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We demonstrate that with two small modifications, the popular dielectric continuum model is capable
of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and
heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in
water–co-solvent mixtures over available concentration series. The first modification to the classical
dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the
solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have
called a solvation-layer interface condition (SLIC). The second modification is including the micro-
scopic interface potential (static potential) in our model. We show that the resulting model exhibits
high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to
experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within
2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant
denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface
potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC
model indicate that it is a promising dielectric continuum model for accurate predictions in a wide
range of conditions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977037]

I. INTRODUCTION

Developing better models for thermodynamics of solute–
solvent interactions is of crucial importance due to their
wide range of applications in biology, nanotechnology, and
fundamental chemistry. Implicit-solvent models play a vari-
ety of roles in these applications because their speed and
simplicity make them appealing options where fully atom-
istic explicit-solvent models are impractical or impossible.1–3

Among the most popular implicit-solvent models are those
based on statistical mechanical integral equations4–6 and those
based on macroscopic dielectric theory and continuum elec-
trostatics.1,7,8 The latter are widely used because they lead
to well understood partial-differential equations for which a
variety of numerical algorithms can be used to solve large
problems.9–15

However, the speed advantage of dielectric models comes
at the cost of simplifying assumptions that make them unable
to capture important phenomena.16–27 In particular, the most
substantial errors are incurred in the continuum theory’s treat-
ment of the first layers of solvent molecules (the solvation
layer) as a bulk dielectric material. Significant inaccuracies
arise from the assumptions that solvent molecules (1) are
infinitely small and (2) respond linearly with respect to an
applied field.2,28 To remedy this shortcoming of classical
continuum theories, different improvements have been sug-
gested by researchers. To understand the behavior of solvent
molecules in this layer, numerous groups have assessed physi-
cally motivated changes to solute atom radii16,17 and conducted

all-atom calculations with explicit solvent to probe solvation-
layer response to a perturbing electric field.6,18,20,29–32 Another
group used smooth Gaussian-based dielectric function to make
a distinction between the solvent response at the boundary and
the bulk response.33

These studies, which integrate extensive experimental
and computational data, have supported the development of
several dielectric-based models that address solvation-layer
phenomena for water.17,34–40 Many focus on charge hydra-
tion asymmetry (CHA), that is, reproducing the fact that ions
of equal size but opposite valence have different solvation
free energies and entropies. Although existing models have
provided improved treatment of CHA, they have generally
treated all asymmetry as arising solely from water hydro-
gens approaching a solute more closely than the larger water
oxygens. This phenomenon is known as steric asymmetry. In
many continuum models, steric asymmetry is addressed using
atom-type-specific or charge-dependent radii.16,17,34,38,41–44

Although effective radii do account for the effects of charge
asymmetry for surface-exposed charges, the important point
is that they cannot work for buried charges that are still within
a few Angstroms of the surface: changing their radii cannot
change the dielectric boundary. This suggests an alternative
approach in which a physically meaningful, effective modifica-
tion should be employed in the interface condition, rather than
changing the interface directly (via the atom radii).24,26,27,45

The asymmetric response can be described as a combination
of two distinct different mechanisms.24 The first one, as it was
described above, is the steric asymmetry and the other one
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is the electrostatic interface potential that persists even if the
solute is uncharged.18–20,46–48 This interface potential, which
we call the static potential to distinguish it from the macro-
scopic notion,24 contributes substantially to solvation thermo-
dynamics, though not to solvation free energies in the case
of neutral solutes. In particular, the static-potential term con-
tributes a term that is linear in the net charge,24,40 whereas the
polarization contributes the familiar quadratic expression. For
linear-response models, this quadratic dependence is clearly
understood; for our nonlinear response model, it arises from
the fact that the model responds linearly for virtually the entire
charging process.

We have proposed a corrected dielectric continuum model
that includes two simple modifications to treat these two
solvation-layer phenomena directly and separately.24,26,27,49

First, the static potential is treated as a uniform field that
does not change in response to the solute charge distribu-
tion. Second, we modify the familiar dielectric flux inter-
face condition (obtained from macroscopic dielectric the-
ory) by adding a nonlinear perturbation that depends on the
local electric field. We call this the solvation-layer inter-
face condition (SLIC) model, after the modified interface
condition.45 Our initial work showed that SLIC accurately
reproduces ion solvation free energies in water, as well as
charge-hydration asymmetries on a challenging test set.26 We
then established that the widely used mean spherical approx-
imation (MSA) in bulk solution theory50 could be approx-
imated to give a SLIC-like nonlinear perturbation to the
macroscopic dielectric interface condition.45 This work indi-
cated that a temperature-dependent interface condition could
accurately predict the solvation free energies and entropies
in a variety of polar solvents.45 Most recently, SLIC has
been extended for dilute electrolytes modeled with the linear
Poisson-Boltzmann equation.27,49 This extended version was
shown to accurately predict the charging free energies of indi-
vidual atoms in polyatomic solutes.49 Remarkably, the model
provides high accuracy without the need for parameterizing
solute atom radii. The extra computational cost associated
with using this model compared to the traditional continuum
theory deserves discussion. Solving the nonlinear problem
requires a sequence of standard continuum simulations. In the
present work, spherical symmetry makes solutions very fast,
and therefore the iterations continue until full convergence is
achieved. For general solute molecules, we use five nonlin-
ear Picard iterations, and so calculations are approximately
five times more expensive. Note that the number of itera-
tions can be reduced substantially in multiple ways, including
using a Newton method rather than Picard; using more accu-
rate initial guesses for the solution; and using multiresolution
approaches.

