
RICE UNIVERSITY

A MICROPROCESSOR SYSTEM DESIGNED FOR USE IN THE LABORA

by

NIGEL D. WAITES

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

APPROVED, THESIS COMMITTEE:

Br. J. Bartlett Sinclair
Associate Professor of Electrical and
Computer Engineering

3 1272 00505 6328

Houston, Texas
May, 1988

A MICROPROCESSOR SYSTEM DESIGNED FOR USE IN THE LABORATORY

NIGEL D. WAITES

RICE UNIVERSITY

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

Abstract

The goal of the project was to design a low cost microprocessor system for laboratory use. A

general purpose microprocessor board was conceived that could be used in a card type system or with the

special purpose mother board, which would give the microprocessor board protection from the students, and

which would conveniently distribute signals through breadboard terminals for connection to external

circuitry.

This thesis focuses on the development of the system, both in terms of hardware and software.

The project!s goals have all been achieved; forty microprocessor systems were built, and they are

presently being used in the laboratory. The bundled hardware and software package gives the user access to

the equivalent of a small development system that provides a user-friendly environment, at a faction of the

cost of any commercially available development system.

Acknowledgments

I wish to thank my advisor Dr. J. R. Jump for his support throughout the project I also wish

to thank Dr. J. D. Wise for his invaluable input

Special thanks are in order for Hubert Daugherty, who designed the Printed Circuit Board layout

and administered the purchasing of all the components. The systems were assembled with help from

Edward Smith. I thank him for his help. I would also like to thank Dan Louge for providing feedback

on using the early versions of the software.

On behalf of Rice University I would like to thank the following companies for making valuable

donations to the project:

Motorola Semiconductor, Inc.

Texas Instruments Incorporated

Hewlett Packard

Finally, I would like to thank Major E. Carter for his software contribution.

ii

TABLE OF CONTENTS

Chapter 1. Introduction 1

Chapter 2. Hardware Design 3

2.1. Design Issues 3

2.2. Power Supply 3

2.3. Physical Size 3

2.4. Microprocessor Board 4

2.5. Buffer Board 5

2.6. Hardware Implementation 6

2.6.1. Clock Speed 6

2.6.2. Address Space Management 6

2.6.3. Memory Interfacing 8

2.6.4. The MC68681 DUART 9

2.6.5. The R6522 VIA 10

2.6.6. A Special Characteristic of the R6522 11

2.6.7. Peripheral Register Addressing 12

2.7. 'Glue' Logic 13

2.7.1 Reset and Supervisor Mode Logic 13

2.7.2. Address Decoding Equations 14

2.7.3. DTACK Generation 14

2.7.4. MC6800 Bus Cycle Selection 14

2.8. Interrupt Management 15

2.9. External Addressing and DMA Support 17

2.10. Buffer Board 19

2.10.1 Design Criteria 19

2.10.2. Buffering 19

2.10.3. Parallel Port Diagnostics 19

2.10.4. Bus Error Generation 23

iii

2.10.5. LED Display 23

2.10.6. Mode Selection Jumper 24

2.10.7. P.C.B. Design 24

Chapter 3 Support Software 25

3.1. Software Overview 25

3.2. The MC68000 Assembler 25

3.2.1. Implementation of the One Pass Assembler 25

3.3. The MC68008 Monitor Program 27

3.3.1. Monitor Implementation 29

3.3.2. Monitor Diagnostics 32

3.4. The 'Emulate' Program 35

Chapter 4 System Cost 36

4.1. Bill of Materials 36

4.2. Fabrication 38

Chapter 5 User Guide 39

5.1.1. Introduction 39

5.1.2. System Organization 39

5.1.3. Address Space management 39

5.1.4. I/O Registers 40

5.1.5. Interrupt Structure 41

5.2. The MC68000 Assembler 42

5.2.1. Introduction 42

5.2.2. Running the Assembler 42

5.2.3. Addressing Modes 43

5.3. Owlbug 48

5.3.1. Introduction 48

5.3.2. Using the Rice MC68008 System 48

5.3.3. Error Handling 53

5.3.4. Stopping Owlbug 53

iv

5.4. Using the 68000 Emulate Program 53

5.4.1. Introduction 53

5.4.2. Running the Emulator 53

5.4.3. Interaction with Emulate 54

5.4.4. Numeric Input 54

Chapter 6 Conclusions 57

6.1. Further Software Development 57

Bibliography 59

Appendix A: PALASM Syntax and PAL Equations

Appendix B: Program Examples

Appendix C: Board Modifications

Appendix D: MOTOROLA S-Record Format

Appendix E: Connector Data

Appendix F: "Emulate" Message System

v

1

Chapter 1

Introduction

A digital design course is offered as part of Rice University's Electrical and Computer Engineering

curriculum. This course teaches digital logic design and microprocessor interfacing.

For the last several years the course has been taught using a Z80-based microcomputer. The 8-bit Z80-

based microcomputer is now dated due to the arrival of various 16-bit microprocessors. Faculty members in

the Electrical and Computer Engineering Department were aware of this fact and decided that it was desirable

to develop a new system.

The original system consisted of a metal chassis with plug-in modules. The metal chassis provided

power to the modules from an external power supply. The power supply and microprocessor unit were

connected to the chassis via cables. The modules provided breadboarding areas for interfacing to the

microprocessor. Other modules provided switches and light emitting diodes.

This project was undertaken in an attempt to replace the existing Z80-based system with a system

using the Motorola MC68000 family of microprocessors. The MC68000 family has widespread usage in

industry, and MC68000 assembly language programming is taught widely in educational environments.

The system consists of two printed circuit boards, one for the microprocessor and its support chips, the

other for various buffer circuits. The microprocessor board is a stand alone unit that can be used for any

general purpose project requiring the functions of a microprocessor. The buffer board provides the interface

between the laboratory user and the microprocessor board, and can only be used in conjunction with the

microprocessor board.

Much was learned from the existing Z80 microprocessor system, which clearly had some weaknesses in

the laboratory environment In the design of the new system these problems were recognized and eliminated

as far as possible.

The material presented in the following chapters describes both the hardware design and software

implementation. The second section describes the system hardware, with explanations of the design

strategies. The third chapter describes the software incorporated with the system. The fourth chapter

2

evaluates the cost involved in the development of the system. The fifth chapter is a User Guide which

describes how the system is employed. The sixth chapter draws conclusions on how the system performs,

and discusses areas in which further software development could improve the system.

3

Chapter 2

Hardware Design

2.1 Design Issues

The existing Z80 system was retired, but the prototyping equipment used in conjunction with the

system was retained. This included breadboards, switch modules and a metal chassis. The old system had a

separate microprocessor board and power supply which were connected to the chassis via cables. The ribbon

cable connections had been very unreliable. Therefore, one major goal of the new system was the

elimination of as many mechanical connections as possible. This was achieved by having both the power

supply and microprocessor system connect directly to the chassis.

2.2 Power Supply

The power supply’s physical size was one major issue in the selection choice, as it had to be less than

two inches tall to fit into the chassis. The power supply also had to meet certain functional requirements

including low heat dissipation (as it is enclosed in a metal box with little ventilation), good regulation, and

most importantly short circuit immunity. The power supply had to furnish +5 volts at 5 amperes, as well

as +12 volts and -12 volts, each at 1 Ampere.

A linear supply was ruled out due to both size and heat dissipation. Various switch mode power

supplies were tested, with all but one failing the short-circuit test, contrary to manufacturer's claims. The

supply finally chosen is the Power General 3050-1A, as it was the only one which satisfied all the above

requirements. This particular supply must be preloaded with a minimum of one ampere drawn from the +5

volt output to maintain correct regulation. This is achieved inside the chassis by a 5-ohm resistor (10 watt)

connected from +5 volts to ground.

2.3 Physical Size

The new microprocessor unit plugs directly into the chassis alongside the breadboard modules. To

allow adequate breadboarding space, the microprocessor unit’s size was constrained to ten inches by five and

three- quarter inches. The buffer (mother) board can utilize the full ten by five and three-quarter inches;

however, to allow for easy access to the breadboard connectors, the microprocessor board must be no wider

4

than three and one-quarto: inches. This immediately places a severe physical constraint on the complexity

of the microprocessor board.

2.4 Microprocessor Board

The basic goal of the design was to produce a module with the microprocessor , memory, and

peripherals on one printed circuit board. The module also needed to be used in either a stand alone mode or

in conjunction with the buffer board.

The entire circuitry had to fit onto a two-sided printed circuit board (PCB) measuring three and

one-quarter inches by ten inches. The width constraint on the PCB forced the designer to reduce the chip

count to a minimum, as physically there is very little space. This size restriction immediately pointed to

the MC68008 microprocessor which has 48 pins as opposed to the 64 pins of the MC68000

microprocessor. The MC68008 is a 16-bit microprocessor with an 8-bit data bus permitting the system

memory to be only 8 bits wide instead of the 16 bits required by the MC68000. This significantly reduces

the minimum memory chip count The MC68008 has a 20-bit address bus as opposed to the 24-bit

address bus of the MC68000. However, a twenty bit address bus gives one megabyte of address space,

which is more than adequate for this type of system. Furthermore, MC68008 maintains full software

compatibility with the MC68000.

The microprocessor unit has two uses. Firstly it is to be used by students to learn both interfacing and

programming techniques. Secondly, it is to be used as a general purpose microprocessor board. Both serial

and parallel peripheral devices were desired features to give maximum flexibility. The Motorola MC68681

Dual Channel UART was chosen for the serial device, as this device is simple to use, robust, and

inexpensive. The Dual Channel UART allows one channel to be permanently assigned to communication

with the host machine or terminal, while the second channel is available for general use. The MC68681

provides simplified interfacing to the MC68008 and offers the following features:

1. On chip dual baud rate generation, up to 38k baud.

2. Programmable baud rate, via an on-board timer.

3. An on-board counter/timer which can be used to generate one shot pulses or square waves with

variable duty cycles.

5

4. A local internal loopback diagnostic feature, allowing software diagnostics to check both

communication channels.

5. Programmable handshake lines (CTS and RTS) on both channels.

6. Several general purpose input/output lines.

In the selection of the parallel port device the Rockwell R6522 Versatile Interface Adapter was found to

be a flexible and cost effective part The R6S22 is fundamentally an MC6800 part, so extra logic is

required to interface it to the MC68008. The R6522 provides the following features:

1. Sixteen fully programmable input/output lines.

2. Two counter/timers with programmable output pins giving either one-shot or square-wave output

3. Four input lines capable of generating interrupts on either positive or negative transitions.

4. An 8-bit shift register, which can be used for shifting in or out under control of various internal

and external clock options.

5. An Interrupt Status register (for polling) and an Interrupt Mask register, which allows full control

of interrupt generation.

These peripheral devices are 'glued' to the microprocessor via some discrete logic in the form of 74LS

chips, and two PAL devices.

2.5 Buffer Board

The buffer board's prime objective is to protect the expensive chips on the microprocessor board. The

buffer board has one hundred breadboard terminals that allow easy connections to be made to the

microprocessor board. The buffer board, as its name suggests, buffers the majority of the bus signals,

allowing continual short circuiting of bus signals with no permanent damage resulting.

One of the biggest problems with the existing Z80 system was that the parallel ports were damaged

very easily, and there was no direct and effective way of diagnosing the problem. The buffer board has

circuitry which allows full testing of the parallel ports, and in conjunction with the system software a

diagnostic check can be run at any time.

The buffer board also contains four seven-segment LED displays which can display the hex digits 0-F,

giving the ability to display 16-bit quantities.

6

The buffer board connects directly to the chassis via five banana jack connectors (which are keyed, so

that correct insertion is assured) which deliver power to the system. Power and bus signals connect to the

microprocessor board by three ribbon cables carrying a total of one hundred twenty signals.

The buffer board has two DB2S connectors far RS232 connections.

2.6 Hardware Implementation

2.6.1 Clock Speed

Hie MC68008 is designed to be run from a clock at a speed no faster than 8MHz and no slower than

4MHz. The obvious choice is 8MHz, giving maximum CPU performance, provided that the memory

system is able to respond quickly enough. The MC68681 must also be driven from an external clock, and

its clock rate must not exceed 4MHz. The internal baud rate generation inside the DUART is carried out

by a divider chain with taps for specific baud rates. The divider chain is designed for use with a 3,6864MHz

clock input This gives standard baud rates such as 1200,2400,4800,9600 and others. The MC68681

DUART is very flexible, as the clock can be driven by either a TTL output or directly bom a crystal. To

alleviate die need for a second crystal and hence reduce cost thé MC68000 CPU, which requires a clock, is

driven from a 7.3728MHz clock package's TTL output This is divided by two to generate the 3.6864MHz

clock required by the DUART. The division is carried out by U19 which is a D flip-flop with its negated

output connected to the D input effectively making a T flip-flop. Note that when a TTL clock is being

fed into the DUART pin X2 (pin 33) must be tied to ground. The schematics for the microprocessor board

are shown in Figure 1.

Note that the E (ENABLE) clock from the MC68008 is the system input clock divided by ten, and

hence the E clock runs at a frequency of 737.28kHz.

2.6.2 Address Space Management

The MC68008 has a linear address space of one megabyte (i.e., twenty address lines). The MC68000

family of microprocessors support two modes of operation, 'user' mode and 'supervisor1 mode. These

modes are displayed on the FC0-2 (Function code lines) which can also be used in the address decoding logic

to give an effective four megabyte address space. For simplicity the bottom half of the address space

(0-$7FFFF) is used for on-board addressing, while the upper half-megabyte ($80000-$FFFFF) is used for

7

Figure 1

8

off-board addressing.

This means that each device can be allocated a large block of address space, as all the on-board devices

have to fît within a half-megabyte address space. The largest common denominator was used. This is

determined from the memory size. The largest memory chip available in a 28-pin DIP is a 64k EPROM.

Each device is therefore allocated a 64k memory block. Allocating such large blocks to I/O devices seems

rather wasteful, but it simplifies the address decoding logic significantly. Each device is allocated a 64

kbyte

block in the bottom half-megabyte. This means there are 8 addressable devices, and that these devices are

selected by decoding address lines A16-A19.

The address decoding is implemented using a programmable array logic device (PAL).

2.6.3 Memory Interfacing

System memory consists of three sockets which are wired for 6264s (8 kbyte static RAM) or 2764s (8

kbyte EPROM). The access time for the RAM or EPROM chips should be 250 nanoseconds or faster, as

the no-wait state bus access is around 290 nanoseconds, and the chip selects take approximately 35

nanoseconds to propagate.

Note that each memory chip is mapped into a 64 kbyte block, and hence it folds eight times. The three

memory blocks are mapped as follows:

0-$FFFF Memory chip U8

$10000-$1FFFF Memory chip U9

$20000-$2FFFF Memory chip U10

The address decoding is done via the PAL 20L10 (U13). The equations for the three memory blocks

arc:

CS0=AS*/A19*/A18*/A17*/A16

CS 1=AS*/A19*/A18*/A17*A16

CS2=AS*/A19*/A18*A17*/A16

/ - is the NOT operator. For more information on PALASM equations see Appendix A.

AS is defined as an active low signal

9

CSO-2 aie active low outputs on the 20L10.

The memory chip selects become active when the address has been set up and is stable, indicated by the

assertion of AS, and by the correct combination of address lines. When a read cycle occurs, pin 27 of the

decoded memory chip is high (due to R/W being high), and both CS and OE go low, enabling the CPU to

read data from the memory. Note, however, that when a write cycle occurs, pin 27 of the memory chip is

low (i.e„ R/W is low). At first glance it appears the memory chip is trying to output data (Output enable

is low) and write data (Write enable is low) simultaneously. However, WE overrides OE and the write

occurs. This feature allows each socket to contain either an EPROM or a RAM chip.

The MC68008 boots itself from address locations 0-7, and hence the bottom 8k (CSO) must be either

EPROM or battery backed-up RAM. If battery backed-up RAM is used, it can be written to freely. The

ability to write into the bottom 8 kbytes has an undesired effect when the socket contains an EPROM

Data would be output from the CPU, when the R/W line is low. This means that PGM is driven low.

When PGM is low the device is in the program mode and the data pins become inputs. While the EPROM

is in this state, Vpp however, is held at +5 volts, which is far less than the 21 volts applied for several

milliseconds which is required for programming. This undesired write cycle thus has no effect on the

EPROM, even though the EPROM appears to be in a program mode cycle. This connection scheme

however does allow a battery backed-up RAM to be used for both reading and writing.

The DTACK signal for the memory is generated by the 20L10 PAL. This will be explained later in

the DTACK generation section 2.7.3.

The microprocessor board has jumper connections to assist in upgrading the memory sockets to use

62256 or 27256 (32 kbyte RAM or ROM) chips. The 32 kbyte packages, unfortunately, have slightly

different pinouts, as a consequence after the modifications are carried out, only 32k chips can be used, and

the EPROMs and RAMs are longer interchangeable. When the modifications are made, therefore, each

socket must be designated to either a RAM or a ROM chip. Details on this modification are given in

Appendix C.

