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Abstract—\We investigate central issues such as invertibility, sta- More precisely, we will construct adaptive wavelet transforms
bility, synchronization, and frequency characteristics for nonlinear  that result in fewer large wavelet coefficients. Such nonlinear

wavelet transforms built using the lifting framework. The nonlin- —yayelet transforms provide added flexibility for image repre-
earity comes from adaptively choosing between a class of linear

predictors within the lifting framework. We also describe how ear- sentatllons. )
lier families of nonlinear filter banks can be extended through the ~ Until recently, the wavelet transforms used for image com-
use of prediction functions operating on a causal neighborhood of pression were constructed with linear filter banks. Construction
pixels. Preliminary compression results for model and real-world  of nonlinear filter banks was proposed in [6], [7]. The experi-
images demonstrate the promise of our techniques. ments with a nonlinear filter bank for image coding presented
Index Terms—Adaptive signal processing, image coding, wavelet jn [8]are promising. The key open question in the use of these
transforms. nonlinear constructions is one of design: what is the most effec-
tive way to utilize the additional degrees of freedom obtained
|. INTRODUCTION from relaxing the constraint of linearity?

. . . We examine issues such as invertibility, stability, artifacts,
N H|IS CtLASf/:C t;eatse;n t?ﬁ vyorkmtgs of thfe human viz 4 frequency-domain characteristics (to the extent to which
sualsystem, Viarriocused on the Importance o El]meesen-_ these are well-defined) in the construction of nonlinear wavelet

tat|p n(_)f mformfemo_n for various Cogf"“"e tasks [1]' The way i ransforms. Our analysis builds on the new perspective provided
which information is represented brings out certain types of feI%

o . R v the lifting framework [9], [10] for the wavelet transform. The
tures while hiding others. Image compression applications alg

: . e : : ing framework allows us to incorporate nonlinearities while
rely heavily on hav!ng an efﬂueny represen_tauon of \mage da[[%taining control over the properties of the wavelet transform.
Idealtl)y Wi would I'tke t.othapproxwln?tte anflmage W'_;h a Smﬁ he nonlinearity comes from adaptively choosing from a set
numpber of parameters, e wavelet transtorm provides sUeh §near predictors. We also show how the family of nonlinear
efficient representation [2].

T f di “<ts of th ts: _bf'lter banks of [6], [7] can be extended through the use of pre-
ranstorm coding consists ot thrée components: a revers'ég‘;?cﬁon functions operating on a causal neighborhood.

linear transform to map the image into a set of transform coeffi Our paper is organized as follows. In Section II, we review
f:'emS; no.nre.v.er5|ble quantizers; and an encoder [.3 ].’ [4]. Tyﬁfe wavelet transform and the lifting construction, and show
ically, a significant number of the transform coefficients arg

. w to introduce adaptivity into the transform. In Section lll,
small, and can '_[herefore k_)e coarsely qu_ant_|zed or comple_t discuss issues surrounding adaptivity, and in Section IV we
d|scarded., W'Fh litle d|stort|qn. Compressionis achieved .dl.mrg(opose an edge-avoiding adaptive transform. In Section V, we
the quantlzgtmn and encodlng_ of the transformed coefficien emonstrate this transform via compression of artificial and
and not during the transformation step.

) . i . real-world images. We conclude in Section VI and propose
In this paper we focus on improving the properties of th 9 prop

. . eas for future research.
transform rather than the encoder, expanding on our work in [a.
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Fig. 1. Filter bank implementation of the wavelet transforth.and G are 7Sp t M*ﬁ*) d[n]

the analysis low-pass/high-pass pajr] andd[n] are the scaling and wavelet

coefficients, respectively. Fig. 3. Typical lifting steps: Split, Predict, and Update.

_— each odd polyphase coefficient from the nearby even polyphase
dnl- =12 > G(z) coefficients.
Predict: In the interpolating formulation of lifting, were-
"ict the odd polyphase coefficients [r] from the neighboring

onl-—» T2 H(z) ’(P'Q[”] ically local, and thus we should be able to accurately predict

Fig. 2. Filter bank implementation of the inverse wavelet transfor
With appropriate choices off and G, the transform will yield a perfectly

reconstructed output sequence. even coefficients:.[n]. The predictor for each,[n] is a linear
combination of neighboring even coefficients
typically iterated on the output of the low-pass banp:]) to
) . L . P(x = ]. 1
create the series of detail coefficients at different scales. (we)ln] Zl:p vae[n+1] (1)

