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ABSTRACT 

Compressive Sensing and Imaging Applications 

by 

Ting Sun 

Compressive sensing ( CS) is a new sampling theory which allows reconstructing 

signals using sub-Nyquist measurements. It states that a signal can be recovered 

exactly from randomly undersampled data points if the signal exhibits sparsity in 

some transform domain (wavelet, Fourier, etc). Instead of measuring it uniformly in a 

local scheme, signal is correlated with a series of sensing waveforms. These waveforms 

are so called sensing matrix or measurement matrix. Every measurement is a linear 

combination of randomly picked signal components. By applying a nonlinear convex 

optimization algorithm, the original can be recovered. Therefore, signal acquisition 

and compression are realized simultaneously and the amount of information to be 

processed is considerably reduced. 

Due to its unique sensing and reconstruction mechanism, CS creates a new situ­

ation in signal acquisition hardware design as well as software development, to han­

dle the increasing pressure on imaging sensors for sensing modalities beyond visible 

(ultraviolet, infrared, terahertz etc.) and algorithms to accommodate demands for 

higher-dimensional datasets (hyperspectral or video data cubes). The combination 

of CS with traditional optical imaging extends the capabilities and also improves the 

performance of existing equipments and systems. 

Our research work is focused on the direct application of compressive sensing for 



imaging in both 2D and 3D cases, such as infrared imaging, hyperspectral imaging 

and sum frequency generation microscopy. Data acquisition and compression are 

combined into one step. The computational complexity is passed to the receiving 

end, which always contains sufficient computer processing power. The sensing stage 

requirement is pushed to the simplest and cheapest level. 

In short, simple optical engine structure, robust measuring method and high speed 

acquisition make compressive sensing-based imaging system a strong competitor to 

the traditional one. These applications have and will benefit our lives in a deeper and 

wider way. 
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Chapter 1 

Introduction to Sampling Theorem 

1.1 Nyquist-Shannon Sampling Theorem 

In early 19th century, French mathematician named Joseph Fourier proposed a com­

plete frequency-domain description of continuous signals - Fourier series and Fourier 

transform, which states that any arbitrary signal can be represented as the sum of a 

series of sine and cosine functions. Later, with the need for digital instrumentation, 

the Fourier family has been enriched with discrete time Fourier series and discrete 

Fourier transform to work with sampled versions of signals in both time and frequen­

cy domains. By sampling, a continuous signal is approximated with a set of discrete 

values taken at equally spaced intervals. The Fourier sampling theorem tells us that 

if we take enough samples, in other words, if the interval is sufficiently small, the 

signal can be exactly reconstructed with no information loss. But the question is, 

"how many samples are enough?" In 1940s, Harry Nyquist and Claude Shannon de­

veloped a theorem which addresses that, to avoid aliasing, the sampling rate should 

be greater than twice the highest frequency of the input signal in order to be able 

to reconstruct the original back perfectly. This Nyquist-Shannon sampling theorem 

is the fundamental result of today's information theory, and has been widely used 

through the years to solve problems in mathematics, physics and engineering fields. 

The Nyquist-Shannon criterion provides a sufficient condition for the sampling and 

reconstruction of a band-limited signal. Ideally, as long as the sampling rate reaches 
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the Nyquist rate, the interpolation algorithms can reconstruct the exact signal. How­

ever, due to the anti-aliasing, resolution and noise issues in practical applications, 

signal oversampling becomes an indispensable prerequisite. In general, the sampling 

rate needs to be several orders of magnitude higher than the Nyquist rate to produce 

a more accurate signal recovery. Nowadays, the design of analog-to-digital (A/D) 

and digital-to-analog (D j A) converters all follows this principle. Digital audio, for 

example, is usually sampled at a rate of 44.1KHz, as used by compact disk (CD). 

Therefore, the highest frequency of the recorded audio from the CD should not ex­

ceed 22.05KHz. A low pass filter is needed to block everything above 22.05KHz in 

order to remove the harmful aliasing frequencies. Since human ear can detect sound 

frequency from 20 Hz to 20KHz, signal shall be attenuated from OdB at 20KHz to 

90dB at 22.05KHz by an analog filter. This deep slope is difficult and expensive to 

realize and will cause phase shift problem, thus ends up poor sound quality. Instead, 

oversampling relaxes the anti-aliasing filter burden by raising the sampling frequen­

cy to 2x, 4x or even 8x of 44.1KHz, such that filtering can be done in a sufficient 

broad transition band. Similar to one-dimensional signals, images will also suffer from 

aliasing problem if the sampling rate is inadequate. Take the CCD (charge-coupled 

device) or CMOS (complementary-symmetry metal-oxide-semiconductor) camera for 

example. Grids of pixels and underlying circuits convert the light signal into the elec­

trical signal and digitize it with an A/D converter. To achieve the full resolution of 

the imaging system, CCD should have a sampling frequency at least twice the highest 

spatial frequency in the target image, which means that the pixel size must be less 

than half of the size of the diffraction limited or the Airy disk on the focal plane. In 

practice 2.5x """ 3x oversampling is used to compensate for the distance across the 

diagonal of the pixel and increase the resolution by interpolation reconstruction. The 
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higher the pixel density, the better the image is reproduced. 

This Nyquist-Shannon sampling theorem has been quite successful in the history 

of digital signal/image processing. However, with the rapid development of digital 

revolution, this criterion will lead us to a dilemma. Faster sampling and processing 

rate, higher signal resolution, multi-dimensional data, as well as oversampling de­

mands have brought a big pressure on the digital signal processing (DSP) hardware 

design and algorithms to accommodate the data deluge. Signal of Giga-Hz and im­

age of Mega-pixel have generated huge amount of data for acquisition and processing. 

More importantly, to achieve additional requirements such as low energy consump­

tion, high signal to noise ratio (SNR), great efficiency and low cost, more difficulties 

are imposed to the system design and manufacturing. 

1.2 Compressive Sensing Theorem 

To surmount the obstacles which traditional sampling method has met, a novel tech­

nology came into being. In 2006, D. Donoho, E. Candes, T. Tao and J. Romberg 

presented their initial results of compressible signal's recovery with highly incomplete 

set of data that does not satisfy the Nyquist-Shannon criterion [5-7]. Here "com­

pressible" signal means that the signal can be sparsely represented in some domain 

with only a few big coefficients compared to its original resolution. Therefore, locat­

ing those significant coefficients and pursuing their values become the core problem. 

Instead of measuring the signal components uniformly in a local scheme, the signal is 

correlated with a series of sensing waveforms. These waveforms are so called sensing 

matrix or measurement matrix. For each measurement, it is a linear combination of 

randomly picked signal components, which may be important or not at all. However, 

embedded in these measurements is all of the critical information about the signal. In 
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a global sense, each signal element will be addressed at least once, such that no infor­

mation will be missed even it is sampled much less times than what Nyquist-Shannon 

theorem has expected. By applying a nonlinear convex optimization algorithm, we 

can search for what the significant values are and where they are located. 

Compressive Sensing theory is an evolution of the Nyquist-Shannon sampling the­

orem since the bound on the signal acquisition rate is highly reduced. The bandwidth 

in its initial domain (e.g. spatial, temporal) is not the determining factor of how fast 

or how dense the signal should be sampled. Instead, the intrinsic signal dimension or 

the essential signal bandwidth affects the sensing pace. For example, suppose a time 

domain signal has a frequency spectrum with the maximum frequency of lOOMHz. 

But the big amplitudes only locate on a few frequency components. According to 

Nyquist criterion, the signal has to be sensed at least 200MHz. If it is undersampled, 

it introduces ambiguity between the significant frequency coefficients and harmful 

coherent aliases, which prevents unique reconstruction of the original signal. Howev­

er, when the signal is instead randomly undersampled in a CS scheme, a sampling 

rate slightly greater than the number of significant frequency components would be 

sufficient for signal recovery. Thus, the demanding request for the A/D converter's 

sampling speed is greatly relieved. Similarly, in the 2D case, the number of pixels 

decides the number of measurements. So the physical design of sensors follows the 

array structure to uniformly map the scene on the focal plane. If one pixel is miss­

ing, the image won't be recovered due to information loss. Currently, with the rapid 

development of sensor production technology, higher and higher spatial resolution is 

achieved. However, this growth has encountered challenges. Given that the size of a 

sensor array is fixed, the only way to increase the spatial resolution is to reduce the 

pixel size. When the pixel size shrinks, the mean photon count at each pixel falls and 
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so does the Poisson variance of the photon signal. Thus, reducing pixel size inevitably 

increases image noise. To realize the high resolution imaging with a decent signal-to­

noise ratio has become a hard issue for engineers to crack. Fortunately, the unique 

measurement procedure of CS offers a solution to this dilemma. The multiplexing 

mode measurement handles the linear combination of many pixels instead of one, so 

the light signal from the scene is maximally exploited with high efficiency. More im­

portantly, image can be reconstructed with much fewer measurements than the total 

number of pixels which greatly saves acquisition time and data storage volume. 

Notice that the CS theorem is based on the assumption that signal is sparse. If 

the sparsity is lacking, signal can not be recovered. However this priori informa­

tion is not a rare case since all the common signals we are normally interested in 

capturing have such inherent structure. Natural signals such as sound, image and 

video all have this property in some known domain after the corresponding trans­

form- Fourier, Wavelet, Curvelet, etc. The involvement of the concept "sparsity" 

in CS theory embodies the spirit of compression in signal acquisition. This is an 

initiative sensing scheme. Because compressible signal needs less essential informa­

tion to be acquired than non-compressible signal, CS measurement directly extracts 

this information without wasting sampling rate on the inconsequential one. Clearly, 

the Shannon sampling scheme does not exploit the possibility that there is sparse 

structure in the signal. Instead, CS fully utilizes this and can sample and recover the 

signal at sub-Nyquist rate. 

Sparsity is one crucial factor for CS. The other one is incoherence. The success 

of CS measurement relies on the design of sensing waveforms. In other words, mea­

surement basis should be incoherent with the sparsity basis. No element of either 

basis can be sparsely represented in terms of the elements of the other one. Since 



6 

the signal structure is shown in the sparsity basis, the measurement basis should not 

match the signal structure at all. It turns out that the random noise-like matrices are 

universally incoherent with all the known sparsity bases. So they are the ideal choices 

of the sensing matrices. The details of sparsity and incoherence will be explained in 

Chapter 2. 

CS changes the symmetry of traditional sensing system. The signal acquisition 

and reconstruction are traded off against each other. The sensing stage becomes com­

putationally light and linear, while the signal recover requires non-linear processing 

and high CPU power. To reconstruct the original signal is like to solve an underdeter­

mined equation, with information much less than the number of unknowns. This type 

of inverse problem has infinite solutions. However the restriction of sparsity helps to 

find the most optimized one, which is the sparsest solution. Its amplitude spectrum 

turns out to be the right significant components plus some low level random noises. 

By setting a threshold and amplitude correction, the original signal can be exactly 

recovered. Meanwhile, the size of the random noise is a function of the undersam­

pling factor. The fewer samples acquired, the higher the noise level. Therefore, CS 

undersampling turns the Nyquist anti-aliasing problem into a much simpler denois­

ing problem. As long as the sparse coefficients are above the noise level, they can 

be pursued and the original signal can be reconstructed. Researches are continually 

coming up with better and faster algorithms based on convex optimization. 

In short, compressive sensing is a multidisciplinary theorem which involves s­

tatistics, information technology, sampling theory and optimization theory. Due to 

the advantages CS has brought in digital signal/image processing, this new field are 

drawing more and more attentions in both academia and industry. The history of 

compressive sensing has evolved a lot from pure mathematic theory to real application 
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and these two also stimulate one another for continued improvement. 

1.3 Compressive Sensing for Imaging 

As an important breakthrough in information theory, CS unique sensing and recon­

struction mechanism offers a great opportunity to explore and discover the nature 

with better and smarter techniques. Guided by the theorem, a series of novel sensing 

frameworks have been realized and adapted from remote sensing, medical imaging 

and consumer photography to surveillance, machine vision and multimedia systems. 

These applications have and will benefit our lives in a deeper and wider way. 

Our discussion in this thesis is mainly focused on the direct application of compres­

sive sensing for imaging in 2D and 3D cases. The combination of CS with traditional 

optical imaging extends the physical capabilities and improves the performance of 

existing equipments and systems. First, we will start with the prototype of CS -

single pixel camera. 

1.3.1 Single Pixel Camera 

In traditional 2D digital photography, the field of view is recorded with a sensor array 

(CCD or CMOS), which is represented as a matrix in mathematics. Every sensor is 

responsible for a measurement of the light signal from one pixel of the scene. But 

in CS scheme, the signal received by the sensor is not the usual real-space sample 

anymore; instead it is a linear projection of light from all the pixels of the scene, 

which can be easily recorded with a single photodetector. A series of measurements 

are acquired according to a sequence of projections. So the spatial extent of sampling 

array is traded off with a sequential sampling over time. This is especially important 

and valuable for imaging areas where the 2D sensor array is either unfeasible or very 
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costly to manufacture. 

Furthermore, for conventional imagers, as the spatial resolution increases, the 

signal intensity on each pixel drops quickly and might drop below the detection limit; 

however with CS, the sum of the intensity from almost half of all the pixels is measured 

each time no matter what the resolution is and therefore better signal to noise ratio 

is obtained even with lower gain and higher resolution compared to the traditional 

pixel imagers. 

To implement the compressive sensing idea, we have constructed a prototype 

- single pixel camera. The random linear projections are realized by an optical 

modulator- digital micromirror device (DMD) from Texas Instruments. One mega 

tiny mirrors are built in a 1cm x 1cm area to manipulate the reflection direction of 

the incident light. Every mirror can be controlled and programmed to tilt in either 

+12° or -12°, which allows us to display the random pattern on the DMD. The 

light from the scene is first focused on the DMD, multiplexed by a random pattern, 

bounced back and finally captured with a photodiode. This process is repeated every 

time a new measurement pattern is displayed on DMD. The yielding photo-voltage 

values are imported to the nonlinear optimization algorithm and the original scene is 

reconstructed back. The setup and mechanism of single-pixel camera will be detailed 

in Chapter 3. 

1.3.2 Circuit Failure Analysis 

In traditional imaging, except for the 2D pixel-mapping technique, the raster scan­

ning is also widely used, especially in the scientific research area. For example, confo­

cal microscopy, two-photon excitation microscopy, laser scanning microscopy, Raman 

imagery and so on. Scanning technique is based on point illumination and point 
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detection. In other words, each time only one pixel is illuminated and the signal 

from the same pixel is recorder by a single detector. This technique is very useful to 

acquire low-light signal (anywhere from one to thousands of photons per second or 

per pulse), since varieties of sensitive and economical detectors are available, such as 

the vacuum tube photomultiplier tube (PMT) or the avalanche photodiode (APD). 

However, this point-mapping approach still has limitations. First, signal to noise 

ratio of an image may suffer greatly with increasing resolution. If the illumination 

is constant, the higher the resolution, the less amount of signal acquired from a 

pixel. Since the detected signal intensity is proportional to the incident light power, 

increasing the illumination at each pixel might solve this problem. But the light 

power has to be limited to prevent optical damage and photo-bleaching to the sample. 

Furthermore, higher resolution means longer acquisition time. For an N x N -pixel 

scene, N 2 measurements are needed without exception. 

