INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as ene exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

i

&

Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

Order Number 8900252

The effects of cache coherence on the performance of parallel
PDE algorithms in multiprocessor systems

Johnson, Sandra Kay, Ph.D.

Rice University, 1988

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

PLEASE NOTE:

In ali cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark v .

o o0 A O N

10.

11.

12.
13.
14.
15.
16.

Glossy photographs orpages

Colored illustrations, paper orprint

Photographs with dark background _____

llustrations are poorcopy __

Pages with black marks, not original copy _\é

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages

Print exceeds margin requirements _______

Tightly bound copy with print lostinspine _____
Computer printout pages with indistinct print

Page(s) lacking when material received, and not available from schoo! or
author.

Page(s) seem to be missing in numbering only as text follows.
Two pages numbered . Text follows.

Curling and wrinkled pages _\L

Dissertation contains pages with print at a slant, filmed as received

Other

UMI

RICE UNIVERSITY

The Effects of Cache Coherence on the Performance
of Parallel PDE Algerithms in Multiprocessor Systems

by

SANDRA KAY JOHNSON

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

DOCTOR OF PHILOSOPHY

APPROVED, THESIS COMMITTEE:

— N ™
Ha- e

Faye’ A. Briggs, Assbckte Professor of

Electrical and Computer Engineering,
Director

/?ac\f%‘

Peter J. VarTnan, Assistant Professor of
Electrical and Computer Engineering

Wy dmes

William W. Symes, Prefessor of
) Mathematical Sciences

Houston, Texas
May, 1988

The Effects of Cache Coherence on the Performance of

Parallel PDE Algorithms in Multiprocessor Systems

by

Sandra Kay Johnson

ABSTRACT

The advent of parallel processing systems has resulted in the potential for
increased performance over traditional uniprocessor systems. However, while there
has been significant advances in developing these systems, designing parallel algo-
rithms to run on them has not kept up with the pace. Although parallel algorithms
have been studied in the literature, very little has been done in studying how various
architectural features effect the performance of these algorithms. This thesis presents
the results of a study conducted to determine how one particular design feature of a
parallel processing architecture, cache coherence maintenance, affects the perfor-

mance of parallel partial differential equations’ (PDE) algorithms.

A high performance shared-memory multiprocessor architecture with private
caches and a single bus or full crossbar interconnection network is assumed. The per-
formance degradation as a result of using a directory based cache coherence protocol
is evaluated on specific implementations of three synchronous parallel PDE algo-
rithms (Jacobi’s algorithm, red-black successive over-relaxation or SOR and the

preconditioned conjugate gradient algorithm or PCG). A trace driven cache simula-

ii

tor determines this degradation. The trace is obtained by symbolically executing the
algorithm on the multiprocessor system. Parameters derived to evaluate the perfor-
mance degradation are used as input into an execution time model used to calculate
the time needed to execute one iteration of each algorithm. This facilitates parallel
algorithm speedup calculations over the sequential algorithm as well as over the

parallel algorithm without cache coherence.

The results show that implementing cache coherence degrades the overall per-
formance of the parallel PDE algorithms considered by 10 to 30 percent. Various
cache design features such as the cache blocksize, the mapping function and the
cache size and the algorithm design feature considered, the PDE grid decomposition
strategy, have no appreciable effects on the algorithm performance degradation. In
fact, the major factors affecting this degradation are the cache miss ratio, the size of
the PDE grid relative to the cache size and the write probability of the parallel algo-
rithm. Finally, for the coherence protocol used in this study, SOR has the best

speedup performance, followed by Jacobi’s algorithm and PCG, respectively.

Acknowledgements

I would like to express my sincere appreciation to my research advisor, Dr.
Faye” A. Briggs. Thank you for your support, encouraging words, and technica™ zoun-
sel. I would also like to thank Dr. William W. Symes for your technical advice on
PDEs and for your membership on my research committee. Furthermore, many
thanks to Dr. Peter J. Varman for your counsel and membership on my research com-
mittee.

Moreover, it is with gratitude that I thank Dr. C. S. Burrus. Your inspiring words
of advice will always be remembered. To Mr. Donald Schroeder, your helpful hints
on troff have not been forgotten. Thank you for taking the time to help.

To my family, especially my beloved mother. Words cannot express my thank-
fulness to you. Your constant advice to study, study, study has truly paid off for me.
Finally, to my dear Alfred, thank you for being there for me through thick and thin.

I’'m looking forward to sharing a life with you.

Table of Contents

CHAPTER 1 INTRODUCTIONcovrrrnrrrernrncnrnnrnnsnsnsesenssssssesssssossossasens

Motivationscccceuenee.

The Illinois Protocol

The Ownership Protocol

Directory Protocols

--

--

--

--

oo

oo

...

..

..

..

Coherence Protoco] SIMUIAEAcooveeeveeeeeeereeeseeeeseeesnessssersssssssssessessssessenes

Execution Time Model! ..

Simulation Methodology

..

and Model ... sesrersasnesenas

CHAPTER 3 JACOBY’S ITERATIVE ALGORITHMon.........

The Classical Algorithm

..

12

14

14

15

16

17

18

18

19

20

28

30

34

38

38

CHAPTER 5 THE PRECONDITIONED CONJUGATE GRADIENT
ALGORITHM ...t se e

Preconditioned CGo.ceevemveemmremernienineeeeeeseeeeosees oo oo

41

42

53

70

89

vi

Simulation RESUILScceveimvieremnnrneniererircnnineeneresssesorsssesssnsesesesssessssssnsses 237
Miss Ratio/Miss Ratio Degradationceceeceerererevereremsesssseessssseessseonsessanns 237
Invalidation RAtOccceiievceerreecemenesesnnsnnnsnssseesesenssssssessssssssssssnecssnssenns 244
PIXICO ettt tebesstsesasessssssssesesssssnsasasassssssssssasens 244
PIXICS ottt sscnsssessesssstassessessestssssessss s sasssssssnasssssssnersneas 250
Prefetching SIategIescocececrmerrneerneerinieresreseressesessssesensessssesssssssssesnses 258
MultiproCESSOT SPEEAUDcovrurrererrerrererreserersssssisessssesessssesssseessssssesssesessenees 274
PCG CONCIISIONScuvurniririiurecncsecrnnissesssnsissesesessesesssssesssssssssecscnsensssssssssen 281
CHAPTER 6 CONCLUSIONoommrrnrerinreccensinsssssessescssensessssssesssssans 287
Algorithm COMPATISONSceerrernerrrrrieerereresresniseseesessssssssssesssssssessssssssessssens 287
Research SUMMATNIEScceveiiiuriereiirireneeece et eecse et snssesess s sssane 291

FULUIE WOTK ..ottt seveessseseseseesesses e sssn s neoneneonesoeemeseemms e e 293

CHAPTER 1

INTRODUCTION

The advent of parallel processing systems has resulted in the potential for
increased performance over traditional uniprocessor systems. While there has been
significant advances in developing these systems, designing parallel algorithms to run
on them has not kept up with the pace. Parallel algorithms present innovative and
efficient means of handling sophisticated problems and allow the user to investigate
larger and/or more complex problems. They offer speedup over their corresponding
sequential algorithms resulting in increased system throughput. This increased per-
formance is exhibited in a wide spectrum of applications. Matrix algorithms, partial
differential equations (PDE) algorithms, and sorting and searching algorithms are a
few examples used in such applications as computational physics, aerodynamics,
image processing and artificial intelligence.

There are various performance metrics that may be used in evaluating the per-
formance of parallel algorithms. Four paradigms beneficial to the development and
performance evaluation of these algorithms are discussed in [1]. The underlying sys-
tem architecture is a major component of algorithm performance and should seriously
be considered when evaluating them. The design space of parallel processors consists
of many features such as general versus special purpose machines, shared memory
versus message passing communication, tens of processors versus hundreds or even

thousands of processors and processor-memory Or Processor-processor

interconnection topology. Therefore paralle] algorithms may be optimized for execu-

tion on a particular class of machine architecture.

1.1. Motivaticns

Although parallel algorithms have been studied in the literature, much less has
been done in studying how various architectural features effect the performance of
these algorithms. This thesis presents the results of a study on how one particular
design feature of a parallel processing architecture, cache coherence maintenance,
affects the performance of parallel PDE algorithms. PDE algorithms were chosen
because they are widely used in scientific and engineering communities and they are

the subject of numerous research papers (see [2] for a comprehensive survey).

The PDE algorithms studied are based on the model problem [3]. A linear sys-
tem of equations are obtained from the solution of two-dimensional, elliptic boundary
value problems. The equations are derived using central differences to replace the
derivatives of LaPlace’s equation describing a rectangular region R. The region is
completely specified at the boundaries. This is known as the Dirichlet problem. A 5-

point discretization of the region is used for all algorithms studied.

The high-performance parallel processing architecture used as a foundation in
this study is a tightly-coupled multiprocessor system as shown in Figure 1.1. Here
we see P processors connected to M memory modules via an interconnection net-
work. There are also N I/O processors or channels to coordinate I/O activities. This
architecture is similar to the Sequent Symmetry series [4] and SPUR [5], both with

bus architectures, and the IBM 3090 Model 400 [6], a full crossbar system. All pro-

OO NEING

Il D1 I2 D2 IP DpP

INTERCONNECTION NETWORK

M1 M2 | ... MM @ @

Figure 1.1. Tightly-Coupled Multiprocessor System.

cessors share the same global memory. Each processor has its own private daia and

instruction caches.

Without the caches, the contention in the interconnection network and memory
modules resulting from the processors’ read and write requests would prohibitively
degrade system performance by exhibiting unacceptable memory access times. The
caches are introduced here for the same reasons they were introduced in uniprocessor

systems; as high-speed buffers operating on the principle of locality effectively

4

reducing the number of requests to main memory. While the inclusion of caches in
uniprocessor systems significantly reduces the effective memory access time, result-
ing in significant performance improvements [7], the introduction of multiple caches

with possible multiple copies of memory blocks may result in data inconsistencies.

There are three factors that contribute to the inconsistent data problem: (1)
allowing shared modifiable data to be cached, (2) allowing processes to migrate to
different processors and (3) /O activity [8]. If shared modifiable data is allowed to
be cached, consider the scenario illustrated in Figure 1.2. If two processes, A and B,
running on separate processors (P1 and P2, respectively) both perform a read access
to the same memory block, this block will be placed in the data cache of both proces-
sors. Process A modifies the block resulting in inconsistent data between the caches
(i.e., if process B accesses this block, it will obtain stale data unless C2 is notified of

the block modification by process A).

A similar situation occurs when a process is allowed to migrate as shown in Fig-
ure 1.3a. Here process A modifies a memory block while executing on P1. If the pro-
cess migrates to P2 and reads this block it will obtain stale data. Figure 1.3b illus-
trates the inconsistencies that may occur as a result of O activity. Process A
modifies a memory block while executing on P1 as shown in part a of this figure. If
an /O processor subsequently accesses this block it will obtain old data. If a mul-
tiprocessor system is to perform correctly, the possibility of having several different

copies of the same data must be avoided.

x | C1 x] C2

Shared
Memory

a. processes A and B read data x on P1 and P2 (respectively).

= ci] 2

Shared
Memory

b. process A modifies data x resulting in inconsistent data bztween C1 and C2.

Figure 1.2. Data Inconsistencies when Caching Shared Modifiable Data.

Esafe c2

Shared
Memory

a. process A modifies data x while running on P1.

x¥ 1 C1 x]C2

Shared
Memory

b. process A migrates to P2 and then references an old value of x.

Figure 1.3a. Data Inconsistencies when Processes Migrate.

xf]Cl

C2

Shared
Memory

a. process A modifies data x while executing on P1

C2

Shared

Memory |

read x IOP

b. the IOP references an old value of x

Figure 1.3b. Data Inconsistencies as a Result of /O Activity

There are various methods presently available for solving this inconsistent data
problem. All methods require overhead that results in some type of performance
penalty. Although there has been some work done on evaluating the effects of system
architecture on parallel PDE algorithm performance, there has been no previous work
done on evaluating how maintaining cache coherence affects the performance of
these algorithms. Since implementing a coherence protocol in multiprocessor systems
may result in prohibitive performance degradation, an in-depth study is needed to dis-
cover how this architectural design feature effects algorithm performance. In this
study, several parameters are defined to evaluate the particular coherence protocol
used (discussed in Chapter 2). These parameters are then used in evaluating the per-
formance of three popular synchronous iterative parallel PDE algorithms, the point
Jacobi algorithm, red-black successive over-relaxation (SOR) and the preconditioned

conjugate gradient algorithm (PCG).

The study was conducted to determine the extent to which implementing cache
coherence degrades algorithm performance. Various cache design and other architec-
tural features are examined by varying cache blocksize, cache size, the address map-
ping function, prefetching stategies and the total number of processors in the system.
Two interconnection networks are also studied; single bus systems and the full
crossbar network. The study was also administered to determine how PDE grid
decomposition strategies affected algorithm performance while maintaining multi-
cache coherence. Detailed presentations of the effective memory access times for the
shared memory system and the algorithm execution time model is included to provide

the performance metrics needed in evaluating system performance.

1.2. Related Work

Dubois and Briggs [9] evaluated the performance of a specific coherence proto-
col on a general workload model. Archibald and Baer [10] evaluated the effects of
six coherence protocols, all based on bus architectures, using synthetic trace driven
simulations of general workloads. Lee, ez. al. [11] evaluated the effects of a software
coherence algorithm on a high performance system with a pipelined multi-stage inter-
connection network. A general set of numerical subroutines spanning a wide range of
scientific applications was used to model the workload. All of this work has evaluated

the performance of coherence protocols on a general workload.

Fox and Otto [12] emphasized the importance of the computation to communi-
cation ratio and load balancing the execution of parallel algorithms. These two fac-
tors are the major causes of system performance degradation. Performance metrics
used in this study were speedup and processor efficiency (speedup per node). They
studied the solution to LaPlace’s equation running on the hypercube system. The rec-
tangular region was decomposed into square subregions with each subregion assigned
to a hypercube node. One of the major differences between the hypercube and the tar-
geted system of this study is the method of communication between processes. In the
hypercube architecture, all processors have their own local memories. Processes run-
ning on processors (nodes) communicate via passing messages (either directly or
indirectly). In the shared memory system used in this study, processes communicate
by simply accessing the same memory block. It is the overhead incurred by imple-
menting this communication while maintaining multi-cache coherence that is subject

of this thesis.

10

Vrsalovic, et. al. [13] presented a analytic model for predicting multiprocessor
performance. An iterative solution to Poisson’s equation using a 5-point discretiza-
tion of a square grid was used. The work concentrated on defining how the various
PDE grid decomposition strategies affected the multiprocessor system speedup.
Square, triangular and hexagonal grid partitionings were used and the hexagonal

decomposition strategy had the best performance.

The generalized multiprocessor system used in the study consisted on N proces-
sors with associated local memory, global memory and an interconnection network
for communication between the processors and global memory. All private data was
placed in the local memories. Two approaches to the problem were used depending
on whether or not multiple accesses to shared data by a process required maintaining
local copies of it. Although not specifically stated in the paper, supporting local
copies of shared data requires that they be read-only (see Figure 1.2) or modifiable
when using a coherence protocol. In either case the overhead incurred may be
represented by the parameters T, (global access time) and T (processing time for
copvying a global data element) used in the execution time model. Their paper
evaluated the performance degradation by presenting the memory access time only as
a function of T and T7. This thesis presents a more detailed performance evaluation
by incorporating the effects of cache coherence into the effective memory access
time.

Saltz, er. al. [14] presented the empirical results of a study on the solution of the
heat equation by red-black SOR on the Intel iPSC Hypercube [15]. Since the com-

munication overhead was substantially large for this system, the work concentrated

11

on reducing the amount of communication needed between nodes. Both rectangular
and strip decomposition strategies were used and the PDE grid-size range was from
64x64 to 512x512 points. The performance metric used in this study was the com-
munication cost per iteration. It was observed that for grid-sizes of 256x256 and
smaller, rectangular decomposition provided the best performance whereas the strip

decomposition performed better for the 512x512 grid-size.

Reed, er. al. [16] presented the analytic models to study the effects of
stencil/partition/architecture trios on the performance of the solution to LaPlace’s
equation on a rectangular grid. Five different stencils were used (including the 5-
point) with rectangular, square, triangular and hexagonal decomposition strategies
and message passing and shared memory architectures. They discovered that the
trios must be considered when evaluating multiprocessor performance. Observing
only one or two components may result in suboptimal performance prediction. The
shared memory architecture and execution time models presented were simiiar to the

ones discussed by Vrsalovic, er. al.

Dubois {17] presented an analytic model of cache-based multiprocessors. His
work included evaluating how cache coherence affected the performance of a parallel
red-black SOR algorithm. However, only the fully-associative mapping strategy, one
decomposition strategy and only a one-grid-element cache blocksize was considered.
The work presented in this thesis varied the cache blocksize and used both the direct
and 2-way set-associative mapping strategies. Furthermore, the results are based on

simulations of the algorithm executions.

12

In [18], Dubois used an analytic model to measure the performance degradation
manifested by cache coherence. In particular, an upper bound on the hit (miss) ratio
degradation resulting from cache invalidations was evaluated. An infinite cache was
assumed for steady state task executions. The model assumed there is no correlation
between the reference streams of the processors. This is an unacceptable assumption
for the synchronous algorithms considered in this study. Furthermore, realistic finite
cache systems were not considered; however, it was noted that modeling such sys-

tems are very complex.

All of this previous work has concentrated on multiprocessor performance pred-
iction when executing an iterative solution to LaPlace’s or Poisson’s equation;
emphasizing the effects of the computation to communication ratio and the decompo-
sition strategies on performance. The execution time models presented included a
general representation for memory access times. This thesis presents a detailed
presentation of the effective memory access times in shared memory systems and
considers the effects of two PDE grid decomposition strategies (rectangular and

square) on system performance.

1.3. Thesis Overview

Chapter 2 provides extensive background material on the cache coherence pro-
tocol used when simulating the execution of the algorithms. It also discusses the trace
driven simulation philosophy used and presents a detailed explanation of the perfor-
mance parameters obtained from the simulations, the penalties incurred by these

parameters and the execution time model to be used in evaluating system perfor-

13

mance. Chapter 3 begins with a description of the parallel implementation of Jacobi’s
algorithm used and its simulation. The remainder of the chapter presents the perfor-
mance results of the simulation and the execution time model. The same format is
used in Chapters 4 and 5 for parallel implementations of red-black SOR and the PCG
algorithm, respectively. Finally, the Conclusion (Chapter 6) summarizes the work

presented and suggests directions for future research in this area.

14

CHAPTER 2

BACKGROUND

Several protocols for cache coherency have been discussed in the literature.
This chapter commences with brief descriptions of these protocols. Then the perfor-
mance parameters used in predicting system performance as a result of maintaining
coherence are formulated. The penalties incurred for each parameter are discussed
and a execution time model is derived incorporating these penalties. From this model,
the algorithm speedup and the iteration time degradation are obtained. Finally, a dis-

cussion of the simulation philosophy used and the features simulated is included.

2.1. Cache Coherence

There are basically two types of cache coherence implementations; static and
dymamic. The static protocol is a software controlled solution. Certain memory
blocks are tagged as non-cacheable by the compiler or the user. These blocks contain
shared, modifyable data such as semaphores, locks, barriers and other synchroniza-
tion primitives as well as certain data structures such as job queues. Non-cacheable
blocks are accessed directly from memory. Some shared blocks my be cacheable but
only through critical sections, accessed (and protected) by locks. In this case, the pro-
cessors are responsible for updating main memory before releasing the lock. Software
protocols are usually used in systems with multi-siage interconnection networks.

These systems are usually composed of hundreds or thousands of processors resulting

15

in prohibitive hardware complexity and memory access times for dynamic coherence
solutions. The Honeywell Series 66, the Elxsi 6400 systems, the IBM RP3 [19], and
the experimental VMP multiprocessor [20,21] use this solution to multi-cache incon-

sistencies.

The dynamic protocol may be sub-divided into four types: (1) the shared cache
solution, (2) the classical solution, (3) broadcast protocols and (4) directory proiocols.
In the shared cache solution, all processors share a single cache. This cache is either
adjacent to the processsors or to primary memory. Utilizing a shared cache eliminates
the coherence problem since only one cache is present in the system. ‘This solution is
generally infeasible because the bandwidth of the cache is insufficient to support the
processing demands of the processors. Also, additional access delays may occur
because the cache is usually physically distant from the processors. In general, all of
the problems that orginally led to the design of private caches such as interconnection
network conflicts (only if the cache is placed adjacent to primary memory), memory
access contention and access delays are present in this solution. More information on

the shared cache solution may be found in [22].

2.1.1. Classical Solution

In the classical solution, all remote caches are informed of a block modification
by receiving a invalidation signal that is broadcast by the cache of the requesting pro-
cessor. Special invalidation busses that connect each cache to all other caches in the
system are used for this broadcast. This scheme is usually used in conjunction with

the write-through write policy. The invalidation traffic increases dramatically as the

16

number of processors increase. Consequently, this method becomes prohibitive for
systems with more than two processors. This solution has been implemented on the

IBM 370/168 and 3033 machines (dual processors).

2.1.2. Broadcast Protocols

The broadcast protocols are a compromise between the broadcasting on invali-
dations to all processors on every write access (the classical solution) and the inhibi-
tion of all ineffective invalidations. All protocols in this category are used on mul-
tiprocessors with bus architectures. Each cache can monitor the write requests of
other caches by watching the bus. The remote blocks may be updated or invalidated.
If the remote blocks are updated, the implementation has to be designed to prevent
them from crossing. Updating the blocks require more data transfers than invalida-
tions; however the blocks remain in the cache so the cache performance is not
degraded as with invalidations. Broadcast protocols require a dual directory system
to service processor and bus requests. They offer the advantages of modularity and

extensibility of system design.

Broadcast implementations include the write-once scheme [23], and an exten-
sion (the CMU protocol) [24], the Illinois protocol [25] an economical solution [26],
ownership protocols [27,28], the Firefly and Dragon protocols [10], a solution utiliz-
ing lock states for synchronization [29] and cache coherence support by the IEEE
Futurebus [30]. A performance evaluation of several bus protocols is presented in
[10]. The following sub-sections briefly describe a few broadcast protocols. A more

detailed examination is found in the literature.

17

2.1.2.1. The Write-Once Protocol

In the write-once scheme, an initial write to a block updates this block in main
memory. All subsequent writes are only written to the cached block. The block is
updated in main memory when it is replaced or when a remote cache requests a copy.
This scheme is an integration of the write-through and write-back write policies. All
proccessor writes cause invalidations of the block if present in remote caches. Main
memory supplies the copy of a block to a requesting cache unless it has been
modified two or more times in a remote cache. In this case, the remote cache supplies

the block and it is also concurrently updated in main memory.

This scheme does not take full advantage of the bus architecture. For example, if
a cache requests a copy of a block that is present and unmodified in a remote cache,
main memory supplies the data. A faster implementation would allow the remote
cache to supply the data. This scheme is used in the Illinois protocol discussed below.
Also, this protocol does not distinguish between a read-only block that is shared and
one that is exclusive. This results in possible unnecessary invalidation signals broad-
cast on the bus. Furthermore, if a block is modified more than once, overhead is

incurred as a result of the extra main memory update.

An extension of the write-once protocol is the CMU protocol outlined in [24].
In this scheme, a distinction is made between a block that has been invalidated ina
cache and one that was replaced or never present. If a block has been invalidated its
target address is still present in the cache directory. If a cached block is invalidated or

shared, the corresponding processor’s write request will generate a bus write, updat-

18

ing memory. All cache directories having the target address of this block also read
the data from the bus. All bus reads also update invalidated cached data. This
scheme dynamically defines a block as private if two or more write requests to the
block occur without any remote requests to access the block . This protocol is
optimized for efficient operation when one process modifies a data block to be read

by several remote processes.

2.1.2.2. The Illinois Protocol

The Illinois protocol [25] is a low-overhead cache coherence solution using the
write-back write policy. The state of each cached block is incorporated into each
cache directory. No status information is associated with main memory. A cache miss
results in a read broadcast to all caches and main memory. If the request was a write,
an invalidation signal is also broadcast. If the block is located in a remote cache, that
cache will supply the block. If several remote caches have copies of the block, a
priority scheme chooses one cache to supply the data. In either case, memory is inhi-
bited from supplying the data. If the remote block has modified the block resulting in
a cache-main memory inconsistency, then main memory is concurrently updated. If a

processor issues a write request all remote caches are invalidated.

2.1.2.3. The Ownership Protocol

In the Synapse’s ownership protocol [27], each cached block has an associated

owner. This owner is main memory if the block is shared or a cache if private. The

¥*
modifications may be made to define a block as private if x (x>=2) or more non-interleaved
write requests are made to the block

19

owner always has the latest copy of the block. If a processor issues a read request to
a remote block that is private, the remote cache sends a busy acknowledgement to the
requestor, updates and passes ownership to main memory and invalidates its copy.
The requestor then re-issues its request. This protocol does not fully utilize the bus
broadcast capabilities The Berkeley protocol [28] is also an ownership protocol. Like
the Synapse protocol, the owner always has the latest copy of the block and only the
owning block allows data modification. Unlike the Synapse protocol, when a proces-
sor requests to read a block owned by a remote cache, the remote cache supplies the
data to the requestor. The data is not written back to main memory until the owned
block is replaced. This insures a reliable system operation because although data is
inconsistent with main memory, several copies of the modified block exist in the

private caches.

2.1.3. Directory Protocols

Directory protocols maintain block states in a central or distributed directory as
well as in local cache controllers. These protocols have been proposed for use pri-
marily in multiprocessor systems with full-crossbar interconnection networks. Proto-
cols utilizing global directories are discussed in [31, 32, 33,34]. Although single bus
protocols provide a more natural and faster meihod of maintaining coherence for
sequential main memory accesses, distributed directory protocols provide concurrent
main memory accesses resulting in reduced contention and possibly better overall
system performance. The coherence protocol simulated is based on the directory

method for the full crossbar network and a directory/broadcast protocol for the single

20

bus architecture.

2.2. Coherence Protocol Simulated

The cache coherence protocol simulated is based on the presence flag technique
[32]. A cached block may be in one of four states as outlined below (a write-back

write policy is assumed):

(1) Invalid (INV): a block is not in the cache or it has been invalidated.

(2) Exclusive Read-only (EX): a block is located in only one cache and it
has not been modified.

(3) Read-only Shared (RO): a block is located in 2 or more private caches
and all copies are consistent with main memory.

(4) Exclusive Read-Write (RW): a block is located in only one cache and it
has been modified resulting in a cache-main memory inconsistency.

A distributed global directory consisting of P+1 bits for each main memory block is
also used. The P presence bits corresponds to the P private caches in the system. If a
block is located in a cache its corresponding presence bit is set. An additional modify
bit is included to denote a cache-main memory inconsistency. An example of a distri-

buted directory implementation is given in [9].

Since the global directory is distributed, is it assumed to be part of the memory
controller of each main memory module. Commands from each cache controller (CO)
to the memory module controller (MC) are used to implement the coherence proto-
col. These commands, outlined in Tables 2.1 and 2.2, are extensions to the commands

given in [31].

When a proccessor attempts to modify data, it has to verify exclusive access to

it. The operation used in this verification process is referred to as a cross-interrogate

21

COMMAND DESCRIPTION

EXCLUSIVE READ issued as a result of a write miss.

READ issued as a result of a read miss.

REQUEST EXCLUSIVE | issued when the processor requests to modify a block
presently in state RO.

REPLACE EX,

REPLACE RO issued as a result of a block replacement. This signals
a global table modification.

