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ABSTRACT

Baseband Architecture Design for Future Wireless Base-Station Receivers

by

Sridhar Rajagopal

This thesis demonstrates the use of designing efficient algorithms and architectures
to meet the real-time requirements of future wireless base-station receivers. Next
generation receivers will require orders-of-magnitude performance improvements in
order to provide support for features such as Multimedia, Quality-Of-Service and
extremely high data rates. The sophisticated, compute-intensive algorithms proposed
to integrate these features make their real-time implementation difficult on current
Digital Signal Processor (DSP)-based receivers. A real-time implementation can be
achieved by (1) making the algorithms computationally efficient, without significant
loss in error rate performance, (2) task partitioning and (3) designing hardware to
exploit available pipelining, parallelism and bit-level computations.

Multiuser Channel Estimation and Detection, two of the most compute-intensive
baseband tasks in the receiver, are implemented on DSPs for performance evaluation.
A reduced complexity iterative channel estimation scheme for slow fading channels is
proposed for a fixed point, area-time efficient and real-time VLSI architecture. The
multiuser detection algorithm is modified for a simple, pipelined structure. A General
Purpose Processor (GPP) or DSP based architecture with reconfigurable support
suited for different wireless communication standards is proposed and extensions are

developed to accelerate the implementation of wireless communication algorithms.
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Chapter 1

Introduction

1.1 Requirements for enhanced Base-Station Receivers

Next generation cellular wireless communication receivers will need to support fea-
tures such as extremely high data rates (up to 2 Mbps), Quality-Of-Service (QoS) and
multimedia [1,2]. The algorithms proposed by researchers to provide these features
are extremely sophisticated and have high computational complexity. The current
base-station receivers, which are typically built using DSP hardware, need orders-
of-magnitude performance improvement to meet the real-time requirements of the
algorithms proposed for next generation communication systems. Therefore, there is
a need for better algorithms and architectures to meet the real-time requirements of
the base-station receiver.

Figure 1.1 shows the data rate achieved by a Digital Signal Processor(DSP) imple-
mentation of a multiuser detector with varying number of users for a system targeted
to support 128 Kbps per user. It can be seen that the performance achieved by just
the detector implementation falls below the real-time requirements by a factor of 10.
Hence, the proposed algorithms for the base-station receiver need to be modified for
computationally efficient solutions, without significant loss in their Bit Error Rate
(BER) performance. These modifications are achieved by applying linear algebra
techniques such as iterative, sub-optimal schemes or exploiting the structure of the

algorithms. These algorithms, typically working on matrix data sets, have significant



x10° Data Rates for a typical DSP Implementation

Data Rate Requirement =128 Kbps

9 10 11 12 13 14 15
Number of Users

Figure 1.1 : Data Rates achieved by a typical DSP for a Base-Station Receiver

levels of parallelism. This inherent parallelism and the bit-level nature of the compu-
tations can be exploited to achieve real-time performance by an efficient architecture
design. Modifying the algorithm for a computationally efficient solution and exploit-
ing its parallelism using a suitable architecture design are needed to achieve real-time
performance in future base-station receivers.

Channel Estimation and Detection, two major compute-intensive tasks in the
physical layer (baseband) of the base-station receiver, are modified to make their

implementation suitable for future wireless base-stations.

1.2 Thesis Contributions

The main contributions of this thesis include the design of computationally efficient
algorithms for channel estimation and detection along with their hardware imple-
mentation. An in-depth analysis of the algorithms for estimation and detection is
carried out for performance evaluation and seeking means for performance improve-
ments. There has been previous work in computationally efficient algorithms for

detection [3], but not for channel estimation. A computationally efficient algorithm



for channel estimation is proposed and the detection algorithm is enhanced for a
simpler hardware implementation.

Previous channel estimation schemes [4] required the use of matrix inversions to
compute the estimate, which is compute-intensive and required the use of floating
point arithmetic. An iterative, computationally-efficient channel estimation scheme
[5] is developed, which has a simple-fixed point implementation and can be easily ex-
tended to provide tracking over fading channels. Another channel estimation scheme,
which relies on pre-computation of the preamble, but has a faster implementation, is
also developed.

A design methodology using task partitioning [6] is developed to make use of
the inherent parallelism and bit level computations in the algorithms. The task
partitioning methodology is applied to estimation and detection to achieve a real-
time implementation. Further, a custom hardware solution is proposed for channel
estimation as a study to see the effectiveness of a VLSI architecture [7] for the base-
station receiver. A VLSI architecture is developed to use pipelining and parallelism
effectively and take advantage of the bit level computations. The design space is
explored for area-time tradeoffs and an area-time efficient solution which meets the
real-time requirements is implemented.

With general-purpose processors and DSPs becoming more adaptive to multime-
dia applications, insights from the analysis of wireless communication algorithms are
applied to enhance current general purpose processors (GPPs) and DSPs for wire-
less communications. An architecture with reconfigurable support and with wireless
communication extensions is developed for accelerating wireless communication algo-

rithms.



1.3 Thesis Overview

In this introductory chapter, the need for better wireless base-station receivers is
stressed and the techniques to achieve real-time using computationally-effective algo-
rithms and better architectures is shown. The key contributions of the thesis are also
outlined.

The next chapter gives a background on the next generation communication sys-
tems. The terms ’Multiuser Channel Estimation’ and ’Multiuser Detection’ are ex-
plained and the previous work in this area described.

Chapter 3 discusses an implementation of the proposed algorithms on one of the
recent DSP processors. A design methodology to achieve real-time performance by
task decomposition is shown. The estimation and detection algorithms are decom-
posed to achieve real-time performance.

The modifications of the previously existing algorithms for multiuser channel es-
timation and the enhancements for a simpler pipelined detection scheme is detailed
in Chapter 4. Two channel estimation modifications are developed. The first scheme
uses an iterative method while the second makes use of prior knowledge of the pream-
ble.

A VLSI architecture of channel estimation as a case study for seeking the effective-
ness of a custom implementation for the base-station receiver is evaluated in Chapter
5. Area-time tradeoffs are made by exploring the design space for an area-time effi-
cient real-time solution.

Chapter 6 shows the enhancements that could be done for DSPs and GPPs to
accelerate their performance for wireless applications. A processor architecture with
reconfigurable logic support and wireless communication extensions is developed.

Finally, the conclusions are presented and future directions such as the use of



online arithmetic and multiprocessing on DSPs and Field Programmable Gate Ar-

rays(FPGAs) are stated.



Chapter 2

Background

This chapter provides a background to the next generation communication standards
and describes the algorithms for Multiuser Channel Estimation and Detection, two

of the most compute-intensive baseband algorithms in the base-station receiver.

2.1 Wideband CDMA Communication Systems

Wideband Direct-Sequence Code Division Multiple Access (W-CDMA) is the emerg-
ing protocol [8] for wireless communications in the next generation (3G) communi-
cation systems. W-CDMA has been designed to provide support for features such
as multimedia, high data rates (up to 2 Mbps), multi-rate services and Quality-Of-
Service(QoS) in the existing wireless framework.

The first generation cellular communication systems using analog transmission for
speech services were introduced in early 1980s. Several standards were developed in
different countries such as AMPS (Advanced Mobile Phone Systems) in the US and
NTT (Nippon Telephone and Telegraph) in Japan. Second generation systems using
digital transmission were developed in the late 1980s. They offered higher spectrum
efficiency, better data services and more advanced roaming than the first generation
systems. GSM (Global System for Mobile Communications), which is a TDMA-based
(Time Division Multiple Access) system in Europe, IS-136 (Dual Mode-AMPS) and

IS-95 (CDMA) systems in the US are examples of second generation systems. The



services offered by these systems cover speech and low data rates (9.6 Kbps). Though
different multiple access schemes have been used in different standards of the first and
second generation systems, the third generation systems have accepted W-CDMA as
the form of multiple access communication.