In this paper, we test the SLIC model on two problems
that are widely understood to challenge traditional dielec-
tric continuum models. First, it is well known that such
models fail to reproduce solvation thermodynamics;51 the
problem’s importance has in fact motivated the parameter-
ization of temperature-dependent radii.52 Second, relatively
few implicit-solvent models have been applied to solva-
tion in mixtures.53–56 Standard dielectric models have been
shown to give poor accuracy in specific mixtures,57–59 but

reference-interaction site model (RISM) theories60 and the
continuum-based model COSMO-RS61–63 generally work
well. One challenge for simple dielectric models is that
correcting their oversimplifications, even in pure solvents,
necessitates numerous correction terms with associated free
parameters, making parameterization prohibitively compli-
cated and time-consuming. For the studies here, where we
use standard Shannon-Prewitt radii for the ions,43,64 SLIC has
five fitting parameters. However, if parameterized to reproduce
explicit-solvent simulations, the model has only three fitting
parameters, which describe the nonlinear susceptibility in the
solvation layer.26,27,49 Nevertheless, the model gives excellent
results: the RMS error is 1.3 kJ/mol for cations and 2.5 kJ/mol
for anions, in the 9 mixtures for which we have experimen-
tal data. Considering the model’s simplicity, lack of chemical
detail, and robustness to different solvents, this accuracy is
surprising: it suggests that specific chemical interactions such
as hydrogen bonds may not need to be explicitly included
for predictive accuracy. This work addresses only monovalent
ions because polyvalent ions induce dielectric saturation in the
first shell, introducing an additional nonlinearity between the
first and second shells.31,32,65–67 Ongoing work aims to extend
SLIC to model polarization saturation around highly charged
solutes.

The paper is organized as follows. The following section
presents the SLIC model for the electrostatic component of
molecular solvation free energies. Section III then addresses
the application of SLIC to ion solvation thermodynamics in
multiple polar solvents, and in Section IV we study ion solva-
tion free energies in mixtures. Section V concludes the paper
with a discussion of open questions, limitations, and areas for
future work.

II. THEORY

Our model assumes that the solvation free energy can
be decomposed as ∆Gsolv = ∆Gnp + ∆Ges, where ∆Gnp rep-
resents the nonpolar free energy associated with growing a
completely uncharged solute cavity into the solvent and ∆Ges

represents the free energy of creating the solute charge dis-
tribution.2 Because we are studying monovalent Born ions,
we follow the typical convention and assume ∆Gnp is negli-
gible,68 i.e., in this paper, we consider only the electrostatic
solvation free energy and assume ∆Gsolv = ∆Ges. However, in
other work, we have included a surface-area-dependent non-
polar term and optimized the nonpolar and electrostatic con-
tributions simultaneously, obtaining good accuracy for small
molecule solvation.49

In the standard (macroscopic) dielectric continuum model
for ∆Ges, the solute is modeled as a dielectric medium with
relative permittivity ε in that contains Nq charges, usually at
the atom centers (the ith charge is qi and located at ri), and
the solute potential satisfies the Poisson equation. The solvent
exterior is modeled as an infinite homogeneous bulk dielectric
with relative permittivity εout , and in the absence of mobile
charges (that is, in non-ionic solution), the solvent potential
satisfies the Laplace equation. It is assumed that φout → 0 as
|r| → ∞, and that the normal flux across the dielectric inter-
face (denoted S) is given by the standard Maxwell interface
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condition

ε in
∂φin

∂n
(rS−) = εout

∂φout

∂n
(rS+), (1)

where ∂/∂n denotes the outward normal derivative, rS− is a
point just inside the dielectric boundary S, and rS+ is a point just
outside. Solving this problem using finite difference methods69

or boundary integral methods,24,26,27,45 we obtain the reaction
potential φreaction which arises due to the different permittivi-
ties. Overall, in the standard dielectric continuum model, we
write the electrostatic component of the solvation free energy
as ∆Ges = ∆Greaction =

1
2

∑Nq

i=1 qiφreaction(ri) where φreaction(r)
is the reaction potential field.

In the SLIC model, by contrast, ∆Ges is defined to be the
sum of two terms

∆Ges = ∆Gstatic + ∆Greaction. (2)

The first term in Eq. (2) captures the component of the
charging free energy that arises due to the interfacial poten-
tial field φstatic(r) created by the solvent structure around a
completely uncharged solute (i.e., an empty cavity with the
solute shape).24,46 This term has been omitted in most pre-
vious dielectric continuum models, which leads to apparent
deviations at very low charge densities.24,41,48 In this work,
we assume the static potential field φstatic is constant every-
where inside the solute; validation and justification for this
approximation can be found in Refs. 24, 26, and 46. The
second term in Eq. (2) is the familiar polarization energy
associated with solvent polarization in response to the solute
charge distribution. However, in contrast to the standard dielec-
tric model, we have replaced the dielectric interface condi-
tion of Eq. (1) with the solvation-layer interface condition
(SLIC)26,27