The wavelet representation is efficient because images are
often well modeled as a set of locally smooth regions separaldié obtain a new representation of thi] by replacingz, [n]
by edges. Within these smooth regions, fine-scale wavelet coeith the prediction residual. This leads to the first lifting step
ficients are small, and coefficients decay rapidly from coarse
to fine scales. In the neighborhood of edges wavelet coeffi- d[n] = w[n] = P(z¢)[n]. @)

cients decay much more slowly, but because of the local sypgne \nderlying signal is locally smooth, the prediction resid-
port relatively few wavelet coefficients are affected by edgegys 1,,] will be small. Furthermore, the new representation
However, these large wavelet coefficients near edges are ¥iaing the same information as the original sigral: given

pensive to code. Many image coders are designed to Operate oven polyphase. [1] and the prediction residualn], we
on wavelet transformed data, and much current researché

cuses on enabling these coders to exploit the structure presen%ﬂ recover the odd polyphase coefficienii] by noting that

wavelet coefficients along edges. Current successful coders per- z,[n] = d[n] + P(z.)[n]. ()

form some form of conditioning [11], variance prediction [12],

or context-based entropy coding [13]. This prediction procedure is equivalent to applying a
high-pass filter toxz[n]. The prediction filter is typically de-

B. Lifting Scheme signed to exactly predict local polynomials up to and including

Lifting [9], [10] was originally developed to adjust waveletdegreeN — 1. In wavelet terminology, the underlying synthesis

transforms to complex geometries and irregular sampliﬁga”ng function corresponding to this prediction filter can
r

leading to so-calledecond generation waveletscan also be prodL!ce polynomials of degree up 16 — 1, and the dual
I%\Haly&s) wavelet ha® zero moments.

seen as an alternate implementation of classical, first general U date: The third lift ¢ h Voh
wavelet transforms [9], [14]. The main feature of lifting is P gte. et_lr ffting step tra_ns orms the even polyphase
efficientsz.[n] into a low-pass filtered and subsampled ver-

that it provides an entirely spatial-domain interpretation of tHe> . X . . .
P y SP P n ofz[n]. We obtain this coarse approximation bgdating

transform, as opposed to the more traditional frequency—dom§| i binati fth dicti i
based constructions. The local spatial interpretation enabfé n] with a linear combination ot the prediction res udls].
e replacer.[n] with

us to adapt the transform not only to the underlying geometty
but also to the data, thereby introducing nonlinearities while c[n] = wo[n] + U(d)[n], 4)
retaining control of the transform’s multi-scale properties. '

A typical lifting stage is comprised of three steps: Split, PravhereU (d) is a linear combination of neighborinbvalues
dict, and Update (as shown in Fig. B):

Split: Let z[n] be a signal. We firssplit z[n] into its even U(d)[n] = Zm dln +1]. )
and odd polyphase componentgn] andz,[n], wherez.[n] = !
a[2n] and,[n] = z[2n + 1]. In this paper we work only with  E4chy Jifting step is always invertible; no information is lost.
the even and odd polyphase components/of, butin principle  assuming the samé and U are chosen for the analysis and
any partition ofz[n] into nonoverlapping sets is possible [10]synthesis stages, the lifting construction guarantees perfect re-

If the z[n] correspond to the samples of an underlying smootliynstruction for any’ andU. Givend|n] andc[n], we have
slowly varying function, then the even and odd polyphase com-

ponents are highly correlated. This correlation structure is typ- ze[n] = ¢[n] — U(d)[n] (6)

1In Fig. 3, the outputs of the lifting stage are weightedihyandk, . These andz, [n] from (3)

values serve to normalize the energy of the underlying scaling and wavelet func- . e . . .
tions, respectively. Thus, this normalization could be considered a fourth lifting 1€ iNverse lifting stage is shown in Fig. 4. Note thatnd

step. d are at half rate, and thus this transform corresponds to a criti-
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Fig. 4. Typical inverse lifting steps: undo the update, undo the predict, and ‘ ! ! 1'_pn ‘Ql

merge.

. . Fig. 5. Said and Pearlman (S+P) transform [16].
cally sampled perfect reconstruction filter bank. One can show

that the update function determines the properties of the dual ) )
wavelet and primal scaling function. In particular, if the updat@s shown at the bottom of Fig. 5, the S+P transform includes

filter is one-half the adjoint of the predict filter, then the primafn @dditional prediction operatd, which is outside the rungs
(synthesis) wavelet ha¥ zero moments as well [9]. of the “ladder.” This is an optional filter, and must be causal
to ensure that the inverse transform can be implemented with
identical filters to the forward transform.