Table 2.1 shows the evolution of wireless communication systems over the past
two decades. T. Ojanpera and R. Prasad [9,10] give a detailed description of the
evolution of the standards and its specifications. As per 3GPP standards [11], the
data transmission for W-CDMA is done in frames of 10ms. The frame structure for
transmission is as shown in Figure 2.1. The data is multiplexed with the control chan-
nel in a dual-channel QPSK (Quadrature Phase Shift Keying) form. The dedicated
physical data channel (DPDCH) is QPSK-multiplexed with the dedicated physical
control channel (DPCCH). The actual data transmission is done on the DPDCH
while the DPCCH is used for sending control information. The control information
consists of the Pilot bits, which are used for channel synchronization and estimation,
the transmit power control (TPC) commands and an optional Transport Format In-
dicator (TFI), which contains the data rate information. The multi-rate is achieved
by varying the spreading factor of the bits. The data rates achieved for a typical chip

rate of 4.096 Mcps and varying spreading factors between 4 and 256 are as shown in

Table 2.2.
Year | Generation | Multiple Access Services
1980 First FDMA, TDMA Speech
1990 Second TDMA, CDMA Speech, Low rate data
2000 Third W-CDMA Speech, High rate data, Multimedia

Table 2.1 : Evolution of Wireless Communication Systems
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Figure 2.1 : Frame structure for the Uplink Data and Control Channels

2.2 The Base-Station Physical Layer

Uplink communication occurs when mobile users are sending data to the base-station.
Figure 2.2 shows a scenario in which different users are communicating with the
base-station. As the data from each mobile user is transmitted through the wireless
channel, it experiences changes such as delays, multipath reflections, attenuation,
interference from other users, fading due to the mobile velocity, and noise before it
reaches the base-station receiver.

At the receiver, steps must be taken to correct these changes and to recover the

Spreading Factor | Bits Per Data Rates
(N) Frame | (Bits per second)
4 10240 1 Mbps
32 1280 128 Kbps
256 160 16 Kbps

Table 2.2 : Proposed Data Rates for Next Generation Communication Systems



.

Ij Ij Tree
Mobile L

Direction of
motion

Base - Station

Figure 2.2 : Uplink Communication between the Mobile and the Base-Station

transmitted data accurately. Thus, the main baseband processing blocks at the re-
ceiver are the blocks for multiuser channel estimation, multiuser detection and decod-
ing. For accurate detection, the bits, which are asynchronous due to the multipath
delays, need to be synchronized and their amplitude variations due to fading and
attenuation, need to be estimated. Multiuser Channel Estimation involves estimat-
ing and tracking the delays and amplitudes of the mobile users over the different
multipaths. Multiuser detection involves canceling the interference from the other
users to get better accuracy and bit error rate performance than single user de-
tection, which treats the interference from other users as Additive White Gaussian
Noise(AGWN) [12]. The coding applied to the bits at the mobile transmitter for
better performance is then decoded with the help of the decoding block.

The block diagram of the physical layer of the uplink communication at the base-
station is as shown in Figure 2.3. As per 3GPP standards [11], the QPSK signal
received at the input of the base-station receiver is split into the Data and Pilot
signals. The channel estimation block computes the channel amplitudes and delays

and helps the multiuser detector in accurate detection of the received data. The
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Figure 2.3 : Physical Layer of the Base-Station Receiver

multiuser detector removes the interference from other users and passes the detected
bits to the decoder for further processing. As noted from Figure 2.1, the Pilot signal
is not available for the entire duration of the slot. During this time, decision feedback
[13] is used to update the channel estimation block. Decision feedback uses the
detected bits for updating the estimates by acting as an extended pilot during the
absence of the Pilot bits. A discussion of the existing multiuser channel estimation

and detection schemes is given below.

2.3 Multiuser Channel Estimation

Multiuser Channel estimation refers to the joint estimation of amplitudes and delays
for all active users. The discussion here refers to the maximum likelihood based
channel estimation scheme [4]. A short Gold code of spreading factor 31 and a BPSK
modulation system is assumed for convenience. In this model, it is assumed that

the maximum delay spread between the multipaths is less than half a symbol period.
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The analysis mentioned can be easily extended to Long Codes, as in the W-CDMA
standards [11,14].

The channel model is as shown in Figure 2.4.

where r; € CV are the received bits of all K asynchronous users, spread with a
spreading factor N, b; € R*® = [by;_1,b14,... ,bxi1,br;]" are the bits of K users
to be detected, A; € C*!*V is the estimate of the channel containing information
about the spreading codes, attenuation and delays from the various paths, 7; is the
noise, which is assumed to be Gaussian (AGWN) and 7 is the time index. The aim of
the estimation and detection process is to detect the bits b; from the received signal

r;. The computations that occur during the estimation phase [4,15] are

R, = (2.2)

Ry =

1 L

Py bt

L =1

1 L

72 bibl! (2.3)
i=1

where L is the length of the pilot sequence, Ry, € C**V is the cross-correlation

Adelay
> »time
<— b, ——

Figure 2.4 : Channel Model
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matrix between the synchronization bits b; and the received signal r;, and Ry, €
R2Kx2K ig the autocorrelation matrix. The channel estimate A; can be obtained by

solving
RyAi? = Ry, (2.4)

The channel estimate in this matrix form can be directly fed to a multiuser detector
in a joint estimation and detection scheme [4]. This results in computational savings

as well as in error rate performance benefits.

2.3.1 Parameter Extraction Scheme

The channel estimates can also be extracted from the matrix and fed to the detector
[16]. For this purpose, further computations are needed to extract the amplitudes

and delays as shown below:

o — YRE

z{ = (y5 K UL +yR K 'UQ) (UK U + UK 0

where R, is the autocorrelation of the observation vector, K is the noise covariance
matrix, U is the matrix of codes which are known to the receiver, and Z is the channel
impulse response matrix.

A least squares fit of z; is performed to extract the strongest P paths. For each
pair of adjacent coefficients of z;, we obtain local values of amplitudes and delays

from the following optimization:

[w, Vg = argmin ||z g — (1 = Vwl* + ||2,6+1 — yw|[*.
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We then search for the global maxima to obtain the strongest path :
g =argmax |wy|, 7= (¢+ YT, w=1w,

where 7y is the fractional part of the delay, ¢ is the integer part of the delay, 7 is the
estimated delay, and w is the estimated amplitude. The estimated path is subtracted
from z; and the process is repeated to find the next strongest path until a specified
number of paths have been identified. The estimated amplitudes and delays are then

fed to a multiuser detector for accurate detection.

2.4 Multiuser Detection

Multiuser detection tries to cancel the interference from other users to improve the
error rate performance, as opposed to single user detection using a matched filter
[12]. The detection scheme discussed is the Differencing Multistage detection method
[15,17], which is based on the principle of Parallel Interference Cancellation. The
channel estimate matrix can be fed directly into the multistage detector.

Dropping the subscript ¢ for convenience, the matrix A; can be rearranged into
its odd and even columns Ay, A; € CEXYN which corresponds to the bits b,_; and b

in the estimate. In vector form, the received vector is

b1

b ,i—1

r, = [AOAl] +77i (25)
b1
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2.4.1 Matched Filter Detector

The actual bits, b;, of the K users lie between the bits r; and r;_; bit boundaries.
The matched filter detector does a correlation of the input bits with the received bits.

Hence, the matched filter detector can be represented as

b; = Alfr,_; + A0y, (2.6)

The multistage detector uses the matched filter to get an initial estimate of the bits

and then subtracts the interference from other users.

2.4.2 Multistage Detector

The multistage detector performs parallel interference cancellation iteratively in stages,
with the convergence of the bits increasing per stage. To subtract the interference, the
interfering bits from other users have to be removed. The desired user’s bits receives
interference from the past or future overlapping symbols of different users because
they are asynchronous. The effect of interference from the past and future symbols
of users is as shown in Figure 2.5. To subtract interference from other users’ future
bits, a block based detection scheme is used. Detecting a block of bits simultaneously
(multishot detection) can give performance gains [18]. In order to do multishot de-
tection, the above model should be extended to include multiple bits. Let us consider
D bits at a time (i = 1,2,---, D). So, we form the multishot received vector r of

length ND by concatenating D r4-s (i = 1,2,---, D).
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detection iteratively. The initial soft decision outputs y

+ 7

Let A € CNPXKD pepresent the multishot channel estimate matrix. We now proceed
to the detection part of the algorithm after the formation of A A using the A matrix.