REPLACE RW issued as a result of block replacement. This signals
global table modificationand a main memory update.

MODIFY EXCLUSIVE issued as a result of the local modification of a an EX

block. This results inthe MC setting the modified bit in
the global directory.

Table 2.1 Commands from the Cache Controller to the Memory Controller.

COMMAND DESCRIPTION
INVALIDATE RW issued as a result of the REQUEST EXCLUSIVE
command or a write request from an I/O controller.
INVALIDATE EX
INVALIDATE RO occurs as a result of the EXCLUSIVE READ or

REQUEST EXCLUSIVE (INVALIDATE RO only)
commands or a write request from an I/O controller.
When the memory controller receives the RE-
QUEST EXCLUSIVE command it searches the
central directory to determine the caches owning a
RO copy of the block. This signal is simultaneously
sent to the CCs of these caches. A similar process
occurs for the EXCLUSIVE READ and /O con-
troller commands. The MC then waits until an ack-
nowledgement is received from these CCs before
asserting the RO->RW signal.

RW->R0O CHANGE

occurs as a result of the READ command from a
CC and a set modified bit.

RW->EX CHANGE

occurs as a result of a read request from an I/O con-
troller and a set modified bit.

RO->EX CHANGE

issued after the replacement of all but one RO copy
of a block.

RO->RW CHANGE

used as an acknowledgement signal for the RE-
QUEST EXCLUSIVE command. The signal is as-
serted after all INVALIDATE RO signals have
been acknowledged from the CCs.

EX->RO CHANGE

occurs as a result of the READ signal, a single set
presence bit and a reset modified bit.

Table 2.2 Commands from the Main Memory Controller to the Cache Controller.

22

23

(XI). A description of all XIs used in this protocol as well as the CC and MC signals
used in their implementation is given in Table 2.3. The three basic XTs are XI change
state (XICS), XI invalidate (XI-INV) and XI cast out (XICO). The XICS has the
lowest performance penalty. This operation modifies the global and remote cache
directories. XICS operations include RO->EX and EX->RO. The XI-INV (INV-RO
and INV-EX) results in miss ratio degradation in addition to the directory
modifications. The XICO (RW->RO, RW->EX and INV-RW) is a special invalidate
and state-change operation that causes a main memory cycle penalty as a result of
implementing the write-back write policy. This penalty is in addition to the global
and remote cache directory modifications and a possible miss ratio degradation
(INV-RW only). For bus implementations, a block is updated in memory con-

currently with its placement in the cache initiating the RW->RO.

Two additional operations that result in performance overhead (but no remote
cache directory modifications) are EX->RW and RO->RW. These operations set the
modify bit in the global directory when a local cache possessing a valid copy of a
block attempts to modify that block. The CC/MC signals defining these operations
are MODIFY EXCLUSIVE/EX->RW CHANGE and REQUEST EXCLUSIVE/RO-
>RW CHANGE respectively. All global and remote directory modifications occur in
read-modify-write cycles.

The state diagram illustrated in Figure 2.1 shows the coherence protocol imple-
mentation for block i in cache ¢, (1<k>P). The state of a block is changed as a result
of one of four types of events; a local read, a remote read, a local write and a remote

write access. A local read or write to block i occurs when the processor associated

24

X1 COMMANDS* DESCRIPTION PENALTY
Xics changes the state of a global and remote
RO->EX replace RO remotely cached block cache directory
RO->EX CHANGE modification
EX->RO read
EX->RO CHANGE
XI-INV invalidates remote copies | global and remote
INV-RO exclusive read or of a block cache directory
request exclusive modification, miss
INVALIDATE RO ratio degradation
of remote cache
INV-EX exclusive read
INVALIDATE RO
X1co special cases of XI-INV global and remote
RW->RO | read and XICS causing the cache directory
RW->RO CHANGE | greatest performance modification, a main
penalties memory update (CO)
RW->EX | read (VO only) and the miss ratio
RW->EX CHANGE degradation of a
remote cache (INV-RO
INV-RW exclusive read only)
INVALIDATE RW

*MC commands are capitalized

Table 2.3 Table of Cross-interrogates.

with the cache containing the block requests to read or write the data, respectively. A

25

remote read or remote write access occurs when any other processor requests to read
or write the data in the block i. All remote events cause state changes as a result of
receiving some type of XI (this excludes blocks in the invalid state). A local event
may or may not cause the CC to send a XI. Some state change operations produce

event/XI pairs as shown in Figure 2.1.

Three cache events signal the operation of the cache coherence protocol. They
are a read miss, a write miss and a write hit. The procedures used to maintain coher-
ence for each event are discribed below. All processor reads and writes are assumed

to be globally performed as outlined in [35].

Read Miss. When this event occurs the global directory is consulted
to check for possible copies of the block in a remote cache (full
crossbar only). This directory is also updated to reflect the presence
of the missed block. The local valid bit for the requested block is
also set for the associated block frame in the cache directory. If the
block is not present in any cache (all presence bits for the block are
cleared in the global directory) then the local state of the block is set
to EX and the block is transferred from main memory to the cache.
For bus architectures, if a remote cache contains the block, it sup-
plies the data to the requesting cache. If several remote caches have a
copy of the block a priority scheme chooses one cache to supply the
block.

If the global state of the block is EX then a XICS (EX->RO) occurs.
If the global state is RO no remote cache directory action is needed.
In both instances, the local state for the block is set to RO and the
block is transferred from main memory (or a remote cache for single
bus architectures) to the cache. If the global state of the block is RW
the cache directory executes a XICO (RW->RO) operation. The
block is then transferred from main memory to the cache and its
local state is set to RO.

26

LR and NP
A\
RWARR (INV RWA /XI-INV-R EX JLR

WA/XI-INV-R
LW,
RWA/XICO-
RR/XJCS-R
L. W/1
- LW/XI-INV-S
LRLW @ i — 1 RO JLL,LR
RR/XICO-R

LR -local read

RR - remote read

LW -local write

RWA - remote write access

S (R) - signal sent (received)

P - block is present in at least one remote cache
NP -not P

1-if P then XI-INV-S
2 - if P then XICO-S (RW) or XICS-S (EX)

Figure 2.1 State Diagram of Coherence Protocol.

Write Miss. A write miss causes a global table lookup and a possible
update. If the global state of the block is INV it is set to RW. If the
global state is RO, one or more XI-INVs (INV-RO) are executed. A
XICO (INV-RW) is executed if the global state is RW. In all
instances, the block is transferred from a remote cache (bus

27

architectures only) or main memory to the cache, the local state is set
to RW, and the processor modifies the data in the cache.

Write Hit. If the global block state is EX it is set to RW, If the glo-
bal state is RO at least one XI-INV (INV-RO) is executed. If the glo-
bal state is RW no global action is necessary. If the local state is EX
or RO it is changed to RW and the processor modifies the cached
data.

Although not shown in Figure 1.1, the multiprocessor system used in this study
includes a control signal bus (CSB) for the full-crossbar interconnection
configuration. This CSB is used by each MC to simultaneously send invalidation sig-
nals to all necessary remote cache directories. All invalidation requests are buffered
by the CCs to release the CSB as soon as possible. The MC also requests CCs to
change its local state with the CSB. Furthermore, the CSB is used by the CCs to send

acknowledgement signals to the MC.

Bitar and Despain [29] discussed four methods of implementing atomic read-
modify-write instructions. Three of these methods require the cache to know at the
beginning of the instruction that it is atomic. The fourth method uses two additional
cache block states, the lock state and the lock-waiter state, to implement this atomic
operation. The protocol simulated in this study used the second method outlined in
Bitar and Despain. That is, the atom is located in one block and the cache requests
write access to the block at the beginning of the instruction. Special atomic instruc-

tions are assumed to facilitate this implementation.

28

2.3. Performance Parameters and Penalties

There are four main sources of performance degradation when using the cache

coherence protocol discussed previously. These sources are as follows [34]:

1. Degradation of the average miss ratio due to block invalidations
2. Increased traffic between caches to enforce consistency

3. Concurrent access to the global tables resulting in conflicts

4. Write-backs due to invalidation or state change of RW data

These sources were used to derive the performance parameters used to evaluate the
coherence mechanism for the PDE algorithms and the system under study. The
parameters used were the miss ratio degradation (MRD), the probability of a XICO
(prXICO), the probability of a XICS (prXICS), and the invalidation ratio (IR). These

parameters were determined for each processor in the multiprocessor system.

The miss ratio is obtained for both the enabled (EMR) and disabled (DMR)

coherence protocol. The MRD is then calculated as shown below:

MRD = EMR /| DMR 2.1

The prXICO is the fraction of processor references (shared and private) that cause a
XICO. It measures the amount of overhead that causes the largest coherence mainte-

nance penalty. The prXICO is calculated as shown in Equation (2.2).

ber of INV-RWs + number of RW—ROs
XICO = =7
pr total number of references

(2.2)

The prXICS is the fraction of processor references resulting in RO->EX or EX->RO
operations. This measures the minimal overhead due to coherence maintenance. The

prXICS is calculated as shown below:

29

prXICS = number of RO—EXs + number of EX—ROs

total number of references @3)

The IR is the fraction of processor references that cause invalidations of RO and EX
blocks. It measures the overhead that causes the miss ratio degradation of the private
caches (INV-RW also causes miss ratio degradation but it is defined as a XICO due

to the larger write-back penalty). The IR is calculated as shown below:

number of INV=ROs + number of INV-EXs
total number of references

IR= (2.4)
Let ¢ be the cache cycle time, ¢ the block transfer time, t;p the global direc-
tory access time, ¢pp, the remote directory update time and w the probability of a

write-back, all in terms of the number of processor cycles. The penalty due to a cache

miss, #)4¢, is therefore

The penalty due to a XICO, ty;), is

Ixico=tept+irp+1p (2.6)

An upper bound on the penalties for a cache miss and for XICO operations are
assumed in this study. In practice, the penalties for these parameters are implementa-
tion dependent. For example, in some systems, block transfers and global directory
accesses occur concurrently. The global directory access times may therefore be
eliminated from Equations 2.5 and 2.6 for these systems. This is because the time

required for block transfers is longer.

The penalty due to a state-change operation, Ixics» 18

xics = top +trn 2.7)

30
and the penalty due to a XI-INV, Ny is*

INnv=1cp+rp (2.8)

The effective memory access time with enabled cache coherence for a P processor

system (P 2 2), tMEP’ is therefore
tMEp = tC + MRtMS +er1C0tX1C0 +er1CStchs + IRthV (29)

2.4. Execution Time Model
The execution time model used is a modification of the models used in [13] and
[16]. The modification includes changes to the effective memory access time to

include cache coherence maintenance. The time needed to complete the evaluation of

one iteration of the algorithm in a P processor system (P 2 2) is

P _
Yr=tcarc+Ny [tMEp + ‘wr] (2.10)
where 24, - is the processor calculation time for updating sub-grid points, N 4 is the

total number of memory accesses required per iteration Per processor, typ, is the

effective memory access time (see Equation 2.9) and twr is the waiting time for the

interconnection network. The processor calculation time is

M2
ICALC =pr—I)_Tfp (2.11)

where N 'f» is the number of floating point operations required in evaluating each grid
point, M 2 is the total number of grid points, P is the number of processors and Tfp is

the time to execute a single floating point operation. Vrsalovic, et. al. [13] formalized

‘invalidations also cause MRDs. This penalty is exemplified by the MR obtained from the simu-
lations and by the MRD graphs presented later.

31

the memory access waiting time for synchronous systems to be

e |51} 0.2
where S is the number of processors that can simultaneously access shared memory.
For a shared bus architecture, the number of simultaneous accesses is one. The full
crossbar interconnection network is functionally an M-bus multiple bus system. To
illustrate both upper and lower bounds on performance it is assumed that all modules
service requests at all times (upper bound) or only one module services requests at all
times (lower bound). In the former case the value of S is P. In the latter case the full

crossbar is reduced to performing as a single bus architecture.

The speedup for a P-processor system is

tr
Sp=—% (2.13)
br
where the uniprocessor iteration time is
1 _ pg2
tr=M [N ol t tMEl] (2.14)

The uniprocessor effective memory access time is

e, = tc+ UMR [tB + th] (2.15)

Here UMR is the uniprocessor miss ratio.
If the prefetch-on-miss or tagged prefetching [36] fetch algorithms are used, the
effective memory access time for both the uniprocessor and multiprocessor is
extended to include the prefetching penalties incurred. Let the prefetch ratio (PR) be

the ratio of the total number of prefetched blocks to the total number of processor

32

references. There are both external and internal cache references when a fetch algo-
rithm other than demand fetching is used. External references are those initiated by
the CPU and I/O processors and internal references are those initiated by the cache to
determine if a block to be prefetched is present in the cache. These internal cache
references are known as prefetch lookups. The ratio of the number of prefetch lookup

cache accesses to the total number of references is known as the lookup ratio (LR).

Let tpp and #; be the penalties that occur as a result of prefetching a block and

of prefetch lookups, respectively. The effective memory access time is then extended

as follows:

!ME® = tME, + tprPR + t1 LR (2.16)
where ¢ (¢ 2 1)is the total number of processors in the system. It is assumed that the
penalty for a prefeich is the same as that for a miss (see Equations 2.5 and 2.15).
Additionally, the total number of prefetched blocks is included when calculating N,
for each algorithm. Table 2.4 presents a summary of the parameters used in the exe-

cution time model and their value ranges.

Maximum values are shown for the probability of a write-back in this table.
The larger grid sizes exhibit these larger values, a result of block replacements and
XICO operations. However, only XICO operations result in write-backs performed
for smaller grid sizes. This is because all blocks composing these smaller grid sizes
map into unique cache block frames, eliminating all block replacements. Therefore,
the write-back probability ranges from the prXICO for smaller grid sizes to the max-

imum values shown in Table 2.4 for larger grid sizes.

33

PARAMETER DECSRIPTION VALUE/RANGE
(in processor cycles)
te cache cycle time 1
ta block transfer time 1+BS/8"
w probablilty of a write-back 0.20 JAC
0.17 SOR
0.30 PCG
'aD global d.irectory 2
access time
pp remote cache directory 2
modification time
Tfp time to execute a 4
single floating
point operation
N > number of floating 4JAC
point operations 6 SOR
required in evaluating varies PCG
each grid point :
N A total number of memory algorithm dependent
accesses required per
iteration per processor
IR prefetch lookup penalty 1

*BS - blocksize

Table 2.4 Summary of Parameters and Ranges

34

To isolate the effect of cache coherence on the performance of the algorithms
studied, the iteration time degradation (ITD) is used. This parameter is the ratio of the
time needed to execute one iteration of the parallel algorithm with cache coherence
enabled to the time needed to execute one iteration of the parallel algorithm with

coherence disabled as shown below:

EC , ,EC
tcarc N, [‘ME,, + ‘WT]

DC , ,DC @.17)
fcarc + N, [tMEP"' ‘wr]

ITD =

where tﬁgp and t{fg are given in Equations 2.9 and 2.12, respectively. The disabled

coherence effective memory access time is given below

z,ﬁgp =1+ DMR [tB + th] (2.18)
where DMR is the disabled coherence miss ratio. Finally, the interconnection net-

work waiting time for disabled coherence is

P
< = [? - 1]:,55? (2.19)

2.5. Simulation Methodology and Model

Trace driven simulations have been used extensively in the design of memory
hierarchies for uniprocessors. This is because the performance of memories are
highly dependent on the dynamic reference string of the processors. Consequently,
this procedure should also be applied to the design of memory hierarchies in mul-
tiprocessors; however traces of multitasked MIMD systems are difficult to obtain.
The communication and synchronization that occur between processes are not present

in SISD systems. Furthermore, reference strings may vary from one run to the next.

35

In spite of these difficulties some major simulators have been implemented
[37, 38, 39]; however, these simulators are complex with some tracing every instruc-
tion.

A different approach was used in this study and is similar to the simulation
methodology described in [40]. Every instruction of the algorithm is symbolically
executed and all memory accesses are traced. This is in direct contrast to the metho-
dology described in [40] where only global events, i.., references to shared data,
synchronization primitives, etc., are traced. While global events do cause the XIs
which lead to degradation in system performance, many global and private events
result in the contention of their corresponding shared and private blocks (respec-
tively) for the same private cache block frame. This directly affects the number if XIs
executed as well as the overall number of cache misses. Since the computations for
the multitasked PDE algorithms studied are homogeneous, the P individual traces
from each process were interleaved by a modification of rank interleaving [40]. All
processes for the PDE algorithms execute the same code on different data. This data

is partitioned statically before execution of the processes.

It is assumed that the processor instructions are non-self-modifying. This facili-
tated the use of separate data and instruction caches. The multiprocessor trace is
obtained from data references. A PDE sub-grid is statically allocated to each process.
To isolate the effect of cache coherency on the algorithms simulated, it is assumed
that processes are not allowed to migrate, requests from I/O processors are not

included in the multiprocessor trace and interprocessor interrupts are disabled.

36

Since the processes are assumed to be executed on P homogeneous processors,
for each event k in processor j, there P-1 concurrent events in the remaining P-1 pro-
cessors. In the interleaved trace event k in any processor occupies position kP + r
where r is a random number uniformly distributed between 0 and P-1. The inter-
leaved trace is then used to drive a cache coherence simulation. This simulation cal-

culates the various performance parameters outlined in the previous section.

To evaluate the effect of various cache features on algorithm performance when
enforcing coherency, a steady-state model of algorithm execution (warm start) is
used. The fetching algorithms simulated are demand fetching, prefetch-on-miss and
tagged prefetching [36]. Another prefetching algorithm, always prefetch, requires
main memory to fetch on every reference for all processors. This prefetching algo-
rithm is prohibitive for the underlying architecture assumed in this study and is not
considered. The cache blocksize was varied from 2 to 32 32-bit words (8 to 128

bytes) and the write-back (or copy-back) write policy is used.

The penalty for cache misses in multiprocessor systems may be substantial. To
effectively reduce this miss ratio, many high performance multiprocessor systems
have large caches. The cache size range used in this empirical study is 32-64Kbytes.
The direct mapping and two-way set associative placement policies are simulated.
Memory constraints imposed upon the system used to execute the cache simulator
prohibited the simulation of a fully associated or an n-way (n>2) set associative map-
ping strategy. A least-recently-used (LRU) replacement policy is used for the set

associative mapping strategy for all fetching strategies.

37

To decrease the effective memory access time virtual address caches were used.
A primary concern in designing virtual address multi-cache systems is how to handle
multiple virtual addresses that map to the same physical address. This is known as the
synonym problem. This problem is eliminated by allowing all processes executing the
algorithm to share the same virtual address space. For example, processes executing

on the SPUR [5] system may share segments of virtual address space.

38

CHAPTER 3

JACOBI’S ITERATIVE ALGORITHM

This chapter presents a discussion of the numerical solution of Jacobi’s syn-
chronized iterative algorithm. This algorithm is generally considered a prototype
parallel algorithm [2]. Also included is a description of the implementation and
decomposition strategies simulated. The performance parameters obtained from the
simulation are presented followed by the performance evaluation of this algorithm

and finally, Jacobi’s conclusions.

3.1. The Classical Algorithm

Discretizing LaPlace’s equation by central differences on a rectangular region
with Dirichlet boundary conditions results in Jacobi’s synchronous iterative algorithm
as shown in the equation below for the (k+1)st iterate. A detailed discussion and

derivation of this equation is presented in [41].

b= 3 oy g G
This computation consists of repetitively computing the average of the north, south,
east and west neighbors of each grid point. The simulated parallel implementation of
this algorithm is shown in Figure 3.1 for two iterations. Two copies of the grid are
used in this computation, U and V. For each iteration, a copy of a grid is updated

using the grid values from the other copy. The grid copies are decomposed into P

contiguous sub-grids, each allocated to a single processor. The processors update

39

> start
execute
V=U
synchronize
execute
U=V
synchronize

Figure 3.1. Parallel Implementation of Jacobi’s Synchronous PDE Algorithm.

each sub-grid and then synchronize using any number of synchronization primitives
such as barriers [42]. After synchronization, the processor continues the computation

with the grid copies reversed. This completes two iterations.
The PDE grid is decomposed into squares and rectangular strips. For example,

consider a rectangular grid consisting of m? points. This grid is decomposed into %

40

rectangular strips with / sub-grids per rectangular strip. This is shown in Figure 3.2
for P=4 and [ranging from 1 to 2 (a and b respectively). Table 3.1 lists the partition-

ings used for the various number of processors simulated. Each sub-grid consisted of

%’ x % grid points.

PO
PO P1
P1
P2
P2 P3
P3
a. rectangular b. square

Figure 3.2 Decomposition Strategies for Jacobi’s Algorithm Using 4 Processors.

P | I Square | /,Rectangular
2 1 1
4 2 1
8 2 1

16 4 1

Table 3.1 Decomposition Parameter Values

41

3.2. Simulation Results

All data presented here represent the worst case parameters for all processors
used in the multiprocessor system. Unless otherwise noted, all graphs present the
simulation results using the demand fetching policy. Furthermore, some graphs
presented in this thesis use the following acronyms: D or DM for direct mapping, S or
SA for set-associative mapping, pf for prefetching, pom for prefetch-on-miss, tpf for
tagged prefetching, dmf or df for demand fetching and 32K or 64K for 32Kbyte or

64Kbyte cache sizes, respectively.

The grid size is varied from 64x64 to 1024x1024 points for all simulations. The
64x64 grid is so small that blocks in both the U and V grids map into unique cache
block frames. For larger grid sizes several memory blocks map into the same cache
block frame. This eventuates as a result of block frame contention among blocks in

the two grids and/or among blocks within the same grid.

A graphic representation of this contention is shown in Figure 3.3. This illustra-
tion assumes a 32Kbyte cache size, a 8-byte blocksize, a 256x256 point grid decom-
posed into sub-squares and a four processor system. When using the direct mapping
strategy, the blocks composing each sub-square may be divided into four parts as
shown for processer PO. The geometrically corresponding blocks of all four parts
map into the same cache block frame (see blocks a, b, ¢, and d in figure). This is the
source of intragrid contention. Similarly, contention may occur as a result of using
two grids. For example blocks u and v of grids U and V, respectively (see Figure 3.3),

map to the same block frame resulting in possible intergrid contention.

42

a
5
intragrid <T PO P1
[
Nad
P2 P3
u
Y
PO \ P1
P2 P3
\'4
T
\s,
intergrid

Figure 3.3 Intragrid and Intergrid Contention.

3.2.1 Miss Ratio/Miss Ratio Degradation

The MRD is infinite for the 64x64 point grid, independent of cache design alter-

natives, the number of processors considered and the decomposition strategy. Since

all memory blocks referenced by each processor for this grid size map into unique

cache block frames, all misses are a direct result of block invalidations. An infinite

43

MRD is therefore the result of the principle of unique block frames as formalized

below.

Principle of Unique Block Frames. If all memory blocks referenced
by a processor executing a parallel algorithm with enabled cache
coherence map into unique cache block frames, then the MRD for
the algorithm is infinity. This value is independent of the cache
design alternatives, number of processors, and domain decomposi-
tion strategies. It results from misses occurring only as a result of
block invalidations received by a processor.

The MR versus the cache blocksize for the 64x64 point grid is shown in Figure
3.4 for both square and rectangular decompositions. In all instances this MR is 5% or
less and its behavior is intuitive. For example, as the blocksize increases the MR
decreases. Also, for a given blocksize, as the number of processors increase, the MR
increases. All blocks composing this grid size map into unique cache block frames.
Therefore, all misses are a direct result of block invalidations which in turn depend
upon the number of shared modifiable blocks present in the cache. As the number of
processors increases, the sub-grid size per processor decreases; however, the number
of shared modifiable blocks eventually placed in the cache decreases at a slower rate
for this algorithm. Therefore, the number of misses per processor also decreases at a
slower rate. This explains the increase in the MR as the number of processors
increases. Also note that for a 8-byte block the rectangular decomposition MR is
larger than the square decomposition MR for all processor configurations except the

twO processor system.

As the cache blocksize is doubled the rectangular decomposition MR is reduced

by one-half. This is not the case for the square decomposition strategy. In this situa-

Miss Ratlo, x10(-3)

Miss Ratlo, x10(-3)

40

30 +

20

10 4

v i v ¥ v L §
4 5 6 7
log , B
a. Square Decomposition

Number of processors

« 2
- 4
- 8
- 16

Number of Processors

o 2
- 4
- 8
< 16

b. Rectangular Decomposition

Figure 3.4 Miss Ratio versus Blocksize, 64x64 Grid

45

tion, the remote shared blocks (referenced by each processor) that are adjacent to the
vertical sub-grid border produce a constant number of misses each iteration, indepen-
dent of the cache blocksize. (This phenomenon is defined as the principle of vertical
shared blocks). For this same reason, the MR for the 2 processor square decomposi-
tion strategy is constant. The MR for the 16 processor square decomposition strategy
and 128 byte block is 0.18, an order of magnitude larger than all other miss ratios for

this grid size. This is caused by the modifying of one shared block by two processors.

For grid sizes larger than 64x64 points, the major parameters effecting the MRD
are the cache mapping function, the cache size, and the decomposition strategy. For
the direct mapping strategy, there are no MRD:s for these larger grids. This is true for
both square and rectangular decompositions and all processor configurations. The
Justification for this MRD absence is intergrid contention. Although block invalida-
tions are performed, other blocks mapping to the same cache block frame as the
invalidated blocks are accessed before the invalidated blocks are referenced again by

the processor. This results in the same MR for both enabled and disabled coherence.

The detrimental effect of intergrid contention is illustrated in Figure 3.5 for the
MR versus cache blocksize with direct mapping placement. The MR varies from
slightly over 0.5 to .41 as the blocksize varies from 8 to 128 bytes. This MR is
independent of cache size, decomposition strategy and the number of processors. It is
also relatively independent of the grid size. Therefore, as a result of high MKs, the

two-grid implementation of this algorithm should be avoided.

0.52
0.50 4
0.48 -

0.46

Miss Ratlo

0.44 -

0.42 4

0.40

W -

~

[»+]

0 128x128
-~ 256x256
B 512x512
-0~ 1024x1024

Figure 3.5 Miss Ratio versus Cache Blocksize, Direct Mapping

0.3

0.2 1

Miss Ratlo

0.1 1

0.0

~N

O 256x256
- 512x512
o 1024x1024

Figure 3.6 Miss Ratio versus Cache Blocksize, Set-Associative Mapping

46

47

For the 2-way set-associative mapping strategy and grid sizes larger than
128x128 points the MRD is 1.0. This is true for all cache design parameters, both
decomposition strategies and all processor configurations with one exception; the
256x256 point grid for the rectangular decomposition strategy and 64Kbyte cache
size. Intragrid contention is the dominate factor resulting in the absence of the MRD
for these large grid sizes. In the exceptional case, the MRD is infinity as a result of
the principle of unique block frames. The MR versus cache blocksize for 2-way set-
associative placement is shown in Figure 3.6. All grid sizes larger than 128x128
points are shown as well as some 128x128 point grid sizes. This MR is relatively high
for blocksizes smaller than 32 bytes; however, it indicates a better performance than
direct mapping placement. This is largely the result of a reduction in intergrid conten-
tion.

While intergrid and intragrid contention is still present for the 2-way set-
associative mapping strategy, the frequency of this contention is reduced. This is
caused by the fact that rwo blocks map into the same set. Therefore it is possible for
two geometrically corresponding blocks in the U and V grids or two blocks within
the same grid to be present in the cache simultaneously. This is not feasible for the
direct mapping strategy.

