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Cluster-glass behavior induced by local moment doping in the itinerant ferromagnet Sc3.1In
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In the presented work, Sc3.1In, a weak itinerant ferromagnet with no magnetic constituents, is doped with Er3+

local moment ions, to form (Sc1−xErx)3.1In. As x increases, the Weiss-like temperature θ stays positive and nearly
triples up to x = 0.10. Moreover, Er doping of as little as x = 0.02 induces a cluster-glass state, which persists
up to x = 0.10, as evidenced by dc and ac susceptibility measurements, and confirmed by the Vogel-Fulcher
analysis.
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I. INTRODUCTION

While it has been shown that, in some magnetic systems,
the nature of the magnetic moment can be changed from local
to itinerant via pressure1 or doping,2,3 distinguishing between
the two types of moments within a given system has proven to
be difficult.4 A possible solution is to use a purely itinerant
electron ferromagnet compound in which all constituents
are nonmagnetic, and then titrate in local moment-bearing
ions. Currently, only two compounds, ZrZn2 (Ref. 5) and
Sc3In (Ref. 6), are known to exhibit itinerant ferromagnetism
despite the fact that their components do not possess any
magnetic moment. An addition of local moment to the itinerant
matrix was attempted via Gd3+ substitution in Zr1−xGdxZn2.7

Surprisingly, it appeared that the instability of the itinerant
magnetism in ZrZn2 (Ref. 6) prevented the enhancement
of the overall magnetization upon doping.7 Moreover, the
Curie temperature TC and the Weiss-like temperature θ

decreased with increasing x in Zr1−xGdxZn2, resulting in
the suppression of the ferromagnetic state at xc = 0.025.7

Perhaps not as surprising, nonmagnetic element doping also
resulted in the suppression of the Curie temperature TC .8

The similarity between the magnetic and nonmagnetic doping
effects is quite striking but could possibly be explained by
the instability of ferromagnetism in ZrZn2, as predicted by
the band structure with a narrow peak at the Fermi surface.6,9

For Sc3In, the peak in the density of states at the Fermi level
was found to be broader than that of ZrZn2.10 Attempts to
drastically alter the overall magnetization via pressure11,12 and
magnetic field13 were unsuccessful. However, Lu3+ doping
resulted in remarkable non-Fermi-liquid (NFL) behavior, and
revealed the existence of a quantum critical point (QCP)
at xc ≈ 0.03.14

The addition of local moment ions in itinerant magnets
should provide an insight into the interplay between the two
types of magnetism: the itinerant moment is expected to
have a weak variation with the composition, but the overall
magnetic moment should increase with increasing amounts of
local moment. However, the itinerant magnetic moment was
suppressed to zero upon Gd doping of ZrZn2.7 Therefore, it
is crucial to elucidate how the local and itinerant moments
interact. To this end, the effects of Er doping into Sc3.1In
are reported here. In order to minimize the chemical pressure
effects caused by doping, Er3+ (r[Er3+] = 0.890 Å) (Ref. 15)
was chosen since this magnetic rare earth was closest in size to
the host Sc ion (r[Sc3+] = 0.745 Å) (Ref. 15) that it substituted

for. Er doping as small as x = 0.02 in (Sc1−xErx)3.1In induced
a cluster-glass state. The corresponding freezing temperature
T f increased with increasing x up to x ≈ 0.10, a composition
which appears to correspond to the solubility limit of Er in
Sc3.1In.

It has been established that the mechanism of the cluster-
glass behavior relies heavily on the existence of frustration and
disorder.16 Antiferromagnetic coupling17–19 lends itself more
readily to geometric frustration than ferromagnetic coupling,
explaining the limited number of metallic, ferromagnetically
coupled cluster-glass systems. Several cases are known, where
a cluster-glass state arises from a ferromagnetic ground state
in metal oxides,20–23 however, the metallic examples are
limited to Pd-Mn (Ref. 24) and Ce-Ni-Cu (Ref. 25) alloys,
U2IrSi3,26 U2CoSi3,27 and PrRhSn3.28 While the cluster-glass
state in both U2IrSi3 and U2CoSi3 has been attributed to
crystallographic disorder,26,27 dynamic fluctuations of crystal-
field levels have been suggested as the underlying mechanism
for the magnetic frustration in PrRhSn3,28 based on the fact
that neither site disorder nor geometric frustration is present
in this compound. The current study shows that the addition
of Er3+ local moments in the ferromagnet Sc3.1In induces a
cluster-glass state in (Sc1−xErx)3.1In (0 < x � 0.10), while the
Weiss-like temperature θ , a measure of the local-to-itinerant
moment coupling, remains positive. The Er-induced site
disorder, along with frustration in the bipyramidal Sc/Er-In
chains [inset, Fig. 1(a)] is the underlying source of the glassy
behavior.