In [17], it was shown that the S+P transform can be seen as

A simple example of lifting is the construction of the Deslaua three-step nonlinear lifted transform. The S transform is con-
riers-Dubuc family of wavelets [9] from a single Deslauriersstructed as a one point predict followed by a one point update.
Dubuc [15] prediction step followed by a single update step. Fghe P transform is an additional prediction step, combined with
example, the following prediction and update steps comprisgt causaP, filter. The nonlinearity comes from the quantizers
single stage of the (4,4) Deslauriers-Dubuc wavelet transforiyhich are needed to ensure an integer-to-integer transform. Due

to the nature of the lifting implementation (and the causality of

(—ze[n—1]+92.[n] + 9z [n+1] -z [n+2]) P, perfegt reconstrugtion is .gu.arantee.‘d despite the presence
of the nonlinear quantizers. It is interesting to note that the op-

C. Examples

d[n]=z,[n]—

16 ’
@ timized coefficients of thé” transform proposed in [16] satisfy
(=d[n — 2]4+9d[n — 1]+9d[n] —d[n+1]) some of the linear lifting constraints discussed in Section II-B.
c[n] =z [n]+ % . (8)

D. Introducing Adaptivity Into the Wavelet Transform

The pr.edict stgp cancels' cubic polynomials and leaves the\NaveIet bases typically employed for image compression
residual in the high-pass signdln]. The update step results q,ch as the Daubechies (9,7) system [2]) utilize smooth scaling
in a low-pass and subsampled version:gi] being placed in 54 \vavelet functions. Such bases can be easily constructed
c[n]. It should be emphasized that lifting is a general construgz, the predict-then-update form of lifting described above.
tion {and not I|m|_ted to the Deslauriers-Dubuc family. Using thEarger predictors (predictors that can exactly predict polyno-
Euclidean algorithm, we can decompose any FIR wavelet Uransiis of higher degree) correspond to smoother basis functions;

form into a sequence of prediction and update steps [14]. Thy§ase |ifting predictors work well when the underlying signal is

the lifting implementation shown in Fig. 3, with possibly mul,5h (just as the Daubechies (9,7) system works best when

tiple stages, is equivalent to the filter bank implementation of tifﬁe signal is smooth).

wavelet transform shown in Fig. 1. Unfortunately at this point However, most images consist of regions of smoothness and
we do not have a spatial interpretation for general transforg re separated by discontinuities (edges). These disconti-
factored into lifting steps; consequently we currently do n@f,ities cannot be well-represented by smooth basis functions.
know how to make adaptive versions of general wavelet trangince smooth basis functions correspond to lifting predictors
forms. _ . . with wide support, these predictors work poorly near edges,
~ A second example of a nonlinear lifting construction is thgnen the discontinuity is within the data we are using for the

integer-to-integer S+P transform of Said and Pearlman u@rediction.

shown in Fig. 5. The outputs[n] andc[n] of the S algorithm 5, 4oal is tantroduce a mechanism that allows us to choose

are computed as the prediction operator based on the local properties of the
image This makes thé” operator data-dependent and thus non-
hn] =z,[n] — .[n] 9) Imear._However, I_|ft|ng guarantee§ that t_he transform remains
hin] reversible. In regions where the image is locally smooth, we
c[n] =z [n] + Q (T) (20) use higher order predictors. Near edges we reduce the order and

thus the length of the predictor. This avoids making a predic-
where( is a round-off operator to ensure the transform is ifion based on data which is separated from the point of interest

teger-to-integer. The P transform creates the detalil coefficieméa Qiscontinuity. Ideally we WC_JUId IiI§e t_o. use predictors that
d[n] as take into account the fact that discontinuities in images tend to

occur along continuous curves. Such an adaptation would allow
us to exploit the additional spatial structure that we know exists
d[n] = hin] — Q (P(c[n]) + Py(h[n])). (11) in edges.
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Ill. FILTER DESIGN Predict First Update First
Adapting the predictor makes our transform nonlinear. COF"] 99,['?]
However, the concept of basis functions relies fundamentally - - a “a
on linear superposition. Consequently, the notion of a single XeInl Xoln] Xe[N] Xoln]
basis function no longer makes sense for nonlinear transform: “ = I
We thus focus on the spatial properties of the transform whel RN S
H H H v - v Y x5 v
designing our predictors. AT A eyl P = d, [
i ; ; » a s A
A. Multi-Resolution Properties xeln] x,n] x,[ni x ]
When the prediction and update operators are constructed v _ ya
the polynomial lifting constraints, the output of the update steg -P_;_ Ul
is a coarse approximation (low-pass and downsampled) versic v Ta Y v v
of our image. We need this coherent interpretation of the updat C2M< U d,[nl Cplnl —-Pi—>d,[n]