To conquer the limitations, we include the CS idea in the conventional scanning 

microscopy and demonstrate the results in circuit failure analysis field. Traditional 

laser-based failure-analysis technique such as optical beam induced current (OBIC) 

involves scanning a focused laser beam across a sample by means of a laser scanning 

microscope (LSM). Instead, we use a CS-based OBIC measurements without requiring 

a laser or an LSM. The light source and a spatial light modulator create a series of 

pseudo-random on/off illumination patterns (structured illumination) on the device 

under test (DDT). The electrical signals (photocurrent) are produced in the silicon 

depletion region, converted to a voltage level by the transimpedance amplifier (TIA) 

and recorded by an analog to digital converter. We present reconstruction results 

from OBIC measurements on a discrete power transistor. We also demonstrate static 

IR photon emission microscopy (IR-PEM) images obtained using CS techniques in 
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which the light source is replaced with a single-element infrared photon detector so 

that no detector array is required. The detailed descriptions will be presented in 

Chapter 4. 

1.3.3 Sum Frequency Generation 

In surface science, sum frequency generation (SFG) is a powerful and versatile ana­

lytical technique to study the details of molecular structure and dynamics at surfaces. 

As a second-order nonlinear optical spectroscopy, the extremely high surface selectiv­

ity of the SFG is able to resolve the bonding, orientation and vibrational information 

of functional groups of molecules and ions at interfaces. The physical principle behind 

this surface selectivity is that the SFG is inherently blind to centro-symmetric bulk 

materials ~ gases, liquids, and isotopic solids, but is sensitive to places with low 

symmetry. At an interface between two materials, the inversion symmetry is broken, 

and the SFG optical signal can be generated and detected. 

The conventional SFG imaging includes two techniques. First is based on the 

traditional laser scanning microscopy. Each time two laser beams (one visible and 

one IR) are focused on the same spot of the sample to stimulate the SF signal. 

The generated SF signal is then collected by a PMT photodetector. By scanning 

pixel-by-pixel over time, the spatial molecule/ions distribution of the entire surface 

area is achieved. This method needs special mechanical components to accurately 

control the scanning angles of both laser beams. It is also very inefficient and time­

consuming, especially for higher resolution imaging. The second technique is 2D array 

acquisition. The laser beams are expanded to cover the whole area. The SF signal 

from all the pixels are recorded simultaneously using a greatly sensitive and costly 

CCD camera. Both the sample and the camera can remain stationary. However, 
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since the light intensity on every pixel is attenuated dramatically, the camera needs 

a long integration time to take an image with a decent SNR. 

In Chapter 5, we present the construction of a new sum frequency generation 

imaging system using the CS technique. The SFG images of a gold pattern with 

stripes on silicon wafer are successfully acquired and reconstructed. Influence of 

number of pixels, number of pulses collected for each CS testing pattern, and the 

number of CS testing patterns on image quality are examined. The results also 

illustrate that SNR plays an important role on the quality of the reconstructed image 

and also on the minimum sampling rate required for an accurate reconstruction. 

A comparison of the traditional raster scan and CS is also made and the results 

clearly shows that raster scanning image produce unresolved image features at high 

resolution. This effect is due to signal dilution of tradition imaging. The weak raster 

scanning signal quickly drops below the detection limit of the detector as the number 

of pixel increases; while for CS, almost 50% of the signal is always detected, thus even 

for higher resolution it still maintains a good SNR. 

1.3.4 Hyperspectral Imaging 

Hyperspectral imaging, as a relatively new analytical technique, has drawn more and 

more attention in a wide field. By monitoring the interaction of electromagnetic 

radiation with matter as functions of wavelengths, the unique identification and clas­

sification of the substances can be realized due to their individual spectral signatures. 

However this important sensing method is limited by the scanning mode detection. 

To acquire the 3D hyperspectral data cube, raster scan is required, no matter with a 

scanning mirror in the X-Y spatial dimension or tunable spectral filter in the spectral 

dimension. This process is time consuming and very inefficient. Meanwhile, signal 
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to noise ratio of an image may suffer greatly with increasing resolution because the 

signal intensity from every scanning point is limited by the detector integration time. 

On the other hand, huge amount of data from every scene - normally hundreds of 

megabytes, need to be stored and processed before transmission, which brings heavy 

computation burden and programming complexity into the acquisition stage. 

Chapter 6 is devoted to the extension of the single pixel camera to the hyperspec­

tral imaging. The photo-sensing element is replaced with a spectrometer. Inside the 

spectrometer, incident light is diffracted by a reflective grating and focused onto a 

linear sensor array. Each sensor produces a photovoltage output for one random pat­

tern. So the logged data corresponds to a spectrum (represented as a linear vector) 

for every measurement, with the length equal to the number of wavelength channels. 

Then each spectral slices are independently reconstructed and pile up together to 

form the 3D cube. 

Typically, hyperspectral imaging is of spatially low resolution, in which each pixel 

from a given spatial element of resolution and at a given spectral band is a mix­

ture of several different material substances, termed endmembers, each possessing 

a characteristic spectral signature. Hyperspectral unmixing is to decompose each 

pixel spectrum to identify and quantify the relative abundance of every endmember. 

Many linear mixing algorithms exist for determining endmembers based on the 3D 

hyper-cube. In our case, compressed hyperspectral data is first acquired with the CS 

hyperspectral imager. In the decoding side, a numerical procedure is performed to 

directly compute the abundance fractions of given endmembers, completely bypass­

ing high-complexity tasks involving the hyperspectral data cube itself. Without the 

intermediate stage of 3D hyper-cube processing, we combine data reconstruction and 

unmixing into a single step of much lower complexity. We assume that the involved 
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endmember signatures are known and given, from which we then directly compute 

abundances. We also extend this approach to blind unmixing where endmember 

signatures are not precisely known a priori. 
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Chapter 2 

Compressive Sensing Theory 

Compressive sensing differentiates itself from the conventional sampling approaches 

by recovering certain signals and images from far fewer samples or measurements. 

The traditional sampling methods follow Shannon's theorem and the sampling rate 

must be at least twice the maximum frequency present in the signal. While for 

CS, depending on the sparsity of the sampling system, a fraction of the maximum 

frequency is required for sampling to retrieve the signal. To make this possible, CS 

relies on two principles: sparsity and incoherence 

2.1 Sparsity 

Most of the signals (sound, image, video, etc.) in nature possess an inherent structure, 

termed sparsity. Even if it is not directly revealed in the temporal or spatial domain, 

investigators have found various ways to highlight this sparsity by transforming to 

another domain, such as the frequency domain. In a proper basis there might be a 

large number of nonzero coefficients for the many of the real world signals or images. 

However, all but a few of the coefficients are large and the large coefficients carry 

most of the information of the signal. The signal can still be represented concisely by 

throwing away the small coefficients without much loss. 

Sparsity, which has a long history of success in digital signal/image processing, 

considerably reduces the computational requirements and storage cost of data. So the 
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(a) (C) 

Figure 2.1 : (a) original circuit board image. (b) 8-level wavelet decomposition. 
Black: significant coefficient, white: insignificant coefficient. (c) compressed image 
recovered with 10% wavelet coefficients 

fundamental problem is to look for a transformation that puts the most energy of the 

signal in the fewest transform coefficients. Currently, the design of dictionaries (e.g. 

DCT, Fourier, wavelet, curvelet, etc.) for sparse representations has led to extremely 

efficient compression methods, such as JPEG, MP3 and MPEG for irnage, audio and 

video data respectively. 

Figure 2.1 shows an example of a sparse wavelet representation of a circuit board 

image [8]. Only a few coefficients in the transform domain are significant and located 

on the edge area of the image. Others are equal or close to zero. Through a wavelet 

transform, energy is concentrated in a relatively small number of components com-

pared to the total number of pixels of the original image. We sort out the coefficients 

and discard those small ones. By using those big coefficients for reconstruction, image 

information is well preserved without much perceptual loss. 

This demonstration also shows how traditional imaging works. We must acquire 

all the pixel signals first to execute a \vavelet transform. For an n x n-pixel scene, 

n2 samples are needed to avoid losing information. For example, CCD and CMOS 
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are widely used image sensors with an n x n array of photoelectric detectors. Each 

detector represents one pixel of the image. The DSP chips behind the sensor collect 

all the data from CCD or CMOS, transform it in the wavelet domain and sort out 

the big coefficients. The whole process is done in the sensing stage, which is time and 

energy consuming when performing the complicated mathematical calculation. Since 

the images have the property of sparsity, with most transform coefficients insignificant 

and negligible, it appears redundant to acquire all the pixel values in the first place. 

As an alternative, without starting with a potentially large number of samples N 

(N = n2 ), CS realizes an efficient method of signal acquisition by directly acquiring a 

condensed representation without going through the intermediate stage of acquiring 

all N samples. CS theory states that a signal can be recovered exactly from randomly 

undersampled data points if the signal exhibits sparsity in some transform domain 

[5-7]. A limited number M (where M « N) of measurements carry and preserve the 

most essential information of the signal when reducing the dimension from JRN down 

2.2 Incoherent Projection 

Assume that we acquire a real-valued, discrete signal x = [x1 , x2, ... , xN] (for ex-

ample, an N-pixel image) which can be represented in an orthogonal basis 'II = 

['1/11 , '1/12 , ... , '1/JN]. Suppose the basis provides a K-sparse representation of x, then the 

signal can be expanded as a linear combination of K elements chosen from 'II 

(2.1) 

or 
N K 

x = L '1/!(n)a(n) = L 'l/!(n1)a(n1) (K « N). (2.2) 
n=1 1=1 
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Figure 2.2 : CS fonnulation in linear algebra 

Here a is the transform coefficient vector with only K nonzero elements. To search 

for the K significant coefficients, the signal x, of dimensionality N, is first projected 

into a lower-dimensional basis function <P = [<h, (/;2, ... , ¢N] via 

YMxl = <PMxN;"CNxl (M << N), (2.3) 

where the inner product between the basis <P and signal x produces an M x 1 column 

vector y with every entry termed "a measurement" (see figure 2.2). Since the dimen­

sion of y is greatly smaller than that of the signal x ( M << N), recovery of x from the 

measurements y is an ill-posed inverse problem. However, the additional assumption 

of signal sparsity makes the recovery practical. Merging equation (2.1) and (2.3), we 

can write as 

(2.4) 

CS theory addresses that it is possible to construct a matrix A such that the 

sparse coefficients a can be recovered from the measurements y. The sufficient con-
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dition is the so-called restricted isometry property (RIP). Alternatively, to ensure A 

satisfies the RIP, the measurement matrix <I> must be incoherent respect to the sparse 

representation matrix \IT as much as possible, which requires that ¢m can not sparsely 

represent the elements of '1/Jm and vice versa [5--7]. 

A measure of mutual coherence of the two bases is given by 

(2.5) 

If \IT and <I> contain correlated elements, the coherence is large. Otherwise, it is smal­

l. For example, delta spikes are maximally incoherent with sinusoids. In particular, 

this incoherence holds with high probability between an arbitrary fixed basis (wavelet, 

curvelet, Fourier, etc.) and a randomly generated one, such as a matrix with indepen­

dent identically distributed (i.i.d.) Gaussian (cpij E N(O, 1)) or Bernoulli (cpij = ±1) 

with equal probability. 

2.3 Signal Reconstruction 

To recover the signal x from the M measurements y, there are two fundamental ap­

proaches for CS reconstruction. First is convex optimization, such as basis pursuit 

(BP) [6], fixed-point continuation (FPC) [9], gradient projection for sparse recon­

struction (GPSR) [10], etc. The second is greedy search algorithm, which includes 

matching pursuit (MP) [11], compressive sampling MP (CoSa.MP) [12], iterative hard 

thresholding (IHT) [13], and so on. Both of them have their own advantages. In gen­

eral, the convex optimization approach has better reconstruction accuracy than the 

greedy search algorithm; while the latter has a. less computational complexity. 

In particular, the h-regula.rized convex optimization has attracted intensive re­

search activities. It turns out that, if matrix A = <I>W has the RIP property and 
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the number of measurements M satisfies M 2 cKlog(N/ K), where cis a small con-

stant, the original signal x can be reconstructed exactly from y with overwhelming 

probability by solving a constrained optimization problem 

minii'11Txll 1 subject to y = cl>x (2.6) 

in a noise-free case or 

(2.7) 

when measurement noise exists. c quantifies the noise level involved in the measure-

ment y. 

For image restoration, recent research [14--16] has confirmed that the use of total 

variation (TV) regularization instead of the h term in CS problems makes the recov-

ered image quality sharper by preserving the edges or boundaries more accurately, 

which is essential to characterize images. We solve 

minTV(x) subject to y = cl>x. 

Here TV is the sum of the magnitudes of the discrete gradient at every point: 

ij ij 

{ 

X "+1 . - X. . (i < N) 1. ,] 't,J 

Dh,ijX = 
0 (i = N) 

- { Xi,j+l - X.i,j (j < N) 
Dv,ijX-

0 (j = N) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The advantages of TV minimization stem from the property that it can recover not 
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only sparse signals or images, but also dense staircase signals or piecewise constant 

images. The experimental results presented in this thesis are reconstructed by the new 

efficient TV minimization scheme based on augmented Lagrangian and alternating 

direction algorithms- TVAL3 [17]. 

2.4 Pseudorandom Pattern 

The design possibilities of the random matrix are extensive. In considering the hard­

ware implementation, we have employed several pseudorandom patterns. 

1. Mersenne Twister (MT): 

MT is a pseudorandom number generating algorithm developed by Makoto Mat­

sumoto and Takuji Nishimura in 1996 and 1997. The algorithm is coded into 

a C-source. By seeding a randomizer, a sequence of random numbers can be 

generated [18]. According to the parity, the entries of the pattern are set as + 1 

or -1, with the ratio of about 1:1. This method ensures the pattern randomness 

to a pretty high level. But CS reconstruction based on MT patterns is relative­

ly slow and computationally expensive due to non-availability of a fast inverse 

transform. The whole M x N measurement matrix has to be loaded in Matlab 

for calculation, which consumes large amounts of computer memory especially 

in high resolution imaging. 

2. Walsh Hadamard Matrix: 

We also exploit a double-permuted, sequence-ordered Hadamard matrix which 

contains only ±1 entries. Each row of the matrix of order N is a Walsh function 

or Hadamard vector. By randomly permuting the rows and the elements in each 

row, a new measurement matrix <I>NxN is formed. We take the first M rows 



21 

32 32 64 

Figure 2.3 : 64 x 64 reshaped Walsh basis functions (left column) and corresponding 
measurernent patterns after permutation (right column) 

{ ¢i , i = 1, ... , M} and reshape each one of them to a 2D matrix for the hard-

ware operation. Some examples of 64 x 64 reshaped Walsh basis function and 

the corresponding real rneasurement pattern after the permutation are shown 

in Figure 2.3. This double permutation insures to a great extent the necessary 

pattern randomness. 

