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Parameter-Passing and the Lambda Calculus

Erik Crank

Abstract

The choice of a parameter-passing technique is an important decision in the design
of a high-level programming language. To clarily some of the semantic aspects of the
decision, we develop, analyze, and compare modifications of the A-calculus for the
most common parameter-passing techniques. More specifically, for each parameter-

passing technique we provide

1. a program rewriting semantics for a language with side-effects and first-class
procedures based on the respective parameter-passing technique;

2. an equational theory derived from the rewriting semantics;

3. a formal analysis of the correspondence between the calculus and the semantics;

and

4. a strong normalization theorem for the largest possible imperative fragment of

the theory.

A comparison of the various systems reveals that Algol’s call-by-name indeed satisfies
the well-known 8 rule of the original A-calculus, but at the cost of complicated axioms
for the imperative part of the theory. The simplest and most appealing axiom system
appears to be the one for a call-by-value language with reference cells as first-class

values.
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Chapter 1

Introduction

‘The choice of a parameter-passing technique is an important element in the design
of a high-level programming language. The wide variety of techniques in modern
languages, e.g., call-by-value, call-by-name, pass-by-reference, suggests a lack of a
consensus about the advantages and disadvantages of the various techniques. In this
thesis we analyze the most common techniques by studying and comparing equational
theories for each of them.

The first to consider equational theories for the analysis of parameter-passing
techniques was Plotkin [22]. Starting from the folklore that Church’s A-calculus cap-
tures the essence of call-by-name in a functional language, he developed a variant
of the calculus, the \,-calculus, to formalize Landin’s [17] notion of call-by-value in
a simple framework comparable to the A-calculus. More importantly, he used these
two examples, call-by-name and call-by-value, to analyze the formal relationship be-
tween programming languages and calculi. Both the \-calculus and the A,-calculus
satisfy general correspondence conditions with respect to the appropriate semantics:
(1) the calculi are sufficiently strong to evaluate a program to its answer and (2)
they are sound in the sense that the equality of terms in the calculus implies their
interchangeablility in programs.

Recently, Felleisen et al [8, 9, 10] extended Plotkin’s work to call-by-value pro-
gramming languages with imperative constructs like assignments and jumps. Their
result shows that like functional constructs, imperative constructs have a simple op-
erational semantics, and that there are conservative extensions of the A,-calculus for
reasoning about them.

The extension of Plotkin’s work to imperative languages is important because it
enables us to consider a broader spectrum of parameter-passing techniques. Specifical-
ly, it is only through the addition of imperative constructs that the design options for
alternative parameter-passing techniques become interesting. Whereas in a functional
setting the only observable differences between the call-by-value and call-by-name
versions of a program is termination behavior, the two versions of the same program



can produce different results in imperative languages. Moreover, in the presence of
assignments, it is also possible to distinguish parameter-passing protocols that bind
parameters to values from those that bind parameters to “references” to values.

Based on these observations, we classify parameter-passing techniques accord-
ing to their respective evaluation and binding strategies. The evaluation strategy
determines when to evaluate the procedure arguments, while the binding strategy
determines the correspondence between formal parameters and arguments. The two
prevailing evaluation strategies are eager evaluation (call-by-value), which evaluates
the argument to a procedure call before binding the parameter, and delayed evaluation
(call-by-name), which does not evaluate the argument until the value of the param-
eter is needed. As for binding strategies we consider pass-by-worth, which binds the
parameter to the value, i.e., “worth,” of the argument, and pass-by-reference, which
binds the parameter to a variable, i.e., a “reference” to a value. A third strategy,
pass-by-value-result, has properties of both pass-by-worth and pass-by-reference.

In this thesis we analyze the parameter-passing techniques produced by the various
combinations of evaluation and binding strategies. In addition, we examine the ref-
erence cell, a language construct that provides an alternative to the pass-by-reference
technique. For each technique we develop an operational semantics and a calculus
for a higher-order programming language that uses the technique. The calculi satisfy
variants of Plotkin’s correspondence criteria. In addition, we show that the imper-
ative fragments satisfy strong normalization theorems. A comparison of the calculi
reveals some aspects of the relative semantic complexity of the parameter-passing
techniques. In particular, this study verifies the folklore that Algol’s call-by-name
parameter-passing corresponds to a calculus with the famous 3 rule in its full gener-
ality, even in the presence of side-effects. However, this correspondence comes at the
expense of complicated axioms for the imperative fragment of the calculus. The sim-
plest system is the one for the call-by-value/pass-by-worth language with reference
cells as values. It is a conservative extension of the Ay-calculus, satisfies a corre-
spondence theorem and has a decidable imperative fragment. Furthermore, reference
cells in the call-by-value/pass-by-worth language provide some of the capabilities of
call-by-value/pass-by-reference.

The next two chapters of this thesis examine different combinations of binding and
evaluation strategies. Chapter 2 deals with techniques that use the eager evaluation
strategy while Chapter 3 examines those using delayed evaluation. Also included in
Chapter 2 is a discussion of the reference cell. Each section defines an operational
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semantics and a corresponding calculus for a particular parameter-passing technique.
Chapter 4 discusses languages with multiple parameter-passing techniques. Finally,
we study some simple examples, discuss related work and form conclusions in the last

chapter.



Chapter 2

Eager Evaluation

The evaluation stra.teg'y of a language dictates when to evaluate the argument in a
procedure application. In the eager strategy, also known as strict or call-by-value,
the evaluation of the argument expression occurs before the evaluation of the pro-
cedure body. In this chapter, we consider three binding strategies for call-by-value
languages: pass-by-worth, pass-by-reference and pass-by-value-result. The last sec-
tion discusses the reference cell, a language construct that provides an alternative to

certain parameter-passing techniques.

2.1 Call-by-value/Pass-by-worth

Many commen programming languages, e.g., C, Fortran, ML, Pascal and Scheme,
employ the call-by-value/pass-by-worth parameter-passing technique. In these lan-
guages, a procedure application evaluates the argument expression before binding the
formal parameter to the value of the argument. This section, which serves as the
basis for the rest of the thesis, presents the call-by-value/pass-by-worth language and
a calculus for reasoning about the language. Both the language and calculus are
variants of the work by Felleisen and Hieb [9].

Syntax

The call-by-value term language, Idealized Scheme or IS,, extends the language of
the A-calculus with two new expressions. First, there is an assignment statement,
(set! z €), which assigns to the variable z the value of the expression e. The result of
an assignment expression is the value that is assigned to the variable. Second, there
is a p-expression, which is similar to a block in Algol and the letrec expression in
Scheme. It contains a sequence of variable-value pairs and a subexpression. The p-
expression establishes mutually recursive bindings of the variables to their associated
values and returns the value of the subexpression.



Definition 2.1.1. (Call-by-value Term Language IS,) Vars denotes the set of
variables. Consts is an unspecified set of constants with a subset of functional
constants, FConsts. Let x range over Vars, ¢ over Consts and f over FConsts.
The set of expressions in IS, consists of values, variables, applications, assignments

and p-expressions. Values are constants and A-abstractions:

n= v|az|(ee)|(set!lwe)|pbe (Eapressions)
v = c| Az (Values)

A p-list is a sequence of variable-value pairs in which the variables are pairwise
distinct:
0 u= €| 0(z,v), where (z,v') € 0.  (p-lists)

The subexpression e is the body of the A-abstraction Az.e, and of the p-expression
pl.e. The variable position of a set! expression is the leftmost subexpression.

There are two basic differences between this language and the language of Felleisen
and Hieb [9]. First, we use the assignment statement set! instead of the sigma capabil-
ity introduced by Felleisen. Although the sigma capability is a powerful programming
construct, most languages implement weaker constructs such as the set! expression.
Second, like in Scheme, all variables are assignable, that is, they may occur in the
variable position of a set! expression. Therefore, unlike in the \,-calculus [22] and
the A,-S-calculus [9], variables in our language are expressions, not values.’

The A-abstractions and p-expressions are binding expressions. The A-abstraction
Az.¢ binds the variable z in the body e. The p-expression p(w1,v;). .. (%n, vy).€ binds
the variables zy,..., 2, in the body e and in each of the values vy,...,v,. The set
of free variables in an expression e is denoted F'V(e). An expression is closed if it
contains no free variables. Following Barendregt’s [1] conventions, we assume that
the bound variables are distinct from the free variables in all expressions, and we
identify expressions that differ only by a renaming of the bound variables. Similarly,
we identify p-lists that differ only by the ordering of their pairs:

(T1,01) - (€0, v2) = (@i, 03,) .+ (@4, ¥iy), Tor all permutations 4y, ... ,i, of 1,.. ., n.

1 Although variables are values in the Ay-calculus, the addition of an assignment statement to the
language requires that assignable variables not be values. Felleisen et al (8, 9] conservatively extend
the Ay-calculus by enlarging the set of variables with a set of assignable variables. The original
unassignable variables of the A,-calculus are values, whereas the additional assignable variables are
not. To simplify matters, we abandon this distinction,



Put differently, we treat p-lists as sets of pairs and in some circumstances as finite
functions. Accordingly, we refer to a p-list as a p-set and use standard set operations
on these sets. :

The expression e[z « €’] denotes the expression resulting from the substitution of
all free occurrences of the variable x in e with the expression ¢’. The set of assigned
variables in an expression e, denoted AV (e), is the set of free variables in e that occur
in the variable position of a set! expression.

A context is a term with a “hole” ([]) in the place of a subexpression. Formally,
the set of contexts over IS, is defined as follows:

Cu=[]](eC)|(Ce)|(set!zC)|ra.C | p0U{(z,C)}.e | pd.C

If C is a context, then Cl[e] is the expression produced by replacing the hole in €
with the expression e.

The set of constants, Consts, is not specified, but is intended to represent basic
objects such as primitive functions, numbers and booleans. A partial function &,
from functional constants and closed values (Values®) to closed values, provides the

intei'pretation of functional constants:
§ : FConsts x Values® — Values®

We restrict the interpretation function so that functional constants cannot distin-
guish A-abstractions. That is, if §(f,v) is defined for some A-abstraction v, then for
all A-abstractions v/, 6(f,v) = 6(f,v’). This restriction on functional constants is
reasonable in the context of most programming languages®. Essentially, it prohibits
from the language only those functions that can examine the text of procedure bod-
les, but permits functions that can distinguish constants from procedures, such as the

Scheme predicates int? and proc?.

Semantics

The semantics of the call-by-value/pass-by-worth language is a partial function,
evalyy, from programs to answers, where a program is a closed expression and an

answer is either a value, or a rho expression whose body is a value:

a u= v|pbo (Answers)

2For reflective languages, in which programs have knowledge about program text, this restriction is
too strong. Our work does not address such languages [19].



We specify this function via an abstract machine that rewrites programs according
to a program transformation function. More precisely, the machine partitions the
program into an evaluation context and a redez. The evaluation context is a special
kind of context that specifies the evaluation order of the subexpressions in a com-
pound expression. Intuitively, the hole in an evaluation context points to the next
subexpression to be evaluated. A call-by-value evaluation context specifies the eager

evaluation strategy:
E,z=[]1(vE,)|(E,¢)| (set! z E,)

A redex is an expression that specifies how the transformation function rewrites the
program. The call-by-value/pass-by-worth language redexes are the following expres-
sions: fv, (Az.e)v, z, (set! = v), and pb.e. According to the type of redex, the
transformation function rewrites the entire program to a new program. The machine
continues to apply the transformation function until it produces an answer. Some
programs do not produce answers, either because the rewriting process never termi-
nates or because the transformation function is not defined on the programs. For
these programs, eval,, is undefined. Finally, the machine removes all unneeded p-
bindings by applying “garbage collection” reductions to the answer. More technically,
the garbage collection notion of reduction ge is the union of the following relations
(gc = geU elim):
ploUb1.e — pli.e, if Oy # @ and FV(pb;.e) N Dom(8y) = @ (gc)
pDe — e *(elim)
It is easy to verify that the notion of reduction gc is strongly normalizing and Church-
Rosser. Therefore, all expressions in IS, have a unique gec-normal form (gc-nf).

Furthermore, the ge-nf of an answer is also an answer.

Definition 2.1.2.  (eval,,) The transformation function for the call-by-
value/pass-by-worth language, .., is a partial function from IS,-programs to
IS5,-programs defined by the transition rules given in Figure 2.1. The transitive
closure of >,, determines the call-by-value/pass-by-worth semantics of IS, :

evalyy(e) = a if p@.e b, pb.v, and a is the ge-nf of pb.v.

If eval,,(e) = a, then we say the evaluation of e terminates with answer a. If
eval(e) is undefined, we say e diverges. If p@.e % ¢, then e evaluates to €'




PO.Ey[fv] Duw p0.Ey[6(f,v)], if 6(f,v) defined. (E.6)

 pO.Ey[(Az.e)v] Dyy pb.Eyle[z — v]], ifx & AV (e) (E.By)
pO.Ey[(Az.€)v] Dy pb.E[p{(x,v)}.€], if 2 € AV (e) (E.Byo)

pOU {(2,v)}.Ef2] By poU {(z,v)}. Eyfv] (D)

PO U {(z,u)}.Eyf(set! & v)] Dyw pU{(z,v)}.Eyfv] (ov)
p8.Ey[p8'.€] byw pUE .Eye] (pu)

Figure 2.1 Call-by-value/Pass-by-worth Transformation Function

The first two rules in Figure 2.1 specify the semantics of the functional subset of
1S,. The third rule defines the behavior of A-abstractions in applications when the
bound variable is assigned within the body. This rule creates a p-set that maps the
bound variable to the argument. The fourth and fifth rules give the semantics for
a reference to a variable and for an assignment to a variable. A variable reference
is replaced by its corresponding value from the p-set and an assignment changes the
mapping of the variable in the p-set. Finally, the last rule joins two p-sets when a
p-expression occurs in the hole of the evaluation context.

To verify that eval,, is a function, we need to show that b, is a function. The
transition rules that define b, partition a program into a surrounding p-expression,
an evaluation context, and a redex. It is easy to show that the definitions for eval-
uation contexts and redexes ensure that this partition (if it exists) is unique, and
therefore at most one transition rule can be applied to any program. Furthermore,
since the final answer is the unique ge-nf of the result obtained by the transition
function, eval,, is a function.

Although evaly, provides a means for determining whether two programs have
the same behavior, programmers often need to know whether one subezpression can
be replaced by another without affecting the overall behavior of a program. This
notion ‘of “equivalent expressions” is captured by the observational equivalence rela-
tion. Intuitively, two terms are observationally equivalent if they are interchangeable



within all programs without affecting the observable behavior of the programs.? Two
programs have the same observable behavior if either they both diverge or they both
converge, and if one evaluates to a basic constant then the other evaluates to the

same constant.

Definition 2.1.8. (=,,) Two terms are observationally equivalent, e ~,, ¢, if
for all contexts C' such that both Cle] and C|e'] are programs,

o cval,,(Cle]) is defined iff evaly,(C[e']) is defined, and

e eval,,(Cle]) = ciff evaly,(Cle']) = ¢, for some basic constant c.

