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Type-Based Specialization in a Telescoping
Compiler for Matlab

Cheryl McCosh

Abstract

This thesis develops telescoping-language technology for automatically generating
high performance libraries from development code written in high-level languages,
like Matlab. The generated library subroutines have pre-optimized variants based on
possible uses of the library. Specifically, a specialized variant is generated for each
possible type configuration on inputs to the library. This thesis develops an efficient
graph-theoretical, constraint-based algorithm for inferring types in Matlab needed
for translation into lower-level languages, optimization, and determination of which
specialized variants to generate. The algorithm computes type jump functions, which
allows it to infer types interprocedurally.

To illustrate the power of the technology, this thesis develops ARGen, a system
which generates code equivalent to ARPACK, a Fortran linear algebra library, from
its Matlab development code.

By accomplishing the type inferencing algorithm and ARGen, which uses it, this

thesis provides a basis for a general system for telescoping languages.
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Chapter 1

Introduction

High performance is critical for scientific applications. However, the man-hours re-
quired to attain high performance and the limited number of expert programmers
inhibits the productivity of scientists. High-level scripting languages are much easier
to manage, as is evidenced by the popularity of Matlab® in the scientific community,
but incur a significant cost in performance. Telescoping languages refers to a strategy
for numerical applications that promotes the use of high-level languages to increase
productivity while maintaining performance comparable to that of lower-level lan-
guages.

The contribution of this thesis is twofold. First, it shows that the telescoping-
language strategy can be used to generate code comparable to the Fortran version
of ARPACK, a linear algebra library, from Matlab development code. Second, it
provides an efficient algorithm for inferring types in Matlab to compute type jump
functions on the library subroutines (needed to accomplish the former and to infer
types interprocedurally). Through these contributions, I demonstrate the practicality
and viability of Telescoping Languages and provide a basis for a general system for

telescoping languages [15, 16].

1.1 Telescoping-Language Strategy

Traditionally, library compilers have not had knowledge of the possible calling con-
texts of the subroutines being compiled. This meant that compiling user scripts often

involved recompiling the library subroutines to optimize the library based on the new

®Matlab is a registered trademark of MathWorks Inc.



information about the calling context. Therefore, compiling small scripts could take
large amounts of time, since compile time was proportional to the size of call graph
and not the script size. Telescoping languages avoids this problem by having the
library writer annotate the subroutines with information about the possible calling
contexts. Specialized variants of the subroutine are then generated by the library
compiler, and the script compiler would determine which of the already-compiled
subroutines to use based on the calling context. This allows the user script to treat
library calls as primitive operations in a higher-level language. In fact, most opera-
tions in high-level languages translate to library calls. Therefore, the library compiler
can be thought of as a language generator, hence the name Telescoping Languages.

Figure 1.1 demonstrates this strategy graphically.

Figure 1.1 : Graphical Model of Telescoping-Language Approach

Library writers can also benefit from using telescoping-language technology in
developing their code. Telescoping languages allows library writers to develop and
maintain their code in a high-level scripting language and transfers the responsibility
for achieving high performance to the library compiler. The library compiler must
have an extensive analysis phase, after which it can optimize and specialize based on
the information found. It generates Fortran or C code as an intermediate language
so that it can leverage the already-existing, highly-tuned vendor compilers to aid in

optimization.



To demonstrate how the library compiler works, I use Matlab as the high-level

scripting language because of its popularity among scientists, including the writers of

ARPACK.

1.2 ARPACK as an Application of Telescoping Languages

ARPACK is a library for numerical applications used to solve large-scale eigenvalue
problems|25, 2]. Specifically, it implements a variant of the Arnoldi Process called
the Implicitly Restarted Arnoldi Method (IRAM). ARPACK was initially designed in
Matlab and then hand-translated into Fortran 77 for better performance. By starting
in Matlab, the library designers were able to develop their algorithms in the simpler
environment, thereby allowing them to have a‘better grasp of the implementation,
behavior, and issues of the problem than if they had started in Fortran.

ARPACK is a useful and relatively simple example of an application that can
benefit from telescoping-language technology. This thesis uses ARPACK to explore
some ideas of telescoping languages in order to develop ways of achieving its goals.
Specifically, this thesis explores the need for inferring types for translation into a
lower level language, for specialization and optimization based on types, and for
computation of type jump functions needed for interprocedural analysis.

The writers of the Fortran ARPACK found it useful to create specialized proce-
dures based on types. The existence of these specialized variants indicates that it is
important to distinguish between the different intrinsic types and array layouts. In-
ferring the size of the matrices can also lead to possible optimizations. For example,
it can help avoid reallocating the arrays at every iteration of a loop, since Matlab
arrays can grow.

For this thesis, I use ArnoldiC, a subroutine written in Matlab that implements
the Arnoldi process, to illustrate translating an ARPACK subroutine from Matlab
into Fortran. Due to the lack of defined types in Matlab, the compiler needs to be
able to infer possible types for the variables in ArnoldiC.



The Matlab code is used to automatically produce code comparable in perfor-
mance to the Fortran version of ARPACK, thereby allowing the developers to both
bypass the translation process and maintain the library in the simpler environment.
As the compiler translates, it optimizes the code and creates specialized variants
based on possible input types and calling contexts. Since this is done automatically,
the compiler can generate more specialized variants than those found in the Fortran
ARPACK, since the number of specialized variants in ARPACK was limited by the
time and energy of its creators. Experiments show that specializing for different types
is important in the context of ARPACK.

In order to achieve all of the above-stated goals, I have developed and used
telescoping-language technology to perform type-inferencing and specialization. To
demonstrate the technology, this thesis develops a system, ARGen, that automatically
produces an equivalent to the Fortran ARPACK from the Matlab development-code
by developing and utilizing telescoping-language technology. By using this system,
the library developers can avoid the step of hand-translating the Matlab code to For-
tran, thereby greatly reducing library-development time. The writers also have the
benefit of high performance, since the code generated by the system roughly achieves
the performance of the hand-written Fortran code. Specialized variants are automat-
ically generated to avoid long compilation of user scripts. The ideas and algorithms
used to develop ARGen and described in this thesis can be used in constructing a
general system in the telescoping languages construct that allows library writers to
develop and maintain their code in high-level languages.

This thesis develops telescoping-language technology for automatically generating
high-performance libraries from high-level development code. It generates optimized
variants of the subroutines based on type and computes type jump functions on each
of the subroutines to aid in analyzing calling subroutines. To accomplish all this, this
thesis develops an efficient algorithm for inferring types in high-level languages. The

contributions of this thesis are demonstrated using Matlab as the example high-level



language and ARPACK as the example library.

I first describe ARPACK in more detail in Chapter 2 to discuss those features that
need to be handled by ARGen. In Chapter 3, I discuss the type-inferencing problem
as it applies to Matlab and ARPACK and present a propositional formulation used
for solving the problem. I demonstrate an efficient algorithm for inferring sizes in
Chapter 4 using the propositional formulation. I then show, in Chapter 5, how this
algorithm can be used in other type-inferencing problems. I apply the algorithm to a
subroutine from the Matlab code and give experimental results of the generated code
in Chapter 6. Chapter 7 describes related work. The contributions of this thesis are

summarized in Chapter 8.



Chapter 2

ARPACK

ARPACK stands for ARnoldi PACKage. It is a collection of Fortran 77 subroutines
designed to solve large-scale eigenvalue problems. ARPACK implements a variant
of the Arnoldi Process called the Implicitly Restarted Arnoldi Method (IRAM). The
most important aspect of ARPACK for the purpose of this thesis is that the code was
designed using Matlab and then translated to Fortran 77 by hand.

ArnoldiC is a subroutine from a Matlab version of ARPACK. It corresponds to the
subroutine XYaitr in the FORTRAN version. Figure 2.1 shows the code for ArnoldiC.
I use this subroutine throughout this thesis as the operative example.

This thesis demonstrates the practicality and power of telescoping languages by
generating code equivalent to that in the Fortran ARPACK from the Matlab code.
Because Matlab is weakly typed, the primary analysis needed in ARGen is type
inferencing. Because ARPACK supports several input types, ARGen should infer

that these types are important and produce specialized variants for each.

2.1 Types Supported by ARPACK

ARPACK supports all types XY, where X can be:
single precision real arithmetic,
double precision real arithmetic,
single precision complex arithmetic, or

double precision complex arithmetic,

and Y can be:



function|V, H, f] = ArnoldiC(A, k, v);

v = v/norm(v);

w= Axv;

f =w — v *alpha;

c=vxf;

f=Ff-vxg

alpha = alpha + c;

V(1) =

H(1,1) = alpha;

forj =2k,
beta = norm(f);
v = f/beta;
H(J)J - 1) = beta;
V(4) =v;
w=Ax*v;
h=V(,1:7) *w;
f=w—=V(,1:7)x*h;
c=V(,1:7) *f;

f:f_V(,lj)*C,
h=h+c
H(1:j,7)=h

end

Figure 2.1 : ArnoldiC -Matlab subroutine



non-symmetric, or

symmetric.