The multistage multiuser detector needs initial estimates of the bits for performing the

€ CKD and hard decision
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outputs d® € REP of the detector are obtained from a matched filter as

y© — Re[A¥r] (2.8)
d9 = sign(y) (2.9)
y® = y© — Re[AHA — S]d©® (2.10)
dV = sign(y®™) (2.11)

where y™) and d¥ are the soft and hard decisions after the first stage of the joint
detector and S € REP*KD g the diagonal elements in AHA. The differencing method

[15] is applied to take advantage of the convergence behavior of the iterations:

x = d® —q¢Y (2.12)

yH) = 3O Re[AHA — s]x(l) (2.13)

d = sign(yt) (2.14)

These computations are iterated [ = 1,2,---, M where M is the maximum number

of iterations. Instead of performing hard decisions, the soft decisions could be for-
warded to the decoding stage in a joint detection and decoding scheme [19] for better

performance. The structure of AHA € CKPXKD ig as shown:

AHA, AgMA, 0 0
ABA, AHA+AHA, AHA, 0

(2.15)
|0 0 ATAy AgMAo+ ALTA,

The hard decisions, d, which are made at the end of the final stage, are fed back to
the estimation block in the decision feedback mode for tracking in the absence of the

pilot signal and to the rest of the processing blocks in the receiver.
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Chapter 3

DSP Implementation and Task Partitioning

This chapter discusses the implementation of the channel estimation and multiuser
detection algorithms on current generation C6x TT DSP processors and shows how
real-time performance can be achieved by task-partitioning the algorithms on multiple

Processors.

3.1 Implementation Methodology

The channel estimation and detection algorithms are implemented on a TT C6x DSP
[20] with a TT TMS320C6701 (C67) floating point processor. This processor is taken
as an example of the current generation processor technology for our analysis. The
C67 [21] is one of the recent DSPs from TI, which has a high-performance VLIW (Very
Long Instruction Word) architecture and has been proposed for wireless base-stations.
It has a 32-bit architecture with 8 functional units, consisting of 2 multipliers, 4
ALUs and 2 Load/Store Units. It has hardware support for IEEE single and double
precision floating point instructions and can produce 2 Multiply and Accumulate’s
(MACQ) per cycle. The algorithms to be evaluated are written in a memory-efficient
manner using the ’C’ programming language so as to avoid transposes and to utilize
inplace computations. The entire code and data segments fit in the internal memory
of the DSP. In this initial implementation, the LU decomposition [22,26] is used to

calculate the matrix inversions. The TI C Compiler ver 3.0 [23] is used to generate the
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Figure 3.1 : Data Rate Comparisons for a Matched Filter and Multiuser Detector on
a single DSP

assembly code for the DSP. The highest possible compiler optimizations recommended
by TI [24,25] are used. The optimizations perform software pipelining, loop unrolling
and other program level optimizations to exploit the available fine-grain parallelism
available in the VLIW architecture. The structure and sparseness of the various

matrices are also accounted for in the implementation.

3.2 DSP Implementation and Comparisons

The DSP implementation of the algorithm is shown in Figure 3.1. The graph shows
the data rates achieved on a C67 processor for a matched filter and 3-stage multistage
detector for varying number of users. It can be observed that the matched filter
detector achieves a data rate of 18.8 Kbps for each of the 15 users as compared to
10.7 Kbps for the multistage detector. Thus, a 3-stage multistage detector reduces

the data rate by half, but it provides significant error rate performance benefits [15].
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Figure 3.2 : The Task Partition Graph for the Joint Estimation and Detection Algo-
rithm

However, both fall far short of the targeted 128 Kbps for each user in the system.
Even the recently announced fixed TI processor, the C64x, which is projected to
have an 8x performance improvement (neglecting the fixed-floating conversion), does
not meet the targeted rate for 15 users. Also, note that detection is just one of
the processing blocks in the receiver and that other compute-intensive blocks such
as multiuser channel estimation and decoding, which are currently assumed to be
pipelined on different processors, need to be implemented. Hence, there is a need for
orders-of-magnitude performance improvements in DSP technology in order to come

up with a single DSP-based base-station receiver.

3.3 Task Decomposition

The sequential implementation of the entire algorithm on the DSP does not meet
real-time constraints as seen from Figure 3.1. The achieved data rates for just the

detection block implementation, assuming a single stage iteration of the multistage



Block Complexity | Cycle count
Correlation Matrices | KN + K? 27957
Inverse K%N 763401
AR A AH Ay, AR A KN 124205
Afly KND 132723
per bit KN 13272
Multistage(1st stage) DK? 33669
per bit K? 3367
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Table 3.1 : Cycle count and Complexity for different blocks

detector, show the data requirements falling short by a factor of 6. So, a task decom-
position of the algorithm is carried out to find the data dependencies and to identify
all available sources of pipelining and parallelism. A coarse-grained pipelined-parallel
task decomposition of the joint estimation and detection algorithm, detailed in Chap-
ter 2, is as shown in Figure 3.2. The input to the channel estimation block to the left
is either the known pilot bits (b) and the received pilot bits (Pilot) or the previously
detected data bits (d) and the received data bits, delayed by the time required for
detection (Data’). The dotted blocks (I-IV) represent pipelined operations whereas
the blocks inside a dotted block represent operations that can be done in parallel.
Block I shows both the correlation matrices, Ry, and Ry, (Chapter 2, equation
2.2) which can be computed in parallel. These are outer product computations. Also,
both the real and imaginary parts of Ry, can be computed independently. Block II
shows the inverse of Ry, (Chapter 2, equation 2.4), which is calculated by using a
LU Decomposition. Block IIT shows the computation of the different matrix products

required for forming the multishot channel estimate. The matrix product, A;7A,
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Optimization Cycle count
A+B 13272 4 3367x M,
AB max(13272,3367x M,)
(P1A)B 3367x M,
(P1 A) (Pp B) 3367
(P1 A) (P1Pp B) 885

Table 3.2 : Cycle count for different optimization levels of blocks A (Afr) and B
(block IV)

is not computed as it is (Ao A;)¥. Block III also includes the computation of the
Matched Filter (chapter 2, equation 2.8), as it can be done in parallel with the above
operations. The iterative loop of the Multistage Detection (Chapter 2, equation 2.12-
2.14) is shown as a single Block IV.

The input data bits are streaming in continuously to the receiver, which has to
ensure that the received data stream is being continuously processed so as to meet the
real-time constraints. However, the channel estimation can be updated less frequently
so as to meet with the requirements of the detection. (A slow fading channel model
is assumed). The parts of multiuser detection which depend on the input data are
the calculation of the Matched Filter A”r, and the multistage detection loop. An
order complexity analysis is also done on the algorithm to find the bottlenecks in each

block.

3.4 Simulations and Analysis

An in-depth profiling of the various blocks is carried out using the clock function in

the C6x DSP. The cycle count for the various blocks is as shown in Table 3.1 for 15
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Figure 3.3 : Further Pipelining & Parallelism in the Multistage Detection

users and a detection window of length 12. Assuming a 250 MHz processor, a data
rate requirement of 128 Kbps implies that the available number of cycles per bit is
1953 cycles for real-time detection. The successive stages in the Multistage Detector
take significantly less time than the first stage. Hence, let the effective number of
stages be M, where M, < M. The time required for block TV for all the M, stages
can exceed the time required to calculate the matched filter AZr. Also, the first and
last K bits in each window are ignored due to edge effects and have to be recalculated.
The task partition graph at this level is unable to match the real time constraints
as the present solution still requires 13272 4 3367 x M, cycles. Therefore, more fine
grain parallelism from the above task partition graph needs to be explored.