(ε in − ∆ε h (En(rS−)))
∂φin

∂n
(rS−)

= (εout − ∆ε h (En(rS−)))
∂φout

∂n
(rS+), (3)

where ∆ε = εout − ε in and En(rS−) is the normal electric field
at rS− (note that the electric field just outside the surface does
not explicitly enter into the interface condition). Notice that
this change makes the local dielectric contrast sensitive to the
local electric field, and in particular changes the response to
positive and negative fields (matching intuition about asym-
metric solvation by water molecules). The perturbation h(En)
used here and in our previous work is

h(En) = α tanh(βEn − γ) + µ. (4)

It has been shown26 that the suggested functional form is
a suitable choice for our model and can capture the CHA
effects. Figure 1 is a schematic plot of this perturbation. In this
function, α dictates the magnitude of the deviation between
suppressed response and enhanced response; β determines the
change in the electric field necessary to transition solvation-
layer response between modes; γ determines the critical elec-
tric field where the transition is centered; and µ determines
where the suppressed response and enhanced response are sit-
uated with respect to the bulk response. It is important to note
that the system responds linearly in regions where the deriva-
tive of h is zero. Therefore, as 1/β, which corresponds to the

FIG. 1. Schematic of the SLIC perturbation to the standard dielectric interface
condition and the different model parameters. In this function, α shows the
magnitude of the deviation between the suppressed response and enhanced
response; 1/β determines the change in the electric field necessary to transition
solvation-layer response between modes;γ determines the critical electric field
where the transition is centered; and µ dictates where the suppressed response
and enhanced response are situated with respect to bulk response.

width of the transition, approaches zero, the system obeys two
different regimes of linear response depending on the local
field.24 A small but finite transition region allows the model
to reproduce observed nonlinearities at low field strengths,
which have been noted to arise due to the transition of solvent
dipole orientations.70 However, for charged or highly polar
compounds, this transition region’s energetic contribution to
solvation is quite small.45 In particular, because the actual
region of nonlinear response happens in a very narrow region
around En = 0, the change in potential due to a change in solute
charge is essentially linear for any finite charge.26,27,45 This
gives essentially a piecewise-linear response model, and there-
fore the polarization component of the electrostatic solvation
free energy can be approximated using the usual expression
∆Greaction =

1
2

∑
qiφreaction(ri).

III. PREDICTING SOLVATION THERMODYNAMICS

To test whether the SLIC dielectric continuum model
can reproduce solvation thermodynamics and to assess the
effects of the static potential on prediction accuracy, we
calculated ion solvation free energies, entropies, and heat
capacities in nine polar solvents: water (abbreviated W),
methanol (MeOH), ethanol (EtOH), formamide (F), acetoni-
trile (AN), dimethylformamide (DMF), dimethyl sulfoxide
(DMSO), nitromethane (NM), and propylene carbonate (PC).
The test set was composed of the monovalent Born ions Li+,
Na+, K+, Rb+, Cs+, Cl�, Br�, and I�; however, we could not
use Rb+ for MeOH, EtOH, F, DMSO, or NM due to a lack of
experimental data. To parameterize the model and its tempera-
ture dependence, we used experimental solvation free energies
at multiple temperatures; solvation free energy changes due
to temperature were calculated using experimental solvation
entropies and heat capacities.37 For each solvent/temperature
pair, we parameterized the model once with φstatic set to zero
and once with it allowed to vary. Note that ion radii were taken
to be widely used values42 without any further adjustment.
Thus, for each solvent/temperature parameterization, the fit-
ting was overconstrained, having more data points (8 or 9, see
below) than model parameters (4 or 5, depending on the use
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of φstatic). Other relevant details for the solvents can be found
in the supplementary material.

Figures 2 and 3 contain plots of SLIC predictions of ion
solvation free energies and entropies at 25 C, along with pre-
dictions from standard Born theory and the asymmetric MSA
theory42 for four solvents (W, MeOH, AN, and PC). The solva-
tion free energies and entropy plots for the other five solvents
are available in the supplementary material. Both SLIC mod-
els are substantially more accurate than the existing models.
It is also clear that the SLIC model with the static potential is
much more accurate than the one that omits it, especially for
entropies (as well as free energies in F, AN, DMF, DMSO, NM,
and PC). Interestingly, for anions, the SLIC model predicts
exaggerated entropy differences compared to experiment; this
is particularly noticeable for W, NM, and DMF. In addition,
the cation entropies are generally more accurate than the anion
entropies, but larger cations in AN are an exception. More
detailed studies using explicit-solvent molecular dynamics are
in progress.

Figure 4 contains plots of calculated heat capacities in W,
MeOH, AN, and PC compared to the experimental data. Plots
of the calculated heat capacities for the other solvents can be
found in the supplementary material. Because heat capacities
are related to the second derivative of the free energy, it is
unsurprising that the correlations are weaker than for energies
and entropies. As expected, the classical Born model is inca-
pable of calculating heat capacities accurately.51 In our model,
inaccuracies are particularly notable for anions, which may
be related to their greater degree of charge transfer.71,72 The
influence of the static potential on heat capacities is especially
notable, providing an important offset to improve agreement
with experiment in almost all cases. These results suggest that
the static potential (an intrinsic property of the solvent and only
weakly dependent on the shape of the uncharged solute) has a
substantial effect on solutes’ heat capacities, but that in these
solvents, differences in heat capacities between molecules are
governed by more detailed physics. In addition, we observe
that small cations are problematic, which is not surprising
because their high charge density leads to dielectric saturation,
meaning that discrete solvent structure becomes increasingly
important.