Calculus

Proving the observational equivalence of two terms is a difficult task. A proof must
show that for all program contexts, the two terms are interchangeable without affect-
ing the program behavior. Our goal is to develop a simple equational theory that can
prove terms observationally equivalent. A first step is the \,-W-calculus, an equa-
tional theory that closely resembles the state calculus of Felleisen and Hieb [9]. The
definition of the A,~-W-calculus is given in Definition 2.1.4.

The calculus is derived from the semantic program transformation function. The
axioms §, B, and B, are simplifications of the corresponding relations E.§, E.8,,
I5.Bus. The pjp axiom lifts a p-expression from within an evaluation context. The
gc reductions equate terms that differ only by unneeded items in p-sets. The other
axioms are identical to their corresponding rules in the transformation function. In
fact, we could construct the same calculus directly from the transformation function
by taking Py, U gc as the set of axioms instead of vw. However, for proving meta-
theorems about the calculus the above definition is more appropriate.

We defined a semantics for a language and then derived an equational calculus
from the semantics. Before proving that the calculus corresponds to the semantics, we
must first give a formal definition of “correspondence.” Plotkin [22] gave two criteria
for correspondence between a calculus and a semantics. First, the calculus must be

sufliciently strong to evaluate programs. In particular, if the semantics evaluates a

3For historical reasons, some authors call this relation operalional equivalence. To avoid confu-
sion, we use the term observational because the relation is based upon observable characteristics,
independent of an operational semantics.
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Definition 2.1.4. (A,-W) The theory A,-W is based upon a set of axioms that
includes the relations D,, 0y, pu in Figure 2.1, the notion of reduction gc and the

following axioms:

fo = &(f,v) (6)
(Az.e)v = elz )], if x & AV (e) (B,)
(Az.e)v = p{(z,v)}.e, if z € AV (e) (Byo)
E,[p0.¢] = p0.E,[e], if E, #[] (piise)

The complete set of axioms is: vw = §U 8, U 8o U D, U o, U pu U piip U ge. The
theory A,-W, also called the A,-W-calculus, is the set of formulas €; =y, e, where
e1,ez € IS, and =,, is the least equivalence relation generated by the compatible

closure of vw:

(e1,€2) EVW = €1 =y €2 (Azioms)
e1 =ww €2 = Cle1] =4y Cleg], for context C  (Compatible)
€1 =ww €1 (Reflexive)
€1 =pw €2 = €2 =yu € (Symmetric)
€1 =yw €2,€2 =yy €3 = €] Ty €3 (Transilive)

We write A,-W F e; = e; if &1 =, €2.

program e to a, then there should be a proof in the calculus A,-W F e = a. Similarly,
if the calculus proves that a program is equivalent to an answer, then the program
should evaluate to an answer. Second, the calculus must be sound with respect to
the observational equivalence relation. In other words, if two terms are equal in the
calculus, they are observationally equivalent with respect to evalyy,.

The Correspondence Theorem states that the A,-W-calculus corresponds to the
call-by-value/pass-by-worth language.
Theorem 2.1.5 (Correspondence) The A,-W-calculus corresponds to the call-by-
value/pass-by-worth semantics of IS, eval,,. In particular,

1. Ay-W is adequate:

(a) if evalyy(e) = a, then X\,-W F e = q,

(b) if Ay-W I e = a, then eval,,(e) is defined; and
2. Ay-W is sound with respect to ~y,:

Av-W I e1 = ey implies e, 22y €3.
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Proof. Adequacy follows from the fact that b, is a subset of =,,,. For soundness,
we interpret the axioms from left to right to define a notion of reduction vw. The
reduction satisfies Church-Rosser and Curry-Feys Standardization lemmas that imply
the soundness of the calculus.

The proof is an adaptation of the proofs for the calculi of Plotkin [22] and Felleisen
et al [8, 9, 10] and are long and tedious. The complete proof is given in Appendix
Al

A secondary interesting question about a calculus is whether it is decidable. In
our case, the imperative subtheory p,, that is, the theory based upon the axioms in
vw that do not deal with procedure applications, is decidable. Specifically, the notion
of reduction consisting of these axioms is strongly normalizing. This is a new result,
which does not hold for the imperative fragment of the \,-S-calculus. It is motivated
in part by the completeness theorem for a non-recursive fragments of first-order Lisp
in Mason and Talcott [18].

Theorem 2.1.6 (Strong Normalization) Let 6. be the restriction of the relation
6 as follows:

(f v) = 6(f,v), where §(f,v) € Consts (6c)
Lets, = 6.UDyUoyUpuUpiinUge. The notion of reduction s, is strongly normalizing.
Proof. The proof uses a size argument. We define a “potential” function, P :
Ezrpressions — N x N, such that P(e) > P(e’), by lexicographical ordering, if
e —,, ¢'. This function counts the number of redexes in a term, and also takes
into account potential redexes that may be introduced in further reductions. See
Appendix A.1 for the complete proof. s

In subsequent sections, if a theory th satisfies the two correspondence criteria
with respect to an evaluation function eval, we write th |= Corr(eval). Similarly, we
write r = SN when the notion of reduction r is strongly normalizing.

2.2 Call-by-value/Pass-by-reference

Some programming languages such as Pascal and Fortran allow pass-by-reference
procedure parameters in addition to pass-by-worth parameters. Generally, these lan-
guages require that the actual argument for a pass-by-reference parameter be a vari-
able. A procedure application binds the parameter to the variable so that during the
evaluation of the procedure body, references and assignments to the formal parameter

are equivalent to references and assignments to the actual argument.
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The motivation behind pass-by-reference parafneter-passing is the following. Sup-
pose there are several subexpressions of a program that are identical except for some
differing variable names. It would seem natural to write a procedure that abstracts
over the different variables in the subexpressions and to replace each occurrence of
the expression in the program with a procedure call. ' This does not work in the
pass-by-worth semantics, however, because if this procedure contains an assignment
to a parameter, then by definition, the assignment will not affect the argument of
the procedure call, and the resulting program may not have the same meaning as the
original. Pass-by-reference parameters overcome this deficiency, since all references

to the parameter in the body become references to the argument.

Semantics

Unlike most languages, our semantics generalizes the notion of pass-by-reference to
allow arbitrary expressions as arguments to procedures. For the case in which the
argument is not a variable, the transformation function evaluates the argument until
it becomes a variable before the procedure call. If the argument does not evaluate to
a variable, then the meaning of the program is undefined.

The term language for the pass-by-reference semantics is IS,, except that we in-
terpret Az.e as a pass-by-reference procedure. Two changes to the pass-by-worth
program transformation function in Figure 2.1 are necessary to obtain the transfor-

mation function for the pass-by-reference semantics:

e When a variable occurs as an argument to a A-abstraction, the transformation
function substitutes the argument variable for the bound variable within the

body of a A-abstraction:
p0.E.[(Az.e)y] b p0.E,[e[z — y]] (E.5,)
The rule E.B, replaces the two rules (E.B,, E.B,,) for procedure application.

o The transformation function does not dereference a variable when it occurs as

an argument to a lambda abstraction:

POV {(2,0)}.Eof2] & p0 U {(2,0)}.Euv), if B, # Ei[(Ay.e)[]]  (E.Dy)

4Although some versions of Fortran permit arguments other than variables, the semantics of these
cases is defined by the pass-by-worth rule E.By,. In this section we restrict our attention to pass-
by-reference.
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This dereference rule E.D! replaces D,.

The call-by-value/pass-by-reference transformation function, >, is the union of the
two new rules and the previously defined rules in Figure 2.1:

By =ESUELUE.D,Uo, U py

As in the pass-by-worth semantics, the transformation function and the notion of

reduction gc determine the semantics:
evaly(e) = a if pd.e b}, pb.v, and a is the ge-nf of pd.v

The observational equivalence relation, ~,,, for this language is based upon eval,,.
In order for eval,, to be a function, the transformation relation b,, must also be
a function. The >, relation is a function because only one transition rule can apply
to a given program. Although there may not be a unique partition of a program into
an evaluation context and a redex as in the call-by-value/pass-by-worth language, the
added condition on the E.D) rule eliminates the one case in which two rules could

have applied to a program.

Calculus

Only two simple modifications to the pass-by-worth transformation function were
needed to define a pass-by-reference semantics. Presumably, since the pass-by-worth
calculus was derived from the transformation function, only simple modifications are
necessary to define an equational theory for the pass-by-reference semantics. Our
approach is to make changes to the pass-by-worth calculus that correspond to the
two changes needed for the transformation function. First, a new axiom S, replaces

B, and B,:
(Az.e)y = e[z — ] (8:)

Second, the E.D, relation could serve as the variable dereference axiom instead of D,.
Unfortunately, the E.Dy, is an unsound axiom for a variable dereference in the empty

context. For example, with E.D;, it is possible to prove the following equivalence:

(Ay.c)p{(z,v)}.x = (Ay.c)p{(z,v)}.v

These two programs are not observationally equivalent, however, because the meaning
of the left program is ¢ while the meaning of the right is undefined. Fortunately,
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E.D}, is unsound only for this case. Adding an appropriate restriction to D, solves

the problem:
pO U {(z,v)}.Efa] = p0U {(z,v)}.E,v], (D)
if By # E,[(\y.e)[]] and By # []

This rule together with §, and the others from the pass-by-worth calculus form the

basis of the A,-R-calculus. The set of axioms is:
vr=6UB,UD,Uc,UpyU pus U ge.

As before, the theory A,-R consists of the equivalences e; =,, e;, where =,, is the
equivalence relation generated by the compatible closure of the axioms in vr. We
write A,-R F e; = e if € =, €3.

Because of the soundness problem encountered with the D! rule, the calculus
does not exactly correspond to the semantics by Plotkin’s criteria. The condition on
the D, reduction relation restricts the ability of the calculus to evaluate programs.
Specifically, for some programs the calculus can only evaluate them to an expression
that is “one step away” from the answer by the transformation function. Based on
this observation, we prove a Weak Correspondence Theorem.®

Theorem 2.2.1 (Weak Correspondence) The A,-R-calculus weakly corresponds
to the call-by-value/pass-by-reference semantics of IS,, eval,,. In particular,

1. Ay-R is “almost” adequate:

(a) if eval,.(e) = a then either

e \,-Rte=uaq, or

o Av-REe=pfU{(z,v)}.2 and A,-R F pf U {(2,v)}.v = q,
(b) if Ay-R F e = a, then eval,.(e) is defined; and

2. Ay-R is sound with respect to ~,,:

Av-R F e = e; implies e; ~,, e,.

% An alternative to formulating a weak correspondence relationship would be to redefine the semantics
to correspond to the calculus. In particular, if we treat the expression pf.z as an answer in the
semantics, then the calculus satisfies the correspondence criteria. However, programming languages
do not use this notion of call-by-value/pass-by-reference semantics.
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Proof. The proof has the same structure as the previous correspondence theorem
and is given in Appendix A.2. »

If a theory th satisfies a weak correspondence theorem with respect to an evalu-
ation function eval, we write th = WCorr(eval).

The imperative fragment of the pass-by-reference calculus, p!, differs from p,
only with respect to the dereference axioms D, and D;,. Not surprisingly, p! is also
decidable. In addition, the procedure call reduction, f, is strongly normalizing.
Theorem 2.2.2 (Strong Normalization) Let s, = 6. U D!, U o, U py U pyip U ge.
Then, s, = SN and 3, |= SN.

Proof. The proof for s is a straightforward adaptation of the proof for pass-by-worth.

For f,, a simple size argument suffices. »

2.3 Call-by-value-result

The programming languages Ada [26] and Algol W [27] specify a parameter-passing
technique known as call-by-value-result, or copy-in/copy-out.® This parameter-passing
technique uses the eager evaluation strategy and is similar to both the pass-by-worth
and pass-by-reference binding techniques. Like pass-by-reference, arguments to pro-
cedures must be variables. Like pass-by-worth, the procedure applications bind the
formal parameter to the value of the argument variable. However, after evaluation of
the procedure body, the argument variable receives the value of the formal parameter.
In other words, the value of the argument is “copied in” to the parameter before the
procedure call and the value of the parameter is “copied out” to the argument after
the call.” As a result, assignments to the formal parameter affect the argument, but
only after the evaluation of the procedure body.

This technique addresses a problem that occurs with aliasing parameters in pass-
by-reference. Specifically, in pass-by-reference if two formal parameters refer to the
same variable during evaluation of the procedure body, then assignments to one pa-
rameter also affect the other parameter. This does not occur in call-by-value-result
because formal parameters are bound to the value of the argument and the assign-
ments to the formals do not affect the argument variable until after the evaluation of

5Technically, the term “call-by-value/pass-by-value-result” is the name consistent with our termi-
nology. We use the more popular name call-by-value-result for simplicity.

“Some languages also specify “call-by-result” parameter-passing in which only the copy-out is per-
formed. This method is useful only in passing information out of a procedure and is a special case
of copy-in/copy-out.
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the procedure body. In programs that contain no aliased parameters, the semantics
of call-by-value-result is the same as call-by-value/pass-by-reference [5].

Syntax

The sequential nature of the call-by-value-result parameter-passing technique requires
a new language construct for the specification of the semantics.! We extend the set

of expressions in IS, with a sequence statement:
en=... | (e;e)

The expression (e;; ez; . .. e,) abbreviates (eq; (e;. .. en)). The rest of IS, remains the

same, except that Az.e stands for a call-by-value-result procedure.

Semantics

The semantics of the sequence expression is straightforward: the left sub-expression
is evaluated first followed by the right. The value of the whole expression is the value
of the second sub-expression. An extended notion of evaluation context specifies the
order of evaluation:

E,:=... | (Eye)
The program transformation rule for sequence statements discards the value obtained

from evaluating the left sub-expression:
p0.E,[(v;e)] b pd.E,[e] (E.seq)

A procedure application requires four steps. First, the application binds the pro-
cedure parameter to the value of its argument. Second, evaluation continues with the
procedure body. Third, the value bound to the parameter is “copied” back to the
argument. Finally, the value of the procedure body is returned as the result of the
application. The sequence expression specifies this series of events as follows:

PO-Ey[(Az.€)y] & pb.E,[p{(z,c), (r,c)}.((set! @ y); (set! r e); (set! y z);r)] (E.G.)

The variable 7 is a new variable that holds the return value of the procedure body.
The constant ¢ is an arbitrary initial value. The first assignment “copies in” the

8In the call-by-value/pass-by-worth language A-abstractions are sufficient for specifying the neces-
sary sequential behavior. However, the different semantics of procedures in the call-by-value-result
language precludes this possibility, so we must introduce a new construct.
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value of the argument to the parameter. The second assignment evaluates the body
of the procedure and assigns the result to r. The third assignment copies the value of
the parameter & back to the argument y and the last expression simply returns the

result 7.
The complete transformation function relies on these two rules, previously defined

rules in Figure 2.1, and the E.D! rule from the pass-by-reference transformation
function:

Dee =ESUE.B,UE.D,Uo,UpyU E.seq
As usual, the transitive closure of b.. and the notion of reduction gc define the

semantics eval... Observational equivalence, 2, is based upon eval,,.