Table 3.2 shows the advantages of various levels of parallelism(Pl) and pipelin-
ing(Pp). Let Task A refer to the calculation of the matched filter A”r in Block III

and Task B to Block IV. Let (A + B Sequential) be the present solution obtained.
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Figure 3.4 : Data Rates for various levels of Pipelining and Parallelism for A (Afr)
and B (block IV)

If Tasks A and B were pipelined (A B), the required computation becomes the max-
imum of task A and B. Next, the matched filter AHr can be done for each user in
parallel as each row of AH corresponds to a user, reducing the time in (P1 A) to 885
cycles. This puts the bottleneck to block B of (P1(A) B) case. Hence, Block B is also
unrolled and pipelined into different stages. The first parallel interference cancellation
stage now has the most complexity and becomes the new bottleneck, needing 3367
cycles ((P1 A) (Pp B)). It has been shown [15] that each successive stage in B requires
less computation than the previous stage. Hence, fewer or less powerful processing
elements need to be used for these stages. Each stage can also be split into multiple
processing elements in a manner similar to Block A. This reduces the cycles needed
to 225, putting the bottleneck back to Task A in (P1(A) PIPp(B)). Tasks A and B

after this final step are shown in Figure 3.3.
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3.5 Meeting Real Time Constraints

The data rates which can be met with different levels of pipelining and parallelism are
shown in Figure 3.4. The figure shows the variation in the achieved data rates with
the number of users. We assume that the effective number of stages of the multistage
detector is 3 (M, = 3). As the level of pipelining and parallelism increases, we observe
an increase in the data rates. The data rates from (Parallel A)(Pipe B) satisfies the
requirements for fewer number of users ( < 10) as it is limited by the complexity of
the first stage which is O(K?). By having K processing elements for the first stage
of Block IV, the bottleneck shifts back to Task A ((Parallel A)(Parallel + Pipe B)),
which is of order O(/NV) and hence, the data rate achieved is independent of the number
of users. Note however, that this is because the number of processors is dependent
on the number of users.

Judging from the time requirements for Block I and Block IT in channel estimation,
we can update block IT once in 27 updates to Block I. The frequency of updates is
determined by the amount of error that can be tolerated in the detection. If the
updates are not frequent enough to keep up with the fading of the channel, the
performance of the system will degrade in terms of the bit error rate. More frequent
updates of once in 14 bits can be achieved by again further partitioning the matrix
inverse into 2 separate tasks. Here, the key idea is to use the amount of parallelism
necessary to satisfy the bit error rate tolerance levels. Alternate methods could also
be used for computing the inverse to reduce the complexity and make more updates

feasible. These are discussed in the next chapter.
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Chapter 4

Reduced-Complexity Channel Estimation and
Detection

The previous chapter discussed means to achieve real-time using task partitioning.
However, the amount of processors needed to achieve real-time was O(K?), which
is quite large. Hence, a direct implementation of the algorithms shown in Chapter
2 is not feasible. This chapter discusses modifications to the algorithms for channel
estimation and detection to make them computationally efficient and suitable for a

hardware implementation.

4.1 Iterative Channel Estimation

A direct computation of the exact Maximum Likelihood channel estimate Y involves
the computation of the correlation matrices Ry, and Ry, and then the computation
of Rb_bleT at the end of the preamble (Chapter 2, equation 2.4). The computation
of the inverse at the end of the preamble is computationally expensive and delays
the start of detection beyond the length of the preamble until the estimate has been
computed and this delay limits the information rate. In the iterative algorithm, the

Maximum Likelihood solution is approximated based on the following ideas:

1. The product Rb_ble,« can be directly approximated using iterative algorithms
such as the conjugate gradient algorithm [26].

2. The iterative algorithm is modified to update the estimate as the preamble is
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being received rather than waiting until the end of the preamble. This means that

the computation per bit is reduced by spreading it over the entire preamble.

An iterative scheme based on the method of gradient descent (a variation of Richard-
son’s method) [26] for the matrix inversion is presented. In this scheme, the channel
estimate Y is updated iteratively every bit and hence is available immediately after
the end of the pilot sequence. Here, the updating of the estimate can be done every

bit using the iterative scheme as shown:

Rbr = Rb»,« + b,I‘fI - bifLriI{L (41)
Rbb == Rbb + bzb;r - bi*LbZTfL (42)
Y = Y- M(Rbb xY — Rb'l‘) (43)

This scheme is suitable for tracking, which is shown by the removal of the oldest bit
in the window of length L as the new bit is received. Tracking is simpler in this
iterative scheme because the channel estimates and correlation matrices are updated
iteratively. During the initial pilot phase, tracking is absent and the equations for
correlation reduce to the equations in the previously shown estimation scheme in
Chapter 2 (equation 2.2-2.4), using matrix inversion. The iterative algorithm ap-
proximates the maximum likelihood solution as the preamble is being received. As
the [** preamble observation is received, it tries to evaluate the maximum likelihood
solution given [ observations. The accuracy of the iterative estimate can be improved
by increasing the number of iterations during each bit. In our simulations, we perform
only one iteration per preamble bit as this is sufficient for the reasonable simulation
parameters chosen. The algorithm shows good convergence behavior since Ry is

a symmetric positive definite matrix and has a small condition number [26]. The
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parameter , u, should be chosen such that it is smaller than the largest eigenvalue
of the auto-correlation matrix. A detailed analysis of this scheme is presented in a
similar context for long codes in [14].

Figure 4.1 shows the performance of both schemes in an AWGN environment
after the end of the pilot phase against two types of detectors, a Matched Filter
Detector(MF) and a Differencing Multistage Detector(ML) [15]. The simulations
are carried out for a preamble of length 150 bits, having 3 paths, for 15 users, all
transmitting at the same power and for a detection window length of 12, with 10000
bits per user. The value of u for the iterative scheme was chosen to be 0.0001. From
the simulations, it can be observed that the iterative scheme gives almost the same
error rate performance as that of the original scheme(ACT) but yet, has reduced
complexity due to spreading the computations over the length of the preamble.

The analysis of the system for a fading channel with tracking is shown in Figure

4.2. Here it can be seen that the proposed tracking scheme based on the iterative
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Figure 4.2 : Error Rate Performance in a Fading Channel

scheme is able to effectively track the time-varying channel. The poor performance
of the static channel assumption for this Rayleigh fading channel (of Doppler spread
10 Hz) shows the importance of tracking. The simulation is done using 1000 bits per
user for 15 users with equal power, for a Rayleigh fading channel with a Doppler of

10Hz.

4.2 Estimation based on Precomputed Preamble

Significant computational savings can be achieved if the autocorrelation matrix and

its inverse (Chapter 2, equation 2.2-2.4) are precomputed as follows:

L

Ry, = Y bb! (4.4)
i=1

c; = Ry'b (4.5)
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Thus, assuming prior computation of the autocorrelation matrix Ry, and its inverse
Rb_bl, the coefficients c¢; can also be precomputed and stored in memory as a lookup
table. The channel estimate Y can be updated immediately on the reception of the
received signal r;. Thus, a matrix multiplication can be reduced to an outer product
update, thereby reducing the complexity. This scheme can be used only during the
initial preamble phase as it requires previous computation of the autocorrelation

matrix.

4.3 Pipelined Detection

The block-based multishot detection scheme in chapter 2(section 2.4.2) was proposed
as it requires computation of future incoming bits of users, which are not available.
This results in taking a window of (D+2) bits and using it to detect D bits as the
edge bits are not detected accurately due to windowing effects. Thus, there are 2
additional computations per block and per iteration that are not used. Also, such a
block-based implementation needs a windowing strategy and has to wait until all the
bits in the window are ready for computation. This is as shown in Figure 4.3 for a
detection window of length 10. It can be observed that the detection is done in blocks
of 12 bits, and the edge bits are thrown away and recalculated in the next iteration.
However, the stages in the multistage detector can be efficiently pipelined to avoid
edge computations and to work on a bit streaming basis. This can be done due to the

block Toeplitz nature of the matrix AHA as seen in chapter 2, equation 2.15. The
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Figure 4.3 : Block Based Detection

computations performed on the intermediate bits reduce to

L = A1%A0 (4.7)
C (AO™AO + A1 A1) — diag(diag(AO™M A0 + A1HA1)) (4.8)
Vi yi — Lb;_; — Cb; — L"b;3, (4.9)

This equation may be thought of subtracting the interference from the past bit of

users, who have more delay, and the future bits of the users, who have less delay than

the desired user. The left matrix L, stands for the partial correlation between the

past bits of the interfering users and the desired user, the right matrix L¥, stands

for the partial correlation between the future bits of the interfering users and the

desired user. The center matrix C, is the correlation of the current bits of interfering

users and the diagonal elements are made zeros to avoid self-cancellation. Thus, the

similarity of the above equation (4.9) to the model chosen for output of the matched

filter [27] is as shown:

i =

R(I)Abi_l + R(O)Abz + R(—l)AbH_l + W;

(4.10)
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Figure 4.4 : Pipelined Detection

where R is the correlation matrix, A is a diagonal amplitude matrix, w is the noise
vector and b is the symbol vector.

