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Recent inelastic neutron scattering (INS) measurements on FeSe and Fe(Te1−xSex) have sparked intense debate
over the nature of the ground state in these materials. Here we propose an effective bilinear-biquadratic spin model,
which is shown to consistently describe the evolution of low-energy spin excitations in FeSe, both under applied
pressure and upon Se/Te substitution. The phase diagram, studied using a combination of variational mean-field,
flavor-wave calculations and density-matrix renormalization group (DMRG), exhibits a sequence of transitions
between the columnar antiferromagnet common to the iron pnictides, the nonmagnetic ferroquadrupolar phase
attributed to FeSe, and the double-stripe antiferromagnetic order known to exist in Fe1+yTe. The calculated spin
structure factor in these phases mimics closely that observed with INS in the Fe(Te1−xSex) series. In addition to
the experimentally established phases, the possibility of incommensurate magnetic order is also predicted.
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I. INTRODUCTION

Iron chalcogenides are considered to be the most correlated
of the iron-based family of superconductors and have been the
subject of intensive study, both theoretically and experimen-
tally. In Fe1+yTe, it was found early on that the magnetic
ground state has an unusual double-stripe (DS) structure
characterized by the ordering wave vector Q = (π/2,π/2)
in the one-iron unit-cell notation [1–3]. This state is in stark
contrast to the parent compounds of iron pnictides that have
a columnar antiferromagnetic (CAFM) ground state [4–6].
Upon doping with selenium, the DS magnetism disappears,
resulting in a nonmagnetic ground state in Fe(Te1−xSex) (for
sufficiently large x) [7–11]. The nature of this state, extending
all the way to the stoichiometric FeSe, has been the subject
of intense debate recently, with elastic neutron scattering
showing no sign of magnetic Bragg peaks in FeSe [12,13].
The INS studies have found large finite-energy spectral
weight at wave vectors Q1,2 = (π,0)/(0,π ) [14–17], which
are characteristic of the CAFM magnetic order in the iron
pnictides [4]. This suggests that FeSe is close to magnetic
ordering, presumably to the CAFM phase. Indeed, it was
shown that magnetism can be reached by applying hydro-
static pressure to FeSe, as indicated by the recent transport,
ac susceptibility, x-ray scattering, and NMR measurements
[18–21].

The conspicuous lack of magnetic ordering under ambient
pressure in FeSe has led to several theoretical proposals
for the unusual nature of the ground state in this material
[22–25]. For the theory to be consistent, it is important that
it should be able to describe not only the lack of magnetic
ordering in FeSe, but also the appearance of magnetism
under applied pressure and with Te doping. In this paper,
we show that the recently proposed theory of the spin
ferroquadrupolar (FQ) ground state for FeSe [25] indeed
satisfies these requirements and successfully describes the
evolution of the INS data as a function of Te doping in
Fe(Te1−xSex), in qualitative accord with the recent INS
experiments [11].

In this work, we use the frustrated bilinear-biquadratic
spin-1 Heisenberg model as a basis, which has been employed

by many authors to model iron pnictides and chalcogenides
[23–30]:

H = 1

2

∑
i,j

Jij Si · Sj + 1

2

∑
i,j

Kij (Si · Sj )2, (1)

where Si is the quantum spin-1 operator on site i, describing
the Hund’s-coupled spins of conduction electrons in the
half-filled Fe dxz and dyz orbitals. Earlier studies [25,27,28]
have proposed that it is sufficient to limit the spatial extent
of the interactions to the first- and second-nearest neighbors,
Jij = {J1,J2},Kij = {K1,K2}, in order to model the INS data
on the iron pnictides and FeSe. In this paper, we show
that including the third-neighbor Heisenberg interaction J3

is necessary to describe the DS magnetic state of Fe1+yTe
and that the increasing J3 strength describes qualitatively
the effect of Te doping in Fe(Te1−xSex). Using the vari-
ational mean-field, flavor-wave expansion and the DMRG
calculations, we compute the phase diagram and establish that
the evolution of the calculated dynamic spin-structure factor
S(q,ω) with increasing J3 mimics that observed in INS data
in Fe(Te1−xSex) [11]. Crucially, the obtained phase diagram
naturally describes both this evolution and the tendency
towards the CAFM ordering under the applied pressure in FeSe
[18–21] within a single unified theory. This J1-J2-J3-K1-K2

theory, shown earlier to describe semiquantitatively the spin
dynamics of BaFe2As2 iron pnictides with very few fitting
parameters [27,28], can thus be considered an effective spin
model of both iron pnictides and chalcogenides, and is
therefore of fundamental importance to the field of iron-based
superconductors. Of course one can attempt to include third-
neighbor biquadratic (K3) and farther interactions; however,
the predictions of the present model readily agree with the INS
results and guided by Occam’s razor, we therefore propose
that the interactions up to {J3, K2} order be considered
sufficient.

This paper is organized as follows. The analytical ap-
proaches, namely, the variational mean-field and flavor-wave
techniques, are introduced in Sec. II, with the respective cal-
culated phase diagrams presented in Sec. III. Our conclusions
are corroborated with the state-of-the-art DMRG calculations,
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FIG. 1. Phase diagram of the Hamiltonian Eq. (1) with J1 = 1,J2 = 0.8 and periodic boundary condition on a 4 × 4 cluster as a function
of J3 and K1 for (a, e) K2 = 0, (b, f) K2 = −0.3, (c, g) K2 = −0.8, and (d, h) K2 = K1 ≡ K . Panels (a)–(d) were obtained within variational
mean-field calculation. The effect of spin-dipolar and quadrupolar fluctuations on the phase diagram is shown in panels (e)–(h) by flavor-wave
calculation. The white regions show the regime of parameters where the flavor-wave expansion is unstable, indicating likely incommensurate
spin order.

summarized in Sec. IV. We proceed to calculate the dynamical
spin-structure factors and provide detailed comparison with the
INS experiments on Fe(Te1−xSex) in Sec. V, before exploring
the theoretical indications of the incommensurate magnetic
order in Sec. VI. Finally, we conclude with the discussion and
outlook in Sec. VII.

II. ANALYTICAL APPROACHES

A. Variational mean field

In FeTe, attempts to fit the experimental spin-wave dis-
persion with a purely Heisenberg model required highly
anisotropic exchange couplings J1a �= J1b [31]. In fact, both of
them were required to be ferromagnetic [31], in contrast to all
the iron pnictides where the antiferromagnetic superexchange
is necessary [6]. Below we show that including the biquadratic
spin-spin interaction Kij makes it possible to obtain the exper-
imentally observed DS phase (also referred to as bicollinear
phase in the literature) with the ordering wave vector Q =
(π/2,π/2) while maintaining an isotropic nearest-neighbor
(NN) exchange, as shown in the phase diagram in Fig. 1. We
note that a similar problem arises when attempting to fit the
high-energy spin-wave dispersion in the parent compounds
of the iron pnictides in the CAFM phase [32,33], and it was
proposed by us and others that this problem can be resolved
by inclusion of a suitable NN biquadratic interaction K1 < 0
[27,28].