The reduction in the frequency of intergrid and intragrid contention results in
the presence of a MRD for some processor configurations when using the 128x128
point grid. Figure 3.7 illustrates this MRD for the square decompcsitica strategy, 8
and 16 processors (32Kbyte cache), and 4 processors (64Kbyte cache). This figure

shows that as the blocksize increases the MRD increases. While the number of

48

@ 128, 8P
- 128, 16P

Miss Ratlo Degradation
8

n
W -
>
n
(-]
~ -
o

a. 32Kbyte Cache Size, 8 and 16 Processors

15

10 -

& 128x128

Miss Ratio Degradation

———— ————r—T—
2 3 4 5 6 7 8
log B
2
b. 84Kbyte Cache Size, 4 Processors

Figure 3.7 Miss Ratio Degradation versus Cache Blocksize, 128x128 Point Grid Size,
Set-Associative Mapping, Square Decomposition.

49

invalidated shared blocks along the horizontal sub-grid borders decrease as the block-
© size increases, the number of invalidated shared blocks along the vertical sub-grid
borders are independent of the blocksize. This is one cause of the increase of the
enabled MR over the disabled MR. The number of misses occurring as a result of
intergrid contention decreases as the blocksize increases resulting in a decrease in the
MR for disabled coherence. This in turn results in an increase in the MRD as the
blocksize increases. There is no MRD for a two processor system on a 128x128 grid
(both decomposition strategies and cache sizes), a result of intergrid and intragrid
contentions. This also holds for a four processor system when using both decomposi-
tion strategies (32Kbyte cache only). In all instances not previously discussed, the
MRD for the 128x128 point grid is infinite as a result of the principle of unique cache

blocks.

Figures 3.8 and 3.9 show the MR versus the cache blocksize for square and rec-
tangular decomposition strategies, respectively. These MRs generally decrease as the
blocksize increases. The rectangular decomposition strategy has a faster rate of
decrease as a result of the absence of vertical shared blocks along its sub-grids. Furth-
ermore, the rectangular decomposition strategy generally has a lower MR than the
square decomposition strategy. Also, for both decomposition strategies, the MR

increases as the number of processors increase for a given blocksize.

A closer look at the MRs presented show a optimum cache blocksize of 32
bytes. For example Figure 3.6 shows a MR of 0.05 for this blocksize (set-associative
mapping). While smaller block sizes may reduce the block transfer time, a critical

parameter in multiprocessor systems, they result in prohibitive MRs. Larger

40
o 30
=3
»
g <&~ 8 Processors
E 20 - - 16, 32K
™ €« 16, 64K
ol
= 10 +

0 |] | | L 1] L
2 3 4 5 6 7 8
log B
2
a. 32Kbyte Cache Size

10
g 8-
S
; -
o
2 6 - & 4 Processors
(1 -~ 8 Processors
@
= 4 -

2] 1 L b i

2 3 4 5 6 7 8

log B
2

b. 64Kbyte Cache Size

Figure 3.8 Miss Ratio versus Cache Blocksize, Set-Associative Mapping,
128x128 Point Grid, Square Decomposition.

50

40
a 30 -
=%
*x o 4
_2: 20 - - 8
g 2 16, 128x128
a - 16, 256x256

0 s e A
2 3 4 5 6 7 8
lo B
9 2
a. 32Kbyte Cache Size

30
@
§ 20 + @ 2
ol - 4
-
< -0~ 16, 128x128
@& 104 = 16, 256x256
=

0 -

2

log 23
b. 64Kbyte Cache Size

Figure 3.9 Miss Ratio versus Cache Blocksize, Set-Associative Mapping,
128x128 Point Grid, Rectangular Decomposition.

51

52

blocksizes produce smaller MRs but may result unacceptable block transfer times.
Table 3.2 lists the MRD for 2-way set-associative mapping, a 32-byte blocksize and
all other design alternatives and decomposition strategies. Unless otherwise noted, all

graphs shown in this thesis assume a cache blocksize of 32 bytes.

Cache .. PDE Gridsize
Size Partition | CPUs =122 T 93¢ | 512 [1034
2 | e | 1.00 | 1.00 | 1.00 | 1.00
4 | e | 100 1.00 | 1.00 | 100
Square 8 w | 168 | 1.00 | 1.00 | 1.00
16 | = | 378 | 1.00 | 1.00 | 1.00
32Kbytes 2 | = [1.00 | 1.00 | 1.00 | L.00
4 | e [100] 1.00] 1.00 | 100
rectangular | o 1 1 7] 100 | 1.00 | 1.00
16 | | » | 100 1.00 | 1.00
2 | = | 1.00 | 1.00 | 1.00 | 1.00
4 | o | 236|100 100 | 100
Square 8 o | e | 1.00{ 1.00 | 1.00
16 | oo | o | 1.00| 100 100
64Kbytes 2 | = | 100 | 1.00 | 1.00 | 100
rectangular | o | | o | 1001 100 | 1.00
16 | oo | o | o | 100 100

Table 3.2 Miss Ratio Degradation, Set-Associative Cache with 32-byte Block.

53

3.2.2. Invalidation Ratio

Figure 3.10 shows the IR versus the cache blocksize for 2 and 4 processors (a
and b respectively), direct mapping, both cachesizes and the 64x64 and 128x128
point grid sizes. For grid sizes larger than 128x128 points, intragrid contention dom-
inates direct mapping in such a way to eliminate all block invalidations for 2 and 4
processor systems. This also holds for the 128x128 point grid with the 32Kbyte cache
size and the 2 processor system. The IRs for the 2 processor system are independent
of the cache blocksize. This is a result of the principle of vertical shared blocks. With
values of 6.257 and 3.1257 for the 64x64 (32 and 64Kbytes) and 128x128

(64Kbytes only) point grids, respectively, the IR is relatively small for this system.

With the exception of the 128x128 point grid size for the 32-Kbyte cache the IR
decreases as the cache blocksize increases for the 4 processor system (see Figure
3.10b). As the blocksize increases, fewer blocks can be placed in the cache simul-
taneously, therefore facilitating a smaller number of invalidations. Observe that the
IR is not effected by the cache size for the 64x64 grid but it increases as the cache
size is doubled for the 128x128 point grid (128-byte blocksize excluded). This results
from the simple fact that the 64x64 point grid maps into unique cache block frames
for both cache sizes. This does not suffice for the 128x128 point grid size. In fact
more blocks map into the 64Kbyte cache permitting more shared blocks to be invali-
dated. The IR is constant for the 128x128 point grid and 32Kbyte cache as a result of
the principle of vertical shared blocks. These shared blocks are the only ones invali-

dated for this cache size.

54

7
“..? o . O a1
S 6
x
g
= 5 - o 64x64
5 -~ 128x128, 64K
E:
= 4 <
S
£

.- ———o- >
3 | § b | € L] | §
2 4 5 6 7 8
log .8
a. Two Processors
10

9
=1 8 7
*
2 o 64x64
[6 - -~ 128x128, 64K
s] o 128x128, 32K
5
b 4 1
-
£ . - O

2 T T T T T

2 3 4 5 6 7 8
log B
2

b. Four Processors

Figure 3.10 Invalidation Ratio versus Cache Blocksize, Square Decomposition,
Direct Mapping Policy, Two and Four Processors.

55

Figure 3.11 presents the IR versus the cache blocksize for 8 and 16 processors.
All other design configurations are identical to those of the previous figure. For these
processor configurations, the IR decreases as the blocksize increases with the excep-
tion of the 256x256 point grid size (both processors) and the 64x64 point grid with 16
processors and a 32Kbyte cache size. As a result of the principle of vertical shared
blocks the IR is constant for the 256x256 point grid size. The IR decreases as the
cache size is doubled for the 64x64 point grid size when using a 128-byte blocksize
and 16 processors. This is because each block is shared by two processors. A
significant number of invalidations occur as a result of this. While the INV-RWs are
deterministic, all other invalidations are random in nature for this grid size/ blocksize

attribute.

Figure 3.12 illustrates the IR versus the number of processors for direct mapping
and a square grid decomposition. It shows an increase in the IR as the number of pro-
cessors increase. While the parameter remains constant as the cache size increases for
the 64x64 point grid, it increases from 0.0 to 3.573 for the 128x128 point grid (2 pro-
cessors only) as the cache size is doubled. All IRs for direct mapping placement and
square domain decomposition are less than 0.4. The IR is 0.0 for grid sizes not shown
in this figure.

Figures 3.13 and 3.14 show the IR versus blocksize for 2-16 processors, direct
mapping and rectangular grid decomposition. These figures also indicate a decrease
in the IR as the blocksize increases. The 128x128 point grid for the 2 processor sys-
tem and the 256x256 grid for the 8 processor system both show nonzero IRs for the

64Kbyte cache although the parameter is zero for the 32Kbyte cache. This is because

Invalidation Ratlo, x10(-3)
o
1

i i1- 1~ a
0 L 1 J L |]
2 3 4 5 6 7
log B
2
a. Eight Processors
a0
e
S 30
*
)
E -
=
-]
3
g 10 - \'_
= - -
[5 o— i
0 | ¥ ¥ L L}
2 3 4 5 6 7
log B
g2

Figure 3.11 Invalidation Ratio versus Cache Blocksize, Square Decomposition,

b. Sixteen Processors

Direct Mapping Policy, Eight and Sixteen Processors.

-3 64x64
-~ 128x128
& 256x256

& 64x64, 64K
%~ 128x128
& 256x256
-~ 64x64, 32K

56

57

30
. 204
t?
-1
»
9
E - 64x64
c 1 -~ 128x128, 64K
% & 256x256, 64K
° - 128x128, 32K
]
E

10 -

0

0 5

log P
g2

Figure 3.12 Invalidation Ratio versus the Number of Processors, Square Decomposition,
Direct Mapping Policy, 32-byte Blocksize.

Invalldation Ratlo, x10(-3)

Invalldation Ratlo, x10(-3)

58

o 64x64
2+ - 128x128, 64K

log B
2

a. Two Processors

15

10 4

& 64x64
-~ 128x128

(4]
[

b. Four Processors

Figure 3.13 Invalidation Ratio versus Cache Blocksize, Rectangular
Decomposition. Direct Mappina, Two and Four Processors.

Invalidation Ratlo, x10(-3)

Invalldation Ratio, x10(-3)

30
20 +
@ 64x64
4 -~ 128x128
B 256x256, 64K
10 -
0
2
log B
2
a. Eight Processors
60
50 -
40 -
30 4 @ 64x64
] -~ 128x128
o 256
20 - 256x256
10 -
o L4
2

b. Sixteen Processors

Figure 3.14 Invalidation Ratio versus Cache Blocksize, Rectangular
Decomposition, Direct Mapping, Eight and Sixteen Processors.

59

60

the increase in cache size allows more shared blocks to be cached simultaneously,
allowing invalidations to occur. All other grid sizes show a IR independent of the
cache size. Also note that for smaller grid sizes, the rectangular IR is larger than the
square IR; however, the converse is true for larger grid sizes. The major cause of this
behavior is the principle of vertical shared blocks for the square decomposition stra-
tegy. Grid sizes not shown have a no invalidation ratio. Figure 3.15 presents the IR
versus the number of processors in the system for direct mapping and rectangular grid
decomposition. Again, the IR increases as the number of processors increase. All IR
values for direct mapping placement with rectangular domain decomposition are 0.05

or less.

Figures 3.16 through 3.18 illustrate the IR versus the blocksize for 4-16 proces-
sors, 2-way set-associative placement and square domain decomposition. All three
processor configurations show at least an order of magnitude decrease in the IR for
grid sizes larger than 128x128 points, a result of intragrid contention. The IR
decreases as the blocksize increases in all instances. In the 16 processor system, the
IR increases as the blocksize increases from 64 to 128 bytes. This is because all
blocks are shared by two processors causing more invalidations for this
blocksize/grid size feature. The IR versus blocksize for the 2 processor system is
identical to the IR for direct mapping placement as shown in Figure 3.13a. Figure
3.19 presents the IR versus the number of processors for 2-way set-associative place-

ment and the square decomposition strategy.

Figures 3.20 through 3.23 show the IR versus blocksize for 2-way set-

associative placement and the rectangular decomposition strategy for 2-16

Invalldation Ratlo, x10(-3)

61

15

10
O 64x64
-~ 128x128, 64K
W 256x256, 64K
- 128x128, 32K
& 256x256, 32K

5 -

1]

log , P

Figure 3.15 Invalidaticn Ratio versus the Number of Processors,
Direct Mapping, Rectangular Decomposition, 32-byte Blocksize.

Invalidation Ratlo, x10(-3)

Invalldation Ratlo, x10(-3)

10

log B
2

a. Smaller Grid Sizes

0.5

0.4

0.3

0.2 4

0.1

0.0

log B
2

b. Larger Grid Sizes

< 64x64
- 128x128, 64K
& 128x128, 32K

< 256x256
- 512x512

-

1024x1024

Figure 3.16 Invalication Ratio versus Cache Blocksize, Set-Associative
Mapping, Square Decomposition, Four Processors.

62

Invalidation Ratlo, x10(-3)

Invalldation Ratlo, x10(-3)

63

20
I 64x64
10 1 -~ 128x128, 64K
& 256x256, 64K
-~ 128x128, 32K
0 v 1 T v 1 | T T
2 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
1.0
0.8 4
0.6 -
o 512x512
-~ 1024x1024
0.4 - o 256x256, 32K
0.2
0.0
2 8
log B
2

b. Larger Grid Sizes

Figure 3.17 Invalidation Ratio versus Cache Blocksize, Set-Associative
Mapping, Square Decomposition, Eight Processors.

Invalldation Ratlo, x10{-3)

Invalidalton Ratlo, x10{-3)

40
30 -
. @ 64x64, 64K
- 128x128, 64K
20 1 o 256x256, 64K
d <= 64x64, 32K
::§=—*_. = 128x128, 32K
10 4
e e ——]
0 Y T T) T T
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
1.0
0.8 1
0.6 4
8 512x512
-~ 1024x1024
0.4 4 & 256x256, 32K
0.2 1
0.0 -
2 8
log B
2

b. Larger Grid Sizes

Figure 3.18 Invalid ition Ratio versus Cache Block.size, Set-Associative
Mapping, Square Decomposition, Sixteen Processors.

30
2 /
e
x m -
S € 64x64
& -~ 128x128, 64K
€ & 256x256, 64K
2 - 128x128, 32K
g 10+
g
£

0

0 5
log P
2
a. Smaller Grid Sizes

0.3
z
%
§ 0-2-
5 o 512512
=z 1 <~ 1024x1024
s 8 256x256, 32K
3 0.1
S
£

0.0 v M ¥ d ! v L] v

0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 3.19 Invalidation Ratio versus the Number of Processors, Set-Associative
Mapping, Square Decomposition, 32-byte Blocksize.

65

Invalldation Ratlo, x10(-3)

Invalidation Ratlo, x10(-3)

4
3 -
o 64x64
2- - 128x128
1 -
0
2 8
log B
2
a. Smaller Grid Sizes
0.4
0.3
o 256x256
0.0~ - 512x512
o 1024x1024
0.1 4
0.0 +—
2

b. Larger Grid Sizes

Figure 3.20 Invalidation Ratio versus Cache Bloc«size, Set-Associative
Mapping, Rectangular Decomposition, Two Processors.

66

Invalldation Ratlo, x10(-3)

Invalldation Ratlo, x10(-3)

15
10 4
2 64x64
@ 128x128, 64K
o 128x128, 32K
5 -
0
2
log B
2
a. Smaller Grid Sizes
1.0
0.8
064 o 256x256
-~ 512x512
0.4 - o 1024x1024
0.2 -
0.0 r v e — .
2 3 4 5 6 7 8
log B
2

b. Larger Grid Sizes

Figure 3.21 Invalidation Ratio versus Cache Blocksize, Set-Associative
Mapping, Rectangular Decomposition, Four Processors.

67

Invalidation Ratlo, x10(-3)

68

30
20-
= 64x64
-~ 128x128
10 -
° 1 | ¥ |
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
2
o
S
™
o
= 2 256x256
e 1 - -~ 512x512
5 & 1024x1024
k-
k-
S
£
0
2 8
log B
2

b. Larger Grid Sizes

Figure 3.22 Invalidation Ratio versus Cache Blocksize, Set-Associative
Mapping, Rectangular Decomposition, Eight Processors.

invalidation Ratlo, x10{-3)

Invalldation Ratlo, x10(-3)

69

60
50 -
40 -
N €= 64x64
30 + - 128x128
. o 256x256, 64K
20 -
10 -
0 . . - ‘
2 8
log B
2
a. Smaller Grid Sizes
4
3 -
o 512x512, 64K
-~ 1024x1024, 64K
24 o 256x256, 32K
< 512x512, 32K
= 1024x1204, 32K
1 -
)
2 8

b. Larger Grid Sizes

Figure 3.23 Invali.lation Ratio versus Cache Bloiksize, Set-Associative
Mapping, Rectangular Decomposition, Sixteen Processors.

70

processors. Again, this is an order of magnitude lower for grid sizes larger than
128x128 points. This IR also decreases as the blocksize increases. The rate of
decrease, however, is faster than that of the square domain decomposition. In fact, for
smaller blocksizes the rectangular IR is larger than the square IR. As the cache block-
size increases the converse becomes true, This is the result of the principle of vertical
shared blocks for the square domain decomposition. Figure 3.24 shows the IR versus

the number of processors for these design features.

3.2.3. Cross-interrogate Cast-out

For Jacobi’s iterative algorithm, the PDE grid is partitioned ir such a way that
no two processers will modify the same block. The exceptions are the modification of
the shared variable, by all processors, used to synchronize the algorithm and execut-
ing the algorithm on a 64x64 point grid using a 16 processor system with a 128-byte
blocksize. With these exceptions noted, there are no INV-RWs performed for this
algorithm. Consequently, the prXICO for this algorithm consists only of implicit

cast-outs (RW->ROs).

Figure 3.25 shows the prXICO versus the blocksize for a two processor system
with direct mapped caches and the square decomposition strategy. The value for the
64x64 point is constant at 6.2573, the result of a constant number of shared blocks
along the vertical border dividing the grid. Since all blocks for both grids map into
unique block frames for this gridsize, the parameter is independent of the cache sizes
considered. For the 128x128 point grid and the 64Kbyte cachesize the prXICO is a

low 2.475. In fact only one XICO is performed by one of the two processors for each

- 64x64

- 128x128, 64K
B 256x256, 64K
- 128x128, 32K

N
w
P -
(4]

a. Smaller Grid Sizes

- 512x512
-~ 1024x1024
8 256x256, 32K

15
$ -
-1
L] 10 +
g
k-

[
[-4
o

T 5 -
k-
S
=

o -

0

1.0
9 4
s 08
; -
2 06-
[+
3
s
= 0.4 -
3
]
£ 0.2 4

0.0

0

—

b. Larger Grid Sizes

Figure 3.24 Invalidation Ratio versus the Number of Processors, Set-Associative
Mapping, Rectangular Decomposition, 32-byte Blocksize.

71

prXico, x10(-3)

8
o o e
6 -
49 -
-~
2 -

0 T e cp—p——
2 3 4 5 6

log , B

Figure 3.25 prXICO versus Cache Bocksize, Direct Mapping,
Square Decomposition, Two Processors.

72

64x64
128x128

73

iteration as illustrated in Figure 3.26.

Part a of the figure shows how each shared block is tagged at the end of a
v¥*1 = y¥ jteration. All shared blocks mapped into the cache are RO copies of the U
grid except the lower right shared block of P0. Since the algorithm modifies each
point from left to right, top to bottom, this block was the last one modified by PO.
Therefore, a modified V block is mapped into the cache of PO as RW. Part b of the
figure illustrates the process taken by P1 to modify a grid point in block a of the U
grid during the next iteration. Observe that the western neighbor needed to modify

this grid point is located in the shared block of the V grid present RW in the cache of

PQ. Processor P1 therefore initiates a XICO, the only one performed for this iteration.

Figures 3.27 through 3.29 show the prXICO versus blocksize (4-16 processors,
respectively) for both cache sizes, square grid decomposition and all grid sizes simu-
lated for the direct mapping strategy. Figures 3.30 through 3.33 present the same
graphs for the rectangular grid decomposition. All figures indicate a decrease in the
prXICO as the block size increases for the 64x64 grid size. Larger grid sizes show the
prXICO between one and two orders of magnitude lower than the prXICO for the
64x64 point grid. This is attributed to the fact that for these larger grid sizes, only one
XICO is performed by at least one processor per iteration. In addition to the excep-
tions discussed earlier, the exception is the square decomposition of the 128x128
point grid. The decomposition is such that for the 4 processor system, when the cache
sizes doubles the number of XICOs double (from 1 two 2). At least one processor
performs 2 XICOs for the 8 and 16 processor systems for this decomposition strategy.

This is because more blocks map into the larger cache and one of them results in a

74

0
URo | ugp
0 1
PO URo | ugp Pl
0
VRw | ugp
a. end of v#*! = u* iteration
v 1
~RO | Vpo
0 1
PO YRo | vo P1
0
VRw < a

b. during the execution of the u %2 = y #*1 iteration,
P1 updates block a of u grid.

Figure 3.26 Example of an XICO.

prxiCo, x10(-3)

prxico, x10(-3)

10

0.10

1

0.08 +

0.06 4

0.04 +

75

@ 64x64

o 128x128, 64K
-~ 256x256

= 512x512

- 1024x1024
= 128x128, 32K

Figure 3.27 prXICO versus Cache Blocksize, Direct Mapping,

Square Decomposition, Four Processors.

PrXiCo, x10(-3)

prxiCo, x10(-3)

76

18
16 -
14 -
12 - o 64x64
10 -
8-
6 1 L) . |}) § 1
2 3 4 5 8 7 8
log B
2
0.2 == =
o 128x128
0.1 - -~ 256x256
. - 512x512
- 1042x1024
[o s - - .
o,o-__mw
2 3 4 5 6 7 8
log B
2

Figure 3.28 prXICO versus Cache Blocksize, Direct Mapping,
Square Decomposition, Eight Processors.

prXiCO, x10(-3)

PEXICO, x10(-3)

34 ~

w-
28 =

26 -

24

0.4

0.3 1

0.2 4

0.1 4

[

0.0

W -3

20 ¢

o -t

—-
——

6

b

77

= 64x64

0~ 128x128
- 256x256
& 512x512
-0- 1024x1024

Figure 3.29 prXICO versus Cache Blocksize, Direct Mapping,
Square Decomposition, Sixteen Processors.

pPrxiCs, x10(-3)

prXico, x10{-3)

4
3-
2-
1-
0 T] b]
2 3 4 : 5 6
092
0.03
L Sa——— (e}
0.02 +
0.01
S —— >
[e o
0.00 A p——————.
2 3 4 5 6
log

78

€ 64x64

- 128x128
-~ 256x256
-2 512x512
-~ 1024x1024

Figure 3.30 prXICO versus Cache Blocksize, Direct Mapping,

Rectangular Decomposition, Two Processors.

prxico, x10{-3)

PIXICO, x10(-3)

14
12 -
10

0.05 —mpr——py—p———————————
0.04
0.03 -
0.02 -
® - - - —e
0.01 o
] - o- o- o -
0.00 —tt
2 3 4 5 6 7 8
log B

79

<0~ 64x64

-

128x128
256x256
512x512
1024x1024

Figure 3.31 prXICO versus Cache Blocksize, Direct Mapping,

Rectangular Decomposition, Four Processors.

prxico, x10(-3)

prxiCo, x10(-3)

30
.
10 -
0 T r— T T 1
2 3 4 5 6 7 8

0.10 mpr——m———r——y——
0.08 1
0.06 1
0.04 4
- & o . g . o
0.02 -
) B- o o o "
0.00 ———— et
2 3 4 5 6 7 8
log B

80

<~ 64x64

2 128x128
-~ 256x256
¥ 512x512
-~ 1024x1024

Figure 3.32 prXICO versus Cache Blocksize, Direct Mapping,

Rectangular Decomposition, Eight Processors.

prXiCO, x10(-3)

prXico, x10(-3)

81

30 - o 64x64

0.2 —& F— T

o 128x128
0.1 - - 256x256
o 512x512
-0~ 1024x1024
9 [o L o . o = .
[- L g i3 I a
0.0 = R AT e
2 3 4 5 8 7 8

Figure 3.33 prXICO versus Cache Blocksize, Direct Mapping,
Rectangular Decomposition, Sixteen Processors.

82

XICO for a processor.

Figure 3.34 presents the prXICO versus the number of processors for direct
mapping, all grid sizes considered and both decomposition strategies. Part a shows
this parameter for the two partitions of the 64x54 point grid size. As the number of
processors increase, the prXICO increase. For this 32-byte blocksize, the square
decomposition has a higher prXICO than the rectangular decomposition. A closer
examination of the previous figures show the rectangular decomposition having a
higher prXICO for lower blocksizes. In fact, for the rectangular decomposition, dou-
bling the blocksize reduces the prXICO for the 64x64 point grid by one-half, This is
not the case for the square decomposition as a result of the constant number of prXI-
COs that occur in conjunction with the shared blocks along the vertical boundaries.
Therefore, as the blocksize doubles, the prXICO is reduced by less than one-half for

the square decomposition.

Figure 3.34 b and ¢ show an increase in the prXICO as the number of processors
increases for the larger grid sizes. Also note the decrease in the prXICO as the grid
size increases. This is a direct result of a higher frequency of intergrid and intragrid
contentions for the larger grid sizes. Unlike the square decomposition strategy, at
most only 1 XICO is performed on the 128x128 point grid per processor for the rec-
tangular decomposition strategy. the prXICO for this grid size/partition feature is
therefore half the value for the square partition. For grid sizes larger than 128x128

points the prXICO is independent of domain decomposition strategies.

83

prxico, x10(-3)

20 -
J <= 64x64, Sqre
- 64x64, Rec.
: //
4

0.4

0.3+

- 128x128, Sqre

0.2+ - 256x256
. { & 128x128, Rec.
0.14

0.0 Y v T T ¥ T
2

prxico, x10(-3)

0.014

0.012 -
0.010 4
0.008 -

< @ 512x512
0.006 - -~ 1024x1024

prxico, x10(-3)

0.004 -

0.002 + /
4

-0.000 —

W

log 2P

Figure 3.34 prXICO versus the Number of Pracessors, Direct Mapping, 32-byte Blocks.

84

Figures 3.35 through 3.37 illustrate the prXICO versus blocksize for the square
decomposition of all grid sizes with 2-way set-associative mapping for 4-16 proces-
sors. All graphs show a decrease in the prXICO as the blocksize increases. Also, the
prXICO for grid sizes larger than 128x128 points is substantially lower than the
smaller grid sizes; however, the differences are not as large as the direct mapping
differences. This is because two blocks may map into the same cache set address. The
prXICO for the 64x64 point grid for the 128-byte block and 16 processor system is
0.16 for both cache sizes. This value is an order of magnitude larger than the value
for smaller blocksizes for this grid. This results from the fact that two processors
modify each block for this grid, causing numerous INV-RWs. The prXICO for the 2
processor system is 6.257> for the 64x64 point grid with set-associative mapping and
square decomposition (all block sizes). Grid sizes larger than 64x64 points have no

prXICO for this 2 processor system.

The prXICO versus the number of processors for a 32-byte block set-associative
cache with a square partition of the grid is shown in Figure 3.38. For grid sizes
smaller than 256x256 points, the value increases as the number of processors
increase. The 64Kbyte cache value for the 128x128 point grid is larger than the
smaller cache size for 4 or more processors because more blocks having the potential

to be the object of a prXICO are present in the cache.