There are specialized subroutines for each possible combination of X and Y. The
XYaitr ARPACK subroutines correspond to ArnoldiC for the different types men-
tioned. The above types occur frequently and have the greatest need for specializa-
tion, either for optimization (as in symmetric vs. non-symmetric), or for correctness
(complex vs. real). The developers of ARPACK saw the benefit and necessity of

1 This specialization fits within the

having specialized subroutines based on type.
telescoping languages framework and motivates this thesis. The compiler can auto-
matically generate variants for even more specific cases (i.e., banded matrices) because

it does not face the same time constraints as the ARPACK designers.

2.2 Reverse Comunication Interface

ARPACK uses a reverse communication interface, which allows the library users to
further specialize the routine based on their particular needs. The reverse commu-
nication interface requires the user to provide the matrix-vector multiplication from
the subroutine. In ArnoldiC, this operation is written as w = A * v. Since Fortran
77 does not allow functions to be passed as parameters to the routine, the interface
is a necessary work-around to give users the ability to provide this routine.

The interface is shown in Figure 2.2. It calls for the control to jump out of the
subroutine whenever the product is required. It then loops back to call the top level
routine using the flag, ido, to indicate where it left off in the computation.

This interface allows users to specialize the matrix-vector multiplication based on
certain properties of the input matrix A. In some instances, the users do not even

have to provide the matrix. Rather, given the vector, they can provide a routine

1Specialization based on type is common to most Fortran libraries



10 continue call snaupd (ido, bmat, n, which,...,workd,..., info)
if (ido .eq. newprod) then
call matvec (’A’, n, workd(ipntr(1)), workd(ipntr(2)))
else return
endif
go to 10

Figure 2.2 : Reverse Communication Interface

that computes the result of the multiplication given v. The reverse communication
interface does not appear in the original Matlab code, since it is not necessary in
Matlab.2 Therefore, the interface does not appear in the generated version. Future
research may account for the reverse communication interface as an option for the
user, since the user may not want to provide a matrix or may need more refined
specialization.

However, because the compiler is able to specialize for more types than the library
writers had time to develop, it can handle some of the extra cases. In the example
test code given by ARPACK, one of the special cases handled by the reverse com-
munication interface required that matrix A be banded, even though there was not
"a version of the subroutine for banded matrices in the Fortran ARPACK. However,
the automatically generated code could account for this case as a separate specialized
variant if the library writers included annotations indicating that this case might be
important.

Due to space constraints, the compiler cannot generate a specialized variant for
every case a user of ARPACK might want, nor cannot it bypass forcing the user to

represent the matrix explicitely and in a specific way. However, the reverse communi-

2The library development code should be written in the simplest form possible, and should use
primitive operations where necessary, since it is the compiler’s responsibility to find the most optimal

routine for this operation in the lower-level language.
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cation interface adds overhead that the automatically generated variants would not,
making the automatically generated version is slightly more efficient for common or

expected cases.
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Chapter 3

The Type-Inferencing Problem

Telescoping languages proposes having an extensive analysis phase during library
compilation. Part of this phase involves generating specialized variants of each library
subroutine based on the possible calling contexts found through the analysis. When
compiling the user script, the subroutine corresponding to the specific calling context
can be used, avoiding the need for recompilation. The library compiler must infer all
possible types for a subroutine to generate variants that can handle every possible
calling context and to compute type jump functions for the subroutine. While type
information is necessary to generate lower-level code from Matlab, it can also be used
by optimizations that rely on accurate type information.

There are several issues involved in inferring types in Matlab. One complication is
that operations are heavily overloaded. Also, types of variables can be inferred from
their uses as well as their definitions, which makes both forward and backward flow

analysis useful.

3.1 Features of Matlab

The simplicity of the Matlab syntax is well suited to increasing coding productivity.
However, some of the very features that make Matlab ideal for development pur-
poses are a hindrance when translating applications to a lower-level language such as

FORTRAN or C. These features include:

e Matlab is weakly typed. This means that inferring types is necessary to translate

Matlab code into a lower-level languages, all of which require declared types.
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array

I T N —

char numeric cell structure java class function handle

user class

! oo

int8, uinty single double
intl6, uint16 :
int32, uint32

sparse

Figure 3.1 : Matlab Type-Hierarchy

e Matlab allows types to change if they are redefined in the middle of the subrou-
tine. For example, arrays can grow, and each growth would require reallocating
the array. This severely hampers performance when an array grows within a

loop (which happens in ArnoldiC).

e As can be seen from Figure 3.1, Matlab treats all variables first and foremost

as arrays, including scalars, which are represented as 1 x 1 arrays.

e Operations in Matlab are heavily overloaded. For example, in the statement
w=Ax*v, the * operation could be interpreted as matrix multiply if both A and v
are matrices. However, if A is a scalar, then the operation should be interpreted
as multiplying every element of v by A. The operation used affects the size of

w, which, in turn, affects other sizes that are defined using w.

Because of these features, the compiler often cannot statically determine an exact
type for every variable. However, in some cases the library writer may have intended
multiple interpretations of the same code. The overloaded operators are, in fact, why
Matlab is a much simpler language for developing code, because one subroutine can
handle many different kinds of input. The compiler must account for each of the
intended possibilities while limiting the number as much as possible to avoid having

to generate more specialized variants than are necessary.
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ArnoldiC, a Matlab ARPACK subroutine, was intended for both complex and real
arrays. In converting ArnoldiC into Fortran, ARGen needs to generate code for each
possibility, not only because Fortran requires a variable’s type to be declared, but also
because for correctness and efficiency different operations must be used depending on
whether the matrix is complex or real. The compiler has to provide separate code
for each case as well as code that determines types at runtime that could not be

determined statically.

3.2 Definition of Type

The kind of type information needed by the compiler depends both on what the
scripting language (Matlab) allows and also what the destination language (Fortran)
needs. Because Matlab treats all variables as arrays, the compiler needs to use an
extended notion of type (based on De Rose’s work) [9, 10].

A variable’s type, for the purposes of this thesis, is defined as a tuple <7, p, o, ¥>

where,

e 7 refers to intrinsic type such as int, real, complex or char (needed by the

compiler to declare a variable in Fortran),

e p refers to an upper bound on the number of dimensions of the variable (needed

to allocate space in Fortran),

e o is a tuple showing the size of the array in each of the p possible dimensions

(also needed for memory allocation in Fortran), and
e 1) is the shape of the array, such as sparse, banded, etc. (useful for optimization).

Knowledge of these types is important for both code generation and specializa-
tion/optimization. In this thesis, I initially concentrate on using the algorithms to
infer size, and I will describe in Chapter 5 how the ideas and algorithms can be applied

to determining intrinsic type and shape.
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3.3 Need For Forward and Backward Flow of Information

Type information flows in two directions[9, 10]. The variable’s type information flows
forward from its definition to its uses and also backwards from its uses to its definition.
To ensure that each use is reached by only one definition, the compiler must convert
the code to static single assignment form, or SSA, before analyzing the code. SSA is a
standard compiler technique to eliminate artificial sharing of names among unrelated
values. Redefining part of an array is treated as a redefinition of the entire array
(i.e., the array is renamed at this point), since the redefinition could cause a change
in type for the original array in addition to a change in value. These arrays can be
merged together after analysis if only a limited change in type was inferred. I will
discuss merging arrays more fully in subsequent chapters.

Information about the type of a variable can be determined at the definition point
based on the operation and the inputs involved. This type information can then be
used at a later point when another variable is defined using the previously defined
variable.

If the variable’s exact type could not be determined at its definition, information
about its type can also be determined by the variable’s uses. As one example, if the
variable is an input to an operation that accepts only a known type, then it can be
assumed, given correct code, that the variable is of that type. In Matlab, information
about variable types flows both forward and backward.

Figure 3.2 shows a piece of code from the Matlab ArnoldiC subroutine, which
demonstrates an example of where backward flow of information is useful. The size
of v is not clear from the definition, but line 7 explicitly refers to v as a vector. This
information can lead to better information about variables defined by and used with
v. By taking into account information flowing in both directions, it is possible to find

the strictest possible types for the variables.
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1 v = v/norm(v);

2 W = Axv;

3 f = w - v*alpha;
4 c = v’*f;

5 f =f - vxc;

6 alpha = alpha + c;
7 V(:,1) = v;

8 H(1,1) = alpha;

Figure 3.2 : Example Where Backward Propagation is Useful

3.4 Whole-Program Analysis

There are two difficulties to using data flow analysis for solving the type-inferencing

problem:

1. It is difficult, if not impossible, to determine if the analysis halts on a given
subroutine. This is due, in part, to the fact that information flows in both
directions. Also, the lattices involved in solving the problem do not meet all the
requirements for proving termination, namely a finite lattice and a monotonic
meet operation (i.e. the result of the meet operation could be above or below its
arguments on the lattice). When inferring sizes, the lattice has infinite depth.
When inferring intrinsic types and shapes, the meet operations on the lattices

are not monotonic.