In mathematics, Walsh-Hadamard transform is an important tool because of 

its simplicity. It is a non-sinusoidal transform by addition and subtraction 

which is similar to Fourier series analysis, but uses square waves instead of s-

inusoidal waves. The Walsh-Hada1nard matrix does not need to be stored in 

memory to perform the matrix-vector multiplication. It's fast transform and 

inverse transform guaranty a nurnerically efficient CS implementation. 
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3. Circulant Matrix: 

A circulant matrix is a matrix whose columns, or equivalently rows, are circular 

permutations of one another. For example, it can take this form 

tn tn-1 

cp cireulant = 
t1 tn 

tn-1 tn-2 

The last column is an vector {ti, i = 1, 2, ... , n}. The remaining columns are 

each cyclic permutations of the vector with offset equal to the column index. 

Similarly, the first row is the vector in reverse order, and the remaining rows are 

each cyclic permutations of the first row. Since circulant matrix is diagonalized 

by the Fourier transform 

cp circulant = F* D F, 

then we get 

y = cl>x = F*DFx. 

The matrix-vector multiplies is sped up through the fast Fourier transform 

(FFT), which improves the CS reconstruction speed. 

This pattern generation approach is simple and convenient. All that is re­

quired is the seed vector or mother vector. We shift this vector left-to-right 

and up-to-down to generate all the others. Then each vector is reshaped in­

to a 2D matrix/pattern for CS imaging implementation. Primary results have 

shown that circulant matrix is not only effective but also enable much faster 

decoding [19]. 
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In short, from Mersenne Twister to Walsh-Hadamard patterns, the image re-

construction time is dramatically reduced. The computational efficiency is greatly 

improved as well. Our next step is to perform deeper investigations on circulant pat-

tern. Its unique properties will surely enrich the CS family and benefit the practical 

imaging applications. 

2.5 Simulation Results 

To demonstrate the performance of the measurement basis (Walsh-Hadamard) and 

the sparsity basis (gradient under the total variation operator), Matlab simulated 

results are presented here. Synthesized measurement vector is created by multiplying 

the target image (Figure 2.4) with each row of the double-permuted Walsh-Hadamard 

matrix. There are altogether 2562 elements in the vector, which comprise a complete 

set of measurement data for further analysis. Then we choose different percentage of 

this set of measurements for reconstruction. As shown, Figure 2.5(f) is reconstructed 

using alllOO% measurements, while Figure 2.5(a)-2.5(e)is based on partial ones, from 

5%, 10%, 15% to 20%, 25% respectively. Visually, the qualities of the recovered 

images keep improving with the increasing number of measurements, and more and 

more image details are shown up. However after 20%, no substantial improvement is 

observed. 

Figure 2.6(a) plots the normalized mean squared error (MSE) versus the number 

of applied measurements. Here MSE is computed as 

I:i[Xr(i) - X(i)F 
I:i X(i)2 

(2.12) 

X is the original image. Xr is the recovered one. The summations are across all 

the pixels. The MSE sharply decreases from 0.02 to 0.005 and then decays more 



24 

Figure 2.4 : original 256 x 256-pixel cameraman image. 

slowly afterwards. This trend shows that the number of measurements M reaches the 

sparsity level of the image at about 25%, which already contains abundant inforrnation 

to locate the big coefficients and recover the real space images. If the measurement 

data contains noise, the MSE curve shows the similar trend as in Figure 2. 6 (b). 
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(a) 5% (b) 10% 

(c) 15% (d) 20% 

(e) 25% (f) 100% 

Figure 2.5: double-permuted Walsh-Hadamard pattern: (a)-( f) reconstruction results 
under 5%, 10%, 15%, 20%, 25% and 100% of the measurement data respectively. 
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Figure 2.6: normalized MSE versus the percentage of measurements under two cases: 
(a) noise free (b) Gaussian noise added. 
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Chapter 3 

Single Pixel Camera 

The implementation of compressive sensing to imaging is through the realization 

of random projections. Light signal from multiple pixels of the scene is combined 

into one signal output according to different random pattern. To realize the CS 

theory into real imaging system, a proper light modulator is required. It should 

have the capability to control the light transmission or reflection from a 2D plane. 

Furthermore, the frame rate of the modulation sequence has to be fast enough to 

adapt to the practical imaging application. Fortunately there exists a spatial light 

modulator called a digital micromirror device (DMD) (Texas Instrument) which is 

currently an ideal candidate for compressive imaging application because it processes 

high addressing speed, high contrast and a friendly digital interface. 

3.1 Digital Micromirror Device 

3.1.1 introduction 

D MD was invented by Larry Hornbeck and William Nelson of Texas Instruments 

(TI) in 1987. Till now, it has become one of the most successful commercial MEMS 

technologies in digital display industry and widely used in projector, HDTV and 

digital cinema. The unique properties and high standard performance make DMD 

even more attractive for many emerging applications, including holographic data 

storage, lithography, scientific instrumentation, and medical imaging. 
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As a spatial light modulation device, DMD creates high resolution and good qual­

ity images by modulating the light with microscopic mirrors (Figure 3.1(b)), with 

each of them looking like a "pixel" as in a CCD. Mirror orientation is controlled by 

underlying electronics as shown in Figure 3.1(c). The mirror is rigidly connected to 

a yoke which is connected by two mechanically compliant torsion hinges. Since each 

mirror is suspended above an individual static random access memory (SRAM) cell, 

according to which bit is loaded into the cell, a proper voltage is applied to the yoke 

address electrodes. The electro-static attraction forces the mirror to rotate until it 

comes to rest against mechanical stops. Therefore, mirrors can tilt and be positioned 

in one of two states-+ 12° ("on" state) or -12° ("off" state) from horizontal; light 

falling on the DMD can be reflected in two directions depending on the orientation 

of the mirrors. So collecting light from one direction with lenses will produce gray 

scale images on the screen. 

Due to the digital nature, we load binary numbers to every SRAM to control the 

mirror orientation and represent the gray levels of brightness. This technique is called 

binary pulse width modulation. The bit depth varies from 1 to 8, corresponding to 

gray scale values of 0 to 255. It is realized by varying the ratio of "on" verse "off' 

time of the mirror. Human eyes integrate the pulsed light to form a perception of 

desired intensity. For example, 1 bit/pixel means only binary patterns ("black" or 

"white") can be displayed. One frame needs N bits to display (N is the total number 

of mirrors). For 8 bit/pixel, it takes N x 8 bits to store a frame. So, there is a strong 

trade-off between the fame rate, the gray level and the DMD resolution. For example, 

Discovery™ 4100 0. 7 XGA DMD consists of a 1024 x 768 array of electrostatically 

actuated micromirrors. It can display a sequence of binary XGA patterns at 32550 

frames/sec or 8-bit gray scale patterns at 4068 frames/sec. Discovery™ 4100 0.95 
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(a) (b) (c) 

Figure 3.1: (a) DMD chip; (b) scanning electron microscope image ofmicromirror [1]; 
(c) schematic of micro mirror [2]. 

1080P DMD consists of a 1920 x 1080 array of mirrors and displays a sequence of 

binary patterns at 24690 frames/sec. 

As a reflection light modulator, the micromirror is made of aluminum and the 

sealing glass window is coated with an anti-reflection layer. According to different 

applications, the window materials vary as needed to transmit in the waveband of 

choice from deep ultraviolet (UV) to long wave infrared (LWIR). Figure 3.2 shows 

the window transmission spectra of three materials - silica (three different coatings) , 

Zinc Selenide and Barium Fluoride [20]. In DMD, light efficiency is maximized as a 

reflective device. 

3 .2 Light Modulator Package 

The light modulator package (ALP) is the high speed controller of the DMD, which 

links the on-board memory with the DMD data lines. Due to the digital nature, 

DMD accepts binary numbers in the range of 1 rv 16 bits to display time average 

grayscale levels. It is realized by varying the ratio of "on" versus "off'' time of the 

mirror. Human eyes integrate the pulsed light to form a perception of desired in ten-

sity. Triggering options are provided in both directions. In the master mode, when 
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Figure 3.3 : ALP mounted on a DMDllOO board 

the mirror flips , D MD sends out a pulsed voltage signal to trigger other devices, such 

as ADC or spectrometer. In the slave mode, DMD is triggered to display and switch 

patterns when an external pulsed signal is received. 

A user friendly JAVA interface enables us to program the DMD and ALP for 

our needs. All the patterns are first loaded via USB from PC to the ALP memo­

ry(96Gbits). Once loaded, the frame sequences can be selected to be transferred to 

the DMD by a high speed FPGA and displayed on the mirrors. Parameters such as 

sequence time, illumination time, picture ti1ne and trigger delay are set separately 

without reloading the frame sequences. Figure 3.3 is the picture of our ALP mounted 

on a DMDllOO. 
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3.3 Single Pixel Camera 

3.3.1 Architecture 

Figure 3.4 shows a schematic of the optical setup of a CS application - the single­

pixel camera. It is in essence an optical computer that randomly but controllably 

modulates the incident light from the target scene and sums it up to the output at 

the photodetector. 

Light radiated or reflected from the object is first focused on DMD surface through 

a lens. By inputting a known random pattern ~ to the DMD, the reflected light 

is modulated by the corresponding tilting angles of the micromirrors. Each mirror 

represents one element of the matrix ~. If~ is a binary pattern, then the + 12° mirror 

represents "1" and -12° mirror represents "0". Light signal reflected from + 12° 

mirrors is collected with another lens and recorded with a photodiode. The resultant 

photo-voltage is a measurement of the projection or inner product between the scene 

and the random matrix~ displayed on DMD. We take a sequence of measurements 

corresponding to a sequence of patterns. Based on those measurements, the original 

scene can be reconstructed by our optimization algorithm. 

To define the sampled image resolution, the micromirrors are divided into a num­

ber of blocks. Mirrors within one block are programmed to tilt in the same direction, 

with each block corresponding to a pixel. For example, by setting 3 x 3 mirrors as 

one block, 256 x 256 pixel imaging is performed; a 24 x 24-mirror block yields to a 

32 x 32 pixel imaging (use the center 768 x 768 mirrors of DMD for display). This 

scheme can be additionally adjusted to control the field of view. 
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Figure 3.4 : Single pixel camera schematic 

3.3.2 M ultip lexing Methodology 

The single-pixel camera is a flexible ru·chitecture to implement a range of different 

multiplexing methodologies. With the same setup, different acquisitions from the 

photodiode are reconstructed into original image based on corresponding multiplexing 

methods. In addition to the CS pattern, we also employed the raster scan and basis 

scan patterns on DMD to compare their performance. 

• CS: A single sensor takes M measurements sequentially from different combi­

nations of the N pixels as deterrnined by random pattern { ¢m}· Typically, we 

set M = O(K log(N /K)) which is :::; N when the image is compressible. In 

our analysis, we assume that the '1 rows of the matrix <l? consist of randomly 

drawn rows from a permuted Walsh-Hadamard matrix. The acquired image is 

obtained from the measurements y via a sparse reconstruction algorithm such 

as TVAL3. 

• Raster scan: Light signal form each pixel is acquired sequentially, starting in the 
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pixel on the top left corner, going from left to right, and then row by row from 

the top to the bottom of the image. This corresponds to test functions { cf>m} that 

are delta functions and thus ci> = I. The number of N measurements y directly 

provides the acquired image x. On DMD, it is accomplished by illuminating the 

entire active region and tilting a single mirror at a time towards the sample. 

• Basis scan(BS): Similar to CS, a single sensor takes N measurements sequentially 

from different combinations of the N pixels as determined by patterns { cf>m} 

that are a complete set of orthonormal bases, such as noiselet, DCT, Walsh-

Hadamard, etc. The acquired image is easily calculated from the measurements 

y by X = cp-ly. 

Here we first conduct a theoretical analysis on the SNR which is a important 

factor to characterize the efficiency of the three methodologies. Experimental results 

comparison will be detailed in the following chapters. 

We assume an image with N pixels and express it in a vectorized representation 

x = [x(1) ... x(N)]T. To measure the image, we shine a series of light intensity pat­

terns an= [an(1), ... , an(N)](n = 1, ... , N), which provides us with measurements 

N 

y(n) = L an(n')x(n') =~X. 
n 1=1 

If we stack the N row vectors ~ into a matrix A of size N x N, then this mea-

surement process can be represented as the matrix equation y = Ax, where y = 

[y(1) .. . y(N)]T. We suppose the light power radiated from pixel m to be unity 

x(m) = 1, and assume variance of white noise a is added to each obtained measure-

ment y(m); by collecting the noise values into a vector Xn = [xn(1) ... Xn(N)]T, 

our measurements then correspond to y = Ax+ Xn· When A is a basis (or more 
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generally a full rank matrix), an estimate of the image data is obtained as 

Thus the signal to noise ratio becomes for the estimate of the mth pixel is 

lx(m)l lx(m)l 
SNR(m) = lx(m)- x(m)l = la;;,1xnl' 

where a;;-,1 denotes the mth row of the matrix A - 1 . 

The Euclidean norm of the rows am = [am(1) ... am(N)] of the matrix A is 

defined as 
N 

11~11 = L am(n')2, 
n'=1 

for the different techniques; the SNR will be proportional to this norm. 

• In raster scan, we set the matrix A to the identity so that only one pixel is 

measured at a given time. The row ~ = [0 0 ... 0 1 0 ... 0 0], with the 1 at 

index m. In this case, a;;-,1xn = Xn(m) and the SNR becomes 

lx(m)l 1 
SNRraster(m) = lxn(m)l = -;;· 

• In basis scan, we set the matrix A = W, where W is the Walsh matrix with 

entries 1 and -1. The row~ corresponds to the mth Walsh pattern. The matrix 

B =A - 1 will have entries bm(n') of magnitude 1J, and so the expected value of 



the denominator of the SNR is 

E [la;;;'x.l] ~ E [lbmx.ll ~ E [ i;, bm(n')xn(n') ] , 

E [t, bm ( n'J'xn ( n')'l 
N 

= L bm(n')2 E [xn(n')2], 

n'=l 

N 

L bm(n')20"2 , 

n'=l 

n'=l 

0" 
= v'N" 

So we obtain in expectation that 

v'N 
SNRbasis(m) = -. 

0" 
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(3.1) 

This shows that basis scan outperforms raster scan in SNR by a factor of v'N. 

• In CS, the measurements follow the same formulation as in basis scan. CS 

recovery introduces an amplification in the noise power by a constant Cn, which 

has been shown experimentally to be approximately 4 [21]; thus we can say 

roughly that 

SNRc = .jN 
s 20" ' 

where now we refer to the SNR averaged over the entire image. The advantage 

of CS over basis scan is that we only need M ~ N measurements. Thus 

the acquisition time is reduced by a factor M / N, which could be lOx or more 

depending on the image. For further discussion of basis scan and CS theory, 

see refs [22, 23]. 
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3.3.3 Advantages 

In summary, the traditional sampling process wherein massive data is first acquired 

and then discarded to facilitate storage and transmittance is extremely wasteful. 

Compressive sensing brings about a smart and efficient method of signal acquisi­

tion with two steps: random compressed measurements and nonlinear recovery. It 

directly acquires the important information of the signal with highly condensed mea­

surements. Signals from the pixels are linearly projected to one output/measurement. 

A sequence of measurements is acquired by changing the projection pattern. The 2D 

spatial system is transformed to a lD spatial plus temporal system. The compression 

inherent in compressive sensing also reduces the time duration, which enables the real 

application of imaging with a single-pixel detector. Random projection is a universal 

encoding strategy because it is incoherent with any fixed sparsity basis. Using the 

same random measurements, a decoder can recover the signal under any sparse ba­

sis according to different applications. If a sparser representation is proposed in the 

future, the same measurement data can be used for reconstruction with even higher 

quality. 

