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Abstract
We develop a probabilistic framework for deep learning based on the Deep Render-
ing Mixture Model (DRMM), a new generative probabilistic model that explicitly
capture variations in data due to latent task nuisance variables. We demonstrate
that max-sum inference in the DRMM yields an algorithm that exactly reproduces
the operations in deep convolutional neural networks (DCNs), providing a first
principles derivation. Our framework provides new insights into the successes and
shortcomings of DCNs as well as a principled route to their improvement. DRMM
training via the Expectation-Maximization (EM) algorithm is a powerful alternative
to DCN back-propagation, and initial training results are promising. Classification
based on the DRMM and other variants outperforms DCNs in supervised digit
classification, training 2-3× faster while achieving similar accuracy. Moreover, the
DRMM is applicable to semi-supervised and unsupervised learning tasks, achiev-
ing results that are state-of-the-art in several categories on the MNIST benchmark
and comparable to state of the art on the CIFAR10 benchmark.

1 Introduction
Humans are adept at a wide array of complicated sensory inference tasks, from recognizing objects
in an image to understanding phonemes in a speech signal, despite significant variations such as
the position, orientation, and scale of objects and the pronunciation, pitch, and volume of speech.
Indeed, the main challenge in many sensory perception tasks in vision, speech, and natural language
processing is a high amount of such nuisance variation. Nuisance variations complicate perception
by turning otherwise simple statistical inference problems with a small number of variables (e.g.,
class label) into much higher-dimensional problems. The key challenge in developing an inference
algorithm is then how to factor out all of the nuisance variation in the input. Over the past few decades,
a vast literature that approaches this problem from myriad different perspectives has developed, but
the most difficult inference problems have remained out of reach.

Recently, a new breed of machine learning algorithms have emerged for high-nuisance inference
tasks, achieving super-human performance in many cases. A prime example of such an architecture
is the deep convolutional neural network (DCN), which has seen great success in tasks like visual
object recognition and localization, speech recognition and part-of-speech recognition.

The success of deep learning systems is impressive, but a fundamental question remains: Why do they
work? Intuitions abound to explain their success. Some explanations focus on properties of feature
invariance and selectivity developed over multiple layers, while others credit raw computational
power and the amount of available training data. However, beyond these intuitions, a coherent
theoretical framework for understanding, analyzing, and synthesizing deep learning architectures has
remained elusive.

In this paper, we develop a new theoretical framework that provides insights into both the successes
and shortcomings of deep learning systems, as well as a principled route to their design and improve-
ment. Our framework is based on a generative probabilistic model that explicitly captures variation
due to latent nuisance variables. The Rendering Mixture Model (RMM) explicitly models nuisance
variation through a rendering function that combines task target variables (e.g., object class in an
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object recognition) with a collection of task nuisance variables (e.g., pose). The Deep Rendering
Mixture Model (DRMM) extends the RMM in a hierarchical fashion by rendering via a product of
affine nuisance transformations across multiple levels of abstraction. The graphical structures of the
RMM and DRMM enable efficient inference via message passing (e.g., using the max-sum/product
algorithm) and training via the expectation-maximization (EM) algorithm. A key element of our
framework is the relaxation of the RMM/DRMM generative model to a discriminative one in order to
optimize the bias-variance tradeoff. Below, we demonstrate that the computations involved in joint
MAP inference in the relaxed DRMM coincide exactly with those in a DCN.

The intimate connection between the DRMM and DCNs provides a range of new insights into how
and why they work and do not work. While our theory and methods apply to a wide range of different
inference tasks (including, for example, classification, estimation, regression, etc.) that feature a
number of task-irrelevant nuisance variables (including, for example, object and speech recognition),
for concreteness of exposition, we will focus below on the classification problem underlying visual
object recognition. The proofs of several results appear in the Appendix.

2 Related Work

Theories of Deep Learning. Our theoretical work shares similar goals with several others such
as the i-Theory [1] (one of the early inspirations for this work), Nuisance Management [27], the
Scattering Transform [6], and the simple sparse network proposed by Arora et al. [2].

Hierarchical Generative Models. The DRMM is closely related to several hierarchical models,
including the Deep Mixture of Factor Analyzers [30] and the Deep Gaussian Mixture Model [32].

Like the above models, the DRMM attempts to employ parameter sharing, capture the notion of
nuisance transformations explicitly, learn selectivity/invariance, and promote sparsity. However,
the key features that distinguish the DRMM approach from others are: (i) The DRMM explicitly
models nuisance variation across multiple levels of abstraction via a product of affine transformations.
This factorized linear structure serves dual purposes: it enables (ii) tractable inference (via the max-
sum/product algorithm), and (iii) it serves as a regularizer to prevent overfitting by an exponential
reduction in the number of parameters. Critically, (iv) inference is not performed for a single variable
of interest but instead for the full global configuration of nuisance variables. This is justified in low-
noise settings. And most importantly, (v) we can derive the structure of DCNs precisely, endowing
DCN operations such as the convolution, rectified linear unit, and spatial max-pooling with principled
probabilistic interpretations. Independently from our work, Soatto et al. [27] also focus strongly on
nuisance management as the key challenge in defining good scene representations. However, their
work considers max-pooling and ReLU as approximations to a marginalized likelihood, whereas our
work interprets those operations differently, in terms of max-sum inference in a specific probabilistic
generative model. The work on the number of linear regions in DCNs [15] is complementary to our
own, in that it sheds light on the complexity of functions that a DCN can compute. Both approaches
could be combined to answer questions such as: How many templates are required for accurate
discrimination? How many samples are needed for learning? We plan to pursue these questions in
future work.

Semi-Supervised Neural Networks. Recent work in neural networks designed for semi-supervised
learning (few labeled data, lots of unlabeled data) has seen the resurgence of generative-like ap-
proaches, such as Ladder Networks [20], Stacked What-Where Autoencoders (SWWAE) [34] and
many others. These network architectures augment the usual task loss with one or more regularization
term, typically including an image reconstruction error, and train jointly. A key difference with our
DRMM-based approach is that these networks do not arise from a proper probabilistic density and as
such they must resort to learning the bottom-up recognition and top-down reconstruction weights
separately, and they cannot keep track of uncertainty.

3 The Deep Rendering Mixture Model: Capturing Nuisance Variation

Although we focus on the DRMM in this paper, we define and explore several other interesting
variants,including the Deep Rendering Factor Model (DRFM) and the Evolutionary DRMM (E-
DRMM), both of which are discussed in more detail in [18] and the Appendix. The E-DRMM
is particularly important, since its max-sum inference algorithm yields a decision tree of the type
employed in a random decision forest classifier[5].
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Figure 1: Graphical model depiction of (A) the Shallow Rendering Models and (B) the DRMM. All
dependence on pixel location x has been suppressed for clarity. (C) The Sparse Sum-over-Paths
formulation of the DRMM. A rendering path contributes only if it is active (green arrows).

3.1 The (Shallow) Rendering Mixture Model
The RMM is a generative probabilistic model for images that explicitly models the relationship
between images I of the same object c subject to nuisance g ∈ G, where G is the set of all nuisances
(see Fig. 1A for the graphical model depiction).

c ∼ Cat({πc}c∈C), g ∼ Cat({πg}g∈G), a ∼ Bern({πa}a∈A),

I = aµcg + noise. (1)

Here, µcg is a template that is a function of the class c and the nuisance g. The switching variable
a ∈ A = {ON, OFF} determines whether or not to render the template at a particular patch; a
sparsity prior on a thus encourages each patch to have a few causes. The noise distribution is from the
exponential family, but without loss of generality we illustrate below using Gaussian noiseN (0, σ21).
We assume that the noise is i.i.d. as a function of pixel location x and that the class and nuisance
variables are independently distributed according to categorical distributions. (Independence is
merely a convenience for the development; in practice, g can depend on c.) Finally, since the world is
spatially varying and an image can contain a number of different objects, it is natural to break the
image up into a number of patches, that are centered on a single pixel x. The RMM described in (1)
then applies at the patch level, where c, g, and a depend on pixel/patch location x. We will omit the
dependence on x when it is clear from context.

Inference in the Shallow RMM Yields One Layer of a DCN. We now connect the RMM with the
computations in one layer of a deep convolutional network (DCN). To perform object recognition
with the RMM, we must marginalize out the nuisance variables g and a. Maximizing the log-posterior
over g ∈ G and a ∈ A and then choosing the most likely class yields the max-sum classifier

ĉ(I) = argmax
c∈C

max
g∈G

max
a∈A

ln p(I|c, g, a) + ln p(c, g, a) (2)

that computes the most likely global configuration of target and nuisance variables for the image.
Assuming that Gaussian noise is added to the template, the image is normalized so that ‖I‖2 = 1,
and c, g are uniformly distributed, (2) becomes

ĉ(I) ≡ argmax
c∈C

max
g∈G

max
a∈A

a(〈wcg|I〉+ bcg) + ba (3)

= argmax
c∈C

max
g∈G

ReLu(〈wcg|I〉+ bcg) + b0 (4)

where ReLU(u) ≡ (u)+ = max{u, 0} is the soft-thresholding operation performed by the rec-
tified linear units in modern DCNs. Here we have reparameterized the RMM model from the
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moment parameters θ ≡ {σ2, µcg, πa} to the natural parameters η(θ) ≡ {wcg ≡ 1
σ2µcg, bcg ≡

− 1
2σ2 ‖µcg‖22, ba ≡ ln p(a) = lnπa, b0 ≡ ln

(
p(a=1)
p(a=0)

)
. The relationships η(θ) are referred to as the

generative parameter constraints.