II. EXPERIMENTAL METHODS

It has already been established6 that the hexagonal Sc3In
(space group P 63/mmc) forms nonstoichiometrically around
the atomic ratio Sc:In = 3:1. In a previous study,14 it was
determined that the optimal composition, which yielded the
highest Curie temperature T C and paramagnetic moment μexpt

PM ,
was Sc:In = 3.1:1. Polycrystalline samples of (Sc1−xErx)3.1In
(0 � x � 0.10) were prepared by arc melting Sc (Cerac
99.99%), Er (Cerac 99.99%), and In (Alfa Aesar, 99.9995%),
with mass losses no more than 0.3%. The arc-melted buttons
were subsequently wrapped in Ta foil and annealed under
inert atmosphere for over two weeks at temperatures between
700 ◦C and 800 ◦C.

The arc-melted samples are extremely hard, comparable
to some high carbon steels,29 making them difficult to cut
or grind, thus rendering powder x-ray diffraction experiments
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FIG. 1. (Color online) (a) X-ray diffraction pattern for Sc3.1In, obtained from an arc-melted polycrystalline specimen (see text). Vertical
marks correspond to the P 63/mmc phase. Inset: nearly one-dimensional bipyramidal Sc-In chains. (b) Evolution of the lattice parameters a

(triangles), c (circles), and the unit-cell volume V (squares) with composition x.

very difficult. The surface of as-annealed samples was pol-
ished, and the x-ray diffraction patterns were collected at room
temperature off the cross section (about 5 mm in diameter) of
these specimens, using a Rigaku D/Max diffractometer with
Cu Kα radiation.

Zero-field-cooled (ZFC) and field-cooled (FC) dc magneti-
zation measurements for the annealed samples were performed
in a Quantum Design (QD) Magnetic Property Measurement
System (MPMS) for temperatures from 2 to 300 K. The ac
susceptibility measurements (for frequencies f between 10
and 104 Hz) were carried out from 2 to 50 K in a QD
Physical Property Measurement System (PPMS). Specific-
heat measurements above 0.4 K were also performed, using
an adiabatic relaxation method, in the QD PPMS.

III. RESULTS AND ANALYSIS

The P 63/mmc structure and purity of the (Sc1−xErx)3.1In
samples for 0 � x � 0.10 was confirmed by x-ray diffraction

measurements. The lattice parameters were determined using
GSAS (General Structure Analysis System) refinement. In
the case of undoped Sc3.1In [Fig. 1(a)], the lattice parameters
a = 6.42 Å and c = 5.18 Å agree with the previously reported
values.30 The composition dependence of the lattice parame-
ters a (triangles) and c (circles), together with the change
in the unit-cell volume V (squares), is shown in Fig. 1(b)
for (Sc1−xErx)3.1In (0 � x � 0.10). A systematic increase in
the lattice parameters a and c, and the unit-cell volume V is
observed with increasing Er concentration. Secondary phase
peaks become visible in the x-ray data for x > 0.10, suggesting
that this is the solubility limit for Er in this hexagonal structure.

The dc magnetic susceptibility presented in Fig. 2(a)
shows irreversibility between ZFC (full symbols) and FC
(open symbols) data at low temperatures. This irreversibility,
together with the increase of the FC magnetization upon
cooling, is likely associated with either a cluster-glass state
or a long-range ferromagnetic order. The ac susceptibility data
presented below points to the cluster-glass scenario.

