data memory is also available to each processor in the system. This

memory has one wait-state, and instructions whose data are in local memory generally

6
take 2-3 instruction cycles to complete. The program space consists of 8K words of zero
wait-state memory per processor. All code running on each processor is contained in
this memory space. The final memory class of concern here is global memory. Memory
is said to be global relative to a given processor if it is in the local data or program

address space of another processor. The Odyssey has hardware enabling all processors

to access global' memory.

2.4 Interconnection Network

Processors in the Odyssey system are interconnected via the Signal Processing (SP)
bus, which is a modification of the proposed IEEE NuBus standard [7]. The SP bus is a
shared-bus network which allows any off-chip memory location in the entire collection
of system boards to be accessed by any processor in the system. SP bus arbitration is fair
in the sense that a request for the SP bus from a given processor will be serviced before
any later request from some other processor. Hence, no bus starvation is possible, and

repeated simultaneous requests for bus service from multiple processors will be serviced

in a round-robin fashion.

Special hardware features are provided in each processor module allowing access
to the SP bus. A single global memory access (16-bit word) over the SP bus takes a
minimum of 1.6 us not including software overhead. The total time necessary to access a
single word including software overhead is about 4 us. However, we will see in Chapter

3 that by transferring blocks of data rather than one word at a time global memory may

be accessed ai ihe rate of about 2 us per word.

Chapter 3

Odyssey Concurrent C

3.1 Introduction

Programming parallel algorithms for the Odyssey system has in the past required a
detailed knowledge of the low-level hardware features available in the architecture, It

also required at least some assembly language programming to properly manipulate these

hardware features [8].

As a result of the availability of a C compiler for the Odyssey processors, and the
desire to create a less intimidating programming environment, we have implemented a
high-level parallel programming interface for the Odyssey system. This environment,
Odyssey Concurrent C (OCC), insulates the programmer from most of the architectural

details of the system. It also allows relatively quick algorithm design and prototyping

since all source code can be written in C.

Facilities are provided in OCC for interprocessor communication and synchronization,
Message passing is the basic communications model, and various semaphore handling
operations are also available. These basic operations allow enough flexibility so that
virtually any coarse-grained parallel algorithm can be programmed effectively using the

OCC primitives.

3.2 Design Factors

In developing OCC, the most critical design decision involved the choice between

providing a message-based communications facility or implementing a shared-memory

model for the Odyssey system. The decision was made based primarily on the following

observations:

1)

2)

3)

4)

Although all memory is accessible from all processors, the Odyssey belongs to
the class of shared-memory multiprocessors known as Non-Uniform-Memory-Access
systems. This is because global memory accesses are several times slower than
local accesses. Consequently, the indiscriminate use of global memory can be very
inefficient.

Processors cannot utilize global memory in the same fashion as local memory. Any
global data and/or program code must first be read into local memory to be used.
This makes the design of a traditional shared-memory model difficult.

Instruction pipelining, along with special block data move and repeat mode capa-
bilities, make moving blocks of data within local memory much more efficient than
moving one word at a time. Additional hardware built into each processor module
allows similarly efficient block data moves over the SP bus. It follows that since
communication among the processors is most efficiently handled through the move-
ment of blocks of data over the SP bus, a message-passing protocol is the most
natural model to implement.

Since the SP bus is shared among all processors it can easily hecome a bottleneck,

precluding the efficient execution of very fine-grained algorithms on the system.

9
Hence, architectural considerations limit us to using algorithms exhibiting medium- to
coarse-grained communication patterns. Interprocessor communication in algorithms
of this type tends to occur at relatively infrequent intervals, but involves transfers of
large amounts of data. This again lends itself to a message-based communications

facility as the most efficient means of using the architecture.

For these reasons, message passing was chosen and implemented in OCC as the fun-
damental mechanism for interprocessor communication. The resulting system presents
the user with a high-level interface with which parallel algorithms can be quickly and
effectively programmed for the Odyssey. The available message-passing and synchro-
nization facilities are discussed in the following sections. For full user documentation

on OCC, see [9, 10].

3.3 OCC Primitives

Both synchronous and asynchronous message-passing facilities are available in
OCC. Synchronous primitives consist of SendRequest(), ReceiveRequest(), and Reply().
SendRequest(id,coum,sbufpzr,rbuﬁ:tr,reqtype) sends a request message of count words to
the processor identified by id. The request i§ copied from the buffer pointed to by sbufprr.
The reply returned by the receiver is copied into the buffer pointed to by rbufptr. The
request sent is of type reqtype and the call returns with the size of the reply message
in words. The sender blocks until it receives a reply from the receiver, so no buffering

of the request is necessary.

10

ReceiveRequest(block,bufptr reqtype typeptr,cniptr) receives the next request of type
reqtype. The request is copied into the buffer pointed to by bufprr. The reqtype parameter
can be used to selectively receive requests. For example, the type could be the sender’s
processor identification number, or it could correspond to the current stage number of
the algorithm. A receive may be blocking or non-blocking. If block is 0, the receive
will return immediately if no requests of the proper type are available. If block is 1, the
receive will wait indefinitely for the next request. The type of request actually received
is placed in &typeptr, while the number of words received is left in &cnptr. The call

returns the identification number of the sender.

Reply(id,count,bufptr) sends a reply message of count words to processor id. The
reply message is copied from the buffer pointed to by bufper. A processor that is replied
to should be blocked in a SendRequest() and waiting for a reply from the receiver. These
synchronous routines can be used to implement request-reply transactions in a client-
server application or any time processors must exchange data, They are also effectively
used in aigorithms where processors reach communication points at approximately the

same time.

Asynchronous message passing is accomplished with the SendMessage() and Re-
ceiveMessage() primitives. Buffers on each processor are statically allocated at compile
time and determine the maximum message length and maximum allowable number of
outstanding messages supported by the system. SendMessage(id,count,bufptr,msgtype)
sends a count word message of type msgtype to processor id. The message is copied

from the location pointed to by bufprr. If a free buffer exists at the receiver, SendMes-

11
sage() will buffer the message and return; otherwise, the sender blocks until a free buffer
becomes available. No reply or acknowledgement is given when a message is actually
received (as opposed to just being buffered) by the intended processor, and deadlock-free

operation is the responsibility of the algorithm designer.

ReceiveMessage(block,bufptr,msgtype cniptr,typeptr.idptr) receives the next available
message of type msgtype. The msgtype parameter is used the same way here as in the
synchronous primitives. The message is copied into the buffer pointed to by bufptr.
The receive may be blocking or non-blocking, again similar to the synchronous routines.
The number of words received, type of message received, and identification number of
the sender are returned in &cmiptr, &typeptr, and &idptr, respectively. Asynchronous
message passing is less space efficient than synchronous, but can be useful for algorithms
where communication points are reached at widely varying intervals on the various

processors in the system.

Message passing inherently involves a synchronization operation. However, other
primitives are also available in OCC to handle pure synchronization operations which
would be awkward to accomplish with message passing alone. These facilities are im-
plemented with semaphores manipulated by Dijkstra’s classic P() and V() semaphore op-
erations. A V(id,semptr) operation increments (by one) the semaphore located at address
semptr in the local memory space of processor number id. A P(id,semptr) decrements
the specified semaphore by one if it is positive; otherwise, the calling processor suspends
until some other processor releases the semaphore with a V() operation. Semaphores are

used to control access to one or more resources through proper initialization and use.

12
For instance, semaphores are extensively used in the OCC message-passing routines to
control access to the SP bus as well as OCC data structures. Semaphores can also be

used to force synchronization points in a program if necessary.

3.4 Programmer’s View

The OCC programmer’s view of the Odyssey system consists of the following:

1) several processors, each of which may be running independent copies of the same
code or completely different algorithms;

2) amaximum of one process per available processor (the lack of a true operating system
on the board disallows the use of such things as multiprogramming, time slicing, and
dynamic process creation/migration);

3) a set of message-passing and synchronization facilities as discussed above; and

4) a standard C language interface, subject to the constraints of the architecture (such
as memory size limitations) and the TMS320C25 C compiler (such as available data

type sizes).

In general, OCC presents the user with a relatively simple view of the Odyssey system,

handling the more complex implementation details internally.

