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Abstract

Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities
underlying AML are extremely heterogeneous among patients, making prognosis and treat-
ment selection very difficult. While clinical proteomics data has the potential to improve
prognosis accuracy, thus far, the quantitative means to do so have yet to be developed.
Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction
Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote
the development of quantitative methods for AML prognosis prediction. We identify the
most accurate and robust models in predicting patient response to therapy, remission dura-
tion, and overall survival. We further investigate patient response to therapy, a clinically
actionable prediction, and find that patients that are classified as resistant to therapy are
harder to predict than responsive patients across the 31 models submitted to the challenge.
The top two performing models, which held a high sensitivity to these patients, substantially
utilized the proteomics data to make predictions. Using these models, we also identify
which signaling proteins were useful in predicting patient therapeutic response.

Author Summary

Acute Myeloid Leukemia (AML) is a hematological cancer with a very low 5-year survival
rate. It is a very heterogeneous disease, meaning that the molecular underpinnings that
cause AML vary greatly among patients, necessitating the use of precision medicine for
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treatment. While this personalized approach could be greatly improved by the incorpo-
ration of high-throughput proteomics data into AML patient prognosis, the quantitative
methods to do so are lacking. We held the DREAM 9 AML Outcome Prediction Challenge
to foster support, collaboration, and participation from multiple scientific communities in
order to solve this problem. The outcome of the challenge yielded several accurate meth-
ods (AUROC >0.78, BAC > 0.69) capable of predicting whether a patient would respond
to therapy. Moreover, this study also determined aspects of the methods which enabled
accurate predictions, as well as key signaling proteins that were informative to the most
accurate models.

Introduction

AML is a potent malignancy of the bone marrow. It is characterized by the production of dys-
functional myeloid cells, incapable of carrying out their normal differentiation into mature
blood cells, ultimately leading to hematopoietic insufficiency, infection, hemorrhage, and ane-
mia [1, 2]. The last decade has seen significant revision in the diagnosis and classification of
AML. Classification has shifted from a morphology and lineage centered paradigm, described
by the French- American-British (FAB) system, to a system which focuses on genetic anoma-
lies, as described by the new World Health Organization (WHO) guidelines [3]. While this
includes many of the genetic mutations now recognized to commonly occur in AML [4], recent
sequencing efforts [5] have revealed many previously unrecognized mutations in AML which
will require further modification of classification schemes. Moreover, genetic events related to
epigenetics and non-coding RNAs have yet to be incorporated into classification. Unfortu-
nately, devising an accurate prognosis for AML patients, particularly those with normal cytoge-
netics, remains very challenging as the combinatorial potential of genetic events makes for
tremendous heterogeneity in both classification and outcome interpretation [6]. This can be
attributed, in part, to the fact that only a minority of genetic mutations are driver mutations
that lead to functional changes in cellular pathways that translate into physiological outcomes.

High-throughput proteomics studies, such as Reverse Phase Proteomic Arrays (RPPA),
have the potential to bridge the gap between the underlying genetic alterations and functional
cellular changes. Thus far, proteomics has been used successfully to profile AML patients based
on alterations in several key signaling pathways, including highly implicated proteins like FLil
[7] and FOXO3A [8]. However, these studies also confirm that AML remains a very heteroge-
neous disease, even on the level of protein signal transduction. It is clear that leveraging high-
throughput proteomics to improve the accuracy of prognosis for AML patients will require the
development of robust quantitative tools. To date, we did not find any studies which address
this issue.

The Dialogue for Reverse Engineering Assessment and Methods (DREAM) is a crowdsourc-
ing platform which has accelerated the development of computational tools in the most perti-
nent areas of biology and medicine, unraveling gene networks [5, 9], predicting drug sensitivity
[10], and harnessing predictions to improve prognosis accuracy [11, 12]. Using a challenge
based design, DREAM attracts expertise and fosters collaboration across academic fields while
providing a mechanism for the robust and unbiased evaluation of computational methods [13-
15]. We developed the DREAM Acute Myeloid Leukemia Outcome Prediction Challenge
(AML-OPC) following this paradigm.

The DREAM9 AML-OPC was designed to facilitate both the improvement and comprehen-
sive assessment of quantitative AML prognosis methodologies. Challenge participants were
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provided access to data from 191 AML patients (the training set) seen at the MD Anderson
Cancer Center (Houston, TX), while data from an additional 100 AML (the test set) patients
was withheld for model evaluation. We chose Response to Therapy (RT) as the primary clinical
endpoint because it is a potentially actionable prognosis criterion. However, since a patient’s
Remission Duration (RD) and Overall Survival Time (OS) can be informative in planning
patient care, these were also included in the challenge objectives.