FIG. 2. (Color online) (a) ZFC (full) and FC (open) dc susceptibility for (Sc1−xErx)3.1In (0 � x � 0.10). (b) Inverse susceptibility for
(Sc1−xErx)3.1In where 0 � x � 0.10. The x = 0 data are scaled by a factor of 1

4 . Inset: composition dependence of measured (triangles) and
calculated (line) paramagnetic moments μ

expt
PM and μcalc

PM .
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At high temperatures, the temperature-dependent suscep-
tibility should be analyzed in the context of the interplay
between local and itinerant moment magnetism. For local
moments, the susceptibility χL (T is described by the Curie-
Weiss law),31

χL(T ) = χ0,L + CL

T − θW

, (1)

where χ0 is the temperature-independent magnetic suscepti-
bility, CL is the local moment Curie constant, and θW is the
Weiss temperature. The itinerant moment susceptibility χI (T )
also varies inversely proportional to the temperature,31 and,
in the case of strong spin fluctuations, χI (T ) can be written
as14,31

χI (T ) = χ0,I + CI

T − T ∗
C

. (2)

Here, CI is a Curie-type constant, proportional to the
quadratic paramagnetic itinerant moment, and T ∗

C is a Weiss-
like temperature. For a system with mixed local and itinerant
moment contributions, their linear superposition would result
in a magnetic susceptibility of the form

χ (T ) = χ0 + a
CL

T − θW

+ b
CI

T − T ∗
C

. (3)

As seen in Fig. 2(b), the inverse high-temperature sus-
ceptibility 1/[χ (T ) − χ0] is linear in T for x � 0.10, which
is consistent with Eq. (3) only if θW = T ∗

C = θ , suggesting
cooperative behavior of the local and itinerant moments in
(Sc1−xErx)3.1In:

�χ (T ) = χ (T ) − χ0 = xCL + (1 − x)CI

T − θ
= Ctot

T − θ
. (4)

The paramagnetic moment μ
expt
PM and the Weiss-like tem-

perature θ can be determined from the linear fits of the inverse
susceptibility at high temperatures. The θ values, listed in
Table I, remain positive and increase monotonously with x

up to x = 0.10, in contrast with the Gd-doped ZrZn2 where
θ values decreased with Gd concentration.7 Despite the fact
that the x = 0 sample has no magnetic constituents, the value
of its paramagnetic moment μ

expt
PM (x = 0) = μI ≈ 1.3μB/f.u.

is remarkably large, consistent with previous reports.6,13,14 As
the amount x of Er is increased, the overall paramagnetic
moment μexpt

PM grows, as indicated by the decreasing slope of the
inverse susceptibility in Fig. 2(b). The calculated paramagnetic

moment μcalc
PM can be estimated as a function of x:

μcalc
PM =

√
(1 − x)μ2

I + 3.1xμ2
L, (5)

where μI = 1.3μB/f.u. is the itinerant contribution and
μL = 9.59μB/Er3+ is the local moment per Er3+ ion. Good
agreement between μ

expt
PM and μcalc

PM is revealed in the inset of
Fig. 2(b), an indication of cooperative behavior of the local
and itinerant moments in this system.

In order to verify the glassiness in (Sc1−xErx)3.1In, as
suggested by the dc magnetization data above, additional
ac and dc magnetization, and specific-heat measurements
have been performed. All glassy systems are expected to
exhibit (i) the bifurcation of the ZFC and FC dc magnetic
susceptibility below the freezing temperature Tf (0), (ii) a
frequency-dependent maximum in the ac susceptibility χ ′(T ),
and (iii) a broad cusp in the temperature-dependent specific
heat Cp(T ) at T ≈ 1.3Tf (0). Cluster-glass materials are glassy
systems in which the spins exhibit short-range correlations
within a cluster, while the clusters themselves show the cooper-
ative freezing characteristic of spin glasses. Such cluster-glass
systems display (iv) an increase in the temperature-dependent
FC susceptibility χ (T ) below Tf (0), (v) lack of saturation in
M(H ) at high magnetic fields, and (vi) freezing temperatures,
defined as maxima in the dc ZFC χ (T ) data, generally
lower than the irreversibility temperatures Tirr between the
ZFC and FC data.16,32 The dc magnetization measurements
on (Sc1−xErx)3.1In have already revealed some signatures of
cluster-glass behavior, including (i) ZFC-FC irreversibility
below Tirr, (iv) increasing χFC on cooling, and (vi) Tf (0) < Tirr

[Fig. 2(b)]. The ac susceptibility χ ′(T ) and specific-heat data,
together with the magnetization isotherms M(H ) at T = 2 K,
presented below, reveal additional traits associated with the
cluster-glass behavior in (Sc1−xErx)3.1In (0.02 � x � 0.10).