2.6.4. The MC68681 DUART

The Motorola MC68681 Dual Asynchronous Receiver Transmitter (DUART) is designed primarily for

10

use with the MC68000 family of microprocessors. The DUART runs from a 3.6864MHz clock derived

from the system clock. The MC68681 has a standard bus interface consisting of address lines, data lines

and a chip select The DUART generates its own DTACK using its external clock. Note that the DUART

sometimes inserts wait states, as it is not capable of running no-wait state bus cycles. The interrupt

sequence will be discussed in the Interrupt structure section 2.8.

The MC68681 has two complete asynchronous communication channels, with the ability to be

configured via software to handle RS232 handshaking using RTS and CTS. To conform to RS232

standards the signals have to be converted from TTL levels to RS232 levels on the output lines and

vice-versa for the input lines. The RS232 levels require a TTL low’ level to be converted to plus 3-15

volts and a TTL ’high' level to be converted to minus 3-15 volts. Several chips will perform this

operation. The most cost effective are the 1488 line driver and the 1489 line receiver, which provide four

gates per package. The DUART requires four output lines (TXA,TXB ,RTSA,RTSB) and four input lines

(RXAJtXB,CTSA,CTSB) to be translated. The 1488 and 1489 are therefore fully utilized. These chips

also provide the correct electrical characteristics for the RS232 specification in terms of capacitance and

resistance. Note the power requirements for each chip. The receiver requires only +5 volts, whereas the

line driver requires +12 and -12 volts. The RS232 level converters are mounted on the microprocessor

board, allowing the microprocessor board to be connected directly to a terminal via the 'SC header block.

2.6.5 The R6522 VIA

The microprocessor board has two R6522 Versatile Interface Adapters, which provide parallel input

and output The R6522 is a 6500 family part, which is a predecessor of the MC6800 family. The

MC68008 interfaces to the R6522’s via the MC68008's ability to emulate an MC6800 bus cycle.

To assist in the MC6800 bus interface, the MC68008 first provides an Enable (E) clock. The E clock

for normal speed 6500 parts must be less than or equal to 1MHz. The E clock generated by the MC68008

is the processor clock divided by ten, and therefore the E clock runs at 737.28kHz. The MC68008 has only

48 pins as opposed to the MC68000's 64 pins. One of the missing pins is part of the MC6800 interface.

This signal must therefore be generated externally.

The MC6800 and MC68000 bus cycles co-exist, with the appropriate bus cycle being run according to

the type of device selected. The MC68008 has an input called Valid Peripheral Address (VPA). This input

is asserted whenever an MC6800 device is being selected. VPA is generated by decoding of the appropriate

addresses. When an MC6800 bus cycle is selected, an output from the 16L8 PAL, Valid Peripheral

Enable (VPEN) becomes true. This enables the flip-flop U14, which outputs a high on Q after the E clock

goes low. The output NOT Q from the flip-flop signals to the MC68008 that it should execute an

MC6800 bus cycle, the bus cycle being requested by making the VPA input low. After one processor

clock cycle, the second flip-flop's output Q goes high. This output signal is Valid Memory Address

(VMA). Note, this is internally generated on the MC68000. VMA indicates that the MC68008 has

internally synchronized itself for an MC6800 bus cycle. The MC6800 bus cycle uses the positive pulse

from the E clock to synchronize its data transactions between the CPU and the peripheral. The flip-flop

circuitry stops any incomplete positive pulses from propagating through via assertion of VPA by the

flip-flop on the falling edge of the E-clock.

When VMA is asserted, the MC6800 peripheral device is now guaranteed of a full positive E pulse,

with the negative edge of the E clock capturing the data and terminating the cycle. After the negative edge

of the E clock has occurred, AS is deasserted. VPEN then becomes negated. This clears the flip-flop and

removes VPA. Note that during every MC6800 bus cycle DTACK must be held high for the complete bus

cycle.

Each R6522 device must be enabled when VMA is asserted to ensure correct operation. This is

accomplished by using the two chip selects that each R6522 possesses. The active low chip select is

generated by simple address decoding in the PAL, Therefore this chip select is active immediately after AS

is asserted. The other chip select is active high and is tied to VMA. The R6522 is then selected at the

correct time due to the combination of its two chip selects.

2.6.6 A Special Characteristic of the R6522

The R6S22 Versatile Interface Adapta1 was actually originally designed to be used with the 6500 family

of microprocessors. One of the major characteristics of the 6500 family is that the control and address

busses are always driven. They are never allowed to float

During testing of the prototype microprocessor board the R6522s were found to exhibit strange

behavior. The parallel output lines would change states randomly when the processor executed the STOP

instruction, which floats the address, data and control lines. At first the problem was unclear, as some

chips exhibited this phenomena, and others worked correctly. The outputs would sometimes change several

seconds after the STOP instruction had been executed. This behavior was very mysterious, since the

devices changed their outputs despite the fact that their chip selects were negated. After much

experimenting it was discovered that in certain circumstances it was possible to change the outputs by

shorting the floating address lines to ground.

At this point die manufactura* was contacted, and an application engineer explained politely that this

was an undocumented feature of the part However, Rockwell had sold the R6S22 to Apple for use in the

Macintosh, and during that transaction a Rockwell engineer discovered that pull-up resistors on the address

bus fixed the problem. Rockwell also decided to fix the part The new part is called the R65NC22. The

microprocessor board has pull-ups allowing original R6S22 parts to be used, although all the systems built

contain the new part

2.6.7 Peripheral Register Addressing

All registers on both the R6522s and the MC68681 appear on even address boundaries. This maintains

compatibility with a normal MC68000 design, which functionally means that successive registers can be

read or written to using the MOVEP instruction. It is important to notice that there is a distinct physical

difference between the connection of the MC68008 and MC68000 to peripheral devices. The MC68000 has

sixteen data lines, and only eight are connected to peripheral devices. The MC68008 has only eight data

lines. These are used in conjunction with the AO address line to emulate the MC68000.

At first glance it is not clear what the functional differences are, however let us consider the move

instruction which has an undesirable effect when executed on certain peripherals.

Consider the instruction: MOVE.W #$FFJ>ERIPHERAL_REG

First let us consider what happens on a MC68000 system. If the bottom eight data lines are connected

to the peripheral device and the chip-select depends on the Lower Data Strobe (LDS), the peripheral register

will have $FF written into its register. The top byte (zero in this example) is put on the top eight data

lines and it is ignored by all devices. However, on the MC68008 the top byte is written into the register

13

{Le., zero), the address line AO is set to T, and $FF is written into the register. This causes two problems.

Firstly, many peripheral devices need a substantial recovery time between bus transactions, and secondly,

some devices have internal register addressing triggered from external addresses (the MC68681 has the

MR1-2 registers which are a classic example). The double bus cycle will cause the register to flip before

the correct data is written into the register.

The conclusion is that if one intends to write code which is to be MC68008/MC68000 compatible,

care must be taken to ensure correct addressing of peripherals. This can be achieved, among other ways, by

using the move byte instruction rather than the move word instruction illustrated above.

2.7. 'Glue* Logic

The microprocessor, memory and peripherals are glued together with two programmable array logic

devices, U4 (a PAL16L8) and U13 (a PAL20L10).

2.7.1. Reset and Supervisor Mode Logic

System reset during power-up is generated by an RC circuit. This is cleaned up by the 74LS132 two

input NAND Schmitt trigger. The output of the Schmitt trigger is fed into the 16L8. RESET to the CPU

is an output from the PAL. The equations which determine the RESET output are:

HALT=RESET

HALT.TRST=RESET

(For a brief description of PAL equation syntax, see Appendix A)

When RESET (PAL input) is high, HALT goes low. The tri-state output is also enabled when

RESET is high. HALT therefore goes low whenever RESET is high, and whenever RESET is low the

output is in high impedance. The output HALT is pulled up so when the output is in the high impedance

state and no signal is driving the HALT line, the line is high. The HALT output is effectively simulating

an open collector gate, this is necessary as the HALT signal on the MC68008 is bidirectional

Note the exact connection of the HALT line, the HALT pin and the RESET pin (RESET is also a

bidirectional line). On power-up (or master reset via depression of the optional switch SW2) both the

HALT and RESET pins must be taken low to ensure a system reset The HALT output goes low, taking

HALT low. The diode D1 allows current to flow out of the RESET input which brings RESET low. The

14

diode D1 is Germanium. These diodes have a slightly lower forward drop than silicon diodes, to ensure that

RESET stays below 0.8 volts. The peripheral chip's RESET inputs are connected to the RESET input on

the MC68008. This allows the software 'RESET instruction to reset the peripheral devices. When the

RESET instruction is executed the 68008's RESET line goes low, but the diode D1 blocks current from

the HALT pin, and the HALT pin remains high. If a double bus error occurs, the microprocessor drives the

HALT line low, which brings RESET low and the MC68008 is reset

The microprocessor board has one LED which indicates when the processor is in Supervisor mode.

This signal is generated by the appropriate decoding of the FCO-2 lines within 16L8, with the qualification

of AS. The equation is:

SUPER V=/FC0*FC 1 *FC2* AS+FC0*7FC 1 *FC2* AS

2.7.2 Address Decoding Equations

The address decoding is implemented in the 20L10, with the devices mapped as follows:
cso $0-$FFFF RAM/ROM U8
CS1 $10000-$ 1FFFF RAM/ROM U9
CS2 $20000-$2FFFF RAM/ROM U10
CS3 $30000-$3FFFF MC68681 U16
CS4 $40000-$4FFFF R6522 Ull
CS5 $50000-$5FFFF R6522 U12

The equations for these outputs, and the equations for both PAL's are given in Appendix A.

2.7.3 DTACK Generation

The three RAM/ROM sockets require that Data Acknowledge (DTACK) be asserted. This is performed

by the 20L10. The DTACK signal is an open collector signal. The PAL implements this signal similarly

to the HALT output The equations for DTACK are:

DTACK=DS*CSO+DS*CS 1+DS*CS2

DTACK.TRST=DS*/ICS3*/CS4*/CS5*/A19

When any of the ROM/RAM chips is selected, the DTACK output goes low. Otherwise it is driven

high. The tri-state output is enabled when the DUART and the R6522s are not selected and the address is in

the bottom half-megabyte.The DUART supplies its own DTACK, and the R6522s use MC6800 bus cycles

which do not involve DTACK.

2.7.4 MC6800 Bus Cycle Selection

15

The MC6800 bus cycle is selected when the signal SEL6800 goes high. This occurs when either CS4

or CSS is low (i.e., selecting either R6S22), or when EXTSEL6800 is low. The equation for SEL6800 is:

SEL6800=CS4+CS5+EXTSEL6800

The 16L8 has active low outputs, so this equation is negated using DeMorgans law, and the equation

in the PAL is:

/SEL6800=/CS4*/CS5*/EXTSEL6800

The SEL6800 output is connected to the 20L10 PAL which generates VPEN. This signal generates

VPA through the flip-flop which informs the MC68008 that a MC6800 bus cycle should be executed. The

VPA signal from the flip-flop ensures the MC68000 is correctly synchronized for the bus cycle.

The equation for VPEN is:

VPEN=AS*(SEL6800+LACK6800)

IACK6800 will be explained in the interrupt management section 2.8. The 16L8 PAL also has active

low outputs, hence the equation must be inverted:

/VPA=/AS+/SEL6800*/IACK6800

2.8 Interrupt Management

The MC68008 differs from the MC68000 in that it only has two effective interrupt lines. The

MC68000 has three interrupt input lines, defining seven levels of interrupts and a no interrupt condition.

On the MC68008, the IPO and IP2 interrupt lines are internally tied together allowing only level 2,5 and 7

interrupts to be generated.

The 16L8 encodes the three sources of interrupts into the two pins required by the MC68008 with the

following equations:

IP0_2=IRQ_DUART + IRQSW

IP1=IRQ6522*/IRQ_DUART+IRQSW

The IPO, IP1, and IP2 lines are active low, the 16L8 provides active low outputs. The level 7

interrupt is non-maskable. This feature is used as a ’soft' reset, allowing registers to be dumped. The NMI

input is driven from the debounce circuit consisting of Ü17. When NMI becomes active, both IP0_2 and

IP1 (Level 7 interrupt) go low, regardless of any other device interrupts. When the MC68681 requests an

16

interrupt, IP0_2 goes low and a level S interrupt is requested. If the R6522 also requests an interrupt

simultaneously, the NOT IRQ_DUART term causes the R6S22 interrupt to be ignored until the MC68681

removes its request This effectively means that the three interrupts have a priority scheme, with the NMI

interrupt having the highest priority, the MC68681 second highest priority, and the R6S22 the lowest

priority. Interrupt requests arriving at the processor do not force immediate exception processing, but are

made pending. Pending interrupts are detected between instruction executions. The R6522 interrupt output

pins are open collector gates, allowing the two R6S22 interrupt pins to be connected together. The same

signal is also run out to the breadboard connector allowing an external source to generate level 2 interrupts.

If multiple interrupt sources are used, software polling may be required to determine the source.

When the MC68008 responds to an interrupt, it places the interrupt acknowledge code on the FC0-FC2

lines. The interrupt level is placed on the address lines A1-A3 (AO is not used, as the MC68000 does not

possess an AO pin) with the level being displayed with positive logic.!.e., a level five interrupt will drive

A1 and A3 high, and A2 low.

The 16L8 PAL decodes the acknowledge cycle and forces the processor to use either vectored or

autovectoned interrupts as appropriate. The 16L8 only uses the address lines A1 and A2 as inputs. A3 is

not decoded, since IPO and EP2 being internally tied together forces A1 to always be equal to A3 in the

interrupt acknowledge cycle.

The autovectored interrupts occur for level 7 and level 2 interrupts. The MC68008 executes an

autovectored acknowledge cycle when VPA is asserted. The signal IACK6800 is asserted when either a

level 7 or 2 acknowledge cycle is decoded with the following equation;

IACK6800=FC0*FC1*FC2*/A1*A2 + FC0*FC1*FC2*A1*A2

The VPA signal is asserted by:

VPA=AS*(SEL6800fIACK6800)

The vectored interrupt is passed across the bus from the DUART after it receives an interrupt

acknowledge. This is generated by the equation:

IACK_DUART=FC0*FC1*FC2*A1*/A2*AS

When the MC68681 receives the interrupt acknowledge, it places the vector number on the data bus and

17

then asserts DTACK when it is ready. The MC68008 uses the vector number to decide where to pass

program control.

2.9 External Addressing and DMA support

The system address space organization allows external devices to be addressed in the top half-megabyte

only. The bottom half-megabyte is used by on-board devices. The address and data lines are buffered using

74LS245s to protect them from external maltreatment

In normal operation, when the CPU is addressing on-board peripherals, the data bus is not passed

through the 74LS245, as the buffer is disabled. (With the data bus buffer disabled, data from the CPU

instruction fetches cannot be seen on the external connector. A version of the 20L10 PAL called

FADDN.DAT has the data bus enabling configured differently. It enables the data bus buff» to output data

to the external connector whatever the bottom half-megabyte of the address space is accessed. This PAL,

however will not support certain multiprocessor applications, as the shared data bus is always driven.) The

data bus buffer is enabled by a signal called DATAJEN, which is generated by the PAL.

The DATA_EN signal becomes true when either the top half-megabyte is addressed and the bus cycle is

not an MC68681 interrupt acknowledge cycle, or when a bus request has been granted and the external bus

master addresses the bottom half-megabyte of the address space. The buffer board also has a Parallel

interface Adapt» which is addressed at locations $70000-$7FFFF. The DATAJEN signal is also true when

these locations are addressed. The Parallel Interface Adapter is mapped in the bottom half of the address

space, freeing the whole top half-megabyte to be used externally. The PAL equation to generate DATAJEN

is:

DATA_EN=A19*AS*/IACKJDUART * (/BG)

+BG*AS*/A19

+/A19*A18*A17*A16*AS*/BG

If DMA operation is desired, the bus master must not assert AS when A19 is high. This is simply

achieved by putting AS and A19 through an OR gate. (This is not required if the term /BG is added as

shown in the parentheses.) If the 'FADDN.DAT PAL is used, colain applications of shared data bus

schemes cannot be used, as the data bus is continually driven. Alternatively, a second buff» could be placed

18

after the data bus buffer, and external logic could be used to control it.

The data bus buffer's direction control is selected by a signal called EXT_RW, which is also generated

by the 20L10 PAL. This signal is effectively generated by a controlled inverter. When the MC68008 is

the bus master, the R/W signal is applied directly to the direction input of the buffer, with a MC68008 read

enabling the A-to-B transfer and a write enabling the B-to-A transfer. When an external device becomes

the bus mast»', an external bus master read requires a B to A transfer which is generated by inverting the

R/W signal. The controlled inverter is generated in the PAL by the following equation:

EX_RW=BGACK*RW

+/RW7BGACK

where BGACK controls the inversion, since its assertion means that an external device is controlling

the bus.