The DREAM9 AML-OPC included over 270 registered participants and 79 contributing
teams, many of which contributed to multiple sub-challenges. Over 60 algorithms were con-
tributed, many of which were refined during the challenge, yielding several innovative and
accurate top performing models. We identify these models, test them for robustness, and deter-
mine which scoring metrics differentiate the top performers. We also evaluate whether predic-
tion accuracy can be improved by aggregating predictions from the many diverse models we
tested. In addition, we evaluate RT predictions over the population of models to determine
which outcomes are more difficult to predict accurately. Finally, we investigate the top two per-
forming models to determine the extent their RT predictions were improved by the RPPA
data.

Results
Design and implementation of the DREAM 9 AML-OPC

The challenge data consisted of 40 clinical indicators (see S1 Table) and 231 RPPA measure-
ments (Fig 1). Three separate sub-challenges were defined to independently address each perti-
nent aspect of AML prognosis, namely RT for sub-challenge 1 (SC1), RD for sub-challenge 2
(SC2), and the OS for sub-challenge 3 (SC3) (Fig 1). Two metrics were used to evaluate the per-
formance of models within each sub-challenge. In SC1, RT predictions were contributed as list
of confidences indicating the probability that each patient would respond to therapy. The area
under the receiver operating characteristic (AUROC) and balanced accuracy (BAC, defined as
the average of true positive rate and true negative rate) were selected to assess the RT predic-
tions given their wide use and well documented utility in evaluating classification problems.
For SC2 and SC3, RD and OS predictions were submitted as a list of remission or survival
times (weeks), respectively, along with a list of corresponding prediction confidences. Both
SC2 and SC3 were assessed using the concordance index (CI), which evaluates the ranks of pre-
dicted versus actual times when there is censored data and is commonly used in survival analy-
sis. Since the CI considers only the order but not the actual values of the predictions, the
Pearson correlation (PC) was also used to evaluate RT and OS.

Evaluating individual and aggregate model performance

The number of teams contributing model predictions increased for each sub-challenge
throughout the DREAM9 AML-OPC (S1A Fig). Participants were allowed to test predictions
once per week for a total of 12 weeks (Fig 2). The same test set was used in the leaderboard
phase as well as in the final evaluation. Therefore, predictions were scored on a different sub-
sampled (~75%) subset of the 100 patient test set each week to avoid over-fitting. See Materials
and Methods for a more detailed description of the challenge design. Final predictions were
collected on the 13™ week following the challenge opening. In SC1 (Fig 2A), the difference in
performance between the top RT predictions from the first week and that from the best per-
forming predictions observed during any week of the competition was an increase of 6.21%
when evaluated by the AUROC metric alone, 9.20% when evaluated by the BAC alone, and
6.33% when calculating the best average of the two metrics scored by any model. Here, we used
the average of both metrics as a summary statistic for the two metrics. The maximum
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Fig 1. Overview of the DREAM9 AML-OPC data, implementation, and timeline. Samples were collected from 291 patients diagnosed with AML and
the levels of 231 signaling proteins were assayed using RPPA. Data was selected from 191 of these patients and released to participants on June 16™
2014 for model training. DREAM9 AML-OPC consisted of 3 subchallenges (SC1, SC2 and SC3) which were evaluated independently on a set of 100
patients (the evaluation was performed on different subsets of 70 patients every week), asking participants to predict either Response to Therapy (RT),
Remission Duration (RD), or Overall Survival Time (OS). Participants were given weekly feedback on model performance, which was evaluated using
two different metrics for each subchallenge, until September 15" 2014 when the challenge concluded. The metrics were Area Under the Receiver
Operating Characteristic (AUROC) curve and Balanced Accuracy (BAC) for SC1, and Concordance Index (Cl) and Pearson Correlation (PC) for SC2 and
SC3. A hackathon was organized during the Challenge to foster collaboration between participants

doi:10.1371/journal.pcbi.1004890.9001

performance observed during individual weeks is shown in S1B-S1D Fig (red line). The perfor-
mance of predictions submitted for the final scoring (week 13) were distributed in a manner
distinct from random predictions (see Fig 2B, p< 0.01 for AUROC and BAC, Wilcoxon rank
sum test), with the top scores being significantly better than random. Note, the median score
for each of the previous weeks was also consistently higher than that associated with random
predictions (S1B Fig). The scores from predictions made on the final submission test data
(week 13) were frequently lower compared to those made on the training data (S2 Fig), particu-
larly for the lower ranked models, suggesting that over-fitting was an important factor in deter-
mining model performance. For SC1, the top-performing model used a novel evolutionary
weighting approach to feature selection (see S1 Text), yielding a final AUROC score of 0.796
and a BAC of 0.779.