For grid sizes greater than or equal to 256x256 points the prXICO increases as
the number of processors increase for 2 to 8 processors. The parameter value then
remains constant as the number of processors increase from 8 to 16. This is because

both processor configurations allocate a total of four processors to one column of the

PrXICO, x10(-3)

prxtCo, x106(-3)

85

10

|
8-
6-

J <@ 64x64

- 128x128, 64K

4 = & 128x128, 32K
2_
0 L . E—————

2 3 4 5 6 7 8

log B
2
a. Smaller Grid Sizes
0.8
0.6 -
0.4 - B 256x256
) - 512x512
& 1024x1024

0.2+
0.0

2 8

log B
2

b. Larger Grid Sizes

Figure 3.35 prXICO versus Cache Blocksize, Set-Associative
Mapping, Square Decomposition, Four Processors.

prxico, x10(-3)

prXico, x10(-3)

20
10 4 <~ 64x64
-~ 128x128
0] 5 o L} 1) |]
2 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
2
1 4 i 256x256
-2 512x512
& 1024x1024
0 v v y—]
2 8
log B
2

b. Larger Grid Sizes

Figure 3.36 prXICO versus Cache Blocksize, Set-Associative
Mapping, Syuare Decomposition, Eight Processors.

86

prxico, x10(-3)

prXiCO, x10(-3)

87

40
30 -
©- B64x64
- 128x128
20 -
10)] | | |) v |] hd
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
2
- 256x256
14 - 512x512
¥ 1024x1024
0 T
2 8
log B
2

b. Larger Grid Sizes

Figure 3.37 prXICO versus Cache Blocksize, Set-Associative
Mapping, Square Decomposition, Sixteen Processors.

prxico, x10(-3)

PIXICO, x10(-3)

30
20 -
O 64x64
-~ 128x128,32K
- 128x128,64K
10 -
0 v y v T v '
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
0.4
0.3
I 256x256
0.2+ - 512x512
-8 1024x1024
0.1 4
0.0
0 5

b. Larger Grid Sizes

Figure 3.38 prXICO versus the Number of Processors, Set-Associative
Mapping, Square Decomposition, 32-byte Blocksize.

88

89

PDE grid. The set-associative mapping structure essentially divides the sub-grid of
each processor into four sections, enabling the same type of intragrid contention for
both processor systems. The mapping structure and the decomposition strategy allows
twice as many XICOs for the 8 processor system; however, the total number of refer-

ences are double the number for the 16 processor system.

Figures 3.39 through 3.42 show the prXICO versus blocksize and PDE grid size
for set-associative mapping and rectangular decomposition of the grid for 2-16 pro-
cessors. For all processors, the value decreases as the blocksize increases. Also note
the rate of decrease is faster for this partition than for the square decomposition. The
prXICO increases as the number of processors increase for a given blocksize as
shown in Figure 3.43. The 64kbyte cache value for the 128x128 point grid (4 proces-
sors) is slightly larger than the 32Kbyte cache value. This is also true for the 256x256
point grid using 8 and 16 processor systems. While the number of blocks that can be
placed in the cache increases with an increase in the cache size, the mapping strategy
is such that the prXICO is effected only by these 128x128 and 256x256 point grid

sizes.

As outlined earlier, both EX->ROs and RO->EXs are known as XICSs. RO-
>EX only occur as a result of directly replacing a RO block. EX->ROs occur only as
a result of indirect block replacement. This latter fact is counterintuitive. Consider a
grid small enough so that all blocks of both U and V copies can be placed in the

cache simultaneously, i.e. the 64x64 point grid size. Under steady state execution

prXiCo, x10{(-3)

prXiCo, x10(-3)

90

1-

2

0.8

8- 64x64
-~ 128x128
T T T T Y T v 1 v L] v
3 4 6 7

5 8
log B
2
a. Smaller Grid Sizes

0.6 +

0.4 4

0.2 4

0.0

2

o 256x256
-+ 512x512
\ o 1024x1024
————r—— el
3 4 5 6 7

8

log B
2

a. Larger Grid Sizes

Figure 3.33 prXICO versus Cache Blocksize, Set-Associative
Mapping, Rectangular Decomposition, Two Processors.

PrXICO, x10(-3}

prXICO, x10(-3)

91

15
10 -
- = 64x64
-~ 128x128
5-
0 T [- v
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
2
. o 256x256
14 - 512x512
8- 1024x1024
\
0 : ————l |
2 4 5 6 7 8
log B

b. Larger Grid Sizes

Figure 3.40 prXICO versus Cache Blocks ze, Set-Associative
Mapping, Rectangular Decomposition, Four Processors.

prxiCo, x10(-3)

prxiCo, x10(-3)

92

30
20-
d = 64x64
- 128x128
10 +
0 B e e e
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
4
3-
O 256x256
2 - - 512x512
] = 1024x1024
;4 \\
2 3 4 5 6 7 8
log B
2

b. Larger Grid Sizes

Figure 3.41 prXICO versus Cache Blocksize, Set-Associative
Mapping, Rectangular Decomposition, Eight Processors.

prxico, x16(-3)

prXiCo, x10(-3)

93

60
50 -
40 -
. O 64x64
30 - 128x128
] & 256x256, 64K
-~ 256x256, 32K
20
10 -
0
2
a. Smaller Grid Sizes
4
3 -
€ 1024x1024
2+ -« 512x512
1 -
0 v T v T v T v T
2 3 4 5 6 7 8
log B
2

b. Larger Grid Sizes

Figure 3.42 prXICO versus Cache Blocksize, Set-Associative
Mapping, Rectangular Decomposition, Sixteen Processors.

prXiCo, x10(-3)

prxico, x10(-3)

94

15
1 -
0 - 64x64
- 128x128,32K
& 128x128,64K
-~ 256x256,32K
5+ & 256x256,64K
0 - S B S E—
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
0.8 —
0.6 -
0.4 o 512x512
: ~= 1024x1204
0.2 -
0.0 E . . S— —
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 3.43 prXICO versus the Number of Processors, Set-Associative
Mapping, Rectangular Decomposition, 32-byte Blocksize.

95

conditions (or a warm start cache) all blocks for both grids are tagged either RO or
RW. In fact, for jacobi’s algorithm, a block is tagged as EX only during the transient
cold start program execution, when a remote processor executes a RO-EX on the
block or when a processor attempts to read a block that has been replaced and is not
present in any remote cache. Since the simulations assumes a warm start cache, only
block replacements cause XICSs. Therefore, if all blocks map into unique cache

block frames, the prXICS is zero. For the 64x64 point grid size this is in fact true.

The prXICS versus the cache blocksize is shown in Figure 3.44 for 2-16 proces-
sors, direct mapping and square decomposition of the PDE grid. This figure shows an
increase in the prXICS as the blocksize increases. An explanation for this behavior is
illustrated in Figure 3.45. This figure assumes a 4x8 point grid size and a 2-point
blocksize. During the execution of the U=V iteration, the modification of two of the
points composing the right-most block allocated to PO is shown. The figure also illus-
trates how the right-most blocks of PO and the left-most blocks of P1 are shared. The
accesses resulting in XICSs when modifying the right-most block of the second row
of the sub-grid assigned to PO are itemized chronologically. In the following discus-
sion, use of the terms access or modify the V or U blocks is interpreted to mean to
access or modify the PDE grid point located in the V or U block, respectively. Also,

€0 and C1 means the private cache of PO and P1, respectively.

The first XICS occurs when the V block directly north of the point to be updated
is accessed. The block presently mapped into the cache frame this V block maps to is
the geometrically equivalent U block. This U block was mapped into the cache as a

result of a previous modification of grid point a. Since only one block can map to this

300

200 4

prxics, x10(-3)

log B

a. Two, Four and Eight Processors

prXICS, x10(-3)

b. Sixteen Processors

teéu

tH¢o

96

128x128
256x2E5
512x512
1024x1024

128x128
256x256
512x512
1024x1024

Figure 3.44 prXICS versus Cache Blocksize, Direct M apping, Square Decompasition.

97

s
shared
/N/—_\
a . -
during execution of
g 3 the U=V iteration
e
po 2 > P

\j\\/
us
shared

processor PO performs the following XICSs in the cache of P1.

1. EX->RO

2. Modification of
block results
in RO->EX

3. EX->RO

4. EX->RO

5. Modification of
block results
in RO->EX

Figure 3.45 XICSs on a Direct Mapped Cache using a Square Grid Decomposition.

frame at a time (direct mapping) the V block replaces the U block. Since this same V
block is already present as EX in C1, PO executes a EX->RO in C1. The second XICS

occurs when the first point in U of the block considered is updated in CO. The U

98

block replaces the V block already present as RO in CO. Since this V block is shared
with C1, PO executes a RO->EX in C1 as V is replaced in CO. The U block is then
placed in CO and modified. The next XICS occurs as the V grid point directly east of
the second U grid point to be modified is read by PO. This grid point is located in the
second row of the left-most V block of C1. This V block is already present as EX in

C1. PO therefore executes a EX->RO in C1 as the block is placed in COQ.

Another XICS occurs as the V grid point west of the U grid point to be modified
is read. This V grid will replace the U grid present CO as a result of the last modified
U point. Since this V is already present as EX in C1, PO executes a EX->RO in C1 as
the V grid is placed in CO0. The final XICS resulting from modifying the block studied
here, occurs when the last U grid point is modified. The U block replaces the
geometrically equivalent V block already present RO in CO. Replacing this block
results in PO executing a RO->EX on the same V block in Cl. The example
presented here shows that the number of XICSs is directly related to the blocksize. In
fact as the blocksize increases, the number of XICSs also increases. This explains the
behavior for all the processors as illustrated in Figure 3.44. This figure shows a slight
increase in the prXICO for the 16 processor system. This is because the square
decomposition of the grid for this processor configuration results in the sharing of

blocks in both the left-most and right-most column of some sub-grids.

Figure 3.46 shows the prXICS versus the number of processors for direct map-
ping and square grid decomposition. The 128x128 point grid shows slight increases
as the number of processors increase from 2 to 8. A relatively dramatic increase is

illustrated as the processor configuration increases to 16. All other grid sizes show a

prxiCs, x10(-3)

120
.
N
| 128x128
60 256x256

512x512
1 1024x1024
40 -
1 e /
1 d | - I

teén

——

A
v

117

0 1 2 3 4 5

logo P

Figure 3.46 prXICS versus the Number of Processors, Direct Mapping,
Square Decomposition, 32Kbyte and 64Kbyte Cache Sizes.

99

100

constant probability as the number of processors increase from 2 to 8 and a somewhat
dramatic increase for the 16 processor system. The explanation for the 16 processor
increase is given above. The 2 to 8 processor increase is the result of the fact that the
128x128 point grid is so small that intragrid contention does not effect the XICSs for
the shared blocks along the horizontal sub-grid borders (this will be explained in

detail below).

Figure 3.47 illustrates the prXICS versus the cache blocksize with direct map-
ping for the rectangular grid decomposition. This figure shows a decrease in this
parameter as the blocksize increases, a direct contrast to the square partition. Also
note the smaller values for this decomposition and generally the smaller grid sizes
shown. The reasons for these drastic differences are illustrated in Figure 3.48. This
figure assumes a 2 processor configuration, a- 128x128 point grid size, a 2-point
blocksize (a grid point is assumed to be 4 bytes) and a 32Kbyte cache. With these
assumptions, the grid is divided so that the blocks composing the first row of the
sub-grid allocated to PO and the first row of the sub-grid allocated to P1 map to the
same cache block frame as shown in the figure. This is also true for the blocks com-
posing the last row of PO and P1. At the end of a V=U iteration, the blocks compos-
ing the first row of P1 are the only ones shared by CO and C1. Intragrid contention

prevents the sharing of the blocks composing the last row of PO.

During the execution of the U=V iteration, the first XICS occurs when either PO
or P1 (the trace generator randomly chooses one of these references first) reads the V
grid point at the head of arrow 1 shown in the figure. If PO is chosen first, then the V

block referenced replaces the shared U block in CO. P§ iherefore executes a RO-EX

prxics, x10(-3)

prxiCs, x10(-3)

101

80
60-
¥ 128, 2P, 32K
- 128,4P
40 o 128, 8P
-~ 128, 16P
= 128, 2P, 64K
20 - \._.
0 iyt
2 3 4 5 6 7 8
log B
2
a. Smaller Grid Sizes
40
30-
& 256, 8P, 32K
-~ 258, 16P
20 4 & 256, 4P, 64K
-8~ 256, 8P, 64K
- 512, 16P, 64K
10 4
0 :h':h!_%w——.
2 3 4 5 6 7 8
log B
2

b. Larger Grid Sizes

Figure 3.47 prXICS versus Cache Blocksize, Direct Mapping,
Rectangular Decomposition, All Processor Configurations.

102

—

E— PO map to same
cache block frame

2T1

shared U blocks at —
the completion V=U
P1 map to same

cache block frame

A -

some XICSs performed during the U=V iteration

1. PO or P1 executes a RO-EX on C1 or CO respectively
2. PO executes a EX->RO on C1 if P1 does not reference the block indicated first
3. PO executes a EX->ROon C1

Figure 3.48 XICSs on a Direct Mapped Cache, Rectangular Decomposition.

in C1. Likewise, P1 performs a RO-EX in CO if chosen first. This behavior occurs
every time a V grid point in a new block along the first row of each sub-grid is read
by PO or P1. Another XICS may occur when PO references a V grid point as shown in
2 of the figure. This V grid point is already present as EX in C1. Therefore, if the ran-
domizer chooses the PO reference before the corresponding P1 reference (for each
new V block reference along the last row of each sub-grid), this processor will exe-
cute a EX->RO in Cl. Finally, other XICSs occur when PO reads the V grid points
shown in 3 of the figure. Since these grid points are already present as EX in C1, PO

performs a EX->RO in C1 each time a new V block along this row is referenced.

103

All of these XICSs are directly related to the cache blocksize. Since these XICSs
occur only during the first reference to a block, this explains the decrease in the
parameter value as the blocksize increases. Also, for this partition, modifying blocks
do not cause any XICSs. This partition, therefore, significantly reduces the values of
the prXICS relative to the square partition. Figure 3.47 shows an increase in the
prXICS as the cachesize increases from 32Kbytes to 64Kbytes for 2 processors and
the 128x128 point grid size. This is because the increased cachesize allows the blocks
composing the last row of PO (Figure 3.48) to be shared causing an increase in the
number of XICSs per iteration. As the grid size increases intragrid contention limits
the number of shared blocks between processors. This in turn reduces the prXICS.

For grid sizes not shown in the figure the prXICS is zero.

Figure 3.49 presents the prXICS versus the number of processors for direct map-
ping on a rectangular grid decomposition. The figure shows a general increase in this
value as the number of processors increase. For 8 or fewer processors, this value is
negligible for the 256x256 (32Kbyte cache) and 512x512 (64Kbyte cache) point grid
sizes. This also holds for the 128x128 point grid with a 32Kbyte cache and a 2 pro-
cessor system. The 16 processor system with a 64Kbyte cachesize is the only
configuration where the 512x512 point grid has XICSs. This is because the decompo-

sition strategy and the mapping function are such that shared blocks occur.

Figure 3.50 shows the prXICS versus blocksize for the set-associative mapping
function, the square decomposition strategy, and 2 (a) and 4 (b) processors. Part a of
this figure shows a constant value for each grid size. This is because the XICSs

caused by replacing blocks as a result of intergrid contention (see Figure 3.45) is

pPrXiCs, x10(-3)

10 -

2 128, 32K
- 256, 32K
o 128, 64K
- 256, 64K
512, 64K

Figure 3.49 prXICS versus the Number of Processors,

Direct Mapping, Rectangular Decomposition.

104

prXicCs, x10(-3)

prxics, x10(-3)

7
6-: [S— o o a
5-
4-
3_' - * > > *
2-

] O— o- o—
11 ® - S
o S ¥ o |] L |] ¥

2 3 4 5 6 7

log B
2

a. Two Processors

8 \\M
6
4 - B
2~ .\.* ° —— .
o L] |} b) * 4 [T
2 3 4 5 6 7
|°923

b. Four Processors

128x128
256x256
512x512
1024x1024

tedd

- 128x128, 32K
- 128x128, 64K
& 256x256

-~ 512x512

& 1024x1024

Figure 3.50 prXICS versus Cache Blocksize, Set-Associative
Mapping, Square Decomposition, Two and Four Processors.

105

106

eliminated by the 2-way set-associative mapping function. The 2 processor system,
therefore, results in a constant number of XICSs for each blocksize as a result of the
constant number of blocks adjacent to the vertical sub-grid border. The 4 processor
system shows a decreas‘e in the prXICS as the blocksize increases. This is because the
shared blocks along the horizontal sub-grid border result in a decrease in the number

of XICSs as the blocksize increases as explained above.

Figure 3.51 shows this same prXICS for 8 (a) and 16 (b) processors. Again, the
value decreases as the blocksize increases. The 128x128 point grid size (32Kbyte
cache only) shows as comparatively significant decrease in the prXICS as the block-
size increases. This results from considerable sharing between shared blocks along
the horizontal sub-grid. This sharing occurs as a result of the reduction in the
intragrid contention for this grid size. The prXICS is zero for the 128x128 point grid
and a 64Kbyte cache because all blocks map into unique cache block frames resulting

in no block replacement.

Figure 3.52 shows the prXICS versus the number of processors for set-
associative mapping and the square grid decomposition. For grid sizes larger than
128x128 points the prXICS remains constant for 2-8 processors and then increases
considerably for 16 processors. This behavior is identical to the demand fetching
curvers for this parameter. The reason is also the same, i.e., the 16 processor system
has two sets of shared blocks along the vertical sub-grid borders (for inner proces-
sors). This results in an increase in the number of XICSs per processor. The 128x128
point grid size prXICS decreases for 8 and 16 processors (32Kbyte cache size) and

for 4-16 processor systems (64Kbyte cache). This is because more shared blocks

107

20
2
] & 128x128, 32K
4] o 512x512
- -0~ 1024x1024
[- %
-y <
0 v] v L M 1 T | §
2 3 4 5 6 7 8
log B ‘
2
a. Eight Processors
20
9
g o 128x128, 32K
! -~ 256x256
g 10+ o« 512x512
X - 1024x1024
Q.
0 —s
] § v 1 v ¥ v]
2 3 4 5 6 7 8
log B
2

b. Sixteen Processors

Figure 3.51 prXIC3 versus Cache Blocksize, Set-Associative Mapping,
Square Decomposition, Eight and Sixteen Processors.

prxics, x10(-3

108

20

- 128x128, 32K

10 - - 128x128, 64K
& 256x256
% 512x512
& 1024x1024

0
0 5

Figure 3.52 prXICS versus the Number of Processors,
Set-Associative Mapping, Square Decomposition.

109

from the horizontal sub-grid borders can be mapped into the cache. This may cause
an increase in the number of XICS, but eventually a point is reach where the number
of replaced blocks decrease causing a decrease in the number of XICSs. Figure 3.52

shows this behavior for the 128x128 point grid (both cache sizes).

Figure 3.53 illustrates the prXICS versus the blocksize for set-associative map-
ping, the rectangular decomposition strategy and 2 and 4 processors. Once again, this
rectangular partition is significantly lower than its square decomposition counterpart.
Also, the value decreases as the blocksize increases. Figure 3.54 presents this same
parameter for 8 (a) and 16 (b) processors. Figure 3.55 shows the prXICS versus the
number of processors for the rectangular grid decomposition and set-associative map-
ping. All grid sizes larger than 128x128 show an increase in the prXICS as the
number of processors increase. The size of the 128x128 grid for the various processor
configurations is such that more shared blocks are present in the caches allowing
more XICSs or no blocks are replaced (or all shared blocks are present) allowing no

XICSs.

3.2.5. Prefetching Strategies

This section presents the MRs and XIs for the prefetch-on-miss and tagged pre-
fetching strategies for Jacobi’s algorithm. Additionally, the lookup ratios (LRs) and
the prefetch ratios (PRs) are presented for all cache features, PDE grid sizes and
decomposition strategies considered. For comparison, the demand fetch parameters

are also presented.

prxics, x10(-3)
1

110

- 128x128
-~ 256x256
& 512x512
-~ 1024x1024

20

10 4

prxics, x10{-3)

& 128x128, 32K

v e . r
3 4 5 6 7 8
log B
9 2
b. Four Processors

prXiCS, x10(-3)
[]

B 256x256
- 512x512
o 1024x1024

c. Four Procesors

Figure 3.53 prXICS versus Cache Blocksize, Set-Associative Mapping,
Rectangular Decomposition, Two and Four Processors.

20
Q?
g @ 256x256, 32K
ot 10 - -~ 256x256, 64K
3 o 512x512
X - 1024x1024
[-%

0 v M

2 3 4 5 6 7 8
log B
2
a. Eight Processors

30
2
g 207
] @ 256x256, 32K
8 - 512x512
= - 1024x1024
2 10 -

0 — m,

b. Sixteen Processors

Figure 3.54 prXIC35 versus Cache Blocksize, Set-Associative Mapping,
Rectangular Decomposition, Eight and Sixteen Processors.

111

112

9 @ 128x128, 32K
g - 128x128, 64K
= & 256x256, 32K
] - 256x256, 64K
X & 512x512

o o 1024x1024

logzP -

Figure 3.55 prXICS versus the Number of Processors, Set-Associative
Mapping, Rectangular Decomposition, 32-byte Blocksize.

113

Figure 3.56 shows the MR versus the number of processors for demand fetching,
prefetch-on-miss and tagged prefetching, the 64x64 point grid size and both partitions
and placement algorithms. There is essentially no difference between the prefetch
strategy MRs for 2 and 4 processors when using the square partition. For the 8 pro-
cessor system, while the three MRs range from 0.006 to 0.009, demand fetching has
the highest MR, followed by prefetch-on-miss and lastly, tagged prefetching. As the
number of processors increase to 16, the tagged prefetching and prefetch-on-miss

strategies are identical, with the demand fetching policy slightly higher.

While the tagged prefetching prefetch-on-miss policies exhibit slightly smaller
MRs than demand fetching for larger processor configurations, the overhead penalty
incurred as a result of using prefetching makes these strategies prohibitive for the
square partition. Part b of this figure illustrates the prefetching MRs for the rectangu-
lar decomposition strategy. Here the prefetch-on-miss MR reduces the demand fetch
MR by roughly one-half. Also, the tagged prefetching MR reduces the prefetch-on-
miss MR by one-half and therefore the demand fetch MR by one-fourth. Note all

MRs for this partition are significantly lower than the square partition MRs.

Figures 3.57 and 3.58 present the prefetching MRs versus the number of proces-
sors for grid sizes larger than 64x64 points and the square and rectangular decompo-
sition strategies, respectively. The direct mapping placement strategy is used in both
instances. These figures show that the intergrid contention is such that the prefetch-
on-miss and tagged prefetching strategies increase the MR relative to demand fetch-
ing for all grid sizes shown. The prefetch-on-miss strategy has the worst perfor-

mance, with a MR of approximately 0.46 for all grid sizes, followed by the tagged

MISS RATIO, x10(-3)

MISS RATIO, x10(-3)

114

30
20 -
J <@ prefetch-on-mis
-~ tagged-prefeich
-3 demand feich
10 +
0 S B U -
0 1 2 3 4 5
log P '
2
a. Square Decomposition
15
10 4
<3 prefetch-on-mis
-~ tagged-prefetch
. < demand fetch
0 v
0 5
log P
2

b. Rectangular Decomposition

Figure 3.56 Miss Ratio versus the Number of Processors, All Fetching
Strategies, 64x64 Point Grid Size, 32-byte Blocksize.

MISS RATIO

MISS RATIO

0.47
0.46 - & = =
0.45 - - » /
0.44 -
0.43 - Fﬂ’—é:
0.42 T T Y T v T v
0 1 2 3 4
log P '
2
a. Smaller Grid Sizes
0.47
0.46 -
0.45 - -— = e
0.44 +
0.43 E
0.42 T Y T T T Y
0 1 2 3 4
log P
2

b. Larger Grid Sizes

<@ pom, 128x128
o= ipf, 128x128
& df, 128x128
= pom, 256x256
% tpf, 256x256
<= df, 256x256

<% pom, 512
- {pf, 512
= df 512
-6~ pom, 1024
= fpf, 1024
- df 1024

Figure 3.57 Miss Ratio versus the Number of Pr cessors, Direct Mapping,
All Fetching Stratesjies, Square Decomposition, 32-byte Blocksize.

115

MISS RATIO

MISS RATIO

0.47
0.46 & e
| = pom, 128
0.45 4 | ————— ———__ - ipf, 128
4 = df, 128
-~ pom, 256
0.44 4 = ftpf, 256
: - df, 256
0.43 1 ﬁ
0.42]
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
0.47
» — ey a
0.46
& pom, 512
0.45 — » —i a - ipf, 512
& df, 512
- -~ pom, 1024
0.44 = tpf, 1024
O df, 1024
0.43 -
u—-—u-—-M .
0.42 ¥ H 4 H ¥ . M] *
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 3.58 Miss Ratio versus the Number of Processors, Direct Mapping, All
Fetching Strategies, Rectangular Decomposition, 32-byte Blocksize.

116

117

prefetching strategy with a MR of 0.45. Comparatively, the demand fetching policy

has a MR of roughly 0.425 for all grid sizes considered.

All of the blocks prefetched using the prefetch-on-miss strategy are eventually
referenced; however, many blocks are referenced before these prefetched blocks. The
prefetched blocks displace these referenced blocks causing additional contention and
therefore increasing the MR. While the tagged prefetching strategy prefetches more
blocks than prefetch-on-miss, these additional prefetched blocks serve to reduce the
contention caused by prefetch-on-miss. This in turn reduces the overall MR of the

algorithm.

Figures 3.59 and 3.60 show the same prefetching MRs for the 2-way set-
associative mapping function. Here we see the demand fetching policy with the
highest MR followed by the prefetch-on-miss strategy, and the tagged prefetching
policy displaying the best performance. This is because the set-associative mapping
function significantly reduces intergrid contention. This also explains the reduction in
the MRs for this mapping function relative to direct mapping. Also note the reduction
in the MR as the number of processors increase (16 processor system excluded) for
the 128x128 point grid (both partitions) and the 256x256 point grid (rectangular par-
tition only). This results from the presence of a MRD for these grids (see section

3.2.1).

Figure 3.61 shows the IR versus the number of processors for demand fetching
and both prefetching strategies, the 64x64 point grid size and both decomposition

strategies. The prefetch-on-miss and tagged prefetching IRs are relatively equal

118

60
50 -
$ -
§ 40 - <+ pom, 128, 32K
x 4 -~ pom, 128, 64K
o o ipf, 128, 32K
30 1 ’)
E - ipf, 128, 64K
¢nn: - df, 128, 32K
] 20 ~ o df, 128, 64K
= L
10 o
0 € | v] hd T L
0 1 2 3 4 5
log P .
2
a. Smaller Grid Sizes
60
50 l==l—é;
5) <@ pom, 256
= 40 - - {pf, 256
= = df, 256
o | ~- pom, 512
£ 30 - _/_,2_ = tpf, 512
= - - ——————"=—— o df 512
a 20 4 ~ pom, 1024
= ; -4 tpf, 1024
10 4 _ = df 1024
; ® - o/
[. ——— !4: .
0 1 2 3 4 5
log P

2
b. Larger Grid Sizes

Figure 3.59 Miss Ratio versus the Number of Processors, All Fetching Strategies,
Set-Associative Mapping, Square Decomposition, 32-byte Blocksize.