The simple optical engine structure, robust measuring method and high speed 

acquisition makes compressive sensing-based single pixel camera a strong competitor 

to traditional imaging systems. Data acquisition and compression are combined into 

one step. There is no computation involved in the sensing stage. All the compu­

tational complexity is passed to the receiving end, which always contains sufficient 

computer processing power. The sensing stage requirement is pushed to the sim­

plest and cheapest level. Moreover, one detector instead of detector arrays enables 

more applications, such as IR imaging with an InGaAS photodiode, low light imaging 

with PMT (Photomultiplier Tube) or APD (Avalanche Photodiode), hyperspectral 
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imaging with a spectrometer and so on. More details will be discussed in the next 

chapter. 
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Chapter 4 

CS Application to OBIC and IR-PEM 

Laser scanning microscopy is a vital technique for studying function and process in 

micro-structure. Its basic working principle is to focus laser light with objective lens 

on a spot on the focal plane within the specimen and scan over it in a pixel-by­

pixel manner. The contrast of an image may come from reflection, transmission, 

fluorescence, Raman, nonlinear harmonics signals, photocurrent, etc. Because of the 

monochromaticity, narrow linewidth, low divergence and strong power, laser as the 

light source has its own priority in low light imaging and confocal microscopy. 

This traditional sequential point mapping approaches require an additional incor­

poration of a sample positioning stage or scanning mechanics, such as galvanometer­

driven mirrors [24] and acousto-optic deflectors [25], to address every pixel precisely 

and repeatedly. The data acquisition time, signal to noise ratio and spatial resolution 

couple strongly and combine to limit the effectiveness of such a technique. The higher 

the resolution, the less signal that is received by the detector per measurement, and 

thus the more integration time needed to accomplish the scanning. However, the 

single-detector configuration is still extensively used due to the relatively low cost 

and great diversity of individual detectors. 

In our work, we proposed a new microscope system based on the idea of compres­

sive sensing, which outperforms the conventional microscopy from both acquisition 

time and SNR. Instead of illuminating the pixel one-by-one uniformly, a structured 

illumination is created. It is realized by modulating the light source with a series 
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of pseudo-random patterns before it reaches the device under test (DUT). The re­

sulting signal from the DUT (e.g. photo-current, photo-resistance) is recorded and 

reconstructed for the entire imaging area. Meanwhile, the single element detection p­

reserves the advantages of simple optical structure and versatile detector choices. We 

will demonstrate this microscope's performance in the field of circuit failure analysis 

in the following sections. 

4.1 Introduction 

In today'.s semiconductor industry, devices are becoming more and more miniaturized 

and complex. Transistors, diodes, capacitors, resistors and their interconnections are 

all assembled into a small integrated circuit (IC) chip, which is generally microscopic 

in size. Due to this high integration, high density and high functionality, failure 

causes and mechanisms are also complex. Therefore, it is important to analyze failed 

devices, clarify failure modes and mechanisms, and provide feedback to improve the 

manufacturing and design processes. 

Semiconductor failure analysis (FA) involves a number of different techniques, 

such as X-ray radiography, curve tracing, scanning acoustic microscopy (SAM), s­

canning electron microscopy (SEM), Optical Beam-Induced Current (OBIC), Photon 

emission microscopy (PEM), microthermography(Hot Spot Detection), auger emis­

sion spectroscopy (AES), focused ion beam analysis, etc. Each technique provides 

its own specialized information and contributes to arrive at an accurate determina­

tion of the cause of failure. In this chapter, we illustrate CS applications to two FA 

techniques - OBIC and IR-PEM. 
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4.1.1 OBIC 

OBIC is a photovoltaic effect which is used to locate electrically active defects such 

as diffusion, stacking faults, latch-up and leakage in IC chip. OBIC images are pro­

duced by monitoring the nonrandom recombination current of the electron-hole-pairs 

generated by a laser as it is scanned across the chip surface. If the excitation photon 

energy exceeds the smallest band gap, the photon absorption effect will provide the 

electron with enough energy to overcome the band gap and jump to the conduction 

band. It will produce many free electron-hole pairs. These pairs usually recombine 

randomly in the material; however, if production occurs in a depletion region, the 

charge carriers will be separated by the junction potential before recombination pro­

ducing an OBIC signal. The variations in current produced by the laser beam as it 

scans the sample are converted into variations in contrast to form the OBIC image, 

which represent the circuit chip's properties. 

OBIC is an efficient and non-invasive optical analysis technique in detecting and 

localizing certain IC failures. First, it requires little in the way of sample preparation. 

Second, since OBIC introduces no charge into the circuit, it causes no damage. Last, 

no external bias or circuit is needed to observe a signal. Due to these advantage, 

applications of OBIC range from detection of diffusion region and defective junction 

to gate oxide short, etc. 

4.1.2 PEM 

PEM is widely used for circuit failure analysis as a defect localization tool. When 

an electron transits from a higher energy state to a lower one, the energy difference 

is emitted as electromagnetic radiation. If the excitation source is due to electrical 

stimulation, the radiative transition is also termed electroluminescence. 
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Figure 4.1 : (a) Forward biased p-n junction (b) Reverse biased p-n junction. [3] 

In silicon chip, photon emission from the defect area generally falls into four cate-

gories: forward or reverse biased p-n junctions (Figure 4.1), transistors in saturation, 

latchup, and gate oxide breakdown. Vv'"hen a forward biased voltage is applied to a 

p-n junction, N-type majority carriers, electrons, move from the N-type material to-

wards the P-type material. P-type majority carriers, holes, move towards the N-type 

material. The emission is generated by inter-band electron-hole recombination near 

the junction area. The energy of the emitted photon is near the bandgap of silicon 

(1.12eV), and the corresponding wavelength of the photon is near 1107nm. When 

a reverse biased voltage is applied to a p-n junction, 1najority carriers are attracted 

away from the junction. The positive terminal attracts electrons away from the edge 

of the barrier on the N side. The negative terminal attracts holes away from the 

junction barrier on the P side. This increases the width of the nonconducting deple-

tion barrier. There is no recombination of majority carriers. Only a small current 

flows due to minority carriers. But the reverse bias creates a substantial electric field 

in the depletion region. As the reverse bias increases, the electric field increases as 



43 

well. Once its intensity is beyond a critical level, the p-n junction will break down 

and generate photons from the recombination of carriers whose energies is significant­

ly above the bandgap energy. The resulting emission spectrum will extend into the 

visible wavelength, varying from 400nm to llOOnm. 

4.2 SNR Analysis 

Conventional OBIC imaging requires laser as the scanning light source. One reason 

is that the size of the beam spot decides the resolution of the image. Another reason 

is the signal-to-noise ratio. Since the photocurrent signal is proportional to the illu­

mination power, stronger light source excites more current which brings higher SNR 

in the measurement. The standard approach to OBIC is the time-tested raster scan 

by stepping the laser beam to each pixel sequentially. If the laser beam has power P, 

then the optical illumination power on each pixel is also equal to P, as shown in Figure 

4.2(a). The alternatives to the raster scan are the basis scan and CS measurement. 

In basis scan, the entire die is illuminated with a series of patterns that comprise a 

complete basis set. If there are N pixels, then N patterns are required. In CS, one 

uses not a complete set of basis functions but a smaller set of random illumination 

patterns. This is advantageous because the theory of CS tells us that if our imagery is 

compressible, then we can take many fewer random measurements than the number 

of raster-scanned pixels or basis-scan functions. If there are N pixels in the image, 

then typically we can make M measurements, where M/N is on the order of 10% or 

less, with only a small SNR penalty compared to basis scan. This is analogous to 

the familiar JPEG compression of images - although the compression is lossy, most 

of the information in the image is retained even though the file size is much smaller 

than the original. 
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illumination power NP illumination power P 

' beam expander ' beam expander 

illumination power P 

device 

Optical power P per pixel Optical power P per pixel Optical power PIN per pixel 

(a) Raster Scan (b) CS & Basis Scan (c) CS & Basis Scan 

Figure 4.2 : OBIC measurements under different lighting conditions: (a) raster s­
can with illumination power P and optical power P per pixel (b) CS and BS with 
with illumination power NP and optical power P per pixel (c) CS and BS with with 
illumination power P and optical power P /N per pixel. 



45 

Since basis scan and CS don't require a low divergence light source, normal lamps 

or LEDs can be utilized for illumination. So as an updated version of SNR analysis in 

Chapter 3, we illustrate the OBIC SNR comparison among raster, BS and CS in two 

different lighting conditions. The schematics of them are presented in Figure 4.2(b) 

and 4.2(c). 

1. Total illumination power P: 

• In raster scan, we set the matrix A = P · I, where P is the optical power 

and I is the identity matrix. The row 3m= [0 0 ... 0 P 0 ... 0 0], with 

the Pat index m. Then a_;1:xn = Xn(m)/ P, and the SNR becomes 

lx(m)l P 
SNRraster(m) = lxn(m)l = -;;· (4.1) 

• In BS and CS, the laser is expanded and uniformly cover the whole DMD 

area, with optical power P distributed equally among the N pixels. we set 

the matrix A=~· W. The row 3m corresponds to the mth Walsh pattern 

has entries -P/N and P/N. The matrix B =A -I will have entries bm(n') 

of magnitude J,, and so the expected value of the denominator of the SNR 

is 

The SNR becomes 

n'=l 

p 
SNRbasis(m) = 17\T' 

avN 

(4.2) 

(4.3) 
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p 
SNRcs = 11\T" 

2ovN 
(4.4) 

In this case, the raster scan technique outperforms CS by a factor around 

2. Optical power P per pixel: 

• In raster scan, it stays the same SNR, 

lx(m)l P 
SNRraster(m) = lxn(m)l = a 

• In the basis scan, with optical power P per pixel, the total optical power is 

NP. We set the matrix A= P · W. The matrix B =A -I will have entries 

bm(n') of magnitude N~' and so the expected value of the denominator of 

the SNR is 

n'=l 

= p.jN" 

So we obtain in expectation that 

p.JN 
SNRbasis(m) = --, 

a 

SNRcs = p.jN. 
2a 

(4.5) 

(4.6) 

(4.7) 

In this case, CS is superior by a factor of about .,fN /2 compared to raster 

scan. 
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Figure 4.3 shows numerical simulations of the relative scaling of SNR for CS 

vs. raster-scanned images. A series of 128 x 128 images with up to 10 nonzero 

data points was used. The amplitude of each nonzero point within an image was 

set to 1, 10, 100, or 1000. Gaussian noise of RMS value 1 was then added. Each 

image was reconstructed with raster scan (using the full16K measurements) and CS 

(using 100 measurements) and the expectation value of the SNR, averaged over the 

entire image, was calculated. The CS measurements used 128 times as much total 

illumination power incident on the sample as the raster measurements; in this limit 

the SNR values are approximately equal as expected, over a range of about 3 orders 

of magnitude. 

Interestingly, for low SNR and small number of nonzero pixels, the CS measure­

ment performs somewhat better than raster. This is because the CS technique only 

required 100 measurements (vs. 16K for raster) and so the signal was extracted with­

out adding in an enormous number of noise measurements. At higher SNR and higher 

number of nonzero pixels, the raster scan shows some improvement over the CS. This 

is due to the heavier weighting of the high-signal pixels when averaged over the whole 

image. In the high-SNR regime either image would be sufficiently clean to be useful, 

but the CS measurement in this (extremely sparse) case required less than 1% of the 

measurements required for the raster scan. 

4.3 Experimental Setup 

To demonstrate compressive sensing's application in failure analysis related to OBIC 

and IR-PEM, we constructed a simple but robust platform. As shown in Figure 4.4, 

according to the two reflection angles of the DMD, the setup was divided into two 

parts to acquire the OBIC and IR emission data separately. 
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Figure 4.3 : Nurnerical simulation OBIC measurements, with M = 128 x 128 reso­
lution. Horizontal axis is SNR of acquired raster images (full 16K measurements). 
Vertical axis is SNR of CS (100 measurements). The optical power for the CS ·mea­
surements is VJV = 128 x higher than the raster measurements. 
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Collection 

Eyepiece 

Figure 4.4 : Optical setup for OBIC and IR-PEM. (Light ray paths highlighted 
in three line styles: blue solid for OBIC measurement; blue dash for USB Camera 
imaging; red solid for IR ernission) 

The left arm contained a light source which was expanded and collimated onto 

DMD to cover the whole rv lcm2 mirror array area. The DUT was placed on the 

optical conjugate plane of DMD, such that the structured illurnination on the DUT 

matched the digital illun1ination pattern applied to the DMD. A USB camera helped 

to visualize and focus the DUT while justifying the position of the translation stage. 

The right arm was devoted to IR signal collection. The detector was a commercial 

TE-cooled InGaAs photodiode from Ha1namatsu. The DUT was a discrete power 

transistor in a T0-3 package with the cap rernoved. The base ernitter junction of 

the DUT was forward-biased, causing ernission due to electron-hole recombination. 
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The infrared light emitted by the DUT was first imaged onto DMD. The modulated 

intensity patterns reflected by the DMD were collected by the photodiode and then 

digitized. 

Once the optical system is focused, the two different measurements are both avail­

able. Since DMD always has light reflected in two angles, during OBIC measurements, 

we closed the shutter on the right arm in case the ambient light reached the photo­

diode. Similarly, in emission acquisition, the left shutter was closed. Also note that, 

the applied patterns on OBIC and IR emission are simply inverted versions of each 

other, which means one is displaying the pattern { <Pm} while the other is displaying 

{1 - <Pm}· Thus, the reconstruction process is the same for both. 

In addition to the known random patterns, we also displayed a raster scan pattern 

on the DMD and compared the experimental results of the two different acquisition 

methods. The sequential raster scan was accomplished by illuminating the entire 

DMD and tilting a single mirror-pixel at a time towards the sample. The representa­

tive illumination patterns on the DUT are shown in figure 4.5. Notice that figure 4.5 

(b)-( c) both have one block of black area (one pixel) which is addressed independently. 

4.4 Experimental Results 

4.4.1 OBIC Results 

First we employed a 3mW He-Ne laser as the illumination light source to acquire 

and reconstruct the OBIC signals. The DUT was a discrete PNP power transistor 

(NTE219) with the base and emitter terminals connected to a TIA. The OBIC signal 

from the DUT was converted to a voltage level by the TIA and recorded by an analog 

to digital converter. 
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(a) (b) 

(c) (d) 

(e) 

Figure 4.5 : Image of DUT with (a) 100% illumination. (b) - (c) represent pixels in 
a 32 x 32 raster scan illumination pattern. (d) a 32 x 32 permuted Walsh-Hadamard 
illumination pattern. (e) a 64 x 64 pern1uted Walsh-Hadamard illumination pattern. 
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The sampled image resolution was set as 256 x 256 pixels. The measurement 

patterns were switched every 200J.Ls, so the total data acquisition time needed was 

200 x M J.LS (M is the number of measurements). We took a complete data set 

with the whole M = 2562 random patterns, then chose partial measurement data 

for reconstruction and quality comparison. In Figure 4.6(f), the result was recon­

structed by all the 2562 measurements and set as the raw image since it involved no 

compression. Figure 4.6(a)-(e) were reconstructed using partial measurements under 

different ratio. As shown, the recovered image quality kept improving as the number 

of measurements increased, especially when below 10%. After that, the improvement 

became very small and unnoticeable. In practice one would only record the required 

fraction of the total patterns, leading to an acquisition time advantage compared to 

raster scan. The flexibility to trade off SNR directly for acquisition time is an ad­

vantage of CS techniques over raster scan: if one terminates an OBIC scan 5% of 

the way through a measurement, one only obtains data for 1/20 of the field of view 

rather than obtaining an image that encompasses information from the entire field of 

view. 