coefficients, since they will be input to further iterations of the

transform. After the firstiteration, all Subsequent predictions afi®. 6. Two-iteration lifted wavelet transform trees with predict-first (left) and

based on updated coefficients. If we are to make effective pgéJi_date-flrst (right). When predicting first, the prediction must be performed

o - or to construction of the coarse coefficients and iteration to the next scale.
diction throughout the transform, we need some kind of Stru@ten updating first, the prediction operator is outside the loop. The coarse
ture in the update. However, if the prediction is performed wit¢pefficients can be iterated to the lowest scale, quantized, and reconstructed
a nonlinear operator, it may not be possible to construct an LP[SIPr to the predictions.

date operator that satisfies the polynomial lifting constraints and k

XelN
provides a low-pass interpretation of the updated coefficients. ot | eln] »? T 2 >c[n]
Consider again the example (8). While it is easy to see that X oven u P
the prediction filterP leads to a high-pass filter, it is not im- spit x ] K )é_) K\°—>d[n]
mediately clear that the updateleads to a low-pass filter. The o -
reason is that the lifting structure mandates that the high-pass Fig. 7. Update-first lifting sequence.

coefficientsd must be reused in the computationepfind thus

cdepends both off and onlU. By carefully adjusting the update seject a predictor without obtainirig [»]. If we are to employ

U to the prediction”, we can ensure thatis a low-pass-filtered 5 nonlinear lifting procedure for lossy coding, it is essential
and subsampled version of the original signal. In the examplgat we avoid this Catch 22.

U(d) had to be chosen &d[n — 2] + 9d[n — 1] 4+ 9d[n] + d[n +

1])/32. While we know how to adjudt/ for a spatially varying, C. Solution: Update First

but I|_nearP [10], itis not immediately clear. hoyv to constructa e propose a simple modification that solves the stability and
nonllnga_rU that Preserves frequency Iocallzatlion (tothe extegf/nchronization problems: reverse the order of the predict and
that this is well-defined) when we have a nonlinéar update lifting steps in the wavelet transform (see Fig. 7). We
first update the even samples based on the odd samples yielding
the low-pass coefficienign]. We then reuse these low-pass co-
We also need to ensure that the transform is stable. Losfficients to predict the odd samples, which gives the high-pass
coding schemes introduce errors into the transform coefficientsefficientsd[n]. We use a linear update filter and let only the
soitis crucial that the nonlinearities do not unduly amplify thesghoice of predictor depend on the data.
errors. Our goal is to use a high-order predictor in smooth re-Because we update first and the transform is only iterated
gions and a low-order predictor near edges. In order to avaid the low pass coefficientgn], all ¢[n] throughout the entire
sending side information on which predictor was chosen, vpgramid linearly depend on the data and are not affected by the
need to base the choice only on thgn]. However, in lossy nonlinear predictor. This is shown in Fig. 6. The tree on the left
compression the decoder only has the quantized even coeffiows the predict first pyramid. Clearly, itis impossible to create
cientsz.[n] rather than the original coefficients[n]. If we use the coarse coefficients without first using the prediction operator
locally adapted filters, then quantization errors in coarse scatesreate the detail coefficients. However, in the update-first tree
could cascade across scale and cause a series of incorrect filtethe right, the prediction operators are not in the loop. Thus
choices leading to serious reconstruction errors. the prediction is only based on low-pass coefficients that are
In the predict-then-update case, the problem of stabiligpmputed as in the classical wavelet transform. Furthermore, if
cannot be solved by synchronization alone, i.e., having the perform the transformackward i.e., starting the prediction
encoder make its choice of predictor based on quantized datencess at the lowest frequency (coarsest) subband and working
The reason is that the reconstructed valiiga] are obtained from coarse to fine scales, we can keep the encoder and decoder
from quantized low-pass valuég]. The low-pass signalln] perfectly synchronized. The predictor operates on raw data, but
is a function of the prediction residual signdl:], which in thechoice of predictois based on quantized data. This ensures
turn depends on what filters are chosen for prediction, as shotkat the encoder and decoder are choosing predictors based on
on the left in Fig. 6. Hence the encoder cannot obtain tlilee same data, and eliminates propagation of error due to incor-
quantized values.[n] until it selects a predictor, and it cannotrect decisions at the decoder. Moreover the low-pass branches of