We now demonstrate that the sequence of operations in the max-sum classifier in (3) coincides exactly
with the operations involved in one layer of a DCN: image normalization, linear template matching,
thresholding, and max pooling. First, the image is normalized (by assumption). Second, the image is
filtered with a set of noise-scaled rendered templates wcg. If we assume translational invariance in
the RMM, then the rendered templates wcg yield a convolutional layer in a DCN [11] (see Appendix
Lemma A.2). Third, the resulting activations (log-probabilities of the hypotheses) are passed through
a pooling layer; if g is a translational nuisance, then taking the maximum over g corresponds to max
pooling in a DCN. Fourth, since the switching variables are latent (unobserved), we max-marginalize
over them during classification. This leads to the ReLU operation (see Appendix Proposition A.3).

3.2 The Deep Rendering Mixture Model: Capturing Levels of Abstraction
Marginalizing over the nuisance g ∈ G in the RMM is intractable for modern datasets, since G will
contain all configurations of the high-dimensional nuisance variables g. In response, we extend the
RMM into a hierarchical Deep Rendering Mixture Model (DRMM) by factorizing g into a number of
different nuisance variables g(1), g(2), . . . , g(L) at different levels of abstraction. The DRMM image
generation process starts at the highest level of abstraction (` = L), with the random choice of the
object class c(L) and overall nuisance g(L). It is then followed by random choices of the lower-level
details g(`) (we absorb the switching variable a into g for brevity), progressively rendering more
concrete information level-by-level (`→ `−1), until the process finally culminates in a fully rendered
D-dimensional image I (` = 0). Generation in the DRMM takes the form:

c(L) ∼ Cat({πc(L)}), g(`) ∼ Cat({πg(`)}) ∀` ∈ [L] (5)

µc(L)g ≡ Λgµc(L) ≡ Λ
(1)

g(1)
Λ

(2)

g(2)
· · ·Λ(L−1)

g(L−1)Λ
(L)

g(L)µc(L) (6)

I ∼ N (µc(L)g,Ψ ≡ σ21D), (7)
where the latent variables, parameters, and helper variables are defined in full detail in Appendix B.

The DRMM is a deep Gaussian Mixture Model (GMM) with special constraints on the latent variables.
Here, c(L) ∈ CL and g(`) ∈ G`, where CL is the set of target-relevant nuisance variables, and G` is the
set of all target-irrelevant nuisance variables at level `. The rendering path is defined as the sequence
(c(L), g(L), . . . , g(`), . . . , g(1)) from the root (overall class) down to the individual pixels at ` = 0.
µc(L)g is the template used to render the image, and Λg ≡

∏
` Λg(`) represents the sequence of local

nuisance transformations that partially render finer-scale details as we move from abstract to concrete.
Note that each Λ

(`)

g(`)
is an affine transformation with a bias term α

(`)

g(`)
that we have suppressed for

clarity. Fig. 1B illustrates the corresponding graphical model. As before, we have suppressed the
dependence of g(`) on the pixel location x(`) at level ` of the hierarchy.

Sum-Over-Paths Formulation of the DRMM. We can rewrite the DRMM generation process
by expanding out the matrix multiplications into scalar products. This yields an interesting new
perspective on the DRMM, as each pixel intensity Ix =

∑
p λ

(L)
p a

(L)
p · · ·λ(1)

p a
(1)
p is the sum over all

active paths to that pixel, of the product of weights along that path. A rendering path p is active iff
every switch on the path is active i.e.

∏
` a

(`)
p = 1 . While exponentially many possible rendering

paths exist, only a very small fraction, controlled by the sparsity of a, are active. Fig. 1C depicts the
sum-over-paths formulation graphically.

Recursive and Nonnegative Forms. We can rewrite the DRMM into a recursive form as z(`) =

Λ
(`+1)

g(`+1)z
(`+1), where z(L) ≡ µc(L) and z(0) ≡ I . We refer to the helper latent variables z(`) as

intermediate rendered templates. We also define the Nonnegative DRMM (NN-DRMM) as a DRMM
with an extra nonnegativity constraint on the intermediate rendered templates, z(`) ≥ 0∀` ∈ [L].
The latter is enforced in training via the use of a ReLu operation in the top-down reconstruction
phase of inference. Throughout the rest of the paper, we will focus on the NN-DRMM, leaving the
unconstrained DRMM for future work. For brevity, we will drop the NN prefix.

Factor Model. We also define and explore a variant of the DRMM that where the top-level latent
variable is Gaussian: z(L+1) ∼ N (0,1d) ∈ Rd and the recursive generation process is otherwise
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identical to the DRMM: z(`) = Λ
(`+1)

g(`+1)z
(`+1) where g(L+1) ≡ c(L). We call this the Deep Rendering

Factor Model (DRFM). The DRFM is closely related to the Spike-and-Slab Sparse Coding model
[25]. Below we explore some training results, but we leave most of the exploration for future work.
(see Fig. 3 in Appendix C for architecture of the RFM, the shallow version of the DRFM)

Number of Free Parameters. Compared to the shallow RMM, which hasD |CL|∏` |G`| parameters,
the DRMM has only

∑
` |G`+1|D`D`+1 parameters, an exponential reduction in the number of free

parameters (Here GL+1 ≡ CL and D` is the number of units in the `-th layer with D0 ≡ D). This
enables efficient inference, learning, and better generalization. Note that we have assumed dense
(fully connected) Λg’s here; if we impose more structure (e.g. translation invariance), the number of
parameters will be further reduced.

Bottom-Up Inference. As in the shallow RMM, given an input image I the DRMM classifier infers
the most likely global configuration {c(L), g(`)}, ` = 0, 1, . . . , L by executing the max-sum/product
message passing algorithm in two stages: (i) bottom-up (from fine-to-coarse) to infer the overall class
label ĉ(L) and (ii) top-down (from coarse-to-fine) to infer the latent variables ĝ(`) at all intermediate
levels `. First, we will focus on the fine-to-coarse pass since it leads directly to DCNs.

Using (3), the fine-to-coarse NN-DRMM inference algorithm for inferring the most likely cateogry
ĉL is given by

argmax
c(L)∈C

max
g∈G

µTc(L)gI = argmax
c(L)∈C

max
g∈G

µTc(L)

1∏
`=L

ΛTg(`)I

= argmax
c(L)∈C

µTc(L) max
g(L)∈GL

ΛTg(L) · · · max
g(1)∈G1

ΛTg(1) |I︸ ︷︷ ︸
≡ I1

= · · · ≡ argmax
c(L)∈C

µTc(L)I
(L). (8)

Here, we have assumed the bias terms αg(`) = 0. In the second line, we used the max-product
algorithm (distributivity of max over products i.e. for a > 0, max{ab, ac} = amax{b, c}). See
Appendix B for full details. This enables us to rewrite (8) recursively:

I(`+1) ≡ max
g(`+1)∈G`+1

(Λg(`+1))T︸ ︷︷ ︸
≡W (`+1)

I(`) = MaxPool(ReLu(Conv(I(`)))), (9)

where I(`) is the output feature maps of layer `, I(0) ≡ I and W (`) are the filters/weights for layer `.
Comparing to (3), we see that the `-th iteration of (8) and (9) corresponds to feedforward propagation
in the `-th layer of a DCN. Thus a DCN’s operation has a probabilistic interpretation as fine-to-coarse
inference of the most probable configuration in the DRMM.

Top-Down Inference. A unique contribution of our generative model-based approach is that we have
a principled derivation of a top-down inference algorithm for the NN-DRMM (Appendix B). The
resulting algorithm amounts to a simple top-down reconstruction term În = Λĝnµĉ(L)

n
.

Discriminative Relaxations: From Generative to Discriminative Classifiers. We have con-
structed a correspondence between the DRMM and DCNs, but the mapping is not yet complete.
In particular, recall the generative constraints on the weights and biases. DCNs do not have such
constraints — their weights and biases are free parameters. As a result, when faced with training data
that violates the DRMM’s underlying assumptions, the DCN will have more freedom to compensate.
In order to complete our mapping from the DRMM to DCNs, we relax these parameter constraints,
allowing the weights and biases to be free and independent parameters. We refer to this process as a
discriminative relaxation of a generative classifier ([16, 4], see the Appendix D for details).