MISS RATIO, x10(-3)
8

20 4
10 -
0 v
0 1 2 3 4
log P
2
a. 128x128 Point Grid Size
60
50.‘ -— -~ _./.
‘l -
° -
T 40.
o
= 30 +
< 4 -
o 20 -
7 .
= 10 4
] pme ey Ry v v
(4] 1 2 3 4 5
log P
2
b. 256x256 Point Grid Size
60
- 50 = W?“_—d;
l‘? o
S 40 =
% .
S 30-
& . - a— o g
8 207
E -
10 A
0 e ey
0 1 2 3 4 5
log P
2

¢. 512x512 and 1024x1024 Point Grid Sizes

bbote Ghebes

A RE R

119

pom, 128, 32K
pom, 128, 64K
tpf, 128, 32K
tpt, 128, 64K
df, 128, 32K
df, 128, 64K

pom, 256,32K
pom, 256, 64K
tpf, 256,32K
tpf, 256, 64K
df, 256

pom, 512
tpf, 512

df, 512
pom, 1024
tpf, 1024
df, 1024

Figuure 3.60 Miss Ratio versus the Number of Processors, All Fetching Strategies
Set-Associative Mapping, Rectangular Decomposition, 32-byte Blocksize.

Invaildation Ratlo, x10(-3)

120

50

40 -

30

20 -

10

<~ df, pom, rec.
tpf, rec.
pom, square
tpf, square
df, square

L XA N

= -

log, P

Figure 3.61 Invalidation Ratio versus the Number of Processors, All
Fetching Strate¢ies, 64x64 Point Grid Size, 32 byte Blocksize.

121

when compared with the smaller IR of the demand fetching policy (square decompo-
sition only). Although there are slight differences between the prefetching MRs for
the square decomposition of this grid size, the significant differences between the
demand fetching IR and the IRs of the prefetching strategies results from the fact that
the additional invalidations are caused by the prefetched blocks. For the rectangular
partition, the prefetched blocks do not cause the additional invalidations as shown in

the figure. In all instances, the IR increases as the number of processors increase.

Figure 3.62 illustrates the IR versus the number of processors for all prefetching
strategies, all grid sizes greater than 64x64 points, direct mapping and the square
decompositions. For the 128x128 point grid size, the prefetch-on-miss strategy
possesses the highest IR. The tagged prefetching strategy is relatively equal to the
demand fetch policy for this parameter. For the 2 processor system, demand fetching
and prefetch-on-miss show an increase in the IR as the cache size increases. This
results from the elimination of intragrid contention for this grid size. When using
tagged prefetching, this intragrid contention elimination does effect the IR for one of
the two processors. However, as the cache size is doubled, the processor effected
increases its IR from 0.0 to a level equal to the 32Kbyte cache IR for the other pro-
cessor. Therefore, the IR appears unchanged as the cache size increases for a 2 pro-
cessor system. Figure 3.62 also illustrates an increase in the IR for the prefetching
policies relative to demand fetching. The exception is the 8 and 16 processor systems

of the 256x256 point grid size.

Figure 3.63 illustrates this same arrangement for the rectangular partition.

Intragrid contention eliminates the IR for grid sizes larger than 256x256 points. For

st

INVALIDATION RATIO, x10(-3)

INVALIDATION RATIO, 10(-3)

122

20
< pom, 128, 32K
- pom, 128, 64K
10 - ipf, 128, 32K
== tpf, 128, 64K
% df, 128, 32K
O df, 128, 64K
0
0 5
log P
2
a. 128x128 Point Grid Size
4
3 -
¥ pom, tpf, 256
2 -~ df, 256
= pom,tpf, 512
-~ pom, tpf, 1024
1 L
0
0] 5

b. Larger Grid Sizes

Figure 3.62 Invalidation Ratio versus the Number of Processors, All Fetching
Strategies, Square Decomposition, Direct Mapping 32-byte Blocksize.

invalldatlon Ratlo, x10(-3)

4
3-
< ipf,df,128,64K
2 - - 128, all others
= all pf, 256, 32
-0~ all pf, 256, 64
1 -
0 v
0 5

log P

Figure 3.63 Invalidation Ratio versus the Number of Processors, All Fetching
Strategies, Rectangular Decomposition, Direct Mapping, 32-byte Blocksize.

123

124

128x128 and 256x256 point grid sizes, the prefetching strategies have no effect on
the IR. Both strategies use the one-block-lookahead implementation and for this par-
tition, most adjacent blocks are allocated to the same processor. This is not the case

for the square decomposition, resulting in an increased IR for this partition.

Figure 3.64 presents the IR versus the number of processors for square decom-
position, set-associative mapping and all prefetching strategies. For processor
configurations larger than 2 and the 128x128 point grid size, there is an increase in
the IR for the prefetching strategies. For the 2 processor system this also holds for the
64Kbyte cache size. The 32Kbyte cache size shows no IR for the prefetching stra-
tegies while demand fetching has a very small IR. The grid sizes larger than 128x128
points show significantly smaller IRs. The cache size appears to be the dominant fac-
tor in determining the IR for the 256x256 point grid while the tagged prefetching IR

dominates the field for 512x512 and 1024x1024 point grid sizes.

Figure 3.65 illustrates this same IR for the rectangular partition. For the
128x128 point grid size, the prefetching strategies have no effect on the IR. This also
holds for the 256x256 point grid size (64Kbyte cache only). For the 256x256 point
grid and a 32Kbyte cache the prefetching IRs are lower than the demand fetching IR.
Also note that the converse is true for grid sizes larger than 256x256 points. The

major factors effecting these varying IRs are intergrid and intragrid contention.

The prXICO versus the number of processors for all prefetching strategies,
cache sizes, mapping functions and partitions for the 64x64 point grid size is shown

in Figure 3.66. Both prefetching strategies have a higher cast-out probability when

- 30
‘?
-3
x
=] 20
g
o«
=
g 10
3
g -
- 0
0
log 29
a. 128x128 Point Grid Size
—_ 8
2
[~
* 6 -
g
&
2 47
2
8 2
3
>
2
= 0 .
0 1 2 3 4
log P
2
b. 256x256 Point Grid Size
2
t?
-3
*
]
-
z
o > -
e /
=
» -
s
2z
= 0 -
0 1 2 3 4

log P
2

c. 512x512 and 1024x1024 Point Grid Sizes

 RA RS

(KA RN

125

pom, 128, 32K
pom, 128, 64K
tpf, 128, 64K
df, 128,32K

df, 128, 64K

pom, 256, 32K
pom, 256, 64K
tpt, 256, 64K
df, 256, 32K
df, 256, 64K

& pom, 512
- {pf 512
o df 512
- pom, 1024
= fipf, 1204
o df 1024

Figure 3.64 Invalidation Ratio versus the Number of Processors, Set-Associative
Mapping, All Prefetching Strategies, Square Decomposition, 32-byte Blocksize.

EEA RN

A EEREE

9 .
g ' :
l
g °]
B]
=
3 4
E -
S 2
g |
=
0 - A B — E—
0 1 2 p 3 4 5
log
2
a. 128x128 Point Grid Size
4
N .
[~]
X 3 '
Q
E -
2 -
§ .
a
3 14
s]
=
o -
0 1 2 3 4 5
log P
2
b. 256x256 Point Grid Size
- 0.5
2
Q
* 0.4
g 1
g 0.3 4
= .
g 0.2
<)
‘-':l 0.1
s o
F4
0.0
0

iog P
g2

c. 512x512 and 1024x1024 Point Grid Sizes

126

pom, 128, 32K
pom, 128, 84K
ipf, 128, 32K
ipf, 128, 64K
df, 128, 32K
df, 128, 64K

pom, 256, 32K
pom, 256, 64K
tpf, 256, 32K
tpf, 256, 64K
df, 256, 32K
df, 256, 64K

< pom, 512
-~ tpf, 512
- df 512
-~ pom, 1024
= df, 1024

Figure 3.65 Invalidation Ratio versus the Number of Processors, Set-Associative
Mapping, All Fetching Strategies, Rectangular Decomposition, 32-byte Blocksize.

pPrxiCo, x10(-3)

127

40
-
30 -
20 - o pom:tpf»square
-8~ df, square
<= pom, df, rec.
-0 tpf, rec.
10
o 1 | 1 T
0 2 3 4 5

log P
ng

Figure 3.66 prXICO versus the Number of Processors, All Fetching
Strategies, 64x64 Point Grid Size, 32-byte Blocksize.

128

compared with the demand fetching policy for the square decomposition. The pre-
fetching prXICOs are virtually identical to the demand prXICO under rectangular
decomposition for this grid size. The intergrid and intragrid contention caused by
direct mapping is such that the prefetching prXICOs are identical to the prXICOs for

the demand fetching policy and grid sizes larger than 64x64 points.

Figure 3.67 illustrates the prXICO versus the number of processors for all pre-
fetching strategies, set-associative mapping and the square partition. For 8 and 16
processors and the 128x128 point grid size, the tagged prefetching and prefetch-on-
miss fetch policies result in nearly identical prXICOs. These prXICOs are also
greater than those of the demand fetching policy. For the 4 processor system, demand
fetching and prefetch-on-miss have identical low prXICOs while the prXICO is
approximately five times their value for the 32Kbyte cache size. When the cache size
increases to 64Kbytes, the demand fetching prXICO increases, but not as high as the
prefetch-on-miss prXICO. The tagged prefetching prXICO also increases as the
cache size increases, although not at the rate of the prefetch-on-miss prXICO. This
value equals that of the tagged prefetching prXICO for the 64Kbyte cache size. The 2
processor system has zero prXICOs for demand fetching and prefetch-on-miss; how-
ever, the tagged prefetching prXICO has small values for both the 32 and 64Kbyte

cache sizes.

For grid sizes larger than 128x128 points the prefetch-on-miss and demand
fetching prXICOs are identical with the probabilities, decreasing as the grid size
increases. The tagged prefetching prXICOs are somewhat larger than the other fetch-

ing prXICOs and the value also decreases as the grid size increases. Note these larger

129

pom, 128, 32K
pom, 128, 64K
tpf, 128, 64K
df, 128, 32K
df, 128, 64K

PrICO, x10(-3)
A NS

pom, df, 256
tpf, 256, 64K
pom, df, 512
tpf, 512, 64K
pom, df, 1024
tpf, 1024, 64K

PrXICO, x10(-3)
Ghédde

Figure 3.67 prXICO versus the Number of Processors, All Fetching Strategies,
Set-Associative Mapping, Square Decomposition, 32-byte Blocksize.

130

grid prXICOs are smaller than the 64x64 and 128x128 point values. Figure 3.68
presents this same prXICO versus the number of processors for the rectangular
decomposition strategy. This figure indicates virtually no discrepancy between the
three fetching policies simulated for the all grid sizes. The 256x256 point grid shows
the same prXICO values for all fetching policies but the prXICO for the 64Kbyte
cache size is somewhat larger than the 32Kbyte cache. The prXICO for grid sizes

larger than 256x256 points are identical to the graphs shown in Figures 3.38 and 3.43.

Figure 3.6 presents the prXICS versus the number of processors for all fetching
strategies, all grid sizes, direct mapping and square grid decomposition. The prefetch-
ing strategies produce larger prXICSs than demand fetching for all grid sizes. When
using a 16 processor system, the tagged prefetching strategy produces the greatest
probability followed by prefetch-on-miss and finally demand fetching. Tagged pre-
fetching produces the most block replacements for this mapping strategy, followed by
prefetch-on-miss and then demand fetching. Since XICSs are directly related to block

replacements, this explains the increase in their probabilities of occurrence.

Figures 3.70 through 3.72 illustrate the same prXICSs versus the number of pro-
cessors for direct mapping on a rectangular grid decomposition, set-associative map-
ping on a square grid decomposition and set-associative mapping on a rectangular
grid decomposition, respectively. In all of these figures the behavior of the prXICS is
identical to the graphs presented in Section 3.2.4. All of these figures show the tagged
prefetching strategy having the largest probabilities followed by prefetch-on-miss and
finally demand fetching. Once again, this is due to the increase in the frequency of

replaced blocks.

prxico, x10(-3)

prXiCo, x10(-3)

131

8

6-
& pom, 128, 32K
== pom, 128, 64K

4 1 & tpf, 128, 32K
-~ {pf, 128, 64K
= df, 128, 32K

2 ~ O df, 128, 64K

0 hd | v 1§ v 1 []

0 1 2 3 4 5
log P
2
a. 128x128 Point Grid Size

4

3 -
€ pom, 256, 32K

2 -~ pom, 256, 64K
€ tpf, 256, 32K
-~ tpf, 256, 64K

1 -

¢ P p—T T

0 1 2 3 4 5
log P
2

b. 256x256 Point Grid Size

Figure 3.68 prXICO versus the Number of Processors, All Fetching Strategies,
Set-Associative Mapping, Rectangular Decomposition, 32-byte Blocksize.

500
400~
o) |
€ 300 -
x -
8 i
8 200
5 |
100 + /
o W e -
O ¥ | v | hd |
0 1 3 4
log P
2
a. 128x128 Point Grid Size
300
& 200 -
S
X
g
S¢ 100 -
el B——
B o n/
O 4 | L hd 1
0 1 2 3
log P
2
b. 256x256 Point Grid Size
120
100

80-

prxics, x10(-3)
3

W

N

s 115
vdoae

log P
g2

c. 512x512 and 1024x1024 Point Grid Sizes

132

@ df 128

-~ pom,128, 32K
<= pom, 128, 64K
- ipf, 128,32K
& tpf, 128, 64K

df, 256

pom, 256, 32K
pom, 256, 64K
tpf, 256, 32K
tpf, 256, 64K

tthdd

df, 512

pom, 512, 32K
pom, 512, 64K
tpf, 512, 32K
tpf, 512, 64K
df, 1024

pom, 1024

tpf, 1024

AN RARE-

Figure 3.69 prXICS versus the Number of Processors, All Fetching Strategies,

Direct Mapping, Square Decomposition, 32-byte Blocksize.

200

PrXiCs, x10(-3)
8

0 v v T T
o 1 2 4
IogzP
a. 128x128 Point Grid Size
80
~—~ 60 -
N3
=1
»
- 40 -
8
x
& o0 -
0 —3 ——
0 1 2 3 4
log P
2
b. 256x256 Point Grid Size
3
? 2-
S
*
&
0 e -
0 1 2 3 4
log P
2

¢. 512x512 and 1024x1024 Point Grid Sizes

R AR beote

todededn

133

df, 128, 32K
df, 128, 64K
pom, 128

tpf, 128, 32K
ipf, 128, 64K

df, 256, 32K
df, 256, 64K
pom, 256, 32K
pom, 256, 64K
tpf, 256, 32K
tpf, 256, 64K

df, 512, 64K
pom, tpf, 512,
pom, 512, 64K
tpf, 512, 64K
pom, 1024, 32K
pom, 1024, 64K
tpf, 1024

Figure 3.70 prXICS versus the Number of Processors, All Fetching Strategies,
Direct Mapping, Rectangular Decomposition, 32-byte Blocksize.

20 134
E & df, 128, 32K
=] = df, 128, 64K
’t 10 - = pom, 128, 32K
8 - pom, 128, 64K
R = ipf, 128, 32K
a . o 1pf, 128, 64K
0 y Y v o v
0 1 2 | p 3 4 5
g 2
a. 128x128 Point Grid Size
30
g, 20 & df, 256
z - pom, 256, 32K
8— ¥ pom, 256, 64K
2 - ipf, 256,32K
S 10- = tpf, 256, 64K
o e =
O v] = ¥ hd 1 v | §
0 1 2 p 3 4 5
l
9 2
b. 256x256 Point Grid Size
12
10 -
e 8-. o df, 512
g . -~ pom, 512
- 6 - < pom, 512
8 i} -~ df, 1024
x % pom, 1024
od F 1]
& 4 o— o tpf, 1024
S —=
0] * 1} v] 1
v} 1 2 3 4 5

log) P
c. 512x512 and 1024x1024 Point Grid Sizes

Figure 3.71 prXICS versus the Number of Processors, All Fetching Strategies,
Set-Associative Mappirg, Square Decomposition, 32-byte Blocksize.

135

5
4 -
? 1 @ df 128, 32K
S 3 - df 128, 64K
x . = pom, 128, 32K
a 5. -~ pom, 128, 64K
% = ftpf, 128, 32K
a o tpf, 128, 64K
1 P
0 T 9
0 1 2 3 5
log P
2
a. 128x128 Point Grid Size
10
- 8 7
¥] & df, 256, 32K
% 97 - df, 256, 64K
8. . @ pom, 256, 32K
= 4 - -~ pom, 256, 64K
s = tpf, 256, 32K
2 - o ftpf, 256, 64K
0 ' ———r——
0 1 2 3 4 5
log P
°8,
b. 256x256 Point Grid Size
15
_ @ df, 512
g 1.0 -~ pom, 512
*] o tpf, 512
cg - df 1024
b 0.5 ~ % pom, 1024
| o tpf, 1024
0.0 T v T T T
0 2l 0 5
O
gz

c. 512x512 and 1024x1024 Point Grid Sizes

Figure 3.72 prXICS versus the Number of Processors, All Fetching Strategies,
Set-Associative Mapping, Rectangular Decomposition, 32-byte Blocksize.

136

The prefetch ratio (PR) and the lookup (LR) ratio for all features simulated
(including both prefetching policies) on the 64x64 point grid is presented in Figure
3.73. Part a of the figure illustrates these parameters for the square partition. For 2
and 4 processor systems, these ratios are nearly identical. As the number of proces-
sors increase to 8 and 16 processors, the LR becomes indicatively higher than the PR
for both prefetching strategies. Also observe the slight differences between the
prefetch-on-miss and tagged prefetching PRs and the between the prefetch-on-miss
and tagged prefetching LRs for 8 and 16 processors. Part b of the figure indicates that
the tagged prefetching strategy produces more overhead for the rectangular partition.
Observe the LR and PR for this prefetching strategy is specifically higher than the
value for prefetch-on-miss. Also, the LR is slightly higher than the PR for tagged pre-
fetching using 4 or more processors. The graph also indicates no discrepancy between

the LR and the PR for the prefetch-on-miss policy.

Figure 3.74 shows the LR and PR versus the number of processors for the
demand fetching policy using the square decomposition of grids larger than 64x64
points. The figure shows these parameters remaining relatively constant as the
number of processors increase. The slight increase in the prefetch ratios as the
number of processors double from 8 to 16 is the only exception. Observe the tagged
prefetching LRs and PRs are somewhat larger than the prefetch-on-miss LRs and
PRs, respectively for all grid sizes. Also note the small differences between the LRs
and PRs of the various grid sizes and the overall differences between the higher LRs
and the PRs. Figure 3.75 illustrates these same parameters for the rectangular parti-

tion. This graph shows the behavior of the LRs and PRs to be independent of the

137

30
g 20
* <@ mikup, square
E: -~ pom, square
= < tlkup, square
& 10- -0~ tpf, square
@
a

0 T v ¥ ¥ v 1 hd

0 1 2 3 4 5
log P
2
a. Square Decomposition

15
Z 0
*
e] @ mikup, pom, rec
: ~& tlkup, rec.
£ = ipf, rec.

5 -
©
a

0 v v p— T ’ ' v

0 1 2 3 4 5
log P
2

b. Rectangular Decomposition

Figure 3.73 Prefetch Ratio and Lookup Ratio versus the Number of Processors,
Both Mapping Policies, 64x64 Point Grid Size, 32-byte Blocksize.

0.48
d w——.
0.46 - [o
. - mir, 128
0.44 - - mpr, 128
« . = tr, 128
B 0424 - tpr,128
;] = mir, 256
Q. - < mpr, 256
0.40 - tIr, 256
| -4 tpr, 256
0.38 4 P — é P
] s ® I
0.36 v T v T ¥ T v T
0 2 3 4 5
log P
2
a. Smaller Grid Sizes
0.48 7 = — a
0.46 » - —
4 <& mir, 512
0.44 - - mpr, 512
o] & tr, 512
2 4 ~o- fpr, 512
5 0427 = mir, 1024
& o mpr, 1024
0.40 - ~& tir, 1024
1 & tpr, 1024
0'38- M
] QM
0.36 v 1 Y T T Y Y T
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 3.74 Prefetch Ratio and Lookup Ratio versus the Number of Processors,
Square Decomposition, Direct Mapping, 32-byte Blocksize.

138

139

0.48] [s il
0.46" m
1 < mir, 128
g 0447 -~ mpr, 128
: “ = i, 128
S 042- - fpr, 128
o q % mir, 256
* 040- o mpr, 256
. =-» {ir, 256
0.38 em—— 1 4 tor, 256
] _@—nﬁ
0.36 Y T T v T \ T
(4] 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
0.48 . - - — -
0.46 - | - .]
- = mir,512
- mpr, 512
0.44" [}
E] & {ir, 512
o -~ tpr, 512
S 0.42 + <& mir, 1024
5 4 < mpr, 1024
0.40 - -4 tir, 1024
1 -4~ tpr, 1024
0.38 - o . N
0.36 B =0 - g
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 3.75 Prefetch Ratio and Lookup Ratio versus the Number of Processors,
Rectangular Decomposition, Direct Mapping, 32-byte Blocksize.

140

decomposition strategy.

Figure 3.76 presents the LR and PR versus the number of processors for set-
associative mapping and the square partition. Concentrating on the 128x128 point
grid, for each cache size, the LR and PR is identical when the number of processors is
less than 16. The 16 processor system has a LR on the average of 1.8 times the PR.
The grid sizes larger than 128x128 points show nearly identical LRs and PRs for each
prefetching strategy with the tagged prefetching policy parameters approximately
twice the 'prefetch-on-miss values. Observe that all LRs and PRs for the set-
associative mapping function are two orders of magnitude lower than the direct map-
ping values. Figure 3.77 presents these parameters for the rectangular decomposition
strategy. The graphs generally show identical LRs and PRs for each simulation
configuration with the tagged prefetching values approximately twice the prefetch-

on-miss values.

3.3. Multiprocessor Speedup

Figure 3.78 presents the multiprocessor speedup versus the number of proces-
sors for 32 and 64Kbyte caches, direct mapping, square and rectangular decomposi-
tions and a single bus interconnection (SBI). The figure shows a square decomposi-
tion speedup ranging from 1.2 to 1.9 for the 64x64 point grid. All other grid sizes
exhibit a speedup less than 0.5 and relatively constant for this partition. This perfor-
mance is strictly prohibitive for Jacobi’s algorithm. The major factor effecting this
unacceptable degradation is the assumption that the maximum waiting time for a SBI

is P—1 times the effective memory access time. The 64x64 point grid provides

141

60
50 -
& 1 @ mlr, 128, 32K
S 40+ -~ mpr, 128, 32K
1 & mir, 128, 64K
g‘:_' 30 - -- mpr, 128, 64K
o = tIr, 128, 32K
& 20- o tpr, 128, 32K
= -+ tIr, 128, 64K
10 - - tpr, 128, 64K
0 . B . E————
0 1 2 3 4 5
log P
2
a. 128x128 Point Grid Size
60
<% mir, 256
| é -~ mpr, 256
-~ 50 - = {Ir, 256
N - tpr, 256
T = mir, 512
- o mpr, 512
g 40+ -+ tIr, 512
B -+ fpr, 512
; = mir, 1024
30 - =+ mpr, 1024
h—hié = tlr, 1024
] 9 ftpr, 1024
20 R e T —
0 1 2 3 4 5

log P
2

b. Larger Grid Sizes

Figure 3.76 Prefetch Ratio and Lookup Ratio versus the Number of Processors,
Square Decomposition, Set-Associative Mapping, 32-byte Blocksize.

60 142
-— m 7
N] o m!
S 40- mir, mpr, 128,
* 4 -~ mir, mpr, 128,
€ 304 & fir, 128, 32K
g . -~ ipr,128, 32K
& 20+ = tIr, 128, 64K
x 4 O tpr, 128, 64K
10
0~ —
0 1 2 3 4 5
! P
9 2
a. 128x128 Point Grid Size
60
& U] = mlr, 256, 32K
& 40- -~ mpr, 256, 32K
]] <& mir, 256, 64K
3 ag - == mpr, 256, 64K
=] B = tIr, 256, 32K
& 20+ - tpr, 256, 32K
«] ~ {ir, 256, 64K
10 + - tpf, 256, 64K
0 T T r—
0 1 4 5
log P
g 2
b. 256x256 Point Grid Size
60
$ 50 = ¢ o e . d
=%
= <@ mir, mpr, 512
€ 40 - tIr, tpr, 512
%- @ mir, mpr, 1024
£ o~ ir, tpr, 1024
5 30 -
[L s a
20 {] L ¥
0 1 2 3 4 5
log P
g 2

¢. Larger Grid Sizes

Figure 3.77 Prefetch Ratio and Lookup Ratio versus the Number of Processors,
Rectangular Decomposition, Set-Associative Mapping, 32-byte Blocksize.

SPEEDUP

SPEEDUP

143

2
& 64x64
1 - - 128x128
o 256x256
- 512x512
-2 1024x1024
0 0) ¥ T] ¥ 1]
(1] 1 2 3 4 5
log P
2
a. Square Decomposition
3
21 & 64x64
- 128x128
T o 256x256
-0~ 512x512
1 = 1024x1024
.———-.v—l
0 v r v T : ' v T
0 1 2 3 4 5
log P
2

b. Rectangular Decomposition

Figure 3.78 Speedup versus the Number of Processors,
Direct Mapping, Single Bus, 32-byte Blocksize.

144

greater speedup because its MR is orders of magnitude lower than the other grid
sizes. The rectangular decomposition curves are similar to those of the square decom-
position. The 64x64 point grid speedup is slightly higher than the square partition
because the MR is lower for this partition.

Figures 3.79 and 3.80 aiso iliustrate the speedup versus the number of proces-
sors; however, the set-associative mapping strategy is presented for the 32Kbyte and
64Kbyte cache sizes, respectively. These curves show improved performance over
the direct mapping strategy for grid sizes larger than 64x64 points. The performance
for the 64x64 point grid is unchanged. For most of the grid sizes, the speedup
increases only slightly as the number of processors increase. Again, the rectangular
decomposition strategy is shown to have better performance than the square decom-

position strategy.

Figure 3.81 shows the same direct mapping speedup curve for the full crossbar
interconnection (FCI). Is is assumed the waiting time for this interconnection struc-
ture is zero. As a result, the speedup curves improve significantly. Again, for both
cache sizes and decomposition strategies, the 64x64 point grid sizes has better perfor-
mance as a result of the relatively considerable improvement in its MR. The speedup
for all the other grid sizes are identical. The rectangular decomposition strategy has
slightly improved performance over the square decomposition strategy for the 64x64
poiut grid size. The speedup results for the set-associative mapping function and the
full crossbar interconnection are shown in Figure 3.82. This graph also shows an

improved speedup for grid sizes larger than 64x64 points.

22
2.0
1.8-
%] 3= 64x64
a 161 -+ 128x128
W 4_' & 256x256
o -+ 512x512
- 1024x1024
1.2+
1.0 -
0.8 1 v [] ¥]
0 1 2 3 4 5
log P
2
a. Square Decomposition
3
o 2 - € 64x64
S - 128x128
a] o 256x256
o - 512x512
@ - 1024x1024
o 1 1 b] | |
0 1 2 3 4 5
log P
2

9. Rectangular Decomposition

Figure 3.79 Speedup versus the Number of Processors, Set-Associative
Mapping, 32Kbyte Cache Size, 32-byte Blocksize.

145

146

25

2.04
o - 64x64
a -~ 128x128
ﬁ 1.5+ ¥ 256x256
& - 512x512

8 1024x1024
1.0 4
0.5 1 ¥ | | v 1
0 1 2 3 4 5
log P
2
a. Square Decomposition

3
a 2- 9 64x64
3 -~ 128x128
W B 256x256
o - 512x512
2 = 1024x1024

0 R ———

] 2 3 4 5
log P
2

b. Rectangular Decomposition

Figure 3.80 Speed p versus the Number of Processors, Set-Associative .
Mapping, 64Kbyte Cache Size, 32-byte Blocksize.

