TECHNICAL REPORT 01-375

Department of Computer Science
Rice University
February 2001

Tools for Application-Oriented Performance Tuning

John Mellor-Crummey Robert Fowler David Whalley

{johnmc,rjf}Qcs.rice.edu
Department of Computer Science, MS 132
Rice University
6100 Main Street, Houston, TX 77005-1892.

{whalley }Qcs.fsu.edu
Department of Computer Science
Florida State University
Tallahassee, FL 32306-4530.

Abstract

Application performance tuning is a complex process that requires assembling various types of infor-
mation and correlating it with source code to pinpoint the causes of performance bottlenecks. Existing
performance tools don’t adequately support this process in one or more dimensions. We discuss some of
the critical utility and usability issues for application-level performance analysis tools in the context of
two performance tools, MHSim and HPC'View, that we built to support our own work on data layout and
optimizing compilers. MHsim is a memory hierarchy simulator that produces source-level information
not otherwise available about memory hierarchy utilization and the causes of cache conflicts. HPCView
is a tool that combines data from arbitrary sets of instrumentation sources and correlates it with program
source code. Both tools report their results in scope-hierarchy views of the corresponding source code
and produce their output as HTML databases that can be analyzed portably and collaboratively using
a commodity browser. In addition to daily use within our group, the tools are being used successfully
by several code development teams in DoD and DoE laboratories.

1 Introduction

The peak performance of microprocessor CPUs has grown at a dramatic rate due to architectural innovations
and improvements in semiconductor technology. Unfortunately, it has become increasingly difficult for
applications to achieve substantial fractions of peak performance.

Despite the increasing recognition of this problem, the use of performance instrumentation and analysis
tools to analyze and tune real applications is not as widespread as one might expect. In our own research
on program and data transformations by optimizing compilers we are highly motivated to analyze, explain,
and tune many codes, but it was too cumbersome to use existing tool interfaces in this work. We therefore
wrote our own tools to address these issues.! In this paper we use our experiences with the design and use
of these tools to motivate a discussion of how to make performance tools more useful for users.

L As of this writing, these tools are also being used to improve production applications by several groups at DoD and DoE
laboratories.

1.1 Impediments to Use

The principal impediment to wider use of performance tools is the amount of time and effort that an
application developer needs to expend using these tools to solve performance problems in an analyze/tune
cycle. Manual tasks perceived as annoying inconveniences when the tool is applied once become unbearable
costs when done repetitively. The main causes of excess user effort are shortcomings in the tool’s explanatory
power, e.g. they either do not present the information needed to solve a problem, or they fail to present the
information in an easily understood form. In either case, the developer/analyst must make up the difference
through manual analysis. Aspects of this problem include:

Performance measures must be related to relevant units in the code, preferably in the original source
program. If performance metrics are reported at the wrong granularity, either the analyst has to interpolate
or aggregate information by hand to draw the right conclusions. Data must be presented at a fine enough
level, but aggressive compiler optimization combined with instruction level parallelism and out-of-order
execution put a lower bound on the size of program units to which a particular unit of cost can be uniquely
charged.

Any one performance measure produces a myopic view. Large amounts of time spent in a particular
program unit are a performance problem only if the time is spent inefficiently. If there is a problem, other
measures are necessary to diagnose its causes. Conversely, measures such as cache miss count indicate
problems only if the miss rate is high and the latency of the misses isn’t hidden.

Event counts are seldom the measures of interest. Derived measures such as cache miss ratios, cycles per
floating point operation, or differences between actual and predicted costs are far more important.

Data needs to come from diverse sources. Hardware performance counters are valuable, but so are “ideal
cycles” produced by combining output from a code analysis tool that uses a model of the processor with an
execution time profiling tool [5]. Cross-system comparisons are valuable. Either tools need to support data
combination and comparison or the analyst has to do it manually.

Generality and portability are important. Tools should not be restricted to a narrow set of systems and
applications.

The focus of our effort has been to develop tools that are easy to use and that provide useful information
rather than inventing new performance measures or new ways to collect measurements.

1.2 Our Approach

The observations in the previous section should not be construed to be a set of a priori design principles,
rather they are the product of our experiences with the tools described here. Our first tool, MHSim, is a multi-
level memory hierarchy simulator that we built to help analyze the effects of code and data transformations.
Analyzing printed output from MHSim by hand was too tedious, so we modified the simulator to correlate its
results with source code and produce hyper-linked HTML documents that can be explored interactively using
Netscape Navigator. While MHSim proved to be extremely useful, it had three shortcomings: (1) memory
hierarchy event counts alone offer a myopic viewpoint—what is important is whether these misses cause stalls
or not, (2) in many cases the simulator was overkill because the similar, though less detailed, information
could be obtained at far less expense using hardware performance counters, and (3) many performance
problems are not simple matters of memory hierarchy issues. We therefore built a second tool, HPCView
that correlates source code with data from multiple, diverse instrumentation sources. Like MHSim, HPCView
generates a database of hyper-linked HTML documents that can be explored interactively using Netscape
Navigator.