3.5 Performance Measurements

Some basic performance measurements of the OCC message-passing primitives are
given in Figures 3.1-3.3. Figure 3.1 plots the total time necessary to send a synchronous

message. This time includes the SendRequest() to a remote processor (that is blocked

message time (jis)

10000 100

. /Q\
8000 - —0— Message Time L 80 e
] —— Software Overhead | g
6000 - -60 £
- - >
4000 - - 40 §
! 5
2000 + - 20 S
3 w3

o L) v] M L] ¥) v L v L v S v L} M 0

0 $12 1024 1536 2048 2560 3072 3584 4096

message length (16-bit words)

Figure 3.1: Synchronous Message Passing Time and Software Overhead vs. Message Length,

message time (Us)

Figure 3.2: Asynchronous Message Passing Time and Software Overhead vs. Message Length.

message time (is)

10000

8000

6000 -~
4

4000 -

2000 -

—@— Message Time L 80
=—e&— Software Overhead A
- 60
- 40
- 20
0

0

10000

L e NN ma e s e —
§12 1024 1536 2048 2560 3072 3584 4096
message length (16-bit words)

8000 I hSd:ft&vsfa?ee &r::head P 80
6000 - - 60
4000 - -.-40
2000 - :20
0= . 0

1 v L} M] v] v] v ¥ v L) M
512 1024 1536 2048 2560 3072 3584 4096
message length (16-bit words)

Figure 3.3: Message Passing Time and Overhead (Assembly-Coded Routines).

software overhead (%)

software overhead (%)

13

14
on a ReceiveRequest()), the message transfer to that remote processor, and a zero-length
Reply() from the receiver in acknowledgement to the sender. Also plotted in Figure 3.1 is
the percentage of the total message passing time attributable to software overhead. This

includes everything except SP bus protocol overhead and transmission time.

The plot shows that sofiware overhead is fixed at approximately 500 us, regardless
of message length. The SP bus transfer time works out to just under 2 us per 16-bit
word of the message. For reasonably large (i.e., >512-word) messages, total message
passing time is near 2 us/word. This is in comparison to the aforementioned 4 us needed

to access a single word over the SP bus using hand-written assembly code.

Figure 3.2 is similar to Figure 3.1 except asynchronous message passing is used.
In this case, the total time consists only of the SendMessage() call, which returns after
transferring the message to the receiver’s buffer space. Software overhead here is 260 us,
or about half that of the synchronous case. From the sender’s viewpoint, asynchronous
message passing can be faster than synchronous because the sender need not block for
the duration of the transfer. However, the total time from the send to the end of the

receive will actually take longer in the asynchronous case since an extra buffering step

is necessary.

Figure 3.3 plots message-passing time using some synchronous block transfer rou-
tines, hand-coded in assembly language, from another source. Software overhead is 150
ps, or about a third that for the synchronous OCC utilities. These routines implement
a much simpler message-passing protoco! than the OCC utilities and so are not direcily

comparable. If exactly comparable routines were written in assembly language, software

15
overhead would probably be about half that of the C compiled versions. In any case,
the important point to note is that for reasonably large messages, differences in over-
all message-passing time using C-coded and assembly-coded primitives is quite small.
Given the advantages of using C, it is apparent that little would have been gained by

programming the OCC routines in assembly.

3.6 Summary

The applicability of the OCC utilities is dependent upon several factors including
architectural considerations, flexibility, ease of use, and the efficiency resulting from
their use. The power of the Odyssey processors and the fundamental limitations of
the SP bus interconnection network result in the system being most effectively used
with algorithms exhibiting relatively coarse-grained communication patterns. In these
algorithms, processors perform significant amounts of computation on a large amount of
data and then exchange blocks of data among themselves. Transferring blocks of data
between processors is inherently a message-passing operation, and hence, algorithms such

as this are easily programmed using the OCC routines.

From an efficiency standpoint, we have seen that global block data transfers of
sufficient length are about twice as fast on a per word basis as accessing a single word
over the communications network. This again leads us to conclude that message passing
is the obvious choice for this architecture, and that the algorithms most amenable to

running on the Odyssey will be those which can be designed so that messages are of

relatively large size,

16

Chapter 4

The Rice Parallel Processing Testbed

4.1 Introduction

A major result of this work is the design and validation of an efficient and accurate
simulation of the Odyssey system. The simulator was implemented using the Rice
Parallel Processing Testbed (RPPT), a large software project running under UNIX? on
Sun Workstations.> The RPPT is based on a relatively new simulation technique called
execution-driven simulation [11, 12, 13]. Execution-driven simulation is an efficient
method of simulation whereby a real concurrent program is run directly on the simulator
using the simulating processor’s own compiler and instruction set. This is a more flexible
and accurate mechanism for simulation than would exist in a simulator based upon
statistically-derived workloads. It is also much more efficient than either a trace-driven
approach or an instruction-level simulation, which must emulate the detailed effects of
the simulated system’s instruction set. In summary, the RPPT attempts to simulate with
a high degree of efficiency while at the same time generating performance predictions

that are only slightly less accurate than a costly emulation of the target architecture,

The major components of the RPPT consist of the following,

1) Concurrent C: a pseudo-concurrent programming language.

2) CSIM: a discrete-event simulator.

[1]

UNIX is a trademark of AT&T Bell Laboratories,

Sun Workstation is a trademark of Sun Microsystems Inc.

17

3) ASIM: a library of modified Concurrent C routines which account for simulation time.

4) ASIMP: a preprocessor which replaces Concurrent C calls with their corresponding
ASIM calls.

5) A set of assembly language timing profilers (TPROF) which insert instructions into
assembly code to increment a globally available counter. Also of importance here
is a methodology (cross-profiling) for inserting profiled timings from the simulated
system into the simulator’s code.

6) A library of architecture models which account for the transmission time of messages

over the simulated interconnection network between processors.

Each of these subsystems is discussed in greater detail below, with emphasis placed on

those aspects specific to simulating the Odyssey.

4.2 Concurrent C

Concurrent C is a parallel programming language consisting of a collection of C
utility routines that allow process management, synchronization, and interprocessor com-
munication [14]. Concurrent C processes may be created, forked, activated, suspended,
and joined. Pure synchronization is by means of the classic semaphore operations while
interprocessor communication is accomplished with synchronous and asynchronous mes-
sage passing. The syntax and logical properties of the Odyssey Concurrent C routines

discussed in Chapter 3 were derived from a subset of the Concurrent C facilities.

It is important to note that a Concurrent C program runs in a uniprocesser environment

as a single UNIX process. This “pseudo-concurrency” maintains the logical properties

18
of a true concurrent program (such as synchronization) but does not take into account
the execution time or interconnection network delays which would exist in an actual

parallel environment.

4.3 CSIM

CSIM (C SIMulation package) is a process-oriented discrete-event simulator [15, 16].
It is built on top of Concurrent C and primarily adds event queue capabilities to the basic
Concurrent C facilities. CSIM provides a set of predefined types and a collection of utility
routines which manipulate these types. The available types include semaphores, queues,

state variables, and conditions. A flexible statistics collection facility is also included.

CSIM is the mechanism through which simulation time is consisfently maintained
in an RPPT application. CSIM data structures and calls to CSIM routines are also the

means by which the architectural model of the simulated system is implemented.

4.4 ASIM and ASIM

ASIM (Architecture SIMulator) consists of modified versions of the Concurrent C
procedures to which CSIM data structures and calls have been added to account for

execution time in an RPPT simulation.
ASIMP (Architecture SIMulator Preprocessor) is a lexical analyzer, run as a pre-
processor to a Concurrent C program, which changes all Concurrent C calls in the pro-

gram to their corresponding ASIM calls. In this way, a basic Concurrent C program is

transformed automatically into a form suitable for simulation.

19

4.5 Profiling

4.5.1 TPROF

TPROF (Timing PROFiler) is a collection of instruction set profilers, each matched
to a specific processor, which analyze the basic block structure of an assembly language
program and insert instructions into each block to increment a counter by the estimated
execution time of that basic block. Basic blocks are sections of code which are guaranteed
to execute sequentially on a single processor. A basic block begins with the first
instruction following either a label or a I'Jranch, and ends with either the last instruction
before a label or a branch. The fundamental advantage of basic block profiling is that
a counter tracking cumulative simulation time need only be incremented at basic block
intervals rather than at each instruction, thereby eliminating much simulation overhead.