SPEEDUP

. SPEEDUP

147

12
10 4
8 -

| . < 64x64
6 - - 128x128

- 256x256

] -~ 512x512
4 - , & 1024x1024
2 -
0 ¥ 1] b L} hd 1 b] M

0 1 2 3 4 5

log P
2
a. Square Decomposition

12
10
8 =

] -3 64x64

-~ 128x128

6 o 256x256

I - 512x512
4 4 - 1024x1024
2 -
o v L d] v L] v 1] M

0 1 2 3 4 5

log P
2

b. Rectangular Decomposition

Figure 3.81 Speedu> versus the Number of Processors, Direct Mapping, Full
Crossbar Interconnection, Both Cache Sizes, 32-byte Blocksize.

12

10 1

SPEEDUP
bt dd

I o e ——
e 1 2 3

| P
9 2

H o
[$4]

a. Square Decomposition

14
12 +

10

SPEEDUP
L EEEE

log P
2

b. Rectangular Decomposition

64x64
128x128
256x256
512x512
1024x1024

64x64
128x128
256x256
512x512
1024x1024

148

Figure 3.82 Speedup versus the Number of Processors, Set-Associative Mappinng,

Full Crossbar Interconnection, Both Cache Sizes, 32-byte Blocksize.

149

The speedup curves for all fetching strategies, direct mapping, SBI and 64x64
and 256x256 point grids are shown in Figure 3.83. (All other grid sizes produce
speedups similar to the 256x256 point grid size). This figure shows demand fetching
having the best speedup for the square decomposition strategy. Prefetch-on-miss and
tagged prefetching have equal speedups for both grid sizes. All fetching i)olicics have
relatively equal speedups for the 64x64 point grid size using the rectangular partition.
However, demand fetching has the best performance for the 256x256 point grid size
and prefetch-on-miss and tagged prefetching have equal speedups for this partition
also. The primary reason why demand fetching has the best speedup is that it has a

smaller MR than the prefetching strategies for direct mapping.

Figure 3.84 illustrates the same speedup curves for the set-associative mapping
function. For the square decomposition strategy, demand fetching has the best
speedup for 2-4 processors. The prefetch-on-miss and tagged prefetching speedups
are slightly higher that the demand fetching speedup for 16 processors (both grid
sizes). For the rectangular decomposition strategy, both prefetching strategies per-
form better than demand fetching for the 2 processor system. As the number of pro-
cessors increase to 4, the prefetching strategies outperform demand fetching only for
the 256x256 point grid size. The 8 and 16 processor configurations see demand fetch-

ing outperforming the prefetching strategies for both grid sizes.

Figure 3.85 presents the speedup curves for the FBI, direct mapping and all
fetching strategies. The square decomposition strategy shows demand fetching out-
performing the prefetching strategies for the 16 processor system. In all other

instances, the fetching strategies are equal for the 64x64 point grid size. Demand

SPEEDUP

SPEEDUP

2
-3
-
14 -
=
-
o
Py il —= ®
B} —0 a
0 1 d] 1 ¥
0 1 2 3 4 5
log P
2
a. Square Decomposition
3
2 4 £
=
| -
-0
-
14 o
PRI — o
O} O a
o ¥ M |] hd 1)]
0 1 2 3 4 5
log P
2

b. Rectangular Decomposition

150

64x64, df
64x64,pom
64x64, tpf
256x256, df
256x256,pom
256x256, tpf

64x64, df
64x64, pom
64x64, tpf
256x256, df
256x256, pom
256x256, tpf

Figure 3.83 Speedup versus the Number of Processors, Direct Mapping
Single Bus, All Fetching Strategies, Both Cache Sizes, 32-byte Blocksize.

20
1.8
1.6

1.4 4

SPEEDUP

1.2+
1.0+

0.8 ~

0.6

log P
2

3

E =

a. Square Decomposition

SPEEDUP

log P
2

b. Rectangular Decomposition

R EA RN

A EE KR

151

64x64, df
64x64, pom
64x64, tpf
256x256, df
256x256,pom
256x256, tpf

64x64, df
64x64, pom
84x64, tof
256x256, df
256x256, pom
256x256, tpf

Figure 3.84 Speedug versus the Number of Processors, Set-Associative Mapping,
Single Bus, All Fetching Strategies, Both Cache Sizes, 32-byte Blocksize.

SPEEDUP

SPEEDUP

152

12
10 -
8 = 64x64, df
T -~ 84x64, pom
6 = - 64x64, tpf
4 -~ 256x256, df
4 - - 256x256, pom
] -0~ 256x256, tpf
2 -
0 v R
0 1 2 3 4 5
ilog P
2
a. Square Decomposition
12
10 4
8 < 64x64, df
1 -~ 64x64, pom
6 - |- SAxBA tof
1 -0 256x256, df
4 - & 256x256, pom
d O 256x256, tpf
2 =
0 -1 T T T
0 1 2 3 4 5
log P
2

b. Rectangular Decomposition

Figure 3.85 Speedup versus the Number of Processors, Direct Mapping,
Full Crossbar Interconnection, All Fetching Strategies, 32-byte Blocksize.

153

fetching outperforms both prefetching strategies for the 256x256 point grid size and
both decomposition strategies. Figure 3.86 shows the speedup curves for set-
associative mapping. Both decomposition strategies and grid sizes show very small

differences between all of the speedup curves presented.

Figure 3.87 displays the iteration time degradation versus the number of proces-
sors for both cache sizes, mapping functions and interconnection networks. A square
decomposition strategy and a 32-byte cache blocksize is assumed. The curves show
the single bus interconnection network causing a greater degradation than the full
crossbar system. The large degradation exhibited by the 64x64 point PDE grid size is
a direct result of the infinite MRD for this grid size. Moreover, the direct mapping
ITD is greater than its set-associative counterpart. This is attributed to intergrid and
intragrid contention present for this mapping strategy. Jacobi’s algorithm iteration
time for enabled coherence is between 1.17 and 1.35 times the disabled coherence
iteration time for the 256x256 point grid size, direct mapping and a single bus sys-
tem. This multiplicative range is reduced to between 1.04 and 1.08 for the set-

associative mapping stra.egy.

Figure 3.88 presents the ITD versus the number of processors for the rectangular
decomposition strategy. The behavior of these curves are similar to the square
decomposition ITD curves; however, the 64x64 point PDE grid size values are
slightly smaller. For example, the square decomposition ITD ranges from 1.05 to
1.45 for direct mapping. The same ITD for the rectangular decomposition strategy
ranges from 1.01 to 1.22. This is attributed to the fact that the rectangular decomposi-

tion strategy produces smaller MRs and XIs for the 32-byte blocksize.

12

10 -

SPEEDUP

M Ll v] v]
0 1 2 3
log P
2

a. Square Decomposition

oo

14
12 +
10

8

SPEEDUP

4 -

2 =

o b L} v] v I o]
0 1 2 3 4
log P
2

b. Rectangular Decomposition

A RERY

A RE RN

154

64x64, df
64x64, pom
64x64, tof
256x256, df
256x256, pom
256x2586, tpf

64x64, df
64x64, pom
64x64, tpf
256x256, df
256x256, pom
256x256, tpf

Figure 3.86 Speedup versus the Number of Processors, Set-Associative Mapping,
Full Crossbar Interconnection, All Fetching Strategies, 32-byte Blocksize.

155

1.5
: 1
S 1.4 -
X .
8 @ 64,sb
§ 1.3 -~ 64,cb
® 4 & 256,32K,sb
E 12 - 256,32K,cb
g . = 256,64K,sb
S . 0 256,64K,ch
5 1.1 -

1.0 v

0 5
a. Direct Mapping

15
s
= 1.4 -
G
g - 64,sb
g 1.3 -+ 64
2 & 256,32K,sb
E -~ 256,32K,cb
= 1.2 4 8 256,64K,sb
S o 256,64K,cb
s 1.1+

1.0 v T v ¥ v T v T v

0 1 2 3 4 5
log P
9 2

b. Set-Associative Mapping

Figure 3.87 iteration Time Degradation versus the Number of Processors, Both Cache
Sizes, Mapping Functions and Interconnection Networks, Square Decomposition.

156

1.3
[
o
s
E 1.2 @ 64,sb
§ %~ 64,cb
g 4 43 256,32K,sb
- -0~ 256,32K,cb
= 1.1 - & 256,64K,sb
g . O 256,64K,cb
5
=

1.0

0 5

13
|
K=}
=
g 1.2 - < 64,sb
§ -~ 64,cb
g o 255,32K,sb
- -~ 256,32K,cb
c 114 & 256,64K,sb
;!é . o 256,64K,cb
]

1.0

5

log P
%9,

b. Set-Associative Mapping

Figure 3.88 Iteration Time Degradation versus the Number of Processors, Both Cache
Sizes, Mapping Functions and Interconnection Networks, Rectangular Decomposition.

157

3.4. Jacobi’s Conclusions

The MR for the 64x64 point grid size decreases as the cache blocksize increases.
This value also increases as the number of processors increase. The rectangular MR
is generally larger for smaller blocksizes; however, the converse becomes true as the
blocksize increases. For grid sizes larger than 64x64 points the MR becomes prohibi-
tive for the direct mapping strategy and marginally prohibitive for set-associative
mapping. The MRD is present only for special cache features when considering the
128x128 point grid size. While the MRD is infinity for the 64x64 point grid size,
intergrid and intragrid contention result in no MRD for the vast majority of the grid

sizes and other features considered.

The IR generally decreases as the blocksize increases and it also increases as the
number of processors increase (for a given blocksize). Like the MR, the IR for the
rectangular domain decomposition strategy is larger than its square partition counter-
part. This situation reverses as the blocksize increases. While intergrid and intragrid
contention virtually eliminates the IR for grid sizes larger than 128x128 points when
direct mapping is used, IR values do exist for the larger grid sizes under the set-
associative mapping strategy. These values, however, are an order of magnitude
lower than those of the smaller grid sizes. The IR generally increases as the number

of processors increase for a given blocksize.

The prXICO is extremely small and remains constant for all grid sizes larger
than 64x64 points when direct mapping is used. With the exception of the 2 processor

system and the square domain decomposition, the prXICO decreases as the blocksize

158

decreases for the 64x64 point grid. A decrease in the frequency of intergrid and
intragrid contention for the set-associative mapping strategy results in a higher
prXICO for the larger grid sizes, however, the values are an order of magnitude lower
than the smaller grid values. This probability also decreases zs the blocksize

decreases. The prXICO generally increases as the number of processors increase.

The prXICS increases as the blocksize increases for the square partition and
direct mapping. In contrast, the value decreases as the blocksize increases for the rec-
tangular partition. Both the square and rectangular decomposition strategies show a
decrease in the prXICS as the blocksize increases for the set-associative mapping
strategy. The prXICO also increases as the number of processors increase. The pre-
fetching strategies considered have a detrimental effect on the MR for direct map-
ping. These same prefetching strategies serve to reduce the MR for the set-
associative mapping strategy. The IR, prXICO and prXICS generally increase when

prefetching is used.

Intergrid and intragrid contention results in higher interation time degradation
for the direct mapping policy. The single bus system also posseses a higher ITD than
the full crossbar system, a direct result of a 0 waiting time lower bound for the full
crossbar system. As the number of processors increase the ITD increases for the
direct mapping strategy. This parameter also increases are the number of processors

increase for set-associative mapping but at a slower rate.

In summary, using two PDE grids to execute this algorithm causes considerable

coherence overhead for direct mapping strategy. The set-associative mapping strategy

159

results in relatively reduced overhead. The prefetching strategies simulated do not
reduce this overhead. In many instances, prefetching results in greater performance
degradation. The cache size generally has little effect on the performance parameters
studied. Overall, the major causes of the performance degradation as a result of exe-
cuting this algorithm, include the cache mapping strategy, the grid decomposition
strategy, the cache blocksize and the number of processors used in the multiprocessor

system.

160

CHAPTER 4

SUCCESSIVE OVER-RELAXATION

Although Jacobi’s iterative algorithm is a natural for parallelization, its slow
convergence rate results in the infrequent use of this algorithm. This convergence rate
can be improved by the using the successive over-relaxation algorithm (SOR). This
chapter commences by presenting a brief background discussion on this algorithm.
The performance parameters obtained from the simulation results are then presented
followed the multiprocessor speedup curves. Finally, the iteration time degradation is

presented, followed by SOR conclusions.

4.1. Red-Black SOR

The convergence rate of Jacobi’s algorithm may be accelerated by making a
larger change to the u; j &rid point for each iteration. This change is made by the
using the most recently updated values of the grid points (the Gauss-Seidel method)

and by using a relaxation factor, , as shown in the equation below [3, 41]:

ui’f;rl = [1 - (o]u,-’fj+ 71‘— [u,ﬁl,j+ u{il + "z‘lfj+1 + ui’fj_l] @.1)
While @ usually ranges from 1 to 2, there are numerous static and dynamic methods
used to obtain the optimum value of this parameter. The simulations for this work
assumes o is obtained prior to the actual execution of SOR and remains constant

throughout its duration.

161

The sequential nature of Equation 4.1 is such that attempts at parallelization

does not produce consistent ordering (see [3] for an in depth discussion on this

matter). If the PDE grid points are numbered by using the red-black method as shown

in Figure 4.1 for a 4x4 grid size, then two passes over the grid, one for the red points

and one for the black point result in acceptable ordering per iteration. Applying Equa-

tion 4.1 to this ordering results in the following equation for the first pass:

kel _

wj = [1 ~ co] uf+ }IT [u,.’_;L Uyl + u,.’fj_l] for all i+j odd (4.2)

and for the second pass,

i,J 4

1 L.
uktl = [l - w]u,-’fj+ — [uflfj + u,-’_‘_*lfj = u,-’f}fl + u-"fl] for all i+j even (4.3)

i,j-1

B2
R2
Bl

R1

R4 B6 RS
B4 R6 B8
R3 B5 R7

B3 RS B7

Figure 4.1. Red-Black Odering of 4x4 PDE Grid.

162

These equations show that updating each grid point consists of independent evalua-
tions using grid points from previous passes. Therefore, these equations are easily
parallelized and the same PDE grid decompositions used in the previous chapter are
used for this algorithm. Also note that only one PDE grid is needed to update the

points; however, two barrier synchronizations are needed for each iteration.
4.2. Simulation Results

4.2.1. Miss Ratio/Miss Ratio Degradation

Figure 4.2 illustrates the MR versus the cache blocksize for small grid sizes, the
square decomposition strategy, both cache sizes and all processors. The graph values
are independent of the mapping function with a few exceptions discussed later. Part
a of the figure shows this parameter for two and four processors. As a result of the
principle of vertical shared blocks, the MR remains constant as the cache blocksize is
varied for the 2 processor sysbtem. The MR discrepancies between the two cache sizes
for the 64x64 point grid size and the 2 processor system are negligible. This is also
true for the same grid size and the 4 processor system. The MR decreases as the
cache blocksize increases when using 4 processors. Also note the decrease in the MR
as the cache size doubles for the 128x128 point grid size and 4 processors. Part b of
Figure 4.2 also shows a decrease in the MR as the cache blocksize decreases for eight
and sixteen processors; however the MRs are somewhat larger for these processor

configurations.

The MR for the 64x64 point grid size and the 16 processor system is not shown

in Figure 4.2 because it changes dramatically as the cache size increases from 64 to

163

12
10 4 grid, cachesize, cpus
$ -
g 8 - o 64, 32K, 2P
ol -~ 64, 64K, 2P
2 1 = 128, 64K, 2P
T 6 - -~ 64, 32K, 4P
2 . = 64, 64K, 4P
= o 128, 32K, 4P
4 - -+ 128, 64K, 4P
T o a—pn
2 B L e e ——
2 3 4 5 8 7 8
log B
2
a. Two and Four Pracessors
30
g. 20 - - 64, both,8P
T -+ 128,32K, 8P
S] o 128,64K, 8P
= -0~ 256,64K,8P
T 10 - - 128, both, 16P
@ o 256,64K,16P
=
0 v | § v | | * | | 1]
2 3 4 5 6 7 8

log ,8

b. Eight and Sixteen Processcrs

Figure 4.2 Miss Ratio versus Cache Blocksize, Square Decomposition,
Small Grid Sizes, All Processors.

164

128 bytes. The MR for this grid/processor configuration is shown in part a of Figure
4.3. The parameter decreases as the cache blocksize increases from 8 to 64 bytes. The
drastic increase in value for the 128 byte cache size is attributed to the modification
of each cache block by two processors. The additional misses are a direct result of
invalidations resulting from this two processor block modification. Part b of Figure
4.3 presents the MR versus the cache blocksize for the square decomposition stra-
tegy, all processors, both cache sizes and mapping functions (exceptions to discussed
later), and all grid sizes not shown in Figure 4.2. While this MR also decreases as the
cache blocksize increases, the value of this parameter is significantly higher than the

MR for the smaller grid sizes. This occurs as a result of intragrid contention.

Figures 4.4 and 4.5 show the MR versus the cache blocksize for the same simu-
lated features of the previous two figures with one exception; the rectangular decom-
position strategy is used. Figure 4.4 presents the MRs for smaller grid sizes and 2-8
processors. This figure shows that the rectangular MR is generally larger than the
square MR for smaller cache sizes. The reverse is true for the larger cache sizes.
Also the rectangular MR curves have steeper slopes; a direct result of the effect of the
principle of vertical shared blocks on the square MR. Figure 4.5a shows the rectangu-
lar MR for the grid sizes not shown in the previous figure and 2-8 processors. Since
this figure is identical to Figure 4.5b the decomposition strategies have no effect on
the MR of this algorithm for larger grid sizes. Part b of this figure shows the rec-
tangular MR for the 16 processor system. While this MR is higher than all other MRs
for smaller grid sizes, the rectangular MRs for the larger grid sizes are identical to the

values presented for the other processor configurations.

Miss Ratlo, x10(-3)

Miss Ratlo, x10(-3)

165

200
o 64, both,16P
100 -
o L | 1 | | b i]
2 3 4 5 6 7 8
log B
2

a. 64x64 Point Grid Size, 16 Processors, Both Cache Sizes

200
T larger grids
100 ~ all processors
0 T T T |
2 3 4 5 6 7 8
l B
°d 2

b. Larger Grid Sizes, All Processors, Both Cache Sizes

Figure 4.3 Miss Ratio versus Cache Blocksize, Square Decomposition,
64x64 Point Grid Size (a) and Larger Grid Sizes (b), All Processors.

Miss Ratlo, x10(-3)

Miss Ratio, x10(-3)

30

log B

a. Two and Four Processors

40 -

30 4

20

10 4

locg B

b. Eight Processors

166

grid,cachesize,cpus

64,32K,2P
64,64K,2P
128,64K,2P
64,both,4P
128,both,4P
256,64K 4P

AN KN

< 64x64

-~ 128x128
& 256x256,32K
-0~ 256x256,64K

Figure 4.4 Miss Ratio versus Cache Blocksize, Rectangular Decomposition,

Small Grid Sizes, Both Cache Sizes, Two to Eight 2rocessors.

200

100

Miss Ratlo, x10{-3)

IS
n
»
~ A

Miss Ratlo, x10{-3)

jog B
2

b. Sixteen Processors

167

<& larger grids

A RERY

2108 cpus

64x64
128x128
256x256
512x512, 32K
512x512, 64K
1024x1024

Figure 4.5 Miss Ratio versus Cache Blocksize, Rectangular Decomposition,
All Grid Sizes and Processor Configurations, Both Cache Sizes.

168

Figure 4.6 illustrates the MR versus the number of processors for both the
square and rectangular decomposition strategies, all grid sizes, both cache sizes con-
sidered and a 32-byte blocksize. Parts a and b of this figure show significant
decreases in the MR as the cache blocksize is doubled. This results from a transition
from some intragrid contention to little or no intragrid contention as the cache size
increases. For the cache blocksize observed, there are very few differences between

the MR of the two decomposition strategies.

Practically all of the MRs for set-associative mapping are identical to the
corresponding direct mapping MRs shown in Figures 4.2 through 4.6. In fact, Figure
4.7 illustrates the few exceptions. Part a of the figure shows the MR curves for the
square decomposition strategy. For all of the features shown, the direct mapping stra-
tegy results in a lower MR when compared with the set-associative mapping strategy.
Also note that the discrepancies between the two MRs decrease as the cache block-
size increases. The reason for the larger set-associative MRs is that for the features
indicated, the mapping structure coupled with the LRU replacement algorithm results
in additional misses when compared with the direct mapping function. The rectangu-
lar decomposition strategy also exhibits a smaller direct mapping MR for the features
presented in part b of the figure. There are no significant differences between the

MRs versus the number of processors for the mapping functions studied.

Table 4.1 illustrates the MRD for both cache sizes and decomposition strategies
as well as all processor configurations simulated for both direct (@) and set-
associative (b) mapping. The table indicates that the 64x64 and 128x128 point grid

sizes are small enough to produce a infinite MRD for this algorithm. In contrast, the

Miss Ratlo, x10(-3)

Miss Ratlo, x10(-3)

0 F—r—— e

0 1 2 3 4 5

log P
2

b. Rectangular Decomposition

todeedd

ttod b da

64x64
128x128, 32K
128x128k 64K
256x256, 32K
256x256, 64K
512x512
1024x1024

64x64
128x128, 32K
128x128, 64K
256x256, 32K
256x256, 64K
512x512, 32K
512x512,64K
1024x1024

Figure 4.6 Miss Ratio versus the Number of Processors, Square

and Rectangular Decompositions, 32-byte Blocksize.

169

170

30

J gridsize, cachesize
mapping, cpus

128,32K,D,4P
128,32K,S,4P
256,64K,D,8P
256,64K,S,8P
256,64K,D,16P
256,64K,S,16P

- direct mapping
- set-associative

Miss Ratlo, x10(-3)

wo PhéH e

a. Square Decomposition

gridsize,cachesize
mapping,cpus

128,32K,D,2P
128,32K,S,2P
256,32K,D,8P
256,32K,S,8P
256,64K,D,8P
256,64K,S,8P
512,64K,D,16P
512,64K,S,16P

D-direct mapping
S - set-associative

Miss Ratlo, x10(-3)
ttodddén

log B
2
b. Rectangular Decomposition

Figure 4.7 Comparisons of the Miss Ratio versus the Cache Blocksize, Direct
and Set-Associative Mapping, Square and Rectangular Decomposition.

171

1024

228888888888

L B e B L R K R T LR]

82888

v oy

Se88888888888888%
g
~ o0
Cressssas ks, 52 o
)
QiSss83s88(s883/888s

8888|888S8

88838

8888

CPUs

3 <+ 00 Sl < 00 B <+ 00 2

O
o <+ 00 2

Partition

square

rectangular

square

rectangular

Cache
Size

32Kbytes

: 64Kbytes

a. Direct Mapping

318888288838888888
[B88858888888888%
21111111111111111
]
%6 ool o o
CRES88882 5884 389 5 ¢
5

S8 sssftsss(sass/ssss

&[8 88 88 888/88838[8883

W248m248m248m248m
@]
= k| 8
o L = =
= o [g &0
g 2 g S g
= I 2 ’ 8
2 o g, £,
QN £)
AL M %

a S

b. Set-Associative Mapping

Table 4.1 Miss Ratio Degradation, 32-byte Blocksize.

172

larger grid sizes are such that no degradation in the MR is produced by parallelizing
SOR. There are several instances where a non-infinite MRD exist. Figure 4.8 graphi-
cally presents these MRDs. Observe that only the rectangular decomposition strategy

produces these MRDs.

4.2.2. Invalidation Ratio

Figure 4.9 illustrates the IR versus the cache blocksize for both mapping stra-
tegies and cache sizes, all grid sizes, the square partition and two (a) and four (b) pro-
cessors. The two processor IR has a constant value for each grid size considered, a
result of the constant number of vertically adjacent shared blocks for this partition,
The four processor system illustrates a decrease in the parameter as the cache block-
size increases. This decrease is more dramatic as the blocksize increases from 8 to 64
bytes. For blocksizes greater than 64 bytes the IR differences are negligible, espe-
cially for the larger grid sizes. The phenomenon is a direct result of the vertically
adjacent shared blocks for the square decomposition strategy. Also observe that the
four processor system has IR approximately twice the two processor values for the
smaller blocksizes. As the blocksize increases the four processor values asymptoti-

cally approach the two processor IRs.

Figure 4.10 presents the IR with all the features of the previous figure for eight
(a) and sixteen (b) processors. The graphs indicate an increase in the IR as the
number of processors increase. The general decrease in value as the cache blocksize
increases is present for both processor systems shown in the figure. Observe that the

IR for the 64x64 grid point, the 128-byte blocksize and the sixteen processor system

Miss Ratlo Degradation

Miss Ratio Degradatlon

80
60
) & 128,DM,2P
40 - -~ 256,DM,8P
2 128,SA,2P
k N %~ 256,SA,8P
20 -
0 A e o —_
2 3 4 5 6 7 8
log B
2
a. 32Kbyte Cache
80
60 ~
1 3 256,SA,4P
- 512,SA,16P
40 @ 256,0M4P
. -~ 512,DM,16P
20
0 4 T ¥ T ¥] ¥ 1 v 1 N
2 3 4 5 6 7 8
log B
2

b. 64Kbyte Cache

Figure 4.8 Miss Ratio Degradation versus Cache Blocksize,
Rectangular Decomposition Strategy, Both Cache Sizes.

173

invalidation Ratlo, x10(-3)

Invalidation Ratlo, x10(-3)

6
5 - o 0~ o 0]
4-
3-
J * . - *- -y —
2-
1' - a- o O
] - < TS o o
= - =- o -]
0 |] §] 1] v 1
2 3 4 5 6 7 8
log B
2
a. Two Processors
12
10 -
8 -
6-
4 -
2- \M
[N
] ——— et
Y v 1 Y T v T Y T Y T
2 3 4 °~ 5 6 7 8
log B
2

b. Four Processors

btete

KR KN

174

64x64
128x128
256x256
512x512
1024x1024

64x64
128x128
256x256
512x512
1024x1024

Figure 4.9 Invalidation Ratio versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, Square Decomposition Strategy, Two and Four Processors.

175

30
2
e
od 20 1
L) o 64x64
-] - 128x128
S © 256x256
2 - 512x512
3 10 1 = 1024x1024
S
£ 4

04— %_

2 3 4 5 6 7 8
log B
2
a. Eight Processors

50 .
z w-
e .
x € 64x64
) 30 4 - 128x128
3 . o 256x256, 32K
c -~ 256x256, 64K
% 20 1 & 512x512
5 1 o 1024x1024
g 10 4

(S S . — . I

2 3 4 5 6 7 8

log B
2

b. Sixteen Processors

Figure 4.10 Invalidation Ratio versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, Square Decomposition Strategy, Eight and Sixteen Processors.

176

is not shown. This is because one block is "allocated” to two processors for this parti-
tion, significantly increasing the IR by two orders of magnitude. Viewing part b of
the figure one notes the slight increase in the IR for the 16 processor 256x256 point
grid size and 32Kbyte cache size when compared to the 64Kbyte value. The square
decomposition stratégy for this grid size is such that more shared blocks can be
placed in the 64Kbyte cache over a longer reference range and future invalidations

are therefore possible.