It is useful to recast the Jij − Kij model in terms of the
traceless symmetric quadrupolar tensor:

Qαβ = SαSβ + SβSα − 2
3S(S + 1)δαβ, (2)

whose five independent components are convenient to cast
into a five-component vector Q ≡ [(Qxx − Qyy)/2,(2Qzz −

Qxx − Qyy)/2
√

3,Qxy,Qyz,Qxz]. Using an identity 2(Si ·
Sj )2 = Qi · Qj − Si · Sj + 8

3 for S = 1, the model in Eq. (1)
can then be rewritten in the form

H = 1

2

∑
i,j

(
Jij − Kij

2

)
Si · Sj + 1

4

∑
i,j

Kij

(
Qi · Qj + 8

3

)
.

(3)

In order to get an insight into the properties of this model,
we first seek a mean-field solution, which is equivalent to
writing the wave function in a separable form,

|�〉MF =
∏

i

| �di〉, (4)

in terms of the single-particle states | �di〉 = ∑
α dα

i |α〉 [25,34].
Anticipating the magnetic as well as quadrupolar solutions, it is
convenient to use a quadrupolar basis of time-reversal invariant
states |α〉 = {|x〉, |y〉, |z〉}, which are linear superpositions of
the familiar |Sz〉 states:

|x〉 = i
|1〉 − |1̄〉√

2
, |y〉 = |1〉 + |1̄〉√

2
, |z〉 = −i |0〉. (5)

The spin operators transform accordingly and can be written
conveniently in the following form:

Sν = −iενγ δ|γ 〉〈δ|. (6)

Similarly, the quadrupolar operators Qαβ introduced in Eq. (2)
take on the following form in this basis:

Qαβ = 2
3δαβ − |β〉〈α| − |α〉〈β|. (7)

Using Eqs. (6) and (7), we can now evaluate the energy of the
Hamiltonian in Eq. (3) in the mean-field ansatz given by the
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(a) (b)DS PL

FIG. 2. Schematic depiction of (a) bicollinear DS state and
(b) PL state.

choice of directors | �di〉 = ∑
α dα

i |α〉 in Eq. (4). This results in
the following mean-field expression for the energy:

E0 = 1

2N

∑
i,j

[Jij |〈 �di | �dj 〉|2 − (Jij − Kij )|〈 �di | �d∗
j 〉|2 + Kij ].

(8)

We then perform a variational search by minimizing Eq. (8)
with respect to the set of directors { �di} restricted to a supercell
of lattice vectors. Choosing a larger supercell allows one to
consider the states that do not preserve translational symmetry
of the lattice, such as staggered spin or quadrupolar orders. For
the purpose of this work, it was sufficient to choose a supercell
of dimension 4 × 4 with periodic boundary conditions.

We note that the directors �di = �ui + i�vi are complex three-
component objects satisfying the constraints |�ui |2 + |�vi |2 = 1
and �ui · �vi = 0. It follows from Eq. (6) that the expectation
value of spin is

〈 �d|S| �d〉 = 2�u × �v, (9)

so that the long-range dipolar order is only present when both
�u and �v are nonzero, whereas the pure quadrupolar states are
identified by 〈S〉 = 0 and correspond to the director �d being
purely real or purely imaginary.

Depending on the parameter regime, we find five magneti-
cally ordered phases:

(i) CAFM, with ordering wave vector Q = (π,0)/(0,π );
(ii) Néel state with Q = (π,π );
(iii) DS state with Q = ±(π/2,π/2), depicted in

Fig. 2(a);
(iv) Plaquette (PL) state, with Q = (±π/2, ± π/2), de-

picted in Fig. 2(b);
(v) Staggered dimer (SD) state depicted in Fig. 3(a),

identified by Q = (±π/2,π )/(π, ± π/2).
In addition, we also find an extensive region of the non-

magnetic FQ phase, characterized by a uniform set of directors
�di = �d ∀i, with a vanishing magnetic (dipolar) moment: 0 =
〈Si〉 ≡ 2 Re[ �di] × Im[ �di]. This is the only stable nonmagnetic
state in the phase diagram for the studied parameter regime
and is natural to interpret as the ground state of FeSe, as was
shown in Ref. [25]. This interpretation is further strengthened
by a very good accord between the theoretical spin-structure
factors [25] and those measured in INS experiments [15,17].

(a) (b)SD AFM*

FIG. 3. Schematic depiction of (a) staggered-dimer (SD) state
and (b) AFM∗ (π/2,π ) state introduced in Ref. [30]. We find the two
states to always be degenerate in the entire studied parameter regime
presented in this paper.

The mean-field energies of the aforementioned phases are
as follows:

ECAFM = −2J2 + 2J3 + 3K1 + 4K2, (10a)

ENél = −2J1 + 2J2 + 2J3 + 4K1 + 2K2, (10b)

EDS/PL = 3K1 + 3K2 − 2J3, (10c)

ESD = −J1 + 7
2K1 + 3K2, (10d)

EFQ = 4K1 + 4K2. (10e)

The resulting mean-field phase diagrams, shown in Fig. 1,
will be discussed later in Sec. III. We note that within
the variational mean-field method, the bicollinear DS phase
[Fig. 2(a)] is degenerate in energy with the PL state depicted in
Fig. 2(b). We shall comment further on the distinction between
these two states when discussing the phase diagram results in
Sec. III and the DMRG results in Sec. IV.

B. Fluctuations around mean field: Flavor-wave expansion

In order to improve on the mean-field solution, we have
performed a series of flavor-wave calculations, which accounts
for the fluctuations in the spin-dipolar as well as spin-
quadrupolar channels [34–37]. The essence of this technique
consists in expanding the local operators Oi in terms of the
three species (α,β = {0,1,2}) of bosons that transform in the
fundamental representation of group SU(3):

Oi =
∑
αβ

b
†
i,αO

αβ

i bi,β,
∑

α

b
†
i,αbi,α = 1. (11)

In a phase with long-range order (including quadrupolar
orders), some linear combination of bosons is condensed,∑

α〈Vα0
i b

†
i,α〉 ≡ 〈b̃†i,0〉 �= 0. This can be cast in terms of a

unitary transformation into a new basis:

b̃i = V†
i bi , (12a)

Õi = V†
i OiVi , (12b)

where the matrix form ofVi is determined by the mean-field
ground state in Eq. (4), expressed by an appropriate choice of
directors | �di〉.
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Below, we outline the key steps in the flavor-wave proce-
dure, while relegating further details to the Appendix:

(1) For a given mean-field ansatz | �di〉, determine the
unitary matrices Vi (for each sublattice i);

(2) Condense the appropriate boson with the local con-
straint by writing b̃i,0 =

√
1 − b̃

†
i,1b̃i,1 − b̃

†
i,2b̃i,2;

(3) Expand the square roots in the Hamiltonian Eq. (3) up
to quadratic order in b̃

†
i,a and b̃i,a (a = 1,2);

(4) Diagonalize the resulting expression, using the Bogoli-
ubov transformation, to obtain the flavor-wave Hamiltonian in
terms of new bosonic operators {α†

q,ν ,αq,ν}:
Hfw =

∑
q

∑
ν

ωq,ν(α†
q,ναq,ν + 1/2) + N × const, (13)

where ν denotes different excitation branches.
The contribution of the zero-point fluctuations,

Ezp = 1

2N

∑
q,ν

ωq,ν + const, (14)

lowers the energy compared to the mean-field value, resulting
in the shift of the phase boundaries, as seen in Figs. 1(e)–1(h).
As we shall see in the following section, in certain cases
(especially near the phase boundaries) the mean-field solution
turns out to be unstable, as evidenced by the softening in the
spectrum of flavor-wave excitations, which then acquire an
imaginary component. At this point, the mean-field solution
is not to be trusted, and a different method (such as DMRG)
must be used to establish the nature of the ground state, as
we discuss in Sec. IV. Nevertheless, we shall demonstrate
in Sec. VI that even when the mean-field solution turns out
to be unstable, the analysis of the flavor-wave spectrum
softening allows one to glean further information into the
nature of the resulting ground state, including the possibility
of incommensurate order.