Calculus

"The equational calculus for the call-by-value-result language closely resembles the \,-
R-calculus for the call-by-value/pass-by-reference language. The sequence expression
requires an additional axiom:
(vie) =e (seq)

The axiom for procedure application, 8., specifies the same order of evaluation as
E.B.:

(Az.e)y = p{(z,c), (r, c)}.((set! @ y); (set! r e); (set! y z);7) (Bc)
The problems encountered in the previous section with the E.D! relation as a deref-
erence rule also occur with the call-by-value-result calculus; the same D! axiom solves
the problem. The basic set of axioms for the call-by-value-result theory A,-VR con-
sists of these and other axioms:

cc=6UpB.UD,Ua,UpuU psy U seqUge

The calculus is constructed in the usual way; we write A,-VR e = ¢’ if e =, ¢'.
Again, the problem witli the D], axiom prevents an exact correspondence between
the calculus and the semantics. However, as with the pass-by-reference calculus, the
call-by-value-result calculus satisfies a Weak Correspondence Theorem.
Theorem 2.3.1 (Weak Correspondence) A,-VR |= WCorr(eval,,)
The imperative fragment of this calculus extends the imperative fragment of the
call-by-value/pass-by-reference calculus with the seq axiom. With this addition, the

Strong Normalization Theorem for the notion of reduction s/, also holds for s!, U seq.

Theorem 2.3.2 (Strong Normalization) s/, U seq = SN
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2.4 Call-by-value/Pass-by-worth: Reference Cells as Values

The motivation for the pass-by-reference parameter passing technique is the need to
affect argument variables. To accomplish this, the pass-by-reference passing technique
binds the formal parameter to the argument variable so that assignments to the
parameter become assignments to the argument. Languages such as Scheme and ML
do not use pass-by-reference, but instead have a new class of values, namely, reference
cells or bowes that can achieve a similar result. A reference cell is a language object
that refers to a value. A dereference expression returns the value to which a cell
refers; an assignment expression changes this value. Because it is a value, when a cell
occurs as an argument to a procedure, the application binds the formal parameter to
the cell. In this way, assignments to the formal parameter become assignments to the
argument, as in pass-by-reference.

Although the reference cell is not a proper parameter-passing technique per se,
we include it here because of its relation to both pass-by-worth and pass-by-reference

parameter passing.

Syntax

The term language for the call-by-value language with reference cells, IS, differs
significantly from IS,. We abandon the assignment of IS, in favor of the reference
cell assignment expression. Since variables are no longer assignable, we treat them
as values. The term language IS, extends the language of the \,-calculus with the
p-expression, a set of reference cells and expressions for assigning and dereferencing
cells. Adopting Chez Scheme terminology [6], we use the primitives box, setbox!,
and unbox to perform these operations in IS;. Definition 2.4.1 provides the definition
of the term language IS;.

As usual, both A-abstractions and p-expressions are binding expressions, but while
A binds variables, p binds reference cells. There is also a notion of free cells analogous

to free variables.

Semantics

Despite the differences between the reference cell language IS, and IS, the semantics
closely resembles call-by-value/pass-by-worth semantics. Since the assignment is a
primitive, there is no need for an evaluation context for assignments. The evaluation
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Definition 2.4.1. (Reference Cell Term Language, IS;) Let b range over the set
of reference cells, Bowes. The set of expressions consists of values, applications and
p-expressions. Values are constants, boxes, variables, A-abstractions and primitive
operations. The p-expression binds reference cells to values.

e u= v|(ee)]| pbe (Expressions)
v u= c|b|a]|Az.e|box]|setbox!| unbox | (setbox! b)  (Values)
0 = €| 0(bv), where (b,v') & 0. (p-lists)

contexts for this language are the contexts for applications:
Bu=[]|(E)|(Ee)

The program transformation function for the call-by-value/pass-by-worth lan-
guage with reference cells is defined in Figure 2.2. As in the \,-calculus the E.§
and E.B, rules specify the semantics of function and procedure applications. The
box expression creates a p-expression that binds a cell to a value and returns the
cell. Cell dereference gets the cell value from the p-set and cell assignment changes

the cell value in the p-set.

PO.E[fo] By pb.E[5(,) (2.6)

pO.E[(Az.€)v] Dy pb.E[e[z + v]] (E.6,)

p8.E[box v] >y pb.E[p{(b,v)}.b] (E.boz)

PO U {(b,v)}.E[unbox b] . pfU {(b,v)}.E[v] (Dy)

p8 U {(b,u)}.El(sethox! b)v)] s, pfU {(b,v)}.E[v] (o3)
p0.E[pt'.e] >os pfU @' .Ele] (pu)

8

Figure 2.2 Reference Cell Transformation Function

Remark. Although some of the rules in Figure 2.2 have the same names as relations
introduced in previous sections, there are differences due to the change in definition
of the evaluation contexts. Throughout the rest of this thesis we give the same name
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to relations that share reduction schema. The precise specifications of relations can
be determined from context. End.

As usual, the transitive closure of the transformation function and the garbage col-
lection reductions define the semantics evaly;. The notion of reduction gc is slightly
different in this setting because it uses the notion of free cells instead of free vari-
ables to determine the unneeded items in p-sets. Observational equivalence for this

language, ~;, is based upon evaly,.

Calculusi

The theory for reasoning with reference cells, A,-B, resembles the \,-W-calculus. In
addition to § and B,, we need a relation for box expressions:

(box v) = p{(b,v)}.b (boz)
The set of axioms is:
bx=5UﬂvUDbUGbUpUUp1;ﬂUgC.

The theory A,-B is constructed in the usual way from this set of axioms.
Like the call-by-value/pass-by-worth language, this calculus satisfies a strong

Correspondence Theorem.
Theorem 2.4.2 (Correspondence) The \,-B-calculus corresponds to the call-by-

value/pass-by-worth semantics of ISy, evaly,:
Ayv-B |= Corr(evaly;)

Similarly, the imperative fragment of this calculus is decidable:

Theorem 2.4.3 (Strong Normalization) Let s, = 6, U D, U o U pu U pip U ge.
Then, sy = SN.

Furthermore, the A,-B-calculus is a conservative extension of the \,-calculus.
Thus, the equivalence proofs from the \,-calculus also hold in the A,-B-calculus.
Theorem 2.4.4 (Conservative Extension) Let A be the language of the A-calculus.
Then, A, = A,-BJA.

Proof. Clearly, any proof in A, is also a proof in A,-B. On the other hand, a proof
in A,-B may use axioms that are not in A,. In this case, the Church-Rosser property
ensures that two equivalent expressions reduce to a third expression. These reductions
must use only the £, and § axioms of the \,-calculus since the expressions are in A. »
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Analysis

The reference cell is interesting because of its relation to both pass-by-worth and pass-
by-reference languages. The connection to the pass-by-worth language is apparent:
the reference cell language employs call-by-value/pass-by-worth parameter passing
and box assignments in IS, are similar to variable assignments in IS,. In fact, a
simple structure-preserving function, [ - ], maps IS, expressions into IS, expressions
while preserving the meaning of the original expression. This mapping converts a
variable reference to an unbox expression, an assignment to a cell assignment, and
and a procedure to a procedure that first creates a reference cell containing the value

of the argument:
[#] = (unbox z)

[(set! z e)] = (setbox!z [e])
Pz.e] = (Ay.(Az.[e])(box y))
The mappings for the other expressions are just the composition of the mappings of
the subexpressions.?

For the pass-by-reference language, the connection is not as clear because there
is not a simple mapping from the pass-by-reference language into the reference cell
language. However, reference cells in the pass-by-worth language provide the ability
to abstract over assignments, which was the original motivation for pass-by-reference!
The reason is that cells are values and can be passed as arguments, whereas variables
in IS, are not values and are dereferenced when they occur as arguments in the
pass-by-worth semantics. The pass-by-reference semantics provides an alternative: it
passes only variables and does not allow dereferencing variables when they occur as
arguments. Reference cells in a call-by-value/pass-by-worth language provide both

options within the same, simple language.

?Although we do not give the details, by using the expressibility framework of Felleisen [7] we can
show that in the language that is the union of IS, and IS, the assignable variables and the variable
assignments are eliminable.



Chapter 3

Delayed Evaluation

In languages with delayed evaluation, the evaluation of procedure arguments occurs
after the binding of formal parameters to the argument expressions. In this chapter,
we examine the pass-by-worth and pass-by-reference binding strategies in combination

with call-by-name evaluation.

3.1 Call-by-name/Pass-by-worth

According to the call-by-name/pass-by-worth parameter passing technique, procedure
applications bind the parameters to the unevaluated arguments, and each instance of

the formal parameter in the procedure body evaluates the argument to a value,

Syntax

The term language for the call-by-name/pass-by-worth language, IS,, differs only
slightly from IS,. To exploit the freedom of the delayed evaluation strategy, p-
expressions do not bind variables to just values, but rather they bind variables to

arbitrary expressions:
0 ::=¢| 0(z,e), where (z,¢') ¢ 0

All other syntactic constructs are the same as IS,, except that procedures represent

call-by-name/pass-by-worth procedures.

Semantics

The call-by-name evaluation contexts specify the delayed evaluation strategy. Since
the context (Az.e)E specifies the evaluation of procedure arguments prior to the
procedure call, it cannot be an evaluation context for the delayed evaluation strategy.
On the other hand, the application of functional constants remains strict:

Enu=[]|(f En) | (Ene) | (set! z E,)

(3]
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As usual, we use a program transformation function to define the semantics func-
tion evalny. The rules for this function are similar to those of the call-by-value/pass-
by-worth function except that arbitrary expressions occur in places in which only
values occurred in the call-by-value rules. The program transformation function By,

is defined in Figure 3.1.

PO.En[fv] Dpw p0.Eq[6(f, )] (E.5)

p0.Ep[(Az.e)e'] by pb.Eglelz «— €]], ifz & AV (e) (E.6,)
p0.E,[(Az.e)e’] Dy pbU{(zs,€)}.Eple], if 2 € AV(e) (E .Brq)
poU{(z,€)}.Epfz] Baw pOU{(z,€)}.Exle] (Dn)

pOU {(z,e)}.E[(set! z v)] By p6U {(z,v)}.Env] (on)
pO.Eyn[pb'.e] By p8U GO Eye] (pu)

Figure 8.1 Call-by-name/Pass-by-worth Transformation Function

Calculus

Because of the similarities between the call-by-name/pass-by-worth and the call-by-
value/pass-by-worth languages, the derivation of the \,-W-calculus is straightfor-
ward. The theory A,-W is based upon relations in Figure 3.1, previously defined
relations and the following axioms for procedure applications:

(Az.e)e’ = e[z — €], if x & AV (e) (Bn)
(Az.e)e’ = p{(z,€)}e, ifz € AV (e) (Bre)

The set of axioms for the A,-W-calculus is:
nw = 6UanUﬂna UDnUanUpUUpl.ftUgc.

As before, the relation =, is the equivalence relation generated by the compatible
closure of nw. The theory A,-W consists of the equivalences e; =,,, es. We write
A-WE e =€ if 6] =pu €2.

Over the functional subset of IS,, the 8, relation is equivalent to Church’s B
axiom [3]. Thus, the A\;-W-calculus is a conservative extension of the A-calculus:

equivalences in the A-calculus are preserved in the \,-W-calculus.
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Theorem 3.1.1 (Conservative Extension) A = A,-W|A

The Correspondence Theorem states that the A,-W-calculus corresponds to the
call-by-value/pass-by-worth language.
Theorem 3.1.2 (Correspondence) The A,-W-calculus corresponds to the call-by-

name/pass-by-worth semantics of IS,, evalyy,:
Ar-W = Corr(eval )

Proof. The proof is essentially the same as the proof for the call-by-value/pass-by-
worth calculus and relies upon the Church-Rosser property and Curry-Feys Standard-
ization lemma for the corresponding notion of reduction. See Appendix A.3. s
Because p-sets may have recursive references, the imperative subtheory, p,, is not
decidable on the full language IS,,. For example, there are infinite reduction sequences
in p, for the diverging IS, program p{(z,2)}.z. On the other hand, p, is strongly
normalizing over the language IS,, in which the ranges of all p-sets are in Values.

Theorem 3.1.3 (Strong Normalization) Lets, = 6,UD, U, U pu Y piip U ge.
The notion of reduction s, is strongly normalizing over the term language IS,.

Proof. Since the term language is IS,, the reduction relations have the same schema
as the reductions in s,. With minor modifications to account for the different defi-
nition of evaluation contexts, the proof that s, is strongly normalizing also serves as

the proof for this theorem. »

3.2 Call-by-name/Pass-by-reference

The Revised Report on Algol 60 [20] informally defines the semantics of call-by-name
parameter passing with the copy rule. This rule roughly corresponds to Church’s 8
axiom and generalizes the f, relation from our call-by-name/pass-by-worth language.
Whereas the §, relation only applies to applications in which the formal parameter
is not assigned, the copy rule applies to all procedure applications. For procedures in
which the formal parameter is assigned, the procedure argument should evaluate to
a variable so that assignments to the parameter become assignments to this variable.
Since assignments to the parameter affect the argument, the copy rule defines a pass-

by-reference semantics.
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Syntax

Because the copy rule substitutes expressions for free variables, the language must
permit expressions to occur in any position where variables are allowed. In particular,
we extend the syntax of IS, to allow expressions in the variable position of set!
expressions: (set! e e) replaces (set! z e) in the definition of the term language. The
rest of IS, remains the same with Az.e representing a call-by-name/pass-by-reference

procedure.

Semantics

The extension of the language syntax for set! expressions requires an extension to the
call-by-name evaluation contexts to permit evaluation of expressions in the variable

position of a set! expression:
E,u=... | (set! E, €)

The program transformation function, b,,, for the call-by-name/pass-by-reference
language uses only the copy rule for defining the behavior of all procedure applica-
tions:

p0.E,[(Az.€)e’] b pb.Ey, e[z — €] (E.B)

The transformation function should not dereference a variable when it occurs in the
variable position of an assignment, so we add a restriction to the dereference rule D,,:

PO U {(2,e)}.Enle] & p0 U {(z,€)}.Enle], if En # Ey[(set! [] €] (E.Dy,)
The complete transformation function is the union of these and other rules:
Bnr = ESUE.LUE.D, Uo, U py

The situation is analogous to the call-by-value/pass-by-reference language, in which
the partitioning of a program into an evaluation context and a redex is not unique.
The added restriction on the E.D) rule is sufficient to correct this problem and
ensures that the rules define a function. The semantics eval,, is determined by the
transitive closure of >, and ge as in previous sections. Observational equivalence

for this language is denoted ~,,.
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Calculus

The derivation of a calculus from the semantics follows the same course as the call-by-
value/pass-by-reference language, but a naive approach results in an unsound system.
As with the call-by-value/pass-by-reference calculus, the dereferencing rule causes the
problem; In particular, consider E.D/, as the variable dereference axiom. This axiom

proves the following equivalence:
(set! p{(z,c)}.x e) = (set! p{(z,c)}.c €)

However, the meaning of the left expression is the meaning of e while the meaning
of the right is undefined. Fortunately, as in the call-by-value case, this problem
only occurs when the dereference of the variable z occurs within the empty context.
Adding the appropriate condition to the dereference axiom solves the problem:

pIU{(z,e)}.Eufe] = p0U {(x,€)}.Enle] (D)
if By # B! [(set! [] )] and By #[] "

The set of axioms for the ),-R-calculus is:
nr=8UBUD,Uc,UpyUpupUge.