The initial performance of models in predicting RD in SC2 was much lower than observed
for RT in SC1, revealing RD predictions were considerably more challenging (Fig 2C). Even so,
generous improvement was seen in both the peak PC and CI scores when comparing the initial
scores to the best score observed during the challenge, 47.43% and 11.99% respectively. The
highest average metric scores observed during the challenge also showed a marked increase
(24.43%). While the distributions of CI and PC scores in the final submission were not as sepa-
rated from random as the RT predictions (p<0.01 for CI, p<0.025 for PC, Wilcoxon rank sum
test) (Fig 2D), the top scores were higher than expected for random predictions. With the
exception of the PC metric in the first week, median scores were higher than expected for ran-
dom predictions (S1C Fig). In SC3, OS predictions showed significant improvement when
assessing by the CI alone (10.53%), however, the PC showed less increase (~3%) (Fig 2E). The
top average of both metrics showed significant improvement (8.99%) as well. The OS final CI
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Fig 2. Model performance. The performance of each model was tracked during each week of the challenge. Each sub-challenge was scored
using two different metrics. BAC and AUROC were used for SC1, while Cl and PC were chosen for SC2 and SC3. The score of the highest
performing model was determined each week, either using each metric independently, or by averaging both metrics, and is shown for SC1 (A),
SC2 (B), and SC3 (C). Note, if the highest score for any week did not exceed the previous weeks score, the previous score was maintained. The
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probability density of the final scores (normalized to a maximum of 1) was also determined and for each metric in SC1 (B), SC2 (D), and SC3 (F).
The probability density of the null hypothesis, determined by scoring random predictions, is also indicated.

doi:10.1371/journal.pcbi.1004890.g002

and PC predictions were both significantly shifted from random (p<0.01, Wilcoxon rank sum
test) (Fig 2F). The top performing approach for both SC2 and SC3 was developed by a single
team and based on Cox Regression (see supplemental text). The model achieved final CI and
PC scores of 0.655 and 0.773 for RD predictions in SC2, while obtaining scores of 0.730 and
0.740 for SC3.

A unique facet of community based model development is the ability to examine whether the
diverse population of submitted models can be combined to either assure or improve predictive
power. Previous DREAM challenges have shown that this approach, often referred to as the “wis-
dom of crowds”, generates ensemble prediction scores that are comparable in performance, and
often times better, than the top performing models [16]. This is particularly useful in real situa-
tions when we don’t have a gold standard and therefore we are not certain of which one is the
top performing model. Here we aggregate model predictions by calculating the arithmetic mean
for the predictions of each model and those models with superior performance. These averaged
predictions are then scored to determine aggregate model performance. We tested the perfor-
mance of aggregate predictions for RT in SC1 and found that the performance increased above
the top performing model by 0.04 (~5% improvement based on the average of AUROC and BAC
scores) when combining predictions for the top 3 models (Fig 3, leftmost panel). The perfor-
mance remained higher than the top performing model even after combining the top 5 models
and only decreased by 0.11 when combining all 31 models. This score, however, was significantly
better than the corresponding score of the 31*' ranked model (0.67 compared to 0.42).

Sub—Challenge 1 Sub—Challenge 2 Sub—Challenge 3
0.8-
0.7-
v Score Type
O | Aggregate Score
A 0.6 == Individual Score
0.5-
0.4-
° b v % ¥ ¢ 5 SR IR

Min Challenge Rank

Fig 3. Aggregate and individual model scores. Aggregate scores were determined by averaging the predictions of each model with the
predictions from all the models that out-performed it. Model rank is plotted along the x-axis from highest to lowest, with a rank of 1 assigned to the
top performing team. Therefore, any given point along the x-axis indicates the minimum rank of the model included in the aggregate score, e.g., a
minimum challenge rank of 2 includes predictions from both the rank 2 team and the rank 1 team which out-performed it. The aggregate scores
(red lines) were compared to individual team scores (blue lines) for SC1, SC2, and SC3. In each case, the scores reported are the average of the
two metrics used for that sub-challenge.

doi:10.1371/journal.pcbi.1004890.9003
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Similarly, aggregating RD predictions from the top 5 models in SC2 (Fig 3 —-middle panel)
also increased performance above the top performing model by 0.02. The aggregate score from
all 15 model predictions was only 0.04 less than the top performing score but was 0.24 better
than the worst performing model (rank 15). While the aggregate score for OS predictions in
SC3 was not higher than the top performing model score (Fig 3, rightmost panel), combining
all 17 model predictions results in a prediction that is between the best and second best, only
reduced the performance by 0.08 with respect to the top performing team, and resulted in an
aggregate score that was 0.25 better than the worst performing model.