2. The compiler needs to find all of the solutions allowed by the problem. There-
fore, data-flow-analysis is ill-suited for the problem, since if the analysis con-
verges, it converges to a single solution or to a single general set of types. In
other words, it would not be able to compute the relationships between the pos-
sible variable types. In order to solve the problem using conventional data-flow
analysis, the compiler would have to run several passes of analysis under all

possible assumptions about the variable types. This is extremely cumbersome.
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I propose a different solution. Rather than performing forward and backward
analysis, the compiler can gather the information by simultaneously determining the
possible types of the variables involved in the subroutine. The compiler does this by
looking at the restrictions each individual operation or procedure call' places on the
variables involved in it, and from these, forming sets of legal configurations of the types
of all the variables in the operation or procedure call. It then uses the intersection
of the statement-by-statement sets to determine the possible configuration over the
whole program. The expected result from whole-program analysis is a list of possible

type-configurations, each of which cover every variable in the subroutine.

3.5 Propositional Formulation

I chose propositional logic to represent the constraints on the types of the variables
because it is powerful enough to represent the relationship between variables over a
subroutine yet simple enough to use for practical purposes. Because the code is in
SSA form, each statement gives information about the variables that must be true
over the entire program. The statement constraints are formulated using boolean
expressions, and the conjunction of these statements represents the constraints over
the entire subroutine.

In forming the statement constraints, the compiler first enumerates each possible
configuration of types for the variables involved in the statement. There should be
fewer than t¥ configuration, where ¢ is the number of possible type-values for any
variable and v is the number of variables involved in the statement. It then takes
the disjunction of all of these possibilities as the constraint for the statement. Each
constraint lists the possible type configurations for the variables.

I demonstrate the constraints using the size-inference problem.

1Operations and procedure calls are handled in the the same way, so I will use them interchange-
ably. Also, I will often refer to both of these as statements and assume statements have only one

operation or procedure call.
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3.5.1 Example of Constraints for Size

First, I need two kinds of information from the constraints.

1. I need to know whether the variables are scalars or arrays. This determines

which operation should be used.

2. Since the sizes of all the variables are not known at library compilation time, I
want to know the size of each variable in terms of the sizes of other variables
in the subroutine, so that when additional information about the variables is
known (i.e., the sizes of the inputs), the sizes of the remaining variables can be

easily inferred. This is important for allocation of arrays.

The following statement, taken from ArnoldiC, demonstrates how statement con-
straints are represented for the size inferencing problem (a maximum rank of 2 is

assumed for all variables).
w=Axv

would use the annotation from a database for vout; = ving * ving, which is:
(0¥ =<1,1> & o¥™ =<1, 1> & 0¥ =<1, 1>)||

(0¥™ =<1,1> & 0" =<#1,#2> & o¥" =<#1,#2>)]

(0 =<#1, #2> & 0¥ =<1,1> & ¥ =<H#1, #2>)|

(0¥ =<#1, #2> & V™2 =<#2, #3> & oV =<#1, #3>)]|

(

gvin =<1, #1> & ovin2 =<#1,1> & gvout =<1, 1>)

which would translate to constraints:?2

2The first clause corresponds to scalar multiplication since all the sizes in all the dimensions for
all the variables are 1. The fourth clause corresponds to a matrix-matrix multiplication, since not

all dimensions for the variables are 1.
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(04 =<1,1> & 0¥ =<1,1> & 0¥ =<1,1>)||

(04 =<1,1> & 0¥ =<81,$2> & 0¥ =<$1,$2>)||
(04 =<$1,82> & 0¥ =<1,1> & ¥ =<$1,$2>)||
(04 =<81,82> & 0¥ =<$2,$3> & 0¥ =<$1,$3>)||
(

o =<1,81> & 0¥ =<$1,1> & ¥ =<1,1>)

if $1 had not been used yet for any other statement in Arnoldi.

The annotations and constraints define each dimension of ¢ for each variable in
terms of the other dimensions of the variables by using the $ and # variables as
place-holders.

The compiler would be able to obtain the annotation from a database. In forming
the constraints it would replace the annotated arguments with the actual argument
names, and the # variables with $ variables that have not yet been used in forming
the constraints over the previous statements. No constraints on any two distinct
statements can involve the same $ variable because each $ variable is only a place-
holder for the variables in a single operation or procedure call, and these statement
constraints are combined to form the whole-subroutine constraint. If a $ variable could
be used for more than one statement constraint, the conjunction of the statement
constraints would be meaningless, since unrelated variables could have dimensions
defined with the same $ variable.

Each clause in the constraint is necessary, since Matlab handles scalars differently
from arrays. The clauses must be mutually exclusive in order to prove properties
about the constraints, which will be necessary in finding an efficient algorithm. The
$ variable is a dummy variable, used to show the relationship between the sizes of the
variables in the statement. If the same $ variable is used for two different variable
dimensions, it is assumed that those variables have the same size in those dimensions.

To distinguish scalars from arrays, the presence of a dimensions size that is not

1 means that the variable is not scalar. Therefore, if the size constraint for both
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dimensions of a variable is represented by $ variables, it is assumed that it cannot
be scalar (both dimensions cannot be of size 1). However, since Matlab treats vector
operations similarly to matrix operations, only one of the dimensions need not be 1.

To sum up, for size-inferencing there are two possibilities for each variable. Either
the size of each dimension is 1 (i.e. the variable is scalar), or the size of each dimension
is based on the sizes of the dimensions of the other variables in the statement. Vectors
are only special cases of matrices, and as such do not need a separate case. Null
vectors and matrices are handled the same way as regular non-scalars, since they
behave the same way as non-scalars. Null vectors will have a dimension of size 0.
These constraints satisfy both of the requirements for size inferencing needed by
ARGen. Scalars and arrays are distinguished and $ variables fulfill the function of
place-holders representing how the sizes of the different dimensions of all the variables

are related.
Claim 3.5.1 There are a finite number of clauses for each statement constraint.

Proof: Since there are only two cases for each variable (scalar or otherwise), and since
I assume the number of parameters involved in each statement is bounded by a small

constant v,® there should be only 2V possible clauses. a

In practice, there are often fewer clauses, since many combinations might be illegal

for the operation. For example, multiplying two scalars will never produce a matrix.

3.5.2 Combining the Information

The constraint over the whole subroutine is the intersection of all the statement con-
straints. The intersection corresponds to taking the conjunction of all the constraints

and finding all possible type configurations for all the variables in the program that

3This is a reasonable assumption since the number of variables involved in an operation or

procedure call does not grow with the size of the program(7].
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satisfy the conjunction. The SAT problem can easily be reduced to this problem,
showing that it is NP-hard in the general case. However, the next chapter will de-
scribe an algorithm for finding this intersection, which takes advantage of certain

properties of this problem to reduce the complexity.
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Chapter 4

An Efficient Algorithm for Size Inference

The constraints over the entire subroutine are found by taking the conjunction of
the statement-constraints (discussed in the previous chapter) and finding all type
configurations that satisfy the resulting boolean equation. This chapter presents an
efficient algorithm for doing this using the specific properties of the problem.

To describe the algorithm, I will use size inference as an example. I will then

describe how to modify the algorithm to infer the other types in the next chapter.

4.1 Assumptions

There are a number of assumptions necessary for this algorithm to perform correctly.

1. The algorithm assumes that it has a correct program on input.! Although in
some cases the compiler may be able to determine that a program is incorrect
(i.e., when it proves that the whole-subroutine constraints cannot be satisfied),
for the most part, proving correctness is not the responsibility of the algorithm.
The algorithm relies on the assumption of correctness in making its decisions.
This is one of the primary differences between this type-inferencing algorithm

and others from the programming languages community.

2. Although Matlab allows passing functions as parameters by passing the name

of the function as a string, the algorithm will assume that this feature is not

1This is a reasonable assumption for Matlab programs since users can develop and test their code

in the Matlab interpreter before giving them to the optimizing compiler.
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used, since it assumes all input parameters are array values. Accounting for

this feature is left for future research.

