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ABSTRACT 

Self-Assembling Peptide Hydrogels Targeted For Dental Tissue Regeneration 

by 

Kerstin Martina Galler 

Dental caries and traumatic impact are two major causes of destruction of dental soft and 

mineralized tissues that affect a large segment of the population and pose major public 

health concerns. Conventional treatment strategies rely on mere replacement with bioinert 

filling materials. Hence, a critical need exists for biology-based therapeutic approaches to 

restore damaged dental tissues to their original form and function. Recent developments in 

tissue engineering, material sciences and stem cell research offer considerable potential to 

impact dental therapies. A customized scaffolding system laden with bioactive factors could 

deliver dental stem cells to the site of injury. An applicable scaffold should be biocompatible 

and biodegradable, accommodate cells, incorporate growth and differentiation factors, and 

allow for injection into small defects. Synthetic peptide hydrogels are particularly 

interesting in all these aspects. Our pilot study demonstrated their compatibility with two 

dental stem cell lines. In Specific Aim 1, peptide sequences were developed to further 

optimize the system for cell proliferation and spreading. In Specific Aim 2, the gels were 

modified to incorporate bioactive molecules and growth factors for cell differentiation and 

vasculogenesis. Release profiles were established, and cell culture studies demonstrated the 

induction of cellular differentiation. For Specific Aim 3, the generated material was utilized 

in an animal model, where constructs of cell- and growth-factor-laden gels in standardized 

dentin cylinders were transplanted into immunocompromised mice. Soft connective tissue 

formation and new blood vessel formation could be observed, along with localized collagen 

deposits, indicating beginning dentin formation. In summary, the objective of this research 

was to modify and optimize peptide-based hydrogels in order to develop a novel tissue 

engineering approach for the regeneration of dental tissues. 
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CHAPTER I: INTRODUCTION 

1. Teeth: Development, Structure and Function, Pathology 

Teeth serve important functions of mastication, phonation and speech; dentition shapes 

our smiles and facial expressions and imparts uniqueness to individuals. This might be 

reason enough to strive for novel treatment strategies and advance from replacement to 

true regeneration of damaged or missing teeth. However, beyond the obvious, teeth exhibit 

several features well worth a closer look. Although small, they come in different shapes and 

sizes. Humans have a succedaneous dentition and a complex eruption pattern that 

determines the order in which permanent teeth follow their deciduous predecessors. Each 

tooth is a complex structure composed of several distinct soft and mineralized tissues of 

unique architectural characteristics and different functions. The hard tissues enclosing the 

pulp are classic composite materials. Ordinarily brittle, inorganic hydroxyapatite is re-

enforced by organic components, which determine the respective material properties. 

Figure 1: Anatomy of the tooth. 

1: enamel; 2: dentin; 3: dental pulp; 4: gingiva; 5: alveolar bone; 
6: periodontal ligament; 7: root dentin; 8: cementum. 
Adapted from [1]. 

Enamel covers the tooth crown that is visible in the oral cavity and 

consists almost exclusively of inorganic hydroxyapatite. It is a 

ceramic-like material and the hardest substance found in our body 

due to a high mineral content that is supported by a small percentage of unique non-

collagenous proteins. The underlying dentin which makes up the bulk of the tooth has a 



composition similar to bone but possesses a different and unique tubular structure. 

Collagen fibers serve as a template for mineral deposition and provide elasticity, and dentin 

supports the brittle outer layer of enamel. The dental pulp is enclosed in a chamber in the 

core of the tooth and is made of fibroblasts, nerves, blood and lymph vessels, and soft 

connective tissue. Highly specialized dentin-forming odontoblasts line the pulp chamber, 

and they secrete a collagenous matrix called predentin, which later mineralizes. As the 

production of dentin progresses, each odontoblast leaves a cellular process behind, 

j i t . <.'4tiM' •- '<•'. 
l i p * » ' % '.'•-•'̂ '•- •-

iPi ••A-T.;,•••-••:•• embedded in a single dentinal tubule. The intimate 

association between dentin and the odontoblasts that is 

established during development continues through the life 

of a tooth. Hence the structure of dentin maintains tooth 

vitality by communicating various pathologic and 

biomechanical signals to the underlying pulp. 

l-j-J • OxfiBHOtdasl 
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Figure 2: Histological image of the dentin-pulp complex. A layer of odontoblasts secretes 
the predentin matrix, which later mineralizes. Primary dentin is formed during tooth 
development, secondary dentin throughout our lifetime. Adapted from [2]. 

The root dentin is covered with yet another species of mineralized tissue, the 

cementum. Tendon-like fibers insert both into the cementum and the surrounding alveolar 

bone, thus anchoring the tooth in its socket. This periodontal ligament is important for 

proprioception and cushions large forces during mastication. 

The complex architecture of teeth and a unique structural composition provides 

durability for a lifetime. Teeth can withstand enormous abrasive forces, large temperature 

changes, varying pH and a moist and corrosive environment. Despite their strength, teeth 
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are susceptible to damage caused by bacterial infection, chemicals or mechanical trauma. A 

common cause for the loss of hard tissues in teeth is dental caries, a degradative disease 

process fuelled by sugars in the diet and cariogenic microorganisms. Over time, these oral 

bacteria deposit complex biofilms on the tooth's surface. Their metabolites create an acidic 

environment, resulting in demineralization of the inorganic matrices and cavitation, 

progressing from the enamel to the dentin. Subsequently, bacterial toxins can enter the 

pulp chamber and cause inflammation and degeneration of the underlying soft tissue. 

continues, it reaches the 
underlying dentin. At this stage, bacterial toxins can diffuse through the dentinal tubules 
and cause an inflammatory reaction in the pulp (B, C). Further demineralization leads to 
exposure of the pulp, bacterial invasion, necrosis of the pulp tissue and migration of bacteria 
into the surrounding bone via the apical dental foramen. Adapted from [3]. 

During therapeutic intervention, infected enamel or dentin can be removed and 

replaced with an inert filling material, thus maintaining vitality and function of the dental 

pulp. In the face of ongoing insult, necrosis ensues and the tissue has to be removed 

completely. 

Besides caries, erosion can lead to destruction of dental enamel or dentin; 

furthermore fractures after traumatic impact. If the dental pulp is exposed after loss of 

dental hard tissues, contamination and necrosis of the soft tissue follow, and the 

inflammatory process can spread into the surrounding bone, oftentimes resulting in tooth 

loss. 
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2. Current Treatment Methods 

To date, treatment strategies rely on the insertion of synthetic materials such as metal 

alloys, ceramics, cements and composite resins to restore defects in enamel and dentin. An 

interesting aspect is that the use of malleable or carved materials for tooth replacement 

reaches far back in human history, and thus dentists were among the first to apply material 

science in a biological setting. 

Amalgam, a mixture alloy of mercury and at least one other metal, used to be the 

golden standard for dental restorations. Recently, it has been exchanged for highly 

sophisticated materials such as dental resin composites, which settle esthetic claims and 

aim at high quality material properties. Over the last decades, companies have invested 

heavily in the development and improvement of dental materials, involving research efforts 

of mainly chemists and material scientist. 

Detected early, infected enamel or dentin can be removed and replaced with a filling 

material, thus maintaining vitality and function of the dental pulp. Even after exposure of 

the pulpal tissue, regeneration is still possible. Application of calcium hydroxide or mineral 

trioxide as a pulp capping material stimulates defense mechanisms and reparative dentin 

formation. Despite these advances, problems remain. In composite filling materials, 

marginal gaps often form due to polymerization shrinkage, which leads to tensile stress 

between the cavity wall and the restoration. These gaps facilitate the invasion of bacteria 

and bacterial products into the dentinal tubules and the dental pulp, leading to post­

operative sensitivity, secondary caries and pulpal damage [4]. If intervention comes too 

late, necrosis of the soft tissue ensues. After loss of the dental pulp, thorough debridement, 



5 

disinfection and subsequent obturation of the pulp chamber and root canal system are 

necessary to prevent reoccurrence of infection. While root canal fillings have been utilized 

as replacements for decades and show high success rates of over 90% over 8 years [5], they 

fail to restore physiological form and function of lost tissues and are incapable of 

remodeling and repair as a response to ongoing stimulation or injury. 

The loss of dental pulp after traumatic impact poses another serious problem to 

patients and dentists. The incidence of tooth fracture, mainly of the incisors, is highest in 

children and young adults [6] and is associated with considerable challenges since root 

formation is not complete until 3 years after the tooth has fully erupted. After complicated 

tooth fractures with exposure of the soft tissue in immature teeth, bacterial contamination 

leads to inflammation and subsequent tissue necrosis, and root formation comes to a halt 

as the mineralizing cells are lost. If the condition is not treated, the inflammation will spread 

into the surrounding alveolar bone and eventually the tooth will be lost. Treatment with 

calcium hydroxide or mineral trioxide aggregate (MTA) can induce a continuation of hard 

tissue formation in the apical region. In order to control infection, calcium hydroxide, for 

example, has to be applied frequently over a prolonged period of time of 5 to 20 months 

[7]. The procedure is often complicated by divergent root canals, making debridement 

difficult. Failure to control infection can result in root resorption, apical radiolucencies or 

root fracture, and eventually tooth loss [6]. This, in turn, leads to an arrest of bone 

development in that area of the dental arch, as the teeth transmit load into the bone and 

thus trigger bone and jaw growth and remodeling. Insertion of a dental titanium implant 

covered with a ceramic crown, which can substitute for a lost tooth, might be severely 
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complicated if the bone in the area of supposed implantation is underdeveloped and thin, 

requiring alveolar bone augmentation before an implant can be placed. Furthermore, 

implantation is considered only after growth is completed and is usually not performed 

before the age of 18. 

Overall, restoration of lost tooth tissue, whether from disease or trauma, represents 

a significant proportion of the daily routine for practicing clinicians. The 2003 WHO World 

Oral Health Report [8] as well as a recent follow-up [9] identified oral diseases as a major 

and continuing public health problem. This is based on their impact in terms of pain, 

impairment of function and thus effect on quality of life along with their high prevalence 

and global incidence. Treatment costs are estimated as accounting for 5-10% of the 

healthcare budget in industrialized countries, leaving us with a daunting challenge to 

minimize the burden of restoring teeth. 

3. Regenerative Dentistry 

Regenerative dentistry strives for the development of innovative treatment strategies which 

lead to true regeneration rather than replacement and repair. Two distinct approaches can 

be distinguished to achieve this goal: whole tooth regeneration and the regeneration of 

partial tooth structures. 

In order to engineer a whole tooth, researchers are investigating events occurring 

during tooth development. Tooth formation is initiated and progresses through cross talk 

and reciprocal interactions between two morphologically different tissues from different 

germ layers, the ectoderm and the underlying mesenchyme. Understanding the molecular 



7 

mechanisms responsible for these events is not only interesting to developmental 

biologists, but is key for tissue engineers who aim to reiterate these processes in vitro in 

order to regenerate a whole biotooth [10]. This biology-based strategy provides a viable 

alternative to the use of today's state-of-the-art titanium implant. 

Whereas replacement of whole teeth remains a challenge, regeneration of partial 

tooth structures might be a more achievable short-term goal. In general, newly developed 

dental biomaterials have not capitalized on the intrinsic regenerative capacity of oral 

tissues. Such natural resources could be taken advantage of for more biologically-driven 

treatment strategies. Formation of new dentin and partial regeneration of periodontal 

ligament can be stimulated through therapeutic intervention. In either case, the healing 

process is thought to involve the recruitment of uncommitted progenitors or stem cells, 

which hold the capacity to differentiate and produce the respective matrices to repair and 

restore damaged tissues. The recent isolation of postnatal stem cells from a variety of oral 

tissues marks a milestone in regenerative dentistry, and these cells provide a promising tool 

for future treatment strategies. On the other hand, tissue engineering scaffolds are 

transitioning from passive cell delivery systems to bioactive matrices, which allow for 

incorporation of biomolecules and can thus elicit a desired cellular response. The 

combination of dental stem cells with novel scaffolding materials might enable us to 

engineer oral tissues in the near future. 
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4. Tissue Engineering 

Tissue engineering is an emerging interdisciplinary field that integrates principles of 

developmental, cellular and molecular biology, genetics, medicine, chemistry, material 

sciences and engineering. The term was first coined in 1985, and defined as "the application 

of principles of engineering and life sciences toward fundamental understanding of 

structure-function relationships in normal and pathological mammalian tissues, and the 

development of biological substitutes to restore, maintain or improve tissue functions" [11]. 

The emergence of the field has resulted from the need for tissue and organ replacements 

[12]. Significant progress has been made over the last decades in understanding and 

harnessing those structure-function relationships, and tissue-engineered products are 

already commercially available and used for novel and improved treatment methods in 

medicine. 

The concept of tissue engineering is based on the combination of the following: (1) 

ex-vivo expanded (stem) cells, (2) a biocompatible carrier or scaffold material and (3) 

bioactive molecules to induce cellular differentiation and tissue formation. Thus, tissue 

engineering strategies utilize the functional triad of cells, scaffold and biomolecules to 

recapitulate physiological processes of development and regeneration. This important 

challenge presents itself to biologists and bioengineers, chemists and material scientists 

who must design biomimetic and bioactive scaffolds to drive the field forward. 
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4.1. Stem Cells 

The most valuable cells for regenerative medicine are stem cells. These cells possess the 

capability for self-renewal and can differentiate into various lineages, a characteristic called 

plasticity. Stem cells are commonly defined as either 'embryonic' or 'postnatal' [13]. Stem 

cells are also subdivided into pluripotent and multipotent categories according to their 

plasticity. Embryonic stem cells, which are comprised in the inner cell mass of the blastocyst 

(5-14 days after conception), are pluripotent, which means each cell can form any cell type 

of the body. However, the use of embryonic tissues is afflicted with legal and ethical issues. 

The recent creation of "induced pluripotent stem cells" (iPS) by re-programming somatic 

cells to re-activate characteristics of embryonic stem cells set a new milestone and promises 

to revolutionize regenerative medicine [14, 15]. 

In contrast, postnatal stem cells possess a limited capability to differentiate but can 

still form a number of lineages and are readily accessible. Mesenchymal stem cells, which 

have commonly been isolated from bone marrow, give rise to osteoblasts, chondrocytes, 

myocytes, adipocytes, neuronal cells, or beta-pancreatic islets cells, any pathway can be 

induced by addition of adequate cell culture supplements or differentiation factors. Many 

researchers focus on postnatal stem cells in order to bypass the legal and ethical issues 

associated with embryonic stem cells. In fact, postnatal stem cells are a promising tool as an 

alternative source for clinical applications, both in regards to their accessibility and lack of 

immunogenicity, despite their reduced plasticity. 

Postnatal stem cells have been successfully utilized for bone marrow transplants for 

certain types of cancer [16], injection into heart muscle after infarction to produce 
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cardiomyocytes [17], re-growth of damaged neuronal axons [18], bone and cartilage 

regeneration [19, 20], or skin and vascular grafts [21, 22]. Recently, postnatal stem cells 

have been isolated from tissues such as umbilical cord, peripheral blood or adipose tissue. 

Today, stem cells can be isolated from various sources, including the oral cavity. 

4.1.1. Tooth-Derived Mesenchymal Stem Cells 

A long-standing obstacle in regenerative dental medicine is to obtain progenitor cells that 

will continually divide and produce cells or tissues suitable for implantation in the oral 

cavity. Cells could either come from an allogenic source, e.g. as a disease- and pathogen-

free human pulp stem cell line, or from the same patient as autologous stem cells from oral 

tissues, such as mucosa or dental pulp. The latter might cause constraints, since expansion 

of sufficient cell numbers could be time-consuming, regarding the fact that many adult 

tissues contain only 1-4% stem cells [23]. 

Since dentin-producing odontoblasts are terminally differentiated, postmitotic cells, 

they cannot proliferate to replace lost cells after injury. The ability of both young and old 

teeth to respond to injury by induction of reparative dentinogenesis suggests that a small 

population of competent progenitor pulp stem cells may exist within the dental pulp 

throughout life. For many years, possible sources of replacement cells had been discussed 

controversially. Progenitor cells were thought to reside in the cell-rich zone subjacent to the 

odontoblast layer, in the core of the pulp as undifferentiated mesenchymal cells, or in the 

perivascular niche [24]. Today, several different sources of dental stem cells have been 
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identified. Stem cells can be isolated from mixed cell populations by four commonly used 

techniques: 

1) Fluorescence activated cell sorting (FACS) using a flow cytometer, 

2) Immuno-magnetic bead selection, 

3) Immuno-histochemical staining, 

4) Physiological and histological criteria including phenotype, chemotaxis, proliferation, 

differentiation and mineralizing activity. 

4.1.2. Dental Pulp Stem Cells 

Teeth are an easily accessible source to harvest postnatal stem cells from different tissues, 

including dental pulp, periodontal ligament, or dental follicle and apical papilla of 

developing teeth. The most applicable for our approach are stem cells derived from dental 

pulp. Gronthos et al. first isolated stem cells from the pulp of developing third molars, DPSC 

(dental gulp stem cells). These cells are highly proliferative, differentiate into various 

lineages, and are able to form dentin-pulp-like complexes, but not lamellar bone, after 

transplantation in vivo [25, 26]. Three years later, Miura et al. were able to harvest 

clonogenic cells from exfoliated deciduous teeth, SHED (stem cells from h_uman exfoliated 

deciduous teeth), and differentiated them into odontoblasts, adipocytes or neural cells [27]. 

Interestingly, both SHED and DPSC are located in the perivascular niche, they express the 

mesenchymal stem cell marker STRO-1 and the pericyte marker CD146 [28]. 

However, SHED are considered distinct from DPSC for several reasons. Compared to 

DPSC or bone marrow stromal stem cells (BMSSC), SHED display increased numbers of 
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population doublings and higher proliferation rates [27]. Although both cell types show 

calcium accumulation after osteogenic induction in vitro, DPSC cells are able to form dense 

mineralized nodules, indicating a higher potential to mineralize. After transplantation in 

vivo, SHED develop into odontoblast-like cells associated with a dentin-like structure, but 

are unable to regenerate a complete dentin-pulp complex as observed with DPSC. On the 

other hand, SHED show a strong osteoinductive capacity and promote host cell 

differentiation into bone-forming cells [25, 27]. The behavior of these cells reflects their 

physiological function in vivo. Deciduous teeth are significantly different from permanent 

teeth with regards to their development, tissue structure and function. Whereas pulp cells 

in deciduous teeth fail to generate new dentin after injury, this can commonly be observed 

in adult pulp. Due to the strong osteoinductive capacity of SHED it has been suggested that 

these cells not only guide the eruption of permanent teeth, but furthermore induce bone 

formation during the eruption process [27]. SHED therefore represent a population of stem 

cells that might be more immature and is distinct from DPSC with respect to their higher 

proliferation rates, increased population doublings, sphere-like cluster formation, 

osteoinductive capacity and a failure to reconstitute a dentin-pulp like complex in vivo. 

Both dental stem cell lines have been demonstrated to retain their multipotential 

differentiation ability after cryopreservation [29, 30]. SHED and DPSC used in studies 

described in this dissertation were kindly provided by Dr. Songtao Shi at USC. 
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4.2. Scaffolds 

In order to provide a three-dimensional microenvironment to accommodate cells and guide 

their adhesion, growth and subsequent differentiation, we are in need of suitable 

scaffolding systems. In one scenario, cells can be seeded onto the scaffold and cultured in 

vitro to generate the desired tissue before transplantation. A slightly different approach is 

the design of materials for transplantation of a primarily cell-free system, which will, due to 

a combination of signaling molecules incorporated in the scaffold, induce the homing of 

stem cells residing in the respective tissues, and promote their differentiation to support 

regeneration. Cell-free biocompatible scaffolds are especially attractive because of an easier 

handling process that eliminates the issues associated with the use of stem cells and their 

expansion in vitro, with storage and shelf-life, cost aspects, immunoresponse of the host 

and transmission of diseases. 

In any case, an ideal scaffold material has to be non-toxic, biocompatible and non-

immunogenic to avert any damage to neighboring cells. The scaffold should be degradable 

by enzymes or hydrolysis at a rate that allows for replacement with newly formed tissue. As 

a carrier for drugs and differentiation factors, the material should be versatile enough to 

enable the incorporation and controlled release of bioactive molecules. 

A variety of materials has been designed and constructed for tissue engineering 

approaches, namely natural and synthetic polymers or inorganic materials and composites, 

which have been fabricated into porous scaffolds, nanofibrous materials, microparticles and 

hydrogels. 
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Natural materials include collagen, elastin, fibrin, alginate, silk, glycosaminoglycans 

such as hyaluronan, and chitosan. They offer a high degree of structural strength, are 

biocompatible and biodegradable, but are often difficult to process and afflicted with the 

risk of transmitting animal-associated pathogens or provoking an immunoresponse. 

Collagen has been of special interest and has been used for manifold tissue engineering 

approaches in bone and tooth tissue engineering; it has been fabricated as gels, nanofibers, 

porous scaffolds and films. However, it is mechanically weak and undergoes rapid 

degradation [31]. 

Synthetic polymers on the other hand provide excellent chemical and mechanical 

properties and allow for high control over the physicochemical characteristics, such as 

molecular weight, configuration of polymer chains, or the presence of functional groups. 

Disadvantages of synthetic polymers can be a chronic or acute inflammatory host response, 

and localized pH decrease due to relative acidity of hydrolytically degraded byproducts. 

Commonly used synthetic scaffolds are fabricated from poly lactic acid (PLLA), poly glycolic 

acid (PGA), and their copolymer, poly lactic-co-glycolic acid (PLGA). PLLA is a very strong 

polymer and has found many applications where structural strength is important. PGA has 

been used as an artificial scaffold for cell transplantation, and degrades as the cells excrete 

extracellular matrix. Both PLLA and PGA are nontoxic and biocompatible; they degrade by 

simple hydrolysis and have gained FDA approval for a number of applications [32, 33]. 

Hydrogels made from collagen, poly ethylene glycol, fibrin, glycosaminoglycans or 

self-assembling peptide molecules have recently been explored for tissue engineering 

applications in more detail. They offer numerous interesting properties including high 
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biocompatibility, a tissue-like water content, viscoelastic properties similar to soft tissues, 

efficient transport of nutrients and metabolic products, uniform cell encapsulation, and the 

possibility of injection and gelation in situ. Based on their chemistry, they can be chemically 

or physically crosslinked, and modifications such as incorporation of biofunctional 

molecules or growth and differentiation factors are possible [34, 35]. In our laboratory, we 

focus on hydrogel systems made from short peptide building blocks, and the development 

of a peptide-based scaffold conducive for dental stem cell proliferation and differentiation 

was the objective for Specific Aim 1 of this research. 