Together, Figures 2–4 along with the corresponding fig-
ures in the supplementary material and the RMS errors pre-
sented in Table I indicate the importance of including the static
potential in predicting solvation thermodynamics. The results
also suggest that SLIC works well for solvents of various
structure, complexity, and size, even though solvent structural
details are not addressed explicitly. A table containing the val-
ues of each SLIC parameter at T = 25 ◦C, and their derivatives
with respect to temperature, is available in the supplementary
material. Previous work has shown that SLIC works well for
polyatomic solutes such as biomolecules in water,26 and future
work will address such solutes in larger, more complex sol-
vents such as PC. The present results do, however, explain
previously noted questions, such as why ∆S does not have
a straightforward dependence on ion radius,73 namely, the
interface potential is largely independent of radius (though
it does exhibit some variation18). Our model assumes φstatic

is independent of solute shape, yet predicts these quantities

FIG. 2. Solvation free energies calculated by the classical Born dielectric
model, the asymmetric MSA,42 and the SLIC model with and without the static
potential. The solid lines represent perfect agreement between experiment and
theory.

accurately, which suggests that its variation with size does
not play a major role in ion solvation thermodynamics. We
reiterate that the present model does not address second-shell

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
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FIG. 3. Entropies calculated by the classical Born dielectric model, the asym-
metric MSA,42 and the SLIC model with and without the static potential. The
solid lines represent perfect agreement between experiment and theory.

effects,27 which is why the ions considered are only mono-
valent. Polyvalent ions that saturate the first shell17 will be
studied in future work.

FIG. 4. Heat capacities predicted by the classical Born theory and by the
SLIC model with and without the static potential. The solid lines represent
perfect agreement between experiment and theory.

Having established the SLIC models’ accuracy, we next
consider interpretation of the model parameters. Here we study
only the model that includes the static potential φstatic contri-
bution because significant data argue for its inclusion and the
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TABLE I. RMS errors, for solvation free energies ∆G, entropies ∆S, and heat capacities Cp, calculated by SLIC
with and without static potential.

∆G (kJ mol�1) ∆S (J mol�1) Cp (J K�1mol�1)

Solvent Without φstatic With φstatic Without φstatic With φstatic Without φstatic With φstatic

W 10.45 4.04 21.38 6.86 15.83 12.59
MeOH 11.50 3.64 44.89 3.63 68.02 19.71
AN 21.45 6.06 28.34 5.35 348.88 159.48
PC 24.26 8.23 31.58 5.29 6.06 19.59

model without it exhibits significantly poorer accuracy. Also,
because we used standard Shannon and Prewitt radii rather
than radii based on any MD simulations, the optimized param-
eter values cannot be interpreted directly in terms of atomistic
molecular simulations. That is, explicit-solvent simulations
and a SLIC model based on MD radii are needed to provide a
consistent model comparison and offer atomistic insights into
the model’s treatment of solvation-layer response. However, it
is worth noting common features of the temperature-dependent
response. For all solvents, the width of the transition region in
Figure 1 (as captured by 1/β) is increasing with temperature,
which can be interpreted in terms of increased thermal motion
leading to more gradual transition, as a function of the local
electric field. Results for α(T ), the magnitude of the response
asymmetry (between enhanced and suppressed response) are
not consistent: W, MeOH, AN, NM, and PC exhibit increases
in response asymmetry with temperature (positive ∂α

∂T ), while
the others exhibit decreasing trends. The centering parame-
ters µ and γ increase with temperature for all solvents, but the
significance of this is not clear. The static potentials for all
solvents are negative, and increasing (becoming less negative)
with temperature, but more detailed simulation will be required
to establish the relationship to microscopic phenomena.

TABLE II. Prediction of Gibbs free energy, entropy, and heat capacity in
the model with φstatic. Values in parentheses are experimental values when
available.

Solvent Ion ∆G (kJ mol�1) ∆S (J K�1 mol�1) Cp (J K�1 mol�1)

W F� �430 (�429)43
�67 (�115)43

�86 (�45)75

MeOH
Rb+

�326(�319) �178 (�175) 55
F� �415 �116 �79 (�131)75

EtOH
Rb+

�319 (�313) �197 (�187) 128
F� �405 �145 �153 (�194)

F
Rb+

�340 (�334) �135 (�130) 27
F� �418 �128 36 (28)76

AN F� �390 �192 147

DMF F� �389 �230 105

DMSO
Rb+

�348 (�339) �151 (�180) 32
F� �400 �160 186(60)75

NM
Rb+

�324 (�318) �186 (�183) 19
F� �391 �182 95(71)75

PC F� �394 �149 67

We may also consider these solvents from the perspective
of being protic or aprotic. The protic solvents water, MeOH,
and EtOH exhibit positive correlations between dielectric
constant and α and β but negative correlations between
the dielectric constant and γ and µ. However, formamide
does not follow this trend. For aprotic solvents, the para-
meters do not exhibit any obvious dependency on the dielec-
tric constant or the solvent radius (supplementary material).
Future work will address these relationships in more detail, and
particularly focus on the extent to which solvation entropies
and heat capacities are in fact related to the parameters’
temperature dependence.