3. The algorithm requires that the number of input and output parameters in
each operation or procedure is less than m, where m is a small constant. This
is important for the complexity of the algorithm to remain small. This is a
reasonable assumption, since parameter lists do not tend to grow with the size

of the function.[7]

4. The algorithm also assumes that there are no global variables. The library writer
can avoid this problem by making those variables an input and an output to
every procedure call. Since the compiler assumes that the number of parameters
is bounded by a constant, the number of variables used in this way must be
limited as well. The compiler could also automatically convert global variables.
Well-written libraries rarely use global variables, so again this is not a major

obstacle to using the algorithm described.

5. The algorithm requires the compiler to already have annotations, described in
the previous chapter, on all the operations and subroutine calls in the proce-
dure. The compiler keeps a database of these annotations that describe the
different possible input and output parameter type configurations for all the
operations or subroutine calls. These annotations are either entered by hand,
for primitive operations, or, by the compiler after analysis for analyzed sub-
routines. The annotations for user-defined procedures will look the same as the
hand-entered annotations since they are handled exactly as primitive operations

by the algorithm. Generating these entries will be described later.?

2Recursive calls invalidate this assumption since the compiler will not have done the analysis on

the subroutine prior to the call. Recursive calls will also be dealt with later in this section.
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4.2 Preliminary Analysis Required

In order to infer sizes over the entire program, the compiler must first perform some
preliminary analysis. It has to know for which dimensions it needs to infer size.
Knowing the maximum number of dimensions would give the compiler this informa-
tion. It also needs to put the code in SSA form, so that each statement constraint on
the variables will hold over the entire procedure, since SSA ensures that each variable

has a single value and therefore, a single type in straight-line code.®

4.2.1 Inferring the Number of Dimensions

Recall from Chapter 3 that o is a tuple consisting of p fields, where each field is the
size of the variable in the corresponding dimension and p is an upper bound on the
number of dimensions. In order to infer o, the compiler needs to first determine p.
The compiler only needs p to be an upper bound, since size-inferencing will be able
to tighten the number of dimensions by inferring that certain dimensions have size 1.

To get the p information, the compiler must perform a single prepass over the code
to see which dimensions are accessed in which variables, either by direct-subscripted
accesses or by operations. Some operations also require that the number of dimensions
for the variable be limited.

When the prepass cannot determine a bound, the compiler must create a dummy
dimension field in ¢ for the variable representing all dimensions that may behave
differently from the rest. This handling of the extra dimensions is valid since they

are not accessed explicitly. Therefore, they must have determinable behavior.

4.2.2 SSA

The algorithm also assumes the code is in SSA form. That is, every use of a variable

is reached by exactly one definition. Since redefining a variable could change the

3¢ nodes, used in SSA to handle join points in the control flow graph also help the algorithm

when dealing with control flow.
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variable’s type, the compiler would have difficulty reasoning about this variable’s
type over the entire program without this property. Also, redefining variables to be
different sizes would make allocation of the variable difficult in Fortran.

Since variable sizes could grow if elements outside the original array are accessed on
the left-hand side of some statement, the compiler will consider this to be a redefinition
of the entire array variable (as is consistent with the traditional notion of SSA). The
compiler will have to emit code to copy the other values of the array. This is necessary
for the algorithm to work correctly since it will assume that variable sizes do not
change. Also, since Fortran requires that the variables have static sizes, and since
the previous references to the variable may require it to be scalar, this is necessary
for correct translation into Fortran. If the variable does not grow from a scalar to an
array, these separated variables can be merged into an array of the maximum size in
the code generation phase.

Using SSA form will also be helpful when dealing with control flow, which will be

discussed later in this chapter.

4.3 Reducing to the Clique Problem

Once the possible constraints for each statement have been determined as described
in the previous chapter, the compiler needs to analyze them over the whole program.
That is, it needs to find all possible configurations of sizes for the variables that
satisfy the overall constraints. By representing the statement constraints as nodes in
a graph, the problem is reduced to that of finding n-cliques, where n is the number

of statements in the program.

Constructing the Graph

Figure 4.1 shows how the graph is constructed. Each possible size configuration for
that statement or clause is represented by a node at the level that corresponds to

its statement number. There is an edge from one node to another if the equations
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A=b+c

(04 =<1,1> & o =<1,1> & 0¢ =<1, 1>)|
16 (04 =<8$1,$2> & o® =<1,1> & 0°¢ =<$1,$2>)|
le (04 =<$1,$2> & o =<$1,$2> & 0° =<1, 1>)|
1d (04 =<$1,$2> & o® =<81,$2> & 0° =<$1,$2>)|

20 (oF =<1,1> & 0° =<1,1> & 0¢ =<1,1>)]

2b  (0F =<83,84> & 0° =<1,1> & 0% =<$3, $4>)|
2c  (oF =<83,%4> & 0° =<83, 84> & 0¢ =<1,1>)]
2d  (0F =<$3,84> & 0° =<83, 84> & 0? =<$3,$4>)|

Figure 4.1 : Example Graph

in each node do not contradict one another. The only variable that appears in both
statements in the figure is c; therefore, ¢ determines if there is an edge from a node
in one level to the next. Without the presence of ¢, the graph would be complete (i.e.
there would be an edge from every node to every other node in the graph). There is
an edge from node la to node 2a since c is scalar in both clauses. However, c is not
scalar in clause 2c so there is not an edge from node la to node 2c.

The final graph has n levels, where n is the number of operations or procedure

calls. Each level has, at most, k£ nodes, where k is 2 and v is the number of variables
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involved in the statement. 2¥ is the number of possible size configurations for each
variable in the operation corresponding to that level, since there are two possible
types for each variable (scalar or array/vector). Since by definition, the clauses are

mutually exclusive, there will not be edges between nodes on the same level.

Complexity of building the graph

Building this graph takes O(n?) time. For each node at level i, the compiler has
to compare the node with all other nodes at levels less than 7. This must be done
from every level 4, so there are k x 3" ;[k * (¢ — 1)] comparisons, which restated is
%k'?n % (n — 1) comparisons. The comparisons require checking that a variable is
involved in both nodes, and, if so, determining whether the right hand sides of the
equations in which they are involved conflict (i.e., one right hand side shows that
the variable is scalar while the other shows that it is multi-dimensional). Therefore,
because the clauses have constant size, the comparisons only take a small, constant

amount of time.

4.3.1 Using the Graph to Find a Whole-Procedure Solution

Now that the compiler has all the information in graph format, the problem is reduced
to that of finding cliques in the constraint graph.

Finding possible constraints over the entire subroutine corresponds to finding sets
of constraints, one from each operation or procedure call, that do not conflict with
each other. Having at least one constraint from each operation or procedure call
is necessary because otherwise the set of constraints would not hold over the entire
subroutine. On the graph this would correspond to finding sets of nodes such that
every node has an edge to every other node in the set, and there is one node from
each level in the set. In fact, there can only be one node from each set since there are
no edges connecting nodes on the same level. This is exactly the problem of finding

n-cliques (where n is the number of levels in the graph) such that each cliques has one
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and only one node from each level (these conditions are trivially met because there

are no edges between nodes on the same level).

4.4 Description of the Algorithm for Straight-Line Code

To describe the basic algorithm, I start with the simplest case and assume the compiler
is only analyzing straight-line code where the size of each variable in each statement
can be determined by the sizes of the other variables in the statement (i.e. there are
no data dependences). In subsequent sections, I will expand the algorithm to handle

the general case.

4.4.1 Finding n-Cliques

The problem has been reduced to that of finding n-cliques in the graph where there
is a node from each of the n levels.* Although finding n-cliques is an NP-complete
problem, I show that the structure of the graph and the specific problem limit the
complexity.[8]

Total Number of Possible Type-Configurations

Since the compiler is going to solve the equations in the cliques separately, I need to
show that the number of cliques is manageable. Also, since the compiler will generate
a variant for each clique, a large number of possibilities would cause a blow-up in the

size of the generated code.

Claim 4.4.1 In the absence of control flow with all variables defined in terms of other
variables, the number of possible configurations of sizes is bounded by 2P, where p is

the number of input parameters.

4A clique is a complete subgraph. A n-clique is a complete subgraph with n nodes.
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Proof: Since the sizes of all the variables are determined by the sizes of other variables,
all the sizes should ultimately depend on the sizes of the inputs. If this were not true,
the behavior of the program would be indeterminable even at runtime, since variables
not defined in terms of input would have no added information to determine their
size at runtime. Therefore, the total number of possible configurations over all the
variables will just be the number of possible configurations of the input parameters.
Otherwise, the same set of inputs could produce different variations of types on the
other variables. This contradicts the assumption that the sizes of all the variables are
determined by the size of the inputs. O

What remains to be proven is that in the absence of control flow, the number of

cliques is also bounded by 2?.

Total Number of n-Cliques

To show that the number of cliques is bounded, I must show that no two cliques can
reduce to the same set of equations once solved. If this is true, then it follows that
each clique represents a different size assignment to the variables, of which, there can

only be 2P.