4.2.1. Peptide-Based Hydrogels 

The ECM network, which is the physiological microenvironment of cells, is mainly composed 

of fibrillar proteins; their construction as a well-organized matrix is achieved though self-

assembly. In order to provide optimized matrices for tissue engineering approaches, novel 

materials are required to generate supramolecular structures which resemble natural ECM 

and display biological functions. Self-assembly is a process that is mediated by non-covalent 

weak chemical bonds, namely ionic bonds, hydrogen bonding, hydrophobic interactions or 

van der Waals interactions. In the past decade, many synthetic self-assembling peptides 

have been developed for tissue engineering approaches [36 - 41]. Typically, they are 8-16 

amino acids long and contain alternating hydrophilic and hydrophobic residues. Hydrophilic 

modules consist of alternatively repeating units of positively charged amino acids, such as 

lysine or arginine, and negatively charged aspartic or glutamic acid. The peptides form 

stable 6-sheets in water, but upon exposure to physiological salt concentration or pH they 
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self-assemble into nanofiber networks, which form self-supporting gels with a water 

content of more than 99%. Self-assembling peptides can be synthesized by solid phase 

chemistry, but are also commercially available, such as RAD16-I peptides (Puramatrix). A 

slightly different concept is used for peptide amphiphile (PA) molecules, where a peptide 

segment is coupled to a fatty acid chain. The process of self-assembly is driven by formation 

of a hydrophobic core composed of closely packed alkyl tails, fibrous strands can build 

because of hydrogen bond formation between the amino acids of adjacent PA molecules. 

Whereas the PAs remain amorphous aggregates at neutral pH due to the repulsive negative 

charge which prevents self-assembly, addition of polyvalent ions eliminates the negative 

net charge and allows self-assembly into cylindrical micelles, which undergo physical 

crosslinking to provide the gelled macrostructure. Self-assembly can be triggered by mixture 

of PA solutions with cell culture media or other physiological fluids that contain polyvalent 

metal ions. 

It has been shown that cells can move, proliferate and differentiate within the 

hydrogel [39, 40, 42, 43]. The compatibility of self-assembling peptides with cells may be 

related to the size of the fibers. Most biopolymers used for tissue engineering have fiber 

sizes ranging from 10 to 100 u.m, which is similar to the size of most mammalian cells. 

Essentially, cells grow in these polymers on a curved two-dimensional surface. In contrast, 

self-assembling peptides form nanofibers of 6-20 nm in diameter, which mimics the 

structure of extracellular matrix, allowing true three-dimensional cell culture. Cells can bind 

to self-assembling peptides with their adhesion molecules, but the size of the nanofibers 

does not inhibit interaction with other cells in all three dimensions [44]. 
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Another advantage of self-assembling peptides is the extreme flexibility with which 

they can be designed and modified, following a modular conception. The molecules can be 

functionalized by adding adhesion motifs, such as RGD, enzyme-cleavable sites, or heparin-

binding domains to tether growth factors, such as vascular endothelial growth factor (VEGF) 

or fibroblast growth factor 2 (FGF2). Optimization for specific cell types and targeting 

towards defined applications are possible. Immunohistochemical analysis after injection of 

self-assembling peptides in vivo did not show obvious inflammation or immune response 

[45 -47 ] . 

4.2.2. Multidomain Peptides 

Recently, a peptide architecture was developed in our laboratory that undergoes self-

assembly in water to form short nanofibers [48]. The peptide molecules are designed to 

display distinct regions of function or "domains" arranged in an ABA block motif, and they 

self-assemble into nanofibers which feature similarity to the make-up of natural ECM. The 

process of supramolecular assembly is driven by a core motif (B) of alternating hydrophilic 

(glutamine or serine) and hydrophobic (leucine) amino acid residues. In an aqueous 

environment, the side groups segregate to opposing sides of the backbone, and two peptide 

molecules form a sandwich upon hydrophobic packing between leucine residues. The fiber 

elongate as the dimers string together and hydrogen bonding occurs along the fiber axis. 

Charged amino acid residues in the flanking region (A) provide water solubility, but 

counteract fiber assembly via electrostatic repulsion and can thus be utilized to control fiber 

length [48]. However, addition of multivalent ions screens the charge and results in physical 
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crosslinking, fiber elongation, entrapment of water and gelation. 

With a fiber diameter of 6 nm, hydrogels created from MDPs mimic the nanoscale 

dimensions and structure of natural ECM, where cells can bind to the fibers via adhesion 

molecules, but still interact with other cells [44]. True three-dimensional cell growth within 

the nanofibrous gels makes these materials promising candidates as scaffolds for cell 

delivery. Incorporation of bioactive sequences in either the central block or the flanking 

regions of MDPs can further enhance cell-matrix interactions and promote desired cellular 

responses. 

In Specific Aim 1 of this project, multidomain peptide hydrogels were modified and 

optimized for compatibility with dental stem cells. 

Figure 4. Chemical 
structure of peptide 
K2(QL)6K2. The three 
key regions that 
control the peptides' 
self-assembly into a 
nanostructured fiber 
are shown. The 
peptides making up 
these nanofibers have 

three key regions that control their assembly: 1) a hydrophobic face, which is the energetic 
driving force for self-assembly in water; 2) a hydrophilic face, which provides water solubility 
and opposition to region 1, creating a facial amphiphile; and 3) charged peripheral groups 
that limit the extent of self-assembly via electrostatic repulsion and also aid in solubility. 
Regions 1 and 2 are formed from a pattern of alternating hydrophobic and hydrophilic 
amino acids such that when the peptide is in a fully extended conformation, the amino acid 
side chains alternate between one side of the peptide and the other. This arrangement 
results in one face of the peptide being hydrophobic (region 1) while the other is hydrophilic 
(region 2). 

Region 2 
A 

Y 

Region 3 Region 3 



Figure 5: Mechanism of nanofiber formation. The hydrophilic and hydrophobic amino acid 
residues assemble on either side of the peptide backbone to form a facial amphiphile. 
Hydrophobic packing occurs between leucine residues, and a hydrophobic sandwich forms 
(A). Model of nanofiber self-assembly, indicating the hydrophobic packing region, hydrogen 
bonding axis and repulsive positive charges (B). cryoTEM images of nanofibers before and 
after addition of phosphate, which eliminates the repulsive positive charges, resulting in 
increased fiber length and gelation (C). 
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4.3. Bioactive Molecules and Dental Stem Cell Differentiation 

Increased understanding of the biological processes mediating tissue repair has allowed 

some investigators to mimic or supplement tooth reparative responses. Dentin contains 

many proteins capable of stimulating these processes. Demineralization of the dental 

tissues can lead to the release of growth factors entrapped in the dentin matrix, following 

the application of cavity etching agents or restorative materials and even caries [49]. Once 

released, these growth factors may play key roles in signaling many of the events of 

reparative dentin formation [50, 51]. Growth factors, especially those of the transforming 

growth factor-beta (TGFB) family, are important in cellular signaling for differentiation and 

stimulation of dentin matrix secretion. These growth factors are secreted by dentin-forming 

cells during tooth development and deposited within the organic matrix preceding the 

mineralized tissue [52 - 54], where they remain protected in an active form through 

interaction with other components [55]. The addition of purified dentin protein fractions 

has stimulated an increase in dentin matrix secretion [56]. The TGFP superfamily of ligands 

furthermore includes another important group of growth factors in tooth development and 

regeneration, the bone morphogenetic proteins (BMP's). Recombinant human BMP-2 

stimulates differentiation of adult pulp stem cells into an odontoblast-like morphology in 

culture [57, 58]. Recombinant BMP-2, -4, and -7 induce formation of reparative dentin in 

vivo [57, 59]. Besides growth factors, other molecules have been shown to stimulate pulp 

cell differentiation. Dentin matrix protein-1, a non-collagenous protein involved in the 

mineralization process induced cytodifferentiation, collagen production and calcified 

deposits in dental pulp in a rat model [60]. Dexamethasone, a synthetic glucocorticoid, 
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reduced cell proliferation and induced expression of the differentiation markers alkaline 

phosphatase and dentin sialophosphoprotein in primary human pulp cells [61]. Addition of 

(3-glycerophosphate to the cell culture medium in explants from human teeth induced a 

change in cell morphology, collagen synthesis and mineral formation [62]. Whereas 

combinations of inorganic phosphate and dexamethasone are used as standard osteogenic 

supplements to drive differentiation of bone-forming osteoblasts, it has also been proven to 

induce dental stem cell differentiation followed by mineral deposition [26, 27]. This may be 

explained by the fact that osteogenesis and dentinogenesis are highly similar processes, and 

osteoblasts and odontoblasts are closely related cell lineages. However, they remain distinct 

cell types, as observed by their slightly different gene expression profile and the structural 

differences of their respective products, bone and dentin. Optimal conditions permissive for 

dental stem cell differentiation into odontoblasts rather than osteoblasts remain to be 

elucidated. 

The increasing knowledge about these biological processes enables us to develop 

materials which go beyond the basic requirements of biocompatibility. Whereas in the past, 

biomaterials were designed to be bioinert as not to damage the tissues around the 

implantation site, we are now striving to make scaffolding systems bioactive, where 

incorporation of growth factors or other drugs actively stimulate a desired response. For 

Specific Aim 2 of this project, we started customizing multidomain peptide hydrogels by 

incorporation of growth factors and bioactive molecules relevant for dental stem cell 

differentiation and tissue formation. 
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4.4. Engineering of Partial Tooth Structures 

Several groups have begun to develop strategies to engineer dental pulp. In 1996, a pulp­

like tissue was first engineered in vitro after seeding pulp fibroblasts on PGA scaffolds, 

where cells formed new tissue after 60 days in culture [63]. Using a similar approach, the 

ability of different scaffold materials to support pulp tissue formation from pulp fibroblasts 

was evaluated two years later. PGA, collagen hydrogels and alginate were tested. Culturing 

cells on PGA resulted in tissue formation and collagen synthesis, whereas only moderate 

cell proliferation was observed on collagen and no proliferation on alginate [64]. 

Recently, formation of pulpal tissue could be demonstrated in vivo. Dental stem cells 

were seeded on PLLA scaffolds and inserted into the pulp cavity of tooth slices after 

removal of the original tissue. These constructs were implanted subcutaneously into 

immunodeficient mice. It could be shown that dental stem cells differentiate into 

odontoblast-like cells, and that the resulting 

tissues contained newly formed blood 

vessels [65]. Mobilization and release of 

growth factors and proteins from the dentin 

A ' # 
.,-_.A•.•9JST *£"•'' due to locally decreased pH by degradation &:£':.• 

£^rf*fe>'-'*J^Y o f P L L A s c a f f o l d s m ' g n t promote the 

-/»*.. ".V\.'..V% O f * - * differentiation process [65]. 

Figure 6: Engineering of dental pulp tissue. (A) Schematic of the strategy for dental pulp 
engineering. (B) Biodegradable scaffold prepared within the root canal and seeded with 
dental stem cells, subsequent subcutaneous implantation. (C) Scaffold-dentin interface. (D) 
Low magnification (lOOx) of a dental pulp engineered with dental pulp stem cells 14 days 
after implantation. (E) High magnification (400x) of the boxed area. Adapted from [65]. 
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In a similar approach, dentin cylinders were prepared from human teeth for Specific 

Aim 3, and hydrogels laden with dental stem cells and growth factors were implanted into 

immunocompromised mice to evaluate the potential of this system to form a tissue similar 

to dental pulp. 
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1. SHED in Peptide Amphiphile Hydrogels 

A detailed description of this work can be found in Appendix B, which contains a copy of the 

manuscript which was published in Tissue Engineering in 2008. The following paragraph 

provides a brief overview, whereas a thorough description of the material's chemistry, the 

methods used and the results obtained can be found in the paper. 

2. Introduction 

To establish general parameters for the compatibility of dental stem cells with peptide-

based hydrogels, a set of experiments was performed on a modification of peptide 

amphiphile (PA) hydrogel developed in our laboratory [66]. The structure of the molecules 

used in this study can be divided into four regions of function: the peptide sequence 

contains an MMP-2 specific enzyme-cleavable site to enable cell-mediated degradation; a 

glutamic acid to assist in calcium binding for self-assembly; and the cell adhesion motif 

RGDS. The fourth region of functionality is added after peptide synthesis by N-acylation with 

palmitic acid, which provides the driving force for self-assembly. Whereas the PAs remain 

amorphous aggregates at neutral pH due to the repulsive negative charge which prevents 

self-assembly, addition of divalent ions eliminates the negative net charge and allows self-

assembly into cylindrical micelles, which undergo physical crosslinking via calcium-ions to 

provide the gelled macrostructure. 
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In order to investigate the potential of peptide amphiphile hydrogels to 

accommodate dental stem cells, SHED and DPSC were seeded in peptide amphiphiles and 

cultured either with or without osteogenic supplements (0-control, P-glycerophosphate + 

dexamethasone, KH2P04 + dexamethasone). Cell proliferation and alkaline phosphatase 

activity were monitored via MTT and quantitative DNA and ALP assays. Real-time PCR 

experiments were performed using RNA extracted from SHED and DPSC after a four-week 

culture period with different osteogenic supplements. Marker genes of osteoblast and 

odontoblast differentiation were chosen to assess the differentiation potential of both cell 

lines in peptide amphiphiles under different culture conditions. The panel of genes included 

collagen a I (I) (Col I), collagen III (Col III), alkaline phosphatase (ALP), bone sialoprotein 

(Bsp), osteocalcin (Oc), Runx2 and dentin sialophosphoprotein (Dspp), which have been 

used as markers of mineralization and odontoblast differentiation before [27, 28, 67 - 69]. 

Besides the markers for cell differentiation, we included MMP-2, which is the main 

gelatinase secreted by human pulp cells [70], to assess whether proteinase activity was in 

accordance with cell proliferation and matrix degradation. A list of primer sequences for 

real-time PCR can be found in Appendix C. For histologic analysis, we stained with 

hematoxilin & eosin (H&E), Masson's trichrome and von Kossa to detect mineral deposition. 

3. Results and Discussion 

PA hydrogels were easy to handle, and continuous cell proliferation of SHED and DPSC was 

observed over a 4-week culture period. However, SHED proliferated at a higher rate 

compared to DPSC. Addition of p-GP + dex resulted in slightly increased proliferation rates 



26 

in both cell lines, whereas potassium phosphate + dex showed the opposite effect. 

Quantitative measurements of alkaline phosphatase activity showed a dramatic increase in 

alkaline phosphatase activity in both cell lines over time, but whereas SHED responded to 

treatment with 0GP + dex with a considerable increase in enzyme activity, DPSC showed a 

different profile, where potassium phosphate + dex evoked higher ALP levels. 

Gene expression studies of markers for osteoblast and odontoblast differentiation 

revealed increased expression except for dentin-specific Dspp, which ceased to be 

expressed in DPSC treated with potassium phosphate + dex. 0GP + dex appears to have a 

positive effect mainly on expression of extracellular matrix components (Col I, Col III), 

especially in SHED. At the same time, MMP-2 levels were increased. On the other hand, 

potassium phosphate + dex stimulated increased expression of genes typically found in the 

osteoblast lineages, which are involved in matrix mineralization, such as osteocalcin, bone 

sialoprotein and Runx2. 

Histologic analysis revealed degradation of the PA gel and replacement with 

extracellular matrix. Whereas SHED formed clusters of cells, DPSC were more sparsely 

distributed within the gel, they showed a round, osteoblast-like morphology, and a higher 

tendency of mineral deposition. CryoTEM images showed no mineral in gels without cells 

and gels with cells cultured without osteogenic supplements (0-control). Mineral can be 

seen in treated groups, to a higher degree in DPSC versus SHED, and higher with potassium 

phosphate + dex versus 3GP + dex. 

This data set provides evidence that the two stem cell lines are able to proliferate 

within the gel, to remodel it by enzymatic degradation and deposition of a collagenous 
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matrix, to change their morphology and gene expression profile as a sign of differentiation, 

and to induce calcium deposition and the formation of a mineralized matrix. 

4. Drawbacks 

Whereas PA hydrogels provide a suitable matrix for proliferation and differentiation of 

dental stem cells, a few drawbacks remain: 

1) The relatively rapid gelation of PAs (2-3 sec) might prevent thorough mixing and 

homogenous cell distribution within the gel. In-situ gelation of this material is 

possible, but a gel undergoing shear-recovery might be advantageous for in vivo 

applications. 

2) Addition of a fatty acid is necessary to induce self-assembly of PAs, which reduces 

the possibilities to add biofunctional ligands to one end of the molecule. 

The development of a system of self-assembling multidomain peptides (MDP) in our 

laboratory led to transition to MDP hydrogels for further work on this tissue engineering 

project. MDPs offered the opportunity of working with a novel, innovative and highly 

versatile system. The above mentioned drawbacks of PAs are not present in MDPs, and an 

iteration process of varying a parent MDP peptide sequence led us to the development of a 

customized peptide-based hydrogel system specifically targeted to for dental stem cells in 

an approach to engineer the dentin-pulp complex. 
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CHAPTER III: SPECIFIC AIMS 

1. Overview 

There are two major causes for the loss of mineralized matrices with subsequent loss of soft 

connective tissue in teeth. During cavity formation, demineralization of enamel and dentin 

allows for penetration of bacterial toxins to the dental pulp, causing inflammation and 

eventually tissue necrosis, leaving a devital tooth. Traumatic impact and tooth fracture lead 

to bacterial contamination and cause a similar situation. After loss of hard or soft tooth 

tissues, conventional treatment methods rely on replacement with biologically compatible 

materials alone. Amalgam, gold or resin composites are used to fill defects of the tooth 

crown. After necrosis of the dental pulp, debridement and obturation of the root canal and 

pulp chamber are necessary. 

However, the latest developments in the area of tissue engineering make it feasible 

to strive for biology-based approaches and true regeneration. Only recently, stem cell 

niches have been accessed, tooth-derived postnatal stem cells have been isolated, and their 

differentiation potential has been studied in vitro as well as after transplantation into 

immunocompromised animals. In order to utilize these cells for tissue engineering purposes 

in vivo, we are in need of suitable delivery systems. Novel technologies in scaffold design 

and synthesis make it possible to develop customized matrices, which will specifically 

promote proliferation and differentiation of dental stem cells to form and replace tooth 

tissues. An interesting class of biomaterials is peptide - based hydrogels. Following a 

bottom-up approach, peptide molecules can be designed to self-assemble into nanofibrous 
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networks highly similar to natural ECM, and form hydrogels. The system is highly versatile 

since peptide molecules can be designed following a modular concept and therefore be 

modified and optimized for specific applications. Bioactive peptide sequences and small 

molecule drugs can be incorporated in the peptide matrix, and living cells can be entrapped 

and cultured in the hydrogel. An injectable system is particularly interesting for application 

into small defects in the oral cavity. 

The overarching goal of this project was to explore future treatment strategies to 

preserve or regenerate a functional dentin-pulp complex. A synthetic, peptide-based 

scaffold should be optimized and customized for the growth and differentiation of dental 

stem cells for further applications in regenerative dentistry. The scaffold should 1) create an 

environment permissive for cell adhesion, proliferation and migration; 2) allow for cell-

mediated matrix degradation and remodeling; 3) stimulate new blood vessel formation via 

incorporation of vascular endothelial growth factor (VEGF); and 4) induce cell differentiation 

and mineralization through incorporation of growth or differentiation factors. 

2. Hypothesis 

Combining dental stem cells with a specifically modified peptide hydrogel might provide us 

with an applicable system to form the soft connective tissue for the regeneration of dental 

pulp. Directional cues for the cells can lead to deposition of new dentin, and thus formation 

of a functional dentin-pulp complex. Since dental pulp-derived stem cells have been 

demonstrated to differentiate into odontoblasts and form dentin after transplantation in 

vivo [26, 27], it seems most feasible to utilize these cells for our approach. DPSC (dental 
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gulp stem cells) are derived from dental pulp of extracted wisdom teeth; they possess 

multiiineage differentiation and are capable of forming dentin-pulp-like complexes after 

transplantation [25, 26]. SHED (stem cells from human exfoliated deciduous teeth) are 

derived from deciduous teeth after exfoliation, they show higher proliferation rates 

compared to DPSC, and present a more heterogeneous and immature cell population [27]. 

An optimized and customized peptide-based hydrogel should accommodate the cells in a 

three-dimensional environment for cell delivery. Incorporation of an adhesion sequence 

and an enzyme-cleavable site can result in cell attachment, cell-mediated degradation and 

cell migration through the synthetic matrix. Bioactive molecules and differentiation factors 

can stimulate new blood vessel formation and promote cell differentiation and subsequent 

tissue formation. Through an iteration process and synthesis of different peptides, an 

optimal sequence will be identified. The resulting hydrogels can be characterized regarding 

gel formation and handling aspects as well as mechanical properties. In vitro cell culture of 

dental stem cells with different peptide hydrogels can be used to assess cytocompatibility, 

cell proliferation rates, adhesion, spreading and migration as well as cell differentiation. For 

evaluation of this system in vivo, dentin cylinders will be a suitable carrier for the cell-laden 

hydrogels. Contact with the dentin walls will provide orientational cues to the cells and 

closely mimic a physiological situation. Transplantation of these constructs into a host will 

allow us to evaluate the system's potential to induce tissue formation, ideally production of 

the soft connective tissue of dental pulp and deposition of a dentin matrix in a directional 

manner towards the existing dentin. 
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3. Specific Aim 1 

To design and synthesize a peptide library in an iteration process to find an optimized 

sequence to accommodate dental stem cells and promote cell proliferation. 

The first part of this research project describes a rational process of design and synthesis of 

peptide sequences based on a parent peptide. Starting point is a 14 amino acid peptide, 

which undergoes self-assembly at physiological pH after addition of multivalent ions to form 

a hydrogel. The material is easy to handle, but does not provide sufficient gel strength. A 

step-by-step variation of this parent peptide is described, in which changes of single amino 

acids lead to a mechanically stronger gel, which furthermore features shear recovery. 