III. PHASE DIAGRAMS

A representative mean-field phase diagram is shown in
Figs. 1(a)–1(d) for four different cases: K2 = 0, K2 = −0.3,
K2 = −0.8, and K2 = K1 ≡ K , respectively. We have chosen
the units such that J1 = 1 and further fixed J2 = 0.8 in accord
with the ab initio calculations [27]. This leaves J3 and K1,K2

as free parameters in the calculations. In this article, we focus
on negative values of K1 and K2, as those are obtained by
fitting the INS spectra to the Jij − Kij model [27,28]. If, on
the contrary, one were to take K1 to be positive, one finds a
(π,π ) Néel phase stable in a large portion of the phase diagram
[25], which is clearly not realized in the iron pnictides. This
provides additional motivation for only considering negative
Kij . Regarding the microscopic origin of these couplings, the
large negative K1 was found in the so-called spin crossover
model by Chaloupka and Khaliullin [38]. A large negative K1

also naturally arises within the Kugel-Khomskii–type models
when the orbitals order inside the nematic phase [39].

As Fig. 1 indicates, the CAFM phase dominates for small
J3, provided |K1| is not too large, while for sufficiently
negative K1 we observe the appearance of either the FQ or the
(π,π ) Néel phase. This is due to the fact that in the absence of
K2, a negative biquadratic coupling K1 renormalizes the NN

Heisenberg interaction, making the (π,π ) correlations stronger
[28,39]. Since the Néel phase has not been observed in either
iron pnictides or chalcogenides, our calculations support the
conclusion that K2 must be present and negative. Above a
certain critical value of K1, the FQ order is stabilized and a
direct transition between the FQ and CAFM phases is achieved
[25], mimicking the experimentally observed transition from
the nonmagnetic to the antiferromagnetic state in FeSe under
applied pressure [18–21]. For sufficiently large J3, a DS
magnetic order is obtained in Fig. 1, which is well established
in Fe1+yTe [1–3]. An intermediate SD phase (colored green
in Fig. 1) also typically appears between the CAFM and DS
or PL phases [although there is a parameter regime where it
is absent, see Figs. 1(c) and 1(g)]. This phase, characterized
by wave vectors (π, ±π/2) or (±π/2,π ), breaks the lattice
C4 symmetry and is depicted schematically in Fig. 3(a). There
may be indirect experimental evidence of such an intermediate
phase in FeSe under applied pressure [21]. We note that the
SD phase is distinct from the so-called AFM∗ (π,π/2) phase
studied in Ref. [30] [see Fig. 3(b)]; within the mean-field
treatment, we find both phases to be degenerate in the entire
parameter regime presented in this paper.

As depicted in Figs. 1(a)–1(d), the DS and PL phases are
exactly degenerate at the mean-field level. However, quantum
fluctuations, captured within the flavor-wave expansion, lift
the degeneracy so that one or the other phase becomes the
true ground state, depending on the region of the parameter
regime. For small values of K2 [see Fig. 1(e)], we find that
the PL phase is the ground state within its region of stability.
Outside of this region, fluctuations destroy the PL order and
the DS phase is stabilized instead over a wider parameter
range. For larger values of K2 [see Fig. 1(g)], the behavior
is the opposite, with the DS phase being lower in energy
when both phases are possible but the PL phase remaining
stable in the wider parameter regime. Figure 1(f) shows the PL
phase to always be the ground state for K2 = −0.3. However,
the energy differences between the PL and DS phases are
in this case the smallest out of all the cases we studied and
their stability regions almost overlap. The K2 = K1 case [see
Fig. 1(h)] showcases the same behavior that is observed for
the larger values of K2 when it comes to the PL/DS regions.
Additionally, we find that taking into account the effect of
quantum fluctuations greatly reduces the region of stability
of the SD phase (colored green) compared to the mean-field
results in Fig. 1(d).

Due to the stability regions being different for the PL and
DS phases, there is a first-order discontinuity in the energy at
the phase boundary between the two. This is shown in Fig. 4
for the two cases where this jump is most appreciable. For
the rest of the cases, the energy difference is even smaller and
vanishes when the phase boundaries approach one another.
The K2 = −0.3 case [see Fig. 1(f)] is a good example thereof,
with the PL phase being only slightly lower in energy than the
DS phase, and the two phase boundaries almost overlapping.

As mentioned earlier in Sec. II B, the flavor waves may
result in unstable regions near the mean-field phase boundary
between different phases. Physically, this means that order-
parameter fluctuations destroy the given long-range order,
indicating the tendency of the systems towards a different
ground state. Such unstable solutions are indicated by the white
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FIG. 4. The zero-point energies of the PL (solid line) and DS
(dashed line) phases, including the contribution from flavor-wave
fluctuations, plotted across a constant J3 = 1.0 cut through the phase
boundary between the two phases, for two different values of K2:
(a) K2 = 0 and (b) K2 = K1. A first-order jump in energy is observed
at the transition, more pronounced for small |K2| as in panel (a).

unshaded regions in Figs. 1(e)–1(h). Besides the appearance of
these unstable regions, the qualitative behavior of the phases
remains the same, with only the numerical values of the phase
boundaries shifting with respect to their mean-field values.
The flavor-wave expansion is nevertheless very valuable
for two reasons: first, it allows for the calculation of the
dynamical quantities, such as spin-structure factor which will
be discussed in Sec. V, and second, the details of the instability
in the flavor-wave spectrum provide clues as to the origin of
the true ground state, as we shall explore in Sec. VI.

IV. DMRG SOLUTION

Having established the mean-field phase diagram, we verify
the stability of the phases shown in Fig. 1 using unbiased SU(2)
DMRG calculations [40–43] on L × 2L rectangular cylinders
with L = (4,6,8).1 We keep up to 4000 SU(2) states, leading
to truncation errors around 10−5. The finite-size analysis for
the CAFM and FQ phases is identical to that performed in
Ref. [25] so we only show the results on the largest cylinder
(L = 8 unless noted otherwise), taking a horizontal cut at
K1 = K2 ≡ K = −0.3 in the phase diagrams in Figs. 1(d)
and 1(h) and studying the effect of increasing J3.

First we show in Fig. 5 the real-space spin configurations for
the CAFM and the PL order obtained through the calculations
of the spin-spin correlation functions by DMRG on an
L = 8 cylinder. Due to the cylindrical geometry, the CAFM
automatically chooses an antiparallel configuration along the y

direction and a parallel configuration along the x direction [see
Fig. 5(a)]. Note that the PL order shown in Fig. 5(b) is distinct
from the DS order shown in Fig. 7; however, the two solutions
have degenerate ground-state energies given by Eq. (10c).