Estimated execution times are derived from timing tables generally published with
the documentation for a chip. For the TMS320C2S, timing tables are available from
which cycle counts may be determined for any instruction executing in any memory
space available to the processor in the Odyssey system. The version of TPROF specific

to the TMS320C25 uses these tables to calculate the execution time for each basic block

it encounters.

4.5.2 Cross-Profiling

The various versions of TPROF may be used as standalone profilers. However, this
necessitates running the RPPT on a processor with the same instruction set as that of the

simulated system. To avoid this limitation (which would preclude the use of the RPPT

20
in simulating the Odyssey), a method called cross-profiling has been developed whereby
the profiled basic block timings from the simulated processor’s assembly code may be
inserted into corresponding basic blocks in the simulating processor’s assembly code [17,
13]. The major requirement is the availability of a C compiler for both processors, each
of which generates code for the major C language constructs with similar basic block

structure. Fortunately, this is typically the case for compilers that do not perform much

optimization.

The processors of interest here are the TI TMS320C25 (the simulation target ar-
chitecture) and the Motorola 68020 (the RPPT host Sun). Cross-profiling is performed
by automatically inserting markers into original C code which will “fall through” to the
assembly code level during compilation. These markers are placed at locations in the
source code which define the overall block (as opposed to basic block) structure of the
program. For example, markers are placed before and after for, while, and if statements,

before blocks of sequentially executed code, etc. After compiling to the assembly-code

vel, cotresponding profilers are run on the files for the target and host. The host profiler
simply marks the basic blocks, while the target profiler both marks blocks and maintains
a table of basic block times. Finally, using corresponding basic block boundaries and the
placement of the markers from the original C source code, the basic blocks of the target
and host are matched and timing information derived for the target is inserted into the
corresponding blocks of the host. In this manner the RPPT simulation, which runs on a

68020 processor, uses the basic block timings generated by the TMS320C25 profiler.

The basic block matching between compiled TMS320C25 and 68020 code is not

21
perfect. Errors may arise from actual basic block mismatches, or because a basic block
on the target has no correspondence with a basic block on the host. We shall see in

Chapter 6, however, that for any reasonably straightforward non-trivial C source code,

the error introduced by cross-profiling is quite small.

Code for which the original C source is either nonexistent or unavailable cannot
be cross-profiled. For our purposes, this primarily applies to the software floating-
point routines provided with the TMS320C25 C compiler. In order to account for the
execution of these routines in a simulation, measurements must be made to arrive at
average execution times for these functions. These times can then be inserted directly

into the simulation code at the profiling stage.

Tables 4.1-4.3 enumerate the average times which were observed. Most of these
execution times were relatively consistent (i.e., not data dependent). Addition and
subtraction, however, exhibited great variability, and we shall see later that this causes
additional inaccuracies to arise in simulations of routines that call the software floating-

. .
point functions,

Addition Subtraction
42.4 48.6

Multiplication Division Negation

Table 4.1: Sofiware floating-point timings (us) for basic operations.

EQ NE LT LE GE GT
13 13.4 132 | 132 132 | 132

Table 4.2: Software floating-point timings (us) for logical operations.

22

Increment Decrement Float to Int | Float to

Unsigned to

Float Unsigned

58

Table 4.3: Software floating-point timings (us) for miscellaneous operations.

4.6 Odyssey Architecture Modeling

Every RPPT application contains an architecture model which accounts for 1) the
software overhead associated with interprocessor communication, and 2) the transmission
time of a message over the interconnection network. Software overhead is handled by
delaying the processor at appropriate points in the ASIM procedures (generally at the
beginning and end of the routines). The length of delay is determined by a call to a user
supplied routine which returns the time necessary for software overhead at that point.
Bus transmission time is accounted for in a CSIM-coded function, UserSend, which is
specific to the modeled architecture. UserSend is called at points in the ASIM routines

where the simulated message transfer occurs, and delays the calling processor by the time

needed to transmit the message. Each of these components of the architecture model is

discussed more fully below.

4.6.1 Software Overhead

Generally, ASIM provides the ability to define initial and final software overhead
in a communication routine as a function of the message size. Because of the internal
structure of the Odyssey Concurrent C synchronous message-passing routines, however,

overhead is dependent upon the order in which the sender/receiver pair arrive at an

23

interaction point. This could not be modeled precisely without the undesirable prospect

of modifying the current ASIM software.

In order to sidestep this problem, we have approximated the true software overhead
involved by using an average of the 2 distinct possibilities (i.e., 1: sender arrives first,
and 2: receiver arrives first). Virtually all software overhead occurs before the bus
transfer so no accounting is necessary after the transfer of the message. Table 4.4 gives
software overhead cycle counts for the synchronous primitives in each case, and the

average values which were used in the simulation.

SendRequest() ReceiveRequest() Reply()

Sender Arrives First 153.8 328.2 267.2
Receiver Arrives First 307.4 4124 267.2
Average + 230.6 370.4 267.2

Table 4.4: Software overhead (us) for synchronous message passing.

The validity of this approach depends on the assumption that in a real algorithm the

sender will arrive at a communication point before the receiver approximately half th

4]

time, and vice versa. Hopefully, the errors arising from overestimation will more or less
cancel with those attributable to underestimation and lead to accurate results. We will

see later that this is not always the case but, in general, is not a major problem.

4.6.2 Bus Transfer

The Odyssey communication routines have been implemented such that a semaphore
controls use of the SP bus, allowing only one Processor access at any given time.

Measurements have shown that in this instance, transmission time over the SP bus is a

24
constant 1.94 us/16-bit word of the message. Also, because of the aforementioned block
transfer capabilities of the architecture, it is most efficient to transfer long messages in
blocks of 256 words. This naturally leads to a need to packetize messages. Packetization
time on the Odyssey takes 85.2 us/256-word block. Although packetization is actually
software overhead, in the case of the Odyssey it more naturally fits into the bus transfer
aspect of the architecture and, hence, is handled in UserSend.

When UserSend is called it calculates the total packetization overhead required for
the message and adds this to the time needed to transmit the packets over the bus. It
then waits (a P operation) on the semaphore controlling access to the SP bus, delays the

processor for the required time, and finally releases (V) the semaphore.

25

Chapter 5

Algorithms

5.1 Introduction

The results contained in this thesis are mostly derived from the execution of parallel
versions of three algorithms. The algorithms chosen were merge sort, 2-dimensional
convolution, and successive over-relaxation. These algorithms were selected primarily

because they exhibited relatively dissimilar computational aspects, which was desired in

order to test the simulator as thoroughly as possible.

Although the algorithms are computationally very different, communications patterns
are quite similar. This is primarily a result of the architecturally motivated need for
course-grained communication structures and certain assumptions which were made for
more or less arbitrary reasons. For example, all three algorithms define a master/slave
relationship where one processor, designated the master, performs a superset of the
operations handled by the other processors. In all cases, data is assumed to initially
reside in the master’s address space. The master, then, must distribute data to the slaves
at the beginning of the algorithm and collect the final results at the end. This type
of procedure is reflected in the results given in Chapter 6, where performance data is
taken from timings made on the master, The fellowing sections describe the algorithms

implemented here.

26

5.2 Merge Sort

Merging is a basic sorting technique which combines two sorted (ordered) lists into a
single sorted list. Formally, given two input lists (z;, z5,.. .,z i) and (Yj41, Y542, - -, Uk)
suchthat z; <27 < ... < zjand y;4; < Yj+2 < ... < yx, merging generates an output
list (21,22,...,2j,2j41,...,2;) Such that 2 < zp < ... < z; <zix1 <... < 2.

A merge operation begins by comparing the smallest elements in each input list and
placing the lesser first in the output list. Then, ignoring the element already in the output
list, the next smallest element is chosen from the remainder of the input lists and placed
second in the output list. This continues until all input elements have been placed in

sorted order in the output list.

A completely unordered list may be sorted by merging in stages. For a data size of
N, begin with N ordered lists each of size 1. Merge these lists in pairs to give % ordered
lists of size 2. These lists can then merged in pairs to get 4E lists of size 4. Continue in
this manner until a single ordered list of size N is generated. A total of loga NV stages is

necessary to periorm the sort. Figure 5.1 shows an example for N = 8.