Incorporation of an enzyme-cleavable site and the cell adhesion motif arginine-glycine-

aspartic acid (RGD) improve cytocompatibility, which can be seen from cell proliferation 

rates in different gels, cell morphology and spreading as well as cell migration in the 

hydrogels. At the same time, rheological and chemical characterization of the peptides 

provides information about gel strength and degradation characteristics. Specific Aim 1 is 

completed after identification of a peptide sequence which fulfills the requirements in 

terms of optimized rheological and gelation properties for cell encapsulation, is 

cytocompatible and biodegradable, and allows for cell proliferation and spreading 

comparable to commercially available hydrogel systems. 
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4. Specific Aim 2 

To assess the potential of this system for cell differentiation after application of growth 

and differentiation factors. In a second step, bioactive factors are incorporated into 

peptide hydrogels, which will aid in cell differentiation and tissue formation. 

Biologically active compounds can be added to the media in cell culture, and the first part of 

this section shows the effect of combinations of differentiation factors on dental stem cells 

in monolayer or three-dimensional culture in peptide hydrogels. Evaluation of cell 

proliferation rates, expression of differentiation markers and matrix formation and 

mineralization provide information about lineage commitment and tissue formation. 

However, an in vivo application requires these molecules to be an integral part of 

the delivery system. Two bioactive factors, dexamethasone and 3-glycerophosphate, were 

incorporated into peptide hydrogels. Whereas dexamethasone loses its bioactivity after 

covalent linkage to peptide molecules, P-glycerophosphate induces gelation and aids in 

mineral formation in three-dimensional cultures. Furthermore, the peptide sequences can 

be designed such that heparin, a negatively charged glycosaminoglycan, stabilizes the self-

assembled nanofibers. At the same time, heparin can be used for binding and slow release 

of growth factors. This mechanism was utilized to incorporate vascular endothelial growth 

factor (VEGF), a potent stimulator of new blood vessel formation. Slowed release of VEGF 

from heparin-containing hydrogels is demonstrated. 
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5. Specific Aim 3 

To test the potential of the generated system for engineering of the dentin-pulp-complex 

in an appropriate animal model. 

The optimized peptide-hydrogel system laden with VEGF and 3-glycerophosphate was used 

as a carrier system for either SHED or DPSC cells. The gels were injected into small 

standardized dentin cylinders prepared from the roots of human molars. These constructs 

were transplanted subcutaneously into immunocompromised mice. After 2 and 5 weeks, 

the implants were harvested and examined for tissue formation in the dentin cylinders. 

Histological analysis revealed the formation of vascularized soft connective tissues inside 

the dentin cylinders for both cell lines. Immunohistochemistry allowed for the localization 

of microvessels. The presence of VEGF stimulated formation of significantly higher numbers 

of blood vessels compared to controls. Better nutrition in VEGF-containing gels in turn 

allowed for much improved cell growth and tissue formation. DPSC furthermore formed 

small and dense collagen deposits, and islands of cells dispersed throughout the tissue 

express dentin sialoprotein, a dentin-specific marker. 

Combination of the dental stem cells in this customized hydrogel system promoted 

vasculogenesis and formation of a soft connective tissue with localized matrix deposits. 

These results indicate that we have an applicable system for the regeneration of dental pulp 

at hand; however, directional deposition of dentin remains to be resolved. 
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CHAPTER IV: SPECIFIC AIM 1 

To design and synthesize a library of peptide sequences in an iteration process to find an 

optimized sequence to accommodate dental stem cells and promote cell proliferation. 

1. Summary 

Control over fiber length, various mechanisms for physical crosslinking, resemblance to 

natural ECM, versatility, biocompatibility and biodegradability along with the possibility to 

incorporate additional bioactive motifs for a custom-made scaffold make hydrogels 

assembled from multidomain peptides (MDPs) promising candidates for cell encapsulation 

and further use in tissue engineering [48, 71]. However, our first generation peptide 

architecture, the parent E(QL)6E (for peptide molecules see Table 1, for amino acid 

nomenclature and properties see Appendix A), had to undergo an optimization process to 

develop a sequence with a set of desired properties, which could accommodate dental stem 

cells. Therefore, a library of peptide sequences was designed, synthesized, characterized 

and tested for compatibility with dental stem cells during an iteration process. Specifically, 

the peptide should 

1) incorporate the cell adhesion motif RGD, 

2) contain an enzyme-cleavable site to enable cell-mediated degradation and cell migration, 

3) offer sufficient viscoelastic properties (storage modulus > 100 Pa), and 

4) form a matrix conducive for dental stem cell viability and proliferation. 

Cell adhesion, the first step of cell-matrix interaction, can be mediated by a variety 

of short peptide sequences, which can be incorporated into bioscaffolds to mimic ligands on 
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molecules abundant in natural ECM. The most common sequence incorporated into tissue 

engineering scaffolds is the integrin-binding tripeptide RGD, which was first detected in 

fibronectin [72]. Presentation of RGD in combination with another site, PHSRN, in close 

proximity mimicking their distance in fibronectin results in a synergistic effect and enhances 

cell spreading [73]. Therefore, the first step of optimization was to modify the parent 

peptide with RGD or a combination of RGD and PHSRN in the flanking region. Proliferation 

rates of dental stem cells were higher in these modified peptides compared to the parent 

peptide, indicating that this was a step in the right direction. However, we did not observe 

an improvement after addition of PHSRN, and decided to continue our work by attaching 

RGD only. 

Although conducive for cell proliferation, the hydrogels formed from E(QL)6E were 

mechanically weak and therefore difficult to handle. Alternative sequences were designed, 

and exchange of glutamine (Q) with serine (S) in the central block turned out to improve the 

mechanical properties of the gels substantially. The resulting E2(SL)6E2 and its counterpart 

K2(SL)5K2 were then modified to carry RGD in their flanking regions. Cell proliferation assays 

confirmed that the presence of the adhesion motif resulted in increased cell numbers. 

Biodegradability was another important feature to be incorporated into our 

hydrogels. The organization of MDP molecules into 3-sheet aggregates with poor water 

solubility and a fiber assembly process reminiscent of amyloid raises concerns that the 

material cannot be degraded in vivo and might not be suitable as a tissue engineering 

scaffold. This is underscored by the devastating effects of amyloid aggregates in brain, 

causing Alzheimer's disease and dementia, or other organs such as heart, kidney and the 
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vascular system. By programming susceptibility to proteolytic degradation into these B-

sheet forming peptides, MDPs can be adapted to requirements for biological applications. 

Based on the peptide K2(SL)6K2, a hexapeptide containing the MMP-2 consensus cleavage 

motif LRG [74] was incorporated into the central block. To confirm that modification 

resulted in susceptibility to degradation, a weight loss study was conducted and loss of gel 

mass over time after incubation with the enzyme was monitored. Furthermore, 

disintegration of the peptide molecules and the nanofibrous network was confirmed by 

mass spectrometry and cryoTEM, respectively. 

The mechanical properties of the hydrogels from all the sequences designed and 

synthesized were analyzed by oscillatory stress sweep rheometry. Based on experience and 

handling aspects, e.g. for the gels to withstand a series of processing steps for histologic 

analysis, sufficient gel strength for our application was defined for gels with a storage 

modulus (G') of > 100 Pa. 

In order to test for compatibility with dental stem cells, proliferation rates were 

assessed in hydrogels prepared from the different peptide sequences in comparison to two 

commercially available hydrogel systems. Cell morphology and spreading were observed by 

confocal microscopy to visualize the effect of different matrix chemistries on cellular 

behavior. For hydrogels prepared from peptides with enzyme-cleavable site, a cell migration 

study was conducted, where cells were seeded on top of the hydrogels, and migration of 

cells into the matrix was observed. 

At this point, we considered the iteration process completed. The peptide 

K(SL)3RG(SL)3KGRGDS, which features both the cell adhesion motif and an enzyme-cleavable 
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site, provided the most suitable environment to accommodate dental stem cells, resulting 

in cell proliferation rates comparable to commercially available systems, and allowing for 

cell spreading and migration into the hydrogel matrix. 

2. Peptide Design 

The following table gives an overview of all sequences synthesized during the course of this 

Ph.D. The mechanism of crosslinking is indicated, and a brief summary of the material 

properties is provided. 

Peptide Sequence 

EQLQLQLQLQLQLE 
EQLQLQLQLQLQLE 

GEQLQLQLQLQLQLEG 

EESLSLSLSLSLSLEE 

KKSLSLSLSLSLSLKK 

EESLSLSLSLSLSLEEG 
KKSLSLSLSLSLSLKKG 

EESLSLS SLSLSLEE 

KKSLSLS SLSLSLKK 
KSLSLSL LS SLSLSLK 

KSLSLS SLSLSLK 

KSLSLS SLSLSLKG 

KSLSLSL 
LRGSLSLSLK 

MDP 

1 
1A 
1B 

2 

3 

2A 
3A 

2B 

3B 
3C 
3D 

3E 

3D-1 
3D-2 

Crosslinking 

Mg 2+, Ca2+ 

PBS, p-GP, Heparin 

Mg 2 \ Ca2+ 

PBS, P-GP, Heparin 

Mg 2+, Ca2+ 

PBS, P-GP, Heparin 

-

Properties ( /Con) 

Mechanically weak 

Insufficient cell 
compatibility 

Non degradable 

no gelation 

Expected cleavage 
fragments 

Table 1: Peptide Library. For single-letter amino acid code see Appendix A. 
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The original parent multidomain peptide E(QL)6E (MDP1) was modified to contain the cell 

adhesion motif G-RGD-S (MDP 1A) or a combination of both G-RGD-S and G-PHSRN (MDP 

IB), where glycine serves as a linker, and the C-terminal serine in the tripeptide increases 

specificity of this motif [75]. These peptides were designed and synthesized by He Dong in 

our laboratory. We intended to identify the best candidate for cell survival among 

sequences with and without cell adhesion motifs. Cell culture studies showed comparable 

results for PHSRN + RGD versus RGD alone; therefore we decided to continue with peptides 

carrying RGD only. Although the cell compatibility studies with this series of peptides were 

promising, the mechanical strength of the hydrogels was insufficient. Another student in 

our laboratory, Lorenzo Aulisa, modified the sequences in an attempt to improve the 

mechanical properties. The exchange of glutamine (Q) for serine (S) in the central block 

motif resulted in the two peptides E2(SL)6E2 and K2(SL)6K2. Whereas the negatively charged 

glutamic acid (E) in the flanking region allows for crosslinking with positively charged ions, 

such as Ca2+ or Mg2+; the antagonistic peptide with positively charged lysine (K) in the 

flanking region can utilize negatively charged ions, such as phosphate, to induce gelation. 

The increased number of amino acids in the flanking region provided improved water 

solubility. An additional advantage of this peptide architecture was the fact that the 

resulting hydrogels possess shear-thinning behavior and undergo quick shear-recovery. 

The peptide K2(SL)6K2 was modified further to create four different variants with 

MMP-2 specific cleavage motifs and either one or two lysine residues in the flanking region. 

In general, specificity of enzymatic cleavage by endopeptidases arises from the amino acid 

sequence. Occurrence of specific residues 5 positions N-terminal and 3 positions C-terminal 
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from the scissile bond (P5 - P3') has been demonstrated to affect recognition and increase 

the specificity of an enzyme for its substrate [74]. Two hexapeptides were designed, in 

which the consensus MMP-motif LRS (leucine-arginine-serine) C-terminally of the actual 

cleavage site was modified to LRG (leucine-arginine-glycine). Whereas glycine, similarly to 

serine, can be observed frequently in position P3' in MMP-2 susceptible substrates, this 

amino acid appeared more favorable as to maintain the pattern of alternating polar and 

nonpolar residues in the central block motif. The three amino acid residues N-terminally of 

the scissile bond were chosen based on cleavage site motifs described previously [74]. The 

sequences SLS-LRG (MDP 3B, 3D) and VLS-LRG (MDP 3C) were incorporated into the central 

block of K2(SL)6K2 (MDP 3), where addition of valine (V) 3 positions N-terminally of the 

scissile bond was expected to increase the specificity of the site. In order to compensate for 

the unfavorable influence of the hydrophobic residue in this position on self-assembly and 

gel formation, the peptide was elongated and this motif was flanked by an additional SL-

repeat on either side. Furthermore, a version of E2(SL)6E2 (MDP 2) with the cleavage motif 

SLS-LRG was synthesized (MDP 2B). 

After assessment of solubility, gelation properties and confirmation of enzymatic 

cleavage of these peptides, the sequence KSLSLSLRGSLSLSLK (MDP 3D) was chosen for 

further analysis. The expected fragments after enzymatic cleavage (3D-1, 3D-2) were 

synthesized to exclude that these could still assemble and form 3-sheet structures. For cell 

culture studies, this peptide was synthesized with the cell adhesion motif RGD, and 

compared to K2(SL)6K2 both with and without RGD. 
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3. Materials and Methods 

3.1. Peptide Synthesis 

All peptides, including the expected cleavage fragments were synthesized by solid phase 

chemistry on an Advanced Chemtech Apex 396 peptide synthesizer using a modified 

protocol specifically for MDPs as described previously [71]. After acylation of the N-termini 

and cleavage from the resin, the crude peptides were dissolved in de-ionized water at 5 

mg/mL and purified by dialysis in semipermeable membranes with a molecular weight cut­

off of 100-500 Da (Spectra/Por, Spectrum Laboratories Inc., Rancho Dominguez, CA). The 

water was changed every 12 hours for 5 days, the peptides were lyophilized and the 

resulting products were used for further analysis and cell culture experiments. The correct 

masses of all peptides were confirmed by matrix-assisted laser desorption/ionization time-

of-flight (MALDI-TOF) mass spectrometry. 

3.2. Gel Formation and Rheological Properties 

The lyophilized peptides were dissolved in de-ionized water containing 298 mM sucrose at 

20 mg/mL, and the pH was adjusted to 7.4. For E-series peptides, gelation was induced by 

addition of Mg2+ or Ca2+ ions (ratio of peptide molecules to ions of 1:4). For K-series 

peptides, phosphate buffered saline (1 x PBS, phosphate concentration of lOmM) was 

added, where lysine-containing peptides are cross-linked due to the presence of negatively 

charged phosphate ions. The final peptide concentration amounted to 10 mg/mL (1 % by 

weight). 
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To evaluate viscoelasticity and gelation behavior of MDP hydrogels, and in how far 

incorporation of bioactive motifs would affect these properties, oscillatory stress sweep 

analysis was performed 24 hours after induction of gelation on an AR-G2 rheometer (TA 

Instruments, NE). Fifty u l of gel were pipetted onto the center of the bottom plate, and the 

upper plate (parallel plate, 8 mm) was lowered to the default gap of 250 pirn. Storage 

moduli (C) and loss moduli (G") were measured as a function of oscillatory stress ranging 

from 0.01 to 1000 Pa at an angular frequency 0.5 rad/s and 10 points/decade. 

In order to evaluate shear recovery of the hydrogels, time sweep analysis was 

performed. This experiment contains three phases. During the first phase, a constant and 

low oscillatory stress is applied, followed by application of a very high load 5 min into the 

experiment. It finishes with a third phase, where the oscillatory stress goes back to the 

original level. The material undergoes shear recovery if its storage modulus returns to the 

original value within seconds. 

3.3. Cell Viability 

To assess the compatibility of the different peptide hydrogels with cell cultures, MTT assays 

for cell viability were conducted. For experiments with E(QL)6E, a previously developed 

immortalized cell line from human pulp-derived cells was utilized [76]. The cells were 

cultured in aMEM supplemented with 15% fetal bovine serum (FBS), 50 u.g/mL L-ascorbic 

acid 2-phosphate, 100 U/mL penicillin and 100 u.g/ml_ streptomycin, and incubated at 37°C 

with 5% C02. Subconfluent cells were detached using trypsin-EDTA (Invitrogen, Carlsbad, 

CA), and 1 x 105 cells were encapsulated per gel. Gelation was induced by adding Mg2+ to 
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the cell suspension. Gels containing cells were seeded in 96-well plates with a gel volume of 

100 u l , and 200 u± of medium were added on top of each gel 30 min later. Culture medium 

was changed every other day, and MTT assay for cell viability was performed on triplicate 

samples at different time points of the incubation period. Briefly, gels were incubated with 

200 u l of medium without serum containing 2 mg/mL of 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) (Sigma-Aldrich, St. Louis, MO) for 3 hours. The solution 

was removed, and gel and cells were lysed in 200 u± DMSO (Sigma-Aldrich, St. Louis, MO), 

the plates were shaken thoroughly on a shaker for 5 min. Absorbance was measured in a 

96-well plate reader at 570 nm against a blank reading prepared from gels without cells. 

3.4. Cell Proliferation 

Actual cell numbers in hydrogels were determined by fluorometric quantification of DNA 

content using CyQuant cell proliferation assay kit (Invitrogen, Molecular Probes, Carlsbad, 

CA). For these proliferation studies, SHED from exfoliated deciduous teeth were used. Cells 

were cultured under conditions as listed above. Subconfluent cells of passage 5 were 

detached using trypsin EDTA (Invitrogen, Carlsbad, CA) for encapsulation. Several E- and K-

series peptides were included in these proliferation studies, as well as two commercially 

available hydrogels for three-dimensional cell culture: collagen type I (Rat Tail Collagen, 

Invitrogen, Carlsbad, CA) and PuraMatrix™, a peptide-based hydrogel system (BD 

Biosciences, San Jose, CA). 

Hydrogels were prepared as follows: A peptide stock solution was made in de-

ionized water containing 298 mM sucrose at 2 % by weight (20mg/mL). This solution was 
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mixed with an equal volume of cell suspension with a final peptide concentration of 1 % by 

weight, a cell number of 1 x 105 and a volume of 100 u l per gel. For E-series peptides, the 

cells were suspended in de-ionized water with 298 mM sucrose to maintain the appropriate 

osmolarity for cell culture, and with Ca2+ to induce gelation. For K-series peptides, the cells 

were suspended in 1 x PBS. All hydrogels with serine in the central block motif show shear-

thinning behavior. Therefore, the total volume of hydrogel needed for a particular 

experiment was prepared and 100 u l of gel were pipetted into a well of a 96-well plate for 

each sample. For each assay to be performed and for each time point and culture condition, 

3 or 5 samples were seeded. After 30 min, 200 u.1 of media were added to each well, and 

subsequently changed every 48 hrs. After 3, 7, and 14 days, samples were diluted in 1 mL 

PBS and pipetted up and down to disrupt the hydrogel. After centrifugation (3 min at 1000 

rpm), the supernatant was removed and cell pellets were frozen down at -80°C for further 

analysis. After completion of sample collection, these were thawed, and assays and 

measurements were performed on all samples at the same time. The number of cells in all 

samples was determined by fluorometric quantification of DNA content using CyQuant cell 

proliferation assay kit (Invitrogen, Carlsbad, CA) and a FLUOstar Optima fluorescence plate 

reader (BMG Laboratories, Durham, NC). Actual cell numbers were calculated based on a 

standard curve created from suspensions of known cell densities. Several proliferation 

studies were performed, and data were collected from at least 10 samples resulting from 

two independent experiments. One way analysis of variance (ANOVA) followed by Tukey 

test was performed to determine differences in cell numbers between different hydrogel 

systems using Kaleidagraph 4.03 software. The significance level was set to a = 0.5. 



44 

3.5. Hydrogel Degradation and Weight Loss 

Gels were prepared from the three peptides containing an enzyme cleavable site: 

K2(SL)3RG(SL)3K2 (MDP 3B), K(SL)3VLSLRG(SL)3K (MDP 3C) and K(SL)3RG(SL)3K (MDP3D). Their 

viscoelastic properties were assessed by oscillatory stress sweep rheometry. Whereas MDP 

3B formed mechanically stable hydrogels around pH 9, its storage modulus at pH 7.4 was 

lowest among the 3 cleavage peptides (G' = 42.7 Pa). Since this value did not meet our 

requirement for sufficient gel strength, MDP 3B was excluded from further experiments. 

The degradation profile of the remaining MDP 3C and D was determined, and K2(SL)6K2 

(MDP 3) was used as a control. For each sample, 50 u l of gel were transferred to a 

centrifuge tube after weighing the empty tube. After 30 min of equilibration, 200 u l PBS 

was added on top of each gel, and samples were stored at 37°C for 2 hrs. The PBS solution 

was then removed, and the weight of each gel was determined on an analytical balance as 

the difference between the weight of the empty tube and the tube containing the gel. 

Samples were 200 u± of 1) collagenase IV (Sigma-Aldrich, St. Louis, MO) at 3mg/mL in PBS, 

or 2) PBS as a negative control. Samples were run in triplicates, solutions were changed and 

the sample weight was determined every 24 hrs for 14 days. 

3.6. MMP-2-Specific Cleavage 

To assess MMP-2 specific cleavage, gels of the cleavage-peptides MDP 3C and D and of MDP 

3 as a control were prepared at a concentration of 20 mg/mL, and then mixed with MMP-2 

(Sigma-Aldrich, St. Louis, MO) in PBS, with the final concentrations being 10 mg/mL peptide 
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and 100 ng MMP-2 in a total volume of 100 u l . Samples were incubated at 37°C for 48 hrs, 

and enzymatic cleavage was assessed by mass spectrometry. 

Disintegration of the nanofibrous network formed from MDP 3D was furthermore 

visualized by vitreous ice cryo-transmission electron microscopy (cryoTEM) at pH 7.4 and a 

peptide concentration of 1 % by weight. A small quantity of the sample solution (2-3 u±) 

was applied to a TEM copper grid with holey carbon film purchased from Quantifoil (400 

mesh Cu grid, 1.2 urn hole diameter), and blotted with filter paper using a Vitroblot type FP 

5350/60 under 100% relative humidity for two seconds to create a thin layer of sample on 

the surface of the grid. The grid was plunged into liquid ethane and quickly transferred to 

liquid nitrogen. Samples were analyzed using JEOL 2010 TEM at an accelerating voltage of 

200 kV under low-dose imaging conditions. cryoTEM analysis of the samples was done by 

Lorenzo Aulisa. 

3.7. Circular Dichroism Spectroscopy 

Secondary structures were analyzed by measuring ellipticity spectra from 250 to 190 nm on 

a CD spectrometer. The full length peptide MDP 3D as well as the fragments MDP 3D-1 and 

MDP 3D-2 were dissolved in de-ionized water at 1% by weight, sonicated for 30 sec, the pH 

was adjusted to 7.4 and the solutions were left overnight. The peptides were then diluted to 

0.25 % by weight with de-ionized water and pipetted into a cuvette with 1mm path length 

for acquiring spectra. A blank reference of water was subtracted from the raw data before 

molar ellipticity was calculated. The calculation was based on the equation [8] = 

(8*MW)/(c*10*l*n), where [9] = molar ellipticity at X in mdeg, MW = molecular weight of 
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the peptide, c = concentration of the peptide in g/L, I = path length in cm, and n = number 

of amino acids in the peptide. 