The theory A,-R is constructed in the usual way; we write A,-R I ¢; = e, if ; =, és.

The call-by-name/pass-by-reference and call-by-value/pass-by-reference languages
have several similarities. In both languages the redexes do not specify a unique par-
tition of programs into evaluation context and redex. As a result, both require a
modified dereference rule. Similarly, the dereferencing axioms in both calculi require
an added condition to guarantee soundness. Not surprisingly, as with the ),-R-
calculus, the A,-R-calculus only weakly corresponds to the semantics. However, this
weak correspondence is even weaker than for the call-by-value language. The reason
is that while neither calculus can perform a variable dereference in an empty context,
this kind of dereference in the call-by-value language would return an answer, whereas
in the call-by-name language it does not. Thus, the A,-R-calculus can evaluate pro-
grams to expressions that are just one transformation step from an answer, but the
An-R-calculus requires an arbitrary number of these transformation steps throughout

the derivation.?

10As with the call-by-value/pass-by-reference language, we can avoid the weak correspondence rela-
tionship by redefining the semantics to return expressions of the form pd.z as answers, Again, this
notion of call-by-name/pass-by-reference in which a reference to a thunk is an answer is not used by
programming languages.
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Theorem 3.2.1 (Very Weak Correspondence) The \,-R-calculus weakly corre-
sponds to the call-by-name/pass-by-reference semantics of IS,, evaly,. In particular,

1. Ap-R is weakly adequate:

(a) if evaly,.(e) = a then either
e \,-RFe=aq, or
o there exists an m such that for all n between 0 and m:

AR Foe=p0U{(z1,€))}.21
An-R o pln U{(2n,€3)}€; = pOns1 U {(@ny, €nt1)} Tnt
An-R O Fopfn U {(2m,el,)} el =a
(0) if An-R & e = a, then evaln(e) is defined; and
2. An-R is sound with respect to ~,:

A-R & ey = ey implies ey 0, €.

The imperative fragment, p, is the subtheory based upon the axioms in nr \ 5.
Like the theory pn, p! is decidable over the language that restricts ranges of p-sets
to values.

Theorem 3.2.2 (Strong Normalization) The notion of reduction s, = §,U D, u
on U puU pup U ge s strongly normalizing over the subset of IS, in which the ranges
of p-sets is restricted to values.

Finally, the X,-R-calculus is a conservative extension of the A-calculus.
Theorem 3.2.3 (Conservative Extension) A = X,-RJA

Note: Call-by-need as an Optimization

The call-by-name evaluation strategy evaluates procedure arguments for every refer-
ence to the parameter. A variant strategy, call-by-need, attempts to eliminate redun-
dant evaluations. Specifically, it evaluates an argument only for the first occurrence
of a formal parameter in the procedure body. All other occurrences of the parameter
receive the value obtained from the first evaluation.

In functional languages, the call-by-need evaluation is an optimization of call-
by-name evaluation; they both produce the same results. In the presence of side-
effects, however, the strategy differs from call-by-name because assignments within

an argument are evaluated only once.
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Using our imperative language as an implementation language, we can define the
call-by-need semantics of functional languages in which the syntax is restricted to A.
The rule for call-by-need procedure application is given as follows:

p0.L,[(Az.e)e’] b pd.E,[p{(z, (set! z €'))}.€],

The first deference to the variable z in the procedure body e receives the expression
(set! z ¢’). This expression evaluates ¢’ and assigns to z this value so that subsequent
dereferences to x receive the value of €. The argument ¢’ is evaluated at most once.



Chapter 4

Combining Techniques

Each of the languages we have considered uses one parameter passing technique ex-
clusively. In reality, many programming languages permit different parameter pass-
ing techniques for different parameters. For example, Pascal allows both value pa-
rameters, which correspond to call-by-value/pass-hy-worth, and variable parameters,
which correspond to call-by-value/pass-by-reference. Algol 60 uses two different eval-
uation strategies; it has name parameters, which correspond to call-by-name/pass-
by-reference and value parameters, which correspond to call-by-value/pass-by-worth.

The languages and equational systems presented thus far do not deal with multiple
parameter passing techniques. However, it is possible to combine two or more lan-
guages to produce a language that has multiple parameter passing techniques. In this
chapter, we briefly describe some of the requirements for combining two languages
and for defining equational calculi for these languages.

Syntax

If a language incorporates two different parameter passing techniques then there must
be an indication of which one to use for each procedure application. To accomplish
this the language can either define an application operator for each technique, or define
a procedure abstraction for each technique. Most languages adopt the second option
and specify a different type of binding construct for each technique. For example, an
abstraction A,,z.e may specify a call-by-value/pass-by-worth procedure while Anr.€
specifies a call-by-name/pass- by-reference procedure.,

Semantics

The evaluation contexts determine the evaluation strategy. We defined call-by-value
contexts and call-by-name contexts for the eager and delayed evaluation strategies,
respectively. If a language such as Algol employs both call-by-value and call-by-name
evaluation, then neither type of context is sufficient to specify the semantics. A new

29



30

type of context that specifies call-by-name for some procedures and call-by-value for

others is necessary:
E 2= []]|(SE)|(Ee] ...
S u= f|Aze] ...
In this specification, S contains the strict functions and call-by-value procedures.
One problem that occurs when defining the semantics of combined languages is
the need to specify the set of assigned variables, AV. In a pass-by-worth language,
the assigned variables are those that occur in a variable position of an assignment. In
a pass-by-reference language, however, it is impossible to determine which variables
are assigned because an argument to a pass-by-reference procedure may be assigned
in the body of the procedure. For example, in the procedure Az.zy, the variable y
may be assigned if @ is bound to a pass-by-reference procedure that assigns to its
parameter. For this reason, when we combine pass-by-worth with pass-by-reference,
we must abandon the notion of assigned variables and the two relations E.B, and
E.(3, that rely upon that definition.!!
As an example, consider a call-by-value language like Pascal that has both pass-
by-worth and pass-by-reference parameters. The syntax is IS, with X replaced by Ay
for pass-by-worth and A, for pass-by-reference parameter passing techniques:

v = c| Ayzee | Aezee

The program transformation function is the union of Iy, and b, specified in
Figure 4.1. Notice that the rule E.D) is equivalent to D, if there are no pass-by-
reference procedures in the language. By removing one type of procedure from the
language, we can obtain a semantics for the other.

A more complicated example is Algol 60, which has both call-by-name and call-by-
value evaluation strategies. Figure 4.2 defines the semantics of a language with both
call-by-value/pass-by-worth procedures, (A,,z.€) and call-by-name/pass-by-reference

procedures, (A z.¢€).

Calculus

The calculus for a combined language is a straightforward modification of the union
of the two calculi. For the first example above, there are two procedure application

10ne way to avoid this problem is to designaie a set of assignable variables as in Felleisen et al
[8, 9] instead of trying to determine which variables are assigned.
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pl.Ey|fo]

> pb.E,[6(f,v))], if 6(f,v) defined. (E.6)
PO.E[(Auc)o] b pB.E[p{(z,v)}.e] (B-Bu)
pO.Ey[(Arz.e)y] b pb.Ey[e[x « y]] (E.5r)
pOU{(z,v)}.Efz] > pbU {(z,v)}.Ev], if E, # EL[(Ary.e)]]] (E.D.)
pOU {(z,u)}.E[(set! z v)] b pfU{(z,v)}.E,[v] (ov)
p0.E,[pb'.] > pfU @ .Ee] (pu)
Figure 4.1 Call-by-value Language with
Pass-by-worth and Pass-by-reference
Syntax:
e u= v|a|(ee)| (set!ee)|pbe (Ezpressions)
v ou= | Ao | Agrzee (Values)
6 u= €| 0(x,e), where (z,¢e') ¢ 0 (p-lists)
Semantics:
E u= []|(SE)|(Fe)]|(set! E e)| (set! z E)
S u= f|Auze
p8.E[fv] b p8.E[6(f,v)], if 6(f,v) defined. (E.6)
p.E[(Av.c)o) b p8.Elp{(z,v)}.c] (B-fr)
pO.E[(An,z.e)e’l & p0.Ele[z — ¢']] (E.B)
poU{(z,e)}.E[z] & poU{(z,e)}.E[v], il E# E'[(An,y.€)[]] (E.Dp)
p U {(z,e)}.E[(set! z v)] b poU {(z,v)}.E[v] (0n)
p8.E[pd'.e] > pbU @ .Ele] (pu)
Figure 4.2 Call-by-value/Pass-by-worth and
Call-by-name/Pass-by-reference Language
axioms; one for pass-by-worth and one for pass-by-reference:
(Awz.e)v = p{(z,v)}.e (Bus)
(ae)y = el ] ()
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For the second example, there are also two axioms for the different parameter-passing

techniques:

(Awz.€)v = p{(z,v)}.e (Buo)
(Anrz.€)e’ = e[z « €] (8)

In both of these cases, the modified dereference axioms D/, and D!, are required
to ensure soundness of the calculi. As with the pass-by-reference calculi, these ax-
ioms prohibit an exact correspondence between the calculi and the semantics. Thus,
these calculi only satisfy weak correspondence theorems. On the other hand, the
imperative fragments of the combined calculi are essentially the same as the corre-
sponding fragments of the pass-by-reference calculi. Thus, these calculi satisfy strong

normalization theorems.



Chapter 5

Conclusions

In this final chapter we give concluding remarks for the thesis. In the first section
we give two examples of reasoning with the parameter-passing calculi, The second
section discusses related work and the final section summarizes our work.

5.1 Examples

Before we provide the example programs, a few explanations of the presentation
language are in order.
o The expression Azy.e abbreviates the curried procedure Az.Ay.e. Similarly,
the corresponding application of a curried procedure, (M N L), abbreviates
((M N) L).

o We assume the language contains a sequence expression (e1; €2) that evaluates
the left subexpressions followed by the right. The semantics of sequencing was
defined for the call-by-value-result language in Section 2.3 and can easily be

added to the other languages.

o The set of constants BConsts, includes the integers and appropriate functions
on integers. Specifically, the primitive function + performs addition, and the

functions n+ adds n to a number:

6(+,n) = nt+
d(n+,m) = n+m

For the first example, consider the IS, program P in Figure 5.1 that applies a
procedure to three arguments and returns the value of the variable a. The program
P, is the same program written in Scheme syntax. As expected, the behavior of the
program depends upon the parameter-passing technique used to evaluate it. In fact,
P returns a different answer for each technique and hence, it can determine which

type of parameter-passing its implementation language uses.

33
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PZ p{(a,-1), (5,0), (p, (Azyz.(set! a (+ y (set! z y) a))))}.
(( @ ((set! b (14 b)); b) a); a)

P & (le(trec ([a-1] [6 0] [p (lambda (z y z) (set! a (+ y (set! z y) a)))])
begin
(1;)(1 (begin (set! b (1+ b)) b) a)

Figure 5.1 Example Program P

Proposition 5.1.1 The program P returns a different answer for each parameter-
passing technique. Specifically,
eval,(P) = 1
eval, (P)
eval .(P) = -1
Because of the adequacy requirement, the calculi can also evaluate the program
to different values. However, since some calculi are not completely adequate, they do

evaly,(P) = 2
eval,,(P) = 5

not give the answer given by the semantics.
Proposition 5.1.2 The parameter-passing calculi prove the following equivalences

for the program P:
AW + P=1
A-R F P=p{(a,3)}a
A-VR + P =p{(a,-1)}.a
For a second example, consider the familiar procedure swap that exchanges the

values associated with two variables:
d
swap g Azy.p{(t,c)}.((set! t z); (set! x y); (set! y t))

To verify that (swap « b) actually swaps the values associated with a and b, we
must surround the expression with a p-expression that has bindings for the variables

a and b. In particular, we wish to show the following equivalence:
PO U {(a,20), (,bo)}. E[swap a b] = pf U {(a, by), (b,a0)}.E[a)

where ag and by are values.
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Proposition 5.1.3 Let e g pd U {(a,ap),(b,bo)}.E[swap a b]. Then we have the
following:

Av-W e =pfU{(a,a0), (b, bo)}.E[ac]
Av-R e =p0U{(a,bo), (b a0)}.E[ag)
Ao-VR F e=pfU {(a,bo),(b,a0)}.Efac)
An-W e = p0U {(a,a),(b,bo)}.E[ag)]

(
An-R e =p0U {(a,bs),(b,a0)}.Efac]

For the call-by-name/pass-by-reference calculus, this proposition does not hold if
ap and by are not values. The proof in Figure 5.2 using the ),-R-calculus verifies that

swap works as expected using call-by-value/pass-by-reference parameter-passing.

5.2 Related Work

Our equational systems were motivated by the work of Plotkin [22], who studied
equational reasoning systems for call-by-name and call-by-value in functional lan-
guages, and Felleisen et al [8, 9] who developed calculi for call-by-value imperative
languages. Demers and Donahue [4] give an equational logic for reasoning about
Russell, a higher-order language that uses call-by-value parameter-passing and has
memory objects similar to reference cells. The equational theory contains several
dozens axioms for which they present no formal results. Mason and Talcott [18]
present a deduction system for reasoning about first-order Lisp programs with side-
effects, a language similar to the imperative fragment of our reference cell language.
Their logic is complete for the recursion-free fragment of Lisp with side-effects.

In the area of denotation semantics, several authors [11, 25] have given denota-
tional descriptions of the different parameter-passing techniques. Such descriptions
specify precise mathematical definitions of parameter-passing. They do not provide a
canonical set of equations nor other axiomatic theories for reasoning about programs.

Finally, a number of researchers have studied parameter-passing in the context
of Hoare-like axiomatic semantics [5, 12, 14]. These systems are generally for first-
order subsets of Pascal and have a number of restrictions on procedure calls, such
as aliasing., Cartwright and Oppen [2] overcome the aliasing restriction, but still
do not allow procedures as arguments. Olderog [21] eliminates the restrictions on
procedures, but his Hoare-like calculi explicitly require operational specifications of
procedure calls using the copy rule. The copy rule semantics is based on a mixed

formalization that uses denotational as well as operational elements.
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II.

I11.