Claim 4.4.2 The number of n-cliques is bounded by 2P.

Proof By Contradiction: I start by assuming there are two distinct cliques that rep-
resent the same size assignment to the variables. Then, at least at one level, to be
distinct, the cliques must have “chosen” two different nodes. Since the statements in
nodes of the same level contradict each other, at least one variable in the statement
corresponding to that level must have a distinct size depending on which clique rep-
resents the size assignment used at runtime. Therefore, the two cliques cannot have

the same size assignment to the variables. m]
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input: graph G
output: CurrCliques
initialize CurrCliques to be nodes on first level
1 for every level r in G after first
2 newCliques = empty
for every node n in r
for every clique c in CurrCliques

candidate = true

3

4

5

6 for every node q in ¢

7 candidate = candidate & edge?(n,q)
8 end for

9 if (candidate)

10 then newCliques = newCliques + clique(c, n)
11 end for

12 end for

13 CurrCliques = newCliques

14 end for

Figure 4.2 : Iterative n-Clique finding algorithm.

Iterative Algorithm for Finding n-cliques

Finding n-cliques is NP-complete. However, I claim that given the structure of the
problem, there is an algorithm that will find n-cliques in polynomial time.

The solution is to build the cliques iteratively. Figure 4.2 shows the pseudocode
for the iterative algorithm. The algorithm starts with one level and puts each node
in that level in its own clique. It then compares each node with each already-formed
clique. If the node has an edge to every member of the clique, it forms a new clique

with the old clique. It does this for all levels of the graph after the first.



Figure 4.3 : Iterative n-Clique Finding Algorithm

30
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Figure 4.3 demonstrates the algorithm on the given graph. In each step, the
lighter nodes and edges are part of one or more cliques. At the first step, only the
nodes in the first level are considered, and, of course, these nodes form cliques with
themselves. At the second step, each node on the second level forms a clique with a
node on the first level if there is an edge between them. The nodes on the third level
look at all the cliques from the second step. If a node in the third level has an edge
to both nodes in a clique from the second step, it forms a new clique. In the final
step, there are only two cliques.

The complexity of this algorithm is still exponential in the worst case (as it should
be given that finding n-cliques is NP-Complete), since line 4 in figure 4.2 could iterate
over an exponential number of cliques from the previous step. With a limit on the
number of cliques at each step, the complexity is also limited. Because the bound of
2P only holds for the final number of cliques, I need to find a bound on the number of
intermediate cliques to attain this limit. I therefore use the structure of the problem
to prove a bound of 27 at all intermediate steps if the levels are visited in program

order.

Claim 4.4.3 Claim: For the above algorithm, the number of cliques at any one step
of the clique-finding algorithm is bound by 2P if the order of the levels is the program

order.

Proof: We have from above that, given assumptions about how variable sizes are de-
fined, on valid procedures (i.e. procedures where all variables are defined before they
are used), there is an upper bound of 2?7 on the number of cliques. In the absence of
control flow, at any operation or procedure call the rest of the code can be left off,
and the remaining (beginning) code is still valid, if meaningless. Therefore, since the
algorithm is iterative and only finds cliques over the levels it has already seen, if the
algorithm goes in the order of the operations, after every iteration the algorithm will

have produced cliques on valid code. Therefore, the number of cliques after every
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iteration must be bounded by 2°. a

2 steps where n

With 2P cliques after every iteration the algorithm takes k2Pn
is the number of statements, k is the maximum number of nodes in a level, and p
is the number of input and output variables per statement. Therefore, the overall
complexity of the algorithm is O(n?).

Each of the cliques represents a type configuration for which a specialized variant
based on those types may be formed. However, the types of the variables satisfying

each clique have still not been determined. The equations in each clique need to be

solved in terms of the input parameters to find the type allocations.

4.4.2 Solving the Equations

The compiler uses simple substitution to solve the constraints in each resulting clique.
It should solve the equations in terms of the input parameters so that at runtime,
the sizes of all the variables will be known when the input parameters are known.
However, it may be possible for the compiler to infer exact types for some or all
of the inputs in terms of the other inputs as well. This could present optimization
opportunuties.

To handle cases where input types can be inferred, the compiler starts out by
assuming it will be able to infer all possible sizes including the input parameters. If
the solution does not converge, it will try to solve the sizes in terms of each parameter,
and then each pair of parameters, etc. until it finds a minimal set of parameters that
need to be held constant for the solution to converge. While this looks like a long
process, this does not change the complexity of the algorithm because there is a
constant bound on the number of input paramters.

The solver is really an independent piece. The current solver implementation
is naive, but a more sophisticated solver can easily replace it without affecting the

algorithm.



33

4.5 Extending the Algorithm to the General Case

The algorithm works well for straight-line code with no input or output operations
and variable sizes being defined only by other variable sizes. However, code satsisfying
these restrictions rarely occurs in practice. In order for the algorithm to be useful in
practical applications, including ARPACK, it must be extended to handle the general

case.

4.5.1 Variable Sizes not Determined by Input Parameters

The compiler may come across variables whose types do not depend on the types of
the input parameters, but rather on which branches are taken within the procedure.
In SSA form, these variables are always defined by ¢ nodes. ¢ nodes represent the
points at which a variable may have multiple possible values depending on the control
flow. This means that the variable could have multiple possible types as well, since
any redefinition of the variable in Matlab could potentially change the type.

If the ¢ variable is used later, some other variables sizes may depend on the
outcome of the control flow. Variables defined by ¢ nodes behave exactly as input
variables, except that their sizes may not be known until the middle of the subroutine.

For now, the compiler does not consider the ¢ node to be an operation, and
tries to solve the outcome of the variable defined by the ¢ node only from its uses.
This works well for ArnoldiC, but future applications might benefit from treating
the ¢ node as an operation and constraining the variable defined by the ¢ to be the
types of the arguments to the ¢ node. This would only entail a minor change to the
implementation, but could increase the number of levels in the graph by the number
of ¢ nodes.

While the algorithm does not need to be changed to accomodate ¢ nodes beyond
treating variables defined by ¢ nodes as inputs when solving the constraints, control

flow complicates the algorithm in the following ways.

1. Having ¢ nodes increases the complexity of the algorithm since the number
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of possible final cliques becomes 2P*¢, where ¢ is the number of ¢ nodes in
pruned SSA.® The number of intermediate cliques is also 2P*¢ since ¢ nodes are
always placed so that they dominate every node in the basic block. Therefore,
the code will still be correct up to every point, since all variables are defined
before they are used (except as arguments to the ¢ nodes). In order for the
algorithm to remain polynomial, ¢ cannot grow with the size of the program.®
However, even if it does, the algorithm will still work correctly, though it may
become exponential in the worst case. This case should not occur frequently
in practice and does not occur in ArnoldiC. Actually, 2°*¢ is an upper bound
on the number of cliques, and this bound will not be reached if the subsequent
uses of the variable defined by the ¢ node prove that the variable has a single
possible type. ArnoldiC has this property. Most control flow is set up this way,
since programmers are used to programming in lower-level languages which

often require this property. Also, library subroutines in Matlab are typically
small (in ARPACK under fifty lines of code).

2. The algorithm cannot create a specialized variant of the subroutine depending
on the possible values of the ¢ nodes, since, when the subroutine is called
the outcome of the ¢ node will be unknown, making it impossible to determine
which variant to call. However, the compiler can create specialized paths within

the subroutine based on the outcome of the ¢ nodes.

Variables defined by input statements can also be treated as input parameters.
Again, the compiler cannot generate specialized variants of the subroutine, but can
have specialized paths depending on the size of the inputs. The complexity is now
increased to 2PT°*t  where 7 is the number of input statements. For most scientific

applications ¢ should be small if not 0.

5 Actually putting the code in pruned SSA form is not necessary since the algorithm ignores the

outcomes of ¢ nodes if not used.

6The compiler assumes that code is in pruned SSA form.
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Another issue occurs when variable sizes are determined by values of program
variables that cannot be determined at library compilation time and variables that
are defined by operations that could have multiple outputs for the same inputs. The
occurance of these cases means that the compiler may not be able to statically de-
termine whether the array is a scalar, unless it can determine that the value is never
1 or the output is never a scalar even for straight-line code. This causes the number
of possible cliques to be 2P+ where d is the number of variables defined in this
manner. Again, the addition of such variables will not cause a problem if bounded

by a constant. The algorithm will still perform correctly even if d gets large.