Figure 4. 7 plots the normalized mean squared error versus the measurement ratio 

for OBIC reconstruction. The MSE drops quickly from 0.1 to 0.02 when the mea­

surment ratio is below 10%. This trend shows that the number of measurements M 

reaches the sparsity level of the target at about 10%. In general, M is dependent 

on the sparsity of the scene in the reconstruction basis and the system noise level. 

For the same amount of data, the sparser a signal is, the better reconstruction is 

expected. Our experimental result is consistent with the simulation in Chapter 2. 

It is also possible to employ all1024 x 768 micromirrors to produce a high resolu­

tion OBIC image as opposed to being limited by the base two nature of the Hadamard 
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(a) 5°/o (b) 10°/o 

(c) 20°/o (d) 50°/o 

(e) 70°/o (f) 100°/o 

Figure 4.6 : (a)-(f) OBIC CS reconstructions of 256 x 256 pixel irnage with different 
measurement ratio. 
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transforrn. Figure 4.8 is the reconstructed image under 1:20 compression. The mea-

surement only took about 8 sec. This \vas accomplished in a manner similar to the 

zero-padding to perform the fast Fourier transform on odd-sized images. 

Except for the laser as the light source, we also presented CS-OBIC results ac­

quired using a white light source (arc larnp). The SNR comparison of raster and CS 

was described under two situations- constant total illumination power and constant 

optical power per pixel. 

The DUT was an NPN power transistor (Figure 4.9(a)) with the base and emitter 

terminals connected to a TIA. The whole DUT active area was uniformly illuminated. 

We displayed CS random pattern and raster scanning pattern on DMD respectively 

for data acquisition. The optical power on every mirror /pixel kept a constant. Figure 

4.9(b) shows a CS result reconstructed with 30% of the data set for a 256 x 256 pixel 

image. Figure 4.9( c) shows a raster result under the sarne spatial resolution. In this 
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Figure 4.8 : OBIC CS reconstruction of a 1024 x 768 pixel image using 5% of the 
total measurements. 

case the signal was so small as to be limited by quantization noise in the ADC. The 

gain of the TIA was increased by lOx to compensate. Even in this case some of the 

weaker features (such as the outer contact ring due to the collector-base junction) 

were completely missing. The constant power per pixel assumption reflects cases in 

which there is a maximum allowed intensity one can apply to the DUT. This would be 

relevant when lirnited by optical damage to the DUT or by the need to avoid latchup. 

In the constant illurnination case, it is analogous to expanding a laser beam from 

a raster-scanning measurement to fill the entire die and performing CS instead. The 

setup was the same as the previous light condition, but we attenuated the white light 

source by approximate 104 during the CS measurements to achieve roughly constant 

total power for a 128 x 128 pixel imaging. The results are shown in Figure 4.10. As 

predicted by theory, the raster measurement was cleaner, although the OBIC data 

was still quite good. 



56 

(a) Device (b) cs 30% (c) Raster with 1 Ox gain 

Figure 4.9 : OBIC measurements of DUT with constant optical power per pixel, 
256 x 256 resolution. (a) Image of the device. (b): CS measurements with 30% data. 
(f) Raster data with lOx extra gain to boost SNR. 

(a) Raster (b) cs 30% 

Figure 4.10 : OBIC measurements at constant total illumination power, 128 x 128 
resolution. (a) raster scan (b) CS with 30% data. 
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4.4.2 IR-PEM Results 

Visible imaging has been a mature industry because of the continued miniaturization 

and development of silicon CCD and CMOS technology over the past 30 years. Be­

yond the visible region, new narrow-bandgap materials such as InGaAs, HgCdTe and 

InSb need to be employed as focal plane arrays (FPA) for two-dimensional imaging 

in various bands of the infrared regions. The high cost of forming these materials 

into large pixel arrays has greatly limited the widespread use of such IR imagers. 

They also have different thermal expansion coefficients than the silicon of the read­

out integrated circuit (ROIC) which is required to store the signal and to sequentially 

read the signal of all the pixels to an output amplifier. This mismatch brings more 

complexity and challenge to the sensor fabrication process. Another complication is 

the additional need for cooling to reduce the associated thermal noise and achieve 

a reasonable signal-to-noise ratio. Liquid nitrogen, Stirling cycle engine and Joule­

Thompson cooler are the typical methods of cooling [26], which make the detector 

bulky, heavy, expensive or energy consuming. 

As another important application, CS is also relevant for IR emission imaging 

from integrated circuits. Instead of acquiring emission images using expensive FPA 

detectors, one can use a single-pixel photon detector and spatial light modulator. This 

is the basis of the original single-pixel camera idea. The advantage in this case is the 

greatly reduced cost and complexity of a single-pixel emission microscope compared 

to an FPA-based system. Scientific-grade InGaAs FPAs with liquid-nitrogen cooling 

cost much more than 20K and are not commercially available everywhere in the 

world. On the other hand, a single-element photodiode along with a DMD could cost 

significantly less and achieve comparable levels of performance in some cases. 

The infrared detector in our experiment was a commercial TE-cooled InGaAs 
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photodiode from Hamamatsu Corp. (G6122). The PNP power-transistor DUT was 

forward biased at VsE = 1.8V, I = 0.67 A. The 256 x 256 measurement patterns were 

changed every 400ps. Figure 4.11(a)-(f) shows reconstruction results using varying 

fractions of the total potential 65K patterns. 

Figure 4.12 plots the normalized mean squared error versus the measurements 

ratio for the recovered IR emission images. The number of measurements M reaches 

the sparsity level of the target at about 20%. It is higher than OBIC because the 

IR emission signal is much noisier due to inherently low photon counts and the non­

cryogenic cooling of our detector. 

The images are all reconstructed in less than 3s. with an ordinary personal com­

puter. The fast acquisition (20% needs 6 sec.) and reconstruction make it particularly 

attractive for many practical applications. 

In addition, the 90% fill factor of DMD provides high quantum efficiency compared 

to many focal plane array detectors. Furthermore, every separate sensor on an array 

detector receives light only from a single pixel of the scene, while in CS the single 

detected signal is always the light combination from half of all the pixels. In the 

regime where the total SNR is limited by dark noise of the detector, the optical 

Hadamard multiplexing achieved advantage by improving the SNR as 

SNRcs = (v:)SNRraster, (4.8) 

where we refer to the SNR averaged over the entire image. 

To compare the results, we switched on one block of mirrors in turn to acquire 

raster scan image. The signal collected by the photodiode is corresponding to the one 

in each sensor of the FPA. As shown in Figure 4.13, when the resolution is as low as 

32 x 32, the emission area shows up. \Vhen the resolution goes up to 64 x 64, 1/4 

times less light is collected from each pixel and the area of interest is almost buried 
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Figure 4.11 : (a)-(f) IR-PEM CS reconstructions of a 256 x 256 pixel image with 
different measurement ratio. 
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Figure 4.12 : Normalized mean squared error of 256 x 256 IR-PEM reconstruction. 

into background noise. At 128 x 128 and 256 x 256, the image results in white noise, 

while under the same settings the CS reconstruction has a much higher SNR. This 

illustrates why traditional IR imaging requires significant cooling to reduce the sensor 

background noise and identify the signal from the target; yet CS based imaging can 

overcome this lirnit and reconstruct the entire image with higher quality. 

When the transistor was reverse biased, twas reverse biased, 

4.5 Summary 

We have demonstrated OBIC measurernents taken without the need for a laser or a 

laser-scanning microscope. Using a digital micro mirror device and compressive sens-

ing techniques, we are able to acquire OBIC data using a simple optical system. Under 

some circumstances a CS-OBIC system can outperform a comparable raster-OBIC 

system or be 1nore suitable for automated measurements. For IR-PEM detection, 

compressive sensing based measurement also reduces the required size, complexity, 
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Figure 4.13 : IR-PEI\1 results. Left column: Irnages obtained by raster scanning for 
various sample resolutions; Right column: Images obtained by CS measurement for 
the same sarnple resolutions but at a compressed rate. 
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and cost of the IR sensor array down to a single unit. In addition, the intensity of 

the compressed signal at the detector is greater than its raster scan counterpart and 

therefore results in better signal sensitivity and improved image quality. 
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Chapter 5 

CS Application to Sum Frequency Generation 

5.1 Introduction 

Chemical heterogeneity of surfaces or interfaces plays a crucial role in fundamental 

understanding of many chemical processes and applications, such as heterogeneous 

catalysis, corrosion, wetting, natural systems, bio adhesion, and so forth. Macroscop­

ic probe techniques such as x-ray photoelectron spectroscopy (XPS), Raman spec­

troscopy, infrared spectroscopy, and sum frequency generation (SFG) spectroscopy 

provide the spatially averaged information and are not typically able to deduce the 

chemical heterogeneity. A molecular-level microscopic picture of the chemical hetero­

geneity would allow an understanding of these processes in a more profound way. 

Traditional heterogeneity characterization techniques, such as scanning tunnel­

ing microscopy (STM) [27], scanning electron microscopy (SEM) [28], transmission 

electron microscopy (TEM) [29], and atomic force microscopy (AFM) [30], while pro­

viding excellent spatial resolution are not able to elucidate the molecular chemical 

information of the surfaces/interfaces. Vibrational spectroscopy, Fourier-transform 

infrared microscopy (FT-IR microscopy) [31] and Raman micro-spectroscopy [32] al­

low the chemical imaging of heterogeneous systems; however they reveal only the 

structure of the bulk. XPS microscopy, another powerful technique which is capable 

of giving the chemical distribution on a surface requires ultra-high vacuum conditions 

and lacks the ability of probing interfaces involving liquids such as solid-liquid bound-
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ary. SFG is a unique second-order nonlinear optical technique which is highly surface 

specific and allows the operation in ambient conditions and is able to detect various 

interfaces, such as solid-liquid [33], gas-liquid [34], and solid-gas interfaces with sub­

monolayer sensitivity [35, 36]. Moreover, SFG is able to reveal the surface chemistry 

in both vibrational spectroscopy and the orientation of the functional groups on the 

surface/ interface. 

The conventional approaches of SFG imaging microscope and nonlinear microscopy 

include the traditional raster scan [37--4:3] or using a costly CCD camera as report­

ed by Florsheimer et al. [44], Kern and co-workers [45, 46], and Baldelli and co­

workers [47-53]. SFG imaging of CO on platinum [47], microcontact-printed (p,CP) 

mixed self-assembled monolayers (SAMs) on gold surfaces [53], microcontact-printed 

monolayers derived from aliphatic dithiocarboxylic acids [48], octadecanethiol SAM 

on mild steel [52], octadecanethiol on zinc surfaces [51], and patterned SAMs with d­

ifferent terminal groups were successfully conducted using the microscope. Note that 

most of the reported SFG imaging was on metal substrates. The detection limit of 

the CCD camera allows the detection of the relatively strong SFG signals. Further­

more, for conventional imagers as the resolution increases, or the number of pixels 

increases, the signal intensity on each pixel drops quickly and might drop below the 

detection limit; the acquisition time of the traditional imaging system is long. It 

is this impetus to develop an alternate, economic, SFG microscopy technique which 

provides two-dimensional chemical surface maps with better quality and is sensitive 

enough to detect the low SFG signal in a time efficient manner. The improvement of 

a faster acquisition and higher resolution of the images will greatly expand the utility 

of SFG imaging for surface chemists. 

There are several features which make CS an unique and beneficial technique for 



65 

SFG imaging. First, CS involves acquiring a signal from a surface then reconstructing 

the image accurately from a far smaller number of linear measurements than the 

desired resolution of the images or signals. Second, CS always detects 50% of the 

signal from the surface all the time; the signal dilution with increasing resolution 

(or pixel), which is the limiting factor that affects the image quality and resolution 

for traditional raster scan and CCD mapping, does not apply to CS in the sense of 

dark noise or read-out noise limits of the detector. The improved SNR even with low 

gain and high resolution, compared to the traditional imaging, would be obtained 

for CS. Third, CS allows for the use of a single pixel detector, for example, PMT, to 

acquire the SF signal with gated integration data acquisition system. The higher gain 

of a PMT than that of the pixel sensors makes it possible to capture the weak SF 

signal and chemically image the surface/interface. Fourthly, the SFG-CS microscope 

is much more economic than the traditional imaging systems that use the costly CCD 

or CMOS imagers. In summary, CS enables significantly reduced measurement time 

and sampling rates, lowers the cost of the setup and allows better image quality even 

with high spatial resolution and thus high chemical contrast. 

5.2 SFG Theory 

Sum frequency generation [35] is a second order nonlinear optical technique which is 

very sensitive (detecting molecules at a level below 10-9mol/cm2 ) [54], highly surface­

specific [55] and provides molecular vibrational information of various surfaces and 

interfaces, such as air/liquid [34], liquid/liquid [56], liquid/solid [33], air/solid [35,36] 

and solid/solid [57] interfaces. 

When an external electric field becomes intense enough and is comparable to the 

internal field felt by an electron, the response of a material to the applied electrical 
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field is no longer linear. Under the electric dipole approximation the polarization P 

is expressed as a power series in the field strength E as [58, 59] 

P = X1 E + x2 : EE + x3 : EEE . .. , 

where xn is the nth order susceptibility. 

]When two laser beams, the visible beam and IR beam, overlap both in space and 

time, a new beam is produced with the sum of the incident frequencies, which can be 

expressed by 2nd order susceptibility as 

The direction of the SF signal is determined by momentum conservation parallel to 

the interface 

where ksFx is the wave vector of the SF signal along x axis, kvisx is the wave vector 

of the visible beam along x axis, and kiRx is the wave vector of theIR beam along x 

axis. For a co-propagation geometry, the momentum conservation could be written 

as [58-60] 

w sin f3 = w1 sin /31 + w2 sin /32, 

where w, w1 and w2 are the frequencies of the SF signal, visible and IR laser beam, 

respectively; f3 , /31 and /32 are the incident or reflection angle from surface normal of 

the SF, visible, and IR beams, respectively. The intensity of sum frequency signal is 

given by 

I (2) 12 I IsF ex XeJJ fiR VIS, 

where X~ff is the effective second order susceptibility, IIR and !vis denotes the inten­

sity of the incident IR beam and visible beam. X~ff consists of two parts, a resonant 
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component X~) and a nonresonant component x~k, as described by the following 

equation 

(2) (2) (2) 
Xeff = XR + XNR· 

For dielectric materials, x~k is typically small, while for metals and semiconduc­

tors the nonresonant signal generally would be complex quantities and large [60, 61] 

due to highly nonlinear properties of the materials. [55, 62, 63]. 