Figures 4.11 and 4.12 illustrate the IR versus the cache blocksize for the rec-
tangular decomposition strategy and all other simulated cache features and grid sizes
for two (4.11a), four (4.11b), eight (4.12a), and sixteen (4.12b) processors. These
graphs show a decrease in the IR as the cache blocksize increases for all processor
configurations. Also observe that the slopes of the curves are steeper when compared
to the square decomposition strategy. The rectangular IRs are larger than the square
IRs for smaller blocksizes; however, the converse is true for the smaller blocksizes.
The 256x256 point grid size and the eight processor system (Figure 4.12) shows a
slightly smaller IR for the 32Kbyte cache size when compared to the larger cache

sizes for the same reasons discussed previously.

Figure 4.13 shows the IR versus the number of processors for all grid sizes and
cache sizes considered, the 32byte cache blocksize and the square (a) and rectangular
(b) decomposition strategies. Both figures show an intuitive increase in the IR as the
number of processors increase. The square IRs are higher for two and four Pprocessors
while the rectangular IRs are higher for the larger processor systems. Also note that

for grid sizes larger than 256x256 points the IR is virtually constant for two to eight

6
g ®7
s .
* 4-
g . @ 64x64
5 3 - - 128x128
c _ & 256x256
% - 512x512
g 2- -# 1024x1024
'5 r
H 14
0 SR— ‘
2 3 4 5 8 7 8
log B
2
a. Two Processors
30
g
e
] 20 - o 64x64
) - 128x128
o - - 256x256
5 -« 512x512
§ 10 - & 1024x1024
g
£
0 - ‘
2 3 4 5 6 7 8
log B
2

b. Four Processors

Figure 4.11 Invalidation Ratio versus Cache Blocksiz », Both Mapping Strategies
and Cache Sizes, Rectangular Partition, Two and Fou r Processors.

177

50

? 404
9_
ol o 64x64
S 30+ - 128x128
& o 256x256, 32K
5 00 - - 256x256, 64K
E % 512x512
= o 1024x1024
S
S 10 =

o-

2 3 4 5 6 7 8
log B
2
a. Eight Processors
100

2 80+
(=]
*
o i 64x64
S 60 -
= -~ 128x128
5 8- 256x256
] 40 - - 512x512
K] = 1024x1024
s
£ 2

o A l L 8 1

2 3 4 5 6 7 8

log B
2

b. Sixteen Processors

Figure 4.12 Invalidation Ratio versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, Rectangular Partition, Eight and Sixteen Processors.

178

Invalidation Ratio, x10(-3)

Invalldation Ratla, x10(-3)

30

20 -+

10 4

a. Square Decomposition Strategy

20 -

10 +

2

log P
2

3

b. Rectangular Decomposition Stra‘egy

A RE RN

AN RN

64x64
128x128
256x256, 32K
2562256, 64K
512x512
1024x1024

64x64
128x128
256x256, 32K
256x256, 64K
512x512
1024x1024

Figure 4.13 Invalidation Ratio versus the Numbr of Processors, Both
Mapping Strategii's and Cache Sizes, 32-byte C ache Blocksize.

179

180

processors with a slight increase for the 16 processor system.

4.2.3. Probability of a XICO

Figure 4.14 illustrates the prXICO versus the cache blocksize for both mapping
strategies and cache sizes, the square partition and two (a) and four (b) processors.
Part a of the figure shows that the prXICO is independent of the cache biocksize for a
two processor system. However, this parameter decreases as the cache blocksize
increases for the four processor system. The decrease also occurs for eight and six-

teen processor systems as shown in Figure 4.15.

Figures 4.16 and 4.17 present the prXICO versus the cache blocksize for the rec-
tangular partition, both mapping strategies and cache sizes considered and all proces-
sor configurations. All graphs show a decrease in this parameter as the cache block-
size increases. Finally, Figure 4.18 illustrates the prXICO versus the number of pro-
cessors for both mapping strategies and cache sizes, a 32-byte cache blocksize and
the square (a) and rectangular (b) partitions. While the eight and sixteen processor
prXICOs are independent of the decomposition strategy, the rectangular partition
produces slightly smaller XICOs than the square partition for two and four processor
systems. The 256x256 (both partitions) and 512x512 (rectangular partition only)

point grid sizes have slightly higher prXICOs for the 64Kbyte cache size.

4.2.4. Probability of a XICS

Figure 4.19 represents the prXICS versus the cache blocksize for the square
decomposition strategy, both cache sizes and mapping strategies and two and four

processor systems. This parameter is also independent of the cache blocksize for the

pIXICO, x10(-3)

Prxico, x10(-3)

6
5' [- @ ' S
4-
3-
| .- - - > *
2-
1 B—— - o~ a
] >~ > * e
e - - -
0 4 Ml 1} - [] v T A L}
2 3 4 5 6 7
log B
2
a. Two Processors
12
10
8-
6;
4 -
2 -\'\.*.
o ¥ M 1 A | v 1 b]
2 3 4 5 6 7
log B
2

b. Four Processors

beedd

Pehed

181

64x64
128x128
256x256
512x512
1024xi024

64x64
128x128
256x256
512x512
1024x1024

Figure 4.14 prXICO versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, Square Decomposition, Two and Four Processors.

PrxiCo, x10(-3)

? 8
TTTITY’

prXICO, x10(-3)

3 8
toddete

64x64
128x128
256x256, 32K
256,64K, SA
256,64K, DM
812x512

10 \\.\\::. 1024x1024
04— %_
3

log B
2

a. Eight Processors

64x64
128x128
256x256, 32K
256,64K, SA
256,64K, DM
512x512
1024x1024

log B

b. Sixteen Procassors

Figure 4.15 prXICO versus Cache Blocksize, Bcth Mapping Strategies
and Cache Sizes, Square Decomposition, Eight and Sixteen Processors.

182

pPrXiCO, x10(-3)

prXiCo, x10(-3)

183

6
5-
4- . % 64x64
< -+~ 128x128
3 o 256x256
- == 512x512
24 & 1024x1024
1 -y
0 A
2 3 4 5 6 7 8
log B
2
a. Two Procassors
30
o= 64x64
20 -« 128x128
=/ 256x256, 32K
-~ 256,64K, SA
% 256,64K, DM
10 = T 512x512
-+ 1024x1024
0 - |
3 4 5 6 7 8
log B
2

b. Four Processors

Figure 4.16 prXICO versus Cache Blocksize, Both Mapping Strategies and
Cache Sizes, Rectangular Decomposition, Two and Four Processors.

PrXICO, x10(-3)

PrXico, x10(-3)

184

50
40-
& 64x64
30 - - 128x128
-8 256,32K,DM
-0~ 256x256
20 4 & 512x512
0 1024x1024
10 -
o d
2 3 4 5 6 7 8
log B
2
a. Eight Processors
100
80 -
<= 64x64
-~ 128x128
60 4 4 256x256
- 512,32K,DM
40 - + 512,32K,SA
O 512,64K,.DM
-+ 512,64K SA
20 - -+ 1024x1024
q
0 Y
2 3 4 5 6 7 8
log B
2

b. Sixteen Processors

Figure 4.17 prXICO versus Cache Blocksize, Both Mapping Strategies and
Cache Sizes, Rectangular Decomposition, Eight a1.d Sixteen Processors.

prxico, x10(-3)

prxico, x10(-3)

185

30
20 - B 64x64
-~ 128x128
= 256x256, 32K
-8~ 256x256, 64K
10 - & 512x512
o 1024x1024
o-]
0 1 2 3 4 5
I P
o9 2
a. Square Decomposition
30
- 128x128
& 256x256, 32K
1 -0~ 256x256, 64K
& 512x512, 32K
10 O 512x512, 64K
- 1024x1024
0 r ‘
0 1 2 3 4 5

I
ogzP

b. Rectangular Decomposition

Figure 4.18 prXICO versus the Number of Processors, Both Mapping
Strategies and Cache Sizes, 32-byte Cache Blocksize.

186

6 7
Bl {n]
i 9 o 0 e 0 o
5 - 6-
-) -5
D44 2
g o 12832K 5] o 128,32K
%] - 256 R4 - 255
8 e 2 512 8- & 512
J 3
82_ - 1024 % . L o o o -~ 024
o 0-2-
B——f—i—fi—i o
- e - - s - |
1 14
{ &—o—o—0o—0] o—e——o0—o—o
o L} |] L A B 0 | LI DL I |
2 3 4 5 6 7 8 2 3 4 5 & 8
log B log B
2
a b.
5 6
5-
4 - 4
‘? o ‘? 4-
53 - o 12832K 2 o 128,32K
x - 256 1 37 - 256
32- o 512 o J o 512
2 <+ 1024 % 24 o= 1024
1+ 1 4
0 T T T Y T 0 ' s ' ’ '
2 3 4 5 6 7 8 2 3 4 5 6 7 8
lo
Iong ?, B
c d.

Figure 4.19 prXICS versus Cache Blocksize, Both Cache Sizes, Square Decomposition;
a) Two Processors, Direct Mapping, b) Two Processors, Set-Associative Mapping, c) Four

Processors, Direct Mapping, and d) Four Processors, Set-Associative Mapping.

187

two processor system. Also the set-associative value is larger than its direct mapping
counterpart for the 128x128 point grid sizes (two processors). The same observation
is made for the four processor system for 256x256 and 512x512 point grid sizes also;

however, the parameter decreases as the cache blocksize increases.

Figure 4.20 offers the same parameters and variable features for eight and six-
teen processor systems. This parameter decreases as the cache blocksize increases for
all grid sizes except the 64x64 point size (direct mapping and 32Kbyte cache size
only) where the value is independent of the cache blocksize. Also observe that for the
256x256 point grid size the XICS probability is higher for the 32Kbyte cache size.
This is because more RO blocks are replaced for this cache size resulting in more
RO->EXs occurring. Furthermore, the set-associative mapping strategy produces a

higher prXICS than the direct mapping strategy for both processor configurations.

Figures 4.21 and 4.22 represent the prXICS versus the cache blocksize for both
cache sizes and mapping strategies, the rectangular decomposition strategy and all
processor configurations considered. All graphs show sharp decreases in value as the
cache blocksize increases from 8 to 32 bytes and relatively smaller decreases in value
for blocksizes larger than 32 bytes. Again, the set-associative prXICSs are larger than
the direct mapping values. Likewise, the rectangular prXICSs are larger than their

square counterparts.

Figure 4.23 illustrates the prXICS versus the number of processors for both
decomposition strategies and mapping strategies and a 32 byte blocksize. These

curves increase in value and the number of processors increase for grid sizes larger

prxiCs, x10(-3)
KR XX

~

WL I N !

2 3 4 5 6
I B
og2

a. Eight CPUs, Direct Mapping

—y
o
L

PrxIics, x10(-3)
e dw

5 6 7
log B
%

T
4

W o

8

¢. Sixteen CPUs, Direct Mapping

64, 32K
256,32K
256,64K
512
1024

64,32K
256,32K
256,64K
512
1024

188

12
10 1
T g
38
T - & 256,32K
%;6_ -*- 256,64K
2 < 512
‘5_4_ - 1024
2-
0 WL S D B)
2 3 4 5 6 7 8
I B
092

b. Eight CPUs, Set-Associative Mapping

15
10 -
S < 256,32K
'i - 256,64K
8 - 512
b < 1024
a 51
0 +r—TrrrrT—rTr—T-r
2 3 4 5 6 7 8
log B
92

d. Sixteen CPUs, Set-Associative Mapping

Figure 4.20 prXICS versus Cache Blocksize, Both Cache Sizes, Square Decomposition.

3
@ 2-
:c_,' - 128,32K
% - 256
g o+ 512
% -+ 1024
[- %

0-

2 3 4 5 6 7 8
log, B

a. Two CPUs, Direct Mapping

10

8-
i e
S 64 -
x -
8 -«
X 47 >
a -

2-

o-

2 3 45 6 7 8
log B
092

¢. Four CPUs, Direct Mapping

64, 32K
256,32K
256,64K
512
1024

189

3
@21
=3 o 128,32K
x - 256
f & 512
§1 . - 1024

0 Ll L 4 : 3

=TT
2 3 4 5 6 7 8
log B
92

b. Two CPUs, Set-Associative Mapping

2 o 256,32K
T - 256,64K
g o 512

< - 1024
-3

d. Four CPUs, Set-Associative Mapping

Figure 4.21 prXICS versus Blocksize, Both Cache Sizes, Rectangular Decomposition.

190

30
g 20 -
5 o 64,32K =
*10 - 256,32K T @ 256,32K
8 - 512 g -+ 512
X - 1024 o 1024
[- % a"o -
0 hy o - - : . ‘.,
2 3 4 56 7 8 2 3 4 56 7 8
log B
og 2 log2 B
a. Eight CPUs, Direct Mapping b. Eight CPUs, Set-Associative Mapping
10 12
8- 10 -
= ? 5
2 6- o 6432K & 8
S - 128 *) | 512,32K
ol = 51232k & €7 - 512,64K
3 4 < 51264K X o 1024
x = 1024 2 44
g -
2 - 2.
o LA L LA LA DR A 0 v i A] * L] v L
2 3 45 6 7 8 3 4 5 6 7 8
log,, B log,, B
c. Sixteen CPUs, Direct Mapping d. Sixtean CPUs, Set-Associative Mapping

Figure 4.22 prXICS versus Blocksize, Both Cache Sizes, Rectangular Decomposition.

191

8 10
6 8 -
= o 643K I | o 128,32K
- - 12832k 2 . 2o6 90K
s ¢ & 25632K -)
4] -+ 25664K O 4. :
2] - 51264 %4 <= 512
a g - 1024
2 4 o 1024
2-
0 | 0 +—
0 1 2 3 4 s 0
log P
9,
a. Square Partition, Direct Mapping b. Square Partition, Set-Associative Mapping
5 6
5-
4 - _
~ o 6432K @ 4-
= 3 - 12832K & | 2 256,32K
= - 25632K < 5 - 256,64K
o - 25664K O | o+ 512,32K
S 2- - 512,32k X o 512,64K
a o 512,64K = 27 - 1024
- 1024 '
14 1 -
0 . | 0 7
0 1 2 3 4 5 0

| P
Icg2 P og 2

¢. Rectangular Partition, Direct Mapping . Rectangular Partition, Set-Associative Mapping

Figure 4.23 prXICS versus the Number of Processors, 32-byte Blocksize.

192

than 256x256 points. However, the locality of references for the 128x128 and
256x256 (rectangular partition only) point grid sizes are such that nonuniform
behavior is exhibited for the prXICS at these grid sizes. The parameter decreases as
the cache blocksize increases for the 128x128 point grid size and it increases, reaches
its peak, and then decreases in value for the 256x256 point grid size. This is caused
by the fact that the locality of references for the grid size/cache size tuple varies in

such a way as to produce the behavior shown.

4.2.5. Prefetching Strategies

Figure 4.24 offers the MR versus the number of processors for all fetching stra-
tegies considered, the 32Kbyte cache size, all grid sizes, the square decomposition
strategy, both mapping functions and a 32-byte blocksize. For grid sizes smaller than
256x256 points, the MR increases as the number of processors increase with demand
fetching exhibiting the worst performance and tagged prefetching the best perfor-
mance. The MRs are relatively larger for the two processor system because the sub-
grids are so large that all of the reference locality is not captured (intragrid conten-
tion). For larger grid sizes, tagged prefetching has the best performance, followed by
prefetch-on-miss and finally, demand fetching. Notice the relative independence of

the MR on the cache blocksize.

Figure 4.25 presents the same MR versus the number of processors and other
variable features for the rectangular partition. Here the MR increases as the number
of processors increase for the smaller grid sizes and remains relatively constant for

the larger grid sizes. Again, the tagged prefetching strategy offers the best perfor-

50
40 -
g’] o df,64
® 30 1 <> pom, 64
§ b = tpf-64
@ - df 128
- 20 4 pom,128
% q o tpf,128
10
0 T T T
2 3 4
log 2P
a. Smaller Grid Sizes
50 ;ﬂ/u
40 B | e g0
) 4 43 df,256
o ~~ pom,256
S 30 A o 1pf,256
[1 é; 0= pom,512
® i & tpf,512
= 20 o df,1024
= ‘ - pom,i024
10 - / -+ pf,1024
- -
0 % = ———
1 2 3 4
iog 2P

b. Larger Grid Sizes

Figure 4.24 Miss Ratio versus the Number of Processors, All Fetching Strategies,
32Kbyte Cache Size, 32-byte Blocksize, All Grid Sizes, Square Decomposition.

193

30
)
g 27
»
-]
]
0°
g 10 ~
=
0 - - T
0 1 2 3 4
log P
2
a. Smaller Grid Sizes
50
40-
G .
S
= 30 4
g .
E 20 4 » — Jenmeme
@ .
=
10
0 ey ey e p— e
0 1 2 3 4
log P
2

b. Larger Grid Sizes

tebdodéddd

A LA RN K KN

194

df.64
pom,64,DM
pom,64,SA
tpf,64,DM
tpf,64,SA
df,128
pom,128,DM
pom,128,SA
tpf,128,DM
tpf,128,SA

df,256
pom,256
tpf,256,DM
tpf,256,SA
df,512
pom,512
tpf,512
df,1024
pom,1024
tpf,1024

Figure 4.25 Miss Ratio versus the Number of Pracessos, All Fetching Strategies, 32Kbyte
Cache Size, 32-byte Blocksize, Rectangular Decompos.tion, Both Mapping Functions.

195

mance, followed by prefetch-on-miss and demand fetching, respectively. The
256x256 point demand fetching MR decreases as the number of processors increase.

The cause of this behavior is discussed in the section 4.2.1.

Figures 4.26 and 4.27 illustrate the same MR versus the number of processors as
the previous two figures present; however, a 64Kbyte cache is assumed. All graphs
generally show an increase in MR value as the number of processors increase for
smaller grid sizes and a relative constant value for larger grid sizes. All exceptions
are demand fetching values discussed in section 4.2.1. Again, tagged prefetching

represents the best performance, followed by prefetch-on-miss and demand fetching.

Figures 4.28 and 4.29 illustrate the IR versus the number of processors for all
fetching strategies considered, all grid sizes, both mapping functions, the square par-
tition, a 32-byte blocksize and 32Kbyte (Figure 4.28) and 64Kbyte (Figure 4.29)
cache sizes. All figures show that tagged prefetching results in the largest invalidation
ratio, followed by prefetch-on-miss and finally demand fetching. The IR decreases as
the grid size increases for all fetching strategies. There is no discrepancy between
both prefetching IRs and the demand fetching IR for the rectangular decomposition

strategy.

Figures 4.30 and 4.31 present the prXICO versus the number of processors for
all fetching strategies, 32Kbyte (Figure 4.30) and 64Kbyte (Figure 4.31) cache sizes,
all grid sizes, both mapping functions and a 32-byte blocksize. All graphs show an
increase in this parameter as the number of processors increase. The demand fetching

strategy exhibits the best performance while both prefetching strategies yield equal

196

30
g, 20 - = 64,df
b+ -~ 84 pom
o = 64,ipf
E - 128,df
10 = 128,pom
2 o 128,tpf
=
0 L B . e
0 1 2 3 4 5
P
Iogz
a. Smaller Grid Sizes
50
40 - 256,df
o -~ 258,pom,SA
§' - 256,pom,DM
* 30 - - 256,ipf
-] : - 512,df
@ 20 € 512,pom
@ 4 512,tpf
= -4 1024, df
10 + & 1024,pom
== 1024,tpf
0 ~ i v 7 -
1 2 3 4 5
I P
°9 2

b. Larger Grid Sizes

Figure 4.26 Miss Ratio versus the Number of Processors, All Fetching Strategies, 64Kbyte
Cache Size, 32-byte Blocksize, Square Decomposition, Both Mapping Functions.

30
g
o
]
)
T
(4
-]
]
=
log P
2
a. Smaller Grid Sizes
50
40 =
i -
[~]
® 30
-]
o
4 20 -
2
=
10 4
0
0

b. Larger Grid Sizes

AR N AN Y R XY

eedd i

64,df
64,pom
64,tpf
128,df
128,pom
128,ipf

256,df
256,pom,SA
256,pom,DM
256,1pf,SA
256,tpf,DM
512,df
512,pom,SA
512,pom,DM
512,ipf
1024, df
1024,pom
1024, tpf

197

Figure 4.27 Miss Ratio versus the Number of Processors, All Fetching Strategies, 64Kbyte
Cache Size, 32-byte Blocksize, Rectangular Decomposition, Both Mapping Functions.

198

40 B
9
g 30 A -8 64,df
g J -~ 64,pom
o & 64,tpf
‘g 20 + - 128 df
S] = 128,pom
g o 128,tpf
s 10
£
0 S B s e ——
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
10

g 8- & 256,df
g 1 - 256,p0m
S 6 - @ 256,ipf
= < 512,df
': l - 512pom
S 44 o 512tpf
3] + 1024,df
3 4 1024,pom
E 2 & 1024,ipf

. ermtrmarefipom— A‘-—___‘

0 Y 1 T T ¥ 3 ¥ T T
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 4.28 Invalidation Ratio versus the Number of Processors, All Fetching Strategies,
32Kbyte Cache Size, Square Decomposition, Both Mapping Functions.

ondh

[
hgz

a. Smaller Grid Sizes

3

o

——y—

N

40
i
2 30 -
g
=
= 20 -
9
3
] 10 -
E
0
0
10
? 8 -
g
»
g 6
=
[+ 4
c
S 4 -
=
°
0
0

—

log P
g2

b. Larger Grid Sizes

3

4

A EE R

RN EERY

199

64,df
64,pom
64,tpf
128,df
128,pom
128,tpf

256,df
256,pom
256, tpf
512,df
512,pom
512,1pf
1024,df
1024,pom
1024, tpf

Figure 4.29 Invalidation Ratio versus the Number of Processors, All Fetching Strategies,
64Kbyte Cache Size, Squure Decomposition, Both Mapping Functions.

40
30 -
9
g ' -
T 204 -
8 o
5 -
s
N ?//
0] hd |] § | b
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
6
5-
g 4 -
g .
;-
S d
5 27
N D—J
0 | 1 b ¥ L L}
0 1 2 3 4 5
log P
2

b. Larger Grid Sizes

200

64,df
64,pom, tpf
128,df
128,pom,tpf

256,df
256,pom, tpf
512,1pf
512,pom,tpf
1024,df
1024,pom,tpf

A RKA RN

Figure 4.30 prXICO versus the Number of Processors, All Fetching Strategies, 32Kbyte
Cache Size, 32-byte Blocksize, Square Decomposition, Both Mappirg Functions.

prXiCO, x10(-3)

prxiCo, x10(-3)

201

o

40
30 -
J o 64,df
=&~ 64,pom,tpf
20 ~ o 128df
] == 128,pom,ipf
" ra/
0 v] 1) bl | v] v
0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes
10
8 I .
. - 256,df
6 -~ 256,pom,tpf
o 512,df
] <0~ 512,pom,tpf
4 - & 1024,df
4 < 1024,pom,tpf
N H:—:ﬂ‘:_‘;g:
2

o
-t
w
B
o

log P
2

b. Larger Grid Sizes

Figure 4.31 prXICO ve:sus the Number of Processors, All Fetching Strategies, 64Kbyte
Cache Size, 32-byte Blecksize, Square Decomposition, Both Mapping Functions.

202

but higher probabilities. For larger grid sizes, when the cache size is doubled, the
PrXICO increases slightly for all fetching strategies. Like the IR, there is no differ-

ence between the prXICO for all fetching strategies considered.

Figure 4.32 offers the prXICS versus the number of processors for all fetching
strategies, the 32Kbyte cache size, a 32-byte blocksize, all grid sizes, the square parti-
tion and both mapping functions. The graphs shown indicate an increase in the
prXICS as the number of processors increase for grid sizes larger than 128x128
points. Furthermore, the set-associative mapping function produces a slightly higher
prXICS than direct mapping. Again, demand fetching manifests a better performance,

followed by prefetch-on-miss and finally, tagged prefetching,

The smaller grid sizes show a decrease in the prXICS as the number of proces-
sors increase. This is because the more processors used in the system, the smaller the
sub-grids updated by each processor and therefore the better the reference locality.
The 64x64 and 128x128 point grid sizes are so small that all references are captured
by the larger processor systems. Since most XICSs are RO->EXs performed as a
result of replacing blocks, the amount performed by these small grid/larger processor
tuples are negligible.

Figure 4.33 represents the prXICS versus the number of processors and all other
features of the previous figure for the rectangular partition. All of the values shown
here are relatively small in comparison with the square partition values. In such cases
demard fetching offers better performance, followed by both prefetching strategies.

The 64x64, 512x512 and 1024x1024 point grid sizes offer an increase in the prXICS

203

15

64,df,DM
64,pom,DM
64,tpf,DM
128,df,SA
128,df,DM
128,pom,SA
128,pom,DM
128 tpf,SA
128,1pf,DM

prXics, x10(-3)
*tbokebdd

0 1 2 3 4 5
IogzP

a. 64x64 and 128x128 Point Grid Sizes

log , P
b. 256x256 and 512x512 Point Grid Sizes

256,df,SA
256,df,DM
256,pom,SA
256,pom,DM
256,tpf,SA
256,tpf,DM
512,df,SA
512,df,DM
512,pom,SA
512,pom,DM
512,1pf,SA
512,tpf,DM

PrXICS, X10{-3)

ket bobdden

1024,df,SA
1024,df, DM
1024,pom,tpf,SA
1024,pom, ipf,DM

prXiCs, x10(-3)
tHee

0 v T T T T
0 1 2 3 4
log 2P

(4]

¢. 1024x1024 Point Grid Size

Figure 4.32 prXICS versus the Number of Processors, All Fetching Strategies, 32Kbyte
Cache Size, 32-byte Blocksize, Square Decomposition, Both Mapping Strategies.

3
"IA -
N3 2
*
73
o
X 1+
o
0 /’
0 1 2 3 4
log , P
a. 64x64 and 128x128 Point Grid Sizes
6
5 -
:.'?‘ o
-3 4
;- -
4] 37
>
s 2 -
1 -
0 T T r T v
0 1 2 3 4
i P
9 2
b. 256x256 and 512x512 Point Grid Sizes
2
g
e
»
- 14
8
x
[-%
0 | | v 1 | §
0 1 2 4
log 2P

. 1024x1024 Point Grid Size

Figure 4.33 prXICS versus the Number of Proce

Cache Size, 32-byte Blocksize,

ttokdddd tthetdtd

tede

204

64,df,DM
64,pom,tpf,DM
128,df,SA
128,df,.DM
128,pom,SA
128,pom,DM
128,ipf,SA
128,tpf,DM

256,df,SA
256,df,DM
256,pom,tpf,SA
256,pom,tpf,DM
512,df,SA
512,df, DM
512,pom,tpf,SA
512,pom,ipf,.DM

1024,df,SA
1024,df,DM
1024,pom,tpf,SA
1024,pom, tpf,DM

ssors, All Fetching Strategies, 32Kbyte
Rectangular Decomposition, Both Mapping Strategies.

205

as the number of processors increase. The 128x128 point grid size offers a small
prXICS for two processors, decreases to zero for four and eight processors, and then
increases slightly in value for 16 processors. The reason for this behavior is directly
related to the reference behavior for this algorithm. For this grid size, only zero to
one XICS occurs per iteration. Likewise, the purpose of the nonlinear behavior
represented by the 256x256 point grid size depends upon the randomness of the zero

to three XICSs performed per iteration.

Figure 4.34 illustrates the prXICS versus the number of processors as shown in
Figure 4.32; however, the 64Kbyte cache size is represented. The 128x128 point
values are negligible while the 256x256 point grid size demonstrates an increase in
value as the number of processors increase from two to four and from eight to six-
teen. There is an increase in value for the eight processor system because the locality
of references is almost optimal for this grid size/8-processor tuple. Both the 512x512
and 1024x1024 point grid sizes show an increase in value as the number of processor
increase. In all instances, direct mapping offers the better performance. Also, demand
fetching offers the best performance followed by prefetch-on-miss and finally tagged

prefetching.