3.8. Cell Migration and Spreading 

To determine whether the presence of the enzyme-cleavable site would encourage cell 

migration into the hydrogels, SHED were incubated with membrane-permeant fluorescein 

diacetate (Cell Tracker Green CMFDA, Invitrogen, Carlsbad CA) for 30 minutes, then washed 

with PBS, detached and seeded on top of hydrogels MDP 3A and 3E at a density of 5 x 104. 

Samples were fixed in 2 % paraformaldehyde and embedded for cryosectioning after 1 and 

5 days in culture. Sections of 10 urn thickness were prepared on a cryostat microtome, 

mounted on slides and stored at -20°C. Before use, cells were permeabilized with 5 % triton 

X in PBS, and cell nuclei were stained with DAPI (4',6-diamidino-2-phenylindole). Cells and 

hydrogels were visualized using a Zeiss LSM 510 Meta confocal microscope with an attached 

PMT. 

4. Results and Discussion 

4.1. Cell Viability 

The cell viability studies for the first E-series peptides (MDP 1, 1A and IB) revealed an 

increase of metabolic activity over a culture period of 14 days. Viability was lowest in 

hydrogels without RGD. The presence of both RGD and PHSRN did not result in better cell 

viability compared to peptides with RGD alone, and PHSRN was excluded from further 

studies. 
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Figure 7: Cell viability in E-
series peptides. Whereas 
addition of the cell 
adhesion motif RGD 
increased viability, the 
combination of both RGD 
with its synergistic site 
PHSRN did not result in 
further improvement of cell 
compatibility. 

4.2. Rheological Properties 

Oscillatory stress sweep and time sweep experiments were conducted to evaluate the 

viscoelastic properties of the described hydrogels. Storage (C) and loss modulus (G") are 

obtained, where G' is a measure of the deformation energy stored in the sample, and the 

loss modulus (G") a measure of the energy which is lost during the process and dissipated as 

heat. Results from oscillatory stress sweep analysis for E- and K-series hydrogels are 

visualized in Figure 8; additionally, a summary of all measurements is provided in Appendix 

E. For a comparison, data obtained from commercially available collagen type I at a 

concentration of 3mg/mL was plotted. Whereas gels from E(QL)6E are mechanically weak, 

exchange of glutamine for serine increased gel strength considerably. Addition of the cell 

adhesion motif RGD and the MMP-2 cleavage site resulted in a decrease of mechanical 

strength, but it remains well above our defined threshold for G' of 100 Pa, and is 

comparable to the gel strength of collagen at commonly used concentration for 3D cell 

culture. 

Time [Days] 
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Collagen (3mg/mL) 

E(QL)6E 

I E2(SL)eE2 

^ • i K2(SL)6K2 

E2(SL)eE:GRGDS 

K2(SL)eK2GRGDS 

K(SL)3RG(SL)3K 

K(SL)iRG(SL)3KGRGDS • 
G' 

Besides increased gel strength, hydrogels 

prepared from peptides with serine in the 

central block revealed another useful 

characteristic. They were found to undergo 

shear-recovery and possess shear-thinning 

behavior, where the viscosity decreases with 
0 100 200 300 400 500 600 700 

M o d u l i [ P a ] increasing load. This was first detected by 
Figure 8: Viscoelastic properties of 

MDP hydrogels. Storage (G') and loss handling and pipetting the gels, and later 
moduli (G") for hydrogels prepared from 

different peptide sequences. confirmed by oscillatory time sweep analysis. 

Figure 9 depicts shear recovery for MDP 2A, 3A and 3E. After application of a high load, the 

gels almost immediately return to the storage moduli observed during the first phase. This 

behavior makes MDPs an excellent injectable material and ideal for application into small 

defects in the oral cavity. 

............ ...»!"::::::::::::::„ 

• K2(SL)6K2GRGDS 
• E2(SL)6E2GRGDS 

10 

Time 

Figure 9: Shear recovery of MDP 
hydrogels. A time sweep experiment 
shows shear-recovery properties of 
MDP 2A, 3A and 3E. After application of 
a high load 5 min into the experiment, 
the hydrogel returns to the original 
storage modulus (G'j within seconds. 
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4.3. Cell Proliferation 

Figure 10 summarizes proliferation data from several independent experiments. The graph 

shows cell numbers in two commercially available systems, collagen type I and 

PuraMatrix™, compared to different MDPs. 

For both the E- and K-series peptides, addition of RGD increased proliferation rates 

significantly (p < 0.05 at D7 and 14). Whereas E-series with and without RGD seemed to be 

more conducive for cell proliferation than K-series, addition of the enzyme-cleavable site to 

K-series peptides resulted in higher proliferation rates, which were comparable to both 

commercially available systems as well as E-series. The difference between 

K(SL)3RG(SL)3KGRGDS and either collagen I or PuraMatrix was statistically not significant. 

MDPs offer the possibility of modification and design of customized scaffolds, which does 

not exist for the commercially available systems. 

A summary of the statistical analysis of differences between the hydrogel systems at 

the different time points of the incubation period can be found in Appendix D. 
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Figure 10: Comparison of cell proliferation in different hydrogels. Cell numbers were 
determined after 3, 7 and 14 days in culture. Columns represent means, error bars depict 
standard deviations (n = 10). 

4.4. Hydrogel Degradation and MMP-2 - Specific Cleavage 

Figure 11 shows weight loss of the cleavage peptides K(SL)3VLSLRG(SL)3K (MDP 3C) and 

K(SL)3RG(SL)3K (MDP 3D) as well as from K2(SL)6K2 (MDP 3) when incubated with either 

collagenase IV or PBS (control). For all gels, incubation with PBS resulted in a weight loss of 

5 - 10% over a 2-week period, where a small amount of peptide was washed off due to 

daily changes of the supernatant. Incubation with collagenase IV resulted in complete 

digestion of both cleavage peptides after 14 days, whereas the control peptide hydrogels 

were reduced by only 25 % of their original weight. 
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120 -i 

Figure 11: Weight loss after enzymatic degradation. Hydrogels from MDP 3C and 3D with 
cleavage sites as well as from MDP 3 (control) were incubated with collagenase IV or PBS. 
The weight of each hydrogel was determined every day. Data points show averages of three 
samples (n = 3). Weight loss is depicted as a percentage where the weight at the beginning 
of the experiment was set to 100 %. Whereas MDP3 without a cleavage site is reduced by 25 
% of its original weight with collagenase IV, both cleavage peptides are degraded completely 
within 14 days. Control samples in PBS show little weight loss. 

To test specific degradation, MMP-2 was used for the following experiments. Upon 

mixture of a 2 % by weight hydrogel of MDP 3C, 3D or MDP 3 (control) with MMP-2 in PBS 

at a ratio of 1:1, the hydrogels reform, but cleavage peptides are degraded after 48 hrs of 

incubation at 37°C. After MALDI-TOF mass spectrometry, the control K2(SL)6K2 showed the 

expected peak before as well as after incubation with MMP-2. The results for both cleavage 

peptides were nearly identical. One peak according to the mass of the peptide molecule 

could be observed before incubation, but several fragments afterwards. The peak with the 

highest intensity was identified as the smaller fragment KSLSLS, a small peak represented 

the larger fragment, LRGSLSLSLK. Several additional peaks were present, part of which 
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corresponded to smaller peptide fragments present in the mix. This might be attributed to 

the fact that after cleavage into the two main fragments, the smaller peptide molecules are 

more susceptible to further degradation. Some of the peaks could not be identified as 

cleavage fragments, which might be due to the enzyme digesting itself. Figure 12 shows the 

data after mass spectrometry for MDP 3 and 3D. 
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Figure 12: Mass spectrometry before and after enzymatic degradation. The control peptide 
MDP 3 shows a single peak before and after digestion, the cleavage peptide is degraded and 
multiple fragments can be observed. The expected fragments after cleavage KSLSLS and 
LRGSLSLSLK are both present. Some of the fragments could be identified as cleavage 
products, whereas some of the peaks remained unidentified. 
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To characterize the profile of enzymatic digestion, two different procedures were 

chosen. Addition of collagenase IV on top of the hydrogels resulted in a degradation profile 

showing continuous mass loss, indicating surface erosion of the material. For bulk 

degradation, an initial plateau phase would be expected, followed by a rapid drop of the 

curve. In this case, the enzyme would diffuse into the gel and start breaking up peptide 

molecules internally, but the initial mass of the material would be maintained for some time 

after the start of exposure, until it collapses rapidly at a critical point of weakened internal 

architecture. Surface degradation is the preferred mechanism for biological applications, as 

it will allow migrating cells to locally degrade the matrix as they move along while overall 

mechanical integrity of the scaffold is maintained until sufficient amounts of ECM have been 

produced to replace the synthetic material. Mixture of hydrogels with MMP-2 resulted in 

more rapid disruption of the fibrous network, as can be expected due to the largely 

increased surface area for the enzyme to attack, and higher specificity of MMP-2. The 

preparation of collagenase IV contains a varying mixture of enzymes and digests a wider 

range of substrates. The first results after incubation with collagenase IV therefore show 

that the designed peptide with cleavage site is susceptible to enzymatic degradation. 

Digestion with MMP-2 confirms specificity of this enzyme towards the substrate we 

created. The fast degradation of the hydrogel with MMP-2 compared to collagenase IV 

might be explained by the difference in preparation (mixing the solutions rather than 

adding the enzyme on top), and the higher specificity of MMP-2 for the substrate. 

This series of experiments confirmed that specific digestion of MDPs occurs when 

required amino acid residues are present in certain positions relative to the scissile bond: a 
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hydrophobic amino acid at P I ' followed by a basic amino acid and a small residue. Although 

specificity of the region N-terminally of the cleavage site has been shown to arise from 

proline, valine or isoleucine preferred in P3 [74], we did not observe more efficient cleavage 

for MDP 3C. Due to the almost identical profile of degradation for MDP 3D and C from the 

weight loss experiment and from mass spectrometry, we concluded that the additional 

valine in the sequence did not increase the specificity or accelerate the degradation 

process. Therefore, MDP 3D, which is preferable due to its shorter sequence, better water 

solubility and higher storage modulus, was chosen for further analysis. 

Degradation of MDP 3D nanofibers was visualized by cryoTEM as depicted in Figure 

13. The dense fibrous network changed after 48 hrs of incubation with MMP-2 and 

transformed into amorphous aggregates, indicating cleavage and subsequent disintegration 

of the hydrogel. CryoTEM images were taken by Lorenzo Aulisa. 

Figure 13: CryoTEM before and after enzymatic degradation. Images were taken before 
and 48 hrs after incubation with MMP-2. MDP 3D forms a dense fibrous network, after 
cleavage the nanofibers disintegrate and amorphous aggregates remain. Macroscopically, 
the gel turns into liquid. 
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Both peptide sequences synthesized analog to the expected C- and N-terminal 

cleavage fragments did not form gels and remained as liquid solutions capable of flowing. 

To exclude that the fragments could still adopt 3-sheet conformation, circular dichroism 

spectroscopy was performed on both fragments MDP 3D-1 and 3D-2 and the full length 

MDP 3D. Profiling the secondary structures of these peptides by CD and examining the 

presence of 6-sheets can provide basic information on their assembling capability. The CD 

spectra of 3-sheets are characterized by a minimum at 216 nm and a maximum at 195 nm, 

while these of random coils show a maximum at 218 nm and a minimum at 198 nm [77]. 

The profiles for MDP 3D and its fragments can be seen in Figure 14. Whereas the full length 

peptide clearly showed 3-sheet conformation with the described maximum and minimum, 

both fragments displayed the profile of random coils. This data suggests that the truncated 

peptides after degradation of the starting material will no longer be able to assemble and 

form insoluble aggregates, which is a critical point for any in vivo applications. 
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Figure 14: Circular dichroism 
spectra. The full length MDP 3D 
(blue) adopts 6-sheet 
conformation, the shorter N-
terminal fragment (red) and the 
C-terminal fragment (green) 
remain as random coils. 

190 200 210 220 230 240 250 

Wavelength [nm] 



56 

4.5. Cell Spreading and Migration 

To assess cellular morphology in different hydrogel systems, green-fluorescent SHED were 

seeded into collagen, PuraMatrix™, and E-and K-series of MDPs. Figure 15 shows the cells in 

these different matrices. The natural collagen matrix proved highly conducive for cell 

spreading, resulting in a spindle-shaped morphology (15 A). Cells in peptide hydrogels 

without cell adhesion motif appeared round and balled up (15 B, C, E). When RGD was 

present, the cell bodies were more spread out (15 D, F). Presence of the cleavage site 

seemed to enhance spreading (15 G). However, presence of both the enzyme-cleavable site 

and the cell adhesion motif RGD resulted in a synergistic effect, with visibly different cell 

morphology and spread-out cell bodies (15 H). This is in accordance with previous work, 

which demonstrated that initial cell spreading is dependent on proteolytic susceptibility of 

the matrix [78]. 

Furthermore, we hypothesized that the possibility of cell-mediated degradation 

would enable migration and result in penetration of the cells into the hydrogels. Therefore, 

we seeded green-fluorescent SHED on top of MDP 3A and 3E (Figure 16). After 1 day in 

culture, the cells could be seen covering the top as a monolayer in both cases (16 A, C). 4 

days later, MDP 3A still looked similar (16 B), whereas cells on MDP 3E had started to 

migrate into the matrix (16 D), indicating that if the cells were able to degrade the matrix 

around them, cell movement was facilitated. 
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Figure 15: Confocal Microscopy of cells in different hydrogels. Images A - H show green-
fluorescent SHED cells encapsulated in Collagen I (A), PuraMatrix™ (B), E2(SL)6E2 (C), 
E2(SL)6E2GRGDS (D), K2(SL)6K2 (E), K2(SL)6K2GRGDS (F), K(SL)3RG(SL)3K (G) and 
K(SL)3RG(SL)3KGRGDS (H). 
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Figure 16: Cell migration into hydrogels. Green-fluorescent cells were seeded on top ofMDP 
3A without cleavage site (A, B) and MDP 3E where the cleavage motif is present (C, D). Both 
peptides carry the cell adhesion motif RGD. Images show cells after 1 day (A, C) and after 5 
days (B, D) in culture. Whereas cells remain as a monolayer on top of MDP 3A (B), they 
migrate and spread into MDP 3E (D) The red arrows indicate the top of the gel. 

In conclusion, incorporation of an MMP-2 specific cleavage motif in (3-sheet forming 

peptides resulted in enzyme-mediated digestion and collapse of the hydrogel due to 

disruption of the nanofibrous network. Although similar effects have been demonstrated 

for other hydrogel systems including gels prepared from modified PEG [79 - 81] or self-

assembling peptide amphiphiles [82], only one report has shown proteolytic susceptibility 

of P-sheet-forming peptides [83]. In this case, incorporation of the cleavage motif required 

elongation of the starting peptide of 16 amino acid residues to a length of 30 to ensure (3-

sheet formation and gelation. 

Furthermore, we demonstrate an immediate effect of the peptide design on cellular 

behavior, where incorporation of the cleavage site markedly enhanced cell viability, 
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spreading and migration. This specific interaction of cells with the synthetic matrix 

surrounding them is another step towards the development of ECM-mimics. The versatility 

of MDPs leaves a variety of possibilities for further modifications and the design of custom-

made scaffolds for regenerative medicine. 

5. Troubleshooting 

5.1. Cell Compatibility and Purification 

After resolving the problem of mechanically weak hydrogels by changing from QL to SL-

series peptides, an issue arose as the cell viability in the new gels was comparably low, 

which was confirmed by repeated measurements. Since E-series peptides are difficult to 

purify by HPLC due to the charge effect, which results in binding of the molecules to the 

column and a low yield, alternative purification methods were explored. A comparison using 

K-peptides revealed that purification by HPLC resolved the toxicity issues. In order to 

circumvent loss of material in E-peptides, we tried dialysis for purification. Whereas this 

method resulted in markedly increased cell viability, another advantage of this procedure 

was that after dissolving the purified peptide powder in water, the pH was already at 7.0, 

and further adjustment was usually not necessary. 

5.2. Gelation Conditions 

The protocol for gelation and cell encapsulation was changed after switching from QL- to SL-

series. For QL-series, the peptide stock solution as liquid, it was pipetted into the wells of a 
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96-well plate, and individually mixed with an equal volume of cell suspension containing the 

ions to induce gelation. Gels formed within 3-5 minutes. 

For SL-series, the peptide stock solution already forms a gel. Pipetting the peptide 

stock, mixing it with the cell suspension and keeping all volumes constant was therefore 

challenging. The procedure was changed such that instead of mixing gels individually in the 

96-well plates, the required volume of gel containing the cells was prepared in a centrifuge 

tube, and transferred to the wells in 100 uL aliquots. Switching to a 1000 uL - pipette 

instead of a 200uL - pipette made it easier to handle the gels due to the larger opening at 

the tip. 

5.3. Cell Proliferation Assays 

Whereas the CyQuant cell proliferation assay worked well with E-series peptides, problems 

occurred when it was used with the K-series, and the results were implausible. This might 

be due to interference of positive charges on these peptides with the DNA-binding dye used 

for this assay. A WST - Quick cell proliferation assay kit (BioVision, Mountain View, CA) was 

tried as an alternative, and a series of experiments was conducted with collagen gels, which 

worked well. However, in K-series hydrogels, the WST dye, which indicates cell metabolic 

activity was not properly released from the gels, and the absorbance readings were likely to 

be too low. Other procedures we tried included cell counts using a hemacytometer and 

trypan blue stain, or a coulter counter. However, the trypan blue stained the gels as well, 

and the cells and gel remnants formed lumps, which made it impossible to obtain accurate 

cell counts. Therefore, we returned to the MTT assay we had worked with initially. This 
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turned out to work with K-series peptides, as after the incubation period, the gels and cells 

lysed in dimethyl sulfoxide, an organic solvent which dissolves the peptides. Measurements 

were now possible. 
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CHAPTER V: SPECIFIC AIM 2 

To assess the potential of this system for cell differentiation after application of growth 

and differentiation factors. In a second step, bioactive molecules are incorporated into 

peptide hydrogels, which will aid in cell differentiation and tissue formation. 

1. Summary 

Dental stem cells have been shown to possess plasticity [25, 27], and osteogenic 

supplements in the cell culture media promote cell differentiation towards an odontoblast-

like phenotype [60 - 62]. In our earlier work on peptide amphiphiles, we demonstrated that 

both SHED and DPSC differentiate in the hydrogel matrix after addition of inorganic 

phosphate and dexamethasone. After 4 weeks in culture, the cells express osteoblast- and 

odontoblast- marker genes, increase their alkaline phosphatase activity, form collagen and 

initiate mineral formation. To confirm that multidomain peptides are equally conducive for 

dental stem cell proliferation and differentiation, a similar set of experiments was 

conducted where cells were grown in MDP 1A. The results were comparable to those from 

our pilot study, indicating that multidomain peptide hydrogels are a suitable scaffold for 

these cells. 

In a next step, we evaluated the effect of dexamethasone and 3-glycerophosphate 

alone and in combination in monolayer cell cultures to get a better idea of their role in 

promoting cell differentiation. Whereas both compounds decreased cell proliferation and 
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increased alkaline phosphatase activity, it remained questionable whether a synergistic 

effect existed for the combination of both. 

In order to customize our system for future in vivo applications, we attempted to 

incorporate these differentiation factors into the hydrogel matrix. Dexamethasone was 

covalently linked to the peptide molecule via a succinyl linker. However, when used in cell 

culture studies, no effect on cellular behavior could be observed. This might be due to the 

fact that dexamethasone, a small and hydrophobic molecule, does not act via cell 

membrane receptors, but induces intracellular changes after passing the plasma 

membrane. Covalent linkage of dexamethasone to the peptide might prevent the molecule 

from reaching its intracellular target. Alternative ways to incorporate dexamethasone into 

multidomain peptides are currently investigated in the Hartgerink laboratory. The 

incorporation of 3-glycerophosphate was successful, as the molecule can be used to induce 

gelation in positively charged multidomain peptides, resulting in comparable gel strength to 

previously used PBS. At the same time, ^-glycerophosphate can act as a bioactive factor. 

Another mechanism we explored for growth factor incorporation was via heparin-

binding. Heparin, a negatively charged glycosaminoglycan, is present in natural extracellular 

matrix, where it can bind growth factors, protect them from proteolytic degradation and 

prolong their activity. This effect can be mimicked by incorporating heparin into synthetic 

matrices. Heparin was utilized for gelation of K-series peptides and was successfully 

integrated into the gels, at the same time increasing gel strength. Heparin was exploited to 

bind vascular endothelial growth factor (VEGF), a potent differentiation factor for the 

induction of new blood vessel formation, which is a critical process for any tissue 
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engineering approach. Prolonged release of VEGF from heparin-containing gels compared 

to controls could be demonstrated. 

The work summarized in Specific Aim 1 led to the development of a peptide 

sequence which features the cell adhesion motif RGD and an MMP-2 specific enzyme-

cleavable site. As established in Specific Aim 2, this peptide is furthermore capable of 

binding 3-glycerophosphate and heparin. With these building blocks, we constructed a 

customized scaffold for dental stem cell delivery. In vitro cell culture with SHED and DPSC 

followed by histologic analysis demonstrated that the cells deposit collagen and mineral, 

both indicators for cellular differentiation. This work laid the basis for the in vivo 

experiments described in Specific Aim 3. 

2. Proliferation and Differentiation in Multidomain Peptides 

To confirm that multidomain peptides allow for cell proliferation and differentiation 

comparable to peptide amphiphiles, a similar set of experiments was performed to what 

had been done before [84]. SHED and DPSC cells were encapsulated in multidomain peptide 

hydrogels and cultured for four weeks after addition of osteogenic supplements of inorganic 

phosphate and dexamethasone. Samples were taken at different time points to determine 

cell numbers and alkaline phosphatase activity. After 28 days, RNA was extracted from the 

cells in gels, and quantitative real-time PCR was performed to analyze the expression profile 

of marker genes of matrix deposition and mineralization in treated and control cells. 
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3. Materials and Methods 

3.1. Cell Culture 

SHED and DPSC were cultured in aMEM supplemented with 10% fetal bovine serum, 50 

u.g/mL L-ascorbic acid 2-phosphate, 100 U/mL penicillin and 100 u.g/mL streptomycin, and 

incubated at 37°C with 5% C02. Subconfluent cells of passage 4 were detached using 

trypsin-EDTA (Invitrogen, Carlsbad, CA), resuspended in PBS, and cells were encapsulated in 

MDP 1A hydrogels at a density of 1 x 105 cells per gel as described in Chapter IV: 3.3. Both 

control and treated groups received aMEM with an increased serum concentration of 20% 

FBS, and the other supplements as listed above. For treated groups, 10 mM B-

glycerophosphate and 10 nM dexamethasone were added. Culture medium was changed 

every other day for a culture period of 4 weeks. Samples for cell proliferation assays and 

alkaline phosphatase activity were seeded in triplicates. For Real-time PCR analysis, 6 gels 

per group were pooled to get sufficient amounts of RNA. 