4.5.2 Slicing

To handle determining sizes that cannot be inferred statically due to the issues men-
tioned in the previous subsection, the compiler uses an idea developed by my colleague
Arun Chauhan, called slice hoisting.[4] The idea here is to make early runtime deci-
sions by moving all the information relavent to the decision up to the earliest possible
point. In the case of the ¢ node, it would move everything necessary for determining
the outcome of the ¢ node to early in the program. This would mean moving the
control flow and anything on which the control flow depends. Figure 4.4 shows how
slicing works in the presence of a ¢ node whose size cannot be determined by the
algorithm alone. Slice hoisting involves inserting o statements that define the sizes of
the variables that cannot be determined by the sizes of the inputs. Then the slice of
the code that is involved in determining these o statements is identified and hoisted
before the array is allocated. Slice hoisting is performed after arrays are merged back

together.

4.6 Some Remaining Issues

Several additional issues must be resolved for the algorithm to be useful in real ap-

plications, including ARPACK.
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Xy = oL

X1 = ... B Xy o= ... ba‘l‘“-<x1>
X= ... Ar(x1) = ... Axy) = ... > for i = 1:N
Alx) = ... ot = <xp> b ot = <xp> b oogt = ploft, ofh)
for i = 1:N for i; = 1:N > for i3 = 1:N b ool = gt o+ <1>
o end N
A=[Af1)]; o,?l = 45(0-;“1' o’?l) & a’f‘ = ¢(af“, a;l) iltocit:(m, azt)
end A= (A £(i0]; Ar = [A £(iD]; for 5 = 1
a3t = gy + <1> b ot = ogt o+ <1>
end > end Ay = [A; £GD];
end
Initial code. SSA, o statements. Identifying the slice. Hoisting the slice.

Figure 4.4 : Slice Hoisting

4.6.1 Handling Procedure Calls

The algorithm assumes that any called procedure has already been analyzed. If it
encounters one for which the source code is not available and which, therefore, has no
annotations, the algorithm simply ignores the call since it does not give any added
information. This will degrade the analysis of the algorithm, although it does not
affect the correctness. In essence, it says that the variables are unconstrained by the

statement.

Mutual and Self-Recursion

Because recursive calls cannot have been analized prior to analyzing the calling sub-
routine, constraints cannot be generated at recursive call sites. For now, the compiler
treats recursive calls just as it would unanalyzed procedure calls. While following
the type information from the recursion to a fixed point could lead to more exact

information, I leave this idea to be explored in future research.

4.6.2 User-Defined Annotations

One of the key concepts in telescoping languages is allowing the compiler to utilize the
knowledge of the library writer through annotations. This information is important

in that it could tell the compiler which cases can or cannot occur in practice, which
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is something the compiler alone may not be able to infer.

For now, I assume the user-defined annotations concerning types are in the same
form as the compiler-generated constraints. The compiler treats the user-defined
constraints as constraints on the subroutine header, which corresponds to the zeroeth
level in the graph. Any cliques occuring in the graph are forced to have part of the
user-defined annotations as one of their nodes. This can greatly reduce the number
of possible specialized variants the compiler would have to generate, and in the case

of shape, could allow for finer optimization.

4.6.3 Constants

If one of the input arguments to an operation/procedure involves a constant, the
compiler can just substitute the known information about the constant into the op-
eration’s annotations on the other variables. This should reduce the number of nodes

in the graph. Figure 4.5 shows an example of how constants will be handled.

w=Ax[1234]
would now show constraints:

(04 =<1,1>& 0¥ =< 4,1 >)|
(04 =< $1,4> & 0¥ =< $1,1 >)|
(A =<1,4>& 0¥ =<1,1>)

Figure 4.5 : Handling Constants

4.6.4 Array Accesses

When only part of an array is accessed in a statement, there will not be constraints
on that array for that dimension. The sizes of the other variables will, however, be
constrained by the size of the part of the array accessed. This includes subscripted

arrays on the left-hand side.
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If the size of the array access is defined in terms of the value of another variable
the compiler needs to account for the fact that the value could make the access scalar.
Figure 4.6 illustrates how the constraints are written to handle this situation. The
first fields of 0¥ do not appear in the actual constraint, but are left in to show the

relationship of the other variables to the piece of v accessed.

w=Axv(l:7,:)
would now show constraints:

(04 =< 1,1 >(& 0*19) =< 1,1 >) & 0¥ =< 1,1 >)|

(04 =< 1,1 >(& 0*19) =< §,$1 >)& 0¥ =< 7,$1 >)||
(04 =< 81,82 > (& 0*(9) =< 1,1 >)& o¥ =< $1,$2 >)||
(04 =< 81,5 >(& 0*(19) =< j,$2 >) & 0¥ =< $1,$2 >)||
(04 =<1,j> (& ") =< j 1 >)& 0¥ =< 1,1 >)

Figure 4.6 : Dealing with Subscripted Array Access

Array accesses do give us some information about the size of the actual variable,
however. The variable must be at least the size of the portion accessed in that
dimension.” If the compiler can determine that the subscript size is greater than one,
then it can add a constraint that forces the variable to be non-scalar, reducing the

number of cliques.

4.6.5 Recombining Arrays

The reason redefining parts of an array is treated as defining an entirely new array is
that different operations are performed based on whether the variable is a scalar or an

array. Since arrays can grow from scalars in Matlab when redefined, this could be a

"This is only true because it is assumed that redefining parts of an array create an entirely new

array in SSA.
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problem in Fortran, as the operation would be invalid for an array. More importantly,
if the compiler did not treat these as separate variables, the algorithm acts as though
scalars and arrays conflict, which means a correct possibility could be overlooked by
the algorithm. In this form of SSA arrays cannot grow. The SSA form is only required
during analysis. After the analysis, the compiler can recombine two variables that
were made separate in SSA if it does not change from a scalar to an array. However,
the array may still have grown to a bigger array. The compiler must therefore make
the array the maximum size of all the subscripted arrays. It must also keep track of

which parts of the big array are used or defined in which operations.®

4.7 The Result

The compiler ends up with a set of possible variable type configurations over the
analyzed procedure. For each possible configuration of sizes for the input parameters,
the compiler creates an individual specialized and optimized variant. The appropriate
variant will be linked directly with the user script at runtime.

Since procedure calls are treated as primitive operations, similar annotations to
the hand-written annotations need to be generated and added to the database. These
annotations are formed from the final information given by the algorithm. Each
possible combination of sizes for input and output parameters allowed by at least
one clique will be represented by the annotation for that subroutine. In essence, the

compiler is computing type jump functions for interprocedural purposes.

4.8 Code Generation

To generate the optimized version, I use Sparse BLAS[26], or SpBlas, and the ATLAS-
tuned BLAS[28] for now. There is enough functionality in these to handle the op-

8 Arrays cannot shrink unless the entire array is redefined, in which case SSA treats the redefinition

as a different variable
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erations called by ArnoldiC, and the BLAS are specialized for the important cases
for Arnoldi, except that the input A to Arnoldi will generally be sparse.® Therefore,
operations on A are usually handled using SpBLAS. One of the advantages for using
ATLAS is that the generated code will also automatically be optimized for the specific
machine on which it is running, which is also a goal of telescoping languages. Other
applications of telescoping languages may require more optimization than BLAS or

SpBLAS provides. I leave this for future research.

90nly known after talking with the library writer. This is a case when the compiler would benefit

from annotations.
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Chapter 5

Inferring Intrinsic Types and Shapes

5.1 Intrinsic Types

The algorithm for intrinsic types is almost identical to the algorithm for size except
for a few key issues. First, the constraints for intrinsic types are different since
they operate on the intrinsic-type lattice. Also, instead of solving the equations for
an exact type, the compiler only needs to find a range of possible intrinsic types.
Slicing no longer helps, since intrinsic types need to be declared at the beginning of
each control-flow block, so handling control flow will be a little different. Finally,

subscripted accesses are no longer special cases.

5.1.1 Forming Constraints

The constraints on intrinsic types are similar to the constraints on size except that
instead of working with infinite numbers (i.e. size could be any non-negative integer)
the compiler operates on the intrinsic-type lattice. However, for size we only had two
possibilities (scalar or array), and the equation solver handled finding actual values.
For intrinsic types the lattice is bigger than the scalar versus array choice. Therefore,
k (the number of constraints per level) is 67, where p is the number of parameters.
However, in practical cases the number of possible intrinsic types that might work
for a particular operation should be smaller than the entire lattice.

Also, the constraints will be tracking the range of possible intrinsic types for the
variable on the lattice of possibilities. For example, an input argument that is defined
as type real could actually be of type int when called. For the statement, A = B+C,

Some of the constraints would be:
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logical

integer

char cell

complex

N

L

Figure 5.1 : Intrinsic-Type Lattice

(int <=74 <= int & L<=78 <=1int & L<=7° <= int)||

(real <= 714 <=real & L<= 18 <=real & L<= 7% <= redl||

Two constraint clauses will conflict if a variable is in both clauses and the ranges
of possibilities for the variable’s intrinsic type do not intersect. The compiler still
needs mutual exclusivity for the algorithm to run properly, so their ranges have to be

defined finely enough for this property to hold.