Merging two lists containing a total of N elements requires a minimum of N - 1
comparison operations. Also, log, N stages are needed to merge sort an initially unordered
list. Hence, merge sort is an O (Nlog;N) algorithm, which is optimal for sequential
sorting [18, 19].

The parallel version of merge sort implemented here is straightforward and requires
little explanation. Initially, an unsorted list of size N exists on the master processor. The

master distributes a section containing % elements in turn to each of the P — 1 slave

27

43 11 54 2 18 9 6 17

STAGE 1
11 43 2 54 9 18 6 17

STAGE 2
2 11 43 54 6 9 17 18

STAGE 3

2 6 9 11 17 18 43 54

Figure 5.1: Example of sequential merge sort, N=8.

processors, keeping the last section for itself. All processors (including the master) then
merge sort their sublists. Finally, the master collects the sublists from the slaves and

sequentially completes the merge sort with the P sorted sublists of size -1}’; In pseudo-

code this looks like:

If (master)
generate random data set of size N
send N/P data elements to each slave
else /* slaves */
receive data from master

Merge sort N/P data items

If (master)
receive solution from slaves
complete merge sort locally
else /* slaves */
send partial solution to master

28

The computational complexity of this algorithm is
N N
—logo— 1
O(Ploggp+Nlog2P>, (¢))

which can be manipulated into the form

N P-1
(0] (ﬁlog2N+N (P) logzP) .)

The first term in (2) is optimal for parallel sorting while the second indicates why this

algorithm is only useful for P << N. We discuss this more in Chapter 6.

5.3 2-Dimensional Convolution

2-dimensional convolution is a fundamental filtering operation in digital image pro-
cessing. It is frequently the first operation performed once an image is acquired. There
are several ways to perform 2-d convolution, some involving Fast Fourier Transform

tcchniques. Here, we have chosen to implement 2-d convolution in the most straight-

forward fashion.

Referring to Figure 5.2, u is an NxN image matrix and k is a 3x3 kernel. A kemel
may be other sizes but most commonly is 3x3. Convolving the kernel with the image is
performed by overlaying each point in the image with the kernel and replacing the image
value at that point by the sum-of-products of corresponding kernel and image values.

Hence, at each point (¢,) in the image we update as in

i = k1itie1,i-1 + k1 gtion; + kystioa i + ko v oy + ky ou; j+

G)

k2,3%i541 + k3a%iv1,j-1 + k3,2uig1; + k3 3%is j4.

29

Ui N Image Matrix UN,N
k 13 ka3 k33
v U: q: N~/ ' S Wieqe
i-1,j+1 Uji+1 irlj+l
7Y * ! ®
ki \ 22 kz,zr
T, i Uil
® ® ¢
Kernel
kl'lO ky $ k31
Uitjl o Uit i1l
U1 uUnN,1

Figure 5.2: Convolving a 3x3 kernel with an NxN matrix.

Using an NxN image and a KxK kernel, sequential convolution is an O (K2N?) algorithm
[20].

For the parallel implementation, the master processor divides the image into P strips
of % rows, sending a strip to each processor. The master must also send a boundary
row on either side of each strip to handle the kernel overlay at the boundaries. The
processors then convolve in parallel their individual sections of the image matrix. When
the convolution is completed, boundary rows are exchanged in preparation for a following
algorithm. Finally, the slaves send resulis back to the master. in pseudo-code this looks

like:

30

If (master)

get image of size N?

send N/P rows + 2 boundary rows to each slave
else /* slaves */

receive N/P+2 rows from master

Convolve NZ/P points

Exchange boundary rows with processors on either side

If (master)

receive solution from slaves
else /* slaves */

send solution to master

Computationally, this parallel version of 2-d convolution is O (EpN—z), which would
give linear speedup were it not for the communication requirements.

The boundary row exchange is not necessary for pure convolution since no compu-
tation is performed after this point. However, in a typical image processing application
some operations would invariably follow the convalutisn and most likcly need ihie bound-

aries. It was thought that including this exchange more realistically accounted for the

interprocessor communication needed in the algorithm.
5.4 Successive Over-Relaxation

5.4.1 Theory

Successive Over-Relaxation (SOR) is an iterative method for solving elliptic par-

tial differential equations resulting from equilibrium or steady state (boundary value)

31
problems. The classic example of an elliptic PDE solvable using relaxation methods is

Poisson’s Equation given by

u(z,y) , 0%u(z,y)
azz + ay2 = p (:D, y) b (4)

Here, (z,y) are spatial coordinates in thé region of interest, p(z,y) is the known source
term (generally consisting of charge/mass density), and u (z,y) is the desired solution
composed of the field strength at every point in the region, subject to some boundary

value conditions. If p(z,y) = 0 then Poisson’s Equation reduces to Laplace’s Equation.

+

X

X
YN N
‘Ej.kﬂ
Uj-1k Ujk Uil
i — ? i
Ay
o
Y1
—
Ax

Figure 5.3: Grid over coordinate space for solving elliptic PDE.

32
By laying a grid over the coordinate space, as shown in Figure 5.3, « (z,y) can be

represented by its values at the set of points

{(zj’yk) ¢ Xy =T +JA$, Yk =Yoo+ kAy}

(5)
jk=0,1,...N +1

where Az and Ay refer to the grid spacing. A finite difference representation of (4) can
be obtained by approximating the second derivative at (z;, yx) using the nearest neighbor
grid points. Letting u (z;,y;) be written as u;; and Az = Ay = A we have

Uj+1,k — 2Ujk + Uj1 k
A2

Uu; — 22U U
+ 7yk+1 Ajz,k 5,k—1 = pix. (6)

Rearranging terms gives

Ujt1k + Uitk + Ujka + Ujkoy — dujp = A2p, . ™

The system of equations implied by (7) can be solved directly using linear-algebraic
methods by transforming the problem to a matrix representation A « U = b [21, 22].
However, for an N x N grid size this necessitates a matrix A of size N2 x N2.
Consequently, space requirements generally limit this method of solution to problems
of relatively smali size. For larger sizes, these problems are generally solved using a
relaxation method.

Relaxation involves iterating over the points in the grid. At each iteration, the grid
points are updated to a closer approximation of the solution. Eventually, the procedure
converges to a steady state value, which is the desired solution.

The classical example of a relaxation algorithm, Jacobi’s method, consists of solving

(7) for u,; giving

+1 1 A2
"ﬂ)=) ("f'l)l,k + “5-'1)1,& + “g;:)ﬂ + ",5':2)-1) — 2 Pik: &)

33
Here, ug’k) represents the solution at v after the n** iteration. So each iteration updates
grid points using values from the previous iteration. It can be shown that the number of
iterations required to converge to a fixed criteria using Jacobi’s method is proportional

to N2,

A minor modification of Jacobi’s method, the Gauss-Seidel method, uses updated

values when they become available as in

G = () - S o
Gauss-Seidel converges twice as fast as Jacobi, but still needs O (N?) iterations.
Successive Over-Relaxation is a modification of the Gauss-Seidel method which
converges in O (N) iterations. It is based on the observation that the methods discussed
above tend to undershoot the solution at each iteration, and therefore converge from
one direction only. If, at each iteration, we update the solution further in the “correct”

direction, the procedure will converge faster. This is called over-relaxation. Taking (7)

and replacing the constant coefficients by more general coefficient terms, a residual value

can be defined by

§ik = @jktjp1k + bjkuio1k + Ciptjkar + diguigoy +ejpuip — fixe (10)

This is basically the left side of (7) minus the right, and is a measure of the error in uUj g

at this stage of the computation. Finally, we update the solution according to

(n+) _) _ ik
Uik~ = Uik “eix 1n

where w, the relaxation parameter, can take on values between 0 and 2. At w =1

’

(11) reduces to (9). For 1 < w < 2 we are over-relaxing, and (hopefully) converging

34
faster. The efficiency of SOR is dependent upon a proper choice of w, which is not
generally known initially. Fortunately, w can be dynamically generated as the algorithm

progresses. The basic SOR algorithm proceeds as follows [23]:

Input coefficient matrices and boundary value conditions
Guess the solution (generally initialized to zero)
Initialize w

While (not done)
For each grid point (k)

calculate residual ;.
update sum of residuals
calculate u;;(**!)