The address lines are also buffered. These buffer directions are reversed when an external bus master

takes over the bus. The BGACK line is inverted by the NAND gate U17 to drive the direction input of the

address buffers. The buffer directions are dependent upon the BGACK signal. This signal must be

asserted at the correct time. The MC68008 asserts the BG signal after the assertion of the BR signal.

Note, however, that BG is asserted during a processor bus cycle. The BGACK signal should only be

applied after the CPU’s bus cycle has finished. A simple circuit for accomplishing this task is shown in

Figure 2.

The flip-flops are not enabled until BR becomes true. After BR becomes true and the MC68008

finishes the bus cycle, which is indicated by the rising edge of AS, the first flip-flop's output becomes true.

The second flip-flop delays the assertion of BGACK until one clock cycle later, giving the MC68008 time

to float all of its control and bus lines.

Note: For correct DMA operation the modifications shown in Appendix C must be present on the

MC68008 board.

Suggested Bus Request Circuitry
19

System
Clock

Device BR
output —

AS

/ *+LO i

> CLK > CLK Q

+5— D — Q D —
CLR CLR

To
■Krar

2.10 Buffer Board

2.10.1 Design Criteria

The buffer board is specifically designed to interface to the microprocessor board, providing easy access

to the microprocessor signals. Any system built for use in a laboratory environment needs to be robust

and provide a facility for fault detection. The buffer board attempts to provide both of these attributes.

2.10.2 Buffering

The microprocessor board buffers both the address and data busses with 74LS245 transceivers. These

devices are capable of indefinite short-circuiting and are extremely robust The major bus signals are

buffered via a 74LS244 which has similar characteristics to the 74LS245. The use of the 74LS244 rules

out the possibility of implementing a DMA interface using the buffer board. However, DMA transfers

can be implemented using the microprocessor board without the buffer board. Schematics for the buffer

board are shown in Figure 3.

2.10.3 Parallel Port Diagnostics

The Z80 system had two parallel ports which were prone to failure. An external cable was used to

jumper the two ports together to allow a loopback test to be carried out This arrangement, however, did

not provide reliable testing. Furthermore testing was carried out only after the user suspected that one of

the ports had failed.

20

Figure 3

21

The major problem with the parallel ports lies with the input and output lines being rather fragile

electrically. Continuous short-circuiting of these lines often causes permanent damage. Two approaches

can be used to correct the problem, each having its own merits.

The first solution involves protecting the devices by buffering each pin before it reaches the external

connector. The buffering provides protection for the parallel ports, and the buffers themselves are close to

indestructible. This solution is probably the most elegant, although there are implementation problems.

Each parallel port has two registers, a Data Direction Register and an Input/Output register. The data

direction

register determines which pins on the port are assigned to inputs or outputs. Each pin can be programmed

to be either. To allow the port to be used with no restrictions on which bits can be inputs or outputs,

individually controlled transceivers would need to be used. The scheme would entail capturing the writes to

the Data Direction Register in a latch, and then using the output from the latch to control the direction of

the transceiver. A similar scheme would be used to capture writes into the ACR Auxiliary Control

Register to control the direction of the handshake lines CA1,CA2,CB1 and CB2. This technique would be

very robust and is completely transparent to the user software, as the hardware captures normal writes to the

R6522.

The scheme was not implemented, however, due to the difficulty in acquiring transceivers with

individual direction control. Texas Instruments make a device called the 74LS449 which provides exactly

the desired function. However, T.I. is the only source of this part One of the major goals in designing

the system was to make sure all the parts used woe readily available and could be replaced easily within the

next several years.

The second solution is to provide an on-board means of checking the parallel ports. The strategy works

on the principle that if the parallel ports cannot be protected, then at least we should be able to detect a

parallel port failure easily and without external circuitry.

The loopback test must first isolate the signals connected to the breadboard connectors, as the key to

the strategy is that diagnostic tests can be executed without the need for any disconnection of user circuitry.

The isolation is implemented by the use of the 74HC4066 (now called the TLC4066, and found in the

22

Telecommunications and Linear Handbook). This device provides four analog switches per package. When

the switch is turned off, a resistance of about 100 megohms is seen across the terminals of the switch,

providing the necessary isolation for the loopback test.

The 74HC4066 has an additional desirable feature. When the switch is turned 'on' the resistance

across the terminals is approximately 30 ohms, which essentially provides a current limiting resistor in the

case of short circuiting. During test the outputs of the R6S22 were capable of continuous short circuiting

through the resistor. Thus, the 74HC4066 provides both device protection and isolation for diagnostic

testing. The resistor is also small enough to be insignificant when connected to TIL loads. For example

even when ten normal TIL loads are being driven, the low level still remains below 0.8 volts.

Once the 74HC4066’s are switched 'off, the R6522's are isolated and loopback testing can be carried

out. After the testing is finished, system software must switch the 74HC4066s 'on'. This is transparent to

the user, but if the appropriate software is not executed, no signals will propagate through the switches.

This situation can occur when using the ’Emulate' program. This problem is mentioned in the User Guide.

Diagnostic testing should provide clear and conclusive evidence on the status of a particular device. A

simple loopback test does not necessarily isolate the exact cause of the failure, although an error will be

detected. This problem becomes evident when the loopback function is implemented, as one port is used as

an output Data is written to the output port and read back on the input port If the data read is different

from that written, then either the output port is bad, or the input port is malfunctioning, but the user

cannot determine which is causing the problem.

To attain a more exact result from the test, the four parallel ports are bussed together during loopback

testing. This means that each test has several different sources of results, and an exact port and bit can be

isolated.

To control the testing and switch the various devices, an MC6821 Parallel Interface Adapter (PIA) was

incorporated into the buffer board. The PIA is mapped into the address space at $70000 via the 74LS138.

The 74LS138 is only enabled when FC2 is high, meaning that the PIA can only be accessed in Supervisor

mode. The PIA is a MC6800 device, and therefore it must use a MC6800 bus cycle when accessed. This

bus cycle is selected by asserting EXTSEL6800. The 20L10 PAL also contains an equation with a tom

23

which enables the data bus transceivers when an address in the range $70000-$7FFFF is generated.

The MC6821 contains two parallel 8-bit prats, designated in the data sheet as ports A and B. Port A is

used to control the enabling of the 74HC4066s, to select the direction of the 74LS245's and to sample for

continuous assertion of both DTACKU and EXTSEL6800.

The pull-up resistors on the A prat are used to switch the relevant signal lines to disable the

74HC4066s and 74LS245s immediately after RESET. After a hardware RESET, the PIA sets both prat A

and port B to input mode. The pull-ups force these lines high, and, via the inverters, the enables are

negated.

The enables are also used to disable the propagation of DTACKU and EXTSEL6800. The processor

executes the diagnostics, and then enables the 74HC4066s, allowing both DTACKU and EXTSEL6800 to

propagate through the open collector NAND gates.

Port B is connected to the parallel port bus, giving yet another port to return the status of the parallel

bus.

The Parallel port diagnostic software is described in Section 3.3.2.

2.10.4 Bus Error Generation

The MC68008 allows an exception to be invoked when an address is generated by the microprocessor

which fails to make any peripheral device respond.

The BERR signal is generated via a 74LS17S (U4). The assertion of AS removes the active clear,

enabling the flip-flops. Data is clocked through the flip-flops which are simply connected in series. The

BERR signal will be asserted after three E clock cycles or approximately 4 microseconds, giving more than

adequate time for any peripheral device to respond.

2.10.5 LED Display

The buffer board has four seven-segment LED's which can display hexadecimal digits. An Intersil

ICM7212MI LED driver chip directly drives four seven-segment displays without the need for series

resistors. The ICM7212MI interfaces with common anode LED's only.

The ICM7212MI provides a microprocessor type interface. Two address lines select the display to be

changed, four data bits select the digit to be displayed, and a chip select enables the data to be latched and

24

displayed. All the ICM7212MI LED control signals are available on the breadboard connector (the

connectors pin-outs are shown in Appendix E). The ICM7212MI can be used via a microprocessor bus

interface, via connection to one of the R6522s, or directly from external circuitry.

An LED diagnostic program is listed in Appendix B. The listing shows a simple program to drive the

LED displays. Instructions on interfacing the ICM7212MI to the R6522 are also given.

2.10.6 Mode Selection Jumper

The system has two modes of operation. A jumper is provided on the buffer board to select the mode

of operation in which the system executes. The jumper either shorts the bit 5 input on the MC68681 to

ground when in 11081' mode or to 5 volts when in 'user* mode. During initialization, the CPU checks the

status of bit 5 on the MC68681 to determine which mode of operation is selected. The modes of operation

are explained in Section 3.3.

2.10.7 PCB Design

Due to fabrication costs the PCB was limited to a two layer board. The layout was drafted using an

IBM PC running SMARTWORK, a low cost PCB layout program. The program allows interactive editing

and simple auto-routing. After the layout is completed, it is plotted onto film which can then be directly

photographed and reduced by the PCB fabricators.

During the development of the system another program called H3WIRE (both programs are written by a

company called *WINTEK') was purchased. This program has a schematic capture editor, with utilities for

generating netlists both from the schematic capture program and the PCB layout program. A further utility

allows comparisons of netlists. Using these software utilities, PCB layouts can be verified against their

schematics.

25

Chapter 3

Support Software

3.1 Software Overview

The digital designer's work environment consists of the MC68008 system connected to a serial port on

a Sun workstation. The Sun workstation is used to edit, assemble and communicate with the MC68008

system. The user communicates to the MC68008 system through a special program which effectively

provides a development station environment

3.2 The MC68000 Assembler

The assembler is a single pass program written in the 'C language. The original source code was

acquired from Vanderbilt University, where it had been originally released on a Gould Unix-based system.

The code was extensively modified to run under UNIX BSD 4.2, as many UNIX features have changed since

the original release of the Assembler in 1984.

The original definition of the Motorola MC68000 family assembly language defined in the "16-bit

Microprocessor User's Manual" has changed significantly. The assembler was modified to meet the current

standard. The assembla was also modified to allow for full 32-bit addressing, as the original assembler

only handled 16-bit addressing.

The output code generation was also updated to use 32-bit Motorola S-record format, as opposed to

16-bit Motorola S-records. The output can be directly downline loaded to most EPROM programmas for

the burning of EPROMs.

3.2.1 Implementation of the One pass Assembler

The assembler makes a single scan through the source file and then produces the output code. Labels

which are undeclared during the pass are stored in a symbol table, and their values are filled in when they

become known. After all the source code has been scanned, the unknown label values are backpatched.

Backpatching is accomplished by storing unknown labels in a backpatch table. The backpatch table stores

the symbol name, the number of bytes to be filled in during backpatching, and the address at which

backpatching must occur. When the total source file has been scanned, all label values are known and the

26

symbol table is complete. At this stage all the values of the unknown labels can now be inserted.

The output code is written into a random access file with each record number corresponding to the

absolute address of the byte. The random access file provides a convenient way for providing the holes to

allow backpatching to be easily implemented.

The UNIX file system provides a non-standard random access feature which the code generator relies

upon. If the first statement in a source code is:

ORG $100

The assembler executes an 'lseek' call to move the file pointer to location $100. Even though, when the

call is made, the file is of zero length, the UNIX filing system automatically pads in the appropriate

number of bytes (i.e., in this example the lseek' function will return a point» to $100, and the file will

appear to be $100 bytes long). The code generation could be modified so it does not use the random access

file. Instead, the intermediate code could be stored in memory using calls to mallocO. This method of

housekeeping would require some overhead in code segment management, but it would increase the

assembler’s speed. It would also make it easily transportable, as it would no longer be dependent on

irregular UNIX filing system features.

The assembler was extensively modified to enable it to run on either UNIX or the IBM PC with one

set of source files. Microsoft 'C does support the lseek' function as described above, nevertheless many

other modifications were necessary to make the assembler run on the PC. Integers default to 16 bits on the

PC. Therefore all variables are now specifically declared to be either 16 or 32 bits. The assembler also uses

bit-fields which are declared in the reverse order on the PC. This is managed through the use of conditional

compile statements. Note, however, that bit-fields are extremely system dependent. Byte swapping is also

a problem on the Intel 8086 machines. This is also managed with a conditional compile.

The assembler will also run on a Commodore Amiga and Apple Macintosh. The lseek' function on

these systems does not behave like the UNIX implementation, which therefore restricts source programs to

using no more than one ORG statement

The one pass assembler has certain limitations in the use of addressing modes. All addressing modes

can be used, only if all the constants involved in the effective address calculation are known as the text is

27

scanned. For example the following instruction is valid:

move.b $1000+52JDO

The address could be declared before the instruction and the instruction would still be valid:

myloc equ $1000

move.b myloc+$22,D0

However, the following piece of code will produce an assembly error, although it is perfectly valid

assembly code:

move.b myloc+$2JX)

myloc equ $1000

In practice these forms of addressing modes do not arise too often, and therefore they do not hinder the

usefulness of the assembler.

One form of addressing which always uses a displacement offset from a particular address does cause

considerable problems. If the programmer attempts to write completely relocatable code, meaning that all

program variables are accessed by the Program Counter plus a displacement value, the assembler will fail to

compile the source code. If all the constants pointing to variables are declared before any actual code is

scanned, however, the assembler will correctly produce the output code. An example program is shown in

Appendix B. The memory test program is completely relocatable and uses Program Counter displacement

addressing.

It should also be noted that the listing file generated by the assembler does not necessarily contain the

correct hex code, as any backpatched code will not be displayed correctly. The assembler was modified to

generate a symbol table to assist in alleviating this problem.

Instructions on how to use the assembler are given in Section 5, the User Guide.

3.3 The MC68008 Monitor Program

The MC68008 system contains an 8 kbyte EPROM which stores the entire system software. The

monitor program is an adaption and extension of a program called 'VUBUG', which was acquired from

Vanderbilt University.

The monitor program can run in two modes, user or host mode. The buffer board contains a jumper

28

which selects the mode. The jumper block is clearly marked on the printed circuit board. When the

system is set in user mode, a terminal can be connected directly to the serial port A, and the user

communicates directly with the microprocessor. This mode of operation is best suited for use with a PC

running a terminal emulation program, as the monitor can read programs sent to it via an ASCII upload

from the terminal emulation program. A typical terminal emulation package is 'Procomm'. Trocomm' is

particularly suitable, as a DOS shell can be opened, an edit and assemble phase can be earned out, and the

output from the assembly can then be uploaded and tested.

In the host mode, the monitor program communicates with a program called 'Emulate' which provides

a friendly environment to develop software. The monitor and 'Emulate' program send messages to each

other via the serial link, and the MC68008 is controlled purely by the Emulate' program running on the

UNIX system. Both the monitor and Emulate' programs have user documentation in the User Guide.

In host mode the monitor and Emulate' programs communicate using a small number of basic

primitives. These are listed below:

1. Send contents of the next X bytes from location Y in the MC68008 board's memory to the

Emulate' program.

2. Receive X bytes from Emulate' and place them in memory starting at location Y.

3. Execute a program on the MC68008 system.

4. Break into a program running on the MC68008.

5. Single step the MC68008.

6. Insert a breakpoint at location X.

7. Send contents of the MC68008 registers to the Emulate' program.

8. Receive contents of the MC68008 registers from the Emulate' program.

9. Run the self-test diagnostics.

Certain messages sent to the MC68008 expect acknow ledgement messages, as the monitor program

catches all MC68008 exceptions. For example, when the "put to memory” primitive is used, the monitor

attempts to execute the command issued. If it fails due to a bus error or address error, an appropriate

message is sent to Emulate' indicating the address of the memory error. If the command is successful, the

29

monitor responds with a "command OK" acknowledgement The exact syntax and the argument format for

these primitives is listed in Appendix F. For more information on the message system see the source code

file 'monitorx', the module which implements the communication protocol.

3.3.1 Monitor Implementation

After reset or power-on reset the monitor program first executes the memory and DUART diagnostics.

Once the system has passed the diagnostics, all system variables are initialized. A routine called ’init'

initializes the DUART. It also initializes system flags and sets up the circular input buffer. After the

DUART initialization software is executed, the interrupts are enabled, allowing characters to be received

over the serial line. The software decides which mode is selected by reading bit 5 of the input port on the

DUART. If this bit is low, then the software selects the host mode; otherwise, it selects the user mode. A

flag called ’outmod' disables all output from being transmitted when set to T. This is used in host mode

to stop echoing of characters and other output which is not needed by the ’Emulate' program. For example,

when in user mode, upon system reset, the monitor displays a "hello" message on the terminal screen.

When the system is running in host mode this is not sent as 'outmod' is set to T.