Our use of a standard browser interface has three key advantages. First, it provides users with a familiar
interface that gets them started quickly Second, using Navigator eliminated the need to develop a custom
user interface. Third, Navigator provides a rich interface that includes the ability to search, scroll, navigate
hyper-links, and update several panes of a browser window in a coordinated fashion. Each of these capabilities
facilitates exploration of the web of information about program performance.

FORTRAN Instrumented HTML
FORTRAN FORTRAN Instrumented
Source
Source Compiler Executable
Code Database
Code
[
Unconfigured Memory Configured
Runtime
libmhsim Hierarchy libmhsim
| MakeConfig Input
Simulation Configuration Simulation Dat
ata
Library Data Library

Figure 1: Overview of Using the MHSim Simulator

2 MHSim

For an application code to achieve high performance, it must exploit caches effectively. Most scientific codes
in production use were developed for vector processors that had no caches. When porting such applications
to machines with multiple layers of caches, it is difficult to understand the reasons for poor memory hierarchy
utilization.

To address this problem we have developed MHSim, an integrated simulator and instrumentation tool for
Fortran programs. MHSim was designed to identify source program references causing poor cache utilization,
quantify cache conflicts, temporal reuse and spatial reuse, and correlate simulation results to references and
loops in an application program.

Using the MHSim simulator to understand the memory hierarchy utilization of a Fortran program involves
a sequence of five steps, which are shown in Figure 1. First, a custom configuration of the libmhsim simulator
is generated based on a specification of the memory hierarchy characteristics of the desired target system.
Second, a Fortran source code under study is instrumented using MHInst, a source-to-source instrumentation
tool. MHInst augments the Fortran programs with calls to the libmhsim library routines to monitor data
accesses and relate simulator results back to the source code. Third, the instrumented Fortran code is then
compiled with any Fortran compiler and linked with the libmhsim library. Fourth, the compiled version
of the instrumented program is executed normally on any platform. During execution, the calls added by
the instrumenter will pass information about the program’s data accesses to the simulator, which will track
information about the program’s memory hierarchy utilization separately for each source-program reference.
When the program terminates, the simulator correlates the simulation results with the source program and
writes them out as a hyper-linked HTML database that forms the basis of a multi-pane user interface.
Finally, a user loads the root page of the simulation results and interactively inspects them with Netscape
Navigator.

2.1 Using the Simulator

A user specifies a number of parameters about the memory hierarchy of the target system being simulated
in an MHSim configuration file. These parameters include the number of levels of memory hierarchy, the
number of cache lines, the line size, the associativity, write-through or write back, and translation-lookaside-
buffer configuration information. A simulator configuration tool uses the data in the configuration file to
produce header files for a custom configuration of the simulator. A custom instantiation of the libmhsim
library is produced by compiling the library with the generated header files. This approach was taken to
enhance the speed of the simulation. The code to simulate an access to a particular cache is coded as a
C++ template. The configuration tool specializes the cache_access template for each level of the memory
hierarchy and passes the configuration constants for that level of the memory hierarchy as parameters to
the template. The C++ template instantiator uses these constants to instantiate a customized version of
the cache simulation routine for each level of the memory hierarchy. The resulting code has all of the cache

configuration parameters as compile-time constants, which enables the compiler to optimize the simulator’s
bit manipulation operations more effectively to improve simulation speed.

The MHInst tool instruments Fortran programs to monitor their memory hierarchy utilization by adding
calls to the libmhsim library to record source-code mapping information for every array reference, loop, and
procedure. Loop entry and exits are instrumented with calls to indicate that a scope is being entered or exited,
respectively. Each scope entry/exit operation is passed a handle that identifies the source location of the
scope. These calls perform bookkeeping for constructing loop level summary statistics. The instrumentation
tool adds calls to MHSim before each array access to simulate the response of the memory hierarchy. Each
simulator call is passed a type code indicating whether the operation is a READ or WRITE access, the
number of bytes accessed, the address of the access, and the handle for the source reference corresponding
to the access. The simulator uses these handles to relate accesses to source program references and program
references to their enclosing scope.

2.2 Limitations of Source-Code-Based Instrumentation and Simulation

The MHSim simulator uses the addresses passed to the instrumentation routines as the basis for its simu-
lation. The declarations of handles that are inserted by the instrumentation tool perturb the addresses of
the program variables. This perturbation affects the absolute position of the data elements which affects the
cache conflicts noted by the simulator. Our experience is that the perturbation does not substantially affect
the qualitative nature of the results, although in the worst case it could.

A second limitation of the source-code instrumentation strategy used by MHInst is that the data accesses
specified in the source program will be simulated in their canonical execution order. MHInst does not account
for any compiler-based transformations that may change the order in which memory references are performed.

A final limitation of source-code-based instrumentation is that many memory accesses are not simulated.
These include accesses to scalars that are not allocated to registers and accesses associated with procedure
calls, such as saving registers upon procedure entry and restoring registers upon procedure exit. However,
Fortran programs, which MHInst is designed to instrument, typically have a loop-centric structure and array
accesses dominate these other types of accesses.