Subscripted Arrays

The complications that arose from subscripted array accesses do not occur for intrinsic

types since the compiler only wants to find the type over the array as a whole.
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However, the compiler still treats defining a subscripted part of the array to be a
redefinition of the whole array for purposes of SSA. Again, after the algorithm has
been performed, the arrays can be merged back together with the bottom-most type.
However, if the array is real in some parts of the code and complex in others it may
be better to keep the arrays separate because of the overhead of dealing with complex

values.

5.1.2 Solving the Equations

Once the compiler has found the cliques, solving the equations within the cliques

corresponds to taking the intersection of all ranges for each variable in the clique.

5.1.3 Handling Control Flow

An intrinsic type cannot be defined by a value of a variable as it is determined only by
the intrinsic type of the right-hand side. Therefore, the compiler only has to handle
control flow. Slicing does not help here because declaration of variables occurs in
the beginning before any operations can be performed. Therefore, at control-flow
points the compiler must generate paths based on the outcome of the condition and,
depending on the path, declare the ¢ variable to be whatever it would be on executing
the path. This is especially useful if the ¢ variable could be either real or complex
depending on the control flow. However, it is a cumbersome enough solution that in
most cases it would be best to declare the ¢ node to be the meet of the possibilities
(i.e. the bottom-most possible intrinsic type for definitions and the top-most for

uses. )

5.2 Shape

Inferring shapes will be similar to inferring intrinsic types. For shapes, however,
the compiler will need to rely much more heavily on the annotations. Because the

compiler cannot generate a specialized variant for every possible shape, the compiler
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will simply generate the most general cases unless it can infer that more specific cases
are important. The compiler can infer this either from constraints on the procedure
calls or from the user-defined annotations on the subroutine being analyzed. For
this reason, if specific cases are possible and the library writer thinks that the cases
are important enough to have an optimized variant based on the shape, the library
writer must annotate the procedure with that possibility in order for the compiler to
generate a specialized variant unless it can infer the same information from program
operations. ‘

The shape lattice includes all possible combinations of shape with top being the
most general (dense) and bottom meaning that the shapes inferred could not be
possible. Some examples of entries in the lattice include sparse, sparse banded, sparse
symmetric, sparse symmetric banded, etc.

There are some BLAS routines specialized for different shapes (i.e. banded matri-
ces), and SpBLAS handle sparse matrices. Beyond using these, generating optimized

code for the different shapes is beyond the scope of this thesis.
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Chapter 6

Experimental Evaluation

In order to evaluate ARGen, I performed the transformations and analysis on ArnoldiC
by hand, as the ARGen system is not yet in working state.

The first transformation necessary was pruned SSA. As I transformed the code I
also expanded it to have a single operation per line. While the compiler would not
have to do this explicitly, it makes the analysis easier to follow when doing by hand.
Figure 6.1 shows the transformed code. As it turned out, for AnoldiC, only one ¢

node is necessary. Therefore, ARGen is very efficient on ArnoldiC.

6.1 Analysis

The next step was to find constraints on the numbered statements from Figure 6.1.
Figure 6.2 shows the hand-evaluated constraints on some of the statements within
the loop. The fact that j can never be one is taken into account when forming the
constraints.

The next steps were building the graph from the constraints by hand, finding the
cliques, and solving for each of the cliques. The resulting possible configurations are
shown as the columns in figure 6.3.

The configuration chosen depends entirely on ¢! and ¢*!, which are both inputs.

Actually, the only possibilities on real applications in terms of size for ArnoldiC
is the last column in figure 6.3. Annotations provided by the library writers could
have narrowed down the possibilities to this single case by telling the compiler that

the input A; is never scalar.



46

6.2 Experiments

I hand-translated ArnoldiC into Fortran based on the results of the last case to
compare the runtimes between the Matlab code and the code ARGen will produce.
The comparisons are shown in Figure 6.4. I included the runtime of ARPACK’s
dnaitr/dsaitr subroutine on the same matrix to show that the ARGen version has
comparable runtime, although the ARPACK version behaves slightly differently than
the Matlab code, since the ARPACK developers added functionality to the code when
they hand-translated from Matlab to Fortran.! The outputs from the Matlab code
and the ARGen code agreed.

I ran the experiments using an array from Matrix Market[19] for the input param-
eter A;. The array was a 362 x 362 real, sparse symmetric matrix with 3074 entries.
I set k; to 30 and v; to be a 362-length vector. I used version 6.1 for Matlab, which
also uses ATLAS-tuned BLAS at the bottem level. The runtimes were measured on
a 143 MHz SPARC processor.

I represented this array in both sparse-coordinate and dense formats to compare
the different codes on both sparse and dense matrices. The Matlab * operation is
overloaded for both sparse and dense matrices, so I did not need to change the Matlab
ArnoldiC to compare the different forms. For the ARGen code, I used SpBLAS
to compute both of the w=A*v operations for the sparse format, and dgemv/dsymv
from the ATLAS tuned BLAS for the dense format. I used the same routines to
provide w=A*v to the ARPACK code through the reverse communication interface.
By comparing the different representations of the same Matrix, I am able to show
how user annotations can play an important role in generating efficient code, since
the fact that A; should almost always be sparse could only be inferred from the

library writers. Representing the matrix in sparse coordinate form greatly improved

1Because of the descrepency between the Matlab and Fortran ARPACK code, I was not able to
show ARGen producing the Fortran ARPACK in it’s entirety. However, ARGen would be able to
generate a Fortran ARPACK equivalent given equivalent Matlab code.
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the runtime, especially for Matlab.

Since the matrix I used is also symmetric, I represented the matrix both as a
symmetric matrix and a nonsymmetric matrix (having all entries) to determine the
benefits of optimizing for shape. Matlab does not make this distinction at the top level
since it expects all matrices to have all elements represented explicitly. However, at
the function level, it does distinguish between symmetric and nonsymmetric matrices.
In the ARGen code, I changed w=A*v to be dsymv for symmetric matrices and to
dgemv for nonsymmetric matrices in the dense code. For the sparse code, I changed
the description of the matrix passed to the SpBLAS. I used the same routines for the
same cases in ARPACK, but called either dnaitr or dsaitr depending on whether I
used the nonsymmetric form or the symmtetric form. Using the symmetric routines
improved the performance slightly on the dense representations, but less on the sparse.
Overall, there is a 50% improvement in speed from representing the matrix as sparse
and symmetric as opposed to representing it as dense and non-symmetric.

I also represented the array as complex to show the benefit of accurately inferring
intrinsic types. There is a 54% speed improvement from representing the array as
real versus representing it as complex.

Finally, the results show that there is benefit to be gained from moving the Matlab
code to Fortran even though Matlab 6.1 uses ATLAS tuned BLAS as well. Also,
ARGen was able to achieve better performance than the corresponding ARPACK
code. This could be due, in part, to the added functionality in the ARPACK code.
However, the primary reason ARPACK ran slower is due to the fact that the XYaitr
subroutines handle two problems. An inputed flag determined which problem was
solved. This meant that there was a lot of extra control flow in the subroutine. Since
the subroutine was called inside a loop, this affected performance. Also, the reverse
communication added some overhead, which would probably not be apparent on a
larger matrix. Since ARGen is automatically generating specialized variants, it would

generate different subroutines for the different problems avoiding this overhead.
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function[V, H, f] =ArnoldiC(As, k1, v1);

1 vy = vy /norm(vy);
2 wy = Ay * Ug;
3 Qa1 = Uh kWi
4 temp; = vg * O
5 J1 = w1 — tempy;
6 ¢y = vy * f1;
7 tempy = Uy * Cq;
8 f2 = f1 — tempo;
9 Qg = Q1 + Cq;
10 Vi(;,1) = vy
11 Hl(l,l) = (9;
12 for j =2k,
fs = ¢(f2, f5);
13 B1 = norm(fs);
14 vz = f3/p1;
15 H2(.7a]_1) :ﬁl;
16 ‘/2(7J) = U3;
17 we = Aj * Us;
18 hy = Va(:,1: ) % we;
19 temps = Va(:,1: ) * hq;
20 f1 = wp — temps;
21 co =Vo(:,1:7) * fa;
22 tempy = Va(:,1: ) * co;
23 fs = f1 — tempy;
24 ho = hy + cg;
25 H3(1 ],j) = hg;
end

Figure 6.1 : Pruned SSA Form of ArnoldiC
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14