A notable effect of Er doping in Sc3.1In is large hysteresis
and finite coercivity in (Sc1−xErx)3.1In (0.02 � x � 0.10,
Fig. 3), while in the pure itinerant system (x = 0, squares,
Fig. 3) no hysteresis is observed at T = 2 K. It has been
remarked33 that the low-temperature magnetic moment in
a cluster glass is often less than the one for the saturated
single-ion moment. The field-dependent magnetization data,
shown in Fig. 3, can be used to determine μ5.6 T as the lower
limit for the saturated magnetic moment for all compositions,
which can then be compared to the calculated values. The
calculated saturated moment is found as the superposition of
the itinerant μcalc

sat contribution from Sc3.1In, and the local Er3+

TABLE I. Cluster-glass parameters for (Sc1−xErx)3.1In (0 � x � 0.10).

Tirr μ
expt
PM θ Tf (0) T0

x (K) (μB/f.u.) (K) δ (K) zν (K)

0 1.29 ± 0.05 6.4 ± 1
0.02 18 ± 1 2.77 ± 0.05 13.0 ± 1 0.014 15.1 ± 1 2.7 ± 2 14.1
0.04 19 ± 1 3.62 ± 0.05 16.5 ± 1 0.012 17.6 ± 1 11.0 ± 2 15.6
0.06 22 ± 1 4.38 ± 0.05 15.9 ± 1 0.010 20.6 ± 1 8.8 ± 2 18.7
0.08 24 ± 1 5.00 ± 0.05 17.4 ± 1 0.009 22.2 ± 1 10.1 ± 2 20.0
0.10 25 ± 1 5.57 ± 0.05 17.2 ± 1 0.009 22.9 ± 1 10.8 ± 2 20.6
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FIG. 3. (Color online) T = 2 K magnetization as a function
of field for (Sc1−xErx)3.1In with 0 � x � 0.10. Inset: calculated
saturated moment μcalc

sat (line) and measured magnetic moment μ5.6 T

(diamonds).

contribution, scaled per formula unit:

μcalc
sat (x) = 3.1xμ(Er3+) + (1 − x)μ(Sc3.1In), (6)

where μ(Er3+) = gJμB = 9μB , and μ(Sc3.1In) =
0.20μB/f.u. is the magnetic moment of Sc3.1In at maximum
field available for these measurements (H = 5.6 T). For
example, for x = 0.10, the largest measured magnetic
moment, taken as the M(H ) value at 5.6 T (Fig. 3), is
μ5.6 T(x = 0.10) = 1.71 μB . For x > 0, the calculated values
of μcalc

sat (x) are larger than the measured μ5.6 T ones, as seen in
the inset of Fig. 3, consistent with the cluster-glass state.33

For 0.02 � x � 0.10, χ ′(T ) (Fig. 4) reveals a broad,
frequency-dependent peak, another indicator of glassy
behavior.16 Conversely, no peak and no frequency dependence
can be detected for x = 0, indicating that doping is necessary

to induce glassiness. Fits to the measured χ ′(T ) peaks, with
an example shown in Fig. 4(d) (solid line), yield values of
the freezing temperature Tf (f ), which are plotted in Fig. 5.
A parameter δ can be determined from the change in the
frequency f with the freezing temperature Tf (f ).16 This is
a quantitative measure of peak shift in χ ′(T ) with frequency,
and it is used to discriminate between spin-glass, cluster-glass,
and superparamagnetic systems:

δ = �Tf (f )

Tf (f )�(lnf )
. (7)

For 0.02 � x � 0.10 in (Sc1−xErx)3.1In, the δ values are
around 0.01, higher than those reported for typical canonical
spin glasses (δ ≈ 0.005 for Cu1−xMnx),16,32 and lower than
those for noninteracting ideal superparamagnetic systems
(δ > 0.10),34 but comparable to those of known cluster-glass
compounds (PrRhSn3 and CeNi1−xCux).25,28 This provides
more evidence for a cluster-glass state induced by Er doping
in Sc3.1In.16