For all future discussion let us assume we are in user mode. After the initial "hello" message is

displayed, a ”!" prompt is written to the terminal. The monitor then waits for a character to be typed on the

terminal keyboard. The serial receiver driver is interrupt driven, and uses a circular buffer of sixteen

characters. (Note also that the MC68681 DUART has a 4-byte on-board FIFO buffer). Each time a

character is received by the DUART it is echoed and placed into the circular buffer. The monitor program

removes characters from the buffer by calling a routine called 'getch'. This routine returns the first character

received when one or more characters are in the buffer. Otherwise, it waits until a character is placed into

the buffer. The serial driver supports the XON-XOFF protocol when transmitting to avoid terminal buffer

overruns (the terminal or terminal emulation program being used should have XON-XOFF enabled to

ensure correct operation).

The serial driver also treats the control-C character in a special manner. Whenever a control-C is

received, the 'rstrt' routine is executed. This routine preserves all the registers, stops execution of any user

programs, and places the user back in command mode. The 'rstrt' routine also resets all peripheral ports via

30

the software instruction 'reset*. It then reinitializes the DUART for correct operation. When the NMI

switch is depressed on the MC68008 board, 'rstrt' is also called. The control-C and the NMI switch use the

same software to recover from a program abortion. As the NMI switch is connected to the interrupt level

which cannot be disabled, the NMI is effectively the system RESET switch. Sending a control-C to the

Monitor will stop the program, provided the interrupt vector in the DUART, and the DUARTs

communication characteristics have not been corrupted due to a runaway program. The control-C character

stops the Monitor about 99% of the time in practice, as the microprocessor rarely runs wild for very long,

since a bad instruction, bus error or address error tend to cause the program to halt

Once the character has been fetched from the input buffer, it is checked against the command table.

The command table consists of pairs of words, the first containing the character, and the second containing

the word which points to the start of the routine to be executed. A word is perfectly adequate for this

function, as a word can be used to point to an any address in the bottom 64k, and all the routines are in an

8k Eprom mapped at location $0. If a second EPROM were placed in the third memory socket and extra

commands were added to the command table, any routines in the third EPROM could not be called directly,

as this EPROM is mapped at $20000-$2FFFF which is not within the bottom 64k.

All the functions invoked by user commands run in the MC68000's Supervisor mode, allowing the

user to modify the upper bits of the status register without encountering privilege errors. Normally user

programs execute in the MC68000's user mode. If application programs run in user mode, software

reliability is improved, as both the user program and the monitor have separate stack frames. User

programs can of course run in Supervisor mode, using the 'super1 trap call, which sets the processor into

Supervisor mode.

The monitor provides exception handling for all the exceptions defined by Motorola. The exception

handlers print messages indicating which exception occurred and any other relevant information.

Most of the interactive user commands acquire addresses from the keyboard and then execute some

monitor function (e.g., display memory requires a start and end address). The monitor provides several calls

to fetch bytes, words and long words. These routines can be called by user programs through the use of the

traps provided in the Usa: Guide.

31

The number fetch routine checks input characters to ensure they are valid hoc digits. If they are not,

the number fetch routine displays a message indicating invalid text was entered and returns to the caller.

The number fetch routine correctly handles the Delete' character, but all other non-alphanumeric characters

cause the routine to exit

The monitor leaves all interrupts enabled when user programs are executing. The DUART is used for

communication with the terminal using channel A. The channel A receiver interrupts are handled by the

monitor which stores characters received into the input buffer. If any other DUART function interrupts the

monitor, control is passed to location $1102C. Only eight bytes are reserved at $1102C. Therefore, a

jump instruction to the user's handler should be inserted. Similarly, control from the level 2 interrupt is

passed to location $11034. The level 2 interrupt has a default handler installed which resets all the

interrupts on the R6S22. The monitor also has routines which will provide a circular buffer for received

characters from the channel B port An example of how these are used is given in Appendix B.

The monitor uses indirect subroutine calling to allow data to be read from either channel A or B. This

effectively means that the number fetch routines can be used with both channel A and B. To use these

routines, the user calls them directly (as opposed to using the TRAP), placing the address of the routine

which is to be executed in AO i.e., the specific I/O handler. The user routine should then return the

character fetched in IX).

The monitor source is available for modification. Its location is given in Appendix B.

The monitor source is written in the old Motorola source code. The instructions use the same syntax

as the present "Motorola Standard", but unfortunately the addressing modes are different To recompile the

monitor source code, one must use the old version of the Motorola assembla. This is available only on

UNIX-based machines. The monitor and assembler were developed simultaneously. Unfortunately, this

meant that during the development phase the initial assembler was used to assemble the monitor.

The monitor program reads Motorola S-records. These S-records must use 4-byte addressing. Both

assembler programs produce output which can be read by the monitor. The S-record is slightly adapted by

the assembler to provide an easy method of setting the program counter. When an end record is sent (an

'S7* record), the address following it is the value to be loaded into the program counter. This value is

32

generated during the assembly by the programmer specifying a label after the end statement The format for

the Motorola S-record is shown in Appendix D.

3.3.2 Monitor Diagnostics

The MC68008 system has several diagnostic routines which provide help in tracing system faults.

On power-up, the system RAM is checked with a routine which only uses registers and does not require

a stack frame. If the memory check fails, the Supervisor LED flashes with a frequency of about 2Hz and a

mark-space ratio of 1:1. If the memory check passes, a DUART loopback test is executed.

The DUART test connects each channel's receiver and transmitter together. Characters are transmitted

and the received data is verified against the data sent The code for this test is rather difficult to understand,

as the DUART does not respond quickly to commands when asked to operate in loopback mode. The code

has many software delays to allow for unknown chip characteristics, which were discovered by trial and

error. The symptoms of this strange behavior are random results, whereupon the diagnostic test may run

correctly only about 50% of the time. The final code has proven to be reliable and effective in testing the

loopback mode. If this test fails, the Supervisor LED is flashed at approximately 1Hz with a mark-space

ratio of 1:4. If either the memory or DUART diagnostics fail, the error is considered disastrous, and the

Supervisor LED flashes indefinitely. Power should be removed, the offending IC should be replaced, and

power should be reapplied.

When the system boots without errors, the Supervisor LED is illuminated for about half a seconded

then it remains off until user commands are issued.

The parallel port diagnostic is executed whenever the 'Emulate' program is started. The parallel port

diagnostic first tests the MC6821 for correct operation. Certain registers in the MC6821 are written with

data, and the MC6821 is then read for correct verification of these registers. Note the MC6821 is interfaced

to the microprocessor board via the 74LS245 (U5), and the MC6821's data bus is common to the data bus

provided on the breadboard connector. These reads check to see if the data bus is continually being driven

by external user circuitry. If the bus is continuously being driven, it has no effect on any other system

components as they are isolated through the 74LS245. If the reads provide incorrect data, the MC68008

monitor sends a message to the 'Emulate' program, and the 'Emulate' program displays a message to the

33

user indicating that the data bus is being driven at the wrong times. If the read test is passed, the parallel

port diagnostic is executed.

The parallel port diagnostic firstly checks the data bits on the PA and PB ports of each R6S22. This

test is done in five stages. Initially Port B on the MC6821 becomes the talker (it is set in output mode)

and the four R6S22 ports are listeners (set in input mode). The 74LS245s are enabled, and their directions

are set so that the data propagates from PBO-7 through to U7- A1-A8. The enabling and direction setting is

controlled by the PA port on the MC6821. Two data bytes ($55 and $AA) are written sequentially on the

MC6821 PB port, and the R6522 ports are read and verified against the written data.

The next stage involves making one of the R6522's the talker. The other R6522s remain listeners, and

the MC6821 port PB is also made a listener. This is repeated until all the R6522 have been talkers. If one

or more errors occur, the diagnostic reports a failure to the 'Emulate' program. The diagnostic software does

not attempt to compute which port failed. It simply displays all the information in the form of which port

wrote data, the value of the data, and the values read on the other ports. Typical output is shown in Figure

4. The bad port in this example always reads the wrong data when the $55 data byte is broadcast giving the

vertical column under UY-A. When the bad R6522 port (UY-A) writes $55, all the other ports see $57, and

this makes up the horizontal row. On analyzing the data read and written, it is clear that bit 1 of port A of

chip U12 is open, and U12 should be replaced. Once the data bits have been tested, the interrupt lines CA1,

CA2, CB1 and CB2 are checked. These lines are connected to the A-side of U7 and are driven using the PB

port of U12 (the R6522). Each pin is programmed to cause an interrupt when a positive edge is applied to

it The positive edge is generated by software using the output port. If any pin fails the interrupt test, a

message is displayed indicating which chip failed, either U11 or U12.

After the parallel ports have been checked, both DTACKU and EXTSEL6800 are sampled using port A

on the MC6821. If either one is low, a message is displayed informing the user of which line is

continuously being driven low. This check catches incorrect wiring of external circuits or incorrect logic

design.

If all the above tests are carried out without errors, the monitor returns a message to the 'Emulate'

indicating that the diagnostics were passed. If any errors occur, these are sent to 'Emulate', and Emulate'

34

Figure 4

Diagnostic Report Follows:

Parallel Port Diagnostics (UX -x ->U11UY -x ->U12)

Control Port UX-A UX-B UY-A UY-B

Wrote 55 Read 55 Read 55 Read 57 Read 55

Wrote AA Read AA Read AA Read AA Read AA

Read 55 Wrote 55 Read 55 Read 57 Read 55

Read AA Wrote AA Read AA Read AA Read AA

Read 55 Read 55 Wrote 55 Read 57 Read 55

Read AA Read AA Wrote AA Read AA Read AA

Read 57 Read 57 Read 57 Wrote 55 Read 57

Read AA Read AA Read AA Wrote AA Read AA

Read 55 Read 55 Read 55 Read 57 Wrote 55

Read AA Read AA Read AA Read AA Wrote AA

Interrupt OK

Interrupt OK

Interrupt OK

Interrupt OK

Interrupt OK

Interrupt OK

Interrupt OK

Interrupt OK

Emulator aborting program.

displays them on the terminal screen. If the system is being used in user mode, all error messages are also

written to the terminal.

35

3.4 The ’Emulate* Program

The ’Emulate' program attempts to provide the user with a friendly environment in which

to develop programs. The program provides an environment similar to that of an HP64000 development

workstation. The 'Emulate' program is a modification of the *Z80 Emulate' program which was originally

written by Dr. J. D. Wise.

When the program is executed, it first establishes a communication link to the MC68008

via the serial port Once the link is established, the ’Emulate' program issues a command to the MC68008 to

execute the parallel port diagnostics. The MC68008 executes the diagnostics. If any errors are found, the

'Emulate' program displays them and aborts; otherwise, it displays the main menu.

The menu allows various functions to be selected using single key strokes,and an overall

command line is built up. Once the command line is ready for execution, the user types a return character to

invoke the command. The ’Emulate' program allows in-line loading of code, displaying of memory and

registers, disassembly, insertion of breakpoints, single stepping and symbol table look-up. The 'Emulate'

program also intercepts and displays all exceptions generated by the MC68008.

'Emulate' allows the user to communicate with the MC68008 directly using the serial

port, during the execution of user programs. The emulation software effectively makes the UNIX terminal

become a terminal connected to the system’s serial port The monitor also contains traps which send and

receive characters via the serial port, so implementation of interactive programs is very simple.

*Emulate' is available for both Sun workstations (effectively, any machine running UNIX)

and IBM PCs. The UNIX version is written entirely in 'C and should be easily transportable to most UNIX

implementations. (The only compatibility problems are in the use of UNIX I/O calls which differ slightly

with each specific implementation. 'Emulate' presently runs under HP-UNIX, PYRAMID BSD 4.2, and Sun

UNIX BSD 4.2.) The IBM version is written mainly using Microsoft 'C, although the serial

communication routines are written in assembly language. The IBM PC version requires a fully compatible

PC for correct operation.

For instructions on how to use 'Emulate' see the User Guide in chapter S.

Chapter 4

System Cost

36

During the R and D and production, careful emphasis was placed on minimizing the cost

of the system. The total cost of the system's R and D was approximately $2,000, of which about $500 was

spent on testing various power supplies.

The cost of producing the forty complete systems was $13,500 excluding R and D. It is

important to note that approximately $6,000 of this expenditure was on power supplies for the system.

These calculations do not include labor costs, although they do include printed circuit board and system

assembly costs.

Overall, this means that each system cost approximately $380 including R and D. Of the

$380 spent on each system, about $150 accounts for the power supply, the rest being charged to the actual

hardware. A parts list is given in given in Section 4.1.

The system also includes a substantial amount of software which transforms the

microcomputer into a useful development system. In reality, the software development cost would be a

considerable factor in the overall cost of the system.

4.1 Bills Of Materials

Microprocessor Board Bill-of-Materials

site part value manufactura- supplier specification

Cl 22u£ Panasonic Digi-Key tantalum, >= lOv
C2 lOuf Panasonic Digi-Key tantalum, >= lOv
D1 ECG-109 Sylvania fvd<=2v, piv>10v
D2 Red LED Panasonic Digi-Key any LED ok
D3, 1N4148 alternate: 1N914
PA 3433-6202 3M Novell 50 pin ribbon
PB 3433-6202 3M Novell 50 pin ribbon
PC 3428-6202 3M Novell 20 pin ribbon
R1 lk Digi-Key l/4watt, 20%
R2 1M Digi-Key l/4watt, 20%
R3 4.7k Digi-Key l/4watt, 20%
RN1 2.2k Panasonic Digi-Key Pull-ups to

5v on pin 1
RN2 4.7k Panasonic Digi-Key Pull-ups to

5v on pin 1

37
site part value manufacturer supplia specification

U1 74LS245 National Digi-Key
U2 74LS245 National Digi-Key
U3 MC68008PS Motorola Active
U4 16L8 MMI Quality any 16L8 ok
U5 74LS245 National Digi-Key
U6 74LS245 National Digi-Key
U7 OSC 7.3728Mhz FOX (F100 series) Active
U8 2764 Intel PROM 8k x 8
U9 2764(6264) Intel PROM(RAM) 8k x 8
U10 2764(6264) Intel PROM(RAM) 8k x 8
Ull 6522 Rockwell Active use 65NC22 if avail.
U12 6522 Rockwell Active use 65NC22 if avail.
U13 20L10 MMI Quality any 20L10 ok
U14 74LS73 National Digi-Key
U15 DS1488 National Digi-Key RS232 level tx
U16 MC68681P Motorola Active
U17 74LS132 National Digi-Key
U18 DS1489 National Digi-Key RS232 level rx
U19 74LS74 National Digi-Key

Buffer Board Bffl-of-Materials

site part value manufactura- SUBQllSC specification

BA Breadboard Conn. AP. Products Marshall
BB Breadboard Conn. AP. Products Marshall
BC Breadboard Conn. AP. Products Marshall
BD Breadboard Conn. AP. Products Marshall
DA RS232 Conn. Tex-Techsjnc. Digi-key
I» RS232 Conn. Tex-Techsjnc. Digi-key
RN1 2.2K Panasonic Digi-Key Pull-ups to

5v on pin 1
U1 74LS03 National Digi-Key
U2 74LS04 National Digi-Key
U3 74LS244 National Digi-Key
U4 74LS175 National Digi-Key
U5 MC6821P Motorola Schweba
U6 74LS138 National Digi-Key
U7 74LS245 National Digi-Key
U8 74HC4066 TJ. Schweba
U9 74HC4066 T.I. Schweba
U10 74HC4066 TJ. Schweba
Ull 74HC4066 T.L Schweba
U12 74LS245 National Digi-Key
U13 74HC4066 TJ. Schweba
U14 74HC4066 T.L Schweba
U15 74LS245 National Digi-Key
U16 74LS245 National Digi-Key
U17 74HC4066 TJ. Schweba
U18 74HC4066 T.L Schweba
U19 74HC4066 T.L Schweba
U20 74HC4066 T.L Schweba
U21 ICM7212IM Intersil Schweba

site part value manufacturer supplier specification

U22 7SEG LED HP. Schweber Common Anode
U23 7SEG LED HP. Schweber Common Anode
U24 7SEGLED HP. Schweber Common Anode
U25 7SEGLED HP. Schweber Common Anode

4.2 Fabrication

The Printed Circuit Boards were made using a program called Smartwork. Smartwork allows the PCB

to be designed interactively on an IBM PC. The final artwork is plotted on an HP plotter using vellum

film. The artwork was constructed into a PCB by a company called HEDCORE. The PCB is manufactured

from the photographed artwork. HEDCORE's address is:

5514 Mitchelldale

Houston, TX 77092

The boards were stuffed and assembled (i.e., wave soldered) by a company called M. & R., their

address is:

4910 Wright Rd

Suite 100

Stafford, TX 77477

39

CHAPTER 5

USER GUIDE

5.1 The Rice MC68008 Computer System

5.1.1 Introduction

The Rice MC68008 microcomputer system was designed specifically for use in the ELEC 426 course,

which teaches the fundamentals of digital system design. The system is comprised of a twin board microcomputer

based around the Motorola MC68008 (an MC68000 with an eight bit data bus), a breadboarding chassis containing

a switched mode power supply, breadboards for prototyping circuits, and switch modules furnishing LED outputs

and switches. The user communicates to the microcomputer by using software on the host computer (SUN 3)

which in turn communicates via an RS232 link to the microcomputer.