In order to analyze the structure of the spin correlations in
different phases, it is more convenient to work in reciprocal
space. Shown in Fig. 6(a) for different values of J3 is the static
spin-structure factor

m2
S(q) = 1

L4

∑
ij

〈Si · Sj 〉eiq·(r i−rj ). (15)

1L represents the size of the y direction which has a periodic
boundary condition.

(a)

(b)

0.53

0.53

-0.53

-0.53

FIG. 5. The real-space spin correlations in the middle of the
cylinders for (a) CAFM phase at J3 = 0.2 and (b) for PL
phase at J3 = 0.8. In both cases, J2 = 0.8 and K1 = K2 = −0.3.
The green site is the reference site; the blue and red colors denote
positive and negative correlations of the sites with the reference site,
respectively. The area of each circle is proportional to the magnitude
of the spin correlation and is also indicated by the circle’s color for
clarity.

In the above formula, the indices i,j are only partially summed
on L × L sites in the middle of the cylinder in order to reduce
boundary effects [42,44–46]. The leftmost panel, at J3 = 0.2,
is in the CAFM phase and corresponds to the real-space spin
configuration shown earlier in Fig. 5(a). Predictably, m2

S(q)
is maximized at Q1 = (0,π ) (as noted above, the cylindrical
DMRG geometry selects Q1 over Q2). At J3 � 0.8, a PL
phase becomes stable, with the spin-structure factor attaining
a maximum at Q = (π/2,π/2). The J3 = 0.8 panel in Fig. 6(a)
corresponds to the real-space configuration shown in Fig. 5(b)
above.

In between the CAFM and the PL phase, the static spin-
structure factor is featureless, indicative of the absence of the

kx

ky

kx kxkx

kyky

(a)

(b)

ky

kx

ky

kx

ky

kx kxkx

kyky ky

kx

ky

J3=0.2 J3=0.4 J3=0.6 J3=0.8 J3=1.0

FIG. 6. Static spin and quadrupolar structure factors obtained
from DMRG on RCL−2L cylinders with J1 = 1,J2 = 0.8,K2 =
K1 = −0.3 as a function of J3. (a) First row: m2

S(q) for L = 8.
(b) Second row: m2

Q(q) for L = 8.
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FIG. 7. The real-space spin correlations for DS phase at J3 = 0.8
on the tilted geometry with J2 = 0.8 and K1 = K2 = −0.3. The green
site is the reference site; the blue and red colors denote positive and
negative correlations of the sites with the reference site, respectively.
The area of the circle is proportional to the magnitude of the spin
correlation.

conventional static magnetic long-range order. In order to shed
more light on the nature of spin correlations in this phase, we
have calculated the static spin-quadrupolar structure factor,
defined as

m2
Q(q) = 1

L4

∑
ij

〈Qi · Qj 〉eiq·(r i−rj ). (16)

The results are shown in Fig. 6(b) as a function of increasing
J3. On general grounds, one expects nonzero quadrupolar
correlations inside conventional long-range order phases, such
as the CAFM (leftmost panel) and the PL (two rightmost
panels). However, it is the intermediate regime 0.2 � J3 � 0.8
that is most interesting. In this phase, m2

Q has a pronounced
maximum at q = (0,0), whereas the spin-structure factor is
featureless in Fig. 6(a), corroborating the ferroquadrupolar
nature of this phase.

By comparing the DMRG results with the mean-field phase
diagram in Fig. 1(c), we observe that the FQ phase occupies a
much wider region in DMRG, whereas it is only predicted to
be stable at K1 = K2 < Kc (KMF

c = −2/3) by the mean-field
analysis. This is consistent with our earlier DMRG results at
J3 = 0 in Ref. [25], which also found the FQ phase to be stable
in a wider region than the mean-field prediction.

As was mentioned in Secs. II A and III above, the bicollinear
DS phase [Fig. 2(a)] and the PL phase [Fig. 2(b)] have the
same energy within the mean-field calculation. Our DMRG
calculations indicate that either of the two phases can be
stabilized, depending on the setup geometry. Namely, we find
the PL phase to be the ground state in the L = 8 rectangular
geometry, whereas the DS phase is favored by the tilted
geometry (cylindrical axis at 45◦ angle to the lattice base
vectors). The energies of the two phases at J3 = 0.8 and
K1 = K2 = −0.3 on the L = 8 cylinder are very close to each
other: Erect = −3.883 45 and Etilt = −3.871 57, respectively,
making the DMRG inconclusive as to the choice of the ground
state. It was shown recently that the apparent degeneracy

of the two states is robust over a wide parameter regime
and persists to higher spin values (S = 3/2,2); the four-site
ring-exchange interaction lifts the degeneracy, favoring the DS
order [29].

V. DYNAMICAL SPIN-STRUCTURE FACTOR
AND COMPARISON WITH EXPERIMENT

Experimentally, the Fe(Te1−xSex) series provides a unique
opportunity to study the transition from the nonmagnetic FeSe
to the double-stripe phase in Fe1+yTe. Given the interpretation
advanced in Ref. [25] that FeSe has the FQ ground state, it is
very interesting to study the transition from the FQ to DS phase
and compare with the available INS data on Fe(Te1−xSex). Our
calculations (see Fig. 1) indicate that a sizable value of J3 is
required in order to stabilize the DS phase observed in FeTe. It
is therefore natural to mimic Te doping of FeSe with increasing
the value of J3. To this end, we have calculated the dynamic
spin-structure factors S(q,ω) from the flavor-wave expansion
(see Appendix A) with increasing J3 along the horizontal cut
along K1 = K2 ≡ K = −1 in Fig. 1(d). These are shown in
Fig. 8. Of course we realize that other parameters will generi-
cally also be affected by Te doping, charting a complex path in
the phase space of the model; however, since we are after the
qualitative trend, this admittedly simplified picture is justified.

According to our phase diagrams in Fig. 1, the CAFM phase
is separated from the DS phase by either the nonmagnetic FQ
phase for K1 < Kc or by the intermediate magnetic SD or
PL phase for K1 > Kc. While it is possible to fine-tune the
model parameters in such a way as to make the transition from
CAFM to DS direct [see, e.g., Fig. 1(c)], the above presented
scenario is generic. In Fig. 8, we have chosen such a generic
cut of the phase diagram across the FQ phase, and we follow
the evolution of the spin-structure factor as the DS phase is
approached from inside the FQ phase.

Inside the FQ ground state, however, the spin-rotational
symmetry of the Hamiltonian Eq. (1) is broken without
breaking the time-reversal symmetry. The resulting Goldstone
modes at q = 0 therefore have vanishing intensity (S(0,ω) ∝
ω [35,36]) in the static limit, consistent with the absence of
Bragg peaks in FeSe under ambient pressure [12,13]. For
small J3, close to the CAFM boundary, the spin-structure
factor has pronounced minima at Q1,2 = (π,0)/(0,π ) as
can be seen in Fig. 8(a), in accord with the INS on FeSe
[14–17]. Upon increasing J3, we observe another set of peaks
at Q3,4 = [π/2 + δ, ± (π/2 + δ)] become lower in energy
[Figs. 8(b) and 8(c)]. This is especially pronounced close to the
boundary with the DS phase [Fig. 8(c)]. These are generally
incommensurate (δ �= 0, see Fig. 10); eventually, these peaks
evolve into the Goldstone modes inside the DS phase when
δ = 0. These features are in qualitative accord with the INS
data on Fe(Te1−xSex), where the low-energy spin excitations
evolve from being dominated by the Q1,2 minima for x ≈ 1
[7–10] to that of Fe1+yTe [1–3] upon decreasing x.