AU'R

Figure 5.2 Behavior of Swap in Call-by-value/Pass-by-reference

It

T

(swap a b)
((Azy.p{(t,c)}.((set! t x); (set! z y); (set! y t))) a b)
p{(t,c)}.((set! t a); (set! a b);(set! b 1))

p{(a,20), (6, b0)}. El(swap a b)
p{(a,a0),(b,bo)}.E[p{(t,c)}.((set! t a); (set! a b); (set! b t))]
p{(a,20), (b, bo), (t,c)}.E[((set! t a); (set! a b); (set! b 1))]
p{(a,a0), (b, bo), (¢, c)}. E[((set! t ap); (set! a b); (set! b t))]
p{(a,a0), (b, bo), (¢, a0)}.E[(ag; (set! a b); (set! b 1))]
p{(a,ac), (b, bo), (t,a0)}. E[{(set! a b); (set! b t))]

p{(a,a0), (b,bo), (¢,20)} . E[((set! a by); (set! b t))]

p{(a,bo), (b, bo), (t,20)}.E[(bo; (set! b 1))]

p{(a,bo), (b, bo), (t,20)}. E[(set! b t)]

p{(a,bo), (b, bo), (t,20)}. E[(set! b ao)]

p{(a,bo), (b, a0), (t,20)}.E[ac]

p{(a,bo), (b,20)}.Ea]

Av-R F pfU {(a,a0),(b,bo)}. E[(swap a b)]
pﬂ.p{(a, 30)7 (b’ bo)}.E[(swap a b)]
pB-p{(a,bo), (b,20)}.E[ac]
p8 U {(a,bo), (b, ao)}. Efag]

(Br)

(pu)
(I1.)

(pu)

5.3 Summary

We have presented an operational semantics and an appropriate calculus for several

common parameter-passing techniques. In most cases, the calculi are relatively simple
equational theories. The exceptions are the pass-by-reference techniques in which
the calculi lack the ability to evaluate programs completely. The correspondence
between the calculi and the semantics in these cases is weaker than in the other cases.
Furthermore, the imperative fragments of most calculi are strongly normalizing. We
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believe this work is a basis for the development of stronger, sequent-based proof
systems with induction principles in the spirit of Mason and Talcott [18].

Evaluation | Binding Corres- Beta Axiom Strong
Strategy Strategy pondence Param Arg Normalization
call-by-value | worth exact B, | non-assign { value | p,
reference weak B, any variable | pl; B,
value-result weak Be - - P, U seq
reference cell exact By any value | pp
call-by-name | worth exact B. | non-assign any restricted p,,
reference very weak | 3 any any restricted p!,

Table 5.1 Summary

Table 5.1 summarizes our results. The Correspondence column refers to how
closely a calculus corresponds to the semantics. The necessary modifications to the
familiar # axiom are shown under the Beta Aziom heading. The Param and Arg
columns show the restrictions on the formal parameter and on the argument in pro-
cedure applications. The entry “non-assign” indicates that the rule only applies to
applications in which the formal parameter is not assigned in the procedure body.
The last column indicates which fragments are strongly normalizing.

A comparison of the calculi reveals some aspects of the relative semantic com-
plexity of the parameter-passing techniques. In particular, this study verifies the
folklore that the Algol call-by-name/pass-by-reference parameter-passing technique
satisfies a full B axiom. Unfortunately, this comes at the expense of a weak corre-
spondence theorem and complicated rules in the imperative fragment. The simplest
and most appealing axiom system appears to be the one for a call-by-value/pass-by-
worth language with reference cells as first-class values. It is a simple extension of
the A,-calculus, satisfies a strong correspondence theorem, and has a large decidable
fragment. Furthermore, reference cells in the call-by-value/pass-by-worth language
provide some of the capabilities of call-by-value/pass-by-reference.



Appendix A

Proofs of Main Theorems

In this appendix, we provide outlines for the proofs of the Correspondence and Strong
Normalization theorems in this thesis. Since the theorems all have the same basic
structure, we present the complete proofs for the first theorems and then make ob-
servations about the changes required for the other theorems.

The proofs of the theorems in this thesis rely upon the definition of notions of
reduction based upon the axioms of the calculi. These reduction systems are defined

as follows.

Definition A.0.1. (Notion of Reduction) A notion of reduction r for a calculus
is the set of axioms r of the calculus interpreted as reduction relations from left to
right. The one-step r-reduction —, is the compatible closure of r:

e — ¢ if e = Clp], ¢ = Clq] and (p, q) € r for some p,q and context C.

The r-reduction —», is the transitive, reflexive closure of —,. Finally, r-equality

=, is the least equivalence relation generated by —,.

A.1 Call-by-value/Pass-by-worth

Correspondence Theorem

Theorem 2.1.5 (Correspondence) The \,- W-calculus corresponds to the call-by-
value/pass-by-worth semantics of 1S,, evaly,. In particular,

1. Ay-W is adequate:

(a) if evaly,(e) = a, then A,-W I e = q,
(b) if A\)-W ke = a, for answer a, then evalyy(€) is defined; and

2. Ay-W is sound with respect to ~,,:

Av-W I e; = e; implies e) ~,, e,

38
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Proof. The proof relies upon the Church-Rosser and standardization properties of

the calculus.

1. Adequacy. -

(a) Assume evalyy(€) = a. We must show A\,-W F ¢ = a.
By definition of eval,., pd.e b, p0.v and pf.v—, a by the ge reduction.
Since by, € —»yy, we have pd.e —n,y, pfv —»,,, a. Also, by gc,
pB.e —ry €. Thus, Ay-W F ¢ = q.

(b) Assume A,-W F e = a, for answer a. We show eval,,(e) is defined.

By soundness (part 2 of the theorem), e~,,,a. Thus, evalyy(e) is defined iff
evalyy(a) is defined. Since evalyy(a) is clearly defined, eval,, (¢) is defined.

2. Soundness.

A. Assume A,-W ey = e.
B. Assume C is a program context for e; and es.
C. Assume evaly,(C[eq]) is defined. Then,
— eval,,(Clei]) = a, where a is an answer;
= Ap-W I Cleq] = a, by Adequacy, part (a);
= Ay-W F Cles] = a, by transitivity of =,
— Cles] —»ww a/, where @' is an answer, by Church-Rosser Lemma,;

- p2.Cles) by, a”, where a” is an answer, by Lemma A.1.3;
— evalyy(Cley)) is defined, by definition of eval,y,.

Therefore, eval,,(Cley]) is defined iff eval,,(C[e;)) is defined.

C. Assume eval,,(C[e1]) = ¢, for basic constant ¢. Then,
= Ap-W I Cleg] = ¢, by Adequacy, part (a);
— Ap-W I Cleg] = ¢, by transitivity of =,,;
— C[eg) —» 4w ¢, by Church-Rosser Lemma;
— p3.Cleg] b1, pb.c, by Lemma A.1.3;

— eval,,(Cleg]) = ¢, by definition of evaly,.
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Therefore, evaly,(Clei1]) = ¢ iff evaly,(Cleg)) = c.
Therefore, e; 22, €3.

Therefore, A,-W I e; = e; implies e; o2, €3.

To complete the proof, we need only prove Lemma A.1.3 and the Church-Rosser
Lemma. But, before proving Lemma A.1.3, we first need a few auxilliary definitions.
The notion of reduction vw- is vw without garbage collection: vw- = vw — ge. Let
—yu— be the corresponding one-step reduction and —,,_ the reflexive, transitive
closure of —yy—. Similarly, for the notion of reduction gc, let — . be the one-step
gc-reduction relation and —»,; be the ge-reduction relation.

The standard reduction function and standard reduction sequences define a stan-
dard reduction on terms that does not use the garbage collection reductions.

Definition A.1.1. (vw-Standard Reduction Function) A term e standard reduces
to €/, e — - €, if there exist terms (p,q) € vw- such that either

e e=pand e =gq;or
e c=Efp, e = E‘[q], and (p,q) € 6 U B, U By, or
o e =p0.E[p], ¢' = p0.E[q], and (p,q) € § U B, U Pos,

for some evaluation context E and p-set 0.

An important consequence of this definition is that if e —*,_ ¢’, then either
p.e b3, pD.e or pB.e B, €.

Lemma A.1.3 shows the necessary connection between the reduction relation
—#yy and the transformation function t%,. The proof uses the Standardization
Lemma, which states that for all reductions that do not use the garbage collection
rules, there is a corresponding SR-sequence. We prove the Standardization Lemma, in
a subsequent section.

Lemma A.1.8 For a program e, if e —»,, a where a is an answer, then there exists

an answer a' such that
1. pB.e >}, d, and

2. if a is a basic constant, then a' = pf.a.
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Definition A.1.2. (Standard Reduction Sequences)
The standard reduction sequences (SR-sequences) are defined as follows:

1. Every constant and variable is a standard reduction sequence. The empty
p-set is a standard reduction sequence.

2. If ey,...,ey is a standard reduction sequence, then so is Az.ey, ..., Az.e,.

3. If e1,..., ey is a standard reduction sequence, then so is

(set! @ e1),...,(set! z e,).
4. If v1,...,v, and 0y,...,0,, are standard reduction sequences, then so is
{(z,v1)}U0y, {(z,v2)}Uby, o {(z,v2)} U0, {(z,v2) U0, ..., {(z,vn) } Ubp,.
5. If p1,...,pn and qq,...,¢n are standard reduction sequences, then so is
P191,P2915 « + s Pnq1y Pnq2y o« Pnm.
6. If e1,...,e, and 6,,... ,0,,1. are standard reduction sequences, then so is
phr.ei,...,pl1.en, pl2.en,...,p0k. €.

7. If ey, ..., e, is astandard reduction sequence and e—,,_ e;, then €,€1y..44En
is a standard reduction sequence.

Proof. Assume e —»,,, a, for answer a. By Lemma A.1.4, there exists an answer a
such that e —»,y- a;. By the Standardization Lemma, there exists a SR-sequence
e,...,a1. By taking the first answer in the SR-sequence, we get e —2,_ a,. Since
€ 5y G2, then either pd.e b}, az or pB.e bL, pB.az. For the first case, take
a' = ap. For the second case, if a, is a value then take o/ = pD.ay. Otherwise, if
az = pl.v, then pD.ap by, az and take a’ = a,.

For the second part, assume that a is a basic constant. By Lemma A.1.4 either
a; = aor ay = pf.a. Similarly, either a; = a or a, = p¥'.a. In the first case, ¢’ = p@.a
and in the second case a’ = p6'.a which satisfy the condition that a’ = pl.a. wq13
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Lemma A.1.4 If e —»,,, a, for answer a, there exists an answer a’ such that

!
1, e =y d,
2. if a is a basic constant ¢, then either a’' = ¢ or o’ = pl.c.

Proof. Assume e—»,,a. By the following two lemmas, which we state without proof,
we have e—yy..¢'—nyca. Furthermore, since €' —»g.a, we have €' —»y,_a'—» .,
for answer a'. Thus, e —#,,— ¢/ —»,,_ a’. The second part follows from the fact
that @’ —» a.
Lemma A.1.5 If e —gc €1 —yu- €3, then € —ryy— €] — 4. €5,
Lemma A.1.6 If e —» 4 a, for answer a, then € —»,,_ a' —»ge a, for some an-
swer a'.
14.1.4

With the proof of the Church-Rosser Lemma and the Standardization Lemma in
the following sections, the proof of the Correspondence Theorem is complete. ;5

Church-Rosser

The first major lemma required by the proof of the Correspondence Theorem is the
Church-Rosser Lemma:

Lemma A.1.7 (Church-Rosser) The notion of reduction vw (call-by-value /pass-
by-worth calculus) is Church-Rosser.

Proof. We define two notions of reduction vwa and vwb such that vw = vwa U
vwb and show that both vwa and vwb are Church-Rosser. We then show that
vwa-reduction commutes with vwb-reduction, and therefore, by the Hindley-Rosen
Lemma [1:64], vw is Church-Rosser.

The notions of reduction vwa and vwb are defined as follows:

vwa = §UB,UB,UD,Uc,Ugc
vwb = puUpl,'ﬂ.

Lemma A.1.8 The notion of reduction vwa is Church-Rosser.

Proof. We use a method due to Tait and Martin-Lof. We define a parallel reduction
relation —»  such that its transitive, reflexive closure is —,,, and show that
—»  satisifies the diamond lemma. Therefore, —»,,,, satisfies the diamond lemma
and vwa is Church-Rosser.
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Definition A.1.9. (Parallel Reduction I) The parallel reduction relation —
for the call-by-value/pass-by-worth language is defined as follows. We assume the
natural extension to contexts.

1LLIfO—» 0,e—m €,v—p v and E—» F', then

fv —m  6(f,v), if 6(f,v) defined.
(Az.e)v —n €z <], ifz & AV(e)
(Az.e)v —n  plz,v'}.€e, ifx € AV (e)
p0U{(@,0)}.Ele] —p o0 U {(z, )} B!
pO U {(z,u)}.E[(set! x v)] —»  pd' U {(z,v')}.E[v')
p00 U 01.6 —— p0{.e’, if 00 ?é %]
and FV(pb;.) N Dom(6y) = &
g) pB.e —n ¢

>soess

2. For all terms e, e —» e.

3. If0—» O,e—m €,ei—» ¢l and vy —» v, then

Az.e —» Az.e

la

a)
b) (set!xe) —»  (set!z )
c)

la

ple —»  pb.€

la

1 51
€1€p ——h €169

1a

)
e) {(.’L’], 7-’1)7 LR (‘vaﬂ)} —i¥ {(‘Tl’ v;)’ Tty (.’lf,,, U:,)}

Assume e —» ¢; and e —» e;. We use case analysis of the definition of
e —» ¢; and show for all possible cases of e — €2 there exists a term es that

satisfies the diamond property.

1. We pick representative cases from group 1 of the definition of parallel reduction.

a) e=(fv)— 6fv)=¢e
The only possibility for e is the following:
— €3 = (f vg), where v —» v,
By the restriction on 6, we have §(f,v) = 8(f, va).
b) e = (A\e.M)v —p»  M[x «— vi] = €, where & ¢ AV(M), M —» M,

and v —»  v;.
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Two possibilities for ej:
— e3 = (Az.Ms)v,.
- €2 = Mg[.’l) — 7)2].
By inductive hypothesis, there exist My and vy such that M; —»  Ms,
v; —p» v3. By Lemma A.1.15, Mz — v;] —» M;[x « v3). Thus, take
e3 = Ms[x « vs).
d) e=pfU {(z,v)}.E[z] —» 061U {(z,v1)}.Ei[th] = e;.
There are several possibilities for e;. We select two:
— ea = pOy U {(z,v2)}.E3[z]
— eg = ply U {(z,v2)}.Fa[vy),
where 0 —» 03, v —» v, E—p»  E.
By the inductive hypothesis, there exists 0a, vs, and Ej, such that e; =
p03 U {(z,v3)}.E3[vs] satisifies the diamond property.
f) e=pUO0'.M —n pb,.M, = e;, where Dom(0') N FV (p0.M) = @.
- €2 = p92 U 0;.1”2
— €3 = pog.ﬁlg
- e=p0° U0 M —» pb5.M,, where §U 6 = 6° U 6 and Dom(0°) N
FV(ptt.M) = @.
For the first two cases, there exists 03, 04, and M3 such that ez = pf. M;
satifies the diamond property.
For third case, take e3 = pf.. M3, where Dom(0.) = Dom(6*) N Dom(0).
g) e= pO.M—» M =e.
The two cases for ey are p@. M, and M;. Taking es = Mj, where M; —»
Ms; satisfies the diamond property.