B. Stability and Synchronization
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from synthesis wavelets, these nonsmooth building blocks lead
X OX0X0XO0XOXOXO to highly visible artifacts in the reconstructed image when the
AN coefficients are quantized.
' It is possible to boost the smoothness of the new building
XOXOXOXOX0OX0X0 blocks by increasing the size of the filters (and adding more
- — B vanishing moments to the underlying scaling and wavelet func-
Fig.8. Predictor selection at an ideal step edge. Numbers indicate the ord_(izgps)'_However’ dl'_le_to the blortho_gonal StrlflCture ofthe Updat_e_
the predictors used. The closer to the edge, the lower the order of the predidiégt, Single-stage lifting construction, the size of the synthesis
filter H(z) will always be larger that of the analysis filté&f(z).

our entire multi-resolution scheme now are linear. Consequeang}E observe that this leads to excessive ripple in the new building
we still have the notion of a dual (analysis) scaling function. PIoCks, whichiin turn causes ringing in our reconstructed image.
Our update-then-predict lifting scheme is related to the Lapla-/Nstéad we propose a solution based on Donoho's average-in-
cian pyramid of Burt and Adelson [18], in which images argerp0|at!0n that fits into the update-predict form of lifting [go],
represented as a series of prediction residuals, and the preffdl- This leads to the (IV) branch of the Cohen-Daubechies-
tors are not constrained to being linear. The Laplacian pyranfi§2uveau family which is biorthogonal to the box function [22].
has the disadvantage that it expands the number of coefficiehtdS family of wavelets can all be implemented with an up-
in the image being transformed by a factor of 4/3. Lifting, ofjate-first archlf[e_cture. Let_us consider a S|mple examp_le. The
the other hand, guarantees a critically sampled decompositid@W-Pass coefficients are first computed using a Haar filter (a
Our implementation is also similar to the framework deveRN€-Point update filter)

oped independently by Gerek and Cetin in [19]. However, by (z[2n] + z[2n + 1])
constructing our transform via the lifting framework, we are cln] = 5 : (12)
able to incorporate adaptivity while retaining control over the
underlying properties of the transform. The high-pass coefficients are the residuals of a prediction of the
odd samples based on thg]. The first-order Haar prediction
IV. ADAPTIVE WAVELET TRANSFORM (leading to the (1,1) wavelet) is
We now have a framework for introducing adaptivity into the d[n] = z[2n + 1] — ¢[n), (13)

wavelet transform. We will create and quantize all the coarse
coefficients to the lowest scale (update first), and then adapihile the third-order predictor, i.e., one that is exact for qua-
the prediction operataP to these coefficients. The question redratics and leads to the (1,3) wavelet, is given by
mains on how to determine the appropriéte [ 1
cin —

8

dfn] = a[2n +1] (— + o] + @) . (14)

A. Edge-Avoiding Prediction
As stated in Section II-D, our goal is to choose the predictigoredictors of higher order can be built in a straightforward
operator based on the local properties of the image. For e3ghy. The smoothness of the resulting scaling functions
prediction window, we analyze the data to determine if it is wejhcreases with the order. A lower bound for the Holder reg-
approximated by a low order polynomial. If it is, then we use @arity R(N) as a function ofN is given by R(3) = 0.678,
high-order predictor with wide support, which corresponds tog(5) = 1.272, R(7) = 1.826, R(9) = 2.354, and asymp-
smooth basis function. If the data does not meet oursmoothnﬁﬁ&a”y R(N) ~ 0.2075N [20]. The scaling and wavelet