It has been reported that applying pressure to FeSe leads
to the onset of magnetism [18–20], reportedly the CAFM
phase [21]. Comparing with Fig. 1, we conclude that the
effect of applying pressure corresponds to decreasing the ratio
x = J3/J1 and decreasing the biquadratic couplings |Ki |/J1

in the (J3,K) phase diagram, resulting in the transition from
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(a) (b)

(c) (d)

(e)

FIG. 8. Dynamic spin-structure factor S(q,ω), calculated along
the horizontal cut through K1 = K2 ≡ K = −1 in Figs. 1(d) and 1(h):
(a)–(c) inside FQ phase at J3 = 0.325,0.6, and 0.75, respectively;
(d) inside the DS phase at J3 = 1.1. These points are indicated in the
corresponding cut of the phase diagram (e) by the circle, the square,
the diamond, and the asterisk, respectively.

the FQ into the CAFM phase. This conclusion is corroborated
by the ab initio calculations by Glasbrenner et al. in Ref. [22],
who find that applying pressure to FeSe indeed suppresses
the ratios of both J3/J1 and K1/J1. This trend is indicated
qualitatively by a corresponding arrow in the phase space of
model parameters in Fig. 9. Doping with Te, on the other hand,
can be thought of as increasing the ratio J3/J1 and possibly also
|Ki |/J1, as we have remarked in the beginning of this section.
Therefore, the theoretical phase diagrams in Fig. 1, together
with the trends indicated by arrows in Fig. 9, capture the salient
features of both tellurium doping and of applying hydrostatic
pressure to FeSe. The actual trajectories in the phase space of
the model parameters that correspond to these experimental
knobs are likely more complicated; nevertheless, our analysis
provides an important qualitative insight into the physics of
the spin degrees of freedom in FeSe and Fe(Te1−xSex).

Intriguingly, the neutron spin structure in superconduct-
ing Fe(Te1−xSex) samples undergoes a complicated trans-
formation as a function of temperature, with the high-
temperature data (T � 100 K) characterized by the DS wave
vector (π/2,π/2) and evolving to Q1,2 upon cooling [11].

FIG. 9. Trajectories in the space of the model parameters that
qualitatively correspond to the transitions from the nonmagnetic
phase of FeSe into various magnetically ordered states upon applied
pressure and Te doping.

Remarkably, it was found that in nonsuperconducting
Fe(Te1−xSex) samples (due to excess of Fe), the magnetic
correlations remain pinned at (π/2,π/2) [11]. The authors of
Ref. [11] have concluded that the observed thermal change
in characteristic wave vector is therefore correlated with
the tendency towards nematic xz/yz orbital splitting at low
temperature, which favors superconductivity. Theoretical veri-
fication of these conclusions requires taking into consideration
the multiorbital character of conduction electrons and is
beyond the effective spin model studied in this paper. It was
suggested [47] that the orbital and superexchange physics
is particularly sensitive to the Fe–(Se,Te) – Fe bond angle,
which in Fe(Te1−xSex) is controlled by the height of the
chalcogenide ions above and below the Fe layers [48,49]. This
complexity notwithstanding, we can nevertheless conclude
that in the samples with excess Fe, where the aforementioned
orbital effects are less pronounced, our effective spin model
correctly predicts the characteristic wave vector of low-energy
spin excitations to evolve from (π,0)/(0,π ) towards (π/2,π/2)
upon Te doping.

VI. INCOMMENSURATE PHASES

It is interesting to note that early INS experiments have
indicated that the high-temperature spin-structure factor in
Fe(Te1−xSex) may be incommensurate [50–52]. While the
latest INS data indicate that this may not in fact be the case
[11], it is instructive to consider predictions of our theory
in this regard. The variational mean-field phase diagrams in
Figs. 1(a)–1(d) contain only commensurate phases, which is
understandable given the constraint that the solution must obey
the periodic boundary conditions on a 4 × 4 Fe-site cluster.
Similarly, the DMRG on cylindrical geometry is limited to
small L � 8, which makes the search for an incommensurate
spiral phase very difficult. The flavor-wave analysis, on the
other hand, is by its nature a thermodynamic expansion
around the mean-field solution and is not limited to com-
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FIG. 10. (a) The characteristic wave vector of the flavor-wave
instability along the FQ phase boundary K = Kc(J3), shown in panel
(b) as a red/blue line. The red segment indicates the instability towards
the (π,δ) phase, and the blue segment towards the (π/2 + δ,π/2 + δ)
phase. The remainder of the phase diagram is the same as in Fig. 1(h),
calculated within the flavor-wave method as a function of J3 and
K1 = K2 ≡ K , using J1 = 1, J2 = 0.8.

mensurate wave vectors. As noted earlier, the white regions
in Figs. 1(e)–1(h) indicate an instability of the flavor-wave
expansion towards other solutions, including incommensurate
spin spiral states. In order to shed more light on the issue, we
have analyzed the low-energy dynamical spin-structure factor
near the FQ phase boundaries K = Kc(J3) approaching the
unstable white regions. In this regime, we find softening of the
flavor-wave dispersion at certain (generally incommensurate)
wave vectors, which indicates a tendency towards respective
magnetic ordering. The wave vectors of these unstable modes
are shown in Fig. 10.

We see from Fig. 10 that for small J3 near the CAFM
boundary, the flavor-wave instability is pinned at (π,0)/(0,π ),
as reported in Ref. [25]. Upon increasing J3, the characteristic
wave vector becomes incommensurate (π,δ), with δ increasing
smoothly towards, but stopping shy of π/2. For higher J3, upon
approaching the DS phase boundary from inside the FQ phase
[blue line in Fig. 10(b)], the flavor-wave dispersion softens at
an incommensurate (π/2 + δ,π/2 + δ) wave vector.

While true long-range incommensurate order cannot be
studied in this way for technical reasons (flavor-wave ex-
pansion around commensurate Q becomes unstable), the
above analysis provides a strong indication that the reported
soft modes would eventually become Bragg peaks as the
incommensurate long-range order settles in.

VII. DISCUSSION

In this work, we have advanced an effective spin model
for iron chalcogenides in an effort to better understand the
evolution of the neutron-scattering spectra in FeSe upon
applying pressure and tellurium doping. Our starting point
is the strong-coupling approach, justified in the limit when
Coulomb interaction U is considerably larger than the electron
hopping t . Although the iron chalcogenides are not charge
insulating systems, the strong-coupling approaches have been
successfully used to elucidate many aspects of these materials,
from the nature of electron nematicity [26,28,39] and effects of
orbital selectivity [53–56], to the origin of the superconducting
pairing [57–61]. One of the justifications for using the
strong-coupling approach is the large fluctuating iron moment

observed in inelastic neutron scattering (M2
eff ≈ 5μ2

B per Fe
ion [62]), which is difficult to obtain in the weak-coupling
scenario from considering only the electrons near the Fermi
surface. This is not to say that the conduction electrons are
somehow unimportant—on the contrary, they are crucial for
superconductivity and the multiorbital effects that are beyond
the scope of this work. Nevertheless, we argue that the
presented effective spin model is important for understanding
the effects of magnetic frustrations in the iron chalcogenides,
which have been brought to focus most prominently by the
surprising observation of the apparently nonmagnetic ground
state in FeSe [12–17]. Having proposed an explanation for this
state in terms of the spin quadrupolar order in an earlier work
[25], the present study seeks to provide an accurate, consistent
description of the spin degrees of freedom in both the iron
pnictides and chalcogenides within a single microscopic
spin model. Although constructing such an effective model
inevitably required simplifications of the multiorbital nature
of these materials, the agreement that we have obtained with
the INS experiments testifies to the importance of utilizing this
effective description.