2.e—p e=e.

If e —» ez then we can take e3 = e to satisfy the diamond property.
3. e=C[M]—» Ci[M]) = e, where M —» M, and C —» ).
Besides the cases we have already considered, there is one other case:

o c; = Cy[My], where M —p» My, and C —p  Ca.
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By the inductive hypothesis (we assume that C is not empty), there exists Mj
such that es = C5[M].

1418 i
Lemma A.1.10 The notion of reduction vwb is Church-Rosser.

Proof. We show that the one-step reduction —; satisfies the diamond property.
pu) e = pl.E[pfd.M] — ,u pd U & .E[M] = e;.

- ez = pb,. E[pb'. M].
— ez = p0.N, where E[pt’.M] —,up N.

For the first case, take ez = pf; U 6'.E[M]. For the second case, we use a case
analysis on the reduction E[pd'.M] — 4 N as follows:

= p0' M = pd' . F[p0".L] —y p#' UO".F[L] = N
Take eg = pf U 0' U 8". E[F[L]].
- E[pO’M] = Fa[Fb[pglAﬂ —pwb Fa[Pol-Fb[ﬂ/f]] =N
Then ez — yus €1 = p0 U 0. E[M].
pist) € = E[pd. M] — ,up p0.E[M] = e, where E # [ ].
As in the previous case, there are a number of possibilities for e;, such as:
~ ey = E3[pf.M], where E — 4 Es.
— ey = E[N], where p0.M — 4 N.

A similar case analysis applies here.

84.1.10

Lemma A.1.11 The vwa-reduction commutes with vwb-reduction.

Proof. For this proof, let — 4, be the reflerive closure of the one-step reduction.
By Barendregt [1:65], it is sufficient to show that if e —» e; and e —, €, there

exists an ez such that e; —»,,; €3 and e, — €.
1. First consider cases in which e —» e;. We include only the interesting cases:

a) e= fuv—m 6(f,v) = e.
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~ e = fuvg, where v —y vs.
By the restriction on 6, 6(f,v) = 6(f,v2). Thus, ez —+yuq €1.
b) e=(Aa.M)v— Mz —v]=e.
— ez = (Az.M)v,, where v — v2.
By induction, there exists v3 such that vy —»yusv3 and v —»  vs. Thus,
e1 = Mz «— v1] —»yup Mi[z — vg] and we take e3 = M[z « v3].
d) e=pdU{(z,v)}.E[z] —» pb U {(z,v1)}.E1[v1] = e1.
— e = p U {(z,v7)}.E[z].
This case is similar to £,. By induction, there exists vs, such that v —»

V3 and V1 — P ywb V3. Thus, p01 U {(.’B, ’U1)}.E1 [’01] — p01 U {((1), ’Ua)}.E] ['03]
and we can take ez to be the latter expression.

2. Next, consider the cases in which e —,us €2, because (e, ez) € vwh:

Plijt) €= E[pOM] —ywh po.E[M] = €.
There are several subcases for e —p»  ¢;:
— e= E[p0 U {(z,v)}.F[z]]) ¢ Er[p01 U {(z,v1)}. Fifvi]]) = e,
Then, e; = pf U {(x,v)}.E[F[z]]) and we can take
ez = pby U {(z,v1)}. By [Fi[v1]].
— e = E[pfU{(z,u)}.F((set! z v)]] —» Ei[pd U {(z,v1)}.Fi[v1]] = e1.

Similarly.
- e= E[pdU0' N]—» E;[pb;.Ni] = e1, where Dom(0)NFV (pf'.N) =
%,

Then, e; = pf U 0'.E[N]. Since Dom(8,) N FV(p0,.E[N,]) = &, we
have ez = pf;.E[ V).
— e= E[p@.N] —» E\[N{] = e;.
Then, €y = /)@E[N] - El[N1 = eé3.
pu) e = pb.E[pd' . M] — 5 p0 U 0. E[M] = e,.

The same four subcases from pyy; apply here also.

3. Finally, the only remaining cases are those in which e = C[M]—» C;[M}], by
rule 3 of definition of —» , and e = C'[N] — . C'[ N3], because (N, N;) €
vwhb, where C and C’ are non-empty contexts.

For these cases, we use the inductive hypothesis to get the result.
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"A1.11
The final lemma for the Chuch-Rosser proof is Lemma A.1.15 for showing prop-

erties about substitution and parallel reduction. Because it is also useful for the
standardization proof, we prove an extended version of this lemma in the next sec-
tion. This completes the proof of the Church-Rosser Lemma. w417

Standardization

The second major lemma required by the Correspondence Theorem is the Standard-
ization Lemma:

Lemma A.1.12 (Standardization) e —,,_¢' iff there exists a Standard Reduc-
tion Sequence e, ..., €

Proof. We use the proof method of Plotkin [22]. The implication from right to left
is straightforward because —,,_ can simulate — .

For the implication from left to right, we define another parallel reduction relation
—» similar to the one in the previous section, except that its transitive, reflexive
closure is —yy_ not —,y,. If € —»,,_ €' then there must be a sequence e —p»
e; —» ez —» -+ —» €', The proof is by induction on the length of the sequence.
If the length is 0, i.e., it contains just e, then the result is a SR-sequence. By Lemma
A.1.14, if there is a SR-sequence ej,..., ¢ and e — ey, then there is a SR-sequence

/
... €.
The parallel reduction relation —» is defined in Definition A.1.13.
Lemma A.1.14 If e —» e, and ey,...,e, is a SR-sequence, then there exists a
SR-sequence e,...,e,.
Proof. By lexicographic induction on the structure () Se—ness €) and case analysis

of e —» e.

1. For group 1, we observe that there exists a term e’ such that e—s,,_ ¢’ —> €.
In these cases we show that the size of the reduction e’ —» eq is less than the
size of the reduction e —» e, (i.e. Selrne; < scT,,cl) and then employ the
inductive hypothesis on the smaller reduction. That is, e’ —» e andey,...,e,
is a SR-sequence implies there is a SR-sequence €/, ..., e,. Since e,y €' we
have e,¢,...,é€, is a SR-sequence by the definition of a SR-sequence.

We give two prototypical examples:
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Definition A.1.13. (Parallel Reduction II) The parallel reduction relation —»
for the call-by-value/pass-by-worth language is defined as follows, where Se—rnet 18
the size of a parallel reduction e—» ¢’ and n(z, e) is the number of free occurrences
of z in e. We assume the natural extension to contexts.

LIf)—» ¢0,e—» €,v—» v and E—» FE', then

pt" U {(z,v)}. E'[v]
So=0 + 2SUTN’U’ + SE-—E! +1
p01 U 0. E'[€]
86y —»0] T So—woy+
SEwE! + Se—rne! +1
9 Elpbe] —» o0 Be), 5 %]
8 = SOT»0' + SE-I—»E’ + Se-l—»e' +1

e) pfU{(z,u)}.E[(set! z v)

—_—

&

—_—

f) pb1.E[phs.e

a) fo —p 8(f,v), if §(f,v) defined.
s = 1
b) (Az.e)v —p €z ], if z € AV (e)
S = Serwe + n(ar, €)Symu + 1
c) : (Az.e)v —p»  p{z,v'}.e, if z € AV (e)
s = Se—qne! + Su-l—»u’ +1
d) pOU {(=,0)}.Ele] —p» o0 U {(2,")}.E'P]
8 = 30-1—»9' + 230—;—»1}’ + SET»E’ +1
-
-1t

7]

2. For all terms ¢, e —» €, Sener = 0.

3. If0—» 0, e—p €, e, —» e and v; —» v}, then

a) Az.e —»  Az.e
S = Se'i—"el
b) (set!z e) —» (set!z¢)
S = Seue
c) ple —m»  pd.e
S = se-l—»e’ + sﬁ-i-—»ﬂ'
d) ejeg —»  ele)
S = Seygwef + Seggreh
e) {(env1),. s (@nyvon)} = {(21,0)),. .0, (20, 0))}
s = =t Syjgmu!

1
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b) e = (\e. M)y —» Mz — v,] = 1, where M —» M; and v —p vy,
er—ryy- Mz —v] —» Mijz —v]=¢
Using Lemma A.1.15 we have:
SM[zev]5+Mi[zev1] < S(A.M)versn Mi[zv1]

d) e=p0 U {(z,v)}. B[] —» pb1 U {(z,v1)}.Br[v1] = ey,
where § —» 01, v —» vy and E —» Ej.

e - p8 U {(z,v)}.E[v] —» p0; U {(z,v1)}. E1[v1] =

Sp0U{(m,u)}.E[v]-1—»p01Q{(m,v;)}.EH[v;] = S0n6y + Sy—mu + SE—»E; + Sygmy,

< 30-—1—»01 + 2SUT»1)1 + SE-I—»EI + 1

= Sp0U{(zyv)}.Elz]-4 06, U{(zv1)}.B1[w1]

2. e —p e =ep. Trivial.

3. For group 3, we use induction on either the length of the SR-sequence (n), or
on the structure of the term e. We give two examples.

a) e = \e.M —» dz.My = ey, where M —» M.
Since ey,..., e, is a SR-sequence then M, ..., M, is a SR-sequence. Since
M —» M; and M is a subterm of e, by the inductive hypothesis there
exists a SR-sequence M, ..., M,. Thus, Az.M,... \z. M, is a SR-sequence.
c) e=pd. M —» pb.M; = ey, where § —» 6, and M — M.
Since pf,. My, e, ..., €, is a SR-sequence, there are two possible cases:

i) e = pb1. M1+ 3. By Lemma A.1.16, if e—# €1ty €, then
there exists e’ such that e —J},_ ¢’ —» e;. By induction we have
that €',...,e, is SR-sequence.

ii) 61,...,0; and My,..., M; are SR-sequences and e, = p0;.M;. Because
¢ and j must be less than n we can use the inductive hypothesis on
the length of the smaller sequences. That is, since § —» 0, and
01,...,0; is a SR-sequence, then there exists a SR-sequence 0, ...,0;.
Similarly, we know that there is a SR-sequence M,...,M;. Thus,
pO.M, ..., p0.M;,...,p0:; M; = e, is a SR-sequence.
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141.14
Lemma A.1.15 There are two parts to the lemma; one for —  and one for —» :

1 Ife—p €,v—p v, andx & AV(e), then
o e[z —v]—p ez~
2. Ife—p» €, v—p 0, and 2 & AV (e), then
(@) efe — o] —p ez — v
(8) Sefzv]qselfomu] < S(Az.eyu-rme'[zv]

Proof. The parallel reduction relations differ only in the first group in the definition.
Specifically, clauses f and g are different for each relation. In the proof, we use —
for cases which are shared and —» only for the cases that are not defined in —» .

We use induction on the proof of e—» ¢’ and case analysis of the last proof step.
For the second part, we prove the equivalent statement:

’
SC[I(—-‘U]—I—VD-C'[:BQ—U'] S se-—l—»e' + n(m, € )Sv-l—»u’

From the definition of —» , we know that e—» €’ must have one of the following

forms:
1. We pick two examples from the first group of the definition of — .

b) e = (\y.M)u —» M'ly « v/| = ¢ wherey ¢ AV(M), M —» M’ and
u—» u.
Applying the inductive hypothesis to the subproofs M —» M’ and N—»

N', we get flz « v] —p M'[z «— v'] and ufz « v] —p o[z — V.

efr —v] = ((Ay.-M)u)[z « ] (A.1)
=  (My.Mlz — v])ufz — v] (A.2)

— Mz — ][y — vz — V] (A.3)

= My« ]z ] (A4)

= ez (A.5)
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The inductive hypothesis and the fact that u[z « v] is a value allows the

reduction in step A.3 above.

Se[mo—v]T»e'[mhu'] = SM[.’l}‘—v]T'»M'[.’L‘G—U']_I—

'I’L(y, M'[(E - v’])su[wo—u]T»u‘[mhv'] +1

IA

sM-otrr + (@, M')sy_y +
n(y, M'[x = v])(surmw + n(2,u)sy ) + 1
Q) e = p0U{(y,u)} Bl —p» o'V {(go)}. E] = &
where 0 —» 0, u —» «/, and F —» E'.
By the inductive hypothesis, 0[z — v] —» @[z « v'], u[z «— v] —»
u'[z — v'] and Elz « v] —» E'[z « v'].
(00 U {(y,u)}.Ely])[z — v]
pOlz — v]U{(y,ulz — v])}.Ely][z ]
PO’z — v TU{(y,v'[z — v'])}.E'u [z — o']][z — 0]
(00" U {(y,u)}.E'[u])[z o]

e'lz — ]

e[z — v]

mm Hl mom

se[xc——v]T»e'[a:o—u’] = 30[1:‘—11]-]—»0’[1:4—11'] + 2Su[a:-v]T»u’[z4-v’] +
SE[z«-v]l—»E’[me—v'] +1
< Sppwor + n(z, 0')3,,1_»,,/ + 2(suT»u/ + n(:v,u')svl_»vl)
+sgwpr +n(2, E')sy—py + 1
= 367»0' + 23u1—»u’ + SET»E’ + n(w,e,)su-l—»v’ +1
= Semmer + (g, e’)s,,l_m,,
fi) e=plhU0.M —» pb).M' =¢,
where 01 — 0}, M —» M, and Dom(0p) N FV (p0,.M) = @.
Since Dom(fp) N FV (pb,[zx +— v].M[z + v]) = &, we have

eflr—v] = (phoUb. M)z 0]
= phlr — v]U bz — v].M[z «— v]
—2 iz = VM2 ]

(p8;. M) — v

=z«
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2.e—pr ex=¢
We use induction on the structure of e and case analysis of e. We give two

examples:

o ¢ = (set!l y M)
Since € AV (e), then y # x. Thus, e[z — v] = (set! y M[z « v]). By
the inductive hypothesis, M|z + v]—» M[z « v']. Thus, (set!y M[z
v]) —» (set! y Mz « v']) = €[z « ]

o e=pl. M
e[z — v] = pllz — v].M[z « v]
By the inductive hypothesis, [z — v]—» 0z «— v'] and M[z — v] —p»
Mz — v']. Thus, pflz « v].M[z — v] —» pOlz — V] Mz «— o] =

e'la — v'].