Update w

If (sum of residuals < stopping criteria)
done

5.4.2 Faraiiei impiementiation

The parallel version of SOR implemented here is a straightforward modification of
the sequential algorithm. Basically, each of p processors is responsible for (%) * of the
solution. For example, processor O calculates the first (%)ﬂl of the rows of the solution,
processor 1 calculates the second (%)th, etc. One processor is designated the master
and performs a superset of the computation done by the slave processors. The master
is responsible for initializing the data, distributing the data to the slaves, calculating the

global sum-of-residuals using the local sums-of-residuals received from the slaves at each

35
iteration, returning the global sum-of-residuals to the slaves, and collecting the results at

the end of the algorithm. So the parallel implementation proceeds as:

If (master)
input and initialize data
send data to slaves

else /* slaves */
receive data from master

While (not done)
For each grid point (j,k) on this processor
calculate residual £,
update local sum of residuals
calculate w1

if (master)
receive local residual sums from slaves
calculate total residual sum
send total residual sum back to slaves
else /* slaves */
send local sum of residuals to master
receive total residual back from master

Update w

If (sum of residuals < stopping criteria)
done
else
exchange boundary rows with nearest neighbor
processors in preparation for the
next iteration

If (master)

receive solution from slaves
else /* slaves */

send partial solution to master

36

Note from (10) that each processor needs a boundary row of the solution matrix on
either side of the rows it is responsible for. At the end of each iteration, these boundary
rows must be exchanged with neighboring processors in order for the algorithm to proceed

properly.

37

Chapter 6

Results

6.1 Introduction

The purposes of this chapter are threefold: 1) to discuss possible errors which can lead
to inaccuracies in the performance predictions of the simulator, 2) to validate the accuracy
and efficiency of the simulator by comparing performance predictions obtained through
simulation with those actually observed on the Odyssey system, and 3) to show how the
simulator can be used to analyze the performance of either a larger Odyssey system than
is available here or a system where some of the Odyssey architectural parameters have
been altered. To these ends, the algorithms discussed in Chapter 5 have been run on the
Odyssey and the simulator for various numbers of processors and a wide range of problem
sizes. The synchronous message-passing facilities of OCC provided the mechanism for
interprocessor communication. Statistics on execution time, speedup, prediction error,

and simulator efficiency have been collected and are presented in the following sections,

along with an analysis of the results.

6.2 Sources of Error

Differences between the performance indices predicted by simulation and those

actually obtained on the Odyssey system can be attributed to one or more of the following:

1) timing inaccuracies,

38
2) profiling errors,
3) cross-profiling block mismatches,
4) architecture model deficiencies, and

5) unprofilable code whose execution time must be estimated.

" 6.2.1 Timing

Timing on the Odyssey involves use of the 16-bit memory-mapped hardware timer
register which resides on the TMS320C25 chip. This timer is a down-counter that can
be initialized to an arbitrary 16-bit value. Once initialized, the timer decrements at each
clock tick, eventually generating a hardware timer interrupt when it zeroes. This allows
routines which take less than 65536 cycles to be accurately timed. In order to time
longer routines, a software managed 32-bit timer has been implemented. Routines to
start the software timer, stop the timer, and service timer interrupts are available. At
each timer interrupt, the interrupt handler increments the 32-hit value by the elapsed
65536 cycles and reinitializes the hardware timer to its 65K maximum, Also, each timer
routine subtracts its own software overhead from the accumulated timer value so that as
little error as possible propagates to the timing results. Measurements on code whose

execution time is known have shown that the timer as implemented generates no more

than 0.1% error when timing sequential sections of code.

Another timing consideration is the observation that timing a parallel routine may
alter the way in which processes interact. This is a result of the timer interrupt service

routine executing code which does not exist in the actual algorithm and, hence, is not

39

being simulated. The interrupt service routine takes 208 cycles, in contrast to the 65536-
cycle period of the timer register. The resulting possible error is 208/65536 — 0.32%.

In light of the above, the timing routines appear to be accurate enough so that no

more than 0.5% error is introduced by their use. This, as we shall see, is smaller than

the errors caused by many other factors and can be effectively ignored.

6.2.2 Profiling

The greatest potential profiling difficulty encountered with respect to the TMS320C25
is the fact that the execution time of an instruction is dependent upon the memory space
(on-chip or local) in which its operands reside. Since profiling takes place prior to
execution it is impossible to determine (in some cases) how many cycles an instruction
will take. This is currently being handled by assigning the total data space of an Odyssey
program to local memory, and setiing the profiler up so that it uses the corresponding

cycle counts for operands in local memory. This allows for almost exact profiling.

The only known error introduced during profiling is for branch instructions. A hranch
accounts for three cycles if it is taken and two cycles otherwise. We have assumed that
branches tend to be taken more often than not, and used the three-cycle value. This will
cause the simulated times to be slightly higher than the actual execution time since an

extra cycle is added for a branch which is not taken.

6.2.3 Cross-Profiling

In most cases the cross-profiler does a good job of matching basic blocks beiween

compilers. Occasionally, however, the TMS320C25 C compiler generates small blocks

40
which have no correspondence in 68020 code. The execution of these blocks is not
accounted for in the simulation, and therefore leads to slightly low simulated timings.
Note that the known positive errors introduced by the profiler are offset, at least in

direction, by the possible negative errors generated in cross-profiling.

6.2.4 Modeling

As was discussed in Chapter 4, average times for software overhead in the message-
passing routines were inserted into the Odyssey architecture model. The resulting
accuracy of the model is dependent upon the complexity of communication between
processors. Algorithms whose communication pattems are complex enough that a sender
and receiver are approximately equally likely to arrive first at an interaction point will be
simulated accurately. Algorithms with very simple communications, say an initial data
distribution and a final data collection, will not be simulated as accurately. This is a
consequence of the much greater likelihood that the sender (or receiver) will arrive first
most of the time. A more accurate method of accounting for software overhead would

alleviate this somewhat, but is not currently available.

6.2.5 Unprofilable Code

For code which can not be cross-profiled, estimated execution times must be inserted
directly into the simulator at the profiling stage. This is a problem primarily with routines
for which C source code is unavailable and whose execution time is data dependent,
such as software floating-point. As was discussed earlier, most of the available floating-

point routines exhibit relatively fixed execution time, but the important addition and

41
subtraction operations take widely varying times to execute depending upon the values
of their operands. For simulation purposes, an average observed value was used in the
profiling step. We shall see that the data-dependent simulation errors which result from an
algorithm that uses floating-point can be fairly large. Without the ability to cross-profile

these routines there is no satisfactory solution to this problem.

6.3 Validation

Previous RPPT validation work has involved simulations of an Intel iPSC4 hypercube
and the V-System®, a distributed operating system running on Sun workstations [24, 25).
The iPSC study was handicapped by a lack of knowledge of the specifics of the proprietary
communication software involved, while the V-System measurements had to be made on
a public system with an unknown and varying amount of activity generated by other
users. A major motivation of this work was the desire to validate the RPPT simulator
against an architecture whose system source code was available and that could be used
on an exclusive basis. The Odyssey obviously fulfills these requirements since it may

only be accessed in a single-user mode and the Odyssey Concurrent C interprocessor

communications software was written here at Rice.

The following sections detail the results obtained by running three very different
algorithms on both the Odyssey board and the simulator. Statistics on execution time

and speedup serve as the primary performance indices for validation purposes. Also, the

4 iPSC is & trademark of Intel Corporation,

5 V-System is a trademark of Leland Stanford Junior University.

42
efficiency of RPPT is measured through a comparison of identical programs executing

as both RPPT simulations and basic Concurrent C programs.

6.3.1 Execution Time Results

Figure 6.1 plots total execution time, both real and simulated, of the merge sort
algorithm running on various numbers ;of processors (P) for small data sets (of size
N). Figure 6.2 does the same for larger data sets. Figure 6.3 shows simulation error
relative to real execution time. A positive error indicates that the simulator predicted
a value greater than that actually obsel:ved, while a negative error indicates that the
simulator’s prediction was low. Figures 6.4-6.6 are similar to Figures 6.1-6.3 except the
2-dimensional convolution results are plotted. In this case, a data size of N refers to an

NxN data matrix. Figures 6.7-6.9 show the SOR results run on an NxN grid.

Profiling and Cross-Profiling Validation Neither merge sort nor 2-d convolution use
any floating-point arithmetic so all the code is actually profiled. Consequently, the results

of merge sort and 2-d convolution run on a single processor are a fair test of the inherent

accuracy of the profiler and cross-profiler.