5.1.2 System Organization

The MC68008 is a single board microcomputer which contains a Motorola MC68008 microprocessor

running at 7.3728 MHz, 8 kbytes of EPROM, and 8 kbytes of static RAM, two Rockwell 6522 parallel port

devices, a Motorola 68681 DUART (Dual Universal Asynchronous Receiver Transmitter), RS232 level converters,

and discrete logic Cglue1) which allows these devices to talk to each other. The MC68008 sits on top of the mother

board, and connects to the mother board via 3 ribbon cables.

The mother board contains buffers and circuitry which aid internal diagnostics, four breadboard type

connectors which contain all pertinent signal lines, four seven-segment hexadecimal displays, and two DB25

connectors located at the rear of the board.

5.1.3 Address Space Management

The memory map of the MC68008 is shown in Table 1. Note that the MC68008 is purely memory mapped

and therefore, all I/O devices are in the memory address space. On the MC68008 all devices are allocated a 64k

byte address block (the top four lines A16-A19 are decoded). This means that the I/O devices have folded memory

addresses; .e.g., the transmit buffer on the DUART is located at $30006, $30026, $30046, etc. The bottom half of

the address space is already assigned (addresses $0-$7FFFF) and cannot be used by the developer. The top half of

the address space (addresses $80000-$FFFFF) is unused and should be used for development (see note 1).

40

Table. 1

8K bytes system Eprom

8K bytes RAM

8K bytes RAM or Eprom (unused)

M68681 QUART

R6522 Parallel Port

R6522 Parallel Port

SYSTEM USE ONLY

USER ADDRESS SPACE

$0-$FFFF

$10000-$1FFFF

$20000-$2FFFF

$30000-$3FFFF

$40000-$4FFFF

$50000-$5FFFF
$60000-$7FFFF

$80000-$FFFFF

Note: The System uses locations $11000-$11500 for internal housekeeping. The user must not write to

these locations. Communication to the host is done via channel A on the DUART. Channel B is available for

use by the user.

5.1.4 I/O Registers

The system has two parallel ports and a DUART, which are selected as shown above. For compatibility

with the MC68000 the devices are wired so that registers are addressed on even boundaries.

The exact location of each register is shown below:

DUART Registers R6522 Registers (X)

MR1A $30000 * ORB $40000
SRA $30002 * ORA $40002
CRA $30004 * DDRB $40004
RBA/TBA $30006 * DDRA $40006
IPCR $30008 T1C-L $40008
ISR $3000A T1C-H $4000A
CUR S3000C T1L-L $4000C
CLR $3000E T1L-H $4000E
MR1B $30010 T2C-L $40010
SRB $30012 T2C-IT $40012
CRB $30014 SR $40014
RBB/TBB $30016 ACR $40016
IVR $30018 PCR $40018

OPCR
OPR(SET)
OPR(RESET)

S3001A
$3001C
S3001E

IFR
1ER
ORA

$4001A
$4001C
$400IE

41

Registers marked with a ’*’ are for system use only.

The other R6S22 (Y) is located with a base address of $50000, and its registers are addressed

identically to those of (X).

5.1.5 Interrupt Structure

The MC68008 has three levels of interrupts available. The highest level (which is Non-maskable) is

used for the soft reset and is invoked by pressing the push button switch located on the MC68008 board.

The second level is used for DUART interrupts and should never be disabled via software. The lowest level

is used by the R6522 parallel port chips and may be disabled via software. (This means the user must only

set the interrupt mask to either level 0,1,2,3, or 4. Note, however, that on the MC68008 only levels

0,2,5,7 are of any relevance as EPL0 and EPL2 are internally tied together.) The default software environment

has all interrupts enabled, so unless one specifically wants to disable and re-enable interrupts, the interrupt

mask need not be altered (Programs must be running in Supervisor mode to alter the mask). Three lines

are connected to the lowest level interrupt, the two R6522 interrupt lines and an external interrupt signal

which is brought out to the connector. If one intends to use more than one source of interrupt generation

then one must poll to determine the source.

Table 2

Interrupt Structure

Priority Levels

Highest level

Lowest level

Priority Level Associated Device

Level 7 (NMI) NMI Switch

Level 5 DUART

Level 2
R6522 and external

interrupt line

42

Notes

1. Care must be exercised when interfacing devices into the memory map. During an interrupt

acknowledge cycle the user must ensure that his devices are not selected. See the MC68008 manual for

more details.

2. DTACKU has a propagation time of 48 nanoseconds. This timing requirement is important due to

the asynchronous setup time of DTACK. (see timing requirement 47 in the MC68008 Databook.)

3. USER PROGRAMS MUST INITIALIZE THE STACK POINTER !!

5.2 THE MC68000 ASSEMBLER

5.2.1 Introduction

The MC68000 cross assembler is a simple, one pass assembler that runs on any machine which

supports ’C. It accepts as input Motorola source code as defined in the Motorola "16 bit Microprocessor

Handbook”. Certain other pseudo-instructions are also accepted. These are described below.

5.2.2 Running the Assembler

The assembler is run by typing:

asm filename

The assembler will accept any filename, with any extension, but extensions must be specified.

When executed, the assembler will produce two output files:

hex - this contains the hexadecimal machine code which can be directly loaded

into the emulator or resident monitor.

hex.sym - this contains a symbol table which is useful for debugging.

The assembler supports the following options. They are entered as flags on the command line in the

usual UNIX fashion:

-o name - this explicitly names the output file to 'name' rather than defaulting to

hex'

-1 - this option produces a listing file which is sent to the standard output

device (normally the terminal). To place the listing into a file use redirection,

i.e., asm -1 file >listing

43

-c - the -c option adds object code to the output listing. Note the -c option

automatically invokes the 4 option.

•s -the-s option overrides internal boundary alignment When either string

or byte constants are specified, the assembler by default realigns the current location counter to an even

value if it was odd at the end of the string or byte declaration. This is annoying if the user wishes to mix

bytes and strings together as he must count the number of string characters to ensure an even number. If

the -s option is specified, then this internal boundary alignment is switched off and anything can be declared

on any boundary. (If care is not used address, however, errors will be generated, as the MC68000 must read

word and long word values from an even boundary.) An assembler pseudo-instruction is provided to assist in

this alignment, when using the -s option. At any point in the source code the instruction 'align' can be

inserted, to realign the current location counter to an even value.

5.2.3 Addressing Modes

The MC68000 assembler supports all the regular MC68000 addressing modes as shown below:

Addressing Mode Mnemonic

Dn Data register direct

An Address register direct

(An) Address register indirect

(An)+ Address register indirect with

post-incrementing

Address register indirect with

pre-decrement

d(An) Address register indirect with

displacement

d(An^Cn) Address register indirect with index and

displacement

label Absolute word or long

$integer Absolute

44

<KPC) Program counter with displacement

d(PC,Xn) Program counter with index and

displacement

Immediate Immediate data

Where:

n denotes the integers 0-7 for registers

X denotes either an address or data register

label is any program label and will result in either a long or word offset as

appropriate. Note: labels must be declared with a after the label name.

For example: here: bra here

A long offset is always assumed for a forward reference. Labels may have simple arithmetic associated

with them. Simple implies addition and subtraction only.

Immediate operands are specified by preceding the value with a '#' and have the following syntax:

here+2 is valid

here*2 is invalid

#$integer - hex constant

#integer - decimal constant

- current location counter

Examples

move.b #$FF,D0 ; move hex FF to DO

move.b #255,DO ; move hex FF (255 decimal) to DO

move.b $4(A0)JX) ; move contents of location pointed to by

; AO+4 to DO

45

Pseudo-Instructions

The following pseudo instructions axe supported:

Mnemonic Arguments Usa

org

equ

db

db

ds

end

align none

effective address

effective address

count,constant

count,constant

"string"

effective address

set location counter to address in

argument

equate symbol with address in argument

declare count locations with value

constant

declare count bytes with value constant

declare a string

terminate assembler input and set intial

program counter to effective address on

load

align current location counter to an even

boundary

exit none trap 0

; this trap forces an exit to the monitor. All user programs should use this trap to return

; control to the monitor

getb DO trap 1

; reads a hex byte (two ASCII hex digits, then converts to real hex) from the keyboard,

; returns it in DO

getw DO trap 2

; reads a hex word from the keyboard, returns value in DO

getl DO trap 3

46

; reads a hex long from the keyboard, returns value in DO

writb DO trap 4

; writes the byte value in DO onto the screen translating into ASCII hex digits first

; for example, if DO contains AS this routine will write A5 onto the terminal screen

writw DO trap 5

; writes the word value in DO onto the screen translating into ASCII hex digits first

writl DO trap 6

; writes the long value in DO onto the screen translating into hex digits first

getch DO trap 7

; read a character from the keyboard return ASCII value in DO. This read is a blocked read,

; the routine will return only after a character has been typed

writs AO trap 8

; this routine writes a string onto the screen. AO is passed to the routine containing the

; address of the first character of the string. The string must be terminated by a byte

; containing zero

write DO trap 9

; writes the value of DO onto the screen. No ASCII translations takes place. For example, if

; you pass this routine with a value of 65 (decimal), it will print an 'A' on the screen

crlf none trap 10

; this routine simply writes a newline on the terminal screen

super none trap 11

; this trap places the MC68008 into supervisor mode allowing execution of privileged

; instructions

The traps are self explanatory in that all arguments are passed and returned in DO with the exception of

crlf which has no argument, super which has no argument, exit which has no argument and writs in which

AO passes the address of the string to be written. All registers except the registers containing the parameters

and DO, are saved by the trap handlers.

47

General Notes

Important Ail instructions must be in lower case and registers must be in upper case.

Symbols are also case sensitive.

move.b D0.D1 Legal

MOVEB D0,D1 Illegal

move.b d041 Illegal

The assembler allows the user to specify byte, word or long instructions by adding ".b", ”.w" and "i" to

any instruction which allows different attributes. Branch instructions may specify ".s" for a short (byte)

displacement The pseudo instruction 'dc' also supports attributes, so words and long words can be specified

by using ”.w" and ”.1", respectively. String constants must be defined by surrounding quotes and are

constrained to thirty bytes. The backslash character allows control characters to be inserted into strings. The

allowable characters are shown below:

V - carriage return

\t -tab

\n -linefeed

-formfeed

\0 - ASCII value zero. This is important, as it is used to terminate strings for printing by the trap

'writs'.

The assembler also has built in some constants which are preassigned to assist in program development

These are listed below:

URAM -$10000 This is the address of the first free space for user programs.

USTK - $1102C This is the address of the recommended user stack space.

INTI - $11034 The address of the location in which the Level 2 interrupt jumps to.

The address of the location in which the Level 5 (DUART) INTO -$11026

48

interrupt jumps to when a DUART interrupt occurs. Note that

when an RRDYA interrupt occurs control is NOT passed to this

location.

These are used just as any other constant would be used, e.g., org URAM
Both INTI and INTO must be jump instructions to the user’s specific handler, as only 8 bytes are

reserved for each.

An Example Program

org $10000
start: lea $1102c,A0

move #2J)7
lab: lea mess^AO

writs
dtf D7Jab

exit
mess: ds "Hello thereNnVO"

end start

; user ram
; load Usa stack pointer via AO
; set count for loop to 2
; put address of first char in string
; write string onto screen
; repeat loop until D7 is $ffff (-1)
; Le., we w01 loop 3 times even though
; we loaded 2 into D7
; pass control back to monitor
; define string, terminate with 0 for
; writs
; set PC to label 'start', so after loading PC
; will already be loaded with the starting
; address of the program

. QWlfBUQ

5.3.1 Introduction

The Rice University MC68008 system has a ROM resident monitor called Owlbug. Owlbug is a

simple and easy-to-use monitor which allows interactive debugging of programs. Owlbug offers the

ability to modify registers, to insert breakpoints, and to single step instructions, and to trace programs. It

also provides full exception handling of processor errors, such as address and bus errors.

5.3.2 Using the Rice MC68008 system and Owlbug

The Rice MC68008 system can be run using any Personal Computer which has terminal emulation

software. The Rice MC68008 system uses the DB25 connector closest to the ribbon cables to

communicate to the terminal. This DB 25 connector is configured as a computer which means that the

pinout is as follows:

49

Pin 2 Receive Data

Pin 3 Transmit Data

Pin 7 Logic Ground

Once a suitable cable is connected from the PC to the MC68008, the PC should be booted and the

terminal emulator executed. When the terminal emulator is running the data communication parameters

should be set to:

1) 9600 Baud

2) 7 bits

3) 1 Stop bit

4) Even parity

5) Select (if available) XON/XOFF protocol. This will stop Owlbug overrunning the PC’s

internal receive buffer.

Now switch on the MC68008 system. A message saying "OWLBUG Monitor Version 5.5 Jan 88"

should appear and then a prompt of "!". At this stage Owlbug is ready to accept commands.

The MC68008 assembler is available running under UNIX, MSDOS (IBM PC compatibles),

Macintosh and AmigaDos. Suggested terminal emulators for these systems are:

MSDOS - Procomm, KermiL

Mac - Versaterm, MacterminaL

Amiga - VT100, Handshake.

Instructions

Notice the following abbreviations:

<sp> - a space

<cx> - a carriage return

addr - a hexadecimal address ranging from $0 to SFFFFFFFF (leading zeros are not needed)

xx - a hexadecimal byte (leading zeros are not needed)

yy - a two letter suing

Owlbug is case insensitive.

Commands supported by Owlbug are listed below:

Modify memory

Command Action

m<cn> Start memory mode.

m<sp>addr<cx> Start memory mode at addr.

Once in memory mode the following commands are available:

Command Action

.addr Set pointer to addr.

=xx

,xx

q

Store value xx at address in pointer.

Increment pointer and store xx.

Increment pointer.

Decrement pointer.

Exit memory mode.

50

Display memory

Command Action

ckcr> Display the next eighty bytes from memory pointer.

d<sp>addr<ci> Display the next eighty bytes from address addr.

(kspe>addrl,addi2<a> Display memory from addrl to addr2 inclusive.

Notice that the memory pointer is saved, so the following command sequence would render eighty

bytes to be displayed from address $1000, and then a further eighty bytes would be displayed from address

$1050.

d<sp>1000<cr>

<ko>

Load Program

Command Action

Start program load. The loading program expects to see a l<cr>

51

Motorola S-record format supporting 32 bit addressing. The

end record start address is loaded into the program counter

ready for the user to run the program. If the MC68008 is being

used in stand alone mode, the procedure for downline loading is:

1) Type Ixcn*' The MC68008 will respond with a message saying 'Loading...'.

2) Select the menu item on your terminal emulator for ASCII upload, and type in the file name.

3) The MC68008 should respond with Toad done' and it will display the value of the program

counter.

If for any reason this fails, type Ctrl-C, and the MC68008 will respond 'Stopped'. Then retry

the above procedure.

l<sp>addr<cr> Start program load, but offset each record by addr bytes.

The value for the Program Counter which is sent in the end

record is also offset by addr.

Programs compiled using the MC68008 assembler 'asm' will download into Owlbug via the load

command. The author is not aware of any other assemblers that produce the right output code for direct

loading into Owlbug, although a simple filter is available for the Commodore Amiga to allow output from

the Metacomco assembler and linker to be translated into Motorola S-record format

Register Modification and Examination

Command Action

r<sp>yy Start register mode, and set register to be modified to yy,

where yy may be either SR, PC, D0-D7.A0-A7.

.yy Set register to be modified to yy.

=addr Set register to addr. Notice that the SR register only takes a

16-bit value (in the range $0-$ffff).

<cr> Display all register values.

52

Breakpoint Instruction

Command Action

b+addr Insert breakpoint at address addr.

baddr ' Delete breakpoint at addr.

b<cr> Display all breakpoints.

b# Delete all breakpoints.

N3. The present monitor supports only two breakpoints.

Running Programs

Command Action

g<cr> Start program from address stored in Program counter.

g<sp>addr Start program from address addr.

USER PROGRAMS MUST INITIALIZE THE STACK !

This can be done by the following code:

lea USTK.A7 ; USTK is an assembler constant pointing to a user stack area.

Tracing and Stepping programs

Command Action

t+ Start trace. This turns tracing on. When the program is

executed via g. tracing will be displayed.

t- Switch trace mode off.

s- Switch single step mode off.

s+ Switch single step mode on. Similarly to t+, the g command

must be used to actually single step the program.