2.3 Exploring MHSvm Simulation Results

The MHSim simulator records the results of its simulation in a collection of HTML and JavaScript files that
can be browsed using Netscape Navigator. The top level display of the simulator results is shown in Figure 2.

The top left pane of the display lists the instrumented source files. For this experiment, there was one
file: sweep.f that contains the computational core of the ASCI Sweep3D neutron transport benchmark.
We only instrumented this one file because 98% of the serial execution time is spent in the function sweep
defined in this file.

The upper right pane displays the source code of sweep.f, annotated with hyperlinks for a reference or
loop. Clicking on a # hyperlink preceding an array reference will autoscroll each of the panes below to
display the simulation results associated with that reference. Next to each scope are two hyperlinks. The ’S’
hyperlink will cause loop summary information to be displayed in the panes below rather than the reference-
level information shown in the figure. The ’A’ hyperlink will display loop-level summary information for
each array referenced in the loop.

The next three panes show simulation results collected for the target memory hierarchy, which in this
case consists of a TLB, primary and secondary cache. Each level of the memory hierarchy shows the name
of the associated source code reference. Clicking on the hyperlink preceding any reference in these panes
will cause the source pane to navigate to the appropriate line in the appropriate source file and all other
panes of simulation results to auto-scroll to display the information associated with this reference. For each
reference, the panes for each memory hierarchy level show the following information:

e The total number of hits associated with this reference.

e The total number of misses associated with this reference.

i Hetscape: mhsim simulation resulis

File Edit Yiew Go Communicator He|p|
[l

. ETTLIU Y
Help 453
454 endif
455
Reset 456 [compute flux Pn moments (I-11ined
S|A457 do 1 =1, 1t
458 #FTuxC1, 3, k, 12 = #FluxCi, 3, ko 12 + #wim) * #phi{i)
459 enddo
. S|A4ED don=2, nm
Files S1AdE1 do 1 =71, it
462 o y #;_F'qu(‘i, i, k. ony = @#Fluxli, i, k., nd + #gonim, n, g2
p. =oogwmy * gphi i
sweep.d 463 enddo
464 enddo
465
466 C compute DSA face currents (I-11ne)
467 it (do_dsal then =
514468 do 1 =1, it
469 #face(i + i3, 7, k, 12 = #face(i + 13, i, Kk, 1) + #wmulm)
o giphii(d)
470 #faceddi, 1 + 13, k, 23 = #facedd, 1 + 43, k, 22 + #gwetalmd
o gphiib{i, Tk, mid
471 . ﬁface(i, i, k o+ k3, 33 = gfaceld, 1, k + k3, 33 + #gwtsi{m) i

Cache Level -Miss— -—-Miss-- -Temporal -Spatial-
Rank —-——-—-—-— Reference Name—------- -——— Hits——- == Misses-- % Totl --Ratio-- --Ratio-- --— Use-—- numBlocks

TLB 1 #FluxCi,3,k.n 1.78e+07 2.20e+05 24.58 1.22e-02 4.66e-01 3.41e-03 i
2 isrc('i{j Jlkﬂn) 1.78e+07 2.20e+05 24.57 1.22e-02 4.60e-01 2.20e-03]
=] =
L1 1 #FTux(i,3,k,nd 1.33e+07 4.68e+06 20.54 2.60e-01 4,50e-04 9.15e-01 A
2 #srcli,i,k.nd 1.33e+07 4.68e+06 20.54 2.60e-01 4.362-04 9.15e-01 ';.
e RV ol as P c i M 2 i
|1 =
Lz 2 #Flux(i,J,k,n) 4.58e+06 1.01e+05 18.67 2.17e-02 8 8B8e-01 3.15e-03 3
3 ﬁsl’c(‘i{j{kj) 1.51e+06 5.33e+04 §.82 3.42e-02 9.96e-01 3.4Be-03 -ll
= P i 4ty C i i) 4 -
———————— Reference Mam Cache Evictor Mame--------- —-Count-- Percnt
EVICTOR #FTuxl1,3.k.nd TLE #fTux(i,3.k.n 69010 31.36 A
#src(di,i.k,nd 43666 19,34
#39gt(1,7.KD 25764 11.71
#fTup (i, J,k,10 25083 11.40
#facei+is,j,k,12 18828 3.55 o
#face(q,j+13,k,2D 15635 7.10
#face(q,j,k+k3, 3D 10882 4.98
#srci,i,k, 13 8617 3.92 |
= | i h 2P @ 2

Figure 2: The MHSim user interface.

e The number of misses as a percentage of the total misses at this level of the memory hierarchy. The
source references are listed in descending order based on this value. Thus, the references causing the
greatest percentage of misses are presented to the user first.

e The miss ratio for this reference.

e The fraction of the data reuse for this reference attributed to temporal locality (i.e., number of temporal
hits / number of total hits). A hit is due to temporal locality if the bytes referenced in the block were
already previously referenced since the block was last brought into that level of the memory hierarchy.
It is often useful for the user to know how much of the hit ratio was due to temporal or spatial locality.

e The spatial use (i.e., used bytes / (block size * number of evictions)). Each time a block is evicted,
we store the number of bytes used in the block. The spatial use represents the average fraction of
bytes used in the block associated with a reference at the point the block is evicted. If a reference has
low spatial use, then this indicates that the machine is wasting cycles bringing in data that is never
referenced.

e The number of distinct blocks associated with the reference at this level of the memory hierarchy.