The detection can now be pipelined as shown in Figure 4.4. An example using
bit 3 of the detector is shown. An initial estimate of the received signal is done using
a matched filter detector, which depends only on the current and the past received
bits. The stages of the multiuser detector need bits 2 and 4 of all users to cancel the
interference for bit 3. Hence, the first stage can cancel the interference only after bits
2 and 4 estimates of the matched filter is available. The other stages have a similar
structure. Hence, while bit 3 is being estimated from the final stage, the matched
filter is estimating bit 9, the first stage bit 7 and the second stage bit 5. There are no
edge bit computations in this scheme and hence, they can be avoided and recalculated

in the next iteration as the window progresses.

4.4 Computational Savings

The schemes discussed in the previous sections have no degradation in error rate

performance. The computational advantages of the newly proposed schemes in this



32

Blocks Precomputed Original Iterative
Preamble
Channel Yes O(4K?N) O(2KN)
Estimation No O(6K® + 4K?N) O(4K?2N)
Multiuser Detection (per D bits) | O(DNK + 3(D + 2)K?) | O(DNK + 3DK?)

Table 4.1 : Comparisons of Computational Savings

chapter over the previous schemes in Chapter 2 are shown in Table 4.1.

The original channel estimation scheme with the precomputed matrix inverse
needs to do a matrix multiplication O(4K?N) to obtain the channel estimate. The
channel estimation scheme needs only a matrix rank 1 update O(2K N) due to its it-
erative nature. If the channel estimation is used for fading channels, where the inverse
cannot be precomputed, both the matrix inversion as well as the matrix multiplica-
tion needs to be done O(6K? + 4K2N) while estimation using the gradient method
requires only a multiplication O(4K2N). For comparing the detection schemes, we
assume that a window of D bits need to be detected. For every window, we save
O(6K?) computations, assuming a 3-stage detector as the edge bits do not need to

be calculated.
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Chapter 5

VLSI Architecture for Channel Estimation

The task partitioning of the channel estimation algorithm into sub-blocks is carried
out for pipelining and for utilizing the inherent parallelism present. Different map-
pings of the multiuser channel estimation algorithm to hardware are implemented to
study the complexity and hardware requirement tradeoffs. A serial architecture, with
minimum hardware requirements, a parallel solution in minimum time and an area-
time efficient solution are discussed. An area-constrained architecture is a tradeoff for
minimizing the area with increased computational time, which may be suitable for
'picocell’ applications with lower data rates. A time-constrained architecture is used
to evaluate the potential parallelism in the algorithm and find maximum theoretical
data rates. The area-time efficient architecture meets the real-time requirements with

minimum area overhead.

5.1 Task Decomposition

The task decomposition of the channel estimation algorithm is shown in Figure 5.1.
The blocks that are pipelined are shown on the horizontal time axis while the blocks
that have coarse-grained parallelism are shown along the vertical axis. The figure
shows that the correlation matrices in Chapter 4 (equation 4.1-4.2) can be formed in
parallel and the correlation can be pipelined with the iteration of the channel estimate

matrix (equation 4.3). The two multiplexers shown are for selecting between the
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Figure 5.1 : Task Decomposition of Multiuser Channel Estimation Algorithm

known pilot and the received pilot signal during the training mode and the detected
bits and the received data signal in the tracking phase. The tracking window is the
history buffer and keeps the L most recent samples of the bits as well as the received
signal. The sizes of the sub-blocks are shown along with their word lengths in the
figure. The dynamic range of the input is dependent on Signal-to-Noise ratio (SNR),
the Multiple Access Interference (MAI) and the number of users in the system. A
detailed analysis is required to determine the word-length of the input. It is assumed
that the received signal is quantized by an A/D converter to have a fixed precision
word-length of 8 bits as a similar dynamic range analysis [15,28] for detection shows
the input range to be 8 bits. However, the analysis of the algorithm presented here
is independent of the word-length. Also, note that the blocks r, Ry, and Y are
complex-valued while b and Ry, are real-valued. For the sake of convenience, the
current inputs bj, r; can be represented as b, r and b;_y,, r;_r, as b0, r0.

A typical architecture has window length L. = 150, spreading gain N = 32 and the

number of users K = 32. For all the architectures shown here, we assume that the
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Figure 5.2 : Area-Constrained VLSI Architecture

unit of time in cycles is the time required for an 8-bit multiplication and addition. We
assume that a Wallace or Dadda multiplier tree [29] is used for multiplication requiring
O(n?) 1-bit Full Adders for a n-bit multiplication. Since the multiplication by p in
the iteration loop (Chapter 4, equation 4.3) results in truncation of the output and
need not be highly accurate for numerical stability, a truncated multiplication using
significantly less hardware [30] can be used. The delays of blocks such as multiplexers
and gates are assumed to be included in the single-cycle delay. For an area estimate
of the architectures, equivalent of the number of 1-bit Full Adder Cells in the design
are considered. We assume all blocks can be pipelined effectively. It can be observed
from Figure 5.1 that the bottleneck in the pipeline is the matrix-matrix multiplication

between Ry, and Y, and this will be the focus in the proposed architectures.
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5.2 Area-Constrained Architecture

An area-constrained architecture of the multiuser channel estimation scheme is as
shown in Figure 5.2. The architecture shown computes only the real part of the
channel estimate. Since there are no multiplications between two complex numbers,
the architecture can be assumed to be replicated for the imaginary part. In this ar-
chitecture, all matrix elements are computed an element at a time. The word lengths
of the various blocks are as shown in Figure 5.2. The dotted lines indicate the separa-
tion between the auto-correlation, cross-correlation and the iteration loop (Chapter4,
equation 4.1-4.3). The left part shows the calculation of the auto-correlation and
cross-correlation matrices whereas the right part shows the calculation of the itera-
tion loop.

To form the outer product update, we take advantage of the single bit nature of
the data and replicate the bits b, b0 such that for forming the (i, j)* element of Ryp,
the 7" and j** bit of b are EX-NORed (multiplication between +1 and -1 is an EX-
NOR operation) and sent to a counter loaded with the previous value of Ry, which
increments or decrements by one. The (i, ;) element of the outer product update
(Chapter 4, equation 4.1) b0 x* bO” is calculated, negated and sent to the counter,
which again increments or decrements by 1 (Up/Down). The multiplexer also has an
enable signal such that the output is tristated during the pilot phase, when b0 % bO™
is not computed. The matrix Ryp is then updated with a store signal.

A MAC (Multiply and Accumulate) unit is used to compute the inner product of
the matrix multiplication (Chapter 4, equation 4.3) Rpp * Y. If we design a MAC unit
such that the multiplication and addition are pipelined with the other blocks in the
figure, computing an element of Ry, * Y takes 2K or 64 cycles. The corresponding

element of Ry, is updated similarly with an adder. The multiplication by u is then
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Figure 5.3 : Time-Constrained VLSI Architecture Block Diagram

carried out with the help of a right shift and the new (i, 7)™ element of Y comes out of
the pipeline every 2K cycles. The MUX-DEMUX circuit loads from Y and stores in
Y pew for every 4K2N or 128,000 cycles (the time taken to compute the entire matrix)
and then switches. The hardware requirements for an area-constrained architecture
are as shown in Table 5.1. The design requires an 8-bit counter, an 8-bit multiplier,
three 8-bit adders and two 16-bit adders (for the MAC and the subtraction by Ryy),

about 112,000 bits of memory and 4K2N cycles.