15
16

17

18

19

20

21

22

23

24

25

oP =<1,1> & ot =<1,1> |

oft =<1,1> & ot =<$21, $22>

o =<1,1> & ofs =<1,1> o%4 =<1, 1> |

0% =<1,1> & of3 =<1,$23> & 0”1 =<1,$23> |

o =<1,$23> & of* =<1,1> & ot =<$23,1> |

o =<$23, 824> & ofr =<$23, 824> & 0P =<1,1> |

o’ =<$23 $24> & ot =<$23,$25> & ot =<$24, $25>
bt =<1, 1>

oV =<1> & 0¥ =<1,1> |

o¥? =<$26> & o2 =<$26,1>

o2 =<1,1> & ot =<1,1> & 0% =<1,1> |

o2 =<1,1> & o4 =<1,$27> & o2 =<$27,1> |

o¥? =<$27,$28> & o =<1,1> & o =<$27, $28> |
o2 =<$27,$28> & o4t =<$27,$28> & 0% =<1,1> |
ov? =<$27,$28> & ot =<$27,$29> & o¥* =<$29, $28>
oM =<4,$30> & 0%z =<$30> & o¥* =<1,1> |

oM =<j,$30> & o¥2 =<$31> & o¥* =<$31, $30>

otemPs =<1 1> & 0% =<1> & oM =<3, 1> |

otemrs =<$32, > & 0¥2 =<$32> & o™ =<1,1> |

otemPs =<$32 $33> & V2 =<$32> & oh =<7, $33> |
oft =<1,1> & o™ =<1,1> & o™ =<1,1> |

oft =<$34,$35> & o2 =<1,1> & ot*™Ps =<$34, $35> |
oft =<$34,$35> & o2 =<$34,$35> & ot =<1,1> |
ot =<$34,$35> & o2 =<$34, $35> & ot =<$34, $35> |
0 =<j,$36> & 0"z =<$36> & o/t =<1,1> |

0 =<j,$36> & 0¥z =<$37> & o/ =<$37,$36>

otemPs =<1, 1> & 0¥ =<1> & 0 =<j, 1> |

otemPr =<$38, j> & o2 =<$38> & 02 =<1, 1> |

otemPs =<$38, $39> & o2 =<$38> & 0 =<y, $39> |
ofs =<1,1> & 094 =<1,1> & ot™Pt =<1, 1> |

ofs =<$40,$41> & o/t =<1,1> & o™+ =<$40, $41> |
ofs =<$40,$41> & ot =<$40, $41> & ot*mPs =<1,1> |
ofs =<$40,$41> & oft =<8$40,$41> & o'+ =<$40, $41> |
o =<1,1> & oM =<1,1> & 02 =<1,1> |

oh? =<$42, 843> & oM =<1,1> & 0 =<$42,$43> |
oh? =<$42, $43> & oM =<$42,$43> & 02 =<1,1> |
ol =<$42,$43> & o™ =<8$42,843> & 0% =<$42,$43> |
oh? =<j,1>

Figure 6.2 : Constraints on Statements within the Loop
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o | <1,1> <1,1> | <$1,81>
o | <1,1> | <$1,1> | <$1,1>
o | <1,1> <1,1> <1,1>
o | <1,1> | <81,1> | <81,1>
ot | <1,1> | <$1,1> | <81,1>
o | <1,1> <1, 1> <1,1>
ot | <1,1> | <$1,1> | <$1,1>
o <1,1> <1,1> <1,1>
a2 | <1,1> | <$1,1> | <$1,1>
o | <1,1> <1,1> <1,1>
ot <1> <$1> <$1>
o | <$1,%1> | <8$1,%1> | <$1,$1>
ol <1,1> <1,1> <1,1>
o¥ | <$1,1> | <81,1> | <$1,1>
a2 | <$1> <$1> <$1>
o2 | <$1,1> | <$1,1> | <$1,1>
o | <5, 1> <j, 1> <j, 1>
ot | <$1,1> | <81,1> | <81,1>
o2 | <j,1> <j, 1> <j, 1>
ol | <81,1> | <$1,1> | <$1,1>
o2 | <j,1> | <5,81> | <j,1>

Figure 6.3 : Configurations Satisfying Cliques
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Figure 6.4 : Comparison of Arnoldi Subroutines
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Chapter 7

Related Work

7.1 Work in Translating Matlab

MathWorks has a Matlab compiler called mcc, which translates the Matlab source
code into C[18]. However, the C code just makes calls to library subroutines which
handle the operations on the arrays. No type analysis or other interprocedural anal-
ysis is performed at this level.

The FALCON Project at the University of Illinois is also aimed at aiding in the
development of high-performance applications by allowing users to code in Matlab.[9,
10] The FALCON project performs translation from Matlab into FORTRAN 90.
However, the FALCON project does not follow the telescoping languages philosophy,
in that it handles all procedure calls by inlining. This leads to long script-compilation
- times for optimization. FALCON does perform some limited type inferencing to
achieve its goals. However, it only performs forward propagation with one backward
propagation step. The definition of type used in this thesis was motivated by the
FALCON project.

MaJIC, also at the University of Illinois, builds on the FALCON project.[1, 17]
MaJIC performs ahead-of-time speculative analysis in which it performs type infer-
encing with limited backward propagation. This speculative analysis is meant to aid
the just-in-time compiler. Therefore, the type inferencing required does not need to
be as complete as what is required to precompile for all possible calling contexts.
Menon and Pingali explore source-level optimization on Matlab code in the context
of MaJIC|[20, 21].

There are several projects underway for translating Matlab to lower-level lan-
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guages. These include the Otter system at Oregon State University, the CONLAB
compiler from University of Umea in Sweden, and Menhir from Irisa in France [24,
12, 5]. The MATCH project at Northwestern University attempts to compile Matlab
directly to special purpose hardware [23].

7.2 Type Inferencing in the Programming Languages Com-
munity

Type Inferencing for functional languages has been studied extensively by the pro-
gramming languages community. However, its focus is different from the telescoping
languages strategy. Programming-languages type-inferencing methods concentrate on
proving programs correct and on providing feedback to the programmers to aid them
in debugging and understanding the behavior of the code. Telescoping languages,
on the other hand, takes an almost opposite point of view. Telescoping languages
assumes the code is correct, and relies on the programmer to provide annotations,
which will aid the compiler in understanding the possible calling contexts for the
code.

Matlab is an imperative language geared towards working with arrays. Most of
the research in type inferencing from the programming languages community deals
only with functional languages and is not concerned with handling arrays.

Hindley-Milner type systems, well-known examples of type inferencing systems
from the programming languages community, use a constraint-based representation to
aid in inferring types[22], although the constraints are formulated differently. These
systems can be solved using unification-based algorithms. One advantage to the
Hindley-Milner systems is that they can describe polymorphism in languages. Un-
fortunately, pure polymorphism is not sufficient to express Matlab’s type system(3].
Also, unification produces the most general possible types for the polymorphic val-
ues. This does not give enough information to generate all possible variants that

might occur in specific calling contexts. Moreover, since telescoping languages gener-
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ates optimized variants of each possible calling context, the tightest information on
combinations of possible types is required.

Cormac Flanagan used componential set-based analysis to infer types for the
purposes of debugging[13]. However, his system will not handle the heavily overloaded
operators found in Matlab. Also, like the Hindley-Milner systems, the outcome of his

analysis would be too general for the purposes of telescoping languages.

7.3 Constraints Logic Programming

Constraint Logic Programming extends syntactic logic programming (i.e., unification)
with semantic constraints over specific domains. Inferring types using constraints over
the type domain can be considered as an example of constraint logic programming.
There are several general systems designed to solve constraint logic programming
problems quickly, including CHIP [11], CLP(R) [14], Prolog-III [6], and ECL*PS® [27].
However, the algorithm described in this thesis is designed to take full advantage of
the specific aspects of this problem to reduce runtime. In the general system, the

bounds on the runtime would not be guaranteed.
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Chapter 8

Conclusion

Telescoping languages seeks to aid scientists in producing high-performance code by
allowing them to use a high-level scripting language, such as Matlab. It calls for
an extensive library compilation phase in which the code is translated to lower level
languages for which highly tuned vendor compilers already exist. Specialized variants
of the code are created based on possible calling contexts inferred from the library
itself or hinted at by the library writers.

ARPACK is a useful and relatively simple example of where telescoping-language
technology can be applied. It was written in Matlab and then hand-translated into
Fortran 77 for performance. The Fortran library has specialized variants of each
subroutine based on type, showing that optimizing for specific types is useful and
necessary. However, type specialization is limited by the energy of the creators. By
automating this process, even more specialized variants could be created for more
refined types.

Because Matlab is weakly typed, type inferencing is necessary for code generation
and specialization. Type information flows both forward and backward, but the same
information can be found by analyzing the whole procedure simultaneously. This
thesis provided an efficient algorithm for doing this.

This thesis demonstrates an efficient, general algorithm for inferring types in high-
level code and, using the information, develops a system (still in the implementation
phase), ARGen, which is powerful enough to generate an equivalent of the Fortran

ARPACK from the Matlab code.
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