The sample display included shows that the source program reference flux(i,j,k,n) on line 462 accounts
for over 18% of the misses at each of the levels in the memory hierarchy.

The bottom pane in the top-level window shows evictor information. For a particular source code
reference, the evictor pane shows which source-code references caused a cache line containing this reference
to be evicted from cache. This information is useful for diagnosing program and data organization problems.
With evictor information, a user can quickly determine which source references are competing for the same
cache lines. Sometimes a source reference can evict itself, which can occur when the size of the array is

larger than that level of the memory hierarchy. The percentage of the evictions caused by each source code
reference is shown. Clicking on the hyperlink for an evicting reference will auto-navigate the source and
memory hierarchy panes to show the information available for the evicting reference.

Not shown is the array-level summary information associated with each instrumented scope (loop or
procedure) that can be brought up in a separate window by clicking on the A’ next to the line defining that
scope. This summary pane displays the same types of information reported for references, but summarizes all
references to each array (and its evictors) within the scope. Examining the summary information presented
in the array pane for a costly procedure, or the top-level program scope can identify what array or arrays
result in the most misses in the memory hierarchy. These arrays are the appropriate focus for improving a
program’s overall performance.

3 HPCView

The HPCView tool was designed to facilitate performance analysis and program tuning by displaying and
combining performance measurements from diverse sources and by correlating the results with the program
source code. Performance data manipulated by HPCView can come from any source, as long as a filter
program can convert it to the required input format. To date, the principal sources of input data for HPCView
have been hardware performance counter profiles. These are generated by setting up the performance counter
of interest (e.g., primary cache misses) to generate a trap when it overflows and then histogramming the
program counter values at which these traps occur. SGI’s ssrun and Compaq’s uprofile utilities both
collect profiles this way on MIPS and Alpha platforms, respectively. Currently, we use vendor-supplied
versions of prof to turn the PC histograms into line-level statistics. We then filter prof output into our
vendor-independent form using a Perl script. Any information source that generates profile-like output can
be used. For example, to analyze excessive register spills in a loop over 3000 lines long, we wrote a script
that inspects MIPS assembly code to identify register spill/reload operations and uses source line mapping
information to correlate these operations with the program source.

3.1 The HPCView User Interface

A principal design objective of the HPCView interface was to present multiple performance metrics in an
easily understood, browsable form. The generation of an HCPView dataset is controlled by a configuration file
that specifies paths to the source code, a set of files containing performance data, expressions for generating
derived metrics, and some parameters that control the appearance of the display. HPCView reads specified
performance data files, generates the derived metrics, and correlates all of the information to the source code.
The result is a hyper-linked database of HTML documents and JavaScript routines that define a multi-pane
user interface. Hyper-links cross-reference source code lines with corresponding lines in several performance
data tables, and visa versa. This database is then explored interactively using Netscape Navigator. A
screenshot of the tool displaying the data for a benchmark program is shown in Figure 3.

The HPCView interface consists of a set of panes in a single browser window. On the left side a pane
contains links to all of the source files, grouped by directory, for which there is performance information?.
Clicking on a file name in pane cause the file to be displayed the source file pane.

The source-file pane displays an HTML version of the current source file. The code is augmented with
line numbers and with hyper-links to navigate to the performance data tables. Clicking on one of these links
navigates the performance data panes to the correct places and highlights the data. If no source code is
available, HPCView summarizes performance data at the procedure level.

The pair of panes at the bottom right of the window display performance metrics. The upper of the
two performance data panes is a flat table displaying line-level data across the entire program. The table
is sorted in decreasing order for the performance metric whose header has been selected and highlighted in
red. Clicking on the ‘sort’ link of a metric’s column header will re-sort the data for both the performance
table and the scope hierarchy display described below. The interface highlights a row if you click on the
row’s location field. It also navigates the source pane to highlight the selected line.

2The ”Other Files” section lists files for which source code was not found using the search paths of the configuration file.

Communicator

sweepdd.single

endif

conpute flux Pn moments (I-line)

oi=1, i

tlux(i, i, k, 1) = flux(i, i, %k, 13 + win) * phi(i)
endda
don =2, am

do i =1, it

£lox (i, 3, k, n} = flux{i, 3, k, n} + poim, n, ig)
T owmd ¥ phifi)
sweep. #sro# £ enddo
enddo

compute DSA face currents (I-line)
if {do_dsza) then
do i = 1, it
face(i + i3, 3, k, 1) = face(i + i3, 7, k, 1) +
wmafm) * ophiii)
face{i, j + 2, k, 2} = facei, j + j2, k, 23 +
weta{m) * phijb{i, 1k, mi}
X face{i, i, k + k3, &) face(i, j, k + k2, 3) +

sorted sort | sort sort | sert | sort sort
GSTORE % | GL MISS % | L2 MIZS % | TLE MIS&
0 0