CODY memory

Command Action

53

c<sp>addr 1 =addi2,addr3<ei> Copy memory from locations addr2 through addr3, starting at

location addrl.

Help can be obtained by typing a '?' at the prompt.

5.3.3 Error handling

Owlbug supports error handling for all the MC68008 exceptions, which include address and bus errors,

illegal instructions, privilege violations, divide by zero, CHK, TRAPV, and spurious interrupts. Appropriate

messages are written to the terminal via the specific trap handlers. On an exception Owlbug first saves the user

registers, and then prints the appropriate message. The registers can then be viewed via the register command.

5.3.4 Stopping Owlbug

As Owlbug's input is purely interrupt driven, programs can be stopped by typing Ctrl-C. Owlbug

responds with a message ’Stopped’, and similarly to the exception handling, all the registers are saved and can be

viewed via the register command. In some cases runaway programs may destroy the interrupt vector and Ctrl-C

may have no effect In these situations Owlbug can be stopped by pressing the NMI switch on the MC68008

board. This will cause a non-maskable interrupt to be generated. The contents of the registers will be saved and

Owlbug will return with the message ’Stopped’. The latter procedure should never fail to bring Owlbug back to

life, but if for some unknown reason it fails, cycle power on the MC68008.

5.4 USING THE MC68000 EMULATE PROGRAM

5.4.1 Introduction

The MC68000 Emulate program provides a pleasant environment in which one can communicate with the

Rice MC68008 system. It facilitates in the downline loading and debugging of programs for the Rice MC68008

system. It was designed to Emulate the HP64000 ’’Emulate" function as closely as possible given the

implementational constraints.

5.4.2 Running the Emulator

The emulator is executed by typing: em

The emulator immediately attempts to establish communication with the Rice MC68008 system. If it

cannot establish communications due to the MC68008 system being switched off, it will display a message

54

requesting that the MC68008 system be switched on. When the MC68008 is switched on and the communication

link established, internal diagnostics are run. If the system fails its internal diagnostics, it will display a diagnostic

report on the terminal. Hopefully, the diagnostics should aid the instructional staff in fixing the system. Once the

system has passed the internal diagnostics, a menu of commands will appear at the bottom of the screen. Only a

subset of the available commands on the HP64000 are available in Emulate.

5.4.3 Interaction with Emulate

The command syntax for Emulate is essentially drawn from the HP64000. As a command is processed, a

menu on the bottom line of the screen indicates the options available at this level. The allowable options are

represented in two forms:

1) <letter>=<name> • e.g., d=display, typing <d> will cause <display> to be added to the

command line.

2) <ADDR> or <FELE> - a numeric (hexadecimal of course) or a file name may be entered.

As the command is processed through the various levels of menus, it appears on a line above the menu.

The various morn levels can be represented by a tree structure. When the command is complete, it can be executed

by typing RETURN. Backspacing over a command word moves the user back one level higher in the tree, and

control-U returns the user to the root level.

5.4.4 Numeric Input

All addresses and data values are in hexadecimal. The only exception, is the number of steps command,

which uses decimal for user convenience.

Commands

d=display

The display command is used to view the contents of memory locations and registers.

m=memory
The display memory command displays the contents of the specified memory locations.

i=io port

The display i/o port command displays a single memory mapped location.

<ADDR>
If a numeric quantity is entered, it is taken to be the beginning of the range of locations to
be displayed. If none is given the default is the previous value.

55

ffïïl as inn o(j[ç

This allows the user to select one of the two modes below. If this is omitted the default
mode is absolute.

a=abs
If absolute mode is specified, memory contents as hexadecimal numbers and their
equivalent ASCII characters are displayed on the right of the screen. All control and
non-printable characters are displayed as V.

US S mil 6 HI

If mnemonic mode is specified, memory contents are displayed as MC68008 instructions,

reregisters

The display registers command displays the contents of the MC68008 registers.

e=end

The end emulation command returns control to UNIX, the host operating system. Note when you
type 'e' the message 'end emulation’ appears and to execute the command (as with all commands) you
must hit return.

l=load

The load command loads the specified UNIX file into the memory of the Rice MC68008 system. The
file must be in four byte address S-iecord format. If the source file included a label as part of the end
statement, the value of this label will automatically be loaded into the MC68008 Program counter.
The program is then executed by selecting the run command and typing <retum>.

<FILE>

The file prompt is asking for a file name. Type in the relevant file name.

m=modify

The modify command allows you to set the contents of memory locations or registers,

msmemory

The modify memory command sets the contents of the specified address to the given value. The
previous contents of the location are displayed in brackets after the address. Only single
locations may be changed.

reregister
The modify register command sets the contents of the specified register to the given value. The
previous contents of the register are displayed in brackets. Either upper or lower case letters may
be used to select the registers.

i=io port
The modify i/o port command allows a single memory mapped location to be changed. This is
useful for changing the contents of peripheral devices, as this command does not read the location
first, as with the modify memory command.

r=nm
The run command executes a MC68008 program and allows an optional breakpoint to be added.

56
f=from

From allows the user to specify the address at which execution is to begin. If this is omitted
(RETURN is typed), the current value of the program count» in the MC68008 is used.

usnntil
Until allows the user to specify a breakpoint address in which control will be passed back to the
monitor when this address is executed. The address obviously must be in RAM, it must be the
first byte of an instruction and on the MC68000 it must be an even address.

s=step
The step command allows single stepping and tracing of MC68008 programs. After each step all the
registers and the next instruction are displayed on the terminal.

<# STEPS>
The number of instructions to step before returning control to the monitor may be specified (in
decimal). If this is omitted a single instruction is executed. When control is returned to the
monitor, an additional number of steps may be specified. Typing a space will cause Emulate to
execute a single instruction, and pressing return places you back at the top command level.

fafrom
From allows specification of the address at which stepping is to begin. If this is omitted the
current value of the program counter is used.

v=value of
This command allows you to find the value of a symbol used in the source code. Note when the
hex file is loaded, symbol table information is loaded via a file with the same name as the hex
file, but with an extension of.sym. If you rename the hex file and you wish to use symbol table
information you must also rename the.sym file.

<name>
Type in the name of the symbol and the value will be displayed on the screen.

Notes about the ’Emulate' Program.

Programs running under Emulate can be stopped by typing control-C. This stops the program in the

MC68008, and Emulate returns a register dump to the us». One side effect of a control-C is that the

MC68008 runs a software RESET instruction which resets all the peripheral ports. Both the registers and

memory are unaffected by the RESET instruction.

Also, the software which enables the 74HC4066 switches is only executed when entering Emulate'. If

the us» switches off the MC68008 system and does not terminate the Emulate' program, when power is

reapplied to the MC68008 system the 74HC4066 switches will still be disabled. To ensure this does not

happen, always exit Emulate' when powering down the MC68008.

57

Chapter 6

Conclusions

The MC68008 system has now been used successfully in the laboratory for approximately two

months. The system has proved to be reliable and robust in the laboratory environment A few very minor

bugs were discovered in the software. This is inevitable with any new system. All the known software

bugs have been fixed and the software appears to be solid.

The MC68008 system provides a low cost development station in which both hardware and software

can be developed. The MC68008 system allows maximum hands on experience in the laboratory

environment, as dozens of MC68008 systems can be bought for the cost of a single commercial

development workstation. The system is very easy to use, which is extremely important, in contrast to

many development systems which require large amounts of documentation and laborious manual reading.

All the system software is documented in about ten pages of text

As the developer uses the Sun workstation for file management and editing, most developers already

feel comfortable in using a system editor (of their choice) and file manipulation commands. The 'Emulate'

program is menu driven, so that very little system dependent knowledge is required to use the whole

system.

6.1 Further Software Development

There are, as always, several ways in which the software could be enhanced. Some possibilities are

discussed below.

The present assembler has no object module representation, so code cannot be linked together. This

means that all programs must be written in assembly language. The ability to link software could be

achieved by writing a utility to convert a Sun executable image into a Motorola S-record format This

would allow high level language programs written in 'C and Pascal' to be converted and run on the

MC68008 system. Alternatively the load module in 'Emulate' could be altered to read Sun executable

58

images directly. The 'Emulate' program could be added to indefinitely, with features like in-line assembly, a

shell command, multiple windowing, macro files, and numerous other features. The 'Emulate' program

presently drives a Sun workstation console, as well as the HP2391A terminals. Other terminal drivers

could be added (the Sun console emulates a VT100 terminal protocol). Use of the Sun console allows easy

access to edit, assemble and Emulate shells. Windowing software would also be easily implemented on a

Sun workstation.

Overall, the MC68008 system has proved to be ideally suited to laboratory use, providing essential

software development features. The system is low cost and easily maintainable. The system can be used in

two modes, either with die host software or stand alone. The stand alone software offers similar features to

those available via ’Emulate’ although they are less friendly. A tiny Forth compiler has successfully been

ported to the MC68008 system, using the stand alone software.

BIBLIOGRAPHY
59

Coffron, James. Using and Troubleshooting the MC68000. Reston, VA: Reston Publishing Company, 1983.

Harman,Thomas L. and Barbara Lawson. The Motorola MC68000 Microprocessor Family: Assembly Language.
Interface Design, and System Designs. Englewood Cliffs, NJ: Prentice-Hall, 198S.

Jaulent, Patrick. The 68000 Hardware and Software. Basingstoke, Hampshire (U.K.): Macmillan, 1985.

Kane,G. 68000 Microprocessor Handbook. Berkeley, CA: Osbome/McGraw-Hill, 1981.

Monolithic Memories. Programmable Logic Handbook. Santa Clara, CA: Monolithic Memories, 1985.

Motorola. Data Sheets for the MC68000 and MC68681. Austin,Texas: Motorola, 1985.

Motorola. MC68000 8-/16-/32-Bit Microprocessors.Programmer's Reference Manual. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

Rockwell. Data Sheets for the R6522. Newport Beach, CA: Rockwell, 1987.

Schwaderer.W. C Wizard's Programming Reference. New York, NY: Wiley Press, 1985.

Appendix A: PALASM Syntax and PAL Equations

The PALASM syntax is defined by the M.M.I. corporation. The equations used for the development

of the two PALs in this system were written using PALASM 2.

PALASM allows the design» to write equations using meaningful signal names. Firstly, PALASM

requires certain fields to be filled in, such as the title, the pattern, the revision, the author, the company,

the date and finally the chip name. Secondly, the designer defines names for all the pins on the PAL in

the heading section, starting from pin 1 and ending with pin 20 or 24 according to the size PAL. Names

are assumed to be positive if not specified otherwise. If the user wishes to specify an active low input or

output, a 7 must precede the signal name. The word EQUATIONS must appear next, followed by the

output pin equations. If the PAL is implementing purely sequential logic, the equations are written in the

form:

x=y*z+h*j

where the means logical AND and the V means logical OR. If a registered PAL function is used,

the sign is preceded by a to indicate the use of a register. The equations are written in a similar

manner to the header with a 7 being the NOT operator. The tri-state outputs are defined by their own

equation, which consists of the signal name plus the extension '.TRST. For example, see DTACK on the

20L10.

Comments can be included in the equations by the use of a';' character.

For more information on PALASM see the M.MX Programmable Array Logic handbook.

Appendix A- 1

TITLE ADDRESS DECODING PAL

PATTERN ADD.DAT
REVISION 1.2 (C) JULY 87

AUTHOR N.D.WAITES

COMPANY RICE UNIVERSITY
DATE JUNE 13 87

CHIP ADD_DECODER PAL20L10

/AS A19 A18 A17 A16 /DS RW /BG /EXTSEL6800 /IACK_DUART NC GND

/ICS3 /CS3 /CS5 /CS4 /CSO /CS1 /CS2 SEL6800 /DATA EN /DTACK EXR W VDD

EQUATIONS
CS 0-AS */A19 */ A18 */A17 */A16

CS1-AS */Al9 */Al8 */A17 *A16

CS2=AS*/A19*/A18*A17*/A16

CS3-AS */A19 */A18 *A17 *A16
CS4-AS*/A19*A18*/A17*/A16

CS 5-AS */Al9 *Al8 */A17 *Al6

/SEL6800-/CS4*/CS5*/EXTSEL6800

/EXR_W«BG*RW
+/RW*/BG

DATA EN-A19*AS*/IACK DUART

+BG*AS*/A19

+/A19 */BG*A18 *A17*A16 *AS

CHIP SELECTS I.E., $00000

$10000
$20000
$30000
$40000

$50000

DETERMINES WHEN A 6800 DEVICE IS
SELECTED.
USED TO GENERATE VPEN WHICH DRIVES VPA

THIS GENERATES A READ/WRITE DIRECTION
FOR THE DATA BUFFER (74LS245 - U5)
WHEN BG IS FALSE WE WANT NORMAL R/W AS

GENERATED BY THE 68008, WHEREAS WHEN

BG IS TRUE WE DESIRE R/W TO BE
INVERTED THIS IS EQUIVALENTLY

(BGN- BG ACTIVE LOW)

READ (HIGH) -
(NOT BGN)*R/W + BGN*(NOT R/W)

WRITE (LOW) -
BGN*R/W + (NOT BGN)*(NOT R/W)

ENABLE BUFFERS WHEN CPU GOES OFFBOARD

1.2 UPDATE : ADDED IACK_DUART TO STOP

U5 DRIVING THE BUS DURING AN IACK
CYCLE IN WHICH THE UART PASSES A

VECTOR TO THE CPU.
NOTE : WHEN EITHER OF THE 6800 IACK
CYCLES OCCUR AUTOVECTORING IS USED,

THE DATA BUFFER IS ENABLED AND DATA

IS PRESENTED TO THE CPU.
HOWEVER, THE CPU's DATA BUS IS IN HIGH

IMPEDANCE STATE AND THEREFORE IGNORES

THE DATA.

ALLOW DMA TRANSFERS TO ACCESS

MEM, VIAs, UART.
NOTE : USER CAN ONLY PLACE DEVICES IN

TOP HALF OF THE ADDRESS SPACE
$80000-$FFFFF.

ALLOWS OFFBOARD ADDRESSING OF BLOCK
$70000-$7FFFF WHICH IS USED FOR

ADDRESSING MOTHER BOARD DEVICES.

Appendix A- 2

DTACK=DS *CS 0 +DS*CS1+DS*CS2

THIS FREES THE WHOLE OF THE TOP 512K
ADDRESS SPACE FOR USE BY THE USER.

GENERATES DTACK FOR THE ROM/RAM's.
DTACK IS NOT USED TO STRETCH THE BUS
CYCLE WITH A 7.3728MHz CLOCK.THE
READ/WRITE CYCLE IS AROUND 300

NANOSECONDS, HENCE THE CPU RUNS FLAT
OUT. 200 NANOSECOND ROM/RAMs WORK OK

AS PAL DECODING TAKES AROUND 35nS,
250nS WILL PROBABLY WORK OK TOO.
NOTE : DTACK IS GENERATED EXCLUSIVELY

FOR ADDRESSES 0-2FFFF HEX. HOWEVER,
DTACK IS DRIVEN HIGH THROUGH ADDRESSES

$30000-$7FFFF

DTACK.TRST-

DS*/ICS3*/CS4*/CS5*/A19 NOTE : DTACK IS AN OPEN COLLECTOR

SIGNAL WHICH IS SIMULATED BY THE PAL
BY ENABLING THE OUTPUT WHEN WE WISH TO

DRIVE THE LINE ACTIVE (I.E., LOW),

ELSE IT REMAINS TRI-STATED.
1.1 UPDATE : ORIGINALLY THE TOP 512K

WAS TO HAVE A FULL SPEED DTACK
GENERATED BY THE PAL. A DISABLE LINE

WOULD HAVE ALLOWED THE USER TO EXTEND
THE BUS CYCLE.
HOWEVER, DUE TO THE LACK OF CONNECTOR

PINS THIS WAS DROPPED,AND THE MORE
USEFUL VPA SIGNAL WAS PROVIDED TO THE

USER. NOW ALL OFFBOARD DEVICES MUST
GENERATE THEIR OWN DTACK SIGNALS.
(OPEN COLLECTOR, OF COURSE)

ONBOARD FULL SPEED DTACK IS GENERATED

FOR ADDRESS RANGES : $00000-$2FFFF

(ROM/RAM)
N.B. : DURING AN IACK (INTERRUPT

ACKNOWLEDGE) CYCLE THE CPU OUTPUTS
A4-A19 HIGH, IF A DEVICE IS MAPPED

INTO THE TOP OF MEMORY THEN YOU MUST
DECODE THE FC0-FC2 SIGNALS TO
DETERMINE WHETHER THE CPU IS EXECUTING
A NORMAL MEMORY ACCESS OR AN INTERRUPT

ACKNOWLEDGE CYCLE.