5.3 Time-Constrained Architecture

The block diagram of a time-constrained architecture is as shown in Figure 5.3. In
this architecture, the available parallelism in the algorithm is exploited to the maxi-
mum extent. Hence, all the elements needed to perform a parallel multiplication are
computed simultaneously and are pipelined. In this case, the entire matrices Ryp

and Y are multiplied by using an array of multipliers. The entire product matrix is
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Figure 5.4 : Elements in the Auto-correlation Matrix Block

subtracted from the auto-correlation matrix, Ry, shifted and a new channel estimate
is formed. Thus, as the time taken by the other computations is pipelined with the
time for the multiplication, the output can be formed every log,(2K) or 6 cycles.
The bit-level arithmetic and parallel structure of the correlation matrices are ex-
ploited to form the correlation matrices simultaneously within a cycle. The sub-
blocks for the formation of the auto-correlation matrix and cross-correlation matrix
are shown in Figure 5.4 and Figure 5.5. Since the auto-correlation matrix update is
a symmetric matrix and all the diagonal elements are 1’s (a EX-NOR a = 1), only
the strictly upper triangular (or lower triangular) part of the auto-correlation matrix
(Figure 5.4) needs to be computed. Also, as the updates are all +1’s or -1’s, the bit
multiplications can be obtained from a simple EX-NOR gate structure. The counters
in the auto-correlation matrix are then updated based on the sign of the updates.
Also, the elements in the cross-correlation update are +r or —r, and hence the vector
r could be directly added or subtracted with every column of the auto-correlation
matrix based on the sign of the bit vector b. The hardware requirements for the

time-constrained architecture are as shown in Table 5.2. Though the hardware re-
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quirements increase by 5 orders of magnitude, the memory requirements decrease
as there is no need for storage and there is a significant speedup in time (5 orders)
obtained compared to the area-constrained architecture which shows the potential
parallelism in the architecture. For a typical implementation, the number of Full
Adder Cells required is 20,000,000. This is a far too aggressive solution and difficult
to implement even with current silicon technology. However, the architecture states
the theoretical minimum time requirements (maximum data rates achieved) by ex-
ploiting the available parallelism as log, (2K) or 6 cycles, which is the time required to
do the parallel multiplication and pipelining it with the other blocks. 2K N(2K — 1)
16-bit adders are required for doing the recursive doubling in log,(2K) time [adding
2K elements in log,(2K) time requires (2K — 1) adders] and 2K N 16-bit adders for

the subtraction following the multiplication.
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5.4 Area-Time Efficient Architecture

From comparing the above two architectures in Table 5.4, the area-constrained ar-
chitecture design does not meet real-time requirements while the time-constrained
architecture is highly aggressive in area. So, a tradeoff point in the design space
needs to be found, which meets the real-time requirements with minimum additional
area. This can be done by observing that the major part of the chip area calculated
is used by the array of multipliers. Hence, instead of computing the entire matrix
product (Chapter 4, equation 4.3) in parallel, the product should be computed ele-
ment by element by doing the inner product in parallel. This would imply 4K or 128
multipliers. If this was done row by row or column by column, it would require 4K?
or 4K N multipliers, requiring about 3600 multipliers, which may not be available just
for channel estimation. Since the output is computed element-by-element, this would
require 2K N or 2000 cycles for the complete channel estimate. The block diagram of
the area-time efficient architecture is shown in Figure 5.6.

The hardware requirements for an efficient area-time architecture are as shown
in Table 5.3. This design (real-part) requires 2K Multipliers to compute an element
every cycle and (2K — 1) 16-bit adders for recursive doubling. This design requires

about 10,000 Full Adder Cells and finds the estimate in 2K N cycles.

5.5 Comparisons with DSPs

An architecture comparison of the different VLSI architectures with a DSP is evalu-
ated in this section. Though DSPs and GPPs with VLIW architectures and MMX-like
instruction sets can exploit byte-length parallelism, they are less efficient while work-

ing with bit level parallelism. Storage of these bits on such a processor is either
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Figure 5.6 : Area-Time Efficient VLSI Architecture

inefficient as it is stored as bytes or clearly it represents a large overhead involved in
packing and unpacking these bits. Also, the compiler may not take advantage of the
fact that most of the multiplications are with bits and replace them with additions.
Using a control structure instead also limits the utilization of available parallelism.
Also, formation of bit-level matrix updates as seen in the different VLSI architectures
is much more effective and simpler to build in hardware with EX-NOR gates, giving
O(1) performance with O(K?) or 1000 EX-NOR gates, while it may take O(K?) or
1000 cycles on a DSP and takes O(K?) or 1K bytes in memory.

Assuming a 500 MHz clock for the VLSI architectures, the projected time required
to compute the channel estimate along with the hardware required for 32 users and a
spreading code of length 32 is as shown in Table 5.4. This is compared with the imple-
mentation of the previously existing algorithm in Chapter 2, on a TT TMS320C6701
Evaluation Module, operating at 166 MHz. The DSP implementation of the Mul-

tiuser Channel estimation algorithm using the previously existing schemes is shown
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to require 763401 cycles (Chapter 3, Table 3.1), which corresponds to 4.56 ms for 15
users. Assuming that the channel estimate is updated for every block of 10 bits, and
extending it linearly to 32 users, this corresponds to a time requirement of 0.97 ms
or 1.02 Kbps. This is shown in Table 5.4.

The inherent parallelism present in the algorithm can be seen from the ratio of
time taken for computation by the area-constrained and time-constrained architec-
tures. The area estimates are compared using the number of Full Adder Cells needed
in the design, as shown in Table 5.4. The time difference between the DSP and the
VLSI architectures is due to the improvements in the algorithm modifications and the
fact that the bit-level and byte-level parallelism are not exploited on the DSPs and
the additional memory references. The difference in the processor speed does not play
a major role in the time differences. We can observe that the area-constrained archi-
tecture does not satisfy real-time constraints of 7.8125 us while the time-constrained
architecture is far too aggressive. The area-time efficient architecture meets the next
generation real-time constraints by designing the area-time tradeoff in 4 s, which is
close to the target data rate of 128 Kbps. From Table 5.3, it is seen that the time
required is directly proportional to the number of users (K) in the system and the
spreading factor (N), which are also dependent on each other as seen from Table 2.2.
Hence, the system design also meets real-time requirements for various data rates,

such as 1 Mbps for 4 users with a spreading factor of 4.



Blocks Quantity Full Adder Cells Complex | Total
Counter 1*8 8 - 8
Multiplier 1*8 64 *2 128
Adders | 3%x8+2x16 56 *2 112
Total Full Adder Cells 248
Elements Memory/Reg Usage | Complex | Total
b,b0 4K % 1 - 8K
r,r0 N %8 *2 32N
Ry, 2K?% %8 - 16K?
Ry, Y, Ynew 2KN 8 *2 96 K N
Net Memory Reqd. (in Bits) N=K=32 112,000
4K2N 128,000

Total Time (Cycles)

Table 5.1 : Hardware Requirements for an Area-Constrained Architecture
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Blocks Quantity Full Adder Cells Complex Total
Counter 2K?% %8 16K? - 16 K2
Multipliers 4K%N 8 256 K2 N *2 512K2N
Adders 2KN %164+ 2KN %8 48K N *2 96 K N+
+4K?2N % 16 +64K2N 128 K2N
Total Full Adder Cells N=K=32 20,000,000
Elements Memory/Reg Usage | Complex Total
b,b0 2K %1 - 4K
r,r0 N %8 *2 32N
Y 2KN %8 *2 32KN
Net Memory Reqd. (in Bits) N=K=32 32,000
Total Time(Cycles) log,(2K) 6