Location OAD % | L1 % | FLOPS %
S10e+03 100 2.83e+08 100 7.23et06 10 1.38e+07 1.86e+09 100

on_hwe % |
Progran 7.EEe+03 100 1.13e+09 10

malloc. ¢ . it c14e+09 .09e+08 . 3de+0g cd4e+07 c1le+ie .37e+0E .1ge+08

igfillzet.c . £ S1le+0d L07e+08 . 33e+08 L 87e+07 . 2Ge+0E .35e+0E L17e+08
strlen. s . £ CB3e+0d .03e+08 L PEe+08 C16e+07 L23e+0S .31e+05 L Bde+0g
tenscalec.o . L LB0e+0d .35e+07 L2le+0E . 32e+05 .S5etlz L05e+04 L B3e+0E
util.c . £ CBle+0d LB3e+07 .03e+08 LB2e+07 L 2Ge+0S .07e+0E L 81e+07

writestT o . LE: L18e+08 .10e+07 L A4Ee+08 L BZe+0? LEDe+DE LEZe+0E .1Ee+07
witfmk. ¢ . £ C1Ze+0d .03e+07 L Bde+0g L31e+07 L P3e+0E .12e+0E . 0ge+07

JLELE 311-483 L37e+0d .10e+03 .05e+03 CPle+0g L B3etlE L3Ee+07 . @3e+0d

ELY. 338-481 _37e+0d . 10e+09 _05e+03 _Ple+0d _G3etlE _3Ee+07 _G3e+0d
L4Zet0d LBTe+0E L . 3Ge+07 c41le+0s LB3e+05 C0de+0d
. 29e+08 L 23e+08 .EBBe+08 . 29e+07 .0Be+0E . 00e+05 L0Ze+08
L2get0d LEde+0d L B3e+08 LGB7e+07 C1letie .11e+0E C2le+0d

child Scopes 4pELE 382-334 | |
| |
I |
| L22e+09 L12e+08 .40e+08 . 8Ce+07 LEle+0E L 30e+06 | L09e+0%
I |
| |
| |

§rELE 400-452
§ELE 4E0-454
§rELE 4E8-472
§ELE 372-376
§rELE 4E7-453
§ELE 363-371
sweep. #sred. £ TE4

.1Ce+03 c20e+02 CBEe+0l S30e+07 . 2Ce+0E C14e+0E C1%e+0d
L 20e+08 L12e+07 LdEe+08 L 82e+07 .Ele+0E . 78e+0E .17e+07
LEZe+0B .9%e+07 LBZe+0? S37e+07 .4Ce+0E S0le+lE LBfe+0E
| 1. 40e+0E . . 8Ee+04
sweep #sredt. £ 309 | 1. 06e+0E . . Bdet+0d
4pELE 340-342 | 2.23e+07 . . 1.13e+05 S4Ee+0E | &.55e+04
sweep #sco#. £. 338 | 1.07e+07 1.72e+0E . 293e+0E | &.56e+0E

Figure 3: The HPCView user interface.

At the left of each line of the table is a field containing source file name and line number. The remaining
elements contain values for each of the metrics. Not all lines incur costs for all metrics. For instance, floating
point operations and cache misses are often in different lines. In such cases, blanks are left in the table.

Below the flat table is a set of panes that organize the data hierarchically, with data aggregated by
program, source file, procedure, loop?, and source line. The three-part display shows inclusive performance
measurements for the current scope, its parent scope, and its child scopes. Navigation through the hierarchy
is done by clicking on the up- and down-arrow icons at the left of each line. The selected scope is moved to
the “Current Scope” pane with its parent and children shown above and below it, respectively.

The combination of sorted performance data tables, and easy navigation back and forth between source
code and the data tables is the key to the effectiveness of the HPCView interface.

3.2 Static Program Analysis

A program’s performance is less a function of the properties of a particular source line, rather than the
dependences between and balance among the statements in larger program units such as loops. For example,
the balance of floating point operations to memory references within one line is not particularly relevant to
performance as long as the innermost loop containing that statement has the appropriate balance between
the two types of operations and a good instruction schedule. To support loop-level analysis, HPCView
hierarchically aggregates information from lines and loops to enclosing loops. Thus, the scope hierarchy
pane in Figure 3 shows lines marked “BLK xxx-yyy” which signifies a loop block with minimum line xxx and

3Static analysis of the program, either source or executable, is used to identify the loop nesting structure.

maximum line yyy.

To perform such aggregation in a compiler and language independent way, we constructed bloop, a
prototype tool for analyzing application binaries to determine its loop nesting structure using the Executable
Editing Library (EEL) [6]. Using the EEL infrastructure, bloop builds a control flow graph for each procedure,
identifies natural loops, uses interval analysis to interpret their nesting structure, examines the basic blocks
within loops to determine the relationship between source statements and the loop nesting structure, and
outputs a scope tree representation as an XML file. HPCView uses the scope tree file to guide the data
aggregation from the statement level to the loop, procedure and file levels.