~

criteria, we determine which pixels in the prediction windowynctions for the (1,7) set are shown in Fig. 9. These func-
contribute to the failure. We classify these pixels as “edge” @bns correspond to an update-first architecture; in this case
discontinuity coefficients. Near these edges we reduce the orgebne_pomt update followed by a seven-point prediction.
of the predictor so that the neighborhood we use for predictigf numerical experiments this filter set yields compression
never overlaps the edge. In this manner we maintain high acgérformance approaching that of the Daubechies (9,7) filter set
racy away from edges, and avoid large errors in the presenceigit is more commonly used in image coding applications.
edges. Fig. 8 illustrates the process of selecting these predictorshis nonlinear lifting framework generalizes the ideas of de
near an ideal step edge. Quierozet al. [8] and makes clear the relationship between
the nonlinear filter banks described by these authors and the
wavelet transform. The filter bank described in [8] generates
The question remains on how to find the and U filters the high-pass subbands using a nonseparable median filter, and
even in the linear case. One choice is the sdmand U fil- the low-pass subbands via down-sampling. This filter bank per-
ters from the Deslauriers-Dubuc family, except uddor the forms particularly well for test images containing sharp edges,
update, followed by for the prediction (with appropriate nor-such as theameramarimage and text; it minimizes problems
malization). Swapping andU in this fashion reverses the roleswith ringing around the edges. However, the transform suffers
of the analysis and synthesis functions. However, this is praipem speckling artifacts due to aliasing of high frequency noise
lematic for coding applications, because the analysis wavel&i® the low-pass subbands. Our use of an anti-aliasing func-
in the Deslauriers-Dubuc family are much less smooth than ttien via lifting has the potential to eliminate this speckling while
synthesis wavelets [2]. Since reconstructed images are builtmpintaining high quality reconstruction around edges.

B. Choice of Prediction Filters
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Analysis Scaling Function Synthesis Scaling Function Note that it is possible to use quantized data, not only for
determining the prediction filter, but for the actual prediction
as well. The lifting construction provides perfect reconstruction
despite the presence of this nonlinear (quantization) prediction
operator. The decoder and encoder will be synchronized not just
——— in the choiceof prediction filter, but also in theutputof the
prediction filter. However, the quality of this output (accuracy
Analysis Wavelet Function Synthesis Wavelet Function of the prediction) will be highly dependent on the level of quan-
tization. Even for moderately quantized data, our research has
[—’ shown that prediction errors will tend to be large, regardless of
| prediction filter. Thus, feeding quantized data into the predic-
I — i tion operator decreases the energy compaction properties of the
] ’ wavelet transform and reduces the compression potential of our
adaptive algorithm.

Finally, many modern image compression algorithms exploit
Fig. 9. Scaling and wavelet functions for the order (1,7the multiscale properties of the wavelet transform to provide
Cohgn-Daubechies-Feauveau filter_ used in our experiments. These basi§hedded quantization. Our proposed scheme requires that
functions correspond to the update first form of lifting. L ..

the encoder and decoder agree on a minimum quantization
level needed to make predictions decisions. Quantizing to

The idea of adaptively choosing from the {I),family of fil-  a level below this minimum will lead to incorrect predictor
ters is similar to the work done independently by Boulgourishoices and serious reconstruction error. However, using data
et al.[23], who use the ¥/, 2) family (predict first) to provide quantized more accurately than the minimum level is still
additional vanishing moments in the synthesis wavelet functipossible, since the encoder and decoder can always recreate
for improvedlosslessmage compression. However, our updatéthe more coarsely quantized data required for the prediction
first architecture provides for encoder/decoder synchronizatidacisions. Thus, embedded transmission is possible beyond the
(see Section IV-C, below) despite our applicatiotogsycom- minimum quantization level required for the encoder/decoder
pression. synchronization.

C. Synchronization D. 2-D Prediction Windows

As we stressed in Section I1I-C, maintaining synchronization Since all the quantized coarse coefficients are available to
between the adaptations of the encoder and the decoder is es3@Hl the encoder and decoder, we can utilize the data above and
tial for a stable inversion. Encodingidevel transform proceeds Pelow the point of interest to determine our choice of predic-
as follows: we first compute the coarsest scale coefficients of tfS- Thatis, our edge-detection algorithm can analyze the data
transforme? [n] by iterating the linear update procedyrémes. N thls nonseparabl_e 2-D prediction WIndOW tp determine the lo-
We quantize? [n] to @[] and transmit them. Then we computéat'on and orientation of the edge. Edges in images are actually

the high-pass coefficient§n] as contours; they have significant geometric structure. By using a
nonseparable 2-D window, we can exploit this edge structure to
d[n] = cj—1[2n +1] - P (cj)[n] (15) make smarter prediction decisions within the framework of our

separable transform.