Assessing model ranking robustness

A key element in assessing model performance is determining the robustness of the final rank-
ings with respect to perturbations of the test set. We evaluated the stability of the final scores
by sampling ~81% of the week 13 test set patients (60 patients out of 74), re-scoring each
model, and then repeating 1000 times for each sub-challenge (Fig 4). For SC1, the top
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Fig 4. Stability of model performance. Model stability was evaluated for SC1 (A), SC2 (B, left) and SC3 (B, right) by scoring final predictions
on 1000 different random subsets of the test set samples (each subset was 60 patients, ~80% of the week 13 test set). The resulting

distribution of scores was plotted against each teams overall challenge rank. Note, the center horizontal line of each box indicates the median
score. Challenge ranks are ordered from highest to lowest, where a rank of 1 indicates the highest rank.

doi:10.1371/journal.pcbi.1004890.9004
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performing model (Challenge Rank = 1) had a combined metric score that was significantly
better than all the lower ranked models (average of AUROC and BAC, Bayes Factor (BF) >6.3
with maximum score overlap of 13.7%, see S3 Fig and Materials and Methods). When examin-
ing each metric separately for the top two teams, we found that the distribution of AUROC
scores overlapped 33.8% (BF = 1.95), meaning that the BAC set these models apart (overlap of
only 3%, BF = 32.3). As indicated earlier, the same model held the best performance in both
SC2 and SC3 (Fig 4B, left and right). In SC2, the combined metric score of the top performing
model was significantly better than any of the lower ranked models (maximum overlap of
3.1%, BF = 31.3) due to superior performance when evaluated using the PC metric. In contrast,
the top model’s resulting CI and PC scores were both superior to the lower ranked models in
SC3 (maximum overlap of 3.1%, BF = 31.3).

The role of patient outcome and proteomics data in determining
prediction accuracy

We next investigated prediction errors in more detail, focusing on SC1, since RT is a potentially
actionable part of prognosis. Specifically, we asked whether either outcome, Complete Remis-
sion (CR) or Resistant, was more difficult to predict. Patients in the test set were grouped based
on outcome and the predictions from each model were re-scored. The resulting accuracy,
taken as the positive prediction value, was distributed distinctly for each outcome (Fig 5A).
The median accuracy for Resistant patients was much lower than CR patients (0.42 vs 0.73,
p<0.01, Wilcoxon rank sum test), suggesting they are more difficult to classify (Fig 5B, left).
Moreover, 6 of the 7 top performing models achieved accuracies near or above 75% for classify-
ing Resistant patients (Fig 5B, right), well above the median accuracy for that patient group
(Fig 5B, left, red box). These same 6 models held accuracies near 70% for CR patients, which
were below the median (Fig 5B, left, green box), indicating that accurately classifying Resistant
patients set these top models apart. We also examined whether any particular class of learning
algorithm was better at predicting the Resistant class of patients, but found a high degree of
performance variability amongst implementations that used the same base learners (54 Fig).

One of the goals of the DREAM9 AML-OPC was to promote the development of a quantita-
tive method which could utilize the high-throughput RPPA proteomics data to make more
accurate prognosis predictions. We examined RPPA data usage for the two highest ranked
models from SC1. To do so, we tested each model on scrambled RPPA data, meaning the origi-
nal trends and RPPA data patterns that were present during model training were removed.
Note, scrambled protein data was generated by randomly shuffling patient protein values for
each individual protein, meaning the distribution and associated statistics were maintained for
each protein. Both models were first tested on data with protein values simultaneously scram-
bled for all 231 proteins a total of 100 times and scored using the AUROC and BAC metrics.
Neither model completely lost predictive power, having median scores of 0.69 and 0.65 for the
first and second ranked model, respectively, as evaluated using the average of the AUROC and
BAC. However, the resulting scores were much lower when the models made predictions using
scrambled data compared to the original scores using the actual RPPA data (Fig 5C). For both
models, the original scores lay at the upper edge of the distribution of scrambled data scores
(top 95%). Using the difference between the original scores and the median scrambled RPPA
data scores as an estimate, the performance loss was 0.10 (10.7%) and 0.11 (14.6%) for the top
and second ranked model (Fig 5C, compare box midline to diamond for the ‘average’ metric),
indicating the RPPA data contributed substantially to each model’s predictions.