To cope with the control flow found in a program after it has been radically reorganized by compiler
transformations such as software-pipelining or loop fission, bloop uses information about program source
lines to disentangle the control flow and construct scope trees that can be related back to the original code.
Since performance metrics provided to HPCView SGI and Compaq’s profiling tools aggregate information
at the line level rather than the line instance level (loop optimizing transformations may cause a line to
appear in the context of multiple loops), we currently aggregate together information for all instances of a
statement by fusing their enclosing scopes in a scope tree. One possibility for the future is to write a new
data collection tool that distinguishes among distinct line instances.

4 Computed Performance Metrics: An Example

ﬁ Hetscape: heat.single (11/02/00 16:08:37) yras 7 i o |

File Edit View Go Communicator Help|
I

SOURCE FILE: | /heat.F
1521
1522 iF{numdim. eq. 3 then
1523
1524 do 1=1,numcell
L1525 vetry (O d=vetrx(1) &
1526 +cell_off{LO_SIDE,X_DIR,1*vctrx{cell _pnt{LO_SIDE,X_DIR,13} &
1527 +cell_of f{HI_SIDE,X_DIR,1 y*vctrx{cell _pnt{HI_SIDE,X_DIR,1;} &
1528 +cell_off(LO_SIDE,Y_DIR,1}*vctrx{cell _pnt(LO_SIDE,Y_DIR,1}) &
1529 +cell_off(HI_SIDE,¥Y_DIR,1 *vctrx{cell_pnt{HI_SIDE,Y_DIR,1}) &
1530 +cell_off(LO_SIDE,Z_DIR,1 *vctrx{cell_pnt(LO_SIDE,Z DIR,1}) &
1531 +cel1_of f(HI_SIDE,Z_DIR,1¥*vctre{cell_pnt(HI_SIDE,Z_DIR,12}
L1532 enddo
1533
1534 else if(numdim.eq.2dthen
1535
1536 do 1=1,numcell
115 Cirwl] d=votpxill
| sorted | sort | sort | sort |
Lacation | CYCLES % | ICYCLES % | STALL % | FLOPS
Frogram | 1.692+10 100 | 1.67e+09 100 | 1.52e+10 100 | 1.67e+09 100 |
eat.F: 1525 | 6.61e+03 39 | 4.10e+08 24 | 6.20e+08 4 | 4.10e+08 24 |
eat.F: 1356 | 2.392+09 14 | 5.41e+08 32 | 1.85e+09 12 | 5.41e+08 32 |
eat.F: 13387 | 1.82e+09 11 | 6.692+07 4 | 1.75e+09 12 | 6.69e+07 4|
eat.F: 1331 | 9.92e+08 6 | 5.73e+07 3| 9.34e+08 6 | 5.73e+07 3|
eat.F: 1332 | 8.992+08 5 | 6.36e+07 4 | 3. 36e+08 5 | B.362+07 4 |
cat. F: 1098 | 8.132+08 5 | 1.36e+08 8 | 6.77e+08 4 | 1.36e+08 g |
eat.F: 1355 | 7.55e+08 4 | | —1.00e+00 0| |
cat.F: 1341 | 5.55e+08 3 | 1.35e+08 8 | 4.19e+08 3 | 1.35e+08 g |
eat, F: 1333 | 4.02e+08 2 | 1.43e+07 11 3.87e+08 3| 1.43e+07 11
ealt. F: 1605 | 3.142+08 2 | | —1.00e+00 0| |
= eat.F: 1342 | 1.94e+08 1 1 1.35e+08 8 | 5.92e+07 O | 1.35e+08 3 |
Farent Scope SProgram | 1.69e+10 100 | 1.67e+09 100 | 1.5Ze+10 100 | 1.67e+03 100 |
Current Scope heat.F | 1.69e+10 100 | 1.67e+09 100 | 1.52e+10 100 | 1.67e+09 100 |
Child Scopes #mcgds (heat.F: 11602 | 8.60e+09 51 | 1.09e+08 65 | 7.51e+09 438 | 1.09e+09 65 |
#mvmult (heat.F:1498) | 6.61e+09 38 | 4.10e+08 24 | 6.20e+09 41 | 4.10e+08 24 |
*dotprod Cheat F:1036) | 8.142+08 S5 | 1.36e+08 8 | 6.732+08 4] 1.36e+08 a1
#faceget Cheat F:1533) | 3.14e+08 21 | =1.00e+00 o1 |
[CIR A cmen @ 2|

Figure 4: Using HPCView to display both measured and computed metrics.

The metrics shown in Figure 4 were collected on an SGI Origin 2K with R12K processors. The first
column in the display shows CYCLES gathered by statistical sampling of the cycle counter. The second
column, ICYCLES, shows ideal cycles reported by SGI’s pixie utility. The third column, STALL, shows a
metric computed by HPCView as the difference between CYCLES and ICYCLES. The final column shows

FLOPS (floating point operations) counted by sampling the flop counter. From this display, we see that 41%
of the memory hierarchy stall cycles occur in line 1525 of file heat.F. The source window shows that this
comes from a matrix-vector multiply that uses indirect addressing to index the neighbors of each cell. One
potential way to improve performance is to break this loop into nested loops, with the inner loop working
on a vector of cells along either the X, Y, or Z axis. This would enable scalar replacement so that successive
iterations could reuse elements of vectorx along that dimension.