For merge sort run on a single processor, the errors observed were never more
than +1.0%, and this was for data sets ranging from 32 to 16384 words. Fsrors for
2-d convolution were consistently around —1.7%. Taking the two algorithms as a unit,
most of the capabilities of the TMS320C25 instruction set were exercised: merge sort
heavily uses comparison operations while 2-d convelution makes much use of the integer

arithmetic capabilities of the chip. Also, both algorithms perform a significant amount

time (sec)

0.14
/
real, P=1 Z
sim, P=1 Z
real, P=2 Z
0.08 - (4 sim, P=2 g{;;;
1 O real, P=4 Z?
0069 M sim, P=4 2 7
g Z A
0047 7% 7
27 %
0.02 1 77 2
- -'-:f:'; % ¢ %;
2/ A1 A
0.00 -
5 6 7 8 9
log N
Figure 6.1: Merge Sort, Execution Time.
7
6 4 = Z
M real, P=1 7
5 - sim, P=1 Z
5 B real, P=2 7
g 4 sim, P=2 Z
o O real, P=4 Z{;ﬁs
E 37 M simP=s
2 =
1 -~
0 -
10 11 12 13 14
log N
Figure £2: Meroe Sort, Execution Time
6
4 -
2 o
h -
E o
BQ o
-2 —— Pzt
1 —t— P2
-4 - e P=4
-6 T] T T T T T ¥ 1

]
4 LY 6 7 8 9 10 11 12 13 14
logN
Figure 6.3: Merge Sort, % Error (Exe. Time).

-t

wn

43

—
ADINNNNNNNNNNNNNN

32

UL RAR AR i 805 s koimsins o K

7////////////////////,////////////7.

128

AN

0 Pal

96

Figure 6.4: 2-D Convolution, Execution Time.

N
Figure 6.5: 2-D Convolution, Execution Time.
Figure 6.6: 2-D Convolution, % Error (Exe. Time).

z
A d
[
— - O < ~ - b4
] H ']]]
mkPMPM PkPMPM
SETESE BTETESNE
G2w% %% G226 @
©
ESNENOn ENBSON
LA § | S | | ¥ ¥ 4 L | § LA | 5‘-*“0
&« ¢ & 8 3 8 ¥OT e e 9
o o o © © o © o - i i

(99s) awn (90s) swn

45

-
]

ad
ER:

|

(oas) awn

N
Figure 6.7: SOR, Execution Time.

Figure 6.8: SOR, Execution Time.

N
Figure 6.9: SOR, % Error (Exe. Time).

46
of function calling, parameter passing, and operand address generation (both global and
local). Overall, the errors observed ranged from -1.73% to +0.96%. It seems reasonable,
then, to expect errors no more than about £29% for any algorithm which can be completely

profiled. This is quite accurate and probably sufficiently precise for most purposes.

Unprofiled Code Validation The SOR algorithm implemented here spends most of its
execution time inside the software floating-point routines. As was discussed previously,
problems with determining reasonably accurate average execution times for addition and
subtraction were encountered. Looking at the one-processor SOR results, errors of up
to -4.2% were observed, and the trend was towards even larger errors for larger data
sets. Without the ability to cross-profile the software floating-point routines, these errors
cannot be eliminated. However, they may be used as a base from which to estimate the

magnitude of simulation error attributable to other factors.

Architecture Model Validation While the uniprocessor results measure simulation er-
ror solely resulting from inaccuracies propagated through the profiling steps, multipro-
cessor results serve as measures of the Odyssey architecture modeling deficiencies. From

the error plots shown in Figures 6.3, 6.6, and 6.9, the important observations to make

are the following:

1) As the problem size increases, the influence of the architecture model decreases. This
occurs because for a fixed number of processors, computational requirements increase
more rapidly with problem size than the corresponding increase in interprocessor

Vi

communication. The communication needs of merge sort, for instance, consist of

2)

3)

4)

47
the initial data distribution and final data collection: an O(N) operation. The
computational aspects of merge sort, on the other hand, are O (NlogaN) for fixed
P. 2-d convolution and SOR exhibit similar relative increases in computational
requirements with increasing problem size. Hence, as the data size is expanded,
simulation errors asymptotically approach the one-processor baseline.

For smaller problem sizes where interprocessor communication overhead accounts
for a significant fraction of execution time, errors of up to 6% were observed. These
errors were evident only in the very smallest cases, and improved markedly with
increasing problem size.

For all three algorithms, larger errors were evident in the two-processor runs than
with four processors. This is an effect related to the software overhead modeling
deficiencies discussed previously. The two-processor cases were affected more
because communication patterns were simpler. For instance, the data distribution
step in all three algorithms is structured such that the sender (master) always initially

arrives second, causing an overestimation of coftwar

r ftware overhead and 3 comcsponding
positive simulation error. This effect was more dramatic in the two-processor cases
because the fixed error involved was “amortized” over only two message passing
events as opposed to four.

Overall, the accuracy of architecture modeling is fairly high. Significant errors
become apparent only for very small problem sizes. None of the algorithms discussed

would ever be run for such small data sets as was done here. 2-d convolution, for

example, would most likely use as large an image matrix as could fit in the memory

48
of the Odyssey processors. For larger, realistic data sizes, architecture modeling
generated errors of less than 3%. This is accuracy on the order of the basic profiling

steps, and therefore sufficient for most purposes.

6.3.2 Speedup Results

An ultimate purpose of RPPT is to :ietermine the efficacy with which a concurrent
algorithm is matched to either an imaginary parallel architecture or an actual one whose
physical parameters have been altered. Generally, the usefulness of a parallel algorithm
is measured by the number of processors it may be run on while still exhibiting near

linear speedup. For this purpose, accurate speedup predictions are probably of more

value than absolute execution time results.

Speedup for N processors is defined here as the ratio of uniprocessor execution time
to N processor execution time for a fixed data size, so speedup may be derived directly
from the execution time data given in the previous section. A speedup of S means
that the N-processor execution was S-times faster than the single processor execution,
Speedups may be less than one (i.e., slowdown) in which case the algorithm actually
runs faster on one processor than on N processors. For the three algorithms discussed
here the smallest data sizes were chosen to be those such that a speedup greater than
one was observed in the two-processor runs. These are the smallest data sizes for which

any speedup can be demonstrated.
Speedup results are plotted in Figures 6.10-6.15 for the two- and four-processor
runs. Figure 6.10 shows speedup, both real and predicted, for merge sort running on

two and four processors. Figure 6.11 plots the percent error of the prediction relative to

49

log N
Figure 6.11: Merge Sort, % Error (Speedup).

3.0

ARTERRERRARANANANNANRRXAN NN
Rtk I
ACRRRNY o
u
ANANIRIIKR . a.
/////////////////// L ot
- a.
=1
<]
- &
N (7
........... o Q\OU
NN -~ > &
g &
AXAMANARNARNNNARNNN NN k) m
AR @ .
1
f//////////////////f 6.
SR © ®
AR g
.80
AN i
NN ooty ~
YV Y
[+ W Wy « Y,
m m||ndv mv ©
2526
“J
[] [N] 0
L} A | d
w o w 9 u LA
o o - - o ~ W ™

dnpaads JoLv 9

.V///////////////////////////////
R

vV//////////////////////////////

SRR

r//////////////////////////////
7/////////////

n///////////////////////////A

?//////////////////6
RS

24

g R

16

Yayy
(]]
A aoada 7/////42
TETE SO -
rsmﬂ
NNRS ©
LI B e ey man e mun g)
2 W o w o wvwaouw
T M M N N - - O

dnpaads

Figure 6.12: 2-D Convolution, Speedup.

—o— P=2

—r— P=4

144

112

128

2-D Convolution, % Error (Speedup).

Figure 6,13:

51

T Y
P R T v o o

B real, P=2

NS

BN o

_ . N\\N

RS
N AR

sim, P=2
sim, P=4

B real, P=4

4.0

3.54
0
.5
0

1.5+

32

24

Figure 6.14: SOR, Speedup.

Pxd

L

et
0

Figure 6.15: SOR, % Error (Speedup).

52
that actually observed. Positive errors indicate a prediction which is too large, negative
errors the reverse. Figures 6.12-6.13 and 6.14-6.15 give corresponding results for 2-d

convolution and SOR respectively.