We next wanted to determine which specific signaling proteins were most pertinent to the
performance of the two top models from SC1. To test this, we scrambled the data for each of

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004890 June 28,2016 8/16
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Fig 5. The role of patient outcome and proteomics data in determining prediction accuracy. A) The probability density of prediction accuracy evaluated
separately for CR and Resistant patients. (B) Comparison of individual model accuracy for CR and Resistant patients (right) compared to the distribution over
the population (left). The midline of the box plot indicated median accuracy while the lower and upper box edge indicated 25™ and 75" percentile. (C) The
distribution of scores obtained using scrambled RPPA data for the two top performing teams in SC1 (Rank #1 and Rank #2). For each metric, the score
obtained using the original RPPA data (not scrambled) is indicated by a diamond. (D) Heat map showing the percent difference in score (average of BAC and
AUROC) between predictions obtained using the original RPPA data (not scrambled) and predictions made using data where each protein was scrambled
separately over 100 assessments. The y-axis indicates the result for each scrambled protein assessment, 1-100, while the x-axis indicates each protein.

doi:10.1371/journal.pcbi.1004890.9005

the 231 proteins separately over 100 iterations, running each model on a total of 23,100 scram-
bled data sets. We then evaluated these predictions using a combined metric based on the aver-
age of the AUROC and BAC. The percent difference between the original score (unscrambled
data) and the score achieved using data with individually scrambled proteins was used to
describe the models dependence on each protein (Fig 5D). If a protein was found to influence
model performance, data pertaining to that protein was scrambled 10,000 iterations to more
accurately assess its impact. For the top performing model (rank #1), randomizing signaling
proteins one at a time reduced the model performance in more than 65% of the permutations
for 26 proteins (S5A and S5B Fig). For the rank #2 model, 65% or more of the randomizations
for each of 4 different proteins decreased model performance (S5C and S5D Fig). Interestingly,
perturbing the PIK3CA (Phosphoinositide-3-Kinase, also known as PI3k) signaling protein, an
important cell cycle regulator, greatly impacted both models (reducing model performance in
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more than 96% of the cases, Fig 5D, compare top and bottom heat map, also S5 Fig). Indeed,
patients that were classified as resistant to therapy were biased towards low levels (<0) of
PIK3CA (chi-squared test, p<0.00018, also see S6 Fig). In addition, the performance of the
rank #1 model was also dependent on two other signaling proteins involved in PIK3CA signal-
ing, GSKAB and PTEN. Both models were also dependent on NPM1 (94.36% and 81.43% of
permutations reduced performance, rank #1 and rank #2, respectively), a protein which con-
tributes to ribosome assembly and chromatin regulation. Note, both models also utilized sev-
eral clinical variables (S7 Fig), including Age, Chemotherapy, and AHD.

Discussion

The absence of new and informative prognostic information has stunted the improvement of
AML prognosis accuracy and the advancement of treatment for the last two decades. The DREAM
9 AML-OPC gathered researchers from all around the world to address this problem, successfully
providing a competitive incentive for progress while maintaining a collaborative environment.
This was evident from both the improvement seen in the challenge leaderboards and the wide use
of the challenge forums during the competition to convey ideas and voice questions and concerns.
In addition, the DREAM9 AML-OPC carried out a webcast “hackathon”, a collaborative tool new
to DREAM challenges, where several teams shared insights and local experts presented ideas.

By evaluating the predictions from both good and poor performing models, we were able to
use the DREAM9 AML-OPC as a crowdsourcing platform to gain general insight into making
more accurate RT predictions. Although many of the models in SC1 were robust, we deter-
mined that higher ranked models were distinct in having an elevated and stable median BAC
score. In this case, it is likely that the AUROC metric was less sensitive to the class imbalance
inherent in the AML data (as discussed in the methods). As this implies the top performers
held greater capacity to predict the minority class, i.e., the Resistant patients, we investigated
performance on each class in more detail. Indeed, the overall accuracy observed across all the
contributed models was lower in predicting the Resistant cases. The top performing models,
however, held accuracies well above the median accuracy for the Resistant class, indicating
their ability to predict these patients allowed them to obtain higher BAC scores and higher
ranks. Accordingly, future efforts in developing RT prognostic models would benefit from
improving predictive ability for Resistant patients.