MTOOL[5] was a tool built specifically to do exactly this kind of analysis. Unlike MTOOL, the mechanism
for constructing derived metrics makes HPC'View easily extensible to do other kinds of analysis.

4.1 Approaches to Performance Analysis with HPCView

The ability to bring and analyze data from multiple sources has proven to be useful for a wide variety of
tasks. By computing derived performance metrics that highlight differences among performance metrics and
then sorting on those differences, we can quickly zero in on phenomena of interest. This capability has been
used, as in the example above, to diagnose the cause of performance problems. It has also been used to
compare executions of multiple nodes in a parallel computation, to identify input-dependent performance
variations, and to perform scalability studies. We have also used it to perform side-by-side comparisons of
performance between different architectures and between different implementations of the same architecture.

5 Related Work

A number of memory hierarchy simulators have both counted and categorized events. These systems have
typically been implemented by computer architects with a bias towards supporting architectural evaluation.
MemSpy [11] instruments source programs with Tango [3], an execution-driven simulator, with calls to the
memory simulator for each memory reference associated with heap-allocated (shared) memory or explicitly-
identified address ranges in other parts of the code. The granularity of data accumulation is by bins indexed
in a 2-D space by code object (procedures) and data-object (data allocated by an instance of a call to
malloc). Cache misses are classified into compulsory, interference (replaced by data on this processor), and
sharing (invalidated by cache coherence operations). The main data display shows the 2-D matrix of bins
sorted by code and data units so the most expensive cell appears in the top left corner. Each bin can be
examined in more detail. Data at a finer granularity on a per source reference basis is not available.

CPROF [9] is a similar simulator, but is based on instrumentation of binary code. In addition, it refines
the “interference” miss category into conflict and capacity misses, thus helping to distinguish cases where
data re-alignment can help from those where there is just too much data for the cache. The CPROF user
interface has one pane that displays a source file and another pane which shows lines or data structures
sorted in descending order of the number of misses.

The idea of computing the number of cycles lost due to architecture and system overheads has appeared
several times in the literature. MTOOL [5] estimated the number of cycles that a range of code would take
with no cache misses and compared this with the actual execution time. The difference is assumed to be
either stalls or time spent in handlers for TLB misses and page faults. To compute the ideal execution
time, MTOOL instruments executable code by inserting counters to track the number of times each block is
executed and it uses a model of the machine to estimate the number of cycles necessary to execute the block.
Measurements are aggregated to present results at the level of loops and procedures. While this proved
useful for identifying the location of problems, diagnosis was still difficult because the causes of misses
and identification of the particular data objects involved was often difficult to determine from MTOOL’s
output [5].

Going beyond attributing cycles “lost” to the memory hierarchy, lost cycles analysis [10] classified all of
the sources of overhead (waiting time) that might be encountered by a parallel program. The Carnival tool
set [2] extended this into “waiting time analysis”. It provided a visualization tool with each unit of source
code having an execution time attributed to it. Colored bars are used indicate the percentage of time spent
in each category of overhead.

All recent microprocessors have provided some form of hardware counters that return either cycles, or
that count other performance-related events. Profiling using these counters is facilitated by architectures

on which counter overflows can raise exceptions. The most basic way of accessing such profile information
is through a text file produced by the Unix prof command. Some graphical interfaces are emerging. SGI’s
cuperf [12] performance analysis tool provides a variety of program views. Using cuperf one can display only
one experiment type, e.g. secondary cache misses, at a time. A pane displaying procedure-level summaries
enables one to bring up a scrollable source pane that shows event counts next to each source line. Sandia’s
vprof [7] is another interface that displays a single performance metric with the source code by annotating
each line with a count.

SvPablo (source view Pablo) is a graphical environment for instrumenting application source code and
browsing dynamic performance data from a diverse set of performance instrumentation mechanisms, includ-
ing hardware performance counters [8]. Rather than using overflow-driven profiling, SvPablo library calls
are inserted in the program, either by hand, or by a preprocessor that can instrument procedures and loops.
The library routines query the hardware performance counters during program execution. After program
execution is complete, the library records a summary file of its statistical analysis for each executing process.
Like, HPCView, the SvPablo GUI correlates performance metrics with the program source and provides
access to detailed information at the routine and source-line level. Next to each source line in the display
is a row of color-coded squares, where each column is associated with a performance metric and each color
indicates the importance that source line has on the overall performance of that metric. However, SuPablo’s
displays do not provide sorted or hierarchical orderings of the program units to facilitate top-down analysis.

6 Conclusions

In this paper we described some of the design issues and lessons learned in the construction and use of two
performance analysis tools intended specifically to aid in the analysis and tuning of large applications.