: ~ . . If we sense (by our outlier method described earlier) that
quantize them td[n] and transmit them. Although the predlctoran edge is present within our prediction window, we analyze

%pt?;ztae(jsg:ttr:]: un;rzjt?rg('jzgg;]’ th;g?hogfggéfgﬁoéﬁgaerthe data in the 2-D window around the point of interest to
! quantiz ). refine our estimate of the edge. We assume a step edge is

now need the quantized values of the.next finer seaté; the resent, project the data onto a truncated Fourier basis, and
even and odd components are respectively computed by undai

L ' qualify our projection against our edge model. This process
:/r;elu;;rsegl[jf]lon and update step, but now based omtiagtized is a modified version of the algorithm presented in [24]. If

the data passes our edge criteria, the intensity and angle of
the edge are determined. This information is then used to

/C\i:_l[n] :?'_1[2” +1] :.dj [l + P (@)lnl, refine our choice of prediction filter.
Fln] =¢i72n] = 2¢7[n] — €7 2n + 1]. (16) Itis also possible to use not only the low-pass coefficients for

prediction ofz,[n], but also other odd coefficients in a causal
We now can compute the high-pass coefficients on the next fimeighborhood ofx,[n]. Suppose our signat[n] is a row in
level. By basing our choice of predictor at each stage on the image. We would prediet,[n] from low-pass coefficients
quantized valueg, we maintain synchronization between ene[n] on its left and right. Further suppose we have discovered
coder and decoder, and prevent propagation of quantization&rvertical step edge near,[n]. The precise location of the
rors due to incorrect prediction filter choices. The encoder aedge cannot be determined from the low-pass coefficignts
decoder only need to agree on the level of quantization requitddwever, if we know the value of the coefficients from the
for these choices. row directly abovez,[n], we can use this information in the
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Original Image Compressed with Daubechies (9,7)

Compressed with Linear (1,7) Lift Compressed with Adaptive Lift

Fig. 10. Edge dominated image with texture, compressed to 0.67 BPP (12:1 compression). Note the ringing around the edges of the square in the Daubechie
(9,7) and linear (1,7) lift images that is eliminated by the adaptive lift.

prediction of z,[n]|. This predict-from-above idea is similarhood for making predictions in the encoder as well as in the
to the causalP, filter of the S+P algorithm [16] discusseddecoder. Note that this strategy will only work in the horizontal
in Section 1I-C. direction, since the vertical transform must be completed
Unfortunately, the predict-from-above scheme typicallipefore the horizontal transform can be computed. Also, the
results in decreased stability. Consider the example abayaality of this prediction-from-above will be highly dependent
in which we resolve difficulties in predicting the locationon the level of quantization. Even for moderately quantized
of a vertical edge in a row of coefficients by using alreadglata, the prediction errors tend to be large, again decreasing
inverted coefficients in the row above. Such a scheme perntit&e energy compaction and compression potential. Thus, using
a guantization error in one row to propagate along a vertidile quantized data in this 2-D window to perform the actual
edge to all other rows. We can prevent such propagation psediction was found to decrease performance, and is therefore
employing a Differential Pulse Code Modulation (DPCM)-likenot included in our adaptive lifted algorithm. However, the
strategy [25] of usingjuantizeddata from the causal neighbor-nonseparable 2-D prediction window leads to a better choice of
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@) (b)

Fig. 11. Close-up of edge dominated image with texture, compressed to 0.67 bits-per-pixel (BPP) (12:1 compression). Note the sharp edgesrangihgduced
with the adaptive algorithm. (a) Compressed with Daubechies (9,7). (b) Compressed with adaptive lift.

prediction filters (and better compression), and is an important 42
part of our transform. a0
38 X
V. RESULTS g% /0
£34 Xyt
A. Synthetic Data Se % e
Fig. 10 shows the result of our adaptive lifting algorithm ap- 50 ;,/f

plied to an edge-dominated test image. This image was con- 28 A o

structed by superimposing texture on shapes of different mag- 2p

nitudes and orientations. The original image was transformed uk? o

and compressed to 0.67 bits-per-pixel (BPP) (12:1 compression) o °f gt 0008

using an embedded zero-tree encoder [26]. For simplicity, we

compress the zero-tree symbol stream with a Huffman codg#: 12. Peak signal-to-noise ratio (PSNR) curves for the edge-dominated
testimage of Fig. 10. This testimage was designed to demonstrate the potential

and we make no effort to compress _the quantization bit Streagﬂgins of the adaptive lift. The adaptive algorithm (solid line) outperforms the
We compare our performance against that of the Daubechiesbechies (9,7) transform (dash-dot) and the (1,7) linear lift (dash). The

(9,7) wavelet because it is very popular in image Compressidﬁfx’der and decoder were synchronized for the adaptive algorithm.
We also compare against the linear (1,7) lift; it is the smoothest
member of the fam"y of wavelets that we use in our adapti\(ﬁherea;i is the.l'th pixel of our 0rigina| image’r\i is theith pixel

lifting algorithm. of our reconstructed image, afd is the total number of pixels.