Each sub-challenge resulted in the development of a refined and robust quantitative method
to predict a different aspect of patient prognosis. The top model in SC1 used a random forest
learning algorithm coupled with a novel form of feature selection called “evolutionary weight-
ing”. Since no general class of learning algorithms could be identified as more accurate in pre-
dicting RT, the success of this algorithm likely stems from its implementation and effective
feature selection. While the DREAM 9 AML-OPC focused on clinically actionable RT predic-
tions, the challenge also resulted in the development of a refined Cox regression model capable
of predicting RD and OS. In addition, some participants were also inspired to pursue interest-
ing lines of research beyond the specific aims evaluated by the DREAM9-AML-OPC, for exam-
ple, exploring characteristics specific to subpopulations of patients [17].

It is important to note, however, potential limitations in our challenge design. The scarcity
of AML patient proteomics data available required us to use data from the test set to provide
participants with feedback on the weekly leaderboard. This represents an indirect form of
information leakage which could potentially lead to the development of over-optimistic mod-
els. However, we limited feedback to 12 scorings per participant and used random test set sub-
samples to minimize potential model overfitting. Moreover, the top model from sub-challenge
1 only submitted to the leaderboard 1 time prior to final judging. Another potential source of
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information leakage was the availability of data describing clinical variables and outcomes for a
limited number of patients that were used in this study [18]. This data, however, was released
many years prior to the DREAM9 AML-OPC and did not have updated patient outcomes. The
proteomics data also originated from a different source, and it does not correlate with the data
released for the DREAM9 AML-OPC without informed cross normalization. Therefore, it is
unlikely this data would be generally informative if participants decided to use it for model
training. As a precaution, data pertaining to these patients was excluded from the final model
evaluation (week 13) and therefore did not impact the study results.

Beyond developing accurate prognostic models, participants were provided novel clinical
RPPA proteomics data and tasked with developing a means to use this information in conjunc-
tion with clinical data to improve prognosis accuracy. To our knowledge, the DREAM9
AML-OPC represents the first attempt at both developing a quantitative means to utilize this
information and providing a rigorous way to assess the resulting models. Accordingly, we
tested the two top performing models for SC1 to see the extent to which their RT predictions
depended on the RPPA data. Our findings indicate that the performance of these models was
enhanced by using RPPA data, suggesting that clinical proteomics has the potential to become
a valuable component to AML prognosis. Moreover, the performance of both models, though
derived from very different approaches, was heavily dependent on PI3KCA, suggesting
PI3KCA could be a highly informative protein biomarker for predicting AML patient response
to therapy. This is congruent with recent studies suggesting PI3KCA mutation is a prognostic
factor for AML [19, 20] and that this protein and pathway is potentially an effective therapeutic
target [21]. Both models were also dependent on NPM1. The role of NPM1 mutation as a prog-
nostic factor may be unclear. While it is typically associated with higher survival rates in AML
[22, 23], a recent study indicates it is not a prognostic factor for AML patients with normal
cytogenetics [24]. Our analysis, based on the performance of predictive models that utilize pro-
teomics data rather than genetic data, indicates that NDM1 is an informative feature in predict-
ing AML patient response to therapy.

Materials and Methods
Challenge data

The dataset used for the DREAM 9 AML-OPC consisted of 291 patients seen at the MD
Anderson Cancer Center (Houston, TX), for which clinical attributes and RPPA data from
bone marrow biopsies was obtained, processed, and normalized as described previously [25-
28]. A genetic algorithm was designed to partition the dataset into training and test datasets
which have equivalent distributions of clinical and RPPA data. The training set consisted of
191 patients, while the test set held 100 patients. These datasets are available on the Synapse
online repository. Note, the clinical outcomes in the overall dataset were imbalanced, with the
percent of CR and Resistant patients being approximately 71% and 29% respectively. This ratio
was believed to be generally congruent with the overall low survival rate for AML patients and
was preserved in both the training and test datasets.