3.3 Learning the Deep Rendering Model via the Expectation-Maximization (EM) Algorithm
We describe how to learn the DRMM parameters from training data via the hard EM algorithm in
Algorithm 1.

The DRMM E-Step consists of bottom-up and top-down (reconstruction) E-steps at each layer ` in
the model. The γncg ≡ p(c, g|In; θ) are the responsibilities, where for brevity we have absorbed a
into g. The DRMM M-step consists of M-steps for each layer ` in the model. The per-layer M-step
in turn consists of a responsibility-weighted regression, where GLS(yn ∼ xn) denotes the solution
to a generalized Least Squares regression problem that predict targets yn from predictors xn and is
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Algorithm 1 Hard EM and EG Algorithms for the DRMM

E-step: ĉn, ĝn = argmax
c,g

γncg

M-step: Λ̂g(`) = GLS︸︷︷︸ (I(`−1)
n ∼ ẑ(`)

n | g(`) = ĝ(`)
n

)
∀g(`)

G-step: ∆Λ̂g(`) ∝ ∇Λ
g(`)

`DRMM (θ)

closely related to the SVD. The Iversen bracket is defined as JbK ≡ 1 if expression b is true and is 0
otherwise.

There are several interesting and useful features of the EM algorithm. First, we note that it is a
derivative-free alternative to the back propagation algorithm for training that is both intuitive and
potentially much faster (provided a good implementation for the GLS problem). Second, it is easily
parallelized over layers, since the M-step updates each layer separately (model parallelism). Moreover,
it can be extended to a batch version so that at each iteration the model is simultaneously updated
using separate subsets of the data (data parallelism). This will enable training to be distributed easily
across multiple machines. In this vein, our EM algorithm shares several features with the ADMM-
based Bregman iteration algorithm in [31]. However, the motivation there is from an optimization
perspective and so the resulting training algorithm is not derived from a proper probabilistic density.
Third, it is far more interpretable via its connections to (deep) sparse coding and to the hard EM
algorithm for GMMs. The sum-over-paths formulation makes it particularly clear that the mixture
components are paths (from root to pixels) in the DRMM.

G-step. For the training results in this paper, we use the Generalized EM algorithm wherein we
replace the M-step with a gradient descent based G-step (see Algorithm 1). This is useful for
comparison with backpropagation-based training and for ease of implementation. But before we use
the G-step, we would like to make a few remarks about the proper M-step of the algorithm, saving
the implementation for future work.

Flexibility and Extensibility. Since we can choose different priors/types for the nuisances g, the
larger DRMM family could be useful for modeling a wider range of inputs, including scenes, speech
and text. The EM algorithm can then be used to train the whole system end-to-end on different
sources/modalities of labeled and unlabeled data. Moreover, the capability to sample from the model
allows us to probe what is captured by the DRMM, providing us with principled ways to improve the
model. And finally, in order to properly account for noise/uncertainty, it is possible in principle to
extend this algorithm into a soft EM algorithm. We leave these interesting extensions for future work.

3.4 New Insights into Deep Convnets
DCNs are Message Passing Networks. The DRMM inference algorithm is equivalent to performing
max-sum-product message passing of the DRMM Note that by “max-sum-product” we mean a novel
combination of max-sum and max-product as described in more detail in the proofs in the Appendix.
The factor graph encodes the same information as the generative model but organizes it in a manner
that simplifies the definition and execution of inference algorithms [10]. Such inference algorithms
are called message passing algorithms, because they work by passing real-valued functions called
messages along the edges between nodes. In the DRMM, the messages sent from finer to coarser levels
are in fact the feature maps I(`). The factor graph formulation provides a powerful interpretation: the
convolution, Max-Pooling and ReLu operations in a DCN correspond to max-sum/product inference
in a DRMM. Thus, we see that architectures and layer types commonly used in today’s DCNs can be
derived from precise probabilistic assumptions that entirely determine their structure. The DRMM
therefore unifies two perspectives — neural network and probabilistic inference (see Table 2 in the
Appendix for details).

Shortcomings of DCNs. DCNs perform poorly in categorizing transparent objects [23]. This
might be explained by the fact that transparent objects generate pixels that have multiple sources,
conflicting with the DRMM sparsity prior on a, which encourages few sources. DCNs also fail to
classify slender and man-made objects [23]. This is because of the locality imposed by the locally-
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connected/convolutional layers, or equivalently, the small size of the template µc(L)g in the DRMM.
As a result, DCNs fail to model long-range correlations.

Class Appearance Models and Activity Maximization. The DRMM enables us to understand how
trained DCNs distill and store knowledge from past experiences in their parameters. Specifically, the
DRMM generates rendered templates µc(L)g via a mixture of products of affine transformations, thus
implying that class appearance models in DCNs are stored in a similar factorized-mixture form over
multiple levels of abstraction. As a result, it is the product of all the filters/weights over all layers
that yield meaningful images of objects (Eq. 7). We can also shed new light on another approach
to understanding DCN memories that proceeds by searching for input images that maximize the
activity of a particular class unit (say, class of cats) [26], a technique we call activity maximization.
Results from activity maximization on a high performance DCN trained on 15 million images is
shown in Fig. 1 of [26]. The resulting images reveal much about how DCNs store memories. Using
the DRMM, the solution I∗

c(L) of the activity maximization for class c(L) can be derived as the sum
of individual activity-maximizing patches I∗Pi

, each of which is a function of the learned DRMM
parameters (see Appendix E):

I∗c(L) ≡
∑
Pi∈P

I∗Pi
(c(L), g∗Pi

) ∝
∑
Pi∈P

µ(c(L), g∗Pi
). (10)

This implies that I∗
c(L) contains multiple appearances of the same object but in various poses. Each

activity-maximizing patch has its own pose g∗Pi
, consistent with Fig. 1 of [26] and our own extensive

experiments with AlexNet, VGGNet, and GoogLeNet (data not shown). Such images provide strong
confirmational evidence that the underlying model is a mixture over nuisance parameters, as predcted
by the DRMM.

Unsupervised Learning of Latent Task Nuisances. A key goal of representation learning is to
disentangle the factors of variation that contribute to an image’s appearance. Given our formulation of
the DRMM, it is clear that DCNs are discriminative classifiers that capture these factors of variation
with latent nuisance variables g. As such, the theory presented here makes a clear prediction that for
a DCN, supervised learning of task targets will lead to unsupervised learning of latent task nuisance
variables. From the perspective of manifold learning, this means that the architecture of DCNs is
designed to learn and disentangle the intrinsic dimensions of the data manifolds.

In order to test this prediction, we trained a DCN to classify synthetically rendered images of
naturalistic objects, such as cars and cats, with variation in factors such as location, pose, and lighting.
After training, we probed the layers of the trained DCN to quantify how much linearly decodable
information exists about the task target c(L) and latent nuisance variables g. Fig. 2 (Left) shows that
the trained DCN possesses significant information about latent factors of variation and, furthermore,
the more nuisance variables, the more layers are required to disentangle the factors. This is strong
evidence that depth is necessary and that the amount of depth required increases with the complexity
of the class models and the nuisance variations.

4 Experimental Results
We evaluate the DRMM and DRFM’s performance on the MNIST dataset, a standard digit classifica-
tion benchmark with a training set of 60,000 28× 28 labeled images and a test set of 10,000 labeled
images. We also evaluate the DRMM’s performance on CIFAR10, a dataset of natural objects which
include a training set of 50,000 32× 32 labeled images and a test set of 10,000 labeled images. In all
experiments, we use a full E-step that has a bottom-up phase and a principled top-down reconstruction
phase. In order to approximate the class posterior in the DRMM, we include a Kullback-Leibler
divergence term between the inferred posterior p(c|I) and the true prior p(c) as a regularizer [9].
We also replace the M-step in the EM algorithm of Algorithm 1 by a G-step where we update
the model parameters via gradient descent. This variant of EM is known as the Generalized EM
algorithm [3], and here we refer to it as EG. All DRMM experiments were done with the NN-DRMM.
Configurations of our models and the corresponding DCNs are provided in the Appendix I.

Supervised Training. Supervised training results are shown in Table 3 in the Appendix. Shallow
RFM: The 1-layer RFM (RFM sup) yields similar performance to a Convnet of the same configuration
(1.21% vs. 1.30% test error). Also, as predicted by the theory of generative vs discriminative
classifiers, EG training converges 2-3x faster than a DCN (18 vs. 40 epochs to reach 1.5% test error,
Fig. 2, middle). Deep RFM: Training results from an initial implementation of the 2-layer DRFM
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Figure 2: Information about latent nuisance variables at each layer (Left), training results from EG
for RFM (Middle) and DRFM (Right) on MNIST, as compared to DCNs of the same configuration.

EG algorithm converges 2 − 3× faster than a DCN of the same configuration, while achieving a
similar asymptotic test error (Fig. 2, Right). Also, for completeness, we compare supervised training
for a 5-layer DRMM with a corresponding DCN, and they show comparable accuracy (0.89% vs
0.81%, Table 3).