In summary, we have demonstrated that the evolution of the
low-energy spin excitations in FeSe under applied pressure and
tellurium doping in Fe(Te1−xSex) can be successfully under-
stood within a single effective spin model. Although the exact
dependence of the model parameters on these experimental
variables is unknown, we sketch in Fig. 9 the approximate
corresponding trajectories in the model phase space, based on
the analysis of our computed phase diagrams and consistent
with prior ab initio calculations [22]. Using a combination of
analytical techniques and state-of-the-art DMRG calculations,
we have established the phase diagram of the effective model
and computed the dynamical spin response. In particular, the
calculated evolution of the characteristic wave vector of the
spin excitations matches that observed in INS experiments
on Fe(Te1−xSex) and the possibility of the incommensurate
spin orders upon Te doping has been analyzed in detail.
The effects of conduction electrons, while of course very
important, are beyond the scope of this effective spin model;
nevertheless, given the recently observed correlation between
superconductivity in Fe(Te1−xSex) and the appearance of the
(π,0)/(0,π ) inelastic peaks in the low-temperature dynamical
spin correlation [11] puts the present work in a wider context
of superconductivity in iron chalcogenides. This connection
certainly deserves further theoretical study, perhaps within the
framework of realistic multiorbital models that should take
into account the essential features predicted by the effective
spin model presented here.
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APPENDIX: FLAVOR-WAVE CALCULATION
OF DYNAMICAL SPIN-STRUCTURE FACTORS

By virtue of the fluctuation-dissipation theorem, the dynam-
ical spin-structure factor at T = 0, Sαβ(q,ω) is proportional to
the imaginary part of the spin susceptibility:

Sμν(q,ω) = χ ′′
μν(q,ω)

= NS

N

∑
αβ

∑
f

〈
g.s.

∣∣Sμ
α,q

∣∣f 〉〈
f

∣∣Sν
β,−q

∣∣g.s.
〉

× δ(ω − Ef + Eg), (A1)

where |f 〉〈f | = 1 is the complete set of states, {α,β} denote
different sublattices, and N/NS is the total number of different
sublattices.

For magnetically ordered states, the ground state will add
nonzero elastic contribution ∼δ(ω) to χ ′′

μν(q,ω), as shown in
the following sections. For the ferroquadrupolar state, on the
other hand, the ground state |f 〉 = |g.s.〉 does not contribute to
χ ′′

μν(q,ω) and consequently, no magnetic Bragg peak is found
at ω = 0 in elastic neutron scattering. This can be readily
understood since the quadrupolar states do not break time-
reversal symmetry and as a result, do not couple in the static
limit to the neutron spin.

1. Flavor wave for FQ

In the FQ state the directors �di are identical on all sites
(in total one sublattice N/NS = 1). Due to the spontaneous
breaking of the SU(2) symmetry in the FQ phase, we
can conveniently choose the director corresponding to the
quadrupolar order parameter to lie along the z direction:

�di = {1, 0, 0}. (A2)

Correspondingly, the transformation matrix Vi defined in
Eq. (12a) is simply an identity matrix and is the same on every
site i:

Vi =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (A3)

The local constraint on the condensed boson number,

b̃i,0 =
√

1 − b̃
†
i,1b̃i,1 − b̃

†
i,2b̃i,2, (A4)

can be expanded up to quadratic terms in the boson cre-
ation/annihilation operators, resulting in

Hfw =
∑
q,a

[t(q) + λ](b̃q,a b̃
†
q,a + b̃

†
−q,a b̃−q,a)

+
∑
q,a

[
(q)b̃†q,a b̃
†
−q,a + H.c.] + NE0, (A5)

where

t(q) = J1(cos qx + cos qy) + 2J2 cos qx cos qy

+ J3(cos 2qx + cos 2qy), (A6a)


(q) = (K1 − J1)(cos qx+ cos qy) + 2(K2−J2) cos qx cos qy

− J3(cos 2qx + cos 2qy), (A6b)

λ = −2(K1 + K2), (A6c)

E0 = 4(K1 + K2). (A6d)

Bogoliubov transformation:

αq,a = cosh θq b̃q,a − sinh θq b̃
†
−q,a, (A7)

with

tanh 2θq = − 
(q)

t(q) + λ
. (A8)

The diagonalized Hamiltonian:

Hfw =
∑
a=1,2

∑
q

ωq(α†
q,aαq,a + 1/2) + N (E0 − 2λ), (A9)

where the dispersion ωq is given by

ωq = 2
√

[t(q) + λ]2 − 
2(q). (A10)

Since there is only one sublattice, we can omit the sublattice
indices {α,β} and use the notation S

μ
±q only for the Fourier

components in this section. To calculate the dynamic spin
susceptibility, the spin operators in Eq. (A1) are kept up to
linear order:

Sx
q = 0, (A11a)

Sy
q = −i(b̃†−q,2 − b̃q,2), (A11b)

Sz
q = i(b̃†−q,1 − b̃q,1). (A11c)

Then Eq. (A1) can be written down explicitly:

χ ′′
xx(q,ω) = 0, (A12a)

χ ′′
yy(q,ω) = t(q) + λ + 
(q)√

[t(q) + λ]2 − 
2(q)
δ(ω − ωq), (A12b)

χ ′′
zz(q,ω) = t(q) + λ + 
(q)√

[t(q) + λ]2 − 
2(q)
δ(ω − ωq). (A12c)

Note that at ωq = 0, the Bogoliubov angle θq = 0 in
Eq. (A8) and it follows that t(q) + λ + 
(q) = 0 in the
numerator on Eqs. (A12b) and (A12c). We see that as a result,
the spin-structure factor vanishes at q = 0, in other words, the
Goldstone mode of the FQ state does not contribute to the
static spin susceptibility, as seen in Fig. 8. This fact is well
known for the quadrupolar states [25,35,36] and is consistent
with the absence of the magnetic Bragg peaks in the elastic
neutron scattering in FeSe [12,13].
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2. Flavor wave for CAFM

There are in total two sublattices, N/NS = 2, whose
directors can be chosen as

�di∈A = 1√
2
{0,1,i}, (A13a)

�di∈B = 1√
2
{0,1, − i}. (A13b)

Correspondingly, the transformation matrices are written
below:

Vi∈A = 1√
2

⎛
⎝0 0

√
2

1 i 0
i 1 0

⎞
⎠, (A14a)

Vi∈B = 1√
2

⎛
⎝ 0 0

√
2

1 −i 0
−i 1 0

⎞
⎠. (A14b)

The quadratic terms of the resulting Hamiltonian now
include cross terms between sublattices:

Hfw =
∑
q,a

(taa + λaa)(b̃A,q,a b̃
†
A,q,a + b̃

†
A,q,a b̃A,q,a

+ b̃B,q,a b̃
†
B,q,a + b̃

†
B,q,a b̃B,q,a)

+
∑
q,a


aa(b̃†A,q,a b̃
†
B,−q,a + b̃

†
B,q,a b̃

†
A,−q,a + H.c.)