In a cluster glass, the relaxation time τ is a measure of the
proximity to the spin-glass limit.32 The power law, established
by Hohenberg et al.,35 is frequently used to describe this
behavior:16,32

τ = τ0

(
Tf (f )

Tf (0)
− 1

)zν

, (8)

where τ0 is the characteristic relaxation time of a single
cluster, ν is the critical exponent which describes the growth
of the correlation length ξ {ξ = [Tf (f )/Tf (0) − 1]−ν}, and
z is the dynamic exponent which describes the evolution of
the relaxation time (τ ∝ ξz). The power-law fits, shown in
Figs. 5(a)–5(e) for (Sc1−xErx)3.1In for 0.02 � x � 0.10, are
used to determine the parameters zν and τ0. Common values
of the characteristic relaxation time τ0 in glassy systems are
∼ 10−12 s, comparable to that obtained for (Sc1−xErx)3.1In.

FIG. 4. (Color online) Frequency dependence of the real component χ ′(T ) of the ac susceptibility data for (Sc1−xErx)3.1In with 0 � x �
0.10. An example of fit used to determine the freezing temperature Tf (f ) is shown in panel (d) for f = 10 Hz.
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FIG. 5. (Color online) (a)–(e) Frequency f versus freezing temperature Tf (f ) for 0 � x � 0.10 in (Sc1−xErx)3.1In. Insets: Tf (f ) vs
1/ln(f0/f ) along with the fits (solid lines) to the Vogel-Fulcher law (see text).

Empirically, the zν values for glassy systems have been
observed to fall within the range 2 � zν � 14.36 This is also
true in the case of (Sc1−xErx)3.1In, as the zν values, listed in
Table I, are close to 10 for most x � 0.10 samples, and smaller
(but still > 2) only for x = 0.02.

Using the values of the relaxation time τ0 determined above,
the characteristic frequency f0 is calculated as f0 = 1/(2πτ0).
The relationship between the freezing temperature Tf (f ) and
the characteristic frequency f0 is given by the empirical Vogel-
Fulcher law16,36–38 which takes into consideration the strength
of intercluster interactions28,39

f = f0e
− Ea

kB (Tf (f )−T0) . (9)

Here Ea is the activation energy, i.e., the energy that the
clusters must overcome in order to align with the magnetic
field H , kB is the Boltzmann constant, and T0 is the Vogel-
Fulcher temperature that is often interpreted as a measure of
intercluster interaction strength.16,27,28,40 It is possible to fit the
data with the above equation rewritten as

Tf (f ) = Ea

kB

1

ln(f0/f )
+ T0. (10)

The parameters Ea and T0, derived, respectively, from
the slope and intercept of the Vogel-Fulcher fits of Tf (f )
versus 1/ln(f0/f ) [shown in the insets of Figs. 5(a)–5(e)],
are summarized in Table I. The nonzero values of T0 (Refs. 28
and 39) confirm that the clusters are strongly correlated, while

T0 � 0 would correspond to a collection of noninteracting
spins, i.e., a spin-glass compound.

The specific-heat data for (Sc1−xErx)3.1In (0.02 � x �
0.10), plotted as Cp/T versus T 2 in Fig. 6, displays a
broad peak near the freezing temperature Tf (0), marked by
the large open symbols. A broad maximum at the temperature
exceeding the freezing temperature Tf (0) is usually observed
in cluster-glass systems, as mentioned above. No such peak
is visible for x = 0, although at low T the upturn in Cp/T

is thought to be associated with NFL behavior.14 Even for

FIG. 6. (Color online) Cp/T vs T 2 for (Sc1−xErx)3.1In (0 � x �
0.10), with open symbols corresponding to the freezing temperature
Tf (0), as determined from χ ′(T ).
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FIG. 7. (Color online) (a) The freezing temperature Tf (0) (open squares), the irreversibility temperature Tirr (full squares), and the Weiss-like
temperature θ (full diamonds) as a function of x in (Sc1−xErx)3.1In. (b) RW plot for local moment compounds (triangles), itinerant moment
compounds (full circles), and (Sc1−xErx)3.1In (0 � x � 0.10) (open circles). The red line indicates the local limit for qc/qs ≈ 1. Inset: the RW
ratio for (Sc1−xErx)3.1In (0 � x � 0.10).

x > 0, Cp/T versus T 2 (Fig. 6) displays a low-T upturn,
whose origin maybe be attributed to either a Schottky anomaly
or NFL behavior. This remains to be clarified in a future
study.