Unsupervised Training. We train the RFM and the 5-layer DRMM unsupervised with NU images,
followed by an end-to-end re-training of the whole model (unsup-pretr) usingNL labeled images. The
results and comparison to the SWWAE model are shown in Table 1. The DRMM model outperforms
the SWWAE model in both scenarios (Filters and reconstructed images from the RFM are available
in the Appendix 4.)

Table 1: Comparison of Test Error rates (%) between best DRMM variants and other best published
results on MNIST dataset for the semi-supervised setting (taken from [34]) with NU = 60K
unlabeled images, of which NL ∈ {100, 600, 1K, 3K} are labeled.

Model NL = 100 NL = 600 NL = 1K NL = 3K

Convnet [11] 22.98 7.86 6.45 3.35
MTC [21] 12.03 5.13 3.64 2.57
PL-DAE [12] 10.49 5.03 3.46 2.69
WTA-AE [14] - 2.37 1.92 -
SWWAE dropout [34] 8.71± 0.34 3.31± 0.40 2.83± 0.10 2.10± 0.22
M1+TSVM [8] 11.82± 0.25 5.72 4.24 3.49
M1+M2 [8] 3.33± 0.14 2.59± 0.05 2.40± 0.02 2.18± 0.04
Skip Deep Generative Model [13] 1.32 - - -
LadderNetwork [20] 1.06± 0.37 - 0.84± 0.08 -
Auxiliary Deep Generative Model [13] 0.96 - - -
catGAN [28] 1.39± 0.28 - - -
ImprovedGAN [24] 0.93± 0.065 - - -
RFM 14.47 5.61 4.67 2.96
DRMM 2-layer semi-sup 11.81 3.73 2.88 1.72
DRMM 5-layer semi-sup 3.50 1.56 1.67 0.91
DRMM 5-layer semi-sup NN+KL 0.57 − − −
SWWAE unsup-pretr [34] - 9.80 6.135 4.41
RFM unsup-pretr 16.2 5.65 4.64 2.95
DRMM 5-layer unsup-pretr 12.03 3.61 2.73 1.68

Semi-Supervised Training. For semi-supervised training, we use a randomly chosen subset of
NL = 100, 600, 1K, and 3K labeled images and NU = 60K unlabeled images from the training
and validation set. Results are shown in Table 1 for a RFM, a 2-layer DRMM and a 5-layer DRMM
with comparisons to related work. The DRMMs performs comparably to state-of-the-art models.
Specially, the 5-layer DRMM yields the best results when NL = 3K and NL = 600 while results
in the second best result when NL = 1K. We also show the training results of a 9-layer DRMM
on CIFAR10 in Table 4 in Appendix H. The DRMM yields comparable results on CIFAR10 with
the best semi-supervised methods. For more results and comparisons to other related work, see
Appendix H.
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5 Conclusions
Understanding successful deep vision architectures is important for improving performance and
solving harder tasks. In this paper, we have introduced a new family of hierarchical generative
models, whose inference algorithms for two different models reproduce deep convnets and decision
trees, respectively. Our initial implementation of the DRMM EG algorithm outperforms DCN back-
propagation in both supervised and unsupervised classification tasks and achieves comparable/state-
of-the-art performance on several semi-supervised classification tasks, with no architectural hyperpa-
rameter tuning [17, 19]
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A From the Rendering Mixture Model Classifier to a DCN Layer

Proposition A.1 (MaxOut Neural Networks). The discriminative relaxation of a noise-free Gaussian
Rendering Mixture Model (GRMM) classifier with nuisance variable g ∈ G is a single layer neural
net consisting of a local template matching operation followed by a piecewise linear activation
function (also known as a MaxOut NN [7]).

Proof. For transparency, we prove this claim exhaustively. Later claims will have simpler proofs. We
have

ĉ(I) ≡ argmax
c∈C

p(c|I)

= argmax
c∈C

{p(I|c)p(c)}

= argmax
c∈C

∑
g∈G

p(I|c, g)p(c, g)


(a)
= argmax

c∈C

{
max
g∈G

p(I|c, g)p(c, g)

}
= argmax

c∈C

{
max
g∈G

exp (ln p(I|c, g) + ln p(c, g))

}
(b)
= argmax

c∈C

{
max
g∈G

exp

(∑
ω

ln p(Iω|c, g) + ln p(c, g)

)}
(c)
= argmax

c∈C

{
max
g∈G

exp

(
−1

2

∑
ω

〈
Iω − µωcg|Σ−1

cg |Iω − µωcg
〉

+ ln p(c, g)− D

2
ln |Σcg|

)}

= argmax
c∈C

{
max
g∈G

exp

(∑
ω

〈
wωcg|Iω

〉
+ bωcg

)}
(d)≡ argmax

c∈C

{
exp

(
max
g∈G
{wcg ?LC I}

)}
= argmax

c∈C

{
max
g∈G
{wcg ?LC I}

}
= Choose {MaxOutPool(LocalTemplateMatch(I))}
= MaxOut-NN(I; θ).

In line (a), we take the noise-free limit of the GRMM, which means that one hypothesis (c, g)
dominates all others in likelihood. In line (b), we assume that the image I consists of multiple
channels ω ∈ Ω, that are conditionally independent given the global configuration (c, g) [Do we still
need to consider each channel ω for the proof?]. Typically, for input images these are color
channels and Ω ≡ {R,G,B} but in general Ω can be more abstract (e.g. as in feature maps). In
line (c), we assume that the pixel noise covariance is isotropic and conditionally independent given
the global configuration (c, g), so that Σcg = σ2

x1D is proportional to the D × D identity matrix
1D. In line (d), we defined the locally connected template matching operator ?LC , which is a
location-dependent template matching operation.

Note that the nuisance variables g ∈ G are (max-)marginalized over, after the application of a local
template matching operation against a set of filters/templatesW ≡ {wcg}c∈C,g∈G .

Lemma A.2 (Translational Nuisance →d DCN Convolution). The MaxOut template matching
and pooling operation (from Proposition A.1) for a set of translational nuisance variables G ≡ T
reduces to the traditional DCN convolution and max-pooling operation.
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Proof. Let the activation for a single output unit be yc(I). Then we have

yc(I) ≡ max
g∈G
{wcg ?LC I}

= max
t∈T
{〈wct|I〉}

= max
t∈T
{〈Ttwc|I〉}

= max
t∈T
{〈wc|T−tI〉}

= max
t∈T
{(wc ?DCN I)t}

= MaxPool(wc ?DCN I).

where ?DCN is the traditional DCN Convolution operator. Finally, vectorizing in c gives us the
desired result y(I) = MaxPool(W ?DCN I).

Proposition A.3 (Max Pooling DCNs with ReLu Activations). The discriminative relaxation of a
noise-free GRMM with translational nuisances and random missing data is a single convolutional
layer of a traditional DCN. The layer consists of a generalized convolution operation, followed by a
ReLu activation function and a Max-Pooling operation.

Proof. We will model completely random missing data as a nuisance transformation a ∈ A ≡
{keep, drop}, where a = keep = 1 leaves the rendered image data untouched, while a = drop = 0
throws out the entire image after rendering. Thus, the switching variable a models missing data.
Critically, whether the data is missing is assumed to be completely random and thus independent of any
other task variables, including the measurements (i.e. the image itself). Since the missingness of the
evidence is just another nuisance, we can invoke Proposition A.1 to conclude that the discriminative
relaxation of a noise-free GRMM with random missing data is also a MaxOut-DCN, but with a
specialized structure which we now derive.

Mathematically, we decompose the nuisance variable g ∈ G into two parts g = (t, a) ∈ G = T × A,
and then, following a similar line of reasoning as in Proposition A.1, we have

ĉ(I) = argmax
c∈C

max
g∈G

p(c, g|I)

= argmax
c∈C

{
max
g∈G
{wcg ?LC I}

}
(a)
= argmax

c∈C

{
max
t∈T

max
a∈A
{a(〈wct|I〉+ bct) + b′ct + ba + b′I}

}
(b)
= argmax

c∈C

{
max
t∈T
{max{(wc ?DCN I)t, 0}+ b′ct + b′drop + b′I}

}
(c)
= argmax

c∈C

{
max
t∈T
{max{(wc ?DCN I)t, 0}+ b′ct}

}
(d)
= argmax

c∈C

{
max
t∈T
{max{(wc ?DCN I)t, 0}}

}
= Choose {MaxPool(ReLu(DCNConv(I)))}
= DCN(I; θ).