MHSim was built to help diagnose hard memory hierarchy performance problems and relate them to
source code. The evictor and reuse information that we provide is invaluable for such problems. On the
other hand, simulation is expensive and since MHSim counts events, but does not have a machine specific cost
model, it must be used in conjunction with a profiling tool that can help locate and identify the importance
of such problems first.

When attempting to tune the performance of a floating-point intensive scientific code, it is less useful to
know where the majority of the floating-point operations are than where floating-point performance is low.
For instance, knowing where the most cycles are spent doing things other than floating-point computation
would be useful for tuning a scientific code. This can be directly computed by taking the difference between
the cycle count and the FLOP count for lines, loops or procedures. Our experience analyzing programs with
multiple metrics using HPC'View quickly the need for the tool to compute derived metrics such as cycles per
FLOP or miss ratios.

We have found that aggregated information is often much more useful than the information gathered
on a per-line and/or per-reference basis. Derived metrics in particular are more useful at the loop level
rather than a line level. A key to performance is matching the number and type of issued operations in a
loop, known as the loop balance [1], with the hardware capabilities, known as the machine balance. Balance
metrics (how many FLOPS per cycle issued versus how many possible, how many bytes per instruction
loaded from memory versus peak memory bandwidth per cycle) are especially useful for suggesting how one
might tune a loop.

In some cases, we have found that line level (or finer) information can provide misleading information.
For example, on a MIPS R10K processor, a counter monitoring L2 cache misses is not incremented until
the cycle after the second quadword of data has been moved into the cache from memory. If an instruction
using the data occurs immediately after the load, the system will stall until the data is available and the
delay is likely to be charged to the second instruction. As long as the two instructions are from the same
statement, there’s little chance for confusion. However, if the compiler has optimized the code to exploit
non-blocking loads by scheduling load instructions from multiple statements in clusters, misses may end up
being attributed to the wrong statement. This occurs all too often for inner loops that have been unrolled
and software pipelined. The nonsensical fine-grain attribution of costs confuses users. At high levels of
optimization, such performance problems are really loop-level issues, and the loop-level information is still
sensible. For out-of-order machines with non-blocking caches, per-line and/or per-reference information can

10

only be useful if some alternative instrumentation technique is used, such as ProfileMe on the Compaq Alpha
EV67 processors and successors [4].

We have used the MHSim and HPCView tools on entire applications. For HPCView, this has included a
20,000 line semi-coarsening multigrid code written in C, an 88,000 line Fortran 90 code for three-dimensional
fluid flows, and a multi-lingual 200,000 line cosmology application. In each of these codes the tools allowed
us to quickly identify significant opportunities for performance improvement. However, for large codes the
HTML database size grows large when many metrics are measured or computed. Currently we statically
precompute static HTML for the entire set of potential displays for both HPCView and MHSim. For
example, instead of dynamically sorting the performance metric panes, we write a separate copy of the data
for each sort order. This includes the data for each of the program scopes. We have seen HTML databases
relating several performance metrics to a 150,000 line application occupy 30 megabytes in slightly over 6000
files. To reduce the size of performance databases, we are planning to develop an intelligent browser in Java
that can dynamically create views on demand instead of precomputing them all beforehand.

References

[1] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelined machines.
Journal of Parallel and Distributed Computing, 5(4):334-358, August 1988.

Carnival Web Site. http://www.cs.rochester.edu/u/leblanc/prediction.html.

EERS)

H. Davis, S. Goldschmidt, and J. Hennessy. Tango: A Multiprocessor Simulation and Tracing System. In
Proceedings of the International Conference on Parallel Processing, pages 99-107, August 1991.

[4] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and George Chrysos. ProfileMe: Hardware
support for instruction-level profiling on out-of-order processors. In Proceedings of the 30th Annual International
Symposium on Microarchitecture (Micro ’97), December 1997.

[6] A. J. Goldberg and J. Hennessy. MTOOL: A Method for Isolating Memory Bottlenecks in Shared Memory
Multiprocessor Programs. In Proceedings of the International Conference on Parallel Processing, pages 251-257,
August 1991.

[6] E. Schnarr J. Larus. EEL: Machine-Independent Executable Editing. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Destgn and Implementation, pages 291-300, June 1995.
[7] C. Janssen. The Visual Profiler. http://aros.ca.sandia.gov/ cljanss/perf/vprof/doc/README.html.

[8] D. Reed L. DeRose, Y. Zhang. SvPablo: A Multi-Language Performance Analysis System. In 10th International
Conference on Performance Tools, pages 352-355, September 1998.

[9] A. Lebeck and D. Wood. Cache profiling and the spec benchmarks: A case study. IEEE Computer, October
1994.

[10] T. LeBlanc M. Crovella. Parallel Performance Prediction Using Lost Cycles. In Proceedings Supercomputing 94,
pages 600-610, November 1994.

[11] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory System Bottlenecks in Programs.
In ACM SIGMETRICS and PERFORMANCE ’92 International Conference on Measurement and Modeling of
Computer Systems, pages 1-12, June 1992.

[12] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using the MIPS R10000 Performance
Counters. In Proceedings Supercomputing ’96, November 1996.

11