3. We use the inductive hypothesis for subterms for each of these cases. For

example,

a) e= \y.M —p Iy.M' =¢', where M —» M,
e[z « v] = d\y.M[z « v]. By the inductive hypothesis, M[z « v] —»
M'[z « '], Thus, Ay. Mz «— v] —» Ay.M'[z — v'] = e[z « V).

14,115

Lemma A.1.16 Ife—p» e1—yu-cq, then there exists €] such that e—},_ e} —»

€a.

Proof. By lexicographic induction on (se..,, ).

1. e —» €1 - €.

We showed in the first part of Lemma A.1.14 that there exists a term e’ such
that € — - e’ —» €, and Setqme; < Se—we,. BY the inductive hypothesis of
this lemma, there exists €] such that &' —;,,_ €} —» €. Since ey €/, we

have e —},_ e —» .
2. e = e;. Trivial.

3. We give three prototypical examples.
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e = (set! @ M) —p» (set! @ M) —yy— €3, where M —» M.
By definition of standard reduction we have (set! « M;) = E[p] and e; =
E[q], where (p, q) € By U fus U 6. Clearly, E = (set! ¢ F') and M, = F[p]

for some context F'. So we have e; = (set!  M;) where M, = F[q]. Thus,

we have M —» My +—yy.. M,. By the inductive hypothesis, M —F, _

M| —» M, and therefore, e —3,,_ (set! @ M]) —» (set! z M;) = e,.
e = p0.M —» p0;. My —yy_ €3, where § —» 0, and M —» M.

By definition of standard reduction, there are three possibilites:

1) pbh. My = pr—yy- q = e,

ii.) pbh. My = E[p] —yu- Elq] = €, or
iil.) p0y.My = p0'.E[p] — 4y p0'.E[q] = eq,
where (p,q) € vw- in the first case and (p,q) € § U B, U B, in the last
cases.
The second case is impossible for non-empty F. Consider the first case.
There are three possible instantiations for p and g; we give a prototypical
example below:
pb1.My = pby U {(z, v1) }. By [a] —rvw- p8] U {(z,v1)}. Er[vn] = e
6, = 0, U {(z,v1)}, and My = E[a].
0 =0'U{(x,v)}, where 8’ —» 0}, v —» v, (because § —» 0y).
—- M —» Ej[2] (because M —» M,).
- M+, Elz], where E —» FE; (Lemma A.1.17).
= pI.M—3y pb' U {(z,v)}.Elz] —rvu- p0' U {(z,v)}. E[v]—»

p01 U {(z,v1)}.Er[v].

For the third case we have the following:

I

e = p.M —» pt.Elp)—ryy_ p0'.Elq) = e,

Clearly, § —» 0 and M —» E[p] —,,- E[q]. By the inductive hy-
pothesis, there exists M’ such that M +—3,_ M’ —» E[q]. Thus, we
have

e =pd.Mv—},_ p0.M' —» p0'.E[q] = e,
e= MN —» MN;+—yy- €3, where M —» M; and N — N1

By definition of standard reduction, there are two cases:
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- M1N1 = El [p01L1] > pa— p01.E1[L1] = eg, Or

— MyNy = E[p| —yu- E[q], where (p,q) € §U B, U B,,.
For the first case, we have M N —3,,_ E[p0.L], by Lemma A.1.17. Thus,
we have e = MN +—3,,_ E[p0.L]) —yy- p0.E[L] —» p01.E1[L4].
For the second case, consider empty E. Although there are three possible
subcases, we only give the one with é.
MiNy = fug - 6(f,v1) = €2

- M]Ef,NlEvl.

- Mvw+—3,_ f (Lemma A.1.17).

- N+—p,- v, where v —» v; (Lemma A.1.17).

- MN 3y fN —,_ Jv - 5(f,’U) = 6(f7 ’U]).
This holds because of the restriction on §.

Finally, consider the case when E # [ ]:
MN —» Elpl—,u_ Elq] = e,

Since p must occur within either M; or N; we can use the inductive hypoth-
esis on the subterm. For example, if p is in M then we have the following:
MN —p» F[p]N —yy_ F[q]N, where M —p» F[p] —,,— F[q]. By the
inductive hypothesis, there exists M’ such that M —J,_ M’ —» Flq].
Thus, MN +—},_ M'N —» F[q]N = e,.

Lemma A.1.17 Ife —» €' and

1.

2.

if ¢’ = E'[x], then e —},,_ F|z], where E —» E'.

if e’ = E'[(set!  v')], then e——3,_ E[(set! z v)], where E—» E' and v—» /.

if e = E'p0'. M), then e —3},_ E[p0.M], where E —» E', 0 —» 0 and
M —» M.

if e’ = Ae.M', then ev—3,,_ M\x.M, where M —» M',

if ¢ = ¢, for constant c, then e —%,_ c.
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Proof. By induction on (sc—..r,€). We use case analysis on the reduction e —» ¢

1. From the previous lemmas, there exists a term e such that e—,,,_ " —» e
and Sen—.er < Se—ner- By the inductive hypothesis on e’ —» ¢’ we have the
following:

o if ¢/ = E'[¢], then e —yy- " 33, E|z]
o if ¢’ = E'[(set! & v')], then ey, €’ —},,_ E[(set! z v))

if ¢’ = E'[p0'.M"], then e o,y " —%,_ E[p0.M]

o if ¢’ = Ax. M, then e —ryy. " —2,_ A\x. M

o if ¢ = ¢, then e+—,_ c.
2. e = € Trivial.
3. We give two typical examples.

b) e = (set! a M) —» (set!lz M')=¢'.
Assume that e’ = E'[p'] where p is one of z, (set! x v’) or pf'.¢". There
are two cases:
— ¢’ = E'[(set! x M')], where E’ = []. Then we have e = E[(set! 2 M)],
where E =[].
- ¢ = (set! @ F'[p']). Since M —» F'[p'], we can use the inductive
hypothesis to get Af+——3,,_ F[p]. Thus, we have e = (set!z M)—7,,_
(set! = F[p]).
d) e MN —» M'N' =¢
Assume that e’ = E’[p'] where p' is one of z, (set! = v') or pf'.¢". If
e’ = E'[p], then p’ must occur with M’ or N’. Suppose it occurs in
M', then we have ¢’ = F'[p']N'. Since M —» F'[p'], we can use the
inductive hypothesis to get M ——,_ F[p] where F —» F'. Thus, we
have e = MN +—},,_ F[p]N = E[p] where E —» FE'. If p' is in N’, then

a similar argument holds.

841,17

This completes the proof of the Standardization Lemma. 14112
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Strong Normalization

In this section we prove the Strong Normalization Theorem for the notion of reduction
sy, which differs from imperative fragment of vw in one important way: the range of
the & function is restricted to constants.

Theorem 2.1.6 (Strong Normalization) Let 6, be the restriction of the relation

6 as follows:

(f v) =6(f,v), where §(f,v) € Consts (6¢)

Let sy = 6.UD,Uo,UpuUpiUge. The notion of reduction s, is strongly normalizing.

Proof. We define a potential function, P, that maps terms (and p-sets) to N x
N and show that for any reduction e —,, ¢/, we have P(e) = P(e'), where > is
the lexicographic ordering relation. The definition of P relies upon the subordinate

functions g, D, and S,,. To simplify the presentation, we let m = u(e) and n = u(e').

1. P(e) = (Sm(e), D(e)); P(e') = (Sa(e), D(¢)), by definition of P.

o

. m 2 n, by Lemma A.1.19(part 1).

Rt

(Sm(e), D(e)) > (Sm(¢'), D(€")), by Lemma A.1.19(part 2).

4. Sm(e’) = Sn(€’), by Lemma A.1.21 and 2.

o

(Sm(e), D(e)) = (Sa(e"), D(e)), by 3 and 4.
6. P(e) > P(€'), by 1 and 5.

We need only provide the definition of P and prove the two lemmas required by

the proof above.
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Definition A.1.18. (Potential Function) The potential function P maps terms
to N x N as defined below. For term e,

P(e) = (S“(e)(e),D(e))

The function S, gives the maximum size of a term, given that m is the maximum

subterm. It is defined for terms and p-sets as follows:

) =1

) = m+1
Sm(Az.e) = S(e)

) Sm(e1) + Sm(e2)

) = Sm(e)+m
Sm(pd.e) = Sp(0)+ Sm(e) +1
Sm(0U{(z,v)}) = Su(0)+ Su(v)

The function g gives the maximum possible size of values in a term or a p-set.

ple) =1
uz) = 0
wAz.e) = S(e)
plerer) = maz(p(er), ulez))
p(set! z e) = ule)
w(phe) = maz(u(0),u(e))
BOU{(2,0)}) = maa(u(0),u(v))

The function D measures the depth of nested expressions:

D(eleg) = D(el) - D(eg)
D(set!ze) = D(e)+1
D(e) = 1 for all other e

We extend the functions S, D and g for contexts in the natural way with S,,([]) =

D) =wul])=0.
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Lemma A.1.19 For any two terms (or p-sets) e and €', if e —,, €' then,

1. u(e) 2 p(e')

2. (Sm(e), D(e)) > (Sm(e'), D(€')), where m > p(e).

Proof. The proof is by induction on the structure of ¢ and case analysis of e —,_ €'
We show that p(e) > p(e’) and that for all but one case, Sy, (€) > S (e'), for m > p(e).

For one case, we show that S, (e) =

the following lemmas, which we prove later:

Lemma A.1.20: Vm : S,(L[e]) = Sm(E) + Sn(e),

#(Ele])

= maz(u(E), u(e)).

Lemma A.1.21: If m > n then S,,(e) > S,(e).

Lemma A.1.22: p(e) > S,()(v) for all subterms v of e.

Sm(e') and D(e) > D(e’). The proof requires

D(E) 4+ D(e) and

We only show a few cases of e —, e’. The other cases are similar.

o e =pfU{(z,v)}.E[z] —,, p U {(z,v)}.E[v] = ¢

Sm(e) =

1l
3
3
)
=
=

p(e)

v o
3 3 3
Q 2 =
8 8 8
AN SN S~ o~
T E®
~ S N~
)
>~
=
c

Il
3
8]
Q
3
)
2
8
—_
=
—_
L~

= u(e’)

( )

= Su(0U {(fv,v)}
Sm(0U {(z,v)
Sm(0U {(z,v)
= Sn(0U {(z,v)
= Su(e)

\Y

Sm(z)+1
(m+1)+1
(v)+1

(A.1.20)

(A.1.20)

(A.1.20)

(A.1.22)
(A.1.20)
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* e = E[p0.M] —,, p0.E[M] = ¢, where E # [ ].

ple) = maz(u(0), p(M)), p(E)) (4.1.20)
= u(e)
For this case, Si(e) = Sm(e’). Thus, we must show that D(e) > D(e'). We
make use of the fact that D(E) > 0,if E # [ ]:
D(e) = D(E[p0.M])

= D(E) + D(p6.M) (A.1.20)
= D(E)+1

> 1 (B#[])
= D(p0.E[M])

o e= Az M —,, Ae.M' = ¢, where M —,, M'.
For the first part, u(e) = S(M) = Sn(e) and p(e') = S(M') = Sy (¢e'), for any
m. Thus, by showing S,,(e) > Sin(e’) we prove both parts.
Observe that Si(e) = S(M) = S,)(M). By inductive hypothesis, Sy (M) >
Sury(M'). By inductive hypothesis of part 1 of this lemma, (M) > u(M').
Thus, by Lemma A.1.21, Syan(M') > S, (M) = S(e') = Sp(e'):

Sm(e) = Suoan(M)

> Sy (M') (1.H.)
2 Sumn(M') (n(M) 2 p(M'), A.1.21)
= Sn(e)

o ¢ = (set! z M) —,, (set! @ M') = ¢/, where M —,, M.
By inductive hypothesis, (M) > p(M') and Sy (M) > Sp(M’), where m >
p(M) = u(e).

ule) = (M
> u(M') (I.I1.)
= pu(e)
Sm(e) = Su(M)+m
> Su(M') +m (I.H.)

I
wn
g
=~



60

The other cases are similar to the above. 14,119
The next lemma states that the Sy, D and p functions are compositional.

Lemma A.1.20 For term e and evaluation context E,
1. Sn(Ele]) = Sm(L) + Swle),
2. D(Ele]) = D(E) + D(e), and
3. u(Ele]) = maw(u(E), u(c)).

Proof. By simple induction on the structure of F. n4.1.20

Lemma A.1.21 Ifm 2> n then Sy(e) > Su(e).
Proof. Suppose m > n. We prove by induction on the structure of an expression e
that Sp(e) > Sn(e). A few cases of ¢ are given below. The other cases are similar.

e e=c: Sp(e) =1=S,(e).

° e=2: Sm(e) =m 2 n = Su(x).

o e = \a.M: Sn(e) = S(M) = Su(e).

® e = MN: Su(MN) = Su(M) + Sn(N). By inductive hypthesis, Sy, (M) +
Sm(N) 2 Sn(M) + Su(N) = Sne).

4121
Lemma A.1.22 If a value v is a subterm of e then p(e) > Sue)(v).

Proof. Note that §(v) = S, (v) for any m and value v. Thus, it is sufficient to prove
that u(e) > S(v), where v is a subterm of e. The proof proceeds by induction on the

structure of e. 141,22

A.2 Call-by-value/Pass-by-reference

In this section we prove the Weak Correspondence Theorem for the call-by-value /pass-
by-reference language. The proof structures are similar to the proofs in the previous

sections,
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Correspondence Theorem

Theorem 2.2.1 (Weak Correspondence) The ),-R-calculus weakly corresponds
to the call-by-value/pass-by-reference semantics of 1S, evaly,. In particular,

1. Ay-R is “almost” adequate:

(a) if eval,.(e) = a then either

e \,-RFe=a, or

o Ay-REe=pf0U {(z,v)}.2 and A,-RF pf U {(z,v)}.v = q,
(b) if A\y-RF e = a, for answer a then eval,.(e) is defined; and

2. Ay-R is sound with respect to ~,,:

AR ey = ey implies eq ~,, €.

Proof. The proof has the same structure as the proof for the call-by-value/pass-by-
worth correspondence theorem. We include the important differences.

1. (Weak) Adequacy.

(a) Assume eval,,(€) = a.

By definition of eval,,, p@.e b3, pf.v. Furthermore, by the garbage col-
lection rules, we have pf.v —»,, a. The transformation function ¥,
is not a subset of —,. because of the restriction on D’. However, if
PO U {(z,v)}.@ By pf U {(z,v)}.v then the result is an answer. Thus, this
step can only happen as the very last in a sequence. Since —,, can simu-
late all other rules, then it follows that either p@.e —», p0U {(2,v)}.2 or
pD.e —»y p0.v —» . a. Also, by elim, p@.e —,, e. Thus, \,-RFe=a
or Ay-RbFe=pluU{(z,v)}.2.

(b) Same as before with X,-W.