In line (a) we calculated the log-posterior (ignoring (c, g)-independent constants)

ln p(c, g|I) = ln p(c, t, a|I)

= ln p(I|c, t, a) + ln p(c, t, a) + ln p(I)

=
1

σ2
x

〈aµct|I〉 −
1

2σ2
x

(‖aµct‖22 + ‖I‖22)) + ln p(c, t, a)

≡ a(〈wct|I〉+ bct) + b′ct + ba + b′I ,

where a ∈ {0, 1}, wct ≡ 1
σ2
x
µct, bct ≡ − 1

2σ2
x
‖µct‖22, ba ≡ ln p(a), b′ct ≡ ln p(c, t), b′I ≡

− 1
2σ2

x
‖I‖22. In line (b), we use Lemma A.2 to write the expression in terms of the DCN convolution
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operator, after which we invoke the identity max{u, v} = max{u− v, 0}+ v ≡ ReLu(u− v) + v
for real numbers u, v ∈ R. Here we’ve defined b′drop ≡ ln p(a = drop) and we’ve used a slightly

modified DCN convolution operator ?DCN defined by wct ?DCN I ≡ wct ? I + bct + ln
(
p(a=keep)
p(a=drop)

)
.

Also, we observe that all the primed constants are independent of a and so can be pulled outside of
the maxa. In line(c), the two primed constants that are also independent of c, t can be dropped due
to the argmaxct. Finally, in line (d), we assume a uniform prior over c, t. The resulting sequence
of operations corresponds exactly to those applied in a single convolutional layer of a traditional
DCN.

B From the Deep Rendering Mixture Model to DCNs

Here we define the DRMM in full detail.

Definition B.1 (Deep Rendering Mixture Model (DRMM)). The Deep Rendering Mixture Model
(DRMM) is a deep Gaussian Mixture Model (GMM) with special constraints on the latent variables.
Generation in the DRMM takes the form:

c(L) ∼ Cat({πc(L)})
g(`) ∼ Cat({πg(`)}) ∀` ∈ [L] ≡ {1, 2, . . . , L}

µc(L)g ≡ Λgµc(L)

≡ Λ
(1)

g(1)
Λ

(2)

g(2)
. . .Λ

(L−1)

g(L−1)Λ
(L)

g(L)µc(L)

I ∼ N (µc(L)g,Ψ)

= N (µc(L)g, σ
21D(0))

where the latent variables, parameters, and helper variables are defined as

g(`) ≡
(
g

(`)

x(`)

)
x(`)∈X (`)

t(`) ≡
(
t
(`)

x(`)

)
x(`)∈X (`)

, a(`) ≡
(
a

(`)

x(`)

)
x(`)∈X (`)

g
(`)

x(`) ≡
(
t
(`)

x(`) , a
(`)

x(`)

)
t
(`)

x(`) ∈ {UL,UR,LL,LR}
a

(`)

x(`) ∈ {0, 1} ≡ {OFF,ON}
x(`) ∈ X (`) ≡ {pixels in level `} ∈ RD

(`)

Λ
(`)

g(`)
= Λ

(`)

t(`),a(`)
∈ RD

(`−1)×D(`)

= T
(`)

t(`)
Z(`)Γ(`)M

(`)

a(`)

M
(`)

a(`)
≡ diag

(
a(`)
)
∈ RD

(`)×D(`)

T
(`)

t(`)
≡ translation operator to position t(`) ∈ RD

(`−1)×D(`−1)

Z(`) ≡ zero-padding operator ∈ RD
(`−1)×F (`)

Γ(`) ≡ ⊗
x(`)∈X (`)

Γ
(`)

x(`)︸︷︷︸
F (`)×1

∈ RF
(`)×D(`)

Γ
(`)

x(`) ≡ {filter bank at level `} ∈ RF
(`)

F (`) ≡W (`)H(`)C(`)

= size of the core templates at layer (`)

For simplicity, in the following sections, we will use c and c(L) interchangeably.
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Definition B.2 (Nonnegative Deep Rendering Mixture Model (NN-DRM)). The Nonnegative
Deep Rendering Mixture Model is defined as a DRMM (Definition B.1) with additional nonnegativity
constraint(s) on the intermediate latent variables (rendered templates):

z(`)
n = Λ

g
(`+1)
n
· · ·Λ

g
(L)
n
µ
c
(L)
n
≥ 0 ∀` ∈ {1, . . . , L} (11)

Following the same line of reasoning as in the main text, we will derive the Hard EM algorithm for
the DRMM model.

B.1 E-step: Computing the Soft Responsibilities

γncg ≡ p(c, g|In)

=
p(In|c, g; θ)p(c, g|θ)∑
c,g p(In|c, g; θ)p(c, g|θ)

=
πcg|Ψ|−1/2 exp

(
− 1

2‖In − µcg‖2Ψ−1

)
Z

,

where the partition function Z is defined as

Z(θ) ≡
∑
c,g

πcg|Ψ|−1/2 exp

(
−1

2
‖In − µcg‖2Ψ−1

)
.

Since the numerator and denominator both contain |Ψ|−1/2, the responsibilities simplify to

γncg =
πcg exp

(
− 1

2‖In − µcg‖2Ψ−1

)
Z ′

, (12)

where Z ′ is defined as

Z ′(θ) ≡
∑
cg

πcg exp

(
−1

2
‖In − µcg‖2Ψ−1

)
.

B.2 E-step: Computing the Hard Responsibilities

Assuming isotropic noise Ψ = σ21D and taking the zero-noise limit σ2 → 0, the term in the
denominator Z ′(θ) for which ‖In − µcg‖22 is smallest will go to zero most slowly. Hence the
responsibilities γncg will all approach zero, except for one term (c∗, g∗), for which the γnc∗g∗ will
approach one. 1 Thus, the soft responsibilities become hard responsibilities in the zero-noise limit:

γncg
σ→0−→ rncg ≡

{
1, if (c, g) = argmax c′g′ − 1

2‖In − µc′g′‖22
0, otherwise (13)

B.3 Useful Lemmas

In order to derive the E-step for the DRMM, we will need a few simple theoretical results. We prove
them here.

Definition B.3 (Masking Operator). Let a ∈ {0, 1}d be a binary vector (mask) and let Λ ∈ RD×d
be a real matrix. Then the masking operatorMa(Λ) ∈ RD×d is defined as

Ma(Λ) ≡ Λ ·Ma ≡ Λ · diag(a),

where Ma ≡ diag(a) ∈ Rd×d is the diagonal masking matrix.

1Technically, there can be multiple maximizers and the algorithms below can be generalized to handle this
case. But we focus on the case with just one unique maximum for simplicity.
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Lemma B.4. The action of a masking operator on a vector z ∈ Rd can be written in several
equivalent ways:

Ma(Λ)z = Λ · diag(a) · z
= Λ · diag(a) · diag(a) · z
= Λ[:, a] · z[a]

= Λ(a� z).

Here � denotes the elementwise (Hadamard) product between two vectors and Λ[:, a] is numpy
notation for the subset of columns {j ∈ [D] : aj = 1} of Λ.

Proof. The first equality is by definition. The second equality is a result of a being binary since
a2
i = ai for ai ∈ {0, 1}. The third and fourth equalities result from the associativity of matrix

multiplication.

Lemma B.5 (Optimization with Masking Operators). Let z, u ∈ RD×1. Consider the optimiza-
tion problem

max
a∈{0,1}D

Ma(zT )u = max
a∈{0,1}D

zTMau (14)

where Ma ≡ diag(a). Then the optimization can be solved in closed form as:

(a) max
a∈{0,1}D

Ma(zT )u = 1TD ReLu(z � u).

(b) â ≡ argmax
a∈{0,1}D

Ma(zT )u = [z � u > 0] ∈ {0, 1}D.

(c) Mâu = sgn(z)� ReLu (sgn(z)� u).

(d) If z ≥ 0, then â ≡ argmax
a∈{0,1}D

Ma(zT )u = [u > 0] ∈ {0, 1}D is a maximizer, for which Mâu =

ReLu (u).

Proof. (a) The maximum value can be computed as

v? ≡ max
a∈{0,1}D

Ma(zT )u

= max
a∈{0,1}D

zT diag(a)u

= max
a∈{0,1}D

∑
i∈[D]

ziaiui

=
∑
i∈[D]

max
ai∈{0,1}

ai(ziui)

≡
∑
i∈[D]

âi(ziui)

=
∑
i∈[D]

[ziui > 0] · ziui

=
∑
i∈[D]

ReLu(ziui)

= 1TD ReLu(z � u).

(b) In the 4th line the vector optimization decouples into a set of independent scalar optimizations
maxai∈{0,1} ai(ziui), each of which is solvable in closed form: âi ≡ [ziui > 0]. Hence, the optimal
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solution â is given by â = [z � u > 0].
(c) Substituting in â, we get

Mâu = u� [z � u > 0]

= (sgn(z)� sgn(z))︸ ︷︷ ︸
1D

�u� [ sgn(z)� u > 0]

= sgn(z)� (sgn(z)� u)� [ sgn(z)� u > 0]

= sgn(z)� ReLu (sgn(z)� u) ,

where in the third and fourth equalities we have used the associativity of elementwise multiplication
and the definition of ReLu, respectively.
(d) If z ≥ 0, then when zi > 0, âi = [ui > 0], and when zi = 0, âi can be either 0 or 1 since
then maxai∈{0,1} ai(ziui) = 0∀ai ∈ {0, 1}. Therefore, if z ≥ 0, â = [u > 0] is a solution of the
optimization 14. It follows that Mâu = [u > 0]u = ReLu (u).