Table 5.2 : Hardware Requirements for a Time-Constrained Architecture
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Blocks Quantity Full Adder Cells Complex Total
Counter 2K*8 16K - 16K
Multipliers 2K*8 128K *2 256K
Adders 2K %164+ 1x164+2%8 32K + 32 *2 64K + 64
Total Full Adder Cells N=K=32 10,000
Elements Memory/Reg Usage | Complex Total
b,b0 4K x 1 - 8K
r,r0 N %8 *2 32N
Ry 2K? % 8 - 16K?
Ry, Y, Ynew 2KN %8 *2 96K N
Net Memory Reqd. (in Bits) N=K=32 112,000
Total Time(Cycles) 2KN 2,000

Table 5.3 : Hardware Requirements for Area-Time Efficient Architecture

Architecture Full Adder Cells | Memory (Bytes) | Time | Data Rates
Area-Constrained 248 16 KB 0.262 ms | 3.81 Kbps
Time-Constrained 20,000,000 4 KB 12 ns 83.33 Mbps

Area-Time 10,000 16 KB 4 s 256 Kbps
TMS320C6701 DSP - 128 KB 0.97 ms 1.02 Kbps
Real-Time Requirements 7.8125 ps 128Kbps

Table 5.4 : Comparisons between Different Channel Estimation Architectures
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Chapter 6

Architecture and Extensions for DSPs and GPPs

The DSP and the VLSI implementations of the algorithms in the previous chapters are
used to find extensions for DSPs and GPPs in order to accelerate their performance
for wireless communication algorithms. In this chapter, a new processor architecture
with reconfigurable logic support is developed and extensions are suggested, which
would greatly enhance DSPs and GPPs for wireless applications.

The reason for multimedia support in recent GPPs and DSPs such as the Sun
UltraSPARC, Pentium MMX, TI TMS320C64x is to accelerate implementation of
image and video processing algorithms. The acceleration was obtained by observing
the fact that multimedia data is typically 8-bit wide (pixels) and the 64-bit wide
databus and ALU could perform 8 operations on multimedia data in parallel by
using SIMD (Single Instruction Multiple Data) parallelism. The recent explosion
in wireless communications and their potential implementation in GPPs and DSPs
behooves us to seek performance acceleration extensions for wireless communications

by exploiting the potential for bit level arithmetic.

6.1 Features of Wireless Communication Algorithms

The implementation of the channel estimation and detection algorithms reveals the
following features in algorithms for wireless communications and explains the limita-

tions of current DSP and GPP architectures for these algorithms.
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e Bit Level Computations

A common feature among various algorithms for communication and as seen in
the channel estimation and detection algorithms is the computations on bit-level
data. Even other applications such as Huffman encoding in MPEG-4 requires
computations on bit-level accesses. Current GPPs and DSPs which cannot
operate directly on bit-level data need to do packing and unpacking to store the
bits in memory; operate bit-level data in byte-wide ALUs and use 8-bit registers
to operate data in the register files of the processor. Hence, bit-level support
is needed in all parts of the processor: bit-level accesses to memory, registers
that can process bit streams efficiently and ALUs which recognize operations on
bits. Also, note that multiplications by bits can be replaced by additions if the
bit is +1 or subtraction if the bit is -1. However, replacing them with a control
if-else structure restricts the parallelism that can be exploited on DSPs and
GPPs, especially if they have a VLIW architecture. Hence, proper hardware or
software support is also needed for finding multiplications for bits and replacing

them with additions and subtractions.

e Matrix Based Operations

Another common feature in most wireless communication and image process-
ing algorithms is that the operations performed on matrices. This implies that
massive parallelism is available and memory-intensive operations. Current DSP
and GPP implementations are unable to exploit the entire parallelism available
in the algorithms and hence, unable to meet the MIPS or FLOPS requirements.
Since operations on matrices are memory-intensive, the memory should be made

insensitive to the strides of the data access, especially if matrix transpositions
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need to be calculated as accessing memory in column major order could poten-
tially mean hits to the same bank. Hence, a stride insensitive memory system

with a large bandwidth is needed.

Complex-Valued Arithmetic

Operations on complex-valued arithmetic is also common in many wireless and
DSP algorithms. There have been DSP and GPP instructions for aligning and
shuffling the real and imaginary parts [31] in computations such as the FFT.
However, typically the support for complex arithmetic is done in software and

the real and imaginary parts are computed in parallel in hardware.

Approximate Computations

There exists a class of arithmetic techniques that deal with the implementation
of adders and multipliers based on the precision required to compute them. It
has been shown [30] that typically savings by half the area and time delay can
achieved for a multiplier if only the most significant digits need to be precise.
This is particularly suited in DSP and wireless algorithms, which are iterative
based and need the output of the multiplier to be fed back to the input, by
throwing away the least significant bit values. An example for this would be
the channel estimation scheme, which uses an iterative technique to compute
the channel estimate. This truncated multiplier could be added to a GPP or
DSP core and applications, which need not need higher precision, could use this

multiplier to perform 2 multiplies in the time taken by the normal multiplier of

the GPP or DSP core.
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6.2 Architecture Design with Reconfigurable Support
6.2.1 Need for Reconfigurable Support

There have been different standards proposed for different environments for mobile
communications, such as wireless LAN using OFDM (Orthogonal Frequency Division
Multiplexing) in the office environment, W-CDMA in the mobile environment and
Home Networks using Bluetooth. The RENE project at Rice [32] addresses the issue
of developing a network interface, which will integrate all these standards and pro-
vide uninterrupted services between environments. Different services such as voice
and multimedia have different protocols such as H.723 for voice and MPEG-4 for
multimedia. Also, different environments may require different types of channel cod-
ing such as convolutional codes for the indoor environment and turbo codes for the
mobile. Hence, algorithms also need to be reconfigured according to the standards,
the services used and the environment. A reconfigurable architecture, which has a
fast configuration time to switch between the standards and algorithms and deal with

the initial protocols, is an efficient way to provide the network interface.

6.2.2 Architecture Design

The architecture design of the processor along with the reconfigurable support is as
shown in Figure 6.1. This architecture design is adapted from the GARP architecture
at University of California, Berkeley [33], though for a different application. The RF
Unit converts the received signal to baseband and sends it to the processor. The RF
unit is implemented as a PCMCIA network interface card and can be used for all the
standards. The reconfigurable logic is on the same die as the processor core and acts

as a co-processor to the main DSP or GPP core.



: I :
! | Processor Cache | Main
I Core : Memory
I
i | (GPP/IDSP) L| ol | ! —
: I
I I 1 | \\
I Crossbar I
: I
! II Real-Time | 1
I ’
| Reconfigurable [ /O A RE unit
. . I
: Logic BiLSteam |+ add-on PCMCIA
1 : Network Interface Card
Processor

Figure 6.1 : Architecture Design with Reconfigurable Support

e Reconfigurable Hardware

The organization of the reconfigurable hardware is similar to the one proposed
in GARP [33], except that it has also been optimized for fast data transfer
between the architecture and the RF Unit to provide support for extremely
high data rates (up to 2 Mbps). It is used primarily for fast I/O transfer and
to process initial bit level computations which can be done more efficiently on
the reconfigurable hardware. The reconfigurable hardware has a large datapath
to memory to minimize load times and for fast data transfer. The reconfig-
urable hardware also has configuration caches, which stores the most recently
displaced configurations. The configuration caches store the information for
different environments. Up to 4 full size configurations can be stored and can
be reprogrammed in 5 cycles. This fast reconfiguration time helps to provide
seamless and uninterrupted service during transfers from one environment to

another.

The reconfigurable hardware can execute independently, once configured and
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has access to the same memory system as the processor core, and hence there is
no overhead involved in transferring data from the reconfigurable logic to main
memory. When idle, the reconfigurable logic can transfer data to the processor

and can be reconfigured via co-processor move instructions.

Memory Interface

The memory interface is designed to have a common access to the L1 data cache
and the main memory to both the processor core and the reconfigurable logic.
This avoids overhead in communication between the reconfigurable logic block
and the memory via the processor. Memory Prefetch Queues are added for
prefetching sequential data, especially by noting the fact that lot of operations
are being performed on matrices. This allows for memory read-aheads and

delayed write-backs.