3.2. DNA Content and Alkaline Phosphatase Activity 

After 3, 7,14, 21 and 28 days, cells were harvested by diluting the peptide hydrogels in 1 mL 

PBS and mechanical disruption of the gels by pipetting up and down. Cell pellets were 

collected after centrifugation (5 min at 1000 rpm), and frozen at -80°C. As soon as the 

collection of all samples was completed, these were thawed, and assays and measurements 

were performed on all samples at the same time. DNA content was determined by 

fluorometric quantification using CyQuant cell proliferation assay kit (Invitrogen, Molecular 
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Probes, Carlsbad, CA) and a FLUOstar Optima fluorescence plate reader (BMG Laboratories, 

Durham, NC). Actual cell numbers were calculated based on a standard curve created from 

suspensions of known cell densities. 

Samples for the detection of alkaline phosphatase (ALP) activity were prepared as 

described for the DNA assay. Cell pellets were resuspended in 60 u l PBS. After addition of 

60 u l alkaline buffer and 100 u± alkaline substrate solution (SIGMA-Aldrich, St. Louis, MO), 

samples were incubated at 37°C for 60 min and the liberated p-nitrophenol was measured 

spectrophotometrically at 410 nm. Samples were compared to a dilution series of p-

nitrophenol standard (SIGMA-Aldrich, St. Louis, MO) and ALP activity was normalized to the 

corresponding cell numbers obtained from the proliferation assay. 

3.3. Quantitative Real-time PCR 

To assess the effect of osteogenic induction on the expression of genes involved in 

differentiation, matrix formation and mineralization, real-time PCR was performed on 

samples after 28 days of culture. RNA was extracted using RNA Stat 60 (Tel-Test Inc., 

Friendswood, TX) from 6 gels per group, which were pooled to get sufficient amounts. 

Reverse transcription was performed according to standard protocols for cDNA synthesis 

using an oligo-dT primer. One u.g of RNA was used for one reaction of reverse transcription, 

which provided cDNA for 10 real-time PCR reactions. Primer sets for marker genes of 

osteoblast and odontoblast differentiation were designed using primer 3 software [85] from 

mRNA sequences published in GenBank as follows: collagen a(l)l (Col I) (NM_000088), 
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alkaline phosphatase (ALP) (NM_000478), bone sialoprotein (Bsp) (NM_000582), 

osteocalcin (Oc) (X_53698), Runx2 (NM_004348), dentin sialophosphoprotein (Dspp) 

(NM_014208), and glyceraldehyde 3 phosphate dehydrogenase (GAPDH) (M_33197) as an 

internal control. Primer efficiency was determined prior to quantification by running a 

dilution series of cDNA from differentiated cells for each primer pair. Conditions for real­

time PCR were as follows: After a denaturation step at 95°C for 15 minutes, 60 cycles were 

run with 95°C (15 sec), 60°C (30 sec), 72°C (30 sec), with a final dissociation step to generate 

the dissociation profile of the PCR products. Reactions were run in triplicates (ABI Prism 

7900HT), gene expression was quantified using SYBR green (QuantiTect SYBR green PCR kit, 

Qiagen Inc., Valencia, CA) and normalized to GAPDH activity in respective samples. 

Calculations of fold-change in gene expression between controls and treated samples were 

performed according to the Pfaffl-method for relative quantification in real-time PCR [86]. 

4. Results and Discussion 

4.1. Cell Proliferation 

The results from the cell proliferation assays are depicted in Figure 17. Both cell lines show 

an increase in cell numbers over the four-week culture period, where proliferation rates in 

SHED are markedly higher than in DPSC. This is in accordance with our previous work on 

peptide amphiphiles [84], and with the literature, where SHED and DPSC proliferation rates 

were compared in monolayer cultures [27]. Proliferation is slightly reduced when 
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osteogenic supplements are added, which is to be expected due to the inverse relationship 

between cell proliferation and differentiation. 
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Figure 17: Cell proliferation for SHED and DPSC in E(QL)6EGRGDS. SHED proliferate faster. A 

slight decrease in proliferation can be observed for cells treated with osteogenic 

supplements. Columns and bars show means and standard deviations (n = 3). 

4.2. Cell Differentiation 

To evaluate indicators of cellular differentiation, we first determined alkaline phosphatase 

(ALP) activity in treated and control cells. In mineralizing tissues, the enzyme ALP cleaves 

extracellular pyrophosphate, an inhibitor of hydroxyapatite crystal formation, to inorganic 

phosphate, which is needed for matrix calcification [87]. ALP is commonly quantified as an 

early differentiation marker and indicator of lineage commitment towards a mineralizing 

cell type. Figure 18 shows ALP levels in treated cells and controls at different time points of 

a four-week culture period. ALP activity was elevated in treated cells, and markedly higher 
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in DPSC compared to SHED, which is in accordance with our observations in peptide 

amphiphiles, reflecting a higher potential for mineralization in DPSC [84]. 

bGP + dexamethasone SHED ALP Activity 

bid 
14 21 28 

Time [Days] Time [Days] 

Figure 18: Alkaline phosphatase (ALP) levels in SHED and DPSC. Cells were cultured in 
regular media (control in grey) or treated with 6-glycerophosphate (bGP) in combination 
with dexamethasone (blue) (n = 3). ALP activity is increased in treated groups for both cell 
lines, and highest in DPSC, indicating their tendency towards mineralization. 

For real-time PCR analysis, the following markers of matrix deposition and 

mineralization were chosen: collagen I (Col I), bone sialoprotein (Bsp), osteocalcin (Oc), 

Runx2, and dentin sialophosphoprotein (Dspp). These genes are commonly used as markers 

of mineralization [88, 89, 27]. Col I is the major component of extracellular matrix in dentin 

[90]. The acidic proteins Bsp and Dspp share common expression in bone and teeth and 

induce mineral nucleation [91]. Runx2, a transcription factor, is known as the master 

regulator of osteoblast differentiation, exhibiting similar roles in dental development and 
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odontoblast cytodifferentiation [92]. Oc is considered a marker of differentiated osteoblasts 

[93], but can also be detected in pulp-derived cells [88]. 

Expression of all the genes we examined was increased in cells treated with 3-

glycerophosphate and dexamethasone. The difference in gene expression in treated cells 

and controls are depicted in Figure 19. The change compared to control groups was not 

dramatic (for example, for DPSC the fold-increase of marker gene expression ranged from 

1.3 to 5.1), which might be due to the fact that growth factors in the serum, which was 

added at a fairly high concentration of 20% to support three-dimensional growth, might 

induce differentiation in control groups to some extent. Although the results have to be 

looked at with caution, they indicate that cellular differentiation in peptide hydrogels is 

possible, which confirms results from earlier experiments in peptide amphiphiles (see 

Appendix B). In order to evaluate the differentiation potential of SHED and DPSC 

thoroughly, experiments should be conducted under serum-free or low-serum conditions. 
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Figure 19: Gene Expression in SHED and DPSC. Fold increase of marker genes of osteoblast 
and odontoblast lineages. Results are normalized to GAPDH levels in each sample. An 
increase can be observed for all genes after treatment with 6-glycerophosphate (bGP) with 
dexamethasone. Control groups were set to 1, which is indicated by the dashed line. 
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In summary, we were confident that multidomain peptides were conducive for cells 

proliferation and differentiation, similar to peptide amphiphiles. These data were 

important, as they led us to continue working with this peptide architecture and start 

modifications to improve the properties of multidomain peptides. The first concern to be 

addressed was the problem of mechanically instable hydrogels. Although cells were seeded 

for fixation and processing for histologic analysis for this set of experiments, the gels did not 

withstand the manipulation for processing and embedding, and this attempt remained 

unsuccessful. 

4.3. Studies with Oexamethasone and (^-glycerophosphate 

To evaluate the effect of dexamethasone and ^-glycerophosphate alone and in combination 

on cell cultures, a simple experiment was performed in which SHED proliferation and ALP 

activity were determined at different time points of a 2-week culture period. 

SHED were grown in monolayer cultures and treated with these supplements. Cells 

of passage 4 were seeded at a density of 2500 cells/well into 96 well-plates and cultured in 

aMEM with 5% FBS and antibiotics as described before. The reduced serum concentration 

should minimize the effect of growth factors contained in the serum. All samples were 

seeded in triplicates. After 3, 7, 10 and 14 days, a Quick cell proliferation assay (BioVision, 

Mountain View, CA) was performed to determine cell numbers. Alkaline phosphatase 

activity was quantified as described in 3.2. Figure 20 summarizes the results. All 

supplements slightly decreased cell proliferation rates and increased alkaline phosphatase 
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levels. However, based on our results it was not possible to identify a candidate supplement 

or combination with the highest potential to effect cell differentiation. Therefore, our goal 

was to incorporate both compounds into multidomain peptides. 

SHED Proliferation 
bGP 
dexamethasone + bGP 

«n 

-^ 25 

g 20 

O 
1 

I 

0-control 

bGP 
dexamethasone • bGP 

jfci Jfll 
Time [Days] Time [Days] 

Figure 20: Proliferation and ALP activity in monolayer SHED cells. Treatment with 
osteogenic supplements slightly decreased cell proliferation, whereas alkaline phosphatase 
levels were increased. 

4.4. Incorporation of Dexamethasone into Multidomain Peptides 

Dexamethasone, a synthetic glucocorticoid, has been used to induce osteogenic 

differentiation in osteoblasts [93 - 96], and it is known to stimulate differentiation of 

odontoblast-like cells in dental pulp cultures [61]. The experiments described in the 

previous sections demonstrate that dental pulp stem cells treated with dexamethasone and 

inorganic phosphate decrease their proliferation rates and increase alkaline phosphatase 

activity and expression of genes associated with matrix deposition and mineralization. 

Furthermore, dexamethasone not only promotes cellular differentiation, but exerts an anti-
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inflammatory effect. In dentistry, it is commonly administered to counteract inflammation 

and swelling after dental surgery. This could be useful for in vivo applications of peptide 

hydrogels, where inflammation will be present at the site of injury due to tissue damage 

either by traumatic impact or caused by bacterial toxins. 

Our goal was to incorporate dexamethasone into our 

multidomain peptides by covalently linking the molecule 

to the peptide chain. The entire work on dexamethasone 

coupling to the peptide K2(QL)6K2, purification and 

Figure 21: Chemical structure confirmation of covalent linkage was done by Erica Bakota 

of dexamethasone. 

in our laboratory. Dexamethasone was reacted with 

succinic anhydride to produce a 4-carbon linker molecule. The carboxylic acid group at the 

end of the linker allowed her to couple this molecule to the N-terminus of the peptide using 

standard peptide coupling chemistry, resulting in amide bond formation between the 

peptide and the succinate linker. The coupling of dexamethasone to succinic anhydride was 

monitored by thin layer chromatography (TLC), and the product was purified using silica 

chromatography. The final product was purified by high-performance liquid 

chromatography (HPLC), and the expected mass was determined by mass spectrometry to 

confirm successful coupling. 

Since dexamethasone is hydrophobic, it could be expected that attachment of this 

molecule to the peptide chain will affect the gelation properties dramatically. Indeed this 

was the case; K2(QL)6K2, which forms stable hydrogels at basic pH, does not form a gel when 

dexamethasone is covalently linked to the peptide. However, the concentration at which 
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dexamethasone is used as an osteogenic supplement is 10 nM. Two peptides of the same 

sequence with and without dexamethasone can thus be mixed to form a gel. In the case of 

K2(QL)6K2 with dexamethasone attached, the molecular weight of the molecule is 2410.75 

Da. Only 24.11 ng/mL are needed to prepare a 10 nM solution, as compared to 10 mg/mL 

peptide stock concentration (1 % by weight or 5 mM) without dex. This small amount is not 

expected to interfere with gelation or mechanical stability. 

However, the effect of dexamethasone on cellular behavior when bound to a 

peptide molecule was first evaluated in a monolayer experiment with analogous set-up as 

described in section 3, where dexamethasone was covalently linked to K2(QL)6K2. Peptide 

stock solution was added to cell culture media to obtain dexamethasone concentrations of 

10 nM, 100 nM and 1000 nM. Media containing supplements were changed every other 

day. The results are summarized in Figure 22. We could neither detect an influence on cell 

proliferation nor alkaline phosphatase activity after addition of peptide-bound 

dexamethasone. This might be explained by the fact that this compound, due to its small 

size and hydrophobicity, is able to pass the cell's lipid bilayer membrane and directly 

activate intracellular targets rather than acting via membrane-bound receptors. Covalent 

linkage of dexamethasone to the peptide might prevent the molecule from reaching its 

intracellular target. Whereas my work on dexamethasone was put on halt at this point, 

alternative ways to incorporate this compound into multidomain peptides are currently 

investigated in the Hartgerink laboratory. 
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Figure 22: Treatment with peptide-bound dexamethasone. Proliferation rates and alkaline 
phosphatase activity after treatment with peptide-bound dexamethasone seemed 
unaffected and similar to controls. 

4.5. Incorporation of ^-glycerophosphate into Multidomain Peptides 

Inorganic phosphate is commonly used as an osteogenic supplement. In mineralizing 

tissues, P04
3" is needed to build the crystal lattice in combination with calcium- and 

hydroxyl-ions to form hydroxyapatite, the predominant mineral in bone and teeth. The fact 

that gelation of multidomain peptides carrying positively charged lysine residues can be 

induced by addition of phosphate led to the idea that PBS could be exchanged with a 

solution of B-glycerophosphate. Therefore, mechanical strength of MDP 3 was tested after 

gelation with either PBS or 3-glycerophosphate. l x PBS has a phosphate concentration of 

lOmM, which in our system is reduced to 5mM as peptide stock solution is mixed with the 

cell suspension in PBS. In order to maintain osmolarity, B-glycerophosphate was dissolved in 

de-ionized water with sucrose and brought to a concentration of 10 mM. After mixture with 

the peptide stock solution, the final concentrations were as follows: 
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- Gel with PBS: 1 % by weight of peptide, 0.5 x PBS (5 mM phosphate), 149 mM sucrose 

- Gel with B-GP: 1 % by weight of peptide, 5 mM B-glycerophosphate, 298 mM sucrose. 

Stress sweep analysis was performed to compare differently prepared gels (Figure 23). Both 

PBS and 3-glycerophosphate were equally suitable to produce mechanically stable gels. 
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Figure 23: Mechanical strength of 
K2(SL)6K2 prepared with different 
solutions. When the peptide is 
prepared in water alone, the gel 
strength is lowest (black). Dissolving 
the peptide in water with sucrose 
increases gel strength (brown). 
Addition of PBS results in a further 
increase of mechanical stability 
(green). A similar effect can be 
observed with 6-glycerophosphate 
(red). If PBS and BGP are combined, 
get strength decreases slightly, 

1000 indicating that the optimum 
phosphate concentration is 
exceeded (blue). 

4.6. Incorporation of Heparin into Multidomain Peptides 

In order to provide proper nutrition for cells seeded in the scaffold and delivered to the site 

of injury, it is absolutely essential to provide sufficient blood supply. It has been shown that 

growth factors, such as vascular endothelial growth factor (VEGF) or fibroblast growth 

factor -2 (FGF2), can boost signaling for new blood vessel formation and induce sprouting of 

new capillary networks from existing microvessels [97 - 99]. A common strategy of 
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incorporation uses the ability of the glycosaminoglycan heparin to bind growth factors. 

Heparin is a biopolymer of variably sulfated repeating disaccharide units of iduronic acid 

and glucosamine, which is present in natural ECM. It has the highest negative charge 

density of any know biological molecule. Heparin has been found to not only bind growth 

factors, but to protect them from enzymatic degradation and prolong their bioactivity [100]. 

Slow and continuous release of growth factors bound to synthetic systems via heparin has 

been demonstrated over a time period of 10 days to up to 42 days [101, 102]. Thus we 

hypothesized that inclusion of small amounts of heparin would regulate growth factor 

release. 

Heparin can be bound to the hydrogels via specific peptide sequences. Consensus 

heparin-binding domains follow the pattern XBBBXXBX or XBBXBX, where X is a hydrophobic 

amino acid and B a basic amino acid [103]. Heparin-binding sequences have been utilized in 

peptide amphiphile systems [101, 104] or other hydrogels such as hyaluronan [102]. 

Stimulation of extensive new blood vessel formation after binding and slow release of 

angiogenic growth factors from peptide hydrogels via heparin-binding has been 

demonstrated recently in a rat corneal assay [101]. Since growth factor binding to these 

heparin-binding domains seemed most likely to be due to a charge effect, we hypothesized 

that it would be possible to incorporate heparin into K-series multidomain peptides without 

specific heparin-binding domains. 

A series of experiments with heparin (heparin sodium salt from porcine intestinal 

mucosa, SIGMA-Aldrich, St. Louis, MO) was performed. In order to identify optimum 

concentrations of both heparin and peptide, heparin concentrations between 1 and 10 
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mg/mL in water with 298 mM sucrose or in PBS were tested with peptide stock solutions 

with concentrations from 1 % to 3 % by weight. After preparation of the peptide stock, the 

heparin-containing solution was added and gently mixed with the peptide. Gels were left to 

equilibrate for 30 min, and proper gelation was evaluated. At too high heparin 

concentrations, a precipitate would form, which was evident after centrifugation of samples 

for 1 min at 14,000 rpm. An increase of peptide concentration would allow for the 

incorporation of higher concentrations of heparin. Oscillatory stress sweep analysis was 

performed after proper gelation to evaluate the mechanical properties. We were able to 

form stable hydrogels from K2(SL)6K2, K2(SL)3RG(SL)3K2 and K(SL)3RG(SL)3KGRGDS with 

heparin. The hydrogel chosen for further analysis was K(SL)3RG(SL)3KGRGDS with heparin in 

PBS at final concentrations of peptide at 1% by weight and heparin at 1 mg/mL Heparin 

contributed to hydrogel stabilization, and the storage modulus in the resulting hydrogel was 

determined at 505 Pa. 

In a next step, we wanted to assess binding and release of VEGF from heparin-

containing hydrogels. Recombinant human vascular endothelial growth factor (VEGF) 

(SIGMA-Aldrich, St. Louis, MO), was incubated with the heparin solution for 30 min at room 

temperature prior to mixing it with the peptide stock. Hydrogels were seeded into 96-well 

plates at a volume of 100 uL per well, with final concentrations of 1 mg/mL of heparin and 

10 ng of VEGF per gel. After 30 min of equilibration, 200 u± PBS containing 1% BSA were 

added on top of each gel. Control gels were prepared with VEGF in PBS without heparin. 

Gels for both groups were seeded in triplicates for growth factor release to be measured 

over 14 days of incubation at 37°C. For sample collection, the supernatant from each gel 
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was removed and stored at -80°C, and new supernatant was added. After 14 days, VEGF 

content was measured in all samples using a VEGF ELISA kit (Quantikine Human VEGF 

Immunoassay, R&D Systems, Minneapolis, MN). VEGF concentrations were calculated 

based on standard samples, and the percentage of daily VEGF release was calculated and 

plotted in Figure 24. 
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release is observed for gels prepared with PBS. 

Figure 24: VEGF 
release profile. Release 
of VEGF from MDP 3E 
with heparin (blue) and 
control gels with PBS 
(black). Data points 
and error bars show 
mean values and 
standard deviations (n 
= 3). Heparin retains 
VEGF in the gel with a 
slowed release, where 
50% of VEGF are still 

14 bound after 1 week. In 
contrast, a burst 

Slowed release of VEGF from heparin-containing gels could be observed, where 50% of 

VEGF are still bound after 1 week, whereas VEGF in control gels is depleted by 90%. 

In heparin-containing hydrogels, PBS is interchangeable with p-glycerophosphate in 

water containing 298mM sucrose, resulting in an equally stable gel. These promising results 

allowed us to incorporate two bioactive factors, VEGF to induce angiogenesis and 0-

glycerophosphate to promote mineralization, into a hydrogel permissive for cell adhesion 

and cell-mediated degradation. An in vitro compatibility check with dental stem cells was 
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the last step that had to be performed before applying these customized hydrogels in an in 

vivo setting. 

4.7. In Vitro Study with Dental Stem Cells 

To assess the behavior of dental stem cells in the established system, both SHED and DPSC 

were seeded into hydrogels of K(SL)3RG(SL)3KGRGDS containing 3-glycerophosphate and 

VEGF. Whereas VEGF was not expected to promote dental stem cell differentiation, we 

wanted to test the system exactly the way we planned to use it for the in vivo studies. In 

this case, 5 x 105 of either SHED or DPSC were seeded into 100 u l hydrogels, and medium 

was added on top and changed every other day. After 4 weeks, gels were fixed in 4% PFA 

for 2 hours, dehydrated through ethanol series and embedded in paraffin. Sections were 

prepared at 5 u.m thickness, and mounted to glass slides. Cells and gels were stained with 

H&E, Masson's trichrome (Trichrome Stain (Masson) Kit, Sigma-Aldrich, St. Louis, MO) and 

von Kossa stain to gain information about cellular morphology and distribution, collagen 

deposition and mineral formation. 

Figure 25 displays the results. Both SHED and DPSC were evenly distributed 

throughout the matrix. Whereas SHED showed a more spindle-shaped morphology, DPSC 

appeared mostly round. Collagen deposits could be observed for both cell lines. Von Kossa 

stain revealed that the cells started to form mineral around their cell bodies. 
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Our histologic analysis provides evidence that the cells not only survive in this 

customized synthetic matrix, but that a differentiation process is stimulated, which results 

in collagen deposition and mineral formation. 
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Figure 25: Histologic analysis of SHED and DPSC in a customized multidomain 
hydrogel. The left column shows DPSC (A, C, E), the right column SHED (B, D, F) in MDP 3D. 
DPSC appear round, SHED more fibroblast-like and spindle-shaped (A: H&E, B: Masson's 
Trichrome). Both cell lines deposit clusters of collagen throughout the matrix visible as blue 
deposits around the cell bodies after Masson's Trichrome stain (C, D). The remaining 
hydrogel matrix takes on a light blue color. Mineral formation can be seen as dark brown 
stain after von Kossa (E, F). 
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Looking back at the data acquired in Specific Aim 1 and 2, we certainly had 

numerous ideas for further optimization and customization of this system. The effect of 

RGD ligand densities on dental stem cells could be assessed, and alternative cleavage motifs 

might be tested. The influence of the mechanical properties of the hydrogels on dental 

stem cell migration and differentiation could be evaluated. It has been demonstrated for 

osteoblasts that stiffness of the matrix alone can affect cellular differentiation [105, 106]. 