Lemma B.6 (Optimization with “Row" Max-Marginal). Let z, u ∈ RD×1. Consider the opti-
mization problem

max
t∈T D

zTu(t) = max
t∈T D

∑
x

zxu(t)x (15)

where T is the set of possible fine-scale translations at location x. Also,

t ≡


...
tx
...

 and u(t) ≡


...

ux(tx)
...

 (16)

Then the optimization can be solved as:

(a) max
t∈T D

zTu(t) =
∑
x
|zx|max

tx∈T
sgn(zx)ux(tx)

(b) t̂ = argmax
t∈T D

zTu(t) = argmax
t

sgn(z)� u(t) =


...

argmax
tx

sgn(zx)ux(tx)

...



(c) u(t̂) = sgn(z)�max
t

(sgn(z)� u(t)) =


...

sgn(zx)max
tx

sgn(zx)ux(tx)

...



(d) If z ≥ 0, then t̂ = argmax
t

u(t) =


...

argmax
tx

ux(tx)

...

 is a maximizer for which u(t̂) =

max
t

(u(t)) =


...

max
tx

ux(tx)

...


17



Proof. (a) The maximum value can be computed as

v? ≡ max
{tx∈T }Dx=1

∑
x

zxux(tx)

=
∑
x

max
tx∈T

zxux(tx)

=
∑
x

max
tx∈T

|zx| sgn(zx)ux(tx)

=
∑
x

|zx|max
tx∈T

sgn(zx)ux(tx)

(b) In the 2nd line the vector optimization decouples into a set of independent scalar optimizations
maxtx∈T zxux(tx), each of which has the solution as follows: argmax

tx

sgn(zx)ux(tx). Hence, the

optimal solution t̂ = argmax
t∈T D

zTu(t) =


...

argmax
tx

sgn(zx)ux(tx)

...

 = argmax
t

sgn(z)� u(t).

(c) Substituting in t̂, we obtain

v? =
∑
x

|zx| sgn(zx)ux(t̂x)

=
∑
x

zx sgn(zx)(sgn(zx)ux(t̂x))

=
∑
x

zx sgn(zx)max
tx

sgn(zx)ux(tx)

= zT


...

sgn(zx)max
tx

sgn(zx)ux(tx)

...


Hence,

u(t̂) =


...

sgn(zx)max
tx

sgn(zx)ux(tx)

...

 = sgn(z)�max
t

(sgn(z)� u(t)) ,

(d) If z ≥ 0, then when zi > 0, t̂x = argmax
tx

ux(tx), and when zi = 0, t̂x can take any value in its

domain since then max
tx∈T

sgn(zx)ux(tx) = 0∀tx ∈ T . Therefore, if z ≥ 0, t̂x = argmax
tx

ux(tx) is a

solution of the optimization 15. It follows that u(t̂) = max
t

(u(t)) ≡


...

max
tx

ux(tx)

...

.

Definition B.7 (Deep Masking Operator). Let a(`) ∈ {0, 1}D(`)

be a collection of binary (vector)
masks and let Λ(`) ∈ RD(`−1)×D(`)

be a collection of (matrix) operators. Then the deep masking
operatorM{a(`)}({Λ(`)}) ∈ RD(0)×D(L)

is defined as

M{a(`)}({Λ(`)}) ≡
L∏
`=1

Ma(`)(Λ
(`)) =

L∏
`=1

Λ(`) ·Ma(`) ,

where Ma ≡ diag(a) is the diagonal masking matrix for mask a.
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B.4 E-Step: Inference of Top-Level Category

Theorem B.8 (Inference in DRMM⇒ Signed Convnets). Inference in the DRMM, according to
the Dynamic Programming-based algorithm below, yields Signed DCNs. The inference algorithm
has a bottom-up and top-down pass.

Proof. Given input image In ≡ I(0)
n , we infer ĉn as follows:

ĉn = argmax
c

max
g
−1

2
‖In − µcg‖22

= argmax
c

max
g

µTcgIn −
1

2
‖In‖22 −

1

2
‖µcg‖22

= argmax
c

max
g

µTcgIn −
1

2
‖µcg‖22,

where the last equality follow since In is independent of c, g. We further assume that:

αg(`) = 0 ∀`
‖µcg‖22 = const ∀c, g.

As a result, µcg = Λgµc and the most probable class ĉn is inferred as

ĉn = argmax
c

max
g

µTcgI
(0)
n (17)

= argmax
c

max
g

(Λgµc)
T I(0)

n (18)

= argmax
c

max
g(L:1)

µTc ΛTg(L) · · ·ΛTg(2)ΛTg(1)I(0)
n (19)

= argmax
c

max
g(L:2)

max
t(1)

max
a(1)

µTc ΛTg(L) · · ·ΛTg(2)(Ma(1)Λ
T
t(1))I

(0)
n (20)

= argmax
c

max
g(L:2)

max
t(1)

max
a(1)

(
µTc ΛTg(L) · · ·ΛTg(2)

)
︸ ︷︷ ︸

≡z(1)↓T

Ma(1)

(
ΛTt(1)I

(0)
n

)
︸ ︷︷ ︸
≡u(1)↑

n (t(1))

(21)

= argmax
c

max
g(L:2)

max
t(1)

max
a(1)

z(1)↓TMa(1)u
(1)↑
n (t(1)) (22)

(a)
= argmax

c
max
g(L:2)

max
t(1)

z(1)↓TM
â
(1)
n
u(1)↑
n (t(1)) (23)

(b)
= argmax

c
max
g(L:2)

z(1)↓T
(
s(1)↓ �max

t(1)
s(1)↓ �

(
M
â
(1)
n
u(1)↑
n (t(1))

))
(24)

(c)
= argmax

c
max
g(L:2)

z(1)↓T
(
s(1)↓ �max

t(1)
s(1)↓ �

(
s(1)↓ � ReLu

(
s(1)↓ � u(1)↑

n (t(1))
)))

(25)

(d)
= argmax

c
max
g(L:2)

z(1)↓T
(
s(1)↓ �MaxPool

(
ReLu

(
diag(s(1)↓)u(1)↑

n (T )
)))

︸ ︷︷ ︸
≡I(1)n (s(1)↓)

(26)

= argmax
c

max
g(L:2)

µTc ΛTg(L) · · ·ΛTg(2)I(1)
n (27)

In line (a), we employ Lemma B.5(b) to infer the optimal â(1)
n . In line (b) and (c), we employ B.6(c)

and Lemma B.5(c) to calculate the max-product message I(1)
n to be sent to the next layer. Notice

that here s(1)↓ = sgn
(
z(1)↓). In line (b), t̂(1)

n is implicitly inferred via Lemma B.6(b). In line (d),
s(1)↓ � s(1)↓ becomes a vector of all 1’s. Also, in the same line, diag(s(1)↓) is a diagonal matrix with
diagonal s(1)↓ and u(1)↑

n (T ) is a matrix [unxt] where rows are indexed by x ∈ X and columns by
t ∈ T . It corresponds to the output of the convolutional layer in a DCN, prior to the ReLu and spatial
max-pooling operators.
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Note that we have succeeded in expressing the optimization (Eq. 19) recursively in terms of a one
level smaller sub-problem (Eq. 27). Iterating this procedure yields a set of recurrence relations, which
define our Dynamic Programming (DP) algorithm for the bottom-up and top-down inference in the
DRMM:

Bottom-Up E-Step (E↑):

u(`)↑
n = ΛTt(`)I

(`−1)
n (28)

s(`)↓ = sgn
(
z(`)↓

)
(29)

∀s(`)↓ ∈ {±1}D(`)

: â(`)l
n (s(`)↓) = [s(`)↓ � u(`)↑

n > 0] (30)

∀s(`)↓ ∈ {±1}D(`)

: t̂(`)ln (s(`)↓) = argmax
t(`)

s(`)↓ � u(`)↑
n (t(`)) (31)

I(`)
n (s(`)↓) = M

â
(`)
n

(
ΛT
t̂(`)
I(`−1)
n

)
(32)

= s(`)↓ �MaxPool
(

ReLu
(

diag(s(1)↓)u(1)↑
n (T )

))
(33)

ĉ(L)
n = argmax

c(L)

µTc(L)I
(L)
n (34)

Top-Down/Traceback E-Step (E↑):

ẑ(`)↓
n = Λ

ĝ
(`+1)
n
· · ·Λ

ĝ
(L)
n
µ
ĉ
(L)
n

(35)

= Λ
ĝ
(`+1)
n

ẑ(`+1)↓
n (36)

ŝ(`)↓
n = sgn(ẑ(`)↓

n ) (37)

â(`)l
n = â(`)l

n (ŝ(`)↓
n ) = [ŝ(`)↓

n � u(`)↑
n > 0] (38)

t̂(`)ln = t̂(`)ln (s(`)↓
n ) = argmax

t(`)
s(`)↓
n � u(`)↑

n (t(`)) (39)

where u(`)↑
n and ẑ(`)↓

n are the bottom-up and top-down net inputs into layer `, respectively.