2. Soundess.

A. Assume A,-RF e = e
B. Assume C is a program context for e; and e,.

C. Assume eval,,(C[ey]) is defined. Then,
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— evaly(Cle1]) = @, where a is an answer;

— Either Ay-R F Cles] = a or Ay-R F Cles) = p0 U {(z,v)}.z, by
Adequacy, part (a);

If A;-R F Cle1] = a the proof is same as with A,-W. Thus, assume
the other case:

A-R F Cleg] = pb U {(z,v)}.x, by transitivity of =,,;

— Cles] —»yr p0' U {(2,v")}.¢, by Church-Rosser Lemma;

pD3.Cleq] i, pd".0", by Lemma A.2.1;

eval,,(Cleg]) is defined, by definition of eval,,.

I

Therefore, eval,,(Cles)]) is defined iff eval,, (Cleq]) is defined.

C. Assume eval,,(C[e1]) = c, for basic constant c.

— Av-RF Cley] = ¢, by Adequacy, part (a);

— Either Ay-R F Clei] = c or Ay-R F Cles] = p0 U {(z,¢)}.z, by
Adequacy, part (a);

~ If A,-R F Cleq] = c the proof is same as with A,-W. Thus, assume
the other case:

— A-RF Cleg) = pf U {(z,c)}.2, by transitivity of =,,;

~ Cleg] —ur pf' U {(z,¢)}.x, by Church-Rosser Lemma;

~ pB3.Cleg] b, p0”.c, by Lemma A.2.1;

- evaly,(Cleg]) = ¢, by definition of eval,,.

Therefore, eval,,(Clei]) = ¢ iff eval,.(Cles]) = c.
Therefore, e; 2, €.

Therefore, A,-R | e; = e; implies e; >, e;.

As with the A,-W-calculus, the A,-R-calculus satisfies Church-Rosser and Stand-
ardization Lemmas. We assume the natural extension of the definitions for the no-
tion of reduction vr-, the vr-Standard Reduction Function —,._ and Standard
Reduction Sequences. The proof of the following lemma, which connects the reduc-
tion relation —,, with the transformation function b,,, completes the proof of

correspondence.
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Lemma A.2.1 For a program e, if e —, ¢’ where €' is either an answer or of the

form pO U {(z,v)}.z, then there exists an answer a such that
1. pD.e b, a, and
2. if € is a basic constant c, then a = pb.c, and

3. ife' = pbU {(z,v)}.x, then a = pb' U {(z,v')}.v".
Proof. Assume e —»,, €’. Parts 1 and 2 are the same as in Lemma A.1.3. For part
3, assume ¢’ is of the form pfU {(z,v)}.z. By Lemma A.2.2 e —,,._ p0; U {(z,v,)}.2.
By the Standardization Lemma, there exists an SR-sequence e, ..., pf; U {(z,v;)}.z.
Thus, we have e —},._ pf; U {(x, v2)}.z and therefore,

pD.e by pD.p0> U {(z,v2)}.@¢ Bur pla U {(z,v2)}.7 By pb2 U {(z,v3)}.02.
Take a = p0, U {(,v2)}.v2. w421
The following lemma shows that the garbage collection reductions can be removed
from a reduction sequence, without affecting the type of answer.
Lemma A.2.2 [fe—n.¢', where ¢’ is either an answer or of the form p0U{(z,v)}.z,

then there exists an e such that e —»,,_ " and

1. if €' is a basic constant c, then either e" = ¢ or €’ = pl.c,

2. if € is pb.v, then " = pb'.v',

3. if €' is pfU {(z,v)}.x, then " = pd' U {(z,v")}..
Proof.

Assume e —»,, €¢/. By Lemma A.2.3, we have e —»,,_ ¢; —,. €. By Lemma
A.2.4 we have e; —»,,_ " —n g €/, where ¢” is of the proper form. Thus, we have

[+ ‘—Hvr.— C”.

The last two lemmas show that the garbage collection reductions can be moved
to the end of a reduction sequence without affecting the shape of the answer.
Lemma A.2.3 Ife — . ey — . €3, then e —,_ €] — g €2.

Lemma A.2.4 1. If e =g a, for an answer a, then e —»,,_ a’ —»gc @, Where

a’ is an answer.,

2. If e —»ye pO.z, where z € Dom(0), then e —» . p0'.x —y p0.:.

§4.2.2
With the proofs of the Church-Rosser and Standardization Lemmas in the follow-

ing sections, the proof of the Correspondence Theorem is complete. m,.21
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Church-Rosser

Lemma A.2.5 The notion of reduction vr (the call-by-value/pass-by-reference cal-

culus) is Church-Rosser.

Proof. The proof uses a similar technique as the Church-Rosser Lemma for the call-
by-value/pass-by-worth calculus. We define the notions of reduction vra and vrb as

follows:
vra = §UB.UD,Uac,Ugc

vrb = py U pip.
Lemma A.2.6 The notion of reduction vra is Church-Rosser.

Proof. As before, we define a parallel reduction relation —» . This relation is the
same as in definition A.1.9, except clauses b, c and d are replaced with b and d below:

LIf0—» 0,e—p €, v—» v and E—» FE/,then

b) (Avely —» €z —y]
d) p0U{(z,v)}.E[z] — p0'U {(z,v")}.E"[v],
it £ 4[] and  # F[(g.)[ ]

Next, we assume that e—3» e; and e—» e; and use induction on the structure
of e —» e that there exists an ez such that e; —» es, for i = 1, 2.

la

We use case analysis on e —»  ey:

1. We pick the two clauses in group 1 that differ from the call-by-value/pass-by-

worth definition:

b) e= (Ae. M)y —» Mz — y] = e, where M —» M.
Two possibilities for es:
- ez = (Aa.Ma)y.
—~ ez = Mz « y].
d) e=pfU{(z,v)}.Ela] —» pb U {(z,v1)}.Er[v1] = €1, where 6 —» 6,
v— v, E—p By, E# F[(M\y.M)[]),and E # ).
There are several possibilities for e;. We select two:
= e = ply U {(z,v7)}. 5]
— €3 = ply U {(z, vy)}. Ly[ve),
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where 0 —» 0, v —pp v, E—»  E,.
Clearly, E; # [ ] and E; # F[(\y.M)[]]. By the inductive hypothesis,
there exists 03, vs, and Es, such that es = pf3 U {(, v3)}. E3[va] satisifies

the diamond property.

2. Same as Lemma A.1.8.

3. Same as Lemma A.1.8.

1426

Since vrb = vwb, we know from Lemma A.1.10 that vrb is Church-Rosser. We

need only show the commutation of the two subreductions.

Lemma A.2.7 The vra-reduction commutes with vrb-reduction.

Proof. For this proof, let — ., be the reflezive closure of the one-step reductions.
By Barendregt [1:65], it is sufficient to show that if e —» e; and e —,,; e, there

exists an e3 such that e; —» ;4 €3 and e; —»  ea.

1. First consider cases in which e —» ¢; by group 1 of the definition of —»

We include only the interesting cases:

b)

e = (Ae. M)y —p» Mz — y] = e1.

— eg = (Az.My)y, where M — . M,
By the inductive hypothesis there exists M3z such that M; —»,,;, M3 and
M;—»  M;. Since Mz «— y]—»ypp Ma[x «— y] we can take eg = Mz «
yl.
e = pf U {(z,v)}.E[z] —» pbh U {(z,v1)}.Ei[v1] = ey, where E #
Fl(Az.M)[]] and E # [ ].
There are a number of possibilities for e;. The following are representative
of all the cases:

— ex = pb U {(z,v)}.E[z], where 6 —,; 0,.

— ez = pO U {(x,v)}.E;[2], where E — 4 Es.
For the first case, there exists 63 such that 8, —» 03 and 0; —», 03.
Thus, we take e3 = pfaU{(2,v1)}.E;1[v1]. For the second case, we know that

since E # F[(Ax.M)[]] and E % [ ], then E; # [ ] and By # F[(Az.M)[].

Thus, take e3 = pf; U {(z,v1)}.E3[v1]. The other cases are similar.
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2. Next, consider the cases in which e —,, €2, because (e, e3) € vrb:

pin) e = E[pd.M] —>yp p0.E[M] = ¢z, where E # [ ].
There are several subcases for e —»  e;:
- e= E[p0U{(z,v)}.Flz]]) ¢ Ei[p01 U{(z,v1)}.Fi[v1]]) = €1, where

F #[]and F # F'[(Ay.e)[ ]].
Then, e2 = pf U {(z,v)}.E[F[z]]) and we can take ez = pf, Uy

{(z,v1)}.Ei[Fi[w]]. Since F # [], E[F]# []. Since F # F'[(Ay.e)[]],
E[F] # F'[(Ay.e)[ ]].
pu) €= pd.E[pfd.M] — 45 p U 0. E[M] = e,

Similar to the previous case.

3. Finally, the only remaining cases are those in which e = C[M] —» C;[M;]
by group 3 of the definition of —» , and e = C'[N] —,,4 C'[ V], because
(N, Nz) € vrb, where C and C' are non-empty contexts. We use induction on
the subterms for these cases.
H4.2.7
A lemma similar to Lemma A.1.15 must be proven. This completes the proof of

the Church-Rosser Lemma. w455

Standardization

Lemma A.2.8 (Standardization) e —,._ ¢’ iff there exists a Standard Reduc-

tion Sequence e,...,é'.

Proof.
We use the same technique as the corresponding proof for the call-by-value/pass-

by-worth calculus.
The definition of parallel reduction changes slightly. We delete clause b and replace

clauses c and d with the following:
1.0 —» 0,e—» ¢,v—» v and E—» FE', then

b) (Mze)y —p  €v—y]
S = Serwe +1
d) p0U{(z,v)}.E[z] —»  p0' U {(z,v")}.E'[v]],
if B#[]and E# F(Ay.e)[]]
8 = Sgmo + 280 wu + SEwE + 1
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Lemma A.2.9 Ife—» e1 and ey,...,e, is a SR-sequence, then there exists a SR-

sequence e,...,ey.

Proof. The proof uses the same method as before. We include only the two different
cases from group 1.

b) e = (Ax. M)y —» Mz « y] = e1, where M —» M.
ety Mz — y] —» Mz —y]=¢,
By Lemma A.2.10:
SMlze—ylgnMifz—y] < S(A.M)y—-M; [zy]

d) e =plU {(z,v)}.Elz] —» pb; U {(z,v1)}.E1[n1] = e,
where  —p» 01, v —p» v, E—p Ey, E#[]and E # F[(Ay.M)[]].

er—rur— p0 U {(2,v)}. Elo] —» p01 U {(2,01)}.Er[v1] = &

SpOU{(x,u)}.E[v]T»p01U{(z,v,)}.El[ul] = 861w + Sy, + SE4»Ey + Sy,
< 50-1—»6’1 + 231)1—»01 + 3E]—»E1 + 1

= 86U {(2,0)}. Ble]r 0 U{(2,0)}. Esn]
§4.2,9
Lemma A.2.10 Ife —» ¢ then
L ez — gyl —p €z —y]
2. Sefpea)rellm] < S(ae)yweeei]

Lemma A.2.11 Ife—p» ey, ey, then there exists e} such that e, _¢} —»

€3.

Proof. By lexicographic induction on (Serwers €)-
1. By induction on the Se——wey, @8 IN previous lemmas.
2. Trivial,

3. We include prototypical cases:
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c) e = p0.M —p» p0y. My —y_ ez, where 0 —» 0y and M —» M.

p01. My = p0y U {(z,v1)}. By[2] 4= p0f U {(2,v1)}. E1[v1] = eg,
where Fy # [ | and Ey # F[(M\y.N)[]].
- 0, = 01U {(z,v1)}, and My = Ey[z].
- 0=0'U{(z,v)}, where 0/ —» 0}, v —» v; (because § —» 0;).
- M —p» Ey[2] (because M —» M).
= M +—}._ E[z], where E —» E; (Lemma A.2.12).
= pO.M 5 p0" U {(z,0) }. E[z] o p0' U {(2, v) }. Ev]—»
pb; U {(z,v1)}. B [v1].
We know that E # [] and E # F[(Ay.N)[]], by Lemma A.2.12.
d) e= MN —» MN;—,,_ e;, where M —» M; and N —» M.
Consider the case that differs from the previous section:
MiNy = (Az.Ly)y —rpp- iz — y] = e,
- My=Me.L\, Ny =y
- M+ Aa.L.
- N+—}._y. (Lemma A.2.12)

Ur—

= MN s (Ae.L)y —ure Lz — yl —p» il — g

Lemma A.2.12 Ife —» ¢’ and

1.

if ¢ = E'[z], then e —3,._ Ela], where E —» E' and if E' # [] and E' #
Fl(Az.N)[]], then E #[] and E # F[(Az.N)[]].

if e’ = E'(set! z v')], then ew—s3,_ E[(set! z v)], where E—» E' and v—» v/

if € = E'[p0.M'], then e —},_ E[p0.M), where E —p» E', § —» 0' and
M —» M.

if e’ = Aa. M, then e —3,_ A\a.M, where M —» M'.
if e’ = ¢, for constant ¢, then e —%,_ c.

ife! =, then e —k,._ z.
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Proof. Similar method as previous section. We prove only the last proposition by
induction on the length of e—p» 2. Assume e— z. There are only two possibilities

for e:
o e = a. Clearly, e —},_ .
s e= (M M)z—p My~ 2zl=uz.
er—tyr- My — 2] —» My 2] =2
and SMly—z]4wM'ly—z) < Se—wg. Use the inductive hypothesis on the smaller
reduction to get M[y « z] —%,._ z.

14.2.12
This completes the proof of the Standardization Lemma for the call-by-value/pass-

by-reference calculus. u4.9.5

A.3 Other Languages

The theorems and proofs for the remaining languages are analogous to the proofs
already presented. Several modifications are necessary in some places, but the basic

structure of the proofs including the lemmas is preserved.

Call-by-value-result

The proofs for the call-by-value-result language are analogous to the proofs for the
call-by-value/pass-by-reference language, except there is an additional language con-
struct ({e; e)) and evaluation context ({v; E)). With these additions, and with the 8.

reduction replacing £,, the proofs are the same.

Reference Cells

The proofs for the call-by-value/pass-by-worth language with reference cells are anal-
ogous to the proofs for the call-by-value/pass-by-worth language with assignment.

The term language is different, but the reduction relations are similar.

Call-by-name/Pass-by-worth

Again, the proof structure is the same as with the call-by-value/pass-by-worth lan-
guage. The difference is that arbitrary expressions my occur where only values were

allowed in the call-by-value language.
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Call-by-name/Pass-by-reference

The differences between proofs for pass-by-worth and pass-by-reference in call-by-
value languages also occur with the call-by-name languages. The restrictions on the
variable dereference rules for the two calculi are different, but have similar proper-
ties. Whenever this restriction appears in a proof for the call-by-value language, an
analogous restriction appears in the proof for the call-by-name language.

Also, the proof for the weaker correspondence theorem is longer due to the com-
plicated statement of the adequacy part of the theorem. However, the proof uses the

same arguments.
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