5.3 Experiment Preparation 

In SFG imaging experiment, the samples to be examined is synthesized by Baldelli's 

group at University of Houston. The detailed preparation process is as follows: 

1. Materials: The alkanethiol, 1-oetadecanethiol (98%), was purchased from 

Sigma Aldrich; heptane, Na2S204 , H 20 2 (30 wt.% solution in water), and 

K 4 Fe(CN) 6 were from Aldrich and used as received; absolute ethyl alcohol was 

from Aaper. KOH was obtained from Mallinckrodt Chemicals; K 3Fe(CN)6 

and 1-0ctanol were from Baker; H2S04 (> 98%) was from Fisher. The pre-

polymer, Sylgard silicone elastomer base and cuing agent, used for fabricating 

the elastomeric stamps, were obtained from Dow Corning Corp. All aqueous 

solutions were prepared in 18.2MO · em water obtained by purification of dis­

tilled water with a Millipore Milli-Q system. The replica master mold used for 

microcontact printing was a homemade one with stripes of a width of lOOJ,Lm 

and spacing of 100J,Lm. All chemicals were used as received. 

2. Gold Surface Preparation: Evaporated gold surfaces were used to prepare 

the gold stripe pattern and the octadecanethiol self-assembled monolayer (ODT 

SAM) pattern. Gold of 99.99% purity was used. Gold films of a thickness of 
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lOOnm were deposited on the highly polished side of silicon (100) substrates by 

thermal evaporation at a pressure of 1 x 10-5 Torr in a vacuum chamber with 

a rate of 1.0""' l.L4/ s. A 10 nm Cr layer was deposited with a rate of 1.0 A/ s 

prior to Au to improve the adhesion to the Si wafer. 

3. Microcontact Printing and Gold Pattern Fabrication: The micropat­

terned, elastomeric polydimethylsiloxane (PDMS) stamp was replicated from 

the master mold, following the published procedure [64]. The stamp was inked 

by dropping a 3mM ODT ethanol solution on the surface with the patterns and 

blow-dried gently with nitrogen gas until no solvent was observed. The stamp 

was then brought into contact with the gold surface for about 30s with gentle 

pressure. The gold features were generated by etching the ODT patterned gold 

surface utilizing a solution of the mixture of Na2S20 3 (0.1 M), KOH (1.0 M), 

K 3Fe(CN) 6 (0.06 M), and K 4 Fe(CN)6 (0.001 M). A "defect-healing" additive, 

1-octanol was added to the etching bath as well to achieve high-selectivity etch­

ing. The substrate with features of gold was then sonicated in MilliQ water 

for about 1 minute, rinsed thoroughly with MilliQ water and absolute ethanol 

and dried under a stream of nitrogen gas. The optical microscope image of 

gold pattern by a 5 x optical microscope is illustrated in Figure 5.1. The actual 

width of both the gold stripe and spacing is about lOOJLm. 

The fundamental 1064nm laser was produced by a PL2251 series YV04/Y AG 

diode laser (Ekspla) with a repetition rate of 20Hz. Then it was split into two 

beams. One passed through a nonlinear crystal KTiOP04 (KTP) and generated a 

532nm green laser via second harmonic generation. The other was incident to an 

optical parametric generator/optical parametric amplifier (OPG/OPA, Laservision) 



69 

Figure 5.1 : Optical microscope image of the gold pattern. 

system and produced tunable IR beam with the wavenumber varying from 2000cm-1 

to 4000cm-1
. In our experiment, theIR wavenumber is fixed at 2880crn-1 . At this 

wavenumber, both the nonresonant signal from the gold surface and the resonant 

signal of the symmetric C- H stretching from the residue ODT monolayer on the 

gold stripes contributed to the detected SF signal. 

5.4 M icro scope instrumentation 

Figure 5.2 shows a picture of the SFG compressive sensing imaging (SFG-CSI) mi­

croscope. Figure 5.3 illustrates its schematic diagram. The 532nm visible beam and 

tunable IR beam overlapped temporarily and spatially on the sample at an incident 

angle (relative to the surface normal) of 50° and 60°, respectively. The SF signal's 

angle is 51.2° determined by momentum conservation. Then the SF signal passed 
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Figure 5.2 : the sum frequency generation-compressive sensing imaging microscope. 
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Figure 5.3 : Schematic diagram of SFG-CSI microscope setup 

through a 1:1 telescope which maintains the size of the SF beam. The telescope is 

composed of two sets of Nikon camera lenses (55mm and 50mm) and reduces spherical 

and chromatic aberrations to improve the image quality. A 1200/600 nm interfero­

metrically ruled precision grating (Thermo Jarrell Ash) in a littrow condition with 

the diffracted beam perpendicular to the grating surface was used to direct the SF 

beam to a 1 : 10 magnification system. The incident angle of the SF signal to the 

grating was set to be 21.1 o to the grating surface normal. The SF beam magnified by 

the lOx n1icroscope was maintained collimating by a tube lens and then reflected by 

two mirrors to the DMD. The DMD modulated and reflected the SF beam to a silver 

coated concave mirror with a focal length of 150mm. The concave mirror focused the 

SF beam onto the detector, a R928HA photomultiplier tube obtained from Hama-

matsu. Before the beam impinged to the Pl\1:T, seven filters were used along the SF 
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beam path to filter out the light except for the SF signal. The filters include (1) two 

505 SP (400-510 nm, transmittance 85%) short pass filters, one 441.6AELP-GP long 

pass filters in front of the PMT; (2) two 505 SP short pass filters mounted in a tube 

and placed in front of the DMD; (3) one 505 SP short pass filter placed right after 

the sample and in front of the first lens of the 1:1 telescope; and (4) one 465AF50 

Omega optical band-pass filter ( 430-480 nm, transmittance 70-80%) placed between 

the two lens sets of the 1:1 telescope. 

The YAG laser has a 20Hz precise trigger (PRET) output which was used to 

synchronize the SF pulse generation with DMD pattern switching, and PMT data 

acquisition. The boxcar integrator and A/D computer interface were triggered by the 

master PRET trigger. The DMD pattern switching was triggered by a TTL trigger 

from the oscilloscope (Stanford Research Systems, Inc., Model DG535), which was 

also triggered by PRET with a 20 ms delay. 

The whole synchronization process of the laser, DMD and A/D converter was inte­

grated into a Lab VIEW program. The inputs for the program are the location of file 

of generated DMD patterns, total number of patterns, average number and location 

of output acquisition data file. The program first initializes the DMD driver, sets 

parameters of DMD, and transfers patterns from pattern files to the RAM of DMD. 

For example, the program sets the DMD to slave mode, which means the DMD dis­

plays a pattern only when it receives a trigger signal. Then it communicates with the 

data acquisition board and set its synchronization mode. The main principle is that 

for every trigger signal generated from the oscilloscope, the DMD displays a pattern 

and then the acquisition board acquires a signal. The program interface shows the 

current pattern displayed in DMD as well as signals acquired from acquisition board 

in real time. It implements the synchronization communications of the hardware for 
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Figure 5.4 : A 32 x 32-pixels SFG image of gold pattern reconstructed using 100% 
rneasurements. 200 laser pulses were averaged for each rneasurement. Signal from Au 
stripes was bright and signal from Si substrate was dark. 

the whole system and the automatic signal detection. 

5.5 Results and Discussion 

Figure 5.4 shows the sum frequency generation in1age of the gold pattern acquired and 

reconstructed using the CS technique. The image resolution was set as 32 x 32 pixels. 

1024 random patterns were applied to DMD in a tirne sequence and 200 pulses were 

acquired and averaged for each pattern. TheIR beam diameter, which is the limiting 

size for SF signal generation, was about 800-1000p.m. Therefore 4-5 gold stripes were 

captured in the SFG image of the gold pattern. The intensity distribution in the 

image is due to the visible and IR beam profiles, which follow Gaussian distribution 
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in an ideal case and have the highest intensity distributed in the center of the beam. 

Since measurement noise is the crucial factor that dictates the number of measure-

ments needed for reconstruction in CS. For a k-sparse signal, the following condition 

on the number of measurements was obtained [65] 

M > 2Klog(N/K) 
- log(1 + SNR)' 

where N is the signal length; K is the sparsity of the system; M is the minimum 

number of measurements needed. The sparser the image or the higher the SNR, 

the less measurements needed for a decent reconstruction result. Therefore, in our 

experiment, we usually acquired a certain amount of SF pulses/shots and averaged 

them to one measurement for each random pattern to obtain relative high SNR. Figure 

5.5 shows the measurement coefficients averaged with different number of pulses/shots 

and the images reconstructed. It shows the results of 20, 50, 100, 120, 150, and 

200 shots acquired per pattern. The results clearly showed that for 20 shots per 

pattern, the coefficient plot was quite noisy and the image barely showed the stripe; 

for 50 shots per pattern the coefficients were less noisy and in the image the stripes 

emerged. As the number of shots increased from 20 to 200, a progressive improvement 

of SNR was observed from the measurements and the reconstructed image quality as 

well. Figure 5.6 illustrated the relationship of relative noise level with the number of 

shots acquired. The noise was calculated as the standard deviation of the standard 

deviation of the SF signal for each pattern over a specific number of pulses. It shows 

a dramatic improvement as the number of shots per pattern increases. 

The effect of number of CS measurements was also examined. In Figure 5.7, (a)­

( f) show the SFG images reconstructed using various measurement ratio, from 20% 

to 100%, with each measurement averaged from 200 shots. The image reconstruction 
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Figure 5.5 : Effect of number of pulses/shots per random pattern on the quality 
of the SFG-CS images: reconstructed images and the corresponding rneasurement 
coefficients obtained with various number of shots, (a) 20 (b) 50 (c) 100 (d) 120 (e) 
150 (f) 200. The images were recovered at a resolution of 32 x 32 pixels and 1024 
patterns employed. 
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Figure 5.6 : (a) Measurement coefficients averaged with various numbers of shots 
per pattern (b) Illustration of SNR change: standard deviation of the averaged mea­
surements under 20, 50, 100, 120, 150 and 200 shots per pattern. The images were 
obtained at a resolution of 32 x 32 pixels and 1024 patterns employed. To get a clear 
comparison of the coefficients, some curves were offset in (a). 
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using 20% of the available patterns did not give clear stripes of the Au pattern. As 

the number of patterns increased better image of the gold pattern were obtained. 

The previous images showed that the DMD was under filled with the SF signal. 

Attempts was made to enlarge the SF beam by adjusting the IR lens to make the 

IR beam larger and by moving the objective of the 1:1 telescope closer to the sample 

and the corresponding adjustment of the other lens set. Images obtained under this 

condition were shown in Figure 5.8. The resulting images indicated that the magni­

fication of the SF beam was larger after the adjustments however the DMD was still 

not filled up with the SF beam. 

Figure 5.8 shows the comparison of the images acquired and reconstructed at 

different image resolutions, 32 x 32 pixels and 64 x 64 pixels. The number of shots 

per CS testing pattern was 150 for both images. It showed that the higher resolution, 

64 x 64 pixels, provides better image of the gold pattern. Note that the width of the 

gold stripe and spacing is around 100 f.J:m; the width of each individual micromirror of 

the DMD is 10.8 J1m. A random pattern uses a 768 x 768 mirror array. For a 32 x 32 

pixel image resolution, an array of 24 x 24 mirrors was defined as one optical unit 

and width of this unit is about 260 J1m ( or a little bit larger than 260 f.£ffi if taking 

the spacing between mirrors into account), which is larger than the actual width of 

the gold stripe, while for a 64 x 64 pixel image resolution, the optical unit consists of 

12 x 12 mirrors and the width of the optical unit is about 130 J1m, which is closer to 

the actual width of the gold stripe. 

A comparison of using CS and the traditional raster scan to obtain the SFG 

image of the gold pattern was also performed. Figure 5.9 shows the images of the 

gold pattern obtained using both CS and raster scan at various image resolutions, 

16 x 16 and 32 x 32. For both CS and raster scan at a resolution of 16 x 16, two 
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Figure 5. 7 : Number of pattern effect on quality of the reconstructed SFG images of 
the gold pattern. The image resolution was 32 x 32 and 200 shots per pattern were 
obtained and averaged. (a) 20%, (b) 40%, (c) 60%, (d) 80%, and (e) 100% of the 
total patterns. 
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Figure 5.8 : Comparison of the quality of the SFG-CS irnages using various image 
resolutions applied to the DMD. 150 shots were acquired and averaged for each pattern 
applied to Dl\1D. (a) SFG-CS image acquired and reconstructed at an image resolution 
of 32 x 32 pixels with 1024 patterns. (b) SFG-CS image acquired and reconstructed 
at an image resolution of 64 x 64 pixels with 4096 patterns. 

blurry stripes appeared in the SFG images. As the resolution increased to 32 x 32, 

a better image of the gold pattern was obtained using CS, while for raster scan the 

chemical contrast of the SFG signal of the gold pattern was lost. The advantage of 

CS rnethods showing here is unique. CS measures 50% of the signal all the time and 

therefore maintained a good signal to noise ratio, while for raster scan the signal was 

diluted by increasing the resolution, or the pixels. 

5.6 Summary 

A new SFG microscope against the traditional imaging concept by using the novel 

sampling theory, compressive sensing, \vas successfully constructed. The sum fre-

quency generation image of a gold pattern with stripes was successfully acquired and 

recovered using CS algorithms. The next step is to perforn1 the CS-SFG imaging on 
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Figure 5.9 : . Comparison of t he SFG images obtained using the novel CS and the 
traditional Raster method. (a) CS image at a resolution of 16 x 16 pixels (b) Raster 
scanning image at a resolution of 16 x 16 pixels (c) CS image at a resolution of 32 x 32 
pixels (d) Raster scanning irnage at a resolution of 32 x 32 pixels. 
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dielectric material, such as molecules and bio-samples, with higher spatial resolution. 

Because the current picosecond laser system with a low repetition rate was not 

able to fully implement the inherent advantages of CS. Using higher repetition rates 

and shorter pulses will impact signal, push the sample damage threshold to a higher 

value and reduce the necessary measuring times. 



Chapter 6 

CS Application to Hyperspectral Imaging and 
Endmember Unmixing 
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We design and construct a hyperspectral imaging system based on the idea of single 

pixel camera. An important advantage of the single pixel camera is that the detec-

tor can be swapped out for alternatives. For instance, one could easily replace the 

photodiode with a spectrometer to create a compressive hyperspectral imager. The 

random multiplexed light from the target is diffracted along the linear sensor array 

inside the spectrometer. Each sensor takes the compressed measurement of corre-

sponding wavelength band. Thus, the spatial as well as the spectral information are 

acquired simultaneously and a 3D hyper-cube can be reconstructed based on those 

compressed measurements. 

The other important CS application in hyperspectral imaging is endmember un­

mixing. As we know, the hyperspectral data cube is embedded with spectral infor-

mation of different materials. Based on their unique spectrum signatures, material 

identification and classification can be realized. Hyperspectral unmixing algorithms 

decompose the pixel spectrum to identify the relative abundance fractions of materials 

or endmembers. The representative endmembers from a scene are generally known a 

priori from a spectral library (e.g., ASTER [66] and USGS [67]) or codebook. If the 

3D hyper-cube is fully accessible, many algorithms are available aiming at endmember 

search in a scene, such as N-FINDR [68], PPI (pixel purity index) [69], VCA (vertex 

component analysis) [70], and SGA (simplex growing algorithm) [71]; NMF-MVT 
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(nonnegative matrix factorization minimum volume transform) [72], SISAL (simplex 

identification via split augmented Lagrangian) [73], MVSA (minimum volume sim­

plex analysis) [74], and MVES (minimum-volume enclosing simplex) [75]. CS can 

contribute its value in the hyperspectral data acquisition and full cube reconstruc­

tion. However, its benefit does not end there. Instead of reconstructing the cube 

followed by the existing unmixing process, a direct endmember unmixing is available 

from the CS measurements. The intermediate, complicated 3D cube recovery stage 

can be bypassed, which will greatly save the data storage and the computational pow­

er because the massive cube always generates huge amount of data and consumes lots 

of memory and CPU resources. Detailed interpretation of CS endmember unmixing 

model as well as the real data analysis will be presented within this chapter. 