Appendix A- 3

PALASM XPLOT, V2.12 I - M.M.I. INTERNAL RELEASE (2-JUL-1985)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC., 1984,1985

Title : ADDRESS DECODING PAL

Pattern : ADD.DAT

Revision : 1.2 (C) JULY 87

Author :

Company :

Date :

PAL20L10
ADD DECODER

11 1111 1111 2222 2222 2233 3333 3333
0123 4567 8901 2345 6789 0123 4567 8901 2345 6789

0
1 X
2 -X— X
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
4 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
5 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

8 -X— -X— —X- —X- —X-
9 -X— X

10 -X—
11 -x-x
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
13 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
15 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

16
17 X—X X
18
19
20

-x-x
_Y_v v V V “A*A
0000

A™

0000
A
0000

A——

0000 0000 0000
A™

0000 0000 0000 0000
21 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
22 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
23 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

24
25
26

_.Y-

xxxx xxxx xxxx xxxx xxxx xxxx xxxx
A—A—

xxxx
A

xxxx xxxx
27 XXXX xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
28 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
29 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
30 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
31 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

32
33 -x-x
34 xxxx xxxx xxxx xxxx xxxx xxxx XXXX xxxx XXXX xxxx

N.D.WAITES

RICE UNIVERSITY

JUNE 13 87

Appendix A- 4

35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
36 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
37 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
38 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
39 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

40
41 -x-x -X—
42 xxxx XXXX xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
43 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
44 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
45 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
46 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
47

48
49
50

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

-x-x
xxxx

-X—
xxxx

-X—
xxxx

-X—
xxxx xxxx xxxx xxxx xxxx xxxx xxxx

51 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
52 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
53 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
54 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
55 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

56
57
58

—.Y—V Y_ _ Y—— A A

xxxx
A

xxxx
A—

xxxx
A

xxxx xxxx xxxx xxxx xxxx xxxx xxxx
59 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
60 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
61 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
62 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
63

64
65
66

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

-x-x
xxxx

X
xxxx

-X—
xxxx

X
xxxx xxxx xxxx xxxx xxxx xxxx xxxx

67 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
68 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
69 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
70 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
71 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

72
73 -x-x
74 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
75 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

76 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
77 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
78 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
79 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Appendix A- 5

TOTAL FUSES BLOWN: 940

Appendix A- 6

TITLE 68008 INTERRUPT GLUE
PATTERN INT.DAT
REVISION 1.0b (C) JULY 87 INTERRUPT ACK OUTPUTS TRUE LOGIC ON A1-A2 (NOT
INVERTED !)

AUTHOR N.D.WAITES
COMPANY RICE UNIVERSITY

DATE JUNE 13 87

CHIP INT GLUE PAL16L8

A2 Al FCO FC1 FC2 /AS SEL6800 /IRQ_DUART /IRQ6522 GND
RESET /HALT /IACK6800 /IACK DUART VPA /SUPERV /IRQSW /IPL1 /IPL0_2 VDD

EQUATIONS
IPLO_2-IRQ_DUART

+IRQSW

IPL1-IRQ6 522 */IRQ_DUART
+IRQSW

I ACK_DUART=FC 0 *FC1 *FC2 *A1 * /A2 * AS

/VPA-/AS+/SEL6800*/IACK6800

IACK680 0-FC0 *FC1*FC2 */Al*A2
+FC0*FC1*FC2*A1*A2

; IPL0_2-DUART INT or
; NOTE: INTI ONLY BECOMES

; ACTIVE WHEN IRQSW IS ACTIVE
; OR WHEN IRQ6522 IS ACTIVE

; AND IRQ_DUART IS NEGATED

; I.E. WE HAVE PRIORITIES

; IPL1-DUART INT or NMI switch

; DUART HAS PRIORITY 5

; VPA - AS*(SEL6800+IACK6800)

; NMI PRIO 7, VIA PRIOR 2

SUPERV - /FCO *FC1*FC2 *AS+FC2 */FC1*FC0 *AS ; DECODE SUPERVISOR MODE

HALT - RESET
RESET IS INVERTED

HALT.TRST - RESET FAKE OPEN COLLECTOR TO ALLOW
FOR SOFTWARE RESET DRIVING
THE RESET LINE

Appendix A- 7

PALASM XPLOT, V2.12 I - M.M.I. INTERNAL RELEASE (2-JUL-1985)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC., 1984,1985

Title : 68008 INTERRUPT GLUE Author : N.D.WAITES

Pattern : INT.DAT Company : RICE UNIVERSITY

Revision : 1.0b (C) JULY 87 INTERRU Date : JUNE 13 87

PAL16L8
INT GLUE

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

0
1 -X—
2 X
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
4 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
7 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

8
9 X -X—

10 X
11 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
12 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
13 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
15 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

16 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
17 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
18 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
19 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
20 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
21 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
22 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

24
25
26

_v__ X
-X—

Y--- .Y— À

X
A***

X
A
-X—

27 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
28 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
29 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
30 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

32
33

Appendix A- 8

34
35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
36 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
37 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

40
41 X—X
42 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
43 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
44 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
45 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
46 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
47 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

48
49 -XX- X X X
50
51

x-x-
xxxx

X
XXXX

X
XXXX

X
xxxx xxxx xxxx xxxx xxxx

52 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

56 —X-

57 —X-

58 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
59 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
60 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
61 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
62 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

TOTAL FUSES BLOWN: 574

Appendix A- 9

Appendix B: Program Examples

This appendix contains two simple programs which demonstrate various

features of the system and two others which can be used as diagnostic

aids. The following programs plus all the source to the monitor, the

MC68000 assembler and Emulate* program are available on CLEO, in

sub-directories below /ul/hd/src/426. The four sub-directories are named

asm, em, mon and examples.

P.r.Qgram-1

The first program simply displays four identical digits on the LED

displays, counting up every quarter of a second. The display should

read 10000f, 11111*, etc. The LED display driver IC is driven by the VIA

in this example. The following connections must be made for this program

to work correctly :-

From IQ.

BC-25 7212-ADO BD 9 X-PA4

BC-24 7212-ADI BD 10 X-PA5

BC-23 7212-CS1 BD 11 X-PA6

BD-25 7212-DO BD 5 X-PAO

BD-24 7212-D1 BD 6 X-PA1

BD-23 7212-D2 BD 7 X-PA2

BD-22 7212-D3 BD 8 X-PA3

A jumper block marked LED is available

Daugherty) . This can be plugged straight into

for diagnostic testing.

from A145 (see Hubert

the breadboard connector

Appendix B- 1

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

1: org $10000
2: xouta: equ $40002

3: xdda: equ $40006

4: go: bsr messg

5: move^b #$ff,xdda ; set X-A to output mode

6: clr.b xouta ; write zero

7: sd: clr .w D2 ; numeric counter

8: move.w #3,D3 ; address counter

9: start : bsr writled

10: bsr delay

11: addi.w #$1111,D2

12: bcs sd

13: bra start

14: writled: move.wD2,D5

15: ledl:
16: move.w D5,D4

17: andi.w #$f,D4

18: move.b D3fDl

19: asl.b #4,D1

CODE

40002

40006

10000 6100
10002 fffe

10004 13fc
10006 OOff
10008 0004
1000a 0006

1000c 4239
1000e 0004
10010 0002

10012 4242

10014 363c
10016 0003

10018 6100
1001a ffe6

1001c 6100
1001e ffe2

10020 0642
10022 1111

10024 6500
10026 ffec

10028 6000
1002a ffee

1002c 3a02

1002e 3805

10030 0244
10032 OOOf

10034 1203

Appendix B- 2

20: or.b D4,D1

21: andi #$bf,Dl

22: move .b Dl,xouta

10036 e901

10038 8204

1003a 0241
1003c OObf

1003e 13cl

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

10040 0004
10042 0002

23: ori.b #$40,D1
10044 0001
10046 0040

24: move.b Dl,xouta
10048 13cl
1004a 0004
1004c 0002

25: asr.w #4,D5
1004e e845

26: dbf D3,ledl
10050 51cb
10052 ffdc

27: move.w #3,D3
10054 363c
10056 0003

28: rts
10058 4e75

29:
30: delay: move #$2fff,D7

1005a 3e3c
1005c 2£ff

31: delayl: ori.b #$80,xouta
1005e 0039
10060 0080
10062 0004
10064 0002

32: andi.b #$7f,xouta
10066 0239
10068 007f
1006a 0004
1006c 0002

33: dbf D7,delayl
1006e 51cf
10070 ffee

34: rts
10072 4e75

35: messg: lea mess, A0
10074 41f 9

Appendix B- 3

36: writs

37 ; rts

38: mess: ds " LED diagnostic

10076 0000
10078 0000

1007a 4e48

1007c 4e75

1007e 20
1007f 4c
10080 45
10081 44
10082 20
10083 64
10084 69
10085 61
10086 67
10087 6e

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

10088 6f
10089 73
1008a 74
1008b 69
1008c 63
1008d 20

39: ds "check\n\r\0"
1008e 63
1008f 68
10090 65
10091 63
10092 6b
10093 0a
10094 Od
10095 00

40 : end go

Appendix B- 4

Program 2

This program demonstrates how the assembler can be used to write

relocatable code. The memory test program contains no absolute

addressing. It can be loaded anywhere in memory and then executed. The

program also uses the TRAP instructions to fetch numbers from the user.

When the program is executed it first requests the starting addressing of

the memory test. It then prompts for the number of bytes to be tested.

The program runs and reports the status of the memory check.

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

1: org $0
2: amess: ds "Input start address ?\0"

0000 49
0001 6e
0002 70
0003 75
0004 74
0005 20
0006 73
0007 74
0008 61
0009 72
000a 74
000b 20
000c 61
OOOd 64
000e 64
OOOf 72
0010 65
0011 73
0012 73
0013 20
0014 3f
0015 00

3: mess: ds "Memory error at \0"
0016 4d
0017 65
0018 6d
0019 6f
001a 72

Appendix B- 5

001b 79
001c 20
001d 65
OOle 72
OOlf 72
0020 6f
0021 72
0022 20
0023 61
0024 74
0025 20
0026 00

4: mien: ds "Input length of test ?\0"
0028 49
0029 6e
002a 70
002b 75
002c 74
002d 20
002e 6c
002f 65
0030 6e
0031 67
0032 74
0033 68

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

0034 20
0035 6f
0036 66
0037 20
0038 74
0039 65
003a 73
003b 74
003c 20
003d 3f
003e 00

5: welc: ds " Memory test VI.0 (NDW) "
0040 20
0041 4d
0042 65
0043 6d
0044 6f
0045 72
0046 79
0047 20
0048 74
0049 65
004a 73

Appendix B- 6

004b 74
004c 20
004d 56
004e 31
004f 2e
0050 30
0051 20
0052 28
0053 4e
0054 44
0055 57
0056 29
0057 20

6: ds " Dec 1 87 Rice Univ."
0058 20
0059 44
005a 65
005b 63
005c 20
005d 31
005e 20
005f 38
0060 37
0061 20
0062 52
0063 69
0064 63
0065 65
0066 20
0067 55
0068 6e
0069 69

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

7

006a 76
006b 2e

ds " (Completely relocatable) "
006c 20
006d 28
006e 43
006f 6f
0070 6d
0071 70
0072 6c
0073 65
0074 74
0075 65
0076 6c
0077 79
0078 20

Appendix B- 7

0079 72
007a 65
007b 6c
007c 6f
007d 63
007e 61
007f 74
0080 61
0081 62
0082 6c
0083 65
0084 29
0085 20

8: ds "\r\n\n\0"
0086 Od
0087 Oa
0088 Oa
0089 00

9: good: ds " No errors found \r\n\0"
008a 20
008b 4e
008c 6f
008d 20
008e 65
008f 72
0090 72
0091 6f
0092 72
0093 73
0094 20
0095 66
0096 6f
0097 75
0098 6e
0099 64
009a 20
009b Od
009c 0a
009d 00

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

10: gol:
11: clr .b D5

12: lea welc (PC) t A0

13: writs

14: bsr getadd

009e 4205

OOaO 41fa
00a2 ff9e

00a4 4e48

Appendix B- 8

00a6 6100
00a8 ff58

15: bsr go
OOaa 6100
OOac ff54

16: bsr start
OOae 6100
OObO ff50

17: bsr go
00b2 6100
00b4 f£4c

18: bsr check
00b6 6100
00b8 ff 48

19: tst.b D5
OOba 4a05

20: bne lexit
OObc 6600
OObe ff 42

21: lea good (PC) r A0
OOcO 41fa
00c2 ffc8

22: writs
00c4 4e48

23: lexit: exit
00c6 4e40

24: check:
25: bsr getn

00c8 6100
OOca ff36

26: cxnp.b (A4) +r D0
OOcc bOlc

27: beq tnext
OOce 6700
OOdO ff30

28: moveq #1,D5
00d2 7a01

29: lea mess (PC),A0
00d4 41fa
00d6 ff 40

30: writs
00d8 4e48

31: move.1 A4, D0
OOda 200c

32: subq.l #1,D0
OOdc 5380

33: writl

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

00de 4e46

Appendix B- 9

34 crlf
00e0 4e4a

35: tnext: dbf D7,check
00e2 51cf
00e4 ffe4

36: rts
00e6 4e75

37: getadd: lea amesa (PC), AO
00e8 41fa
OOea ffl6

38: writs
OOec 4e48

39: getl
OOee 4e43

40: movea.l D0,A6
OOfO 2c40

41: crlf
00f2 4e4a

42: lea mien (PC), AO
OOf 4 41fa
OOf 6 ff32

43: writs
OOf 8 4e48

44: getw
OOfa 4e42

45: subq #1,DO
OOfc 5340

46: move.w D0,D6
OOfe 3c00

47: crlf
0100 4e4a

48: crlf
0102 4e4a

49: rts
0104 4e75

50:
51:
52: go: move .w D6,D7

0106 3e06
53: clr.b D1

0108 4201
54 : clr.b D2

010a 4202
55: clr.b D3

010c 4203
56: movea.l A6,A4

010e 284e
57: rts

0110 4e75
58: start :
59: bsr getn

0112 6100
0114 feec

60: move.b DO, (A4) +

Appendix B- 1 0

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

0116 18c0

. 61: dbf D7,start
0118 51cf
011a fff 8

62: rts
011c 4e75

63: getn:
64: clr.b. D0

011e 4200
65:
66:
67:
68: add.b D1,D0

0120 dOOl
69: add.b D2,D1

0122 d202
70: addq #1,D3

0124 5243
71: cmpi.b #7,D3

0126 0c03
0128 0007

72: bne next
012a 6600
012c fed4

73: clr.b D3
012e 4203

74: addq.b #1,D2
0130 5202

75: next : rts
0132 4e75

76: end gol

Appendix B- 11

Program 3

Program 3 is a simple diagnostic program that checks that the

74HC4066s are functioning correctly. The program reads and writes to the

parallel ports verifying the data. This program also requires jumpers

across the breadboard connector. All the data bits on the X port should

be looped to the data bits on the Y port. This means connections should

be made from :

From To

BC-5 Y-PA0 BD-5 X-PA0

BC-6 Y-PA1 BD-6 X-PA1

down to

BC-12 Y-PA7 BD-12 X-PA7

and similarly for the B ports; i.e., Y-PBO to X-PBO upto Y-PB7 to

X-PB7. A jumper block which has this connections is available from A145

(see Hubert).

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

1: org URAM
2: xdda: equ $40006

40006
3: ydda: equ $50006

50006
4: youta: equ $50002

50002
5: xouta: equ $40002

40002
6: yinb: equ $50000

50000
7: xinb: equ $40000

40000
8: yddb: equ $50004

50004

9: xddb: equ $40004
40004

Appendix B- 12

10:
11: start: lea tmess,A0

10000 41f 9
10002 0000
10004 0000

12: writs
10006 4e48

13: getch
10008 4e47

14: clr.b noerr
1000a 4239
1000c 0000
1000e 0000

15: move.b #$ffrydda
10010 13fc
10012 OOff
10014 0005
10016 0006

16: move.b #$55ryouta
10018 13fc
1001a 0055
1001c 0005
1001e 0002

17: cmpi.b #$55rxouta
10020 0c39
10022 0055
10024 0004
10026 0002

18: beq tlok
10028 6700
1002a £fd6

19: addq.b #1,noerr
1002c 5239
1002e 0000
10030 0000

20: tlok: move.b #$aa,youta
10032 13fc
10034 OOaa
10036 0005
10038 0002

21 : cmpi.b #$aa,xouta
1003a 0c39
1003c OOaa
1003e 0004
10040 0002

22: beq t2ok

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

10042 6700
10044 ffbc

Appendix B- 13

23 addq.b #lrnoerr
10046 5239
10048 0000
1004a 0000

24: clr.b ydda

25: t2ok: move.b #$ff,yddb

26: move.b #$55ryinb

27: cmpi.b #$55,xinb

28: beq t3ok

29: addq.b #1,noerr

30: t3ok: move.b #$aa,yinb

31: cmpi.b #$aa,xinb

32: beq t4ok

33: addq.b #1,noerr

34: t4ok: tst.b noerr

35 : beq testok

1004c 4239
1004e 0005
10050 0006

10052 13fc
10054 OOff
10056 0005
10058 0004

1005a 13fc
1005c 0055
1005e 0005
10060 0000

10062 0c39
10064 0055
10066 0004
10068 0000

1006a 6700
1006c ff 94

1006e 5239
10070 0000
10072 0000

10074 13fc
10076 OOaa
10078 0005
1007a 0000

1007c 0c39
1007e OOaa
10080 0004
10082 0000

10084 6700
10086 f f7a

10088 5239
1008a 0000
1008c 0000

1008e 4a39
10090 0000
10092 0000

10094 6700

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice Ü.