Table II contains calculations for solvation thermodynam-
ics where the experimental data are not yet available or were
not used in parameterization. These cases include F� in all sol-
vents, and Rb+ in MeOH, EtOH, F, DMSO, and NM. Because
solvation of fluoride ions in nonaqueous solvents has received
limited attention,74 we did not use this ion for parameteriz-
ing SLIC in any of the solvents, even in water, where it has
been studied.43,75 Table II also includes available experimen-
tal measurements. Again, the model predicts free energies and
entropies accurately and is qualitatively reasonable for heat
capacities (especially compared to other models).

IV. PREDICTING SOLVATION IN MIXTURES

We parameterized concentration-dependent SLIC models
for ion solvation in 9 water–co-solvent mixtures. The co-
solvents were acetone (AC), acetonitrile (AN), dioxane (Diox),
dimethyl ether (DME), dimethylformamide (DMF), dimethyl
sulfoxide (DMSO), ethanol (EtOH), methanol (MeOH), and
urea. We obtained ion solvation free energies in each mixture
by adding tabulated transfer free energies77–85 to experimental
ion solvation free energies in water.43 Mixture dielectric con-
stants were taken to be experimental values.86–93 The exper-
imental transfer free energies included the monovalent Born
ions Li+, Na+, K+, Rb+, Cs+, Cl�, Br�, and I�, though trans-
fer free energies were not available for every ion in every
co-solvent. Each SLIC parameter was modeled as varying
quadratically (for example, α(c) = α0+α1c+α2c2) where the
co-solvent weight/weight concentration c between 0, meaning
pure water, and a maximum of 1, pure co-solvent. However,
transfer free energies from pure water to pure co-solvent were
not available. Thus, for each solvent, the 5 SLIC dependent
parameters led to a fitting of 15 parameters over all experi-
mental data associated with that co-solvent mixture, regardless
of concentration. For each optimization, every solvation free

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-019709
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energy was weighted equally in the optimization problem, and
every co-solvent had at least 36 measured transfer energies.
Therefore, each optimization problem was well posed. Again,
no ion radii were fit during this work: the Shannon–Prewitt
radii were used unchanged.43,64 The optimization problems
were unconstrained, and for initial guesses we used coeffi-
cients obtained by polynomial fitting from parameterizations
at individual mixture concentrations. We verified the model
consistency by using the optimized SLIC models of different
mixtures to predict solvation free energies in neat water (sup-
plementary material). MATLAB’s non-linear least squares
function was used for optimization (version 2015b on Mac).

Table III contains the root-mean-square (RMS) errors for
the SLIC model associated with each co-solvent, tabulated
separately for cations and anions. Errors are given for both the
absolute solvation free energies and for the transfer free ener-
gies from neat water to a given mixture. The model achieves
high accuracy, with RMS errors for solvation free energies less
than 7 kJ/mol. However, differences can be observed, particu-
larly in that the cation predictions are somewhat less accurate
than predictions for anions. Transfer free energies (measured
as the solvation free energy difference between the model at 0%
co-solvent and the model at finite co-solvent weight fraction)
are highly accurate, with both cations and anions achieving
RMS errors of less than 2.5 kJ/mol, though cation transfer
free energies are more accurate than those for anions.

Figures 5 and 6 are plots of the cation transfer free energies
and anion transfer free energies, respectively, into mixtures of
water and DMSO; these are the representative of the results
for all solvents. The supplementary material contains individ-
ual plots for the transfer free energy profile for each Born
ion in each co-solvent mixture, compared to both experiment
and the prediction of continuum Born theory. For the Born
model, we held the Shannon-Prewitt radii fixed but changed
the dielectric constant according to experiment. The cation
transfer free energy profiles are well reproduced in our theory;
cesium, the largest, is underpredicted by a small but consistent
amount. For anions, the experimental profiles exhibit a wide
variance as the concentration increases (Figure 6); these results
are observable to a lesser extent for other mixtures, including
ethanol, DMF, and dioxane. With regard to relative transfer free
energies between cations, our model reproduces experimen-
tal orderings reasonably well over the concentration range for

TABLE III. RMS errors, in kJ/mol, for ∆Gsolv and ∆Gtr , computed sepa-
rately for cations and anions.

∆Gsolv ∆Gtr

Solvent Cations Anions Cations Anions

AC 6.64 1.10 0.13 1.38
AN 2.25 1.27 0.86 0.95
Diox 2.71 1.95 1.09 1.81
DME 5.07 1.14 0.42 1.50
DMF 4.62 0.75 1.29 1.07
DMSO 2.22 2.58 0.47 1.71
EtOH 4.45 2.41 0.86 2.46
MeOH 2.24 1.50 0.41 0.54
Urea 2.48 1.63 0.72 0.53

FIG. 5. Transfer free energies, in kJ/mol, for cations into water-DMSO
mixtures.

which experiments are available, with the exception of potas-
sium. For anions, however, the SLIC differences are under-
predicted compared to the experimental measurements. The
complete set of transfer free energy profiles are available in the
supplementary material, offering additional evidence of the
SLIC model’s accuracy. First, in DMSO as well as in ethanol,
urea, DMF, DME, and dioxane, SLIC reproduces cations’
concave-up transfer free energy profiles and concave-down
profiles for anions. Furthermore, in water-methanol mixtures,
the cation profiles are concave down and the anions concave up,
and SLIC reproduces this difference (although predictions for
potassium exhibit poorer accuracy). Second, for acetone and
acetonitrile, the anion transfer free energies vary essentially
linearly with concentration, which our model also reproduces.
Third, transfer free energies for cations in ethanol mixtures
exhibit an inflection point, and our model reproduces the
overall profiles accurately, though not the change in curvature.