Corollary B.9 (Inference in the NN-DRMM⇒ Convnets). Inference in the NN-DRMM according
to the Dynamic Programming-based algorithm above yields ReLu DCNs.

Proof. The NN-DRMM assumes that the intermediate rendered latent variables z(`)
n ≥ 0 for all `,

which implies that the signs are also nonnegative i.e., s(`)
n ≥ 0. This in turn, according to Lemma

B.5(d) and B.6(d), reduces Eqs. 33, 34, 38 and 39 to

E↑ : I(`)
n = MaxPool ReLu

(
u(`)↑
n

)
(40)

ĉ(L)
n = argmax

c(L)

µTc(L)I
(L)
n (41)

E↓ : â(`)
n = [u(`)↑

n > 0] (42)

t̂(`)n = argmax
t(`)

u(`)↑
n (t(`)), (43)

which is equivalent to feedforward propagation in a DCN. Note that the the top-down step no
longer requires information from the deeper levels, and so it can be computed in the bottom-up step
instead.

Remark: Note that the vector max notation max
t
u(t) =


...

max
tx

ux(tx)

...

 is the same as the max nota-

tion we use in our arXiv post. It refers to the row max-marginals of the matrix u(t) ≡ [uxt]x∈X ,t∈T
with respect to latent variables t.
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Figure 3: Neural network implementation of shallow Rendering Model EM algorithm.

C Rendering Factor Model (RFM) Architecture

D Transforming a Generative Classifier into a Discriminative One

Before we formally define the procedure, some preliminary definitions and remarks will be helpful.
A generative classifier models the joint distribution p(c, I) of the input features and the class labels.
It can then classify inputs by using Bayes Rule to calculate p(c|I) ∝ p(c, I) = p(I|c)p(c) and
picking the most likely label c. Training such a classifier is known as generative learning, since one
can generate synthetic features I by sampling the joint distribution p(c, I). Therefore, a generative
classifier learns an indirect map from input features I to labels c by modeling the joint distribution
p(c, I) of the labels and the features.

In contrast, a discriminative classifier parametrically models p(c|I) = p(c|I; θd) and then trains on
a dataset of input-output pairs {(In, cn)}Nn=1 in order to estimate the parameter θd. This is known
as discriminative learning, since we directly discriminate between different labels c given an input
feature I . Therefore, a discriminative classifier learns a direct map from input features I to labels c
by directly modeling the conditional distribution p(c|I) of the labels given the features.

Given these definitions, we can now define the discriminative relaxation procedure for converting
a generative classifier into a discriminative one. Starting with the standard learning objective for a
generative classifier, we will employ a series of transformations and relaxations to obtain the learning
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Figure 4: Graphical depiction of discriminative relaxation procedure. (A) The Rendering Model (RM)
is depicted graphically, with mixing probability parameters πcg and rendered template parameters λcg .
Intuitively, we can interpret the discriminative relaxation as a brain-world transformation applied
to a generative model. According to this interpretation, instead of the world generating images and
class labels (A), we instead imagine the world generating images In via the rendering parameters
θ̃ ≡ θworld while the brain generates labels cn, gn via the classifier parameters ηdis ≡ ηbrain (B). The
brain-world transformation converts the RM (A) to an equivalent graphical model (B), where an extra
set of parameters θ̃ and constraints (arrows from θ to θ̃ to η) have been introduced. Discriminatively
relaxing these constraints (B, red X’s) yields the single-layer DCN as the discriminative counterpart
to the original generative RM classifier in (A).

objective for a discriminative classifier. Mathematically, we have

max
θ
Lgen(θ) ≡ max

θ

∑
n

ln p(cn, In|θ)

(a)
= max

θ

∑
n

ln p(cn|In, θ) + ln p(In|θ)

(b)
= max

θ,θ̃:θ=θ̃

∑
n

ln p(cn|In, θ) + ln p(In|θ̃)

(c)

≤ max
θ

∑
n

ln p(cn|In, θ)︸ ︷︷ ︸
≡Lcond(θ)

(d)
= max

η:η=ρ(θ)

∑
n

ln p(cn|In, η)

(e)

≤ max
η

∑
n

ln p(cn|In, η)︸ ︷︷ ︸
≡Ldis(η)

, (44)

where the L’s are the generative, conditional and discriminative log-likelihoods, respectively. In line
(a), we used the Chain Rule of Probability. In line (b), we introduced an extra set of parameters θ̃
while also introducing a constraint that enforces equality with the old set of generative parameters θ.
In line (c), we relax the equality constraint (first introduced by Bishop, LaSerre and Minka in [4]),
allowing the classifier parameters θ to differ from the image generation parameters θ̃. In line (d),
we pass to the natural parametrization of the exponential family distribution I|c, where the natural
parameters η = ρ(θ) are a fixed function of the conventional parameters θ. This constraint on the
natural parameters ensures that optimization of Lcond(η) yields the same answer as optimization
of Lcond(θ). And finally, in line (e) we relax the natural parameter constraint to get the learning
objective for a discriminative classifier, where the parameters η are now free to be optimized. A
graphical model depiction of this process is shown in Fig. 4.

In summary, starting with a generative classifier with learning objective Lgen(θ), we complete steps
(a) through (e) to arrive at a discriminative classifier with learning objective Ldis(η). We refer to
this process as a discriminative relaxation of a generative classifier and the resulting classifier is a
discriminative counterpart to the generative classifier.
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dumbbell cup dalmatian 

bell pepper lemon husky 

washing machine computer keyboard kit fox 

goose limousine ostrich 

Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured
in a single image. Better viewed in colour.

3

Figure 5: Results of activity maximization on the ImageNet dataset [26]. For a given class c,
activity-maximizing inputs are superpositions of various poses of the object, with distinct patches
Pi containing distinct poses g∗Pi

, as predicted by Eq. 46. Figure adapted with permission from the
authors.

E Derivation of Closed-Form Expression for Activity-Maximizing Images

Results of running activity maximization are shown in Fig. 5 for completeness. Mathematically, we
seek the image I that maximizes the score S(c|I) of a specific object class. Using the DRM, we have

max
I
S(c(L)|I) = max

I
max
g∈G
〈 1

σ2
µ(c(L), g(`))|I〉

∝ max
g∈G

max
I
〈µ(c(L), g)|I〉

= max
g∈G

max
IP1

· · ·max
IPp

〈µ(c(L), g)|
∑
Pi∈P

IPi
〉

= max
g∈G

∑
Pi∈P

max
IPi

〈µ(c(L), g)|IPi
〉

= max
g∈G

∑
Pi∈P

〈µ(c(L), g)|I∗Pi
(c(L), g)〉

=
∑
Pi∈P

〈µ(c(L), g)|I∗Pi
(c(L), g∗Pi

〉, (45)

where I∗Pi
(c(`), g) ≡ argmaxIPi

〈µ(c(`), g)|IPi
〉 and g∗Pi

= g∗(c(`),Pi) ≡
argmaxg∈G 〈µ(c(`), g)|I∗Pi

(c(`), g)〉. In the third line, the image I is decomposed into P
patches IPi

of the same size as I , with all pixels outside of the patch Pi set to zero. The maxg∈G
operator finds the most probable g∗Pi

within each patch. The solution I∗ of the activity maximization
is then the sum of the individual activity-maximizing patches

I∗ ≡
∑
Pi∈P

I∗Pi
(c(`), g∗Pi

) ∝
∑
Pi∈P

µ(c(`), g∗Pi
). (46)

F From the DRMM to Decision Trees

In this section we show that, like DCNs, Random Decision Forests (RDFs) can also be derived from
the DRMM model. Instead of translational and switching nuisances, we will show that an additive
mutation nuisance process that generates a hierarchy of categories (e.g., evolution of a taxonomy of
living organisms) is at the heart of the RDF.

F.1 The Evolutionary Deep Rendering Mixture Model

We define the Evolutionary DRMM (E-DRMM) as a DRMM with an evolutionary tree of categories.
Samples from the model are generated by starting from the root ancestor template and randomly
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mutating the templates. Each child template is an additive “mutation” of its parent, where the specific
mutation does not depend on the parent (see Eq.47 below). At the leaves of the tree, a sample
is generated by adding Gaussian pixel noise. Like in the DRMM, given c(L) ∼ Cat(πc(L)) and
g(`+1) ∼ Cat(πg(`+1)), with c(L) ∈ CL and g(`+1) ∈ G`+1 where ` = 1, 2, · · · , L, the template
µc(L)g and the image I are rendered as

µc(L)g = Λgµc(L) ≡ Λg(1) · · ·Λg(L) · µc(L)

≡ µc(L) + αg(L) + · · ·+ αg(1) , g = {g(`)}L`=1

I ∼ N (µc(L)g, σ
21D) ∈ RD.