We notice that the Daubechies (9,7) and linear (1,7) lifthe PSNR curve (Fig. 12) demonstrates that, for this edge-dom-
transformed images suffer from blurring and ringing aroungated test image, the adaptive algorithm has better PSNR per-
the edges. However, the image transformed with our adapti¢gmance than both the Daubechies (9,7) and linear (1,7) lift
lifted algorithm has much sharper edges. Ringing is reducqghnsforms. The Daubechies (9,7) PSNR curve is shown for ref-

edge sharpness is maintained, and the background texture isdi@hce only; our goal is to improve the performance of the linear
significantly corrupted. These improvements are very visiblg 7) it though adaptivity.

in the closeup shown in Fig. 11. The reason for these improve-
ments is that edges in our new transform are represented i ag
. ) . Real Data

more compact fashion, and as a result there is less degradation
of the image when we zero out small, nonzero coefficients. In Fig. 13, we see the result of our adaptive lifting algorithm

As a performance metric, we compute the peak signal to noige the imageameramancompressed to 0.25 BPP (32:1 com-
ratio (PSNR), pression). Our prediction decisions are based on data quantized
to 7 iterations of the zero-tree encoder to ensure decoder/en-
coder synchronization. While ringing has been reduced in the
horizontal and vertical edges, there are still some ringing arti-

w facts in the diagonal direction. The reason for these remaining

max(x;)

PSNR = 201log
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Fig. 13. Cameraman image compressed to 0.25 BPP (32:1 compression). (a) Cameraman image. (b) Compressed with Daubechies (9,7). (¢) Compressed with
linear (1,7) lift. (d) Compressed with adaptive lift.

artifacts is that we are using a separable transform in which we VI. CONCLUSIONS

seek to avoid horizontal and vertical edges. Lifting provides insight into the construction of the wavelet
Note in Fig. 14 the PSNR performance of our adaptivansform, and allows us to incorporate adaptivity and nonlinear
algorithm over the linear (1,7) lift. Each point on the PSNRperators into the transform. We presented thmlate First
curve was generated with decoder/encoder synchronizatigbheme to maintain control over the multi-resolution properties
and reflects embedded transmission beyond this minimufthe transform despite the presence of these nonlinearities.
quantization level. Again, the performance of the popular within this scheme, we introduced an algorithm that
Daubechies (9,7) transform is shown for reference. Althougfvitches between various linear predictorsatmid predicting
our adaptive algorithm does not match the PSNR performanggross edgesThis algorithm efficiently represents edges and
of the Daubechies (9,7) transform, the visual quality of owompacts energy into the lower subbands of the transform. In
algorithm is comparable, due to the reduction in edge artifactgidition, we employed &-D nonseparable windowo make
In general the adaptive algorithm results in much sharpeetter predictor choices. The update-first scheme allowed us to
decoded images. We conjecture that introducing adaptivity inteake these improvements while maintaining synchronization
the Daubechies (9,7) transform (an area of current researbbjween the encoder and decoder (to prevent propagation of
would result in further PSNR increases. quantization errors).
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34
33
32
31t
@ 30

Fig. 14. PSNR curves for the cameraman image. The adaptive algorith

(solid line) outperforms its linear (1,7) lift (dash), but it does not meet the
e

PSNR performance of the Daubechies (9,7) transform (dash-dot). Howev
edge artifacts are significantly reduced by the adaptive algorithm. The encod
and decoder were synchronized for the adaptive algorithm.

Our adaptive lifting transform appears promising for lossy.

compression. It reduces edge artifacts and ringing, and improv
PSNR performance on certain test images.
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Thus, the lifting scheme permits us to combine the best of2] W.Sweldens and P. Schroder, “Building your own wavelets at home,” in

both worlds. We can introduce nonlinear and adaptive filters int
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Wavelets in Computer Graphick996, ACM SIGGRAPH Course Notes,
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olution properties of the linear wavelet transform. This provides
a very powerful tool for not only lossy image compression, but
other applications as well, such as lossless image compressigr?
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