6.1 Introduction to Hyperspectral Imaging 

Electromagnetic (EM) radiation is a form of energy exhibiting wave-like behavior 

traveling through a free space or a material medium. It may be reflected, transmitted 

or absorbed. The amount and spectral composition of energy reflected depends on 

the nature of the surface. For any given material, the amount of radiation varies with 

wavelength. By monitoring the interaction of electromagnetic radiation with matter 

as a function of wavelength, the unique material is represented with its individual 

spectral "fingerprint". 

In hyperspectral imaging, data is collected and processed from across a broad EM 

spectrum. Unlike a consumer camera, which just records visible light, a hyperspec­

tral camera can see much more beyond it. As such, a hyperspectral image can be 

represented by a three dimensional data cube H with two spatial dimensions and 

one spectral dimension for processing and further analysis (Figure 6.1). Each two 
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Figure 6.1 : The hyperspectral cube structure. [4] 

dimensional slide H ( ·, ·, z) corresponds to a spatial irnage at a different spectrum z, 

and each vector H ( x, y, ·) is the spectral information at a different spatial coordinate 

(x, y). For instance, data in the RGB image directly offer a visual way to show the 

spatial information by three bands corresponding to Red, Green and Blue. A hyper­

spectral imager records light signals at typically rnore than 300 bands from deep UV 

to far infrared. 

The greatest advantage of hyperspectral in1agery lies in target recognition and 

identification. Like the eyes of mantis shrimps, which enable them to visualize many 

different corals, prey, or predators that all appear as the same color to human eyes, in­

formation across different spectra enables the recognition of different types of targets 

that are hardly distinguishable in color pictures. For much of the past decade, hyper­

spectral imaging has been actively researched and widely developed. Researches are 

working on designing all kinds of hyperspectral imagers to acquire the 3D hyper-cube 

and curve fitting algorithms to segn1ent one material from each other and calculate 
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their spatial distribution. This has become one of the most important topics in remote 

sensing field and has drawn more and more attention because of its great potential 

for application in mineral exploration [76, 77], environmental monitoring [78], food 

and agriculture [79], chemistry and biology [80], etc. 

6.2 Traditional Hyperspectral imaging 

This important sensing method is based on the conventional scanning mode detection. 

To acquire the hyperspectral data cube, typically a raster scan is required [81,82], or 

a tunable spectral filter is needed in the spectral dimension [83]. 

1. Space-based hyperspectral imager: 

The motion of the observing platform accounts for two scanning modes- whisk 

broom and push broom (Figure 6.2(a) and 6.2(b)). The whisk broom, also 

termed across track, uses a lD linear sensor array as the detector. A mirror 

scans across every spot of the scene and reflects light to a grating which dis­

perse the signal along the sensor array. Thus, a spectrum H(x, y, ·) is collected 

from one spot at a time. By arranging all the vectors together, a hyper-cube is 

formed. Since each pixel in each spectral image is acquired with the same de­

tector, the artifacts are relatively simple and easier to correct. However, it has 

relatively low spatial resolution. The short dwelling time results in relatively 

low SNR. The mechanical scanning parts make this type of sensor expensive 

and more prone to wearing out. 

The push broom, termed along track, uses a 2D sensor array as detector and 

gathers a complete spectrum of each point on one spatial line. The area of 

interest is scanned one line at a time. Light enters the spectrometer through a 

slit and recorded with a CCD or CMOS camera after diffraction. Each column 
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of sensors gives a readout of the spectrum for one point or pixel on a line that 

crosses the scene. To image the whole area, the camera must move. The hyper­

cube is formed by compiling the optical data from each spatial line. Compared 

to whisk broom, it has longer dwelling time which provides higher SNR. But 

each column of each spectral image is acquired with a different detector which 

leads to striping artifacts. 

2. Spectrum-based hyperspectral imager: 

Each spectral slice H(·, ·, z) is captured with a 2D sensor array under a bandpass 

filter (Figure 6.2( c)). Spectrum within a certain range is captured each time. 

By changing the filters, the whole wavelength range is covered. Stack up those 

frames and generate a cube. The spectral resolution depends on the number of 

filters switched. The camera and sample can remain stationary. But the spectra 

resolution is relatively low due to the number of filter sets available and their 

high cost. 

These traditional hyperspectral imagers need to acquire information from every 

voxel. Huge amount of data from a scene (normally hundreds of megabytes), need to 

be stored and processed, which brings heavy computation burden and programming 

complexity into the hyperspectral acquisition stage. To simple the hardware and 

software implementation, reduce the high cost of the detectors and achieve a decent 

signal to noise ratio, compressive sensing offers a great solution. 

6.3 CS Hyperspectral Imaging 

The theory of CS shows that a sparse or compressible signal can be recovered from a 

relatively small number of linear measurements. In particular, the concept of the sin-
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Figure 6.2 : Traditional hyperspectral acquisition techniques: (a) whisk broom; (b) 
push broom; (c) filter wheel. 

gle pixel camera can be extended to the acquisition of con1pressed hyperspectral data. 

By replacing the photodiode with a spectrometer, the single-pixel camera is convert-

ed into a con1pressive hyperspectral imager. The logged data is now represented as 

a linear vector for each random projection instead of a single number reflecting the 

photo-voltage. As shown in Figure 6.3 , we represent the data as a matrix Y, where 

each column corresponds to a different spectral band and each row corresponds to a 

different measurement vector. The hyperspectral cube X is reshaped to a 2D matrix 

with the dimension of N x S. S is the number of bands and N is the number of 

spatial pixels. However, the dimension of measurements Y is only M x S (M: the 

number of measurements or random patterns), which is much smaller than X. To 

reconstruct X from Y is like to solve an underdetermined equation, with information 

much less than the number of unknowns. This type of inverse problem has infinite 

solutions. However the restriction of sparsity of hyperspectral cube helps to find the 
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Figure 6.3 : CS hyperspectral paradigm illustrated in linear algebra 

most optimized solution, which is the sparsest one. 

6.3.1 Experiment Setup 

Figure 6.4 is the CS hyperspectral setup. The spectrometer we employed was the 

QE65000 by Ocean Optics which features a Hamamatsu back-thinned detector with 

a 2D arrangement of pixels (1044 horizontal x 64 vertical) responsive from 200-1100 

nm, with a optical resolution of 0.8nm. The spectrometer contains a 16-bit A/D 

converter delivering a dynarnic range of 25000:1 and a signal-to-noise ratio of 1000:1. 

It is synchronized with the DMD. Whenever the pattern changes, DMD sends out a 

pulsed signal to the spectrometer and the sensor starts to integrate the light signal. 

Targets are uniformly illuminated with two halogen bulbs from 45° on both sides. 

The camera on the left arm helps to visualize and make sure the target is focused on 

the DMD. 
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Figure 6.4 : CS hyperspectral imaging setup 

6.3.2 Experiment Results 

Our target was a standard colorchecker with 18 color and 6 gray patches, as shown 

in Figure 6.5. We displayed a sequence of 128 x 128 random patterns on DMD. Each 

pattern was on hold for 25n1s for a measurement acquisition. The spectrometer's 

integration time was set as 30ms which has to be a little longer than the DMD 

switching time, because the spectrometer's ADC needs a response time to read out 

data. 

In this experiment, among 1044 wavelength channels, we chose the middle ones 

from 200th to sooth and averaged the spectrum every two channels. So totally there 

were 300 effective bands with wavelength range from 357nm to 815nrn. The dense 

spectral information was adequate to distinguish different patches of the colorcheck-

er. 5000 m.easurements were taken to reconstruct the hyper-cube. Every band was 
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Figure 6.5 : A standard colorchecker: 18 color plus 6 gray patches. 
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reconstructed into a frame separately and these frames pile up together to form the 

128 x 128 x 300 cube. In Figure 6.6, nine reconstructed spectral slices were picked 

up to demonstrate the gray-level light intensity variation of the patches with respect 

to the wavelength. Notice that for wavelength below 450nm or beyond 750nm, image 

qualities is getting worse, which is due to the low intensity of the light signal within 

this region. Figure 6. 7 shows the illumination spectrum of our light source. 

In the second experiment, three plastic objects - two peppers and an apple were 

imaged with the same setup. Only 6560 measurements were acquired to reconstruct 

a hyperspectral data cube with a lateral resolution of 256 x 256 pixels and a spec­

trum resolution of 0.8nm. The compression rate was 10:1. The wavelength to RGB 

transform was performed based on 1964 CIE 10-deg XYZ Color-Matching Function­

s (84,85]. It converted the wavelengths of light to equivalent RGB values in the sRGB 

color space. To simplify data display, the spectrum was integrated into 49 channels 
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Figure 6. 7 : Spectrum of the illuminating light source 
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from 445-640nm which means each channel was an average of spectra over 4nm. A 

7 x 7 montage is shown in Figure 6.8. \Vhen summing up all the visible bands from 

360-830nm, we obtained the final colorful image of the target in Figure 6.8(b) which 

bore a strong resemblance to a digital camera image as in Figure 6.8( c). 

Because CS measurement always captures 1/2 of the total light from the scene 

instead of 1/ N 2 with raster scan, the signal to noise ratio is much higher. To compare 

against the CS results, we applied a pixel-by-pixel raster scan pattern and acquired the 

measurements under the same illumination and spectrometer integration conditions. 

As shown in figure 6.9, the left column is the raster results and the right one is the 

CS reconstruction for two different spectral bands. We can see that CS technique 

brings much better in1age quality in addition to saving 90% of acquisition tirne and 
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Figure 6.8 : (a) Montage of hyperspectral images with a lateral resolution of 256 x 
256 pixels and a spectrum resolution of 4nm. The compression rate is 10:1. (b) 
Reconstructed image after summing up all the visible bands. (c) Camera image 
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Band 1 

Band 2 

Figure 6.9 : Comparison of 256 x 256 grey scale raster scan and CS reconstruction 
for two separate spectral bands 

data storage volume compared to the traditional hyperspectral scanning acquisition 

method. 

6.4 Hyperspectral Endme1nber Unmixing 

6 .4 .1 Intro duction 

Hyperspectral imaging is a crucial technique to identify the composition of distinct 

rnaterial substances from observed spectra. The spectral unrnixing is performed to 

decompose mixed pixels into a combination of pure spectral endmembers, weighted 

by their correspondent fractions or abundances that indicate the proportion of each 
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endmember in every pixel. A successful spectral unmixing relies on the definition of 

a mixing model, and the most popular one is the convex geometry model (also known 

as the linear mixing model) [86,87]. The linear mixing scenario assumes the negligible 

interaction among distinct endmembers [88], which is a plausible hypothesis in most 

cases. 

In previous section, we have demonstrated that the single pixel camera setup [89] 

is extended to the acquisition and construction of the hyperspectral data cube. Fur­

thermore, it can be applied to solve the unmixing problem. The process is to collect 

the compressed hyperspectral data, then recover the hyperspectral cube by CS op­

timization techniques, and finally decide the abundance fractions of endmembers by 

existing unmixing algorithms. However, due to the massive amount of data contained 

in the hyper-cube, it is usually too computationally costly to recover the entire cube 

and retrieve each endmember's information from it. Besides, the cube becomes un­

necessary once we know the endmembers and corresponding abundance fractions. 

We have proposed a CS unmixing model based on total variation (TV) minimiza­

tion [90] and developed an efficient algorithm to solve it [91]. The underlying premise 

is that the gradient of each image composed by abundance fractions corresponding to 

some endmember can be regarded as being sparse. This is reasonable because most 

applications of hyperspectral imaging focus on characteristics or simply described as 

jumps in a scenario instead of those smooth parts. This algorithm directly unmix­

es the compressed hyperspectral data without reconstructing the whole cube in the 

middle process, which would remarkably reduce storage as well as computational cost. 

In the following interpretation, we start from the assumption that we know exactly 

the number of involved endmembers and their spectral signatures. Solving the spatial 

distribution of each endmember is becoming a direct convex minimization problem. 
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However, in real applications, we always encounter the situation that the endmember's 

information is not accessible or precise. For example, due to influence of various noises 

from different instrument and experimental conductor or changing environment from 

illumination condition and variation, a priori knowledge of endmembers might be 

inaccurate and mislead the unmixing process. The design and implementation of 

blind CS unmixing algorithm will make the CS unmixing scheme more practically 

applicable since it can determines the endmembers' spectral signatures and abundance 

fractions simultaneously. 

6.4.2 CS Unmixing Model 

Suppose that in a given scene there are totally ne endmembers, with spectral signa­

tures Wi E JRnb, fori = 1, ... , ne, where nb ~ ne denotes the number of spectral bands. 

Assuming the negligible interaction among endmembers, the hyperspectral vector at 

the ith pixel xi E JRnb can be regarded as a linear combination of the endmember 

spectral signatures, where the weights hi E Rn• represent the abundance fraction­

s corresponding to each endmember, for any i E {1, ... , np}, where np denotes the 

number of pixels. In some scenarios, components of hi are required to sum to one; i.e., 

the hyperspectral vectors lie in the convex hull of endmember spectral signatures [92]. 

We impose this constraint here for further descriptions, since both the model and the 

algorithm would stay similar but easier without the sum-to-one constraint. Further-

more, let X= [x1, ... , Xnp]T E JRnpxnb denote a matrix representing the hyperspectral 

cube, W = [w1, ... , Xn.]T E Rn.xnb the mixing matrix containing the endmember 

spectral signatures, and H = [h1 , ... , hnp]T E ]Rnpxn. a matrix holding the respective 

abundance fractions. Then we have 
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(6.1) 

Since each column of X represents a 2D image corresponding to some spectral 

band, we can collect the compressed hyperspectral data F E ffi.mxnb by randomly 

sampling column by column using the same measurement matrix A E .!Rmxnp , where 

m < np is the number of samples from each column. Mathematically, the data 

acquisition model can be described as 

AX=F. (6.2) 

Combining with (6.1), we get 

(6.3) 

With a priori knowledge of endmember spectral signatures, the goal is to figure 

out the abundance distribution H of each endmember in a scene directly from the 

compressed hyperspectral data F. 

Under the premise that the gradient of each image composed by abundance frac-

tions corresponding to some endmember is sparse, TV minimization optimization is 

performed here. H can be recovered by solving the following CS unmixing minimiza-

tion problem 

where 

ne 
H* = argmjn LTV(Hej) 

j=l 

s.t. AHW = F, H1ne = 1np 

np 

TV(Hej) ~ L IIDi(Hej)ll-
i=l 

(6.4) 

(6.5) 
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Here, II · II represents either 1-norm or 2-norm and Di E IR2xnp denotes the discrete 

gradient operator at the ith pixel under the periodic boundary condition, as described 

in Chapter 2. 