+NE0.

With the coefficients λaa , taa(q), and 
aa(q) depending on
the parameters of the model as follows:

λ11 = 2(2J2 − K2) − 4J3, (A15a)

λ22 = −K1 + 2(J2 − K2) − 2J3, (A15b)

t11(q) = K1 cos qy, (A15c)

t22(q) = J1 cos qy + J3[cos (2qx) + cos (2qy)], (A15d)


11(q) = K1 cos qx + 2K2 cos qx cos qy, (A15e)


22(q) = −(J1 − K1) cos qx − 2(J2 − K2) cos qx cos qy,

(A15f)

E0 = 3K1 − 2J2 + 4K2 + 2J3, (A15g)

the diagonalized Hamiltonian looks as follows:

Hfw =
∑
a=1,2

∑
q

ωq,a(α†
q,aαq,a + β†

q,aβq,a + 1)

+N (E0 − λ11 − λ22), (A16)

and the diagonalized Bogoliubov dispersions finally take
the following form (with a = 1,2):

ωq,a = 2
√

[taa(q) + λaa]2 − 
2
aa(q). (A17)

3. Flavor wave for Néel state

In this case, both the Hamiltonian as well as the diag-
onalized dispersions have the same symbolic expression as
in the CAFM case. However, the coefficients are now given

by

λ11 = 2(2J1 − K1) − 2(2J2 − K2) − 4J3, (A18a)

λ22 = 2(J1 − K1) − 2J2 − 2J3, (A18b)

t11(q) = 2K2 cos qx cos qy, (A18c)

t22(q) = 2J2 cos qx cos qy

+ J3[cos (2qx) + cos (2qy)], (A18d)


11(q) = K1(cos qx + cos qy), (A18e)


22(q) = −(J1 − K1)(cos qx + cos qy), (A18f)

E0 = −2J1 + 4K1 + 2J2 + 2K2 + 2J3. (A18g)

4. Flavor wave for DS

Unlike in the previous two cases where the introduction
of two sublattices was enough, four are necessary in this
case. However, since there are still only two distinct directors,
the previously shown transformation matrices are enough to
derive the Hamiltonian. It is now convenient to write the actual
Hamiltonian down so that it becomes block diagonal. This is
due to the lack of cross terms between the bosonic operators
of the different modes. The quadratic terms can be written in
the following matricial form,

Hfw = 2
∑

q

(ψ†
11ψ

†
22)Hfw

(
ψ11

ψ22

)
+ NE0, (A19)

with the block-diagonal form of the Hamiltonian matrix
explicitly written as

S̃ν
i = V†

i S
ν
i Vi , (A20)

Hfw =
(
J 0
0 K

)
, (A21)

and where ψaa = (bA,q,a,bB,q,a,b
†
C,−q,a,b

†
D,−q,a)T . The matrix

elements of each 4 × 4 block-diagonal matrix are given by

J11 = J22 = J33 = J44 = 4J3 + K2 cos (qx − qy) ≡ A,

(A22a)

J12 = J ∗
14 = J ∗

21 = J23 = J ∗
32 = J34 = J41 = J ∗

43

= K1

2
(eiqx + eiqy ), (A22b)

J13 = J24 = J31 = J42 = K2 cos (qx + qy) ≡ B, (A22c)

and

K11 = K22 = K33 = K44 = −(K1 + K2) + 2J3

+ J2 cos (qx − qy) ≡ C, (A23a)

K12 = K∗
21 = K34 = K∗

43 = J1

2
(eiqx + eiqy ), (A23b)

K∗
14 = K23 = K∗

32 = K41 = − (J1 − K1)

2
(eiqx + eiqy ),

(A23c)

K13 = K24 = K31 = K42 = −(J2 − K2) cos (qx + qy)

− J3[cos (2qx) + cos (2qy)] ≡ D. (A23d)
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And the constant terms of the energy are E0 = 3K1 +
3K2 − 2J3.

The dispersions can be derived immediately from a standard
Bogoliubov transformation of the Hamiltonian above. This
is done by obtaining the eigenvalues of the new matrix
resulting from the similarity transformation H̃fw = �Hfw,
where the matrix � = diag(1,1,−1,−1). This gives the
following result:

ωq,1,± = 2
√
A2 − B2 ± 2

√
κ1, (A24a)

ωq,2,± = 2

√
C2 − D2 − K1

2
(K1 − 2J1) ± 2

√
κ2, (A24b)

where κ1 and κ2 are given by

κ1 = K2
1

2
(A2 + B2)[1 + cos (qx − qy)]

− K2
1AB
2

[cos (2qx) + cos (2qy) + 2 cos (qx + qy)]

− K4
1

16
[sin (2qx) + sin (2qy) + 2 sin (qx + qy)]2,

(A25)

κ2 = 1

2

[
J 2

1 C2 + (J1 − K1)2D2
]
[1 + cos (qx − qy)]

+ J1(J1−K1)CD
2

[cos (2qx)+ cos (2qy)+2 cos (qx+qy)]

− J 2
1 (J1 − K1)2

16
[sin (2qx)+ sin (2qy) + 2 sin (qx + qy)]2,

(A26)

and the diagonalized Hamiltonian is written as

Hfw =
∑
σ=±

∑
a=1,2

∑
q

ωq,a,σ (α†
q,a,σ αq,a,σ + β†

q,a,σ βq,a,σ + 1)

+N (E0 + K1 + K2 − 6J3). (A27)

In order to obtain the dynamical with spin-spin structure
factor, we first obtain the expressions for the spin operators.
These can be immediately deduced from the rotated matrices.
These are explicitly given in this case by

S̃x
i∈A,B = V†

i∈A,BSx
i∈A,BV∈A,B =

= 1

2

⎛
⎝ 0 1 −i

0 −i 1√
2 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠

⎛
⎝0 0

√
2

1 i 0
i 1 0

⎞
⎠

=
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, (A28)

and similarly,

S̃
y

i∈A,B = V†
i∈A,BS

y

i∈A,BV∈A,B = 1√
2

⎛
⎝ 0 0 −1

0 0 −i

−1 i 0

⎞
⎠,

(A29)

S̃z
i∈A,B = V†

i∈A,BSz
i∈A,BV∈A,B = 1√

2

⎛
⎝ 0 0 i

0 0 1
−i 1 0

⎞
⎠.

(A30)

For the remaining two sublattices, the rotated spin matrices
are now

S̃x
i∈C,D = V†

i∈C,DSx
i∈C,DV∈C,D =

⎛
⎝−1 0 0

0 1 0
0 0 0

⎞
⎠, (A31)

S̃
y

i∈C,D = V†
i∈C,DS

y

i∈C,DV∈C,D = 1√
2

⎛
⎝0 0 1

0 0 −i

1 i 0

⎞
⎠, (A32)

S̃z
i∈C,D = V†

i∈C,DSz
i∈C,DV∈C,D = 1√

2

⎛
⎝ 0 0 i

0 0 −1
−i −1 0

⎞
⎠.