Permutation Based Interleaved Memory

Since the operations are memory-intensive, a high memory bandwidth is re-
quired. The matrix-based operations, which involve both row and column major
order access during transpositions. Also, the strides of the data access depend
on the size of the matrices. To ensure that the stride pattern does not have mul-
tiple bank hits to a single bank, the system designed has to be stride-insensitive.
It has been shown [34] that a permutation based interleaved (PBI) memory sys-
tem can essentially randomize accesses and provide a throughput greater than

95%.
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6.3 Instruction Set Extensions for Wireless

In this section, instruction set extensions based on bit level computations are pro-
posed to accelerate the implementation of wireless communication algorithms. The
multiuser detection and decoding algorithms involve integer-bit multiplications while
algorithms for channel estimation involve bit-bit multiplications for outer product up-
dates involved in auto-correlation. The extensions proposed here can also be used for
bit level computations in similar algorithms for speech, video and image processing.

The extensions proposed involve no modifications to the architecture, except for

the ALU. A few special purpose 8-bit registers with bit level access are also needed.

6.3.1 Reference Architecture

For comparison purposes, a general purpose processor with multimedia extensions
such as the UltraSPARC with the VIS instruction set [35] or the Intel MMX Ar-
chitecture [36]. Since different architectures have various types of ISA multimedia
extensions, we assume a 64-bit architecture that supports 8-bit multiplications and
additions. Specifically, we assume that we can perform eight 8-bit additions with
8-bit results and four 8-bit multiplications with 16-bit results simultaneously using
SIMD parallelism. The latencies of the addition and multiplication operations and
memory references, which are used in the following examples, are as shown in Table
6.1. All data is assumed to be in the internal registers for convenience in comparisons.

We now propose bit level extensions to the above instruction set architecture to

accelerate wireless communication algorithms.
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6.3.2 Integer-Bit Multiplications

The instruction set extension for performing integer-bit multiplications is as shown
in Figure 6.2. Integer - bit multiplications are common in operations such as cross-
correlation. This can be illustrated with the help of an example for cross-correlation.

Consider
for.i = 1:8

for.j = 1:8

D] = DI[4] + ble] = (3]

Operations Latency
Four 8-bit Multiply 3
Eight 8-bit Add 1
Eight 8-bit Inc./Dec. 1

Table 6.1 : Latencies for various operations
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where D and r are short integers(8 bits) and b is bit-wide (41 or -1 represented as 1
or 0). If the bit bli] is replicated and stored in the special purpose 8-bit register, 8
operations can be performed in parallel in a single cycle, based on the sign of the bit
bli]. This is in contrast to current DSP or GPP architectures without this extensions,
where this operation would be a branch for addition or subtraction based on the value
of the bit b[i] and limits exploiting the available parallelism. Note that the operation
has been made more general to accommodate for multiplications such as b[j]*r[j], and
hence the single bit b[i] has been replicated in this example. Thus, the branching
can be avoided and 8 operations can be performed in parallel in a single cycle. This
also helps in removing overheads involved in packing and unpacking of bits in the
operation, as can be seen for the b[j]*r[j] case, where the bits can be utilized directly.
Thus, the multiplication by bit vector b is done without any additional cycles as if it
were absent compared to normal SIMD parallelism.

Since there are 64 multiplications and 64 additions in the above equation for
cross-correlation, there are effectively 16 multiplication operations and 8 addition
operations, as 4 multiplications and 8 additions can be done in parallel. This gives
the cycle count as 16*3 + 8*1 = 54 cycles on an usual SIMD machine. However, this
requires only 8*1 = 8 cycles using the proposed instruction as the bit multiplications

can be avoided.
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6.3.3 Bit-Bit Multiplications

Bit-Bit multiplications are commonly used in auto-correlation of matrices. Let us

illustrate this with the help of another example. Consider

for.i = 1:8
for.j = 1:8

D[] = D]+ ble] + blj]

where D is a short int (8 bit) and b is bit-wide. To make optimum use of the
hardware and to make the operations more general and RISC-like, the computations
are separated into 3 parts: packing bits efficiently in a 64-bit register, 64 1 bit-bit
multiplications, incrementing or decrementing the integer matrix based on the bit

value.

1. Packing bits efficiently in a 64-bit register

To perform the auto-correlation and obtain 64 1-bit products bli]*b[j], the 8

1-bit sequence b is arranged as shown in Figure 6.3. All b[i]’s needed in the
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product bli]*b][j] are stored in 1 64-bit register and all b[j]’s are stored in another

64-bit register.

. 64 1 Bit-Bit Multiplications in Parallel

Multiplication between bits, which are +1 and -1 is essentially an EX-NOR
operation, thus the entire product matrix b[i]*b[j|] can be computed in a single
cycle with a single EX-NOR operation. Current processors have instructions
for EX-OR and NOT and hence, these instructions could be used or another
instruction could be built for EX-NOR. Note that the operation is made general

such that any 2 64 1-bit numbers can be multiplied as shown in Figure 6.4.

. Incrementing or Decrementing based on the bit value

The auto-correlation matrix can be updated with 8 operations in parallel in a
single cycle as shown in Figure 6.5. Thus, the entire matrix can be updated
in 8 cycles. Again, the instruction has been generalized so that any eight 8-bit

numbers can be incremented or decremented based on the value of 8 1-bits.
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Thus, the entire auto-correlation consisting of 64 1-bit multiplies and 64 8-bit adds
or subtracts can be achieved in 14+1+8 = 10 cycles ( 1 for conversion, 1 for EX-NOR
and 8 for addition/subtraction).

The instruction set extensions show that significant savings in performance for
algorithms for wireless communications can be obtained by supporting bit level com-
putations. The proposed instructions do not require significant changes to the ALU
design and are easy to support. They are also generalized to be useful to a wide
variety of signal processing and communication applications that use bit-level com-
putations. For measuring accurate performance improvements, the proposed changes

need to be incorporated in a simulator and tested on a wide range of algorithms.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis demonstrates the use of computationally efficient algorithm and architec-
ture design in order to meet real-time requirements for future wireless base-station
receivers. Two of the main compute-intensive algorithms for the baseband layer of
the base-station, Multiuser channel estimation and detection, are implemented on
DSPs for performance evaluation. A design methodology using task partitioning is
shown to meet the real-time requirements. However, this requires O(K?) elements.
Hence, the multiuser channel estimation and detection algorithms are also modified
for a more compute-effective solution, without compromising on the error rate per-
formance of the algorithms. An area-time efficient VLSI architecture of the channel
estimation scheme is designed to meet real-time requirements with minimum area
overhead. Different area-time tradeoffs are investigated for channel estimation. An
area-constrained architecture is designed that can be implemented on a FPGA. A
time-constrained architecture design shows the extent of parallelism in channel esti-
mation and determines the maximum data rates that can be achieved. An general
purpose or DSP-based architecture design with reconfigurable support is developed to
support different wireless communication standards. Several enhancements for gen-
eral purpose processors and DSPs are proposed to accelerate their performance for

wireless communication algorithms.
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7.2 Future Work
7.2.1 Online Arithmetic

Online arithmetic is an unconventional technique for arithmetic intensive operations,
where the computations are overlapped with the digit-by-digit communication of the
operands and the results. The computations are carried out on a Most Significant
Digit First (MSDF) mode of operations, where the MSB is computed ahead of the
other bits. This requires the use of redundancy-based number systems in order to
implement the operations online [37].

The advantages of using online techniques in wireless communication applications
stems from the fact that the final goal of the computations is just to find whether
the bit of the user is +1 or -1. If an online technique is applied in these algorithms,
the operations on all subsequent bits after the MSB can be avoided, resulting in huge
performance improvements. However, this requires the use of conversion between the
normal arithmetic number system and a redundancy-based number system and the

overhead and gains achieved need to be studied.

7.2.2 Multiprocessing with DSPs and FPGAs

As task partitioning is shown to be effective in meeting real-time requirements for
these massively parallel algorithms, an implementation of these algorithms on multiple
DSPs and FPGAs is being studied. The idea is to use the DSPs for the core operations
such as multiplications and additions and to use the FPGAs for the bit-level support

and operations.
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