Effects on dental stem cells could be similar, given the close relatedness of the osteoblast 

and odontoblast lineages. 

Series of tests to evaluate the optimal concentrations of heparin and VEGF for 

prolonged release would be a next step. Additional growth factors could be included, such 

as basic fibroblast growth factor (FGF-2) or transforming growth factor beta (TGF-(3), which 

have been shown to increase proliferation rates of dental stem cells and promote cell 

differentiation into an odontoblast-like phenotype [107]. Both growth factors can be bound 

via heparin [102]. Another interesting field of exploration would be incorporation of peptide 

sequences which can promote crystal nucleation and mineral formation. Several of these 

sequences have been described in the literature [107 - 109] 

However, with promising results on our hands, we decided to stop the optimization 

process for this project, and apply this scaffold combined with the two dental stem lines in 

our animal studies described in Specific Aim 3. 
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5. Troubleshooting 

5.1. Cell seeding 

For cell proliferation and differentiation assays, cells were cultured in 96-well plates. For 

histology, though, the gels had to be removed from the wells without deformation or 

damage, which turned out to be difficult. Therefore, a new seeding procedure was 

established. The top 3 mm of a 0.5 mL PCR reaction tube were cut to form a small ring of 5 

mm in diameter. These rings were autoclaved, and placed into 6-well plates. The cells and 

gels were then directly seeded into the rings, and these could be removed easily to leave an 

undamaged gel, which was then fixed and processed for histology and only removed from 

the well before transferring the gels to xylene, the last step before paraffin-embedding. This 

procedure worked well, and at the same time, we could make sure that even with high cell 

densities within the gels, nutrients from the cell culture media were available in sufficient 

amounts. Whereas only 200 u l of medium fit on top of a gel in a 96-well plate, the large 6-

well plates allow for much larger volumes of culture medium. 

5.2. Processing for Histology 

For the first experiments with K-series hydrogels, dehydration and paraffin-embedding did 

not work well, and the gels shrank as soon as they were immersed in xylene. Prolonged 

time periods in ethanol series resolved this problem, which was most likely due to 

insufficient dehydration. Whereas 30 min for each dehydration step (50, 70, 80, 90, 95 and 

100 % ethanol) were sufficient for peptide amphiphile gels, K-series peptides were left for 1 



85 

hour at each concentration, and the last step in 100 % ethanol was repeated. These changes 

made it possible to process and embed these gels and obtain satisfactory results from 

histologic analysis. 

5.3. Heparin Binding 

The induction of gelation using negatively charged heparin proved difficult first, where 

precipitates would form unless the concentration of heparin was low and/or the 

concentration of peptide was high. These first experiments were performed with heparin 

dissolved in water. The idea was that negatively charged heparin molecules could replace 

phosphate ions and induce gelation due to a charge effect. Peptides with two lysines in the 

flanking region (K2(SL)6K2, K2(SL)3RG(SL)3K2) were able to form gels with heparin at a 

concentration of 2-5 mg/mL, but the peptide concentration had to be increased to 2 % by 

weight. With only 1 lysine present (K(SL)3RG(SL)3K), the peptide concentration had to be 

increased even further to 3 % by weight, which posed a problem, since peptides are time-

consuming and expensive to synthesize. For peptides with RGD attached (K2(SL)6K2GRGDS, 

K(SL)3RG(SL)3KGRGDS), gels did not form even at high peptide concentrations. 

However, dissolving heparin in PBS solved this problem, and stable gels could be 

produced for all peptides. In this case, addition of heparin increased gel strength. PBS is 

interchangeable with a solution of B-glycerophosphate at the same concentration. 
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5.4. VEGF Release Study 

An ELISA kit was used to determine the amounts of VEGF released from gels with and 

without heparin. However, these kits are highly sensitive and detect picogram-quantities. 

For the first experiments, the amount of VEGF in the samples was too high, and the 

absorbance readings above the linear range. Test runs were performed to determine 

amounts of VEGF compatible with this ELISA kit. Incorporation of 10 ng of VEGF per gel and 

a 1:2 dilution of the samples resulted in reasonable absorbance readings. 
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CHAPTER VI: SPECIFIC AIM 3 

To test the potential of the generated system for engineering of the dentin-pulp-complex 

in an appropriate animal model. 

1. Summary 

The customized peptide hydrogel system generated in the previous Specific Aims now 

features 1) Sufficient gel strength (storage modulus of approximately 500 Pa), 

2) Shear-thinning behavior, which allows for application with a syringe into small spaces, 

3) The cell adhesion motif RGD, 

4) An MMP-2 specific enzyme-cleavable site, 

5) 3-glycerophosphate as a source of inorganic phosphate for mineralization, and 

6) Vascular endothelial growth factor (VEGF) bound to the hydrogel via heparin. 

Extensive characterization and testing of the hydrogel with dental stem cells in vitro 

yielded promising results. However, to get a realistic idea of the cells' behavior in this 

system, evaluation in an appropriate animal model was necessary. As a first step, we 

needed a carrier to deliver the cell-laden hydrogels. To mimic the clinical situation, we 

chose to use standardized dentin cylinders. This environment closely resembles the site 

which the cell-laden hydrogels should be delivered to as part of a novel treatment strategy 

for the regeneration of the dentin-pulp-complex. These dentin cylinders were prepared 

from human molars, and the root canal was enlarged to make space to inject the hydrogels. 

Since our system contains bioactive factors, an ectopic implantation site was desirable, 
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where nutrients to the cells would be provided without induction of differentiation by the 

host tissue. Therefore, the cylinders were implanted subcutaneously in the back of 

immunodeficient mice. Both cell lines in hydrogels with and without bioactive factors 

should be tested, with cell-free cylinders as controls, resulting in a total of six groups. The 

progress of tissue formation was evaluated by harvesting implants after 2 and 5 weeks. Six 

implants were placed per group and time point. After implant retrieval, the cylinders were 

fixed, demineralized and prepared for histologic analysis and immunohistochemistry. 

Whereas only remnants of the empty hydrogel were present in control cylinders 

without cells, both SHED and DPSC had formed cellular networks within the cylinders after 

two weeks. Without VEGF, tissue formation was limited to the entrance of the cylinders, but 

empty hydrogel was found in the midsection. With VEGF, the united cell structure reached 

further into the canal. Microvessel counts revealed significantly more blood vessel 

formation in VEGF-containing hydrogels. 

After 5 weeks, the cylinders with growth factor-containing gels were filled with 

vascularized connective tissue resembling its physiological counterpart. The hydrogel was 

replaced by natural extracellular matrix. For DPSC, few small and dense collagen deposits 

could be observed throughout the newly formed tissue. After immunohistochemistry for 

localization of dentin sialoprotein (Dsp), a dentin-specific protein, small Dsp-positive islands 

could be detected in DPSC-containing constructs. Collagen deposition and Dsp expression 

indicate that the cells undergo a differentiation process. However, the deposits and Dsp-

positive cells were not predominantly found towards the interface of cells and dentin, but 

throughout the matrix. 
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Our results provide evidence that both dental stem cells lines delivered in customized 

multidomain peptide hydrogels are suitable for a treatment strategy to regenerate dental 

pulp. VEGF proved to be a potent stimulator of microvessel formation and enabled tissue 

formation throughout the length of the cylinder. However, directional deposition of 

collagen as a template for mineralized dentin remains to be resolved. 

2. Materials and Methods 

2.1. Treatment Groups 

To test both dental stem cell lines with peptide-based hydrogels with and without bioactive 

factors, six groups were established (Table 2). Our goals were as follows: 

1) To evaluate the amount and quality of new tissue formed by SHED or DPSC cells, and 

to compare the two cell lines regarding cell densities, cell morphology, connective 

tissue formation and collagen deposition within the dentin cylinders. 

2) To assess the effect of VEGF on new blood vessel formation and tissue formation. 

Cells 
Hydrogel 

Growth Factors 
Significance 

Number of Implants 

Time points 
Number of Animals 

Group 1 
Empty 

MDP3D 
none 

Cell-and 
GF-free 
Control 

6 

Group 2 
Empty 

MDP3D 
P-GP, VEGF 

Cell-free 
Control 

6 

Group 3 
DPSC 

MDP3D 
None 

GF-free 
Control 

6 

Group 4 

DPSC 
MDP3D 

p-GP,VEGF 

Treatment 
Group 

6 

Group 5 

SHED 
MDP3D 

none 

GF-free 
Control 

6 

Group 6 
SHED 

MDP3D 
P-GP, VEGF 

Treatment 

Group 

6 

2- and 5 weeks 

18 

Table 2: Treatment and control groups for implantation 

MDP 3D: K(SL)3RG(SL)3KGRGDS SHED: stem cells from human exfoliated deciduous teeth 
GF = Growth Factor DSPC: dental pulp stem cells 
VEGF = vascular endothelial growth factor P-GP = P-glycerophosphate 
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The decision to place six implants per group was based on previous studies [65, 110], and 

on consultation with Dr. Scott Baggett at the Department of Statistics at Rice University. A 

post hoc power analysis on data for new blood vessel formation obtained from the two-

week experiments confirmed that the number of samples per group was sufficient to detect 

statistically significant differences between treatment groups with a confidence > 95 % (a 

<= 0.05). 

Six implants were placed per group, and four implants were transplanted into each 

animal, which amounted to a number of 36 implants per time point, 72 implants in total, 

and a total number of 18 animals. 

2.2. Implant Preparation 

Since our cell delivery system is not a solid material, a suitable carrier system for 

implantation had to be chosen, which would provide stability and allow for implant 

localization and retrieval after several weeks in situ. Hydroxyapatite powder was an option 

we considered, since this material had been used as a carrier for SHED and DPSC cells in 

previous studies [25, 27]. However, we envisioned an enclosed space, closely mimicking the 

situation of the pulp chamber or root canal. A cylindrical system seemed most feasible. 

Carriers from materials such as polytetrafluoroethylene (PTFA) cylinders or titanium meshes 

were discussed, both of which are commonly used as implant materials in dentistry [111, 

112]. Any material-related effect on the cells had to be avoided, and the carrier should 

allow for histologic analysis of newly formed tissue. Therefore, we chose the natural 

material the cells would be in contact with in a clinical setting: dentin. 
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2.3. Dentin Cylinders 

Extracted human teeth were collected by local oral surgeons and stored in 0.5 % chloramine 

(chloramine T hydrate, SIGMA-Aldrich, St. Louis, MO; in de-ionized water) at 4°C to avoid 

bacterial growth and contamination. Dentin cylinders were prepared from the roots of 

molars using a low speed handpiece and a cylindrical diamond bur (diameter 12 mm) under 

constant irrigation with water for continuous cooling, as depicted in Figure 26. The size of 

the cylinders was designed to be small enough for implantation, yet hold a volume of 

hydrogel of at least 20 u l . Therefore, cylinders were prepared at a height of 4 mm, an inner 

diameter of approximately 1.5 mm and an outer diameter of 3 mm (volume = 0.028 cm3 or 

28 u±). The root canal was enlarged to prepare the shape of a hollow tube. After 

preparation of the cylinders, these were stored in chloramine at 4°C until further use. The 

teeth and cylinders were constantly kept in solution or in a moist environment to avoid 

drying effects. 
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Before cell seeding, the dentin cylinders underwent several steps of a preparatory 

procedure, which was carried out in a sterile tissue culture cabinet. The cylinders were 

washed in PBS three times for 1 min per wash, followed by 10 minutes in 5% sodium 

hypochlorite for disinfection purposes. This procedure was chosen over autoclaving, which 

has been described to sterilize dentin disks [113]. The goal was to preserve the growth 

factors which are entrapped in the dentin matrix [54,114]. 

After disinfection, the cylinders were washed in PBS three more times, and etched 

with 10% citric acid for 1 min, followed by three final washes in PBS. Etching demineralizes 

the dentin surface and exposes the collagen fibrils, which is a well-documented 

phenomenon, as this procedure is a critical step during the procedure of bonding resin-

based dental filling materials to the dentin surface [115]. Furthermore, etching releases 

growth factors entrapped in the dentin matrix and it has been shown that these stimulate 

matrix secretion and odontoblast differentiation [49]. After seeding of dental stem cells in 

pretreated cylinders, collagen could promote cell attachment and growth factors could aid 

in cellular differentiation. The dentin surface could thus provide directionality, ideally 

resulting in deposition of new predentin towards the existing walls. 

2.4. Hydrogel Preparation and Cell Seeding 

A peptide solution from MDP 3D at 2% by weight was prepared in water containing 298 mM 

sucrose. The peptide stock was mixed with either one of the following solutions: 

A) PBS containing 2 mg/mL heparin (for GF-free control groups 1, 3 and 5) 
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B) De-ionized water containing 2 mg/mL heparin, 298 mM sucrose, 

10 mM B-glycerophosphate, and 200 ng/mL VEGF (for groups 2, 4 and 6). 

Solution B was prepared 30 min prior to seeding to allow for VEGF-heparin binding. 

Subconfluent SHED and DPSC of passage 4 were detached, counted on a 

hemocytometer, and resuspended in either solution A or B at a cell density of 2.0 x 107 cells 

per mL. Hydrogels with and without cells and bioactive factors were prepared, and 

approximately 30 +/- 5 u l of hydrogel were pipetted into each dentin cylinder. The final 

concentrations were: 

A) 1 mg/mL heparin; 149 mM sucrose, 0.5 x PBS 

B) 1 mg/mL heparin, 298 mM sucrose, 0.5 mM B-glycerophosphate, 100 ng/mL VEGF. 

The cell number per cylinder amounted to 3 x 105 cells. 

The hydrogel-containing cylinders were placed into petri-dishes, and cell culture 

medium was added to cover the bottom of the plate and maintain a moist environment. 

The cylinders were stored at 37°C in a 5% C02 environment until preparations for the 

surgical procedure were complete, usually not more than 30 min. 

2.5. Transplantation Procedure 

Immunodeficient mice (8-to 10-week-old females, strain Crl: NM-Lyst bgFoxnlmBtkM or NIH 

III; Charles River, Wilmington, MA) were used as subcutaneous transplant recipients 

according to specifications of an approved small-animal protocol (National Institute of 

Dental and Craniofacial Research). Operations were performed under anesthesia achieved 

by intraperitoneal injection of 0.35 - 0.4 mL of a mixture of ketamine/xylazine at 50/5 
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mg/kg. Four midlongitudinal incisions of approximately 0.5 mm in length, two on each side, 

were made on the dorsal surface of each animal. Subcutaneous pockets were created by 

blunt dissection, and one implant was placed per pocket, four implants per animal. Incisions 

were closed with surgical sutures. Local anesthetic (0.5% marcaine at < 0.5 mL/kg) was 

injected subcutaneously after surgery and once every day for the following three days as 

part of post-surgical care. 

2.6. Implant Recovery and Processing 

Implants in situ and after explantation are depicted in Figure 27. Animals were sacrificed 

two or five weeks after implantation. The implants were retrieved, briefly washed in PBS 

and fixed in 4% buffered paraformaldehyde (PFA) solution overnight at 4°C. After several 

washing steps in PBS, the implants were transferred to a Morse's demineralization solution 

containing 22.5% formic acid and 10% sodium citrate, which has been shown to preserve 

antigenic sites [116]. The dentin cylinders were decalcified at room temperature on a 

shaker at 60 rpm for 6 days, and the solution was changed daily. The required time for 

sufficient demineralization, after which the dentin no longer offered resistance to cutting 

with a blade during sectioning, was determined prior to implantation on test cylinders. 
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Figure 27: implants in situ, after explantation and during processing. Four implants per 
animal were placed subcutaneously into immunodeficient mice (A). The tissue that formed in 
hydrogels without VEGF appeared pale (B), in VEGF-containing hydrogels reddish (C). The 
dentin cylinders were transferred into glass vials for fixation and processing (D). 

After demineralization, the implants were processed through ethanol series for 

dehydration for a minimum of 1 hour per step at 4°C. The constructs were then embedded 

in paraffin, sections of 8 |im thickness were prepared on a microtome, and mounted to 

glass slides (Superfrost/Plus, Fisher Sci, Pittsburgh, PA). 

2.7. Histology and Immunohistochemistry 

Sections were deparaffinized in xylene and rehydrated though ethanol series. For histology, 

the tissues were stained with hematoxilin and eosin (H&E), and Masson's Trichrome to 

visualize collagen formation, (Trichrome Stain (Masson) Kit, Sigma-Aldrich, St. Louis, MO). 

To localize microvessels in the newly formed tissues, a dilution of 1:100 of a 

polyclonal rabbit-anti-human Factor VIM antibody (Lab Vision, Fremont, CA) was used as 

described previously [65]. Color development was performed with Dako EnVision + system 

kit (AEC, Dakocytomation), and sections were counterstained with hematoxilin. For 

controls, one section per group was treated with PBS instead of primary antibody. 
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The number of microvessels was counted in 2 sections of each of the 6 implants per 

group, resulting in a total count of 12 sections per treatment condition. Microvessels were 

identified at 20 x magnification under a light microscope. 

For dentin sialoprotein (Dsp), a 1:100 dilution of anti-human Dsp antibody was used, 

which was kindly provided by Dr. Larry Fisher at the NIH. Color development was performed 

as described above. 

2.8. Statistical Analysis 

To determine differences between groups treated with and without VEGF, paired student's 

t-test was performed to compare group 1 vs. 2, 3 vs. 4 and 5 vs. 6 at a significance level of a 

= 0.05. Means and standard deviations were calculated, and power analysis was conducted 

for two-week samples to calculate the minimum sample size required to accept the 

outcome of statistically significant differences at a 95% confidence level. 

3. Results and Discussion 

The overall strategy for dentin-pulp-complex engineering in this approach consists of 

manufacturing a root-canal-shaped dentin cylinder filled with a peptide-based hydrogel 

laden with dental stem cells and bioactive factors. These constructs were implanted 

subcutaneously into immunodeficient mice. Ideally, we expected to create a vascularized 

soft connective tissue, degradation of the hydrogel matrix and replacement with natural 

extracellular matrix, a cell-rich zone adjacent to the dentin wall, collagen deposition 
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towards the existing dentin wall as template for mineralized dentin, and Dsp-positive cells 

lining the predentin front. 

Following implant retrieval, we wanted to assess the amount and quality of new tissue 

formed by SHED or DPSC, and to compare the two cell lines regarding cell densities, 

connective tissue formation and collagen deposition within the dentin cylinders. 

Furthermore, we wanted to evaluate if the presence of vascular endothelial growth factor 

(VEGF) can aid in the establishment of microvascular networks, which is of crucial 

importance for tissue vitality. Histologic stains provided information about overall tissue 

structure, and the formation of collagenous networks. Immunohistochemistry allowed for 

the visualization and quantification of newly formed microvessels within the dentin 

cylinders, and for identification of differentiated cells expressing dentin sialoprotein, a 

protein specifically expressed by dentin-forming odontoblasts. 

3.1. Results after 2 Weeks 

Figures 28 and 29 show images of the constructs after two weeks in situ. In cell-free 

constructs, only remnants of the gel, but no cells were present for both groups 1 and 2 (28 

A). When cells, but not bioactive factors were present, tissues formed on either side at the 

opening of the cylinders, whereas the midsections remained empty (28 B). However, the 

presence of VEGF seemed to result in better nutrition, allowing the cells to survive 

throughout the length of the cylinder (28 C). This effect could be observed for both cell 

lines. 
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A higher density of blood vessels inside the cylinders in the presence of VEGF was 

confirmed after microvessel counts. Two examples after immunohistochemical staining for 

Factor VIII are depicted in Figure 30. For both SHED- and DPSC-laden cylinders, significantly 

higher numbers of microvessels between constructs with and without VEGF were observed. 

Our sample size of 6 per group was sufficient to validate statistical significance with 95 % 

confidence (a <= 0.05). For cell-free cylinders, significantly more microvessels were counted 

at the entrance of the cylinders when VEGF was present, whereas the inside of the cylinders 

remained empty in both cases. 

At the interface between dentin and tissue, some areas revealed higher cell 

densities towards the dentin wall (29 C, D, F), which might be due to the suggested effects 

of collagen exposure and growth factor release at the dentin surface. However, it was 

difficult to localize and analyze these areas. In many cases, processing of the tissues 

resulted in an artificial gap between the dentin wall and the tissues. Remnants of the gels 

could be observed for groups 3-6, in areas of high cell density, these were enclosed by cell 

clusters (28 E, F). In DPSC-laden constructs, small collagen deposits could be observed in 

bioacive-factor-containing gels. For groups 4 and 6, characteristics of physiological pulp 

tissue could be observed, including a cell-rich zone at the dentin-pulp-interface (29 C, D), 

less densely packed fibroblast-like cells making the bulk of the tissue (29 F), and the 

presence of microvessels (28 F, black arrows). The typical odontoblast phenotype present in 

dental pulp could not be observed. Morphological characteristics of mature odontoblasts 

include a columnar shape, a polarized position of the nucleus, and a cellular process 

reaching into the matrix, which is left behind as the cells produce dentin. 
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Figure 28: Empty cylinder and cylinders with SHED after 2 weeks. 
(A) Overview of a cylinder, arrows indicating the dentin walls. Implantation of cell-free 

hydrogels (group 1) renders remnants of the gel only, the immigration of host cells 
cannot be observed. H&E. 

(B) SHED in hydrogels without growth factors (group 3) survive only towards the opening of 
the cylinder, the mid-section remains cell-free, presumably due to insufficient blood 
vessel formation and therefore lack of nutrients in the center. Arrows indicate the 
demarcation line. Islands of remaining hydrogel can be seen (arrowheads) H&E. 

(C) The presence of VEGF allows for better nutrition (group 4), and cells can be observed 
throughout the cylinder. Arrows show cell clusters. The dentin walls of the cylinder stain 
blue for the collagen matrix left after demineralization. Masson's Trichrome. 

(D) Tissue formation of SHED cells in hydrogels with growth factor (group 4). Small hydrogel 
remnants are still present (arrows); microvessels have formed and can be seen 
throughout the construct (arrowheads). H&E. 