Challenge implementation

The training data was released to participants on June 16™, 2014. Participants were allowed to
submit test set predictions for feedback once a week for 13 weeks, from June 23" to September
8™, 2014 (see Fig 1 for timeline). For each sub-challenge, models were evaluated using two dif-
ferent metrics, and the values for these metrics were posted to the leaderboard each week. Met-
rics were the AUROC and BAC for SC1, and the CI and PC for both SC2 and SC3. To prevent
model over-fitting, 75 out of 100 patients were selected at random for scoring for weeks 1-11.
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For weeks 12 and 13, 74 patients were selected to exclude patients for which limited amounts
of data might have been available from other sources. Note, SC2 and SC3 required censoring of
patients for the purposes of scoring. In SC2, the PC was calculated for RD predictions based
solely on patients that responded to therapy and underwent a subsequent relapse. Likewise, for
OS predictions in SC3, the PC was determined only for patients that were known to be
deceased. For both SC2 and SC3, the CI was determined using right censoring. Final submis-
sions were taken on September 15™, 2014 and scored as described above.

Part of the challenge design included fostering collaboration amongst participants. During
the challenge, model scores were posted on a weekly leaderboard so that the progress of every
participant was shared throughout the DREAM community. An open “Hackathon” took place
on July 26" as part of an effort to foster collaboration in the challenge community. In addition,
a community forum was set up so registered participants could ask both technical and adminis-
trative questions about the challenge, share ideas, and voice concerns.

Robustness analysis

To check if the ranking resulting from the final model predictions is robust to perturbations of
the test set (e.g., removing some of the patients), we re-evaluated each model’s predictions on
1000 sub-samples of the final (week13) test patients. The results of the performance compari-
son between the model ranked 1 (Rank #1) using the final test set and the models ranked 2nd)
3™ etc (Rank #2, Rank #3, etc) are shown in S3 Fig. More precisely, if we call AM the differ-
ence in performance metrics of the Rank #1 model (M;) and model Rank k (M,), then AM,; =
M;—Mj, under the same sub-sample. S3 Fig shows the distribution of values of AM; as a
function of k. For SC1, the Rank #2 model scores better than Rank #1 in the averaged AUROC
and BAC score (that is, AM, is negative) in 13.7% of the sub-samples tested. Therefore, while
the Rank #1 model does not perform better than the Rank #2 model in all sub-samples, it scores
higher with a frequency of 86.3%. If we call Prob(M, > M | D) the probability that Model
Rank#1 scores higher than model Rank k, and Prob(My, > M, | D) the probability that model
Rank k scores better than model Rank #1 given the data, then the posterior odd ratio is defined
as:

0*(1,k) = Prob(M, > M, | D) / Prob(M, > M, | D)

This ratio measures the fold change of the frequency of model Rank #1 performing higher
than model Rank k to the frequency of model Rank k performing better than model Rank #1
given the data at hand. This unprejudiced prior was that mode Rank #1 and model Rank k
have equal odds of winning. Therefore the prior odds ratio is given by:

OP™"(1,k) = Prob(M, > M,) /Prob(M, > M,) =1
The Bayes Factor K is defined as the ratio between posterior odds and prior odds ratios:

BF(1,k) = O**(1,k)/ O™ (1,k)

For hypothesis testing, where the conventional statistical significance is given by
p-values < 0.05, well established guidelines for the interpretation of Bayes Factors [29]
suggest that BF(1,k) > 3, 20 and 150 gives positive, strong, and very strong evidence in favor
of M; > M.

For sub-challenges 1, 2 and 3 we have that BF(1,2) is equal to 6.3, 332 and >999, indicating
a robustness of the relative ranking between Rank #1 and Rank #2 models in the Challenge.
This robustness holds for all metrics and all sub-challenges, except for metric AUROC in SC1,
for which model Rank #1 cannot be considered to be better than model Rank #2, #3 or #4.
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Assessing the importance of the RPPA data

Use of the RPPA data was determined for the two top scoring models in SC1 by scrambling the
protein data, making predictions with the previously trained models, and comparing the scores
to those from the original predictions that were made with the unscrambled RPPA data. The
data was scrambled by randomly shuffling the values for each individual protein across the 100
patients in the test dataset. In this way, the statistical properties, e.g., the mean, variance, range,
etc, were preserved for every protein. All proteins in the dataset were scrambled in this manner
for each assessment and a total of 100 assessments were conducted. Note, each model was
scored using the final (week 13) test dataset (74 patients). Reduction in model performance
was measured by the percentage of scores that were lower than the original predictions, i.e,
dividing the number of scores that were less than the original (unscrambled) by the total num-
ber of scores from scrambled RPPA assessments.