Here, Λg(`) has a special structure due to the additive mutation process: Λg(`) = [1 |αg(`) ], where 1
is the identity matrix. The rendering path represents template evolution and is defined as the sequence
(c(L), g(L), . . . , g(`), . . . , g(1)) from the root ancestor template down to the individual pixels at ` = 0.
µc(L) is an abstract template for the root ancestor c(L), and

∑
` αg(`) represents the sequence of local

nuisance transformations, in this case, the accumulation of many additive mutations.

As with the DRMM, we can cast the E-DRMM into an incremental form by defining an intermediate
class c(`) ≡ (c(L), g(L), . . . , g(`+1)) that intuitively represents a partial evolutionary path up to level
`. Then, the mutation from level `+ 1 to ` can be written as

µc(`) = Λg(`+1) · µc(`+1) = µc(`+1) + αg(`+1) . (47)

Here, αg(`) is the mutation added to the template at level ` in the evolutionary tree.

F.2 Inference with the E-DRM Yields a Decision Tree

Since the E-DRMM is an RMM with a hierarchical prior on the rendered templates, we can use Eq.3
to derive the E-DRMM inference algorithm for ĉ(L)(I) as:

ĉ(L)(I) = argmax
c(L)∈CL

max
g∈G
〈µc(L) + αg(L) + · · ·+ αg(1) |I〉

= argmax
c(L)∈CL

max
g(1)∈G1

· · · max
g(L−1)∈GL−1

〈µc(L) + αg(L)∗︸ ︷︷ ︸
≡µ

c(L−1)

+ · · ·+ αg(1) |I〉

· · ·
≡ argmax

c(L)∈CL
〈µc(L)g∗ |I〉. (48)

where µc(`) has been defined in the second line. Here, we assume that the sub-trees are well-separated.
In the last lines, we repeatedly use the distributivity of max over sums, resulting in the iteration

g∗c(`+1) ≡ argmax
g(`+1)∈G`+1

〈µc(`+1)g(`+1)︸ ︷︷ ︸
≡W (`+1)

|I〉

≡ ChooseChild(Filter(I)). (49)

Eqs.48 and 49 define a Decision Tree. The leaf label histograms at the end of a decision tree plays a
similar role as the SoftMax regression layer in DCNs. Applying bagging [5] on decision trees yield a
Random Decision Forest (RDF).

G Unifying the Probabilistic and Neural Network Perspectives

H Additional Experimental Results

H.1 Learned Filters and Image Reconstructions

Filters and reconstructed images are shown in Fig. 6.

H.2 Additional Training Results

More results plus comparison to other related work are given in Table 3.
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Table 2: Summary of probabilistic and neural network perspectives for DCNs. The DRMM provides
a probabilistic interpretation for all of the common elements of DCNs relating to the underlying
model, inference algorithm, and learning rules.

Aspect Neural Nets Perspective  
(Deep Convolutional Neural 
Networks)  

Probabilistic Perspective 
(Deep Rendering Model) 

Model Weights and biases of filters at a 
given layer  

Partial Rendering at a given abstraction level/scale 

 Number of Layers Number of Abstraction Levels 
 Number of Filters in a layer Number of Clusters/Classes at a given abstraction level  
 Implicit in network weights; can 

be computed by product of 
weights over all layers or by 
activity maximization 

Category prototypes are finely detailed versions of coarser-
scale super-category prototypes.  
Fine details are modeled with affine nuisance 
transformations. 

Inference Forward propagation thru DCN Exact bottom-up inference via Max-Sum Message Passing 
(with Max-Product for Nuisance Factorization). 

 Input and Output Feature Maps Probabilistic Max-Sum Messages (real-valued functions of 
variables nodes) 

 Template matching at a given 
layer (convolutional, locally or 
fully connected) 

Local computation at factor node (log-likelihood of 
measurements) 

 Max-Pooling over local pooling 
region 

Max-Marginalization over Latent Translational Nuisance 
transformations 

 Rectified Linear Unit (ReLU). 
Sparsifies output activations. 

Max-Marginalization over Latent Switching state of 
Renderer. Low prior probability of being ON. 

Learning Stochastic Gradient Descent Batch Discriminative EM Algorithm with Fine-to-Coarse E-
step + Gradient M-step. No coarse-to-fine pass in E-step. 

 N/A Full EM Algorithm 
 Batch-Normalized SGD Discriminative Approximation to Full EM (assumes 

Diagonal Pixel Covariance) 
 

Figure 6: (Left) Filters learned from 60,000 unlabeled MNIST samples and (Right) reconstructed
images from the Shallow Rendering Mixture Model

I Model Configurations

In our experiments, configurations of the RFM and 2-layer DRFM are similar to LeNet5 [11] and
its variants. Also, configurations of the 5-layer DRMM (for MNIST) and the 9-layer DRMM (for
CIFAR10) are similar to Conv-Small and Conv-Large architectures in [29, 20], respectively.
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Table 3: Test error (%) for supervised, unsupervised and semi-supervised training on MNIST using
NU = 60K unlabeled images and NL ∈ {100, 600, 1K, 3K, 60K} labeled images.

Model Test Error (%)
NL = 100 NL = 600 NL = 1K NL = 3K NL = 60K

RFM sup - - - - 1.21
Convnet 1-layer sup - - - - 1.30
DRMM 5-layer sup - - - - 0.89
Convnet 5-layer sup - - - - 0.81

RFM unsup-pretr 16.2 5.65 4.64 2.95 1.17
DRMM 5-layer unsup-pretr 12.03 3.61 2.73 1.68 0.58
SWWAE unsup-pretr [34] - 9.80 6.135 4.41 -

RFM semi-sup 14.47 5.61 4.67 2.96 1.27
DRMM 5-layer semi-sup 3.50 1.56 1.67 0.91 0.51
Convnet [11] 22.98 7.86 6.45 3.35 -
TSVM [33] 16.81 6.16 5.38 3.45 -
CAE [22] 13.47 6.3 4.77 3.22 -
MTC [21] 12.03 5.13 3.64 2.57 -
PL-DAE [12] 10.49 5.03 3.46 2.69 -
WTA-AE [14] - 2.37 1.92 - -
SWWAE no dropout [34] 9.17 ± 0.11 4.16 ± 0.11 3.39 ± 0.01 2.50 ± 0.01 -
SWWAE with dropout [34] 8.71 ± 0.34 3.31 ± 0.40 2.83 ± 0.10 2.10 ± 0.22 -
M1+TSVM [8] 11.82 ± 0.25 5.72 4.24 3.49 -
M1+M2 [8] 3.33 ± 0.14 2.59 ± 0.05 2.40 ± 0.02 2.18 ± 0.04 -
Skip Deep Generative Model [13] 1.32 - - - -
LadderNetwork [20] 1.06 ± 0.37 - 0.84 ± 0.08 - -
Auxiliary Deep Generative Model [13] 0.96 - - - -
ImprovedGAN [24] 0.93 ± 0.065 - - - -
catGAN [28] 1.39 ± 0.28 - - - -

Table 4: Test error rates (%) between 2-layer DRMM and 9-layer DRMM trained with semi-
supervised EG and other best published results on CIFAR10 using NU = 50K unlabeled images and
NL ∈ {4K, 50K} labeled images

Model NL = 4K NL = 50K

Convnet [11] 43.90 27.17
Conv-Large [29] - 9.27
CatGAN [28] 19.58± 0.46 9.38
ImprovedGAN [24] 18.63± 2.32 -
LadderNetwork [20] 20.40± 0.47 -
DRMM 2-layer 39.2 24.60
DRMM 9-layer 23.24 11.37

Table 5: Comparison of RFM, 2-layer DRMM and 5-layer DRMM against Stacked What-Where
Auto-encoders with various regularization approaches on the MNIST dataset. N is the number of
labeled images used, and there is no extra unlabeled image.

Model N = 100 N = 600 N = 1K N = 3K

SWWAE (3 layers) [34] 10.66± 0.55 4.35± 0.30 3.17± 0.17 2.13± 0.10
SWWAE (3 layers) + dropout on convolution [34] 14.23± 0.94 4.70± 0.38 3.37± 0.11 2.08± 0.10
SWWAE (3 layers) + L1 [34] 10.91± 0.29 4.61± 0.28 3.55± 0.31 2.67± 0.25
SWWAE (3 layers) + noL2M [34] 12.41± 1.95 4.63± 0.24 3.15± 0.22 2.08± 0.18
Convnet (1 layer) 18.33 10.36 8.07 4.47

RFM (1 layer) 22.68 6.51 4.66 3.55
DRMM 2-layer 12.56 6.50 4.75 2.66
DRMM 5-layer 11.97 3.70 2.72 1.60
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