The composition dependence of the freezing temperature
Tf (0) and the irreversibility temperature Tirr is shown as
squares in Fig. 7. By contrast to the effects of Gd doping
in ZrZn2,7 where the Weiss-like temperature θ was suppressed
with increasing amounts of local moment, Er doping of Sc3.1In
resulted in an increase of θ .

The paramagnetic moment μ
expt
PM and the saturated moment

estimate μ5.6 T can be used to determine the magnetic carrier
per atom qc and qs .41 The qc parameter describes the
behavior of the system for temperatures above the transition
temperature, and is determined from the paramagnetic moment
μ

expt
PM , using41

qc(qc + 1) =
(
μ

expt
PM

)2

4
. (11)

Similarly, qs is obtained from the saturation magneti-
zation at temperatures below the transition temperature as
qs = μ5.6 T/2, where μ5.6 T is assumed to be close to the
saturated moment given the small slope of the M(H ) isotherms
in Fig. 3. If the number of carriers below the transition
temperature qs is the same as the one above the transition
temperature qc, the Rhodes-Wohlfarth (RW) ratio is qc/qs ∼ 1,
indicating a local moment system. The other limiting case
is that for qc/qs > 1, observed in delocalized or itinerant
magnets [qc/qs = 4 for ZrZn2 and 6.1 for Sc3In (Ref. 41)].
The values of the RW ratio for local (full triangles) and
itinerant (full circles) moment compounds, together with those
for (Sc1−xErx)3.1In (open circles), are shown in Fig. 7(b).
The coexistence of local and itinerant magnetic moments in
Er-doped Sc3.1In yields RW ratios between 2.7 and 3.7, as
evidenced in the inset of Fig. 7(b). However, this ratio remains
enhanced compared to the local moment limit for x � 0.10,
suggesting that larger amounts of local moments would
be necessary before the local moment magnetism became
predominant.

IV. CONCLUSIONS

A nonmagnetic dopant such as Lu (Ref. 14) yielded no
glassy behavior in (Sc1−xLux)3.1In, but rather a gradual sup-
pression of the ferromagnetic state towards a QCP. Conversely,
Gd local moment doping of another itinerant ferromagnet
with no magnetic moments ZrZn2 also resulted in a gradual
suppression of the ferromagnetic state, with no evidence for
the glassiness.7 Er doping in Sc3.1In contrasts the findings
for Zr1−xGdxZn2, as the paramagnetic moment is enhanced
with increasing x in the former, while the doping results in
cluster glass behavior in (Sc1−xErx)3.1In, with cooperative
behavior of the local and itinerant moments suggested by the
dc susceptibility χ .

The ac and dc magnetization measurements, along with
specific-heat data, show that (Sc1−xErx)3.1In (0.02 � x �
0.10) exhibits cluster-glass behavior below the character-
istic freezing temperature 15 K � Tf (0) � 24 K, which is
enhanced by the increasing doping amount x. The cluster-
glass behavior is marked by the irreversibility of ZFC-FC
dc magnetization data, a broad frequency-dependent peak in
the ac susceptibility, a large value of δ parameter, the lack
of saturation in the low-temperature magnetization at high
fields, and a weak anomaly in the specific-heat data. Moreover,
the Vogel-Fulcher analysis established that the clusters were
strongly correlated.

Given that the emergence of cluster-glass state is only
possible via frustration of the lattice, crystal-field-induced
destabilization of magnetic moments, and site disorder, we
propose site disorder and frustration to be at play here.
The lattice of Sc3.1In exhibits reduced dimensionality42 due
to nearly one-dimensional bipyramidal Sc-In chains. The
crystallographic frustration and site disorder, induced by Er
doping on the bipyramidal sites, induces a cluster-glass state
that originates from a metallic ferromagnetic ground state. It
is imperious that the interplay between the local and itinerant
moment in this system be elucidated, and neutron diffraction
experiments are underway.
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