Appendix B- 14

Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department
CODE

10096 ff 6a
36: lea err,A0

10098 41f 9
1009a 0000
1009c 0000

37: writs
1009e 4e48

38: bra fin
lOOaO 6000
100a2 ff5e

39: testok: lea good, AO
100a4 41f 9
100a6 0000
100a8 0000

40: writs
lOOaa 4e48

41: fin: clr.b yddb
lOOac 4239
lOOae 0005
lOObO 0004

42: exit
100b2 4e40

43:
44: tmess : ds "Insert tester with”

100b4 49
100b5 6e
100b6 73
100b7 65
100b8 72
100b9 74
lOOba 20
lOObb 74
lOObc 65
lOObd 73
lOObe 74
lOObf 65
lOOcO 72
lOOcl 20
100c2 77
100c3 69
100c4 74
100c5 68

45: ds " 1PORT9 at the top"
100c6 20
100c7 27
100c8 50
100c9 4f
lOOca 52
lOOcb 54
lOOcc 27

Appendix B- 1 5

lOOcd 20
lOOce 61
lOOcf 74
lOOdO 20
lOOdl 74
100d2 68

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

100d3 65
100d4 20
100d5 74
100d6 6f
100d7 70

46: ds " between BC and BD"
100d8 20
100d9 62
lOOda 65
100db 74
10Ode 77
lOOdd 65
lOOde 65
lOOdf 6e
lOOeO 20
lOOel 42
100e2 43
100e3 20
100e4 61
100e5 6e
100e6 64
100e7 20
100e8 42
100e9 44

47: ds "\r\n\nThen hit any "
lOOea Od
lOOeb Oa
lOOec Oa
lOOed 54
lOOee 68
lOOef 65
lOOfO 6e
lOOfl 20
100f2 68
100f3 69
100£4 74
100f5 20
100£6 61
100f7 6e
lOOf8 79
lOOf9 20

48: ds "key to test\r\n\0"

Appendix B- 1 6

lOOfa 6b

lOOfb 65
lOOfc 79

lOOfd 20

lOOfe 74
lOOff 6f

10100 20
10101 74
10102 65

10103 73
10104 74

10105 Od

10106 Oa

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

10107 00
49: err: ds "\r\nConnector bad !!!\r\n\0"

10108 Od
10109 0a
1010a 43

1010b 6f

1010c 6e
lOlOd 6e
1010e 65

lOlOf 63

10110 74
10111 6f
10112 72
10113 20
.10114 62

10115 61
10116 64
10117 20

10118 21
10119 21

1011a 21

1011b Od
1011c 0a
lOlld 00

50: good: ds "\r\nConnector OK\r\n\0"
1011e Od

lOllf 0a
10120 43

Appendix B- 17

51: noerr: db 1,0

52 : end start

10121 6f
10122 6e
10123 6e
10124 65
10125 63
10126 74
10127 6f
10128 72
10129 20
1012a 4f
1012b 4b
1012c Od
1012d 0a
1012e 00

10130 00

Appendix B- 1 8

Program 4

Program 4 demonstrates how to use the auxiliary serial port with the

ROM support routines. The ROM routines allow interrupt driven buffering

of data from the second parallel port. Note: the default software sets

the second serial port at 9600 baud, even parity, and one stop bit.

This program requires a terminal to be connected to the second serial

port, enabling the user to interact with the program.

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix, IBM PC,Amiga & Macintosh

CODE

Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

1:
2 : start :

3:

4 :

5: fred:

6:

7: fredl:

8:

9:

10:

11:

12:

13:

org $10000

lea USTK, A7

super

move.b #$22,$3000a ; allow both ports

lea mess, A0

bsr writm

jsr $5a4 ; get char from aux port

move.b D0,D1

write ; echo on users terminal

jsr $36a ; echo on aux terminal

cmpi.b #$d,Dl

10000 4ff9
10002 0001

10004 113c

10006 4e4b

to interrupt
10008 13fc

1000a 0022

1000c 0003

1000e 000a

10010 41f9
10012 0000
10014 0000

10016 6100

10018 ffe8

1001a 4eb8

1001c 05a4

1001e 1200

10020 4e49

10022 4eb8
10024 036a

10026 OcOl

10028 OOOd

bne fredl

Appendix B- 19

14: move.b #2,$3000a
interrupt

15: andi #$df££,SR

16: exit

17 : writm: move.b (A0)+,D0

18: beq done

19: jsr $36a

20: bra writm

1002a 6600
1002c ffee

now only allow terminal port to

1002e 13fc
10030 0002
10032 0003
10034 000a

10036 027c
10038 dfff

1003a 4e40

1003c 1018

1003e 6700
10040 ffcO

10042 4eb8
10044 036a

Motorola 68000 Cross Assembler Version 5a Feb 88 Rice U.
Cross assembles 68000 on Unix,IBM PC,Amiga & Macintosh

CODE
Assembler V5.0 (C) 1988 Rice & Vanderbilt EE & CS Department

21: done: rts

22: mess : ds "\n\rEnter line <en"

23: ds "d with CR>\0"

10046 6000
10048 ££f 4

1004a 4e75

1004c 0a
1004d Od
1004e 45
1004f 6e
10050 74
10051 65
10052 72
10053 20
10054 6c
10055 69
10056 6e
10057 65
10058 20
10059 3c
1005a 65
1005b 6e

1005c 64
1005d 20
1005e 77
1005f 69

Appendix B- 20

10060 74
10061 68
10062 20
10063 43
10064 52
10065 3e
10066 00

end start

Appendix B- 21

APPENDIX C: BOARD MODIFICATIONS

Memory Modifications

where x—*oc indicates a break in
the trace,

Appendix C-l

DMA Modifications
where x—x indicates a break in
the trace,
and — represents a jumper
connecting two points.

Appendix C-2

AE yacjiJM D: MOTOROLA S-RECORD FORMAT

The Motorola S-record format information is reproduced courtesy of Stag
Microsystems.

3-Data Record (Eight Character Address) I 4 BYTES
7-fend Record (Eight Character Address) I

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 01000000

START CODE
NO. OF BYTES
IN EACH RECORO

jlOOGGOdl 2343678 2343678123436781234567812343678123456781234pl
151OOOOIF 367812343678123436781234367812343678123436781234367E 7F
31000034123456781234567812 DAT1U781234367812345678123456781234 ED
3100004E 567812343678123436781234367812343678123436781234367q4E
31000068123436781234567812343678123456781234567812343678123'
31000082567812343678123436781234367
aiooooonF7-

RECORO TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORO

CHECKSUM OF
EACH RECORO

3-Data Record (Eight Character Address)
7-End Record (Eight Character Address) 4 BYTES

Appendix D-l

MOTOROLA S-RECORO

The MOTOROLA S-RECORD is identical to its standard version when
displayed, up to the point that the data's address goes beyond FFFF and
thus requires a 5th digit, e.g.: 10000. To compensate for this addition an
extra byte is added to the address giving 010000.

When this occurs the record type changes:

The data record changes from 1 to 2
and the end record changes from 9 to 8.

Similarly when the data address goes beyond FFFFFF a 7th digit is
required and likewise a byte is added giving the address 8 characters:
01000000.

When this occurs:

Thé data record changes from 2 to 3
and the end record changes from 8 to 7.

The MOTOROLA S-RECORD consists of:

(i) a start code, i.e.: S

(ii) the record types, i.e.: 1 —Data Record (Four Character address)
9—End Record (Four Character address)

2— Data Record (Six character address)
8—End Record (Six character address)

3— Data record (Eight character address)
7—End Record (Eight character address)

(iii) The sum of the number of bytes in an individual record, e.g.: 1D

(iv) the address of the first byte of data in an individual record, e.g.:
0000, 010000,01000000

(v) data in bytes, e.g.: 12 34 56 78

(vi) checksum of an individual record: 24

Appendix D-2

CALCULATION OF THE MOTOROLA S-RECORD CHECKSUM

S11DOOOO1234567312345678123456781234 56 701234567812345678123424
Kiimririnifi.AHEi
S9030000FC

EXAMPLE: THE SECOND "DATA RECORD" OF THE ABOVE FORMAT.

(i) this is: S1 04 00 1A56 8B

(ii) the start code, the record type
and the checksum are removed: S1 8B

(iii) four bytes remain: 04 00 1A 56

(iv) these are added together: 04 + 00+ 1A + 56 - 74

(v) the total '74' is converted into 7 4
Binary: 0111 0100

(vi) the Binary figure is reversed. 8 B
This is known as a complement*: 1000 1011

(vii) 8B corresponds to the checksum
as above: S1 04 00 1A 56

When addition of information occurs in longer records the checksum may
consist of more than one byte. When this occurs the least significant byte
is always selected to undergo the above calculation.

•When no additional figures are added to this calculation it is called a
one's complement.

Appendix D-3

Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

Appendix E

PA Connector (Microprocessor Board)

Description Pin Description
AO 26 BG
A1 27 D7
A2 28 EXSEL6800
A3 29 D6
A4 30 BERR
A5 31 D5
A6 32 AS
A7 33 D4
A8 34 DS
A9 35 D3
A10 36 RW
A11 37 D2
A12 38 DTACK
A13 39 D1
A14 40 BGACK
A15 41 DO
GND 42 BR
GND 43 GND
A16 44 GND
A17 45 VMA
A18 46 RES
A19 47 IRQ6522
FCO 48 E
FC1 49 VPEN
FC2 50 CLK

Appendix E-1

Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

PB Connector (Microprocessor Board)

Description Pin Description
OP3 26 Y-PA7
OP2 27 OSD
IP5 28 OSD

IP2 29 X-PB0
GMD 30 Y-PBO
GND 31 X-PB1
X-CA1 32 Y-PB1
Y-CA1 33 X-PB2
X-CA2 34 Y-PB2
Y-CA2 35 X-PB3
X-PAO 36 Y-PB3
Y-PAO 37 X-PB4
X-PA1 38 Y-PB4
Y-PA1 39 X-PB5
X-PA2 40 Y-PB5
Y-PA2 41 X-PB6
X-PA3 42 Y-PB6
Y-PA3 43 X-PB7
X-PA4 44 Y-PB7
Y-PA4 45 X-CB1
X-PA5 46 Y-CB1
Y-PA5 47 X-CB2
X-PA6 48 Y-CB2
Y-PA6 49 GMD
X-PA7 50 GND

Appendix E- 2

PC Connector (Microprocessor board)

Pin Description Pin Description
1 +12 11 CTSA
2 +12 12 RXB
3 -12 13 Q\D
4 -12 14 GMD
5 RTSB 15 GND
6 RTSA 16 GMD
7 TXA 17 +5
8 TXB 18 +5
9 CTSB 19 +5
10 RXA 20 +5

Connectors (Buffer Board)

BA BE

Pin No. Description Pin No. Description
1 RESET* 1 AO
2 R/W 2 A1
3 E 3 A2
4 AS* 4 A3
5 OP2 5 A4
6 CLK 6 A5
7 DS* 7 A6
8 VMA 8 A7
9 EXSEL6800* 9 A8
10 GMD 10 A9
11 GMD 11 A10
12 DO 12 A11
13 D1 13 A12
14 D2 14 A13
15 D3 15 A14
16 D4 16 A15
17 D5 17 A16
18 D6 18 A17

Appendix E- 3

Pin No. Description Pin No. Description

19 D7 19 A18
20 BR* 20 A19
21 BG* 21 GND
22 IRQ* 22 GMD
23 FCO 23 DTACKU
24 FC1 24 IP2
25 FC2 25 OP3

* REPRESENTS A’LOW ASSERTED SIGNAL

Appendix E- 4

Appendix F: 'Emulate' Message System

•Emulate' communication protocol.

The nine basic primitives which are used to communicate with the MC68008 are listed below. These

primitives are implemented in the module called 'monitor.c'. The modular structure of 'Emulate' allows

other systems to be interfaced to the program by the adaption of the basic communication primitives.

Getmem

The getmem primitive requests data from the CPU to be sent to the 'Emulate' program. The

’Emulator’ program send an address followed by a byte count. The syntax is:

oXXXXXXXX YY<cr>

where XXXXXXXX is a 32-bit address sent as an 8-digit ASCII hexadecimal number. The byte count

is a single byte hex number sent as a two-digit ASCII number, e.g.,

OÛ0010002 0A<cr> will request the next ten bytes of memory starting from address $10002 to be sent to

'Emulate'. The bytes are also received as ASCII hexadecimal digits. If the MC68008 fails to access the

desired memory location, due to a bus error, the monitor sends a control-H to the 'Emulate' program with an

ASCH text message following that describes the error.

Putmem

The putmem primitive sends data from the 'Emulate' program to the MC68008's memory. The syntax

is as follows:

iXXXXXXXX<ci>[YY] [YY]...<cr>.

The starting address is sent similarly to the getmem primitive. Each byte of data to be sent is formatted

into a two-digit ASCII hexadecimal number. The number of data bytes sent is variable. The end of the

command is indicated by sending a <ci>. If the MC68008 was unable to write into memory, a control-H is

sent to 'Emulate', followed by the error message.

Getstat

The getstat primitive requests the MC68008 to send the present contents of its registers to the

'Emulate' program. The command is issued by sending a V. The MC68008 then responds by sending the

registers as ASCII hexadecimal digits, (the exact order in which registers are sent can be found in 'sbc.h').

Appendix F- 1

Setstat

The getstat primitive requests the MC68008 to load its registers from the data sent from the 'Emulate’

program. 'Emulate* sends a 'q' followed by 140 ASCII digits which represent the values to be placed in the

CPU's registers. A <ci> is sent to indicate the end of the command.

Setbreak

The setbreak primitive allows breakpoints to be added into memory. The setbreak command simply

sends an address to the monitor program. The syntax is:

b+XXXXXXXX

The breakpoint is inserted at the ASCII address to which XXXXXXXX refers. The monitor programs

responds by sending a message back indicating that the breakpoint was added. The message has the form:

Breakpoint added at XXXXXXXX<cr>

If the breakpoint cannot be inserted due to an address error, the monitor sends the same error code as

mentioned above (Le., control-H, followed by an ASCII message).

Dorun

The Dorun primitive executes a program bom a given address. The syntax is:

gXXXXXXXX

Once program execution begins, the 'Emulator' waits for one of two messages to be returned. If the

program runs and then terminates correctly, a control-B is sent to Emulate'. If however, the program

causes an exception to be generated, the normal error code sequence is sent.

Dostep

The dostep primitive instructs the MC68008 to execute one instruction from the present value in the

Program Counter. The syntax for this command is:

s+g<cr>s-

After this message is sent, the MC68008 executes the instruction. If the MC68008 returns a message

of the form 'Program Counter=XXXXXXXX, then the step command was successful. If the step command

fails the MC68008 sends an error message.

Appendix F- 2

Reset Sbc

The Reset_Sbc primitive attempts to Reset the MC68008. First a control-A is sent to the MC68008.

This message instructs the monitor program to stop sending data over the serial line. This is necessary as

user programs can interact via the Sun console, and 'Emulate' needs to distinguish the messages sent by the

monitor. Once data is no longer being sent by the monitor, 'Emulate' discards all input data that has been

buffered by UNIX. 'Emulate' then sends a control-C to the MC68008. If the control-C was received

correctly (Le., the DUART has not been 'trashed*), the monitor responds by sending a 'Stopped<cr>'

message to 'Emulate'. If the control-C character was not received properly, "Emulate' displays a message on

the console asking for the NMI button to be activated. When the NMI button is released the monitor sends

the 'Stopped<cr>' message to 'Emulate'. Once 'Emulate' receives this message, it returns to the main

menu.

Rundiag

The rundiag primitive is used to check the parallel ports on the MC68008 system. The letter 'x'

commands the MC68008 board to execute the diagnostic software. If the system passes all the diagnostic

routines, the MC68008 sends a control-G to the 'Emulate' program. If any errors occur, the MC68008 board

sends a control-H followed by an ASCII text message describing the error. The error message is terminated

by a control-G.

Appendix F- 3