(A33)

In order to obtain the approximate structure factors up to
quadratic order in the bosonic operators, we take the following
expressions for each component of spin:

Sx
A(B),q � 1, (A34a)

S
y

A(B),q � − 1√
2

(b̃†A(B),−q,2 + b̃A(B),q,2), (A34b)

Sz
A(B),q � i√

2
(b̃†A(B),−q,2 − b̃A(B),q,2), (A34c)

Sx
C(D),q � −1, (A35a)

S
y

C(D),q � 1√
2

(b̃†C(D),−q,2 + b̃C(D),q,2), (A35b)

Sz
C(D),q � i√

2
(b̃†C(D),−q,2 − b̃C(D),q,2). (A35c)

Finally, the structure factors are given by the following
expressions:

χ ′′
xx(q,ω) = 1, (A36a)

χ ′′
yy(q,ω) = 1

8

∑
i=1,4

|(V 1i
q + V 2i

q

) − (
V 3i

q + V 4i
q

)|2δ
× (ω − ωq,2,+)

+ 1

8

∑
i=2,3

|(V 1i
q + V 2i

q

) − (
V 3i

q + V 4i
q

)|2δ
× (ω − ωq,2,−),

(A36b)

χ ′′
zz(q,ω) = χ ′′

yy(q,ω). (A36c)

5. Flavor wave for SD

Just like before, all the symbolic expressions are the same
as those in the section above, with the coefficients of the matrix
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in Eq. (A21) given by

J11 = J22 = J33 = J44 = 2J1 − K1 ≡ A, (A37a)

J12 = J ∗
14 = J ∗

21 = J23 = J ∗
32 = J34 = J41 = J ∗

43

= K1

2
eiqx + K2e

−iqx cos qy, (A37b)

J13 = J24 = J31 = J42 = K1 cos (qy) ≡ B, (A37c)

and the coefficients Kij taking on the form

K11 = K22 = K33 = K44 = J1 − 3K1

2
− K2

+J3 cos (2qy) ≡ C, (A38a)

K12 = K∗
21 = K34 = K∗

43 = J1

2
eiqx + J2e

−iqx cos qy,

(A38b)

K∗
14 = K23 = K∗

32 = K41

= − (J1 − K1)

2
eiqx − (J2 − K2)e−iqx cos qy, (A38c)

K13 = K24 = K31 = K42

= −(J1 − K1) cos qy − J3 cos (2qx) ≡ D. (A38d)

The constants contributing to the energy are now given
by E0 = −J1 + 7

2K1 + 3K2, and after diagonalizing, the
resulting dispersions are now

ωq,1,± = 2
√
A2 − B2 ± √

κ1, (A39a)

ωq,2,± = 2

√
C2 − D2 − K1

4
(K1 − 2J1)

−K2(K2 − 2J2)cos2qy ± √
κ2, (A39b)

with

κ1 = (A2 + B2)
(
K2

1 + 4K2
2 cos2qy

)
− 1

2

(
K2

1 −4K2
2 cos2qy

)2
[1− cos (4qx)]−8ABK1K2 cos qy

+ 2(AK1 − 2BK2 cos qy)

× (2AK2 cos qy − BK1) cos (2qx), (A40)

κ2 = C2
(
J 2

1 +4J 2
2 cos2qy

)+D2[(J1−K1)2+4(J2−K2)2cos2qy]

− 1
2 [J1(J1 − K1) − 4J2(J2 − K2)cos2qy]2[1 − cos (4qx)]

+ 4CD[J1(J2 − K2) + J2(J1 − K1)] cos qy

− 2[CJ1 + 2D(J2 − K2) cos qy]

× [2CJ2 cos qy + D(J1 − K1)] cos (2qx), (A41)

where, as always, we write the resulting diagonalized
Hamiltonian in the following form:

Hfw =
∑
σ=±

∑
a=1,2

∑
q

ωq,a,σ (α†
q,a,σ αq,a,σ + β†

q,a,σ βq,a,σ + 1)

+N

(
E0 − 3J1 + 5

2
K1 + K2

)
. (A42)

6. Flavor wave for PL

Unlike in the previous two cases, four sublattices are not
enough to accurately describe the PL state and we must
introduce four additional ones. The Hamiltonian matrix is still
block diagonal with 8 × 8 block matrices and where ψ

†
aa =

(bA,q,a,bB,q,a,bC,q,a,bD,q,a,b
†
E,−q,a,b

†
F,−q,a,b

†
G,−q,a,b

†
H,−q,a).

The constants of the Hamiltonian are the same as on the case
of the DS phase and the matrix elements are given by

K11 = K22 = K33 = K44

= K55 = K66 = K77 = K88 = 4J3, (A43a)

K15 = K26 = K37 = K48

= K51 = K62 = K73 = K84 = 0, (A43b)

K13 = K28 = K31 = K46

= K57 = K64 = K75 = K82 = K2 cos (qx + qy),

(A43c)

K17 = K24 = K35 = K42

= K53 = K68 = K71 = K86 = K2 cos (qx − qy),

(A43d)

K12 = K25 = K38 = K43

= K56 = K61 = K74 = K87 = K1

2
eiqx , (A43e)

K16 = K21 = K34 = K47

= K52 = K65 = K78 = K83 = K1

2
e−iqx , (A43f)

K14 = K23 = K36 = K45

= K58 = K67 = K72 = K81 = K1

2
eiqy , (A43g)

K18 = K27 = K32 = K41

= K54 = K63 = K76 = K85 = K1

2
e−iqy , (A43h)

(A43i)

J11 = J22 = J33 = J44

= J55 = J66 = J77 = J88 = 2J3 − (K1 + K2),

(A44a)

J15 = J26 = J37 = J48 = J51 = J62 = J73 = J84

= −J3[cos (2qx) + cos (2qy)], (A44b)

J13 = J31 = J57 = J75 = J2 cos (qx + qy), (A44c)

J24 = J42 = J68 = J86 = J2 cos (qx − qy), (A44d)

J28 = J46 = J64 = J82 = −(J2 − K2) cos (qx + qy),

(A44e)

J17 = J35 = J53 = J71 = −(J2 − K2) cos (qx − qy),

(A44f)

J12 = J43 = J56 = J87 = J1

2
eiqx , (A44g)
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J21 = J34 = J65 = J78 = J1

2
e−iqx , (A44h)

J14 = J23 = J58 = J67 = J1

2
eiqy , (A44i)

J32 = J41 = J76 = J85 = J1

2
e−iqy , (A44j)

J25 = J38 = J61 = J74 = − (J1 − K1)

2
eiqx , (A44k)

J16 = J47 = J52 = J83 = − (J1 − K1)

2
e−iqx , (A44l)

J36 = J45 = J72 = J81 = − (J1 − K1)

2
eiqy , (A44m)

J18 = J27 = J54 = J63 = − (J1 − K1)

2
e−iqy . (A44n)

Because of their complexity in this case, analytical expressions
for the dispersions are not included in this case. However, these
can be obtained using the technique described in Sec. V above.
The Hamiltonian takes the following form:

Hfw =
∑

σ

∑
a=1,2

∑
q

ωq,a,σ (α†
q,a,σ αq,a,σ + β†

q,a,σ βq,a,σ + 1)

+N (E0 + K1 + K2 − 6J3), (A45)

where the index σ is added in order to account for the
summation over all the different dispersions obtained for each
of the two modes.
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