We also show in the supplementary material that with fixed
radii, the classical Born model, which uses purely macroscopic

FIG. 6. Transfer free energies, in kJ/mol, for anions into water-DMSO
mixtures.
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dielectric notions, is unable to reproduce even qualitative fea-
tures because the only varying parameter is the dielectric
constant. For example, the transfer free energy profiles often
have significant curvature and a local maximum or minimum,
whereas the Born-model profiles are monotonic (see particu-
larly the results for dioxane). To construct an accurate Born
model, each ion’s radius must be parameterized at each co-
solvent concentration; one observes a non-monotonic variation
in radius that can be as large as 0.1 Å (supplementary material).
As a blind prediction to test the SLIC model, the supplemen-
tary material also includes predictions for ion transfer free
energies in co-solvent mixtures for which we did not find any
reference data. These predictions included fluorine for all co-
solvents, as well as lithium and sodium in acetone and ethanol.
For water-ethanol mixtures, the lithium and sodium transfer
free energy profiles are very similar to the other cations’ pro-
files. In contrast, the predictions for acetone are quite different
for larger cations, which suggests that such experiments or
atomistic simulations would offer a stringent test of our model.

V. DISCUSSION

We have established that a dielectric continuum solvent
model can accurately reproduce ion solvation thermodynam-
ics in a variety of polar solvents and solvation free energies
in mixtures, provided that (1) the usual macroscopic dielectric
interface condition is replaced with a solvation-layer inter-
face condition (SLIC), and (2) proper account is taken for the
interface potential, which we have termed a static potential
in order to highlight its microscopic character.46 Importantly,
the SLIC model achieves this accuracy via a simple physi-
cal picture rather than a chemical one—that is, SLIC does
not account explicitly for solvent chemical properties such
as hydrogen bonding propensities or detailed solvent struc-
ture. Instead, the model treats in essence the re-orientation
response of asymmetric dipoles in the solvation layer. Over-
all, however, SLIC works very well for both protic and aprotic
solvents, as well as for solvents of varying size and struc-
ture; other work has established its accuracy for predicting
solvation free energies of polyatomic solutes.26,27 Our assess-
ment of transfer free energies in mixtures offers encouraging
signs for the model’s robustness. For mixtures, our results were
obtained via global optimization (over all concentrations for a
given co-solvent) with parameters varying quadratically as a
function of concentration. However, even linear dependencies
work reasonably well for most solvents, despite the reduced
number of fitting parameters (supplementary material). Fur-
thermore, SLIC models implemented to match explicit-solvent
MD need even fewer parameters.26 SLIC predicts, with semi-
quantitative accuracy, the experimental free energies of trans-
fer over a wide range of concentrations, even when the depen-
dencies have different trends over the Born ions. The accuracy
and generality suggest that first-shell solvent response, as cap-
tured via a surface-charge representation, suffices to explain
a large component of changes in solvation over substantial
changes in solvent composition. To put our present model to
a stringent test, we have predicted solvation thermodynam-
ics and transfer free energies for cases in which we have no
experimental data (primarily fluorine, as well as lithium and

sodium; see the supplementary material). Our calculations of
entropies and heat capacities also indicate the importance of
separating the static potential from the nonlinear polarization
response.

In work on polyatomic solutes including amino acids, we
have shown that the model does not require atom radii to be
adjusted for atomic charge,26 which differs from numerous
suggestions and parameterizations. The present work shows
that the SLIC continuum model is highly accurate even when
the solute atom radii are independent of solvent composition
and temperature.41,52 In contrast to the models which parame-
terize many radii (making model comparison challenging), in
the SLIC model, we have instead changed the interface con-
dition and introduced the static potential. In our view, this is
a more meaningful adjustment because the system changes
involve the solvent and the solvent–solute interactions, not the
solute. We note that this viewpoint is implicit in the MSA
model for Born ion solvation.43 Our model’s rather surprising
accuracy provides further support that temperature-dependent
changes in the average charge structure of the solvation layer,
rather than specific chemical interactions, are responsible for
ion solvation thermodynamics. We have predicted solvation
entropies with high accuracy and heat capacities with only
reasonable accuracy, but this lower accuracy is not surpris-
ing given that heat capacities are second-derivative quantities,
and more chemical detail is likely to be needed for these
predictions.