(E) Small hydrogel remnants enclosed by the cells visualized at higher magnification. H&E. 
(F) Gel remnants visible in homogenous blue after Masson's Trichrome (arrows, black). 

Newly formed, wavy collagen fibers have been deposited by the cells, replacing the 
hydrogel carrier (arrowheads). Microvessels filled with erythrocytes (red) can be 
distinguished. Masson's Trichrome. 

d: dentin; h: hydrogel. 
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3.1.2. DPSC 
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Figure 29: DPSC after 2 weeks. 
(A) DPSC in gels with growth factors (group 4). As observed with SHED, in the presence of 

VEGF, cells can be found throughout the cylinder. Masson's Trichrome. 
(B) Higher magnification of the previous image. Single cells are spread out throughout the 

hydrogel matrix (arrows). The appearance differs from SHED at this time point, which 
are much more clustered together (compare Fig. 28 C). Masson's Trichrome. 

(C) Cell-dentin interface. The top part of the image shows the collagenous matrix left after 
demoralization, with a recognizable tubular structure. Adjacent to the dentin wall, a 
zone of higher cell density can be observed, indicating cell clustering towards the dentin 
wall (arrowheads). H&E. 

(D) Consecutive section of (C). The tubular structure of the dentin can be recognized better 
compared to the previous image. Cells cluster at the cell-dentin interface (arrowheads). 
Furthermore, a collagen deposit can be seen at the lower left corner, which can be 
distinguished from the hydrogel matrix by its darker blue color and dense structure. 
Several smaller collagen deposits can also be observed in the zone of higher cell density. 
However, a columnar, polarized appearance resembling odontoblasts cannot be 
confirmed. Masson's Trichrome. 

(E) Higher magnification of a collagen deposit (arrows); these can be observed throughout 
the matrix for DPSC (group 4), but not for SHED (group 6). Masson's Trichrome. 

(F) Connective tissue reminiscent of dental pulp. The wall of the dentin cylinder can be seen 
on the right hand side. A zone of more densely packed cells appears at the cell-dentin 
interface. Microvessels have formed and can be seen throughout the tissue (arrows). 
Cells show a fibroblast-like morphology. H&E. 

d: dentin. 
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3.1.3. Microvessel formation 

Figure 30: Localization of microvessels by immunohistochemistry. Example slides for 
visualization of microvessels using Factor VIII antibody. Endothelial cells appear in dark red 
(arrows). 

Figure 30 demonstrates visualization of microvessels after immunohistochemistry with 

Factor VIII antibody, which was performed for both cell lines. Factor VIII is a glycoprotein 

present in endothelial cells, which is released into the blood stream after activation of the 

clotting cascade to aid in hemostasis, and its presence identifies endothelial tissue. This 

method of detection and subsequent counts of vessels in tissue sections was performed 

after modification of a protocol described in a similar study with SHED in tooth slices [65]. 

The authors investigated the intrinsic potential of SHED to form microvessels, and they 

compared SHED alone to SHED mixed with human endothelial cells. Two aspects of this 

work are highly interesting. Co-transplantation of SHED with endothelial cells did not result 

in higher blood vessel density in these constructs. Furthermore, SHED cells were transduced 

with LacZ before implantation to evaluate cell fate in the constructs. The majority of blood 

vessels in the constructs stained positive for LacZ, indicating that SHED cells had 

differentiated into endothelial cells and contributed to microvessel formation. In our study, 
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we did not investigate the origin of endothelial cells in our constructs. The newly formed 

microvessels could therefore be of murine origin, but also very well be formed by the 

implanted cells, as indicated by the results described above. 

Another aspect, comparing our work to CORDEIRO's [65] is that the tooth slices used for 

cell seeding in their case were 1 mm thick, allowing connection to the local vasculature 

more easily. In our work, the cylindrical shape of the constructs makes proper nutrition of 

the implanted cells more challenging, a fact that bioengineers will face trying to re-colonize 

the long and narrow space of a root canal with live tissue, which will inevitably depend on 

sufficient provision of nutrients to the cells. Our results of higher microvessel density and 

formation of dental-pulp-like tissue in those cylinders mediated by VEGF are promising and 

make this growth factor a prime candidate for future strategies to engineer dental pulp. 

3.2. Results after 5 weeks 

3.2.1. Emtpy Cylinders 

After 5 weeks in situ, the empty cylinders are unaltered and only show remnants of the 

hydrogel, and encapsulation by fibrotic host tissue, which can be seen in Figure 31. From 

visual inspection, no difference could be observed between groups 1 and 2. 
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tissue has formed around the implant (arrows). Masson's Trichrome. 
d: dentin 

3.2.2. SHED 

Figure 32 depicts images from transplanted SHED. Without growth factors in the hydrogel, 

the cells form tissue to some extent, but large areas containing vacuoles reminiscent of fat 

tissue are present (32 A), and big remnants of hydrogel can be observed (32 B). However, 

small areas of pulp-like tissue can be found, and a collagenous matrix is formed (32 D). In 

growth-factor containing gels, the areas of pulp-like tissues are much larger (32 E). Dense 

cellular networks develop for SHED, and these cells synthesize tightly packed collagen (32 E, 

F). High proliferation rates of SHED have been reported before [25], and our own work in 

peptide amphiphiles demonstrated that these cells grow faster in the hydrogel matrix 

compared to DPSC, and deposit more collagen [84]. 
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Figure 32: SHED after 5 weeks. 
(A) Tissues in cylinders without growth factors consist mainly of vacuoles reminiscent of fat 

tissue. H&E. 
(B) Large remnants ofhydrogel surrounded by cell clusters can be observed (arrows). H&E. 
(C) Between large areas of vacuoles and non-degraded hydrogel, small areas show an 

organization similar to connective tissue, where the hydrogel has been replaced by 
collagen fibers, in which the cells are embedded. Masson's Trichrome. 

(D) Higher magnification of C. The cell clusters and collagen fibers in dark blue are visible. 
Masson's Trichrome. 

(E) SHED in hydrogels with growth factors show larger areas of properly organized tissue. 
Predominant formations show a high cell- and collagen-density. Masson's Trichrome. 

(F) Higher magnification ofE. Densely packed collagen matrix. Masson's Trichrome. 
d: dentin; h: hydrogel, v: vacuoles 

3.2.3. DPSC 

Compared to SHED, the tissues formed by DPSC resemble more closely dental pulp tissue. 

The cells form a lose network (33 A, B), and at the interface between dentin and tissue, an 

intimate association between cells and dentin can be observed (33 A-D). However, in some 

areas larger cells similar to osteoclasts can be observed, and a rugged dentin might be the 

result of a resorption process (33E). 

The synthetic matrix is replaced by collagen, in most areas appearing like an 

extracellular matrix, in which the cells are embedded (33 B, D). Apart from that, localized, 

small and very dense collagen deposits can be observed (33 D). These are usually found in 

close vicinity to microvessels. These dense deposits can be found only in DPSC in hydrogels 

with growth factors present. One might speculate whether VEGF plays a role, given their 

association with microvessels, but the B-glycerophosphate might have an inductive effect, 

too. Although it is mainly believed to aid in mineral formation, it has been associated with 

stem cell differentiation as an osteogenic supplement. Unfortunately, after 

demineralization of the constructs detection of mineral is no longer possible. 
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Figure 33: DPSC after 5 weeks. 
(A) Properly organized tissue highly similar to dental pulp can be found. The cells are 

embedded in a lose network of collagen, and they line the walls of the cylinder, tightly 
associated with the dentin. 

(B) Higher magnification of A. 
(C) The cells are packed more tightly towards the dentin. The columnar, polarized cell shape 

of mature odontoblasts cannot be observed. 
(D) Small and dense collagen deposits can be found, usually in close vicinity to microvessels 

(arrows). 
(E) The dentin surface appears disrupted, and large cells with multiple nuclei reminiscent of 

osteoclasts appear (arrows), suggesting resorption of the dentin. 
(F) The hydrogel has mainly been degraded, only small remnants can be found (arrows), 
d: dentin. 

Islands of Dsp-positive cells were found in DPSC and differentiation factor-containing 

hydrogels (Figure 34). However, these islands were sparse, and distributed throughout the 

matrix rather than lining the dentin wall, as expected. Still, expression of Dsp in these cells 

demonstrates that they undergo a differentiation process. 

Figure 34: Localization of dentin sialoprotein. 
(A) The dentin cylinder served as a positive control, as Dsp is entrapped within the dentin 

matrix and shows up in dark brown after immunohistochemistry. 
(B) Cell clusters within the newly formed tissue showed Dsp expression (arrowheads) as an 

indicator or cellular differentiation towards an odontoblast-like cell type. 
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Overall, we can show that combining dental stem cells with this customized hydrogel 

results in the formation of a pulp-like tissue. However, the desired tissue formation could 

not be observed in all constructs but in about 50 % of the implants, whereas the rest was 

filled with fibrous tissue and vacuoles or showed areas with gel remnants similar to the 

empty cylinders. Reasons for these differences could be the site of implantation, where 

implants placed directly behind the ears seemed less exposed to movement of the skin, and 

could not be reached by the animals, which tended to scratch at the implantation sites. In 

future work, the implants should be placed as far up and towards the midsection as possible 

to avoid these effects. 

In constructs with proper tissue formation, the hydrogel carrier is degraded and 

replaced by a collagenous extracellular matrix. VEGF aids in quick organization of a 

microvascular network to provide oxygen and nutrients to the cells. Pre-treatment of the 

dentin did not noticeably affect cellular organization and differentiation; however, intimate 

association of the implanted cells with the dentin walls can be seen. Some areas show signs 

of dentin resorption, and cells similar to osteoclasts appear at the cell-dentin interface. This 

unwanted effect could possibly be overcome by pretreatment of the dentin wall. A 

directional deposition of collagen and pre-dentin deposition towards the existing dentin 

walls cannot be observed. 



I l l 

4. Troubelshooting 

4.1. Cell Seeding 

Seeding the hydrogel into the small space of the cylinders proved to be difficult at first, 

since bubbles within the cylinder had to be avoided. Using small pipette tips (10 u±), starting 

at the bottom of the cylinder, slowly lifting the pipette as the gels were injected provided 

good results. Repeated centrifugation of the hydrogel/cell stock at 1000 rpm for 30 sec 

between seeding into individual cylinders removed bubbles from the stock, which are 

created during mixing and pipetting. 

4.2. Transplantation 

In general, the animals tolerated the surgical procedure well. One animal was lost 5 days 

after surgery due to a post-surgical infection. One problem we encountered was 

penetration of some of the implants through the skin and partial exposure of the implant 

after a few days in situ, which happened in four cases. Other implants were lost, as the mice 

tended to scratch the incision site and remove the implants. For a total of 10 implants, the 

surgeries had to be repeated. We tried to place the implants as far up and centered on the 

dorsum as possible to keep them out of reach for the animals, and less implants were lost 

after that. 

4.3. Sectioning 

Sectioning of the dentin cylinders proved difficult, as it is for most demineralized tissues. 

Alignment of the cylinders perpendicular to the direction of the blade during cutting made 
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sectioning easier. Not more than two cylinders could be placed into one block to obtain 

sufficient quality of the sections. Keeping the blocks at -20°C before sectioning, and cooling 

the blade with cooling spray (Freeze it, Fisher Sci, Pittsburgh, PA) between sections helped 

to improve the quality of the sections. 

4.4. Immunohistochemistry 

As typical for immunohistochemistry, the optimal protocol had to be developed for both 

antibodies. Different dilutions of primary antibody were tested (1:100, 1:250, 1:500) as well 

as different incubation times (30 min, 45 min) and temperatures (RT, 37°) with primary and 

secondary antibody. A dilution of 1:100 for both primary antibodies and incubation periods 

of 45 min at 37° C provided best results. 



113 

CHAPTER VII: CONCLUSIONS AND FUTURE PERSPECTIVE 

The described system of dental stem cells encapsulated in a multidomain hydrogel scaffold 

laden with bioactive factors for cell differentiation and new blood vessel formation offers great 

promise for future tissue engineering strategies to regenerate dental pulp. 

Multipotent dental stem cells are available from disposable sources, such as baby teeth 

or extracted wisdom teeth, and they maintain their differentiation potential after 

cryopreservation. They have been the focus of commercial stem cell banks as an autologous cell 

source, which can be derived non-invasively and might be useful for a variety of applications. 

Preservation of these cells might become a routine procedure in the near future. 

The peptide-based hydrogel complements these cells for the envisioned treatment 

strategy, as it is compatible with the cells, can be injected into small spaces, and allows for 

custom-made matrices and incorporation of various growth and differentiation factors. In this 

case, (^-glycerophosphate was added to aid in cell differentiation and mineralization, and 

vascular endothelial growth factor stimulated new blood vessel formation. 

Implantation of this system in vivo resulted in the formation of a vascularized connective 

tissue highly similar to dental pulp. Whereas this marks our work as a success, it is only the first 

step in developing bioactive delivery systems designed to serve a specific purpose. Further 

modifications can result in even more sophisticated systems, carrying various growth factors to 

take advantage of potentially synergistic effects. Particularly the possibility of growth factor 

incorporation via heparin should be exploited further. Bioactive peptide sequences for mineral 

nucleation could be inserted, bilayered scaffolds with different properties for soft hard tissue 
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formation are imaginable, or the establishment of growth factor gradients within the gels, to 

name only a few ideas. 

Several challenges in engineering dental pulp remain. In order to regenerate the soft 

tissue within the root canal, a long and narrow space, proper nutrition of the cells is 

paramount. In our model, addition of VEGF allowed for sufficient nutrition at a length of 4 mm. 

Although this result is promising, it has to be demonstrated that longer distances up to 10 mm 

can be bridged. If connection to the vasculature at the apex of the tooth can be achieved, 

engineering of the dental pulp instead of placing root canal fillers might move closer into the 

realm of possible treatment options. 

In order to apply the described system as a pulp capping agent in deep cavities to 

encourage reparative dentin formation, the problem of directional dentin deposition has to be 

resolved. Currently we do not know how to direct dentin formation in a synthetic system. 

However, in a clinical setting, the inflammatory response at the site of injury triggers 

recruitment of progenitor cells, their differentiation and subsequent dentin bridging, which 

separates the soft tissue from the site of injury. It is worthwhile to explore whether dental stem 

cells delivered in a clinical setting can aid in this process and accelerate and optimize healing. 

Whereas these challenges remain, we believe that the first steps we have undertaken 

have the potential to significantly impact further developments in oral healthcare, and might 

also have broader applications to the engineering of other body tissues. 
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CHAPTER VIII: APPENDICES 

APPENDIX A 

Table 3: List of amino acids in the order of appearance in the text 

Amino Acid 

Glutamic acid 

Glutamine 

Leucine 

Arginine 

Glycine 

Aspartic acid 

Serine 

Phenylalanine 

Histidine 

Asparagine 

Lysine 

Valine 

1-letter code 

E 

Q 
L 

R 

G 
D 

S 
P 

H 
N 
K 

V 

3-letter code 

Glu 

Gin 

Leu 

Arg 

Gly 

Asp 

Ser 

Phe 
His 

Asp 

Lys 

Val 

Side chain polarity 

polar 

polar 

nonpolar 

polar 
nonpolar 

polar 

polar 

nonpolar 

polar 

polar 

polar 

nonpolar 

Side chain charge (pH 7) 

negative 

neutral 

neutral 

positive 

neutral 

negative 

neutral 

neutral 

neutral 

neutral 

positive 

neutral 
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ABSTRACT 

Dental caries remains one of the most prevalent infectious diseases in the world. So far, 

available treatment methods rely on the replacement of decayed soft and mineralized 

tissue with inert biomaterials alone. As an approach to develop novel regenerative 

strategies and engineer dental tissues, two dental stem cell lines were combined with 

peptide-amphiphile (PA) hydrogel scaffolds. PAs self-assemble into three-dimensional 

networks of nanofibers, and living cells can be encapsulated. Cell-matrix interactions were 

tailored by incorporation of the cell adhesion sequence RGD and an enzyme-cleavable site. 

SHED (stem cells from hiuman exfoliated deciduous teeth) and DPSC (dental p_ulp stem cells) 

were cultured in PA hydrogels for four weeks using different osteogenic supplements. Both 

cell lines proliferate and differentiate within the hydrogels. Histologic analysis shows 

degradation of the gels and extracellular matrix production. However, distinct differences 

between the two cell lines can be observed. SHED show a spindle-shaped morphology, high 

proliferation rates and collagen production, resulting in soft tissue formation. In contrast, 

DPSC reduce proliferation, but exhibit an osteoblast-like phenotype, express osteoblast 

marker genes, and deposit mineral. Since the hydrogels are easy to handle and can be 

introduced into small defects, this novel system might be suitable for engineering both soft 

and mineralized matrices for dental tissue regeneration. 
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INTRODUCTION 

In every respect, the field of tooth bioengineering encompasses broad strategies and 

multidisciplinary approaches directed at restoring one of the most complex organ systems 

in vertebrates. Although rather small, a tooth is a composite of three calcified matrices, 

each of which possesses unique biochemical, biomechanical and structural properties. The 

anatomic tooth crown contains the hard tissues enamel and dentin, as well as soft tissue in 

its core, the dental pulp. The root anchors the tooth to the surrounding alveolar bone via 

the tendon-like periodontal ligament, which inserts into the cementum, a thin layer of yet 

another species of mineralized tissue covering the root surface. Enamel is a very hard and 

brittle substance mainly made of inorganic hydroxyapatite; cementum is similar to bone, 

but lacks vascularization. Dentin, a mineralized connective tissue surrounding and 

embedding the dental pulp, exhibits a unique tubular structure. Dentin-producing 

odontoblasts lining the pulp chamber send cellular processes into these tubules, connect 

both tissues to form the dentin-pulp complex, and thus make dentin a live tissue. Exposure 

of dentin after attrition, trauma or carious invasion by bacteria triggers inflammation and 

pain, which upon resolution leads to the recruitment and differentiation of progenitor cells 

and the rapid deposition of a reparative dentin matrix. This active defense mechanism of 

the dental pulp to separate itself from the site of injury and maintain its vitality illustrates its 

strong intrinsic regenerative potential. In recent years the healing capacity of dental pulp 

was underscored by the identification and characterization of populations of postnatal stem 

cells capable of differentiating into odontoblasts. 

Dental tissues harboring stem cells are easily accessible and most often discarded as a 

byproduct of routine surgical treatment. Stem cell characteristics can be detected in cells 

isolated from the pulp of deciduous (1) as well as permanent teeth (2, 3), periodontal 

ligament (4, 5) or periapical follicle (5). Using stem cell markers such as STRO-1 or CD 146, 

mesenchymal stem cells, which represent less than 4 % of the total cell population, can be 

tagged and sorted by fluorescence-activated cell-sorting analysis (1). Tooth-derived stem 

cells are capable of differentiating into adipocytes, neurons and odontoblast-like cells (1, 6). 



119 

They form mineralized nodules in vitro (5) and create bone or dentin-pulp like complexes 

after transplantation into immunocompromised mice (1, 3). 

As new sources of stem cells are explored and optimal permissive conditions for their 

differentiation are investigated, there is a strong need for advanced biomimetic scaffolding 

materials, which are versatile enough to be targeted for tooth-specific applications. These 

scaffolds have to provide a suitable three-dimensional network to accommodate cells and 

guide their growth, organization and subsequent differentiation. In vivo, these features are 

carried out by the extracellular matrix (ECM). Fibrillar proteins account for most of the ECM 

network, they self-assemble and form a well-organized structure. It surrounds cells, offers 

physical support and specific ligands for cell adhesion and migration. ECM also regulates cell 

proliferation and dynamic characteristics through various growth factors and signaling 

molecules. Recently, a novel class of hydrogel scaffolds has been developed, which offers 

several properties of natural ECM (7-13). These peptide amphiphile (PA) molecules consist 

of a peptide segment coupled to a fatty acid chain; they assemble into three-dimensional 

nanofiber networks to form self-supporting gels. The process is driven by formation of a 

hydrophobic core composed of closely packed alkyl tails, whereby fibrous strands can build 

because of hydrogen bond formation between the amino acids of adjacent PA molecules. 

Long cylindrical structures that are nanometers in diameter and microns in length create a 

gel by trapping water. Whereas the PAs remain amorphous aggregates at neutral pH due to 

the repulsive negative charge, addition of polyvalent ions eliminates the charge and allows 

self-assembly into cylindrical micelles, which undergo physical cross-linking to provide the 

gelled macrostructure. Self-assembly can be triggered upon mixture of PA solutions with 

cell culture media or other physiological fluids that contain polyvalent metal ions. When 

cells are suspended in the fluid, these can be encapsulated in the nanofibrillar matrix. It has 

been shown that cells can move, proliferate and differentiate within the hydrogel (10, 12-

15). Several modifications of PAs have been described in the literature, allowing for mineral 

deposition (16), optimized cell adhesion (11, 17), selective cell differentiation into neurons 

(14) or ectopic bone formation (15). 
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A modification of a PA system that has previously been described was used in this study 

(10). The structure of these molecules can be divided into four regions of function: the 

peptide sequence contains an enzyme-cleavable site composed of GTAGLIGQ; a glutamic 

acid to assist in calcium binding; and RGDS, a cell-adhesion sequence that was first 

described in 1987 (18), which is present in natural ECM and has been integrated into 

various bioengineering scaffolds. The GTAGLIGQ is expected to be cleaved between glycine 

and leucine residues by matrix metalloproteinase 2 (MMP-2). Members of the MMP family 

are able to hydrolyze most of the proteins found in ECM; and MMP-2 is the major matrix 

metalloproteinase expressed by human pulp cells to remodel their environment (19). 

Incorporation of this specific cleavage site is expected to result in cell-mediated proteolytic 

degradation of the network, enabling cell migration and remodeling of the matrix with 

natural ECM. The fourth region of functionality is added after peptide synthesis by N-

acylation with palmitic acid, which provides the driving force for self-assembly. These 

modifications of PA hydrogels are first steps to optimize tissue engineering scaffolds for a 

specific cell type. 