For the smaller problem sizes, the magnitude of prediction error generally followed
those for execution time. However, the errors in speedup prediction exhibited an
interesting characteristic: as data size is increased, speedup prediction errors appear
to asymptotically approach zero. Simulation of SOR, for instance, gave execution
time errors near 4% for larger data sizes, but speedup errors under 0.5%. In fact,
SOR consistently predicted speedup with greater accuracy than either of the other

algorithms—just the reverse of the execution time response.

These curious results come about because of a fundamental difference in the makeup
of execution time and speedup indices. Execution time is an absolute statistic whose
value is dependent on a single index. Speedup, on the other hand, is a ratio of two
distinct values which are not independent. As an example, take the extreme case of an
algorithm which generates simulated execution times exactly double those for the real
system. The execution time errors would consistently be +100% but speedup predictions
would be correct because the linear errors in execution time (really just a scale factor)

would cancel in the speedup ratio.

This type of response is most evident in an algorithm like SOR where, for a
given problem size, the large data-dependent errors arising from floating-point profiling
inaccuracies caused virtually identical execution time errors over different numbers of

processors. These proportional errors tended to cancel in the speedup predictions and,

53
hence, gave much more accurate results. The same characteristic is evident in 2-d
convolution, where 2-3% errors in execution time become negligible when speedup is
calculated. Consequently, it appears that simulation errors which are mostly dependent

upon problem size, as opposed to degree of parallelism, do not affect speedup predictions

to as great a degree as execution time predictions.

6.3.3 Simulation Efficiency

The need for efficient simulation was a major motivation for the development of
the RPPT. There are many ways the efficiency of simulation may be defined. For
our purposes, the most reasonable measurement of efficiency is the ratio of the RPPT
execution time to Concurrent C execution time. Note that by the RPPT execution time
we refer to the actual time required to run the simulation, not the predicted execution

time of the algorithm being simulated.

The execution of a Concurrent C program contains little overhead beyond that of a
normal sequential program. Interprocessor communication gverhaad is mostly comprised
of inexpensive transfers of blocks of data. In contrast, an RPPT simulation must not
only perform everything done by Concurrent C, but must also increment a counter at
each basic block, maintain simulation time through the discrete-event handling facilities
of CSIM, account for the hardware and software aspects of the architecture model, and
collect various performance statistics. Thus, most of the simulation overhead in an RPPT
application is due to factors not accounted for by Concurrent C. Because of this we may

use the execution time of a Concurrent C program as a baseline from which to measure

the efficiency of the same program executing as an RPPT application.

54

Simulation overhead for merge sort, 2-d convolution, and SOR is plotted in Figures
6.16, 6.17, and 6.18, respectively. An overhead of X signifies that the RPPT simulation
took X-times longer to run than the simple Concurrent C execution of the same program.
Overheads for the smaller problem sizes of merge sort and 2-d convolution are not
available because the timing mechanism was insufficiently precise to give valid results.

In any case, for these sizes the execution time was less than 0.3 sec., and consequently

overhead here is not of great importance. The data as shown exhibits 2 general responses:

1) As data size increases, simulation overhead decreases. This is an effect of the
aforementioned relative increase in computational needs (and corresponding decrease
in communications) for larger problem sizes.

2) As the number of processors is increased, simulation overhead also increases. This

is mostly a result of additional processors generating more message-passing events.

The smallest overheads were associated with SOR, primarily because of the great
amount of floating-point calculation required. Merge sort and 2-d convolution exhibited
somewhat greater overheads. Overall, the simulation overhead appears relatively low.
For the uniprocessor cases, overheads ranged from 1 to 5. With four processors the
largest overhead observed was 12. This is in contrast to overheads of 100 or more for

standard instruction-driven simulations, even when simulating only one processor.

6.4 Prediction

Most of this thesis has dealt with validation of the RPPT Gdyssey simulation. We

have seen that for the available four-processor system, the simulator’s predictions are

S5

3

= } s ¥

;

& 3

5 s &

g g

S s z 3

& < 3

g Q

_ * i

PeIY19A0 PEIYISA0 Peay19A0

Figure 6.18: SOR, Simulation Overhead.

56
quite accurate over a large range of problem sizes for several dissimilar algorithms. An
important application of the RPPT is, of course, to explore the performance of both larger
Odyssey configurations (which are not currently available) and Odyssey architectures

whose hardware/software parameters have been modified.

In this section, we use the simulator to predict Odyssey performance up to the 32-
processor level. We also show the effect of some extreme modifications to the Odyssey
architecture model. Of the three algorithms used here, 2-d convolution is most typical of
the kind of application which would be run on the Odyssey in actual practice. We show

here the results of 2-d convolution operating on two disparate data sizes.

Figures 6.19-6.21 plot results for a 32x32 data size, while Figures 6.22~6.24 are for
a 128x128 input data matrix. In all cases, the number of processors (P) was varied from
1 to 32. Results are given for four architectural configurations as indicated in the figures.

These configurations consist of the following.

1) “total”; the actual architecture model which was used for all the results given earlier
in this chapter.

2) “no xmit™; like “total” except the transmission time of a message over the SP bus
interconnection network occurs instantaneously in simulation time.

3) “no overhead™: like “total” except all software overhead in the model is set to zero.

4) “only sync”: a combination of “no xmit” and “no overhead” where, in effect, only

synchronization overhead is encountered when processors communicate.

These modifications arc very exireme and not physicaily realizable, but are nevertheless

instructive. For example, “no xmit” shows the maximum possible performance gain that

time (sec)
(=]
o
[

total

no xmit
no overhead
only sync

0.05
0.00 T T T v 1
0 1 2 3 4 -]
logP
Figure 6.19: 2-D Convolution, 32x32 Matrix, Predicted Execution Time.
1.0

utilization

0.8 -

0.6 -

0.4 - total
4 = noxmit
02+ —®— no overhead
] —9%— onlysync
0.0 1] 1]] L
0 1 2 3 4 5
log P
Figure 6.20: 2-D Convoiudon, 32x3Z Matrix, Predicied Utilization.
324
28
B total
24 no xmit
20 B no overhead
16 only sync

2 3 4 5
log P

Figure 6.21: 2-D Convolution, 32x32 Matrix, Predicted Speedup.

57

time (sec)

utilization

speedup

- fotal
- N0 Xmit
——&— no overhead
——0— only sync

Figure 622: 2-D Convolution, 128x128 Matrix, Predicted Execution Time.

1.0 9

0.8 -

0.6 1

0.4 +

0.2 =

0.0

log P

total
= no xmit

-—8&-— no overhead
=—o— onlysync

0

1 2 3 4
log P

Figure 6.23: 2-D Convolution, 128x128 Matrix, Predicted Utilization,

total

no xmit

no overhead
only sync

log P
Figure 6.24: 2-D Convolution, 128x128 Matrix, Predicted Speedup.

IR

MUIININN

58

59
can be realized by increasing the speed of the SP bus. Similarly, “no overhead” details

the maximum gain achievable by writing the message-passing routines more efficiently.

For both problem sizes, the first figure given shows the total execution time as a
function of the number of processors P. The next plots processor utilization as a function
of P. We define utilization here as the fraction of total execution time attributable to
operations necessary for convolution, as opposed to operations needed for synchronization

and communication. The final figure shows speedup in each case.

For all practical purposes, performance of the real system (“total”) and the system
with an infinitely fast bus (“no xmit”) operating on the small 32x32 data matrix peaks
at the four-processor level. Maximum speedups of only about 3.5 were obtained for
these cases. The elimination of software overhead, however, lead to a speedup of 9
for 16 processors. Apparently, the small data size used here makes software overhead

the dominating factor, and virtually eliminates the influence of bus speed on overall

performance.

Results for the more realistic 128x128 size were quite different. Here the use of longer
messages made bus speed somewhat more important than software overhead through
the 16 processor level, after which software overhead becomes larger. In any case,
the performance of the “total” system is not much worse than either of the next two
configurations. For 16 processors, “total” speedup was 9, “no xmit” speedup 11, and

“no overhead” speedup 10. Speedup was virtually linear for the final case consisting of

only synchronization overhead.