For mixtures, straightforward calculations illustrate a
clear weakness of classical dielectric models: Born radii fit
to experimental results must vary non-monotonically with co-
solvent concentration. This firmly establishes the notion that
in traditional Poisson models, the atom radii must be consid-
ered as free (adjustable) parameters.94 In contrast, all of our
calculations here used the standard Shannon–Prewitt radii;64

when SLIC is parameterized against explicit-solvent MD sim-
ulations, the resulting model is accurate using standard MD
Lennard-Jones radii with only a uniform scaling.26,49 In this
respect, our model has dozens of fewer fitting parameters
than traditional continuum electrostatic models, where radii
must be fit for each atom type or for many groups of similar
type. It is worth emphasizing that recent models of charge-
hydration asymmetry are similarly able to reproduce wide sets
of experimental data using fewer radii fitting parameters35,38

than classical continuum models.
A question of significant interest is how to reconcile the

solvation-layer response picture of SLIC with the significant
literature on the role of solvent fluctuations,95–98 which our
model does not include. For example, can the solvent fluctu-
ation density field be decomposed into terms related to the
static and reaction fields? It is also interesting to consider
the relationship of our approach to the local molecular field
(LMF) theory of Weeks et al., which approximates the exact
Yvon–Born–Green hierarchy.6,99 Both models determine the
electrostatic potential field inside the solute and could be com-
pared in fine detail. In ongoing work, we are assessing SLIC’s
capacity to predict the stabilities of cation-anion contact pairs
in solution and the impact of including SLIC in the polariz-
able continuum model (PCM).100,101 Compared to the existing
implicit-solvent models for mixtures, SLIC differs in four
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primary ways. First, numerous models have been proposed
for specific co-solvents, but to our knowledge only COSMO-
RS and RISM-based models have been demonstrated on the
large number of co-solvents as we have shown here. We have
also shown that our model reproduces experimental trends in
transfer free energies with high accuracy, that is, our model
captures dependencies on concentration, in addition to being
accurate at specific co-solvent concentrations. Third, SLIC has
already been shown to work very well for polyatomic solutes
with complex geometries; in contrast, many existing models
have focused only on spherical ions or spherical nanoparti-
cles. The exceptions here again are RISM-based models and
COSMO-RS. Fourth, SLIC represents a remarkably small
modification of traditional Poisson–Boltzmann based dielec-
tric models, and can be incorporated easily into the large num-
ber of finite-difference, finite-element, or boundary-element
solvers.27,49

The model’s simplicity comes with attendant limitations
and open questions, and the tests presented here cover only a
fraction of possible applications. Results on mixtures suggest
that accuracy tends to decrease at high co-solvent concen-
trations. These deviations were surprising given the model’s
accuracy for the neat co-solvents. Unfortunately, the neat co-
solvent solvation free energies were inconsistent with the
transfer free energies available to us, precluding their use as
data points at 100% concentration. We hope that future exper-
imental measurements or explicit-solvent simulations may
provide insights into these errors. Ongoing work aims to pre-
dict the solvation of polyatomic solutes in mixtures and to
investigate whether SLIC can predict molecular solvation ther-
modynamics in mixtures as it can in neat solvents. We have
also not yet tested the model on mixtures of polar and non-polar
solvents. There exist several implicit-solvent models for such
mixtures,54,55,102 and whether SLIC works for these solutions
is not known. Other current work extends our analysis here to
a SLIC variant that can model dissolved ions in the solvent
mixture using the linearized Poisson–Boltzmann equation.49

This requires an additional nonlinear interface condition at
the Stern (ion-exclusion) surface, and in mixtures the width
of this ion-exclusion region will presumably depend on the
co-solvent size and concentration. We have distinguished the
static potential field from the macroscopic notion of an inter-
face potential. Because it arises from mean solvent structure
around a solute, the field satisfies the Poisson equation; how-
ever, steric considerations mean that the static potential near
the boundary is not actually uniform in a thin region at the sur-
face of the solute (the first layer of solute atoms).26,46 Future
work will investigate whether biological systems exploit this
non-uniformity for molecular function, which may necessi-
tate the development of a more sophisticated static potential
model than the present assumption of a uniform field. Future
work will also investigate whether the functional form of the
solvation-layer correction may be better fit to an error function
than the present hyperbolic tangent.103 One additional open
question is whether SLIC can be applied to understand protein
behavior in mixtures of water and osmolytes or denaturants.

Our development of SLIC originally only focused on
solutes in water and arose from a question that included
theoretical, philosophical, and practical considerations: What

would an accurate implicit solvent model look like if one did
not specifically parameterize atom radii but simply used the
values employed in MD? That is, if one insisted on using
atom radii that were not parameterized individually, would
it even be possible to modify the standard dielectric contin-
uum model in such a way as to obtain accurate charging free
energies? It has been claimed that atom radii must of necessity
be parameterized based on the atom type and given charge,
and it is certainly true that the accuracy of standard dielec-
tric models can be extremely high in specific geometries when
using radii that have been parameterized individually. As we
have discussed, our view is to ask how well one can repro-
duce the electrostatic contribution to the formally exact PMF
obtained by integrating out all solvent degrees of freedom.
Given that an accurate model should reproduce an entire charg-
ing free energy curve, not only the final charging free energy,
we investigated the properties of standard dielectric models
in reproducing these charging free energy profiles and found
them poor. This finding was, of course, in total agreement with
the common wisdom that radii should be charge dependent.
Even more importantly, however, we found that the charging
free energies for individual charges were nearly quadratic—
implying that linear response does hold, but with a small
but crucial change in curvature depending on whether the
charge increases from zero and becomes positive, or whether
it decreases from zero and becomes negative.24 The standard
dielectric continuum model, with its much larger number of
parameters, achieves high accuracy in important cases that rep-
resent a deceptively incomplete assessment of the free energy
landscape as a function of charge (that is, the final, total charg-
ing free energy). The standard dielectric model errs further in
that its omission of the static potential means that there are
small deviations from linear response at low charging den-
sities; for a clear example, see the widely used, and highly
accurate, continuum radii optimized by Roux et al.41 These
deviations are not dielectric saturation in the traditional macro-
scopic sense of high-electric-field maximal polarization, but
work done to overcome the “structuring force” induced by
water structure around the fully uncharged solute (see, for
example, Ref. 46). Traditional dielectric models err by sub-
suming the static potential contribution (which is linear in
the solute charge) into the reaction potential response. Further
study is warranted, but we estimate that detailed parameteriza-
tion of atomic radii should correct for this, for small molecules.
For large molecules, the effects are more subtle, depending on
the size of the molecule and the relative distribution of charged
groups to the surface or the interior.