The procedure to determine which specific proteins were informative to the two top per-
forming models was the same as described above, with the exception that only 1 protein was
scrambled for each of the assessments. Again, this was repeated 100 times, making a total of
23,100 scrambled assessments for the 231 proteins. To more accurately determine the percent-
age of perturbations that decreased model performance, an additional 10,000 assessments were
performed for proteins that altered model performance under the initial 100 assessments.

Statistical computing

Challenge results were analyzed using the statistical computing language R [30]. Figure plots
were developed using the package ggplot2 [31].

Supporting Information

S1 Fig. Summary of team participation and performance each week. (A) The number of
teams participating in each sub-challenge each week. (B-D) Box plots comparing the distribu-
tion of scores each week with scores generated from random predictions for each sub-chal-
lenge. The red line indicates the maximum score seen for each week.

(TTF)

S2 Fig. Comparison of model performance on training and test datasets. Model perfor-
mance was evaluated on the week 13 test data (red) and training data (blue). (A) Performance
for SC1 was determined using the AUROC (top) and BAC (bottom) scores (B) Performance
for SC2 was determined using the CI (top) and PC (bottom) scores. (C) Performance for SC3
was determined using the CI (top) and PC (bottom) scores.

(TIF)

S3 Fig. Paired differences for stability analysis of model performance. Model stability was
evaluated by scoring final predictions on 1000 different random subsets of the week 13 test set
patients (81%). For each specific subset, the difference between the Rank #1 model score and
each lower ranking model was determined. Positive differences are indicated by blue points
while negative differences are shown in red. The text above each set of points indicates the frac-
tion of scores in which a lower ranking model outperformed the rank #1 model.

(TIF)

$4 Fig. Accuracy in predicting CR and Resistant patients for different machine learning
methods. Each model was classified by its base machine learning method as documented in
the write-ups submitted by each participant. The accuracy in predicting both CR and Resistant
patients, taken as the positive predictive value, was then determined for each model. Note,
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“Meta” refers to models that used a combination of multiple different machine learning
approaches, while other refers to approaches that did not use machine learning methods.
These methods included various implementations of descriptive statistics, probability analysis,
and sparse matrix analysis.

(TIF)

S5 Fig. Proteins found to impact the performance of the Rank #1 and Rank #2 models in SC1.
(A) Box plots comparing the distribution of scores obtained by scrambling individual protein data
over 100 assessments (see methods) for the Rank #1 model. Each box centerline indicates the
median score while the upper and lower box borders indicate the 25 and 75™ percentile respec-
tively. (B) Table showing the percentage of randomizations that yielded reduced scores with respect
to the original (unscrambled) RPPA data for the Rank #1 model. (C) Box plots, as described in A,
showing the distribution of scores obtained by scrambling individual protein data over 100 assess-
ments for the Rank #2 model. (D) Table showing the percentage of randomizations that yielded
reduced scores with respect to the original (unscrambled) RPPA data for the Rank #2 model.

(TIF)

S6 Fig. Distribution of PIK3CA levels for patients classified as CR or Resistant. A histogram
showing the number of patients for different levels of PIK3CA. The vertical centerline at 0
denotes the boundary between low and high PIK3CA levels.

(TIF)

$7 Fig. Clinical variables found to impact the performance of the Rank #1 and Rank #2
models in SC1. (A) Heat map showing the percent difference in score (average of BAC and
AUROC) between predictions obtained using the original clinical variables (not scrambled)
and predictions made using data where each clinical variable was scrambled separately over
100 assessments. The y-axis indicates the result for each scrambled assessment, 1-100, while
the x-axis indicates each clinical variable. (B) Box plots comparing the distribution of scores
obtained by scrambling data from individual clinical variables over 100 assessments (see Meth-
ods) for the Rank 1 model. Each box centerline indicates the median score while the upper and
lower box borders indicate the 25™ and 75" percentile respectively. (C) Table showing the per-
centage of perturbations that resulted in reduced scores after scrambling each individual clini-
cal variable for the Rank #1 model. (D) Box plots, as described in B, showing the distribution of
scores obtained by scrambling data pertaining to individual clinical variables over 100 assess-
ments for the Rank #2 model. (E) Table showing the percentage of perturbations that resulted
in reduced scores after scrambling each individual clinical variable for the Rank #2 model.
(TIF)

S1 Table. Clinical covariates included as data in the DREAM 9 AML-OPC Challenge.
(TIF)

S1 Text. Participant description of best performing methods. The description of the best
performing methods, as provided by participants, for SC1, SC2, and SC3.
(PDF)

$2 Text. Membership list for the DREAM 9 AML-OPC consortium.
(PDF)
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