Of course it is unrealistic to eliminate either bus transmission or software overhead

60
completely. In the case of the bus, though, the total elimination of transmission time
did not result in a dramatic increase in performance, and this was true even for the large
problem size. Software overhead was generally more important, but only for the small
data size necessitating small messages. In reality, software overhead can probably be
reduced more easily than a hardware-dspendent parameter such as transmission time.
Assembly-coding the communication routines, for example, might decrease software
overhead by a factor of two or more. This could significantly improve the performance
of the system on small problems. As was noted before, however, problems this small

would not typically be run in practice. .

61

Chapter 7

Conclusions

In this thesis we have attempted to validate the accuracy and efficiency of the
RPPT execution-driven approach to simulation. Validation of the RPPT involved the
implementation and execution of three algorithms over a wide range of problem sizes on
the RPPT as well as on the Odyssey system itself. Quantitative differences between
predicted and actual performance indices served as measures of the validity of this
approach. We have also attempted to judge the usefulness, from both an efficiency
as well as a flexibility standpoint, of the high-level OCC parallel primitives used to

program the Odyssey.

7.1 Summary of Results

The important quantitative results of this thesis, discussed in the previous chapters,

are summarized below.

1) Simulation of sequential code running on a single processor is accurate to +2% of
actual execution time.

2) Predictions of execution time and speedup of paralle] algorithms operating on prob-
lems of non-trivial size are accurate to +5%, and are generally much better for
algorithms that are well matched to the coarse-grained requirements of the Odyssey

architecture,

3)

4)

5)

6)

62
Unprofiled routines such as software floating-point can cause somewhat larger errors
in execution time predictions. However, speedup prediction errors seem less affected
by the relatively fixed influence of these routines, and are usually much more accurate.
Execution-driven simulation is efficient considering its flexibility and accuracy. Sim-
ulations of four processors, for example, exhibited slowdowns no greater than twelve
relative to the corresponding simple Concurrent C executions.
The limited analysis of Section 6.4 indicates that the overall performance of the
Odyssey system is improved only to a minor extent by increases in SP bus trans-
mission speed. The performance enhancements resulting from decreased software
overhead can be of greater consequence, but only for very small problem sizes.
The high-level Odyssey Concurrent C communications software makes efficient use

of the Odyssey architecture for the larger problems which would typically be run

on the system.

In addition to measurable quantities like efficiency and accuracy, qualitative factors

such as flexibility and ease-of-use are also important considerations. For instance,

simulations of new architectures are quickly and easily developed using the execution-

driven approach to simulation as implemented here. The simulation of a new parallel

system primarily requires the writing of an architecture model and a profiler (if one does

not already exist for the processors in the system). All other RPPT system software

is common to every simulation and need not be modified or rewritten. Also, since

algorithms share the common form of a Concurrent C program, any algorithm may

be simulated in conjunction with any existing architecture model. Finally, the RPPT

63
simulates the execution of a parallel algorithm by actually running that algorithm on the
simulation host. Hence, once a simulation of a system has been developed, implementing
new algorithms to be run and/or simulated is simply a matter of writing the necessary

program for the target architecture.

7.2 Future Work

Several possibilities exist for extensions to this work. First, and probably foremost,
is validation of the Odyssey simulator using additional processors. This would require
access to another Odyssey board, which is not currently available but may be in the near
future. It seems likely that validating the simulator against eight (or more) processors will
uncover deficiencies in architecture modeling that are not significant at the four-processor
level. A related consideration is the possibility of a different method of accounting
for software overhead. This could eliminate the prediction errors arising from the use

of average values in the simulator, but would require a minor rewrite of the ASIM

procedures.

Another possibility is repeating the validation work discussed in Chapter 6 using the
asynchronous message-passing routines. Rewriting the algorithms to use the SendMes-
sage()/ReceiveMessage() primitives would not be difficult, and the validation results
should serve to reinforce the accuracy of the simulation methodology. Also, the in-
ternal structure of the asynchronous routines is such that accurate (ie., fixed) values
for software overhead can be used, in contrast to the average values necessitated by

the structure of the synchronous utilities. Finally, the Odyssey architecture analysis of

64
Section 6.4 should be extended to more fully document the performance implications of

modifications to the various hardware and software components of the system.,

(1]

(2]

(31
(4]

[5]

[6]

[71

(8]

[9]

65

References

W. Gass, R. Tarrant, and G. Doddington, “A Paralle]l Signal Processor System,” in

Proceedings ICASSP, (Tokyo), pp. 2887-2890, 1986.

Texas Instruments Incorporated, Explorer Odyssey System User’'s Guide, October

1987. Publication number (2537256-0001A).
Texas Instruments Incorporated, Second-Generation TMS320 User's Guide, 1987,

Texas Instruments Incorporated, Digital Signal Processing Applications with the

TMS320 Family, 1986.

Texas Instruments Incorporated, TMS320C25 C Compiler Reference Guide, March
1988. Publication number (1604909-9706).

Texas Instruments Incorporated, TMS320CIx/TMS320C2x Assembly Language

Tools User’s Guide, December 1987. Publication number (1604908-9705).

Institute of Electrical and Electronic Engineers, NuBus—a Simple 32-Bit Backplane

Bus, 1986. P1196 Specification, Draft 2.0.

P. Penz and R. Wiggins, “Digital Signal Processor Accelerators for Neural Network
Simulations,” in Proceedings of the AIP Conference on Neural Networks for

Computing, 1987.

M. D. Ingram, W. J. Foundoulis, J. R. Jump, and J. B. Sinclair, Odyssey Concurrent
C User’s Manual. Dept, of Electrical and Computer Engineering, Rice University,

Houston, TX, December 1988.

[10]

[11]

(12]

[13]

[14]

[15]

(16]

[17]

66
D. Mannering, Notes on C Programming for the TMS320C25 Odyssey Board,
Speech and Image Understanding Laboratory, TI Computer Science Center, Texas

Instruments Incorporated, April 1988.

R. G. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, “The Rice
Parallel Processing Testbed,” in Praceedings of the ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, (Santa Fe, NM), pp. 4-11,
May 1988.

R. G. Covington, S. Dwarkadas, J. R. Jump, G. Lauderdale, S. Madala, and J. B.
Sinclair, “The Efficient Simulation of Parallel Computer Systems,” Tech. Rep. TR
8904, Dept. of Electrical and Computer Engineering, Rice University, Houston,

TX, March 1989.

R. G. Covington, Validation of Rice Parallel Processing Testbed Applications. PhD
thesis, Rice University, Houston TX, December 1988.

S. Madala, “Concurrent C User’s Manual,” Tech. Rep. TR 8701, Dept. of Electrical

and Computer Engineering, Rice University, Houston, TX, January 1987.

R. G. Covington and J. R. Jump, “CSIM User’s Manual,” Tech. Rep. TR 8501,
Dept. of Electrical and Computer Engineering, Rice University, Houston, TX, July
1985. Revised February 1986,

R. G. Covington and J. R. Jump, “CSIM 2.0 User’s Manual,” Tech. Rep. TR

8712, Dept. of Electrical and Computer Engineering, Rice University, Houston,

TX, October 1587.

R. G. Covington, J. R. Jump, and J. B. Sinclair, “Cross-Profiling as an Efficient

(18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

67
Technique in Simulating Parallel Computer Systems,” Tech. Rep. TR 8903, Dept. of
Electrical and Computer Engineering, Rice University, Houston, TX, January 1989,
E. Horowitz and S. Sahni, Fundamentals of Data Structures in Pascal. Rockville,

MD: Computer Science Press, 1984.

E. M. Reingold and W. J. Hansen, Data Structures. Boston, MA: Little, Brown

and Company, 1983.

R. C. Gonzalez and P. Wintz, Digital Image Processing. Reading, MA: Addison-
Wesley, 1977.

J. F. Botha and G. F. Pinder, Fundamental Concepts in the Numerical Solution of
Differential Equations. New York: John Wiley & Sons, 1983.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations. Englewood Cliffs, New Jersey: Prentice-Hall, 1977,
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C. Cambridge: Cambridge University Press, 1988.

S. C. Ingels, “Validation of the Rice Parallel Programming Testbed with Sorting
Programs,” Master’s thesis, Rice University, Houston, TX, May 1989.

V. Mehta, “Performance Prediction of Fast Fourier Transform Algorithms on

Loosely Coupled Multiprocessors,” Master’s thesis, Rice University, Houston, TX

td

May 1988,