To illustrate the importance of treating the two effects
(steric asymmetry and the static potential) separately, we have
recently computed the charging free energies (and profiles)
of individual atoms in small molecules.49 The static poten-
tial derived from MD simulations in TIP3P water is positive,
meaning that for small positive charges, the charging free
energy is actually positive (unfavorable). Traditional dielec-
tric models are completely unable to reproduce such positive
charging free energies, regardless of atomic charge or radius.
However, our model reproduces these energies with quanti-
tative accuracy, and we note that these represent unfavorable
electrostatic contributions to solvation by hydrophobic groups.
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Traditional implicit-solvent models predicate that hydropho-
bic groups contribute nothing; for instance, nonpolar solvation
models are often parameterized under the assumption that
alkanes have electrostatic solvation free energies equal to zero.
We have found this to be not accurate. Furthermore, because
our model has few parameters that do not involve the atom
radii, we have been able to parameterize a complete and
consistent implicit-solvent model—that is, parameterizing
both the electrostatic and nonpolar terms simultaneously,
such that our nonpolar model does not need to also correct
for the charging free energy of hydrophobic compounds.49

We found that the complete SLIC implicit-solvent model is
remarkably accurate, comparable to explicit solvent simula-
tions for solvation free energies and water-octanol transfer free
energies.

Speaking more generally, we were motivated theoreti-
cally by curiosity about why an implicit-solvent model should
need to use different atom radii depending on the sign of its
charge. For a monoatomic ion of a given chemical radius, its
reaction potential can always be written in terms of an appro-
priate surface charge on a sphere of that radius, but the surface
charge density might depend on the sign (and magnitude) of
the charge. Philosophically, it seemed reasonable to consider
that the solute atom did not change physically when embedded
in a solvent of different composition or temperature, so the use
of a state-dependent radius seemed like a way to correct deeper
problems with the dielectric theory. Practically, our develop-
ment of SLIC arose from a simple motivation: the desire to
avoid the need for extensive parameterization of radii with
every new solvent theory. A number of more proper justifica-
tions may be offered as well. First, there is an increasing inter-
est from environmental and biotechnological research in the
prediction of protein function at different temperatures. Sec-
ond, both basic and applied biosciences research focuses on the
effects of changing solution conditions such as the addition of
co-solvents, or partition coefficients for transfer free energies
between neat solvents.104,105 Third, the costs and complexity
of continuum-model parameterization and validation seem to
be limiting the community’s ability to use continuum mod-
els to address the massive chemical diversity associated with
post-translational modifications of proteins. Fourth, there exist
already a wide range of continuum solvers based on the PB the-
ory, including large-scale parallel codes,106,107 codes coupled
to MD,108 and many in quantum chemistry.100 The model’s
successes in this work and other recent studies motivate adapt-
ing some of these software packages for more challenging tests
of the SLIC model.

SUPPLEMENTARY MATERIAL

The MATLAB source code for the solvation thermody-
namics calculations can be accessed at: https://bitbucket.org/
bardhanlab/slic solvation thermodynamics. The MATLAB
source code for the solvent mixture calculations can be
accessed at https://bitbucket.org/bardhanlab/si-slic-mixtures.
Supplementary material for the thermodynamics calcula-
tions includes solvent details, SLIC parameters at T = 25 ◦C
and their derivatives with respect to temperature, the full
set of plots for solvation free energies, entropies, and heat

capacities in all neat polar solvents, and the associated RMS
errors. Supplementary material for the mixture calculations
include (1) plots of all transfer free energy profiles for Born
ions in all 9 co-solvent mixtures, compared to experiment
and the classical Born model, under three types of param-
eterized SLIC models: quadratic concentration-dependence
(discussed in this paper), a model with linear concentration-
dependence (fewer fitting parameters), and a model with
quadratic concentration-dependence where missing experi-
mental data has been supplanted with interpolated results from
polynomial fits to experiment; (2) validation of the co-solvent
model’s consistency by calculation of solvation free energies
in neat water (i.e., at 0% co-solvent); (3) RMS errors for the
cations and anions in different co-solvent mixtures, for the
three types of parameterized SLIC models; (4) concentration-
dependent Born radii required to fit experimental ion solvation
free energies in water-ethanol mixtures.
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