In this study, we tested the use of the PA hydrogel scaffold with the following two well-

characterized postnatal stem cell lines: SHED cells, which were isolated from human 

deciduous incisors (1), and DPSC from impacted wisdom teeth (2, 3). Our goal was to 

explore the compatibility of PA nanofibers with these two cell lines and to assess their 

potential as a suitable scaffold for cell proliferation and differentiation. Combinations of 

dexamethasone with inorganic phosphate ((3-glycerophosphate or potassium phosphate) 

have previously been used as osteogenic supplements, and induced calcium accumulation 

in SHED and DPSC cells (1, 3, 20, 21). Cell differentiation was monitored by alkaline 

phosphatase assay, histologic analysis and quantitative real-time PCR analysis, which 

included marker genes for extracellular matrix synthesis and for differentiated osteoblasts 

and odontoblasts (collagen type I and III, alkaline phosphatase, bone sialoprotein, 

osteocalcin, and Runx2 and dentin sialophosphoprotein). 
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The results of our study show compatibility of both dental stem cell lines with the PA 

nanofibers. Cells spread, proliferate and differentiate within the hydrogels. However, we 

provide evidence that there are distinct differences between the two cell lines and their 

reaction to specific osteogenic supplements. SHED appear more adept for soft tissue 

regeneration, which is enhanced by 3-glycerophosphate, while DPSC have a greater 

potential for terminal differentiation and subsequent mineralization, especially in 

combination with potassium phosphate. The results of this study provide the bases for 

further optimization of PA nanofibers as a scaffold for dental stem cells and for future tissue 

engineering strategies to regenerate dental tissues in vivo. 

MATERIALS AND METHODS 

Preparation of Peptide Amphiphiles 

Peptide amphiphile molecules were synthesized as previously described as a thirteen 

amino-acid peptide (GTAGLIGQERGDS) by standard solid phase chemistry on an Advanced 

Chemtech Apex 396 peptide synthesizer (10). Preparation of the peptide portion was 

followed by acylation of the N - terminus. 150 mg of crude peptide was dissolved in 50 mL 

Dl at pH 7.0. For purification purposes, peptides were precipitated at pH 3, centrifuged 

(4000 rad/min, 5 min), the supernatant was removed and peptides were freeze-dried for 24 

hours. PA stock solution of 2 % by weight was prepared in Dl water by adjusting the pH 

with NaOH to 7.0. PAs were characterized by matrix-assisted laser desorption ionization 

time-of flight (MALDI-TOF) mass spectrometry and were found to have the expected 

molecular weight. Stock solutions were kept under UV-light overnight for sterilization 

purposes. 
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Cell Culture of Dental Stem Cells 

Two mesenchymal human stem cell lines were used in this study: DPSC derived from adult 

third molars (3), and SHED cells from exfoliated deciduous teeth (1). Cells were cultured 

with alpha MEM supplemented with 15% fetal bovine serum, 50 u.g/mL L-ascorbic acid 2-

phosphate, 100 U/mL penicillin and 100 |ig/mL streptomycin, and incubated at 37°C with 

5% C02. Subconfluent cells of passage 5 were detached using trypsin EDTA (Invitrogen, 

Carlsbad, CA), and 1.0 x 105 cells were seeded per gel. Therefore, 50 u.1 of PA stock solution 

(2% by weight) were placed in wells of a 96-well plate. Self-assembly into nanofiber 

networks was triggered by addition of 50 u.1 of cell suspension (2 x 106 cells/mL) containing 

0.1 M CaCI2 (pH 7.4). The solution was gently and briefly mixed, and gel formation was 

observed after 2-3 seconds. For each assay to be performed and for each time point and 

culture condition, triplicates were seeded. After 30 min, 200 u.1 of media were added to 

each well. The medium was changed after 24 hrs and osteogenic supplements were added 

according to previous reports (3, 20-22). Three different conditions were established: one 

group of gels was cultured with medium as described above (0 - control), for the second 

group, lOmM 3-glycerophosphate and lOnM dexamethasone (SIGMA-Aldrich, St. Louis, 

MO) were added (0GP + dex); for the third group lOmM potassium phosphate (KH2PO4) 

(SIGMA-Aldrich, St. Louis, MO) and lOnM dexamethasone were added to the media (KPh + 

dex), all of the above being final concentrations. Gels were cultured for up to 4 weeks, 

media was changed every other day, and samples for different assays were collected at 

several time points. 

Measurement ofDNA content 

After 3, 7, 14 and 28 days, cells samples were harvested after enzymatic digestion as 

described above, and cell pellets were frozen down at -80°C for further analysis. After 

completion of sample collection, these were thawed, and assays and measurements were 

performed on all samples at the same time. The number of cells in all samples was 
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determined by fluorometric quantification of DNA content using CyQuant cell proliferation 

assay kit (Invitrogen, Molecular Probes, Carlsbad, CA) and a FLUOstar Optima fluorescence 

plate reader (BMG Laboratories, Durham, NC). Actual cell numbers were calculated based 

on a standard curve created from suspensions of known cell densities. 

Alkaline Phosphatase Activity 

Samples for the detection of alkaline phosphatase (ALP) activity were prepared as described 

for the DNA assay. Cell pellets were resuspended in 60 u.1 of PBS. After addition of 60 u.1 of 

alkaline buffer and 100 u.1 alkaline substrate solution (SIGMA-Aldrich, St. Louis, MO), 

samples were incubated at 37°C for 30 min and the liberated p-nitrophenol was measured 

spectrophotometrically at 410 nm. Samples were compared to a dilution series of p-

nitrophenol standard (SIGMA-Aldrich, St. Louis, MO) and ALP activity was normalized to the 

corresponding cell numbers obtained from the proliferation assay. 

Quantitative Real-time PCR 

To assess the effect of osteogenic induction on the expression of genes involved in 

differentiation, matrix formation and mineralization, real-time PCR was performed on 

samples after 28 days of culture. RNA was extracted using RNA Stat 60 (Tel-Test Inc. 

Friendswood, TX) from 6 gels per group at a time to get sufficient amounts for reverse 

transcription, which was performed according to standard protocols for cDNA synthesis 

using an oligo-dT primer. 100 ng of RNA were used for one reaction of reverse transcription, 

which provided cDNA for 10 real-time PCR reactions. Primer sets for marker genes of 

osteoblast and odontoblast differentiation were designed from mRNA sequences published 

in GenBank (identification number given in parentheses) using primer 3 software and 

synthesized as follows: collagen a(l)l (Col I) (NM_000088), collagen III (Col III) (NM_000090), 

alkaline phosphatase (ALP) (NMJD00478), bone sialoprotein (Bsp) (NM_000582), 
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osteocalcin (Oc) (X_53698), Runx2 (NM_004348), dentin sialophosphoprotein (Dspp) 

(NM_014208), matrix metalloproteinase-2 (MMP-2) (NM_004530), and glyceraldehyde 3 

phosphate dehydrogenase (GAPDH) (M_33197) as an internal control. Primer efficiency was 

determined prior to quantification. Conditions for real-time PCR were as follows: After a 

denaturation step at 95°C for 15 minutes, 60 cycles were run with 95°C (15 sec), 58°C (30 

sec), 72°C (30 sec), with a final dissociation step to generate the dissociation profile of the 

PCR products. Experiments were run in triplicates (ABI Prism 7900HT), gene expression was 

quantified using SYBR green (QuantiTect SYBR green PCR kit, Qiagen Inc. Valencia, CA) and 

normalized to GAPDH activity in respective samples. Calculations of fold-change in gene 

expression between controls and treated samples were performed according to the Pfaffl-

method for relative quantification in real-time PCR as described in 

http://pathmicro.med.sc.edu/pcr/realtime-home.htm. 

Histologic analysis 

For histological analysis, gels after 28 days in culture were fixed in 4% paraformaldehyde for 

3 hrs, dehydrated through ethanol series, embedded in paraffin and sectioned at 5 urn 

thickness. Sections were stained with hematoxylin and eosin (H&E), Masson's trichrome 

for collagen detection and von Kossa stain for calcium deposition using standard methods. 

Cryo-transmission electron microscopy (cryoTEM) 

To further investigate the mineralization properties, cryoTEM analysis was performed for all 

groups and samples. Three samples per cell line and condition were cultured as described 

above. As a cell-free control, additional gels were incubated with osteogenic supplements 

for 4 weeks. A small quantity of the sample solution (2-3 u.1) was applied to a TEM copper 

grid with holey carbon film purchased from Quantifoil (400 mesh Cu grid, 1.2 urn hole 

diameter), and blotted with filter paper using a Vitrobot type FP 5350/60 under 100% 

http://pathmicro.med.sc.edu/pcr/realtime-home.htm
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relative humidity for two seconds to create a thin layer of sample on the surface of the grid. 

The grid was plunged into liquid ethane and quickly transferred to liquid nitrogen. The 

sample was then analyzed using JEOL 2010 TEM at an accelerating voltage of 200 kV under 

low-dose imaging conditions. 

RESULTS 

Cell proliferation 

When embedded in 3D peptide-amphiphile hydrogels, SHED cell proliferation was markedly 

higher as compared to DPSC. Addition of |3GP + dex resulted in slightly increased 

proliferation rates in both cell lines, whereas KPh + dex showed attenuated cell growth. The 

DNA assay yielded corroborative data. After 28 days, cell numbers of SHED were close to 4 x 

105 cells when cultured with PGP + dex, DPSC did not exceed 1.5 x 105 cells per gel. Growth 

curves under different culture conditions as well as actual cell numbers for different time 

points for both cell lines are shown in Figure 2. 

Differentiation of dental stem cells with different culture conditions 

Quantitative measurements of ALP activity showed differences between the two cell lines 

as well as between groups treated with different osteogenic media. The general trend 

shows a dramatic increase in both cell lines over time. SHED responded to treatment with 

PGP + dex with a considerably higher enzyme activity compared to controls, whereas KPh + 

dex seemed to have to opposite effect. DPSC showed a different profile, where KPh+ dex 

evoked slightly higher ALP levels than PGP + dex. 

Analysis of marker genes for osteoblast and odontoblast differentiation (Fig. 3) revealed 

increased expression levels for all the genes investigated after 28 days in culture, with one 

exception, DPSC ceased to express dentin-specific Dspp after treatment with KPH + dex. In 
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SHED, higher expression levels of genes coding for extracellular matrix components (Col I, 

Col III) could be observed, especially with BGP + dex, and levels of MMP-2 were noticeably 

elevated. SHED treated with KPh + dex show an increase in osteoblast marker genes, such 

as bone sialoprotein, osteocalcin and Runx2. The prominent finding for DPSC is that when 

cultured with KPh + dex, the genes involved in the mineralization process, namely alkaline 

phosphatase, bone sialoprotein and osteocalcin, show a substantial increase, which is 

higher than in SHED. 

Histologic analysis revealed degradation of the PA gel (Fig. 4A) and replacement with 

extracellular matrix as observed by Masson's trichrome (Fig. 4B, C). Whereas SHED formed 

clusters of cells (Fig 4 A, B), DPSC were more sparsely distributed within the gel (Fig. 4C), 

they showed a round, osteoblast-like morphology, and mineral deposition with both 

osteogenic supplements, but to a higher degree with KPh + dex (Fig. 4D). SHED treated with 

BGP + dex did not produce mineral deposits, but few deposits were visible for cells treated 

with KPh + dex after von Kossa stain (data not shown). 

Vitreous ice cryoTEM was performed on the PA scaffold surrounding the cultured cells. 

Mineralization of the artificial matrix was observed mirroring the mineralization observed 

by histology. cryoTEM images revealed little mineral deposition for SHED cultured with 

BGP + dex (Fig. 5B), but a slightly higher mineralization rate with KPh + dex (Fig. 5C). 

Mineralization potential in DPSC is much higher, BGP + dex induces deposition mainly of 

larger crystals (Fig. 5E), whereas potassium phosphate appears to be most conducive for the 

formation of multiple mineral deposits (Fig. 5F). Control gels with cells cultured with regular 

media (Fig. 5A, D) or gels incubated with osteogenic supplements for an equivalent period 

of time without cells (images not shown) did not show mineral deposits. 

DISCUSSION 

In this study, we present an in vitro system in which we combined nanofibrous peptide-

amphiphile hydrogels with two adult tooth-derived mesenchymal stem cell lines. Our data 
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provides evidence that these cells are able to 1) proliferate within the gel, 2) remodel it by 

enzymatic degradation and deposition of a collagenous matrix, 3) change their morphology 

and gene expression profile as a sign of differentiation, and 4) deposit calcium and form a 

mineralized matrix. All these characteristics vary between the two cell lines as well as 

between groups treated with different osteogenic supplements. SHED maintain a high 

proliferation rate and a spindle-shaped, fibroblast-like morphology. They produce large 

amounts of collagen, which goes hand in hand with a higher MMP-2 activity as an indication 

of matrix degradation and remodeling; and they form coherent soft tissues during a four-

week culture period. 0-glycerophosphate with dexamethasone enhances proliferation and 

induces upregulation of early differentiation markers such as collagen and alkaline 

phosphatase. In contrast, potassium phosphate and dexamethasone slightly decrease 

proliferation and affect the expression of markers of terminal differentiation of cells 

involved in biomineralization. These include Runx2, Bsp and Oc. DPSC growth is significantly 

slower in the three-dimensional environment compared to SHED. Histological images and 

the change in gene expression after 4 weeks suggest that these cells can be driven further 

towards terminal differentiation, but adopt an osteoblast-like phenotype displaying a round 

morphology, significant upregulation of osteoblast markers, downregulation of Dspp, and 

calcium deposition, especially if cultured with potassium phosphate. cryoTEM analysis 

shows that mineral deposition occurs on the synthetic peptide-amphiphile matrix in a cell-

mediated fashion. The extent of mineralization observed by TEM on the PA matrix mirrors 

the extent of mineralization observed by histology in deposited natural ECM. Importantly, 

this mineralization does not occur in the absence of cells. 

Our data are in accordance with the established model for terminal differentiation where 

cells exit the cycle and cease to proliferate. They are also consistent with previous findings, 

where SHED cells were described to be distinct from DPSC regarding their higher 

proliferation rates and differences in differentiation potential in vitro, which led to the 

conclusion that they might represent a more immature population of stem cells (1). 

Furthermore, our observations reflect the behavior of these cells in vivo and the differences 

regarding their mineralization potential in deciduous and permanent teeth. Clinical studies 
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have shown that pulp capping after exposure of the soft tissue in primary teeth shows high 

failure rates (23). In permanent teeth, reparative dentin formation after application of 

calcium hydroxide has been reported in numerous studies (24). However, formation of 

dentin with its unique tubular structure can only be observed if the odontoblast layer 

remains intact, destruction of these cells leads, in many cases, to deposition of an osteoid 

matrix by replacement cells. Whereas bone and dentin are similar in their matrix protein 

composition, and osteoblasts and odontoblasts are closely related lineages, their organ 

structure, cell phenotype and gene expression profile are distinct. However, the detailed 

mechanisms underlying the initiation and maintenance of an osteoblast- versus an 

odontoblast-like phenotype remain to be elucidated. The conditions used in this study seem 

to favor a differentiation pathway towards the osteoblast lineage. Although both stem cell 

lines have been shown to differentiate into odontoblasts in vivo, the optimum permissive 

conditions for odontoblast differentiation in vitro have yet to be clarified. Growth and 

differentiation factors such as dexamethasone, TGF3-1, different BMPs, Dmp-1 or a mixture 

of dentin non-collagenous proteins have yielded differentiation of cells into odontoblasts in 

vitro (25-28). In this study, the cell culture medium was supplemented with dexamethasone 

to induce cell differentiation, and inorganic phosphate to enhance the mineralization 

process. 

Our data leads to the conclusion that PA molecules provide a nanostructured, cell-

responsive matrix that is specifically conducive to dental stem cells. The hydrogels are easy 

to handle, and due to their mechanical properties they could be inserted into small defects, 

such as cavities of periodontal pockets, without difficulties. The two cell lines seeded in PA 

hydrogels show differences in morphology, proliferation and differentiation behavior. SHED 

seem to be a suitable tool for soft tissue regeneration, such as dental pulp, whereas DPSC 

might be useful for engineering mineralized tissues like bone or dentin, which can be 

enhanced by the choice of osteogenic supplement. This research may provide us with an 

applicable system for new treatment strategies to regenerate both soft and mineralized 

dental tissues. 



FIGURES 

Figure 1 

(A) Chemical structure of the peptide amphiphile, highlighting the four regions of function: 

1) alkyl tail, 2) enzyme-cleavable site, 3) glutamic acid for calcium binding, 4) cell adhesion 

motif RGD. (B) cryoTEM image of the self-assembled nanofiber network. 
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Figure 2 
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(A) Quantitative cell proliferation assay revealed higher proliferation rates for SHED as 

compared to DPSC, a slight increase for cells treated with P-glycerophosphate + 

dexamethasone, the opposite effect with potassium phosphate + dexamethasone. (B) 

Alkaline phosphatase activity in SHED is increased with 3-glycerophosphate + 

dexamethasone, but reduced with potassium phosphate + dexamethasone compared to the 

control, again DPSC shows the contrary. 

Columns show mean values of triplicates, and error bars indicate standard deviation. 
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FIGURE 3 
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Gene expression profile of SHED and DPSC after 4 weeks of osteogenic induction. Data 

obtained from controls were set to 1 as indicated by the dotted line. The graph shows the 

fold-increase of gene expression compared to control cells cultured in media without 

osteogenic supplements. Columns display the mean values and error bars the standard 

deviation of three measurements. (A) SHED cultured with BGP + dex mainly increased the 

expression of genes involved in matrix deposition (Col I and III) and scaffold degradation and 

remodeling (MMP-2). Levels of ALP as an early marker of mineralization were elevated. 

Genes involved in the actual mineralization process, such as Runx2, Bsp and Oc were higher 

in cells cultured with potassium phosphate + dex. (B) DPSC cells show increase of collagen 

expression to a lesser extent than SHED. When cultured with potassium phosphate + dex, 

mineralization markers ALP, Bsp, and Oc are markedly upregulated and about two-fold 

higher than in SHED cultured under the same conditions. Dspp, a dentin-specific marker 

gene, ceases to be expressed. 
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FIGURE 4 

(A) SHED cultured with 0GP + dex form cell clusters and degrade the gel (arrows, pa = 

peptide amphiphile gel (H&E). (B) SHEDs show a fibroblast-like cell morphology and deposit 

a collagenous matrix (Masson's trichrome). (C) DPSC cultured with potassium phosphate + 

dex adopt an osteoblast-like phenotype, produce collagen localized around cells (Masson's 

trichrome) and (D) deposit mineral (von Kossa stain). 
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FIGURE 5 

cryoTEM images show mineral deposition only for cells treated with osteogenic 

supplements after four weeks in culture. Whereas SHED cells produce few deposits, DPSC 

exhibit a much higher tendency for mineralization. Treatment with potassium phosphate + 

dex enhances mineral deposition significantly. (A) SHED control, (B) SHED cultured with 0GP 

and dex, (C) SHED cultured with KPh + dex, (D) DPSC control, (E) DPSC cultured with PGP + 

dex, (F) DPSC cultured with KPh + dex. 
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APPENDIX C 

Table 4: Primers for real-time PCR 

Primer 

glyceraldehyde 3 phosphate 
dehydrogenase 
Sense 
Antisense 

collagen a(l)l 
Sense 
Antisense 

collagen III 
Sense 
Antisense 

Alkaline Phosphatase 
Sense 
Antisense 

Bone Sialoprotein 
Sense 
Antisense 

Osteocalcin 
Sense 
Antisense 

Runx2 
Sense 
Antisense 

Dentin Sialophosphoprotein 
Sense 
Antisense 

Matrix Metalloproteinase-2 
Sense 
Antisense 

Abbreviation 

GAPDH 

Coll 

Col III 

ALP 

Bsp 

Oc 

Runx2 

Dspp 

MMP-2 

Sequence (5*-3x) 

GAG TCA ACG GAT TTG GTC GT 
GAC AAG CTT CCC GTT CTG AG 

AAA AGG AAG CTT GGT CCA CT 
GTGTGG AGA AAG GAG CAG AA 

GGG AAC AAC TTG ATG GTG CT 
CCT CCT TCA ACA GCT TCC TG 

CCA CGT CTT CAC ATT TGG TG 
AGA CTG CGC CTG GTA GTT GT 

GTG GAT GAA AAC GAA CAA GG 
CCC CTT CTT CTC CAT TGT CT 

ACT GTG ACG AGT TGG CTG AC 
CAA GGG CAA GAG GAA AGA AG 

GAA CTG GGC CCT TTT TCA GA 
GCG GAA GCA TTC TGG AAG GA 

TTA AAT GCC AGT GGA ACC AT 
ATT CCC TTC TCC CTT GTG AC 

TGA GAT CTG CAA ACA GGA CA 
CCT CGT ATA CCG CAT CAA TC 

GenBank 
Identification 

M_33197 

NM_000088 

NM_000090 

NM_000478 

NM_000582 

X_53698 

NM_004348 

NM_014208 

NM_004530 
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APPENDIX E 

Table 6: Rheometry Data Stress Sweep 

Peptide 

K2(SL)6K2 

K2(SL)6K2_w/o sucrose, no PBS 

K2(SL)6K2_sucrose, no PBS 

K2(SL)6K2_BGP 

K2(SL)6K2_BGP+PBS 

K2(SL)6K2GRGDS 

K(SL)3RG(SL)3K 

K(SL)3RG(SL)3KGRGDS 

K2(SL)3RG(SL)3K2 

K(SL)3VLSLRG(SL)3K 

K2(SL)6K2 2w% + hep 5mg/mL 

K2(SL)6K2 l w % + hep 2.5mg/mL 

K2(SL)6K2 l w % + hep 1.25mg/mL 

K(SL)3RG(SL)3KGRGDS lw% + hep lmg/mL + PBS 

K(SL)3RG{SL)3KGRGDS lw% + hep lmg/mL+ BGP 

E2(SL)6E2 

E2(SL)eE2GRGDS 

E2(SL)6E2GRGDS_no Ca2+ 

Col 1 (1.0 mg/mL) 

Col 1 (2.0 mg/mL) 

Col 1 (2.5 mg/mL) 

Col 1 (3.0 mg/mL) 

Col 1 (3.2 mg/mL) 

Col 1 (3.3 mg/mL) 

PuraMatrix 

G'[Pa] 

558.05 

28.7 

112.63 

513.27 

422.27 

153.84 

184.57 

182.932 

42.69 

67.93 

4823.12 

35.663 

35.45 

505.43 

498.12 

473.5 

141.57 

3.35 

30.72 

98.20 

102.10 

149.29 

154.4 

231.6 

4501.86 

G" [Pa] 

81.26 

7.9 
15.4 

63.38 

49.14 

12.64 

25.05 

20.22 

6.91 

9.96 

490.162 

11.774 

11.54 

59.38 

57.16 

43.127 

16.19 

1.82 

7.45 

19.11 

19.40 

27.51 

37.07 

39.31 

584.8 

Ang. Frequency: 

Osc. Stress: 

0.5 rad/s 

0.01 -1000 Pa 
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