To separate the discrete gradient operator from non-differentiable term, a new 

splitting variables Vij = Di(Hei)(i = 1. .. , np,j = 1. .. , ne) is introduced. The 

equation (5.4) is equivalent to solve 

min L L II vii II 
H,Vij . . 

J t 

(6.6) 

AHW = F, Hln. = lnp, 

We apply the augmented Lagrangian method on (6.6), which minimizes its corre­

sponding augmented Lagrangian function and then updates multipliers at each iter-

ation. The augmented Lagrangian function can be written as 

.CA(H, vii)~ 2.".:: 2.".:: {llvijll- ~~(Di(Hej)- vij) + ~~j IIDi(Hej)- viilln 
j i (6.7) 

-A· (AHW- F)+ ~IIAHW- Fll~- vr(Hln.- lnp) + %11Hln.- lnpll~, 
where ~ij, A, v are multipliers and /ij, a, j3 are penalty parameters corresponding to 

three constraints in (6.6), respectively. 

The complexity and storage primarily depend on the size of compressed data F. 

More precisely, it is proportional to nb, the number of spectral bands. A singular value 

decomposition (SVD) preprocessing is performed on the measurements F to decrease 

the size of F from m x nb to m x ne, since the number of endmembers ne is much smaller 

than nb. This preprocessing would keep the solution set unchanged when F is noise-

free. When F contains some random noise, even though the minimizers are not exactly 
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the same, this preprocessing helps drop down the noise level since truncated SVD 

annihilates those small singular values in F caused by noise. Therefore, this simple 

SVD preprocessing plays a key role during CS unmixing since it reduces not only 

complexity but also noise in practice. ·with the combination of SVD preprocessing 

[93] and the general augmented Lagrangian method (TVAL3) [94], the CS unmixing 

problem ( 6.4) can be solved. 

6.4.3 Experiment Results 

The testing target of this experiment was a print-out image of a color wheel, which 

was composed of three colors -yellow, cyan, and magenta. Each of them had four 

sectors with varying brightness. Their corresponding HSL values are listed in Table 

5.1. From the compressed measurements, we selected 200 uniformly distributed bands 

in the range of 400 "' 800nm for abundance reconstruction. The spatial resolution 

was set to be 128 x 128. Spontaneously, we chose yellow, cyan, and magenta as three 

endmembers and measured their spectral signatures plotted in Figure 6.11. 

The abundance fractions corresponding to three endmembers were recovered from 

3270 measurements. The compression rate was 5:1. As indicated in Figure 6.12, 

the algorithm correctly detected the area corresponding to the three endmembers -

yellow, cyan and magenta. The pixel intensities within each endmember's sectors 

were averaged, which revealed the luminance/brightness of corresponding color. 

Y1 : Y2 : Y3 : Y 4 = 2.38 : 1.98 : 1.47 : 1, 

M1: M2: Jt13: M4 = 2.48: 2.20: 1.71 : 1, 

C1 : C2 : C3 : C4 = 2.33 : 2.04 : 1.59 : 1. 

The relative intensity was slightly different with expected relative luminance ratio 
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Hue Saturation Luminance 

M1 200 240 120 

M2 200 240 100 

M3 200 240 75 

M4 200 240 50 

Y1 40 240 120 

Y2 40 240 100 

Y3 40 240 75 

Y4 40 240 50 

C1 120 240 120 

C2 120 240 100 

C3 120 240 75 

C4 120 240 50 

Table 6.1 : HSL Values of Color \Vheel. M: Magenta, Y:Yellow, C:Cyan 

of 2.4 : 2 : 1.5 : 1. It was due mostly to the measurement noise and the uneven 

illumination of the light source. 

Once the abundance fraction H solved, the hyper-cube was estimated by simply 

multiplying H with the endmember's spectral signatures W. This recovered cube had 

a dimension of 128 x 128 x 200. From the 200 band slices, we selected six of them to 

demonstrate in Figure 6.13. Specifically, "cyan" becomes bright around 490 "' 520nm; 

"yellow" becomes bright around 520 "' 680nm; " magenta" becomes bright around 

680nm. This result is consistent to the peak areas of three endmember's spectral 

signatures plotted in Figure 6.11. 
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Figure 6.10 : "Color wheel" image under test. 
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Figure 6.11 Measured spectral signatures of the chosen endmembers. 
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Figure 6.12 : Estimated abundance: CS unmixing solution from 10% measurements. 

Figure 6.14 illustrates the slice-by-slice recovery result from the same amount 

of rneasured data. Instead of unmixing, hyperspectral cube was considered as a 

series of 2D images and the 2D TV solver TVAL3 was employed to recover each slice 

of hyperspectral cube from measured data recursively, as described in section 5.3. 

Neither endmembers nor abundance fractions were involved. In contrary to Figure 

6.13, Figure 6.14 implies a much noisy result, which validates the denoising effects 

of the proposed unmixing algorithm. The remarkable improvement is facilitate by 

two main aspects: the low-rank decomposition of hyperspectral cube and the SVD 

preprocessing of measured data. 

More tests were performed to study the impact of different types of noise to the CS 

unmixing method. For an irnage sensor (as used by a spectrometer), normally there 

are several types of noises involved - an1plifier noise (Gaussian noise), impulsive noise 

(salt-and-pepper noise), periodic noise, quantization noise, etc. Here we simulated 

and testified the robustness of our model to three of them - Gaussian, periodic and 
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Figure 6.13 : Six slices computed by CS unrnixing model. 
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Figure 6.14 : Six slices computed slice-by-slice using 2D TV algorithm TVAL3. 
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impulsive noises respectively. The measurement data stays unchanged, while the 

input spectral signatures were imposed with the noises for reconstruction. All tests 

were done using 20% measurements. 

In the first test, we demonstrated the robustness against Gaussian noise. Gaussian 

noise is an unavoidable type of noise that is a part of almost any signal. It usually oc­

curs in low light conditions or photon counting systems. Especially for hyperspectral 

acquisition, a spectrometer is usually employed to distribute the light into hundreds 

or even thousands of channels, and the power in each channel is dissipated by orders. 

In this case, Gaussian noise becomes even more significant, and a robust algorithm 

capable of denoising is advantageous. As shown in Figure 6.15(a), the signatures of 

three endmembers were corrupted by Gaussian random noise and then input as the 

initial guess. From Figure 6.15(b), we can see that even though the signatures have 

been disturbed with a high noise level, the three endmembers are still correctly and 

clearly segmented. In the second test, a periodic noise was involved. Periodic noise 

is usually caused by electrical or electromechanical interference during signal acqui­

sition. This noise results in sinusoidal patterns superimposed on the signal, having 

specific period and phase relationships. For example, the sensor is on the moving or 

vibrating platform or its circuit is affected by an external electrical field or magnetic 

source. It is also possible for hyperspectral imaging, such as the airborne hyperspec­

tral sensors generally mounted to light aircraft. In our analysis, the original spectra 

were modulated with a sinusoidal function, and then added to the signatures of three 

endmembers so that they were deformed as shown in Figure 6.16(a). Starting with 

the corrupted signatures as a priori, we employed CS unmixing model to unmix the 

compressed data. Figure 6.16(b) shows that the recovered abundances are accurate. 

Another type of noise was salt-and-pepper noise. It represents itself as randomly 
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Figure 6.15 : (a) Input spectral signatures added with Gaussian noise. (b) Recon­
structed abundances: CS unmixing solution from 20% measurements. 
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Figure 6.16 : (a) Input spectral signatures added with periodic noise. (b) Recon­
structed abundances: CS unmixing solution from 20% measurements. 
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white and black in some positions. For example, in real application, sensors either 

fail to respond or saturate in error. A failed response gives a black spot in the 

image, which might be due to the malfunctioning pixel, faulty memory or timing 

error. So in the third test, this impulsive noise was applied on the signatures of three 

endmembers. The corrupted signatures were plotted in Figure 6.17(a) and provided 

as a priori information. Similarly, the abundances were successfully recovered as 

plotted in Figure 6.17(b). 

Above three tests have covered the major types of noise possibly contained in 

hyperspectral data acquisition. Results have implied that the proposed CS unmixing 

algorithm is able to remove the noise from prior information and reconstruct every 

endmember's spatial distribution correctly and stably. 

6.5 CS Blind U nmixing 

6.5.1 Blind unmixing model 

Notice that, in previous analysis, the endmember's spectral signature is a prior con­

dition for computing. In other words, we have to know in advance how many end­

members in the area to be sensed and what their spectrum should be. If we miss 

or over count the actual components, or the spectral signatures are not accurate, 

the scheme might mislead the identification and fail the unmixing. For example, the 

reference spectrum from any library is measured with certain instrument under some 

particular conditions, barometric pressure, humidity level, temperature property, etc. 

Different measuring conditions might result in quite distinct spectrum for the same 

material. To overcome this difficulty, the CS unmixing model needs more robustness 

to handle the variations in spectra and recover the abundance fractions stably. This 
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Figure 6.17 : (a) Input spectral signatures added with impulsive noise. (b) Recon­
structed abundances: CS unmixing solution frorn 20% measurements. 
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extension on the CS unmixing model is named CS blind unmixing, which could up­

date the endmember candidate's signature and the abundance with the constraint 

and optimization as required. 

Under the same assumption of negligible interactions among endmembers, the 

data acquisition model (5.4) is still applicable. To extend CS unmixing scheme to 

blind unmixing, we consider the following CS blind unmixing model: 

ne 

min LTV(Hei), subjected to AHW = F, H1 ... = 1np· (6.8) 
W,H 

j=l 

Although the same objective function is used in both models, (5.4) is convex with 

linear constraints whereas (5.7) becomes a non-convex problem with nonlinear con-

straints. 

The recent research on matrix completion [95] proposed an ADM-type method on 

a non-convex minimization problem, which turned out to be effective and efficient. 

The alternating direction method (ADM) is an extension of the classic augmented 

Lagrangian method. ADM solves the augmented Lagrangian function of the underly­

ing problem with respect to each variable, and then update the multiplier. Unlike the 

augmented Lagrangian method, ADM avoids minimizing the augmented Lagrangian 

function exactly. More details about the inner algorithm and processing of the blind 

unmixing method are introduced in this document [96]. 

6.5.2 Experimental Results 

In our first test, we measured the three cndmember's signatures under another illumi-

nation source- white light LED. The new spectra are shown in Figure 6.18. To test 

our blind unmixing algorithm, one of the three endmember's signatures was replaced 

with the corresponding one under the LED illumination. Here we chose cyan as the 



100r----,----,-----,----.----~----~==~====~ 

80 

-::j 
ro so 
~ 
"(/) 
c 2 40 
c: 

20 

450 550 600 650 
Wavelength(nm) 

Yellow 
--Cyan 
--Magenta 

110 

Figure 6.18 : Measured spectral signatures of the chosen endmembers under white 
light LED illumination. 

endmember whose wrong signature was input as the initial guess. The other two 

were still represented with the right signatures. As shown in Figure 6.19(a), yellow 

and magenta's spectra together with the misleading one of magenta are granted as 

the input of the blind unmixing algorithm for reconstruction. Figure 6.19(b) reveals 

that magenta's signature is correctly recovered. Notice that the reconstructed cyan's 

spectrum still has a little deviation compared to the original one. However, the three 

color sectors are accurately different]ated. 

In the second test , we further increased degrees of freedom as well as the difficulty 

of blind unmixing by assuming one of the three endmembers was completely missing. 

Its signature was replaced with an arbitrary guess. Here we simply assigned a curve 

to represent the initial guess of the missing endmember's signature. Note that this 

guess is not correlated to the other two. As illustrated in Figure 6.20, the recovered 

signatures match the characteristics of the original Y, M and C colors. 

The results ind]cates that CS blind unmixing method is capable of retrieving 
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signatures when one of them is deformed or completely missing. Due to the non­

convex property of this problem, it is usually difficult to solve due to the existence of 

many local minima. However, our proposed method and newly developed algorithm 

have successfully resolved this issue. In a certain extent, the endmember' signature as 

well as the abundance distribution can be accurately recovered. However this method 

is not perfect yet. For example, the reconstruction depends on the initial guess of the 

spectral signature. Not all the arbitrary assumptions will lead to the correct result. It 

needs to be process a kind of similarity respect to the true signature. Totally random 

or groundless guesses may result in the unmixing failure. Moreover, if the missing 

spectral signatures are increased to two or all of them are severely deformed in our 

experiment, the reconstructions fails, too. 

However, in spite of those limitations, the CS blind unmixing technique still holds 

great potential in the hyperspectral imaging field and is worthy of more research work 

to improve the performance and reliability for future applications. 

6.6 Summary 

The CS application in hyperspectral imaging and endmember unmixing is demon­

strated. The CS unmixing scheme extracts the essential endmember information 

directly from the compressed measurements, in which cube reconstruction and end­

member unmixing are combined into one step. The heavy burden on both hardware 

design as well as software implementation is relieved. CS blind unmixing, as a com­

plement to normal unmixing technique, has a great potential in the real large-scale 

hyperspectral imaging application. Its efficiency have inspired us for further and 

deeper research along this direction. 
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Chapter 7 

Conclusions 

The CS imaging applications presented in this thesis are all based on the idea of 

single pixel camera. The signals are randomly manipulated by DMD before they 

are detected. The compressed measurments contain abundant information to recover 

the original signal back. This smart sensing mechanism has dramatically improves 

the detection efficiency of the sensor and also simplify the data processing procedure 

involved in the underlying DSP chips. It also offers a promising solution to a lot of d­

ifficulties and problems that traditional imaging systems are facing, such as high cost 

of 2D infrared imaging, long duration of raster scanning microscopy, complex pro­

cessing of hyperspectral imaging, and so on. Meanwhile, it has the potential to create 

new applications in areas where currently no sensing/imaging schemes are possible or 

economically or physically impractical. For example, hyperspectral video camera. It 

is a 4D sensing system which captures both spatial, temporal and spectral informa­

tion simultaneously. It is hard to realize with the current instrument, due to the low 

light signal and long acquisition time. However, in light of CS's unique property, it 

might be realized based on the compressive, random multiplexing technique. 

The simple yet flexible single-pixel architecture for CS is based on 2D spatial 

light modulators. According to the driven force, light modulators are usually divid­

ed to electrically, mechanically, optically and thermally addressed devices. DMD, 

liquid crystal display (LCD) and liquid crystal on silicon (LCoS) are the common 

electrically-driven modulators. Deformable mirrors provide mechanical induced op-
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tical modulation. Vanadium dioxide array is an example of thermal-optical light 

modulator. Among all of them, DMD's speed, precision, efficiency and broadband 

capability outperform other competitors. It is an ideal modulation device for imaging 

in UV, visible and IR regions. 

Also, there are promising potential applications where current digital cameras 

have difficulty imaging where the DMD fails as a modulator, such as THz. Professor 

Mittleman's group at Rice University has built a terahertz modulator that could 

allow the terahertz radiation to reach the pixel through random pinholes electrically 

and fast. This modulator is made of active terahertz metamaterials, which consists 

of a planar array of subwavelength-sized split-ring resonator elements fabricated on 

a semiconductor substrate. Each pixel can be independently controlled by applying 

an external voltage. This first generation has only a resolution of 4 by 4, but its 

reasonably high switching speed still makes it a promising solution for CS terahertz 

imaging application. 
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