Figure 4.35 presents the prXICS versus the number of processors for all fetching
strategies, the 64Kbyte cache size, all grid sizes, both mapping functions and the rec-
tangular decomposition strategy. The behavior of the graphs is similar to the behavior
of the graphs shown in the previous figure, with the exception that the values of the
PrXICS as somewhat smaller. In fact, for SOR, the prXICS is never greater than 0.02

and for the most part is usually less than 0.01.

. 8
s -
$ -
S
X 4 -
4])
X
“ 2 -
0 ¥
0 1 2 3 4 5
I P
e 2
a. 256x256 and 512x512 Point Grid Sizes
8
o~ 6
3 -
e
»
- 4 -
8
4 L
s
§ '—-——/
o 1 3 1] ¥ 1 h
0 1 2 3 4 5
log P

b. 512x512 and 1024x1024 Point Grid Sizes

Figure 4.34 prXICS versus the Number of Processors, All Fet
Square Decomposition Both Mapping Functions.

Cache Size, 32-byte Blocksize,

ttoRer e

AL LN EERY

128,pom, tpf, DM
128,pom,tpf,SA
256,df,.SA
256,df,DM
256,pom,SA
256,pom,DM
256,tpf,SA
256,ipf,DM

512,df,SA
512,df, DM
512,pom,SA
512,pom,DM
512,ipf,SA
512,tpf, DM
1024,df
1024,pom
1024,tpf,SA
1024,ipf,DM

206

ching Strategies, 64Kbyte

prXiCs, x10(-3)

PrXICS, x10(-3)

log P
2

a. 128x128 and 256x256 Point Grid Sizes

log P
g2

b. 512x512 and 1024x1024 Point Grid Sizes

207

128,df,DM
128,pom,tpf,DM
256,df,SA
256,df,DM
256,p0m,SA
256,pom,DM
256,1pf,SA
256,tpf, DM

ARERE XN

512,df,SA
512,df,.DM
512,pom,SA
512,pom,DM
512,1pf,SA
512,ipt,DM
1024,df,SA
1024,df,DM
1024,pom,SA
1024,pom,DM
1024,tpf,SA
1024,tpf,DM

FREebbohb bt e

Figure 4.35 prXICS versus the Number of Processors, All Fetching Strategies, 64Kbyte

Cache Size, 32-

byte Blocksize, Rectangular Decomposttion, Both Mapping Functions.

208

Figures 4.36 and 4.37 illustrate the lookup and prefetch ratios versus the number
of processors for the square partition, direct mapping and the 32Kbyte (4.36) and
64K Dbyte (4.37) cache sizes. All graphs indicate relative constant LRs and PRs and the
number of processors increase for grid sizes larger than 128x128 points. The only
exception is the 256x256 point grid size (64Kbyte cache) where the values decrease
as the number of processors increase from four to eight processors; a result of a
significant change in locality for this grid size. Observe that the prefetch-on-miss
ratios demonstrate better performance than their tagged prefetching counterparts. In
all instances, the intuitive behavior of a higher lookup ratio is exhibited. A larger
cache size is better able to capture the reference locality for the smaller grid sizes and
two processor system. Otherwise, the ratios increase as the number of processors

increase.

Figures 4.38 and 4.39 also illustrate the same LR and PR versus the number of
processors for the rectangular decomposition strategy (all other features are identical
to the previous two figures). These graphs show the prefetch-on-miss LRs and PRs
offering the better performance. For smaller grid sizes, the graphs show an increase in
the LR and PR as the number of processors increase for both cache sizes. The larger
grid sizes show constant values ‘for these parameters except where the grid
size/processor tuple is such that the cache captures a better locality of reference. In

such instances sharp decreases in the ratios are observed.

Figures 4.40 through 4.43 illustrate the lookup and prefetch ratios versus the
number of processors and other features identical to the previous four figures with

one exception; the set-associative mapping function is used. The behavior of these

LR, PR, x10(-3)

LR, PR, x10(-3)

a. Smaller Grid Sizes

50

40 -

30 4

20

Figure 4.36 Lookup Ratio and Prefetch Ratio versus the Number of Processors,
32Kbyte Cache Size, 32-byte Blocksize, Square Dezomposition, Direct Mapping.

2 3 4

log P
2

b. Larger Grid Sizes

ttoheddd

Edtedboddddd

64,mir
64.1ir
64,mpr
64,tpr
128,mir
128,tir
128,mpr
128,tpr

256,mir
256,tir
256,mpr
256, tpr
512,mir
512 tir
512,mpr
512tpr
1024, mir
1024,1ir
1024, mpr
1024, tpr

209

LR and PR, x10{-3)

LR and PR, x10(-3)

LR and PR, x10(-3)

30 :
20 -
10 -
0 ¥ ¥ ¥ | v T v T ¥
c 1 2 3 4 5
P
hg 2
50 a. 64x64 and 128x128 Point Grid Sizes
40 -
. 30
20 -
10 -
0 v § i] L4 | L T 12
0 1 2 3 4 5
log 2 P
b. 256x256 and 512x512 Point Grid Sizes
50
- P < ﬂ
40 4
30 +
B o .._d
20 T T T v T
0 1 2 I o 5
og 2

Figure 4.37 Lookup Ratio and Prefetch Ratio versus the Number of Processors

. 1024x1024 Point Grid Size

(AN EE KN

ttodédto

-
-
-
-

64,mir
64.tir
64,mpr
64.tpr
128,mir
128 AIr
128,mpr
128,1pr

256,mir
256,mpr
512,mir
512,mpr
256, tir
256,tpr
5124r
512tpr

1024, mir
1024 tir
1024,mpr
1024,tpr

210

64Kbyte Cache Size, 32-byte Blocksize, Square Decomposition, Direct Mapping.

30
2
e 20 -
E
£
o o
k-]
[—4
(-]
o 10 -

0 b 1 | b L § |]

0 1 2 3 4 5
log P
2
a. Smaller Grid Sizes

50

40-
g
S an
,F" GV M
E‘ -

L Ol

BT 20 a
[
[4
-

10 =

0]] LI)

0 1 3 4 5

log P
2

b. Larger Grid Sizes

POk et g

A EE R

64, mir,mpr
64, tir

64,tpr

128, mir,mpr
128.4ir
128,tpr

256,mir,mpr
256 Air
256,tpr
512,mir,mpr
512firtpr
1024, mir,mpr
1024 tr,tpr

Figure 4.38 Lookup Ratic and Prefetch Ratio versus the Number of Processors,
32Kbyte Cache Size, 32-byte Blocksize, Rectangular Decomposition, Direct Mapping.

211

LR and PR, x10(-3)

212

30
. & 64.mir
20 5 & 64t
= 64,mpr
= 64,tpr
& 128,mir
10 0 1281
-4 128,mpr
| -4 128.tpr
0 v - — T r r v
0 1 2 3 4 5
[P
ogz
a. Smaller Grid Sizes
50
40 -
i & 256,mir,mpr
E 30 4 -~ 256.1ir,tpr
e | & 512,mir,mpr
o -~ 512,tir,tpr
B 20 1 = 1024,mir,mpr
; o 1024 tirtpr
-
10 +
0 v Y T Y
o 1 2 3 4 5
log P
2

b. Larger Grid Sizes

Figure 4.39 Lookup Ratin and Prefetch Ratic versus the Number of Processors,
64Kbyte Cache Size, 32-byte Blocksize, Rectangular Decomposition, Direct Mapping.

50
—~ 40 - \
2
° -
e
od 30 -
(-1
-l
b -]
& 20 -
o«
o
10 -
0 [| 1 8 ¢ |]]
0 1 2 3 4
log P
2
a. Smaller Grid Sizes
50
hd |
— ., ® e
2 4 il
s 40
*®
3
o
2
© 30 -
o
-d
20 1 ¥ | v 1 hd 1]
G 1 2 3 4
log P
9 2

b. Larger Grid Sizes

thhhdbdd

A EKERY

213

64,mir
64.tir
64,mpr
64,tpr
128,mir
128,tIr
128,mpr
128,tpr

256, mir,mpr
256,1ir,tpr
512,mir,mpr
512,tirtpr
1024, mir,mpr
1024 tir.tpr

Figure 4.40 Lookup Ratio and Prefatch Ratic versus the Number of Processors, 32Kbyte
Cache Size, 32-byte Blocksize, Square Decomposition, Set-Associative Mapping.

30
2 20
e
»
o
o
b -]
5‘ 10 -
5
o a | § 1 §
0 1 2 3 4
log P
2
a. Smaller Grid Sizes
50
40..
2
S 30 -
>
g
;-] 20
=
-]
«
-l 10 = o
0 |]) |)
0 1 2 3 4
log P
g2

b. Larger Crid Sizes

ttoddddd

AREEN KN

214

64,mir
64,4Ir
64,mpr
64,tpr
128,mir
128,tir
128,mpr
128,tpr

256,mir
256,tr

256, mpr
256,1pr

512, mir,mpr
512 tir,tpr
1024, mir,mpr
1024, tir,tpr

Figure 4.41 Lookup Rati> and Prefetch Ratio versus the Number of Processors, 64Kbyte
Cache Size, 32-byte Blocksize, Square Decomposition, Set-Associative Mapping.

TS IE XY,

30
2
5 -
x
o
a
g
Pt 10 +
-d
0 |]
0 2 3 4
| P
092
a. Smaller Grid Sizes
50
40-
9
S -
> 30
£ N
ER
[
g
10 -
0 T — T
0 2 3 4
log P

b. Larger Grid Sizes

A RE KN

215

64,mir
64 tr
64,mpr
64,tpr
128,mir
128, tir
128,mpr
128,tpr

256, mir,mpr
258, tir,ipr
512,mir,mpr
5124in.tpr
1024,mlr,mpr
1024 tir,tpr

Figure 4.4é Lookup Ratio and Prefetch Ratio versus the Number of Processors, 32Kbyte
Cache Size, 32-byte Blocksize, Rectangular Decomposition, Set-Associative Mapping.

-4

a. Smaller Grid Sizes

30
g
g 207
*
o
.
k-
&
g 10 4
-
0
0
50
40 -
2
Q
% 304
&
.
B 20-
«
: -
-
10 A
1
0
0

log P
2

b. Larger Grid Sizes

ttoddd e

(A KR RN

216

64,mir
64.tir
64,mpr
64,tpr
128,mir
128.tir
128,mpr
128,tpr

256, mir,mpr
256,tir,tpr
512,mir,mpr
512,1ir,tpr
1024,mir,mpr
1024 tlr tpr

Figure 4.43 Lookup Ratio and Prefetch Ratio versus the Number of Processors, 64Kbyte
Cache Size, 32-byte Blocksize, Rectangular Decompos ition, Set-Associative Mapping.

217

graphs parallels those offered for the direct mapping function; however, for some grid
sizes the direct mapping LR and PR are slightly higher. In general, the LR is intui-
tively higher than the PR and the tagged prefetching ratios are higher than the

prefetch-on-miss ratios.

4.3. Multiprocessor Speedup

Figure 4.44 represents the speedup versus the number of processors for demand
fetching, both cache sizes, all grid sizes, the square partition and a single bus inter-
connection. The graphs show a speedup range of 1.25 to 3 for 2 to 16 processors,
respectively. As the cache size doubles, the speedups remain relatively constant for
all grid sizes except the 256x256 point grid size. In this case the speedup increases
slightly. Figure 4.45 also illustrates this same speedup for the rectangular partition.

These graphs show a slightly higher speedup than the square partition.

Figures 4.46 and 4.47 also illustrate the speedup versus the number of proces-
sors and other features identical to the previous speedup curves with the exception
that the prefetch-on-miss fetching strategy is used. All of these graphs show a
speedup range from 1 to 3 as the number of processors vary from 2 to 16. However
the 128x128 and 256x256 point grid sizes show a decrease in speedup for the 16 pro-
cessor system. Also there is no significant discrepancy between the two cache sizes
and between the two decomposition strategies. Figures 4.48 and 4.49 also present the
speedup curves for the tagged prefetching strategy with results parallel to the

prefetch-on-miss strategy.

SPEEDUP

SPEEDUP

64x64
128x128
256x256
5§12x512
1024x1024

KR RN

i P
‘“’2

a. 32Kbyte Cache Size

64x64
128x128
256x256
512x512
1024x1024

KA RN

b. 64Kbyte Cache Size

Figure 4.44 Sperdup versus the Number of Processors, Demand Fetching,
Square Decompgsition, Both Cache Size, Single Bus, 32-byte Blocksize.

218

219

4
o 3 - ‘
E €+ 64x64
H:' -~ 128x128
o, 1 = 256x256
»n -~ 512x512

2 1 & 1024x1024

1 v T v T Y 1 T

0 1 2 3 4 5
log P
2
a. 32Kbyte Cache Size

4

3 -
e O 64x64
a -~ 128x128
E & 256x256
7] -0~ 512x512

2 d & 1024x1024

1 1 L} 1] I

0 1 2 3 4 5
log P
2

b. 64Kbyte Cache Size

Figure 4.45 Speedup versus the Number of Processors, Demand Fetching, Rectangular
Decomposition, Both Mapping Functions, Single Bus, 2 2-byte Blocksize.

220

3
a 2 - - B64x64
2 - 128x128
i o 256x256
g - 512x512

- = 1024x1024

0 T T v T T I

0 1 2 3 4 5
log P
2
a. 32Kbyte Cache Size

3

2 -
n=. € 64x64
a - 128x128
w o 256x256
o - 512x512

17 - 1024x1024

0 Y T Y T v T v T v

0 1 2 3 4 5
log P
2

b. 64Kbyte Cache Size

Figure 4.46 Speedup versus the Number of Processors, Prefetch-on-miss, Square
Decomposition, Both Mapping Functions, All Grid Sizes, 32-byte Blocksize.

221

3
8 2+ <0 B84x64
=] -~ 128x128
m & 256x256
% %= 512x512
17 = 1024x1024
o L] [] | LI
0 2 3 4 5
[P
g 2
a. 32Kbyte Cache Size
3
2 -
S o 64x64
5 % 128x128
W o 256x256
7 - 512x512
19 & 1024x1024
0 S s g S
0 1 2 3 4 5
log P
2

b. 64Kbyte Cache Size

Figure 4.47 Speedup versus the Number of Processors, Prefetch-on-miss, Rectangular
Decomposition, Both Cache Sizes and Mapping Functions, All Grid Sizes, 32-byte Blocks.

SPEEDUP
N
1

Py
0 1 2

log P

3

oo

a. 32Kbyte Cache Size

SPEEDUP
N
Il

b. 64Kbyte Cache Size

KX RN

taddntd

222

64x64
128x128
256x256
512x512
1024x1024

64x64, SA
64x64,DM
128x128
256x256,SA
256x256,DM
512x512
1024x1024

Figure 4.48 Speedup versus the Number of Processors, Tagged Prefetching, Square
Decomposition, Both Cache Sizes and Mapping Functions, All Grid Sizzes, 32-byte Blocks.

223

4

3-
a o & 64x64
3 - 128x128
i 21 & 256x256
& . - 512x512

-2 1024x1024
1 -
0 B e e e —
o 1 2 3 4 5
.log P
2
a. 32Kbyte Cache Size

4

3 -
o O 64x64
> -~ 128x128
a 2 - - 256x256
W - 512x512
d . & 1024x1024

1 -

o § |} | §

0 5
log P
2

b. 64Kbyte Cache Size

Figure 4.49 Speedup versus the Number of Processors, Tagged Prefetching, Rectangular
Decomposition, Both Cache Sizes and Mapping Functions, All Grid Sizes, 32-byte Blocks.

224

Figure 4.50 shows the speedup versus the number of processors for the demand
fetching policy, both cache sizes and mapping functions, the full crossbar intercon-
nection, and all grid sizes. The curves show that the speedup is independent of the
PDE grid size with a range from slightly less than 2 to 13 as the number of processors
vary from 2 to 16. Observe that the rectangular decomposition strategy is minimally

higher than the square partition.

Figures 4.51 and 4.52 present the full crossbar speedups for the prefetching-on-
miss and tagged prefetching fetching strategies, respectively. With the exception of
the 128x128 and 256x256 point grid sizes, these speedup curves are similar to the
demand fetching speedups. The 128x128 and 256x256 point grid sizes have smaller
speedups for the 16 processor system for prefetch-on-miss strategy (in comparison

with demand fetching speedups) and even smaller values for tagged prefetching,.

Figure 4.53 displays the iteration time degradation versus the number of proces-
sors for both cache sizes, mapping functions and interconnection networks. The
square decomposition strategy is used and a 32-byte blocksize is assumed. Both map-
ping functions show a range between 1.05 and 1.45 for the 64x64 point PDE grid size
when using the single bus interconnection network. This is the largest degradation
present, a direct result two factors. Firstly, the infinite MRD for the 64x64 point grid
size results in a substantial increase in the enabled coherence effective memory
access time over the disabled coherence access time. Secondly, the additional waiting
time resulting from the single bus system contributes to the iteration time degrada-

tion. This waiting time is not a factor for the full crossbar system.

14
"12 5
10

4-::

Full Crassbar SPEEDUP
©
1

2-

log P
2

a. Square Decomposition

14
12 <
f0-
8 -

6 ~

Full Crossbar SPEEDUP

| P
og2

b. Rectangular Decomposition

Figure 4.50 Speedup versus the Number of Processors, Demand Fetching, Both

 ER KN

L EE RN

64x64
128x128
256x256
512x512
1024x1024

64x64
128x128
256x256
512x512
1024x1024

Cache Sizes and Mapping Functions, 32-byte Blocksize, All Grid Sizes.

225

Full Crossbar SPEEDUP

Full Crossbar SPEEDUP

226

14
12 4
10
8-. < 64x64
| -+~ 128x128
6 & 256x256
| %~ 512x512
4 % 1024x1024
2 -
0 T T ¥ T v T T
0 1 2 3 4 5
! P
9 2
a. Sguare Decomposition
14
12 +
10
3.. <O 64x64
i -~ 128x128
6 - o 256x256
4 - 512x512
4 = 1024x1024
2 -
o |}] I L}
0 1 2 3 4 5
log P
2

b. Rectangular Decomposition

Figure 4.51 Speedup versus the Number of Processors, Prefetch-on-miss, Both
Cache Sizes and Mapping Functions, 32-byte Blocksize, All Grid Sizes.

227

14
2
S
8 10 -
w] @ 64x64
@ & - 128x128
§ 6 - < 256x256
@ | -~ 512x512
g_ 4 = 1024x1024
- 2-
0 ¥ I v T v T v T
0 1 2 3 4 5
log P
2
a. Square Decomposition
14
12 4
- .
=
2 10 4
& 8 - 128x128
§ 4 o 256x256
3 6 - -~ 512x512
o 1 & 1024x1024
Q 4 -
S 4
ki
2 -
]
0 1} |] ol I ¢ ¥ b
0 1 2 3 4 5
log P
g 2

b. Rectangular Decomposiiion

Figure 4.52 Speedup versus the Number of Processors, Tagged Prefetching, Both
Cache Sizes and Mapping Functions, 32-byte Blocksize, All Grid Sizes.

1.5
| —1
2
= 14+
©
g
g 13
-]
E
™
= 1.2+
S
o
2 1.1 4
1.0
0 5
log P
g2
a. Direct Mapping
1.5
[~ L
2
T 1.4 4
b -]
g
o
a 1.3
[
E
[= -
= 1.2
9
g 1.1+
=
1.0
0 5

b. Set-Assocaitive Mapping

ELE XN KN

thodédhta

64,32K,sb
64,32K,cb
64,64K,sb
64,64K,cb
256,32K,sb
256,32K,cb
256,64K,sb
256,64K,cb

64,32K,sb
64,32K,cb
64,64K,sb
64,64K,cb
256,32K,sb
256,32K,cb
256,64K,sb
256,64K,cb

228

Figure 4.53 Iteration Time Degradation versus the Number of Processors, Both Cache
Sizes, Mapping Functions and Interconnection Networks, Square Decomposition.

229

For PDE grid sizes larger than 64x64 points, the iteration time deéradation
range is between 1.01 to 1.1. Both mapping strategies show this degradation is
greater for single bus systems as discussed above. Figure 4.54 presents the iteration
time degradation for the rectangular decomposition strategy. The behavior of the
curves shown in this graph are very similar to the square decomposition curves; how-
ever, with a range between 1.02 and 1.38, the degradation for the 64x64 point PDE
grid size is smaller. This is because for the 32-byte blocksize, the rectangular MR and

XIs are slightly higher than their square decomposition counterparts.

4.4. SOR Conclusions

When demand fetching is used the MR generally decreases as the cache block-
size increases. The value usually increases as the number of processors increase for
smaller grid sizes and is independent of of the number of processors in the system for
larger grid sizes. For smaller grid sizes its value is small (not greater than 0.03);
however, larger grid sizes produce MRs up to 0.2. The direct mapping function has a
better MR than set-associative mapping while the square decomposition strategy
results in a better MR for lower blocksizes. On the other hand the rectangular parti-
tion produces a better MR for larger blocksizes. For the most part, the MRD is

infinite for the 64x64 and 128x128 point grid sizes and 1.0 for the larger grid sizes.

The IR and prXICO also decrease as the cache blocksize increases but increase
as the number of processors increase; however, their values are generally lower than
the MR values. Furthermore, the IR and prXICO curves are very similar in nature.

This is because they occur as a result of accessing the same shared blocks. Moreover,

2 3 4
i P
°gz

a. Direct Mapping

1.4
[
2
T 1.3 -
b=
:
@ 1.2
£
=
[
(-]
§ 1.1 4
1.0
0
14
[
2
5 13-+
z
E 1.2 -
- .
=
X}
] 1.1+
2
1.0
0

b. Sei-Associative Mapping

AR L KN KY

ttodddtd

64,32K,sb
64,32K,cb
64,64K,sb
64,64K,cb
256,32K,sb
256,32K,cb
256,64K,sb
256,64K,cb

64,32K,sb
64,32K.,cb
64,64K,sb
64,64K,cb
256,32K,sb
256,32K,cb
256,64K,sb
256,64K,cb

230

Figure 4.54 lteration Time Degradation versus the Number of Processors, Both Cache
Sizes, Mapping Functions and Interconnection Networks, Rectangular Decomposition.

231

the prXICS also has similar properties but its value is generally lower than all of the

other parameters considered.

Introducing prefetching strategies produces similar behavior for the MR curves
with better performance for tagged prefetching, followed by prefetch-on-miss. In
contrast, while the prefetching IR, prXICO and prXICS parameters result in behavior
similar to their demand fetching counterparts, the tagged prefetching values exhibit
the worst performance, followed by prefetch-on-miss and finally demand fetching.
The lookup ratio and prefetch ratio generally increase as the number of processors
increase for smaller grid sizes and are independent of the processor configuration for
larger grid sizes. Therefore, their behavior parallels the MR. In fact, the LR is identi-
cal to the MR for the prefetch-on-miss fetching strategy. The tagged prefetching LR
is typically higher than the prefetch-on-miss LR. This also holds for the PR parame-

ters. Finally, the PR is normally lower than the LR.

With a lower speedup bound ranging from 1.25 to 3 for 2 to 16 processors,
respectively, the single bus interconnection network has prohibitive potential. Utiliz-
ing the prefetching strategies does not improve this speedup, in fact the parameter
decreases for some grid sizes. In comparison, an upper bound on the speedup for the
full crossbar interconnection ranges from slightly less than 2 to 13 for 2 to 16 proces-

sors. However, the prefetching strategies do not improve upon this performance.

The enabled coherence protocol results in a SOR iteration time that is between
1.01 and 1.10 times the disabled protocol time for PDE grid sizes larger than 64x64

points, and a 32-byte blocksize. The smaller grid enabled coherence protocol runs

232

between 1.05 and 1.45 times the disabled protocol time. The single bus degradation
time is intuitively hisher than the full crossbar degradation time. The mapping stra-
tegy and the decomposition strategy have no appreciable effects on the iteration time

degradation.

In summary, the MR, IR and prXICO are the major causes of performance
degradation for SOR. While the prefetching strategies lower the MR they increase the
IR, prXICO and prXICS. This results in lower speedup for some PDE grid sizes. The
rectangular decomposition strategy produces a minimally higher speedup, a direct
result of a slight improvement in all parameters studied (over the square decomposi-
tion strategy). Finally, the direct mapping function counterintuitively performs better
for several PDE grid sizes considered. All in all, cache coherence results in a iteration

time degradation of less than 1.5.

233

CHAPTER §

THE PRECONDITIONED CONJUGATE GRADIENT ALGORITHM

The point Jacobi and SOR approaches to the solution of the equation shown
below:

Ax=b .1

where A is a large MxM symmetric positive definite matrix, is to transform the prob-

lem as shown below:

Cx=Dx+b (5.2)
Here, A=C-D and the problem is solved iteratively. Another transformation of

Equation 5.1 is done by setting the situation up as a minimization problem. One such
minimization is known as the conjugate gradient problem [43]. This chapter begins
by briefly discussing the preconditioned conjugate gradient algorithm (PCG) as well
as the parallel implementation used in this study. The performance parameters
obtained from the simulation of this parallel algorithm are then presented, followed
by the multiprocessor speedup curves, the iteration time degradation and finally,

PCG’s conclusions.

5.1. Preconditioned CG

The CG algorithm, is derived in [43); however, its convergence rate is a func-
tion of the condition number [44]. For the matrix systems considered in this study

the condition number is poor and therefore the convergence rate for CG is unaccept-

234

able. This rate is improved by using a preconditioning matrix M with properties
identical to A such that A = M — N This results in the PCG algorithm shown in Table
5.1. Unfortunately, this algorithm exhibits a very low degree of parallelism. Some
attempts have been made to modify PCG to accommodate more parallelism [45].
The modified PCG (MPCG) used in this study is derived by Meurant in [46] for block
tridiagonal linear systems. This MPCG algéﬁthm is shown in Table 5.2. The precon-

ditioning matrix M for MPCG was chosen as follows:

ri=b-Ax!

po arbitrary

Fork=1,2,...
Mzk =k
by = (Mz*, 2251, Yy
b;=0
pk=z¥ 4 bk
a,= Mz, 24/(4p*, pY
x4 = 5k 4 g pk

s =¥ — g, Ap

Table 5.1 The Preconditioned Conjugate Gradient Algorithm.

235

Fork=1,2,..
MvF = Apk
a, = (r¥, 2%/(4p*, ph
Sp1 = akz(vk, ApY) - (%, 25
bryy = sk+l'I(M2k_l’ A
24 = gk 4 g pk
Pkl = rk—akApk
Zk+l = zk _ akv"

pk+1 = (Zk - akvk) +bk+1pk

Table 5.2 The Modified Preconditioned Conjugate Gradient Algorithm,

236

M = TIA™IIT (5.3)

where IT is shown below for two processors.

A, 0]
A; Ay
« 0
II= An/2 An/2 An7/‘2+1
0 A+ AL .,
An—l Ar{
0 A,

A is a block tridiagonal matrix with diagonal blocks A; i=1, .., n. The matrices A,

are computed as shown below:

Al =Dl’
A,=D,,
Al = D‘ —AIKIQH-I(]‘)AH-I’ i= n,...,n/2 -1.
2(j) is a symmetric banded matrix with 2j+ 1 diagonals whose elements are the

same as those of A;” 1 Therefore the parallel solution of My = ¢ [46] is:

wy = Q,(3)ey,
W= QJ‘(3)(C‘ - Aiwi—l)’ i= 2,...,71/2 - 1,

w, =Q,(3)c,,

237

w; = Q3)c;— AL wio), i=n-1,...m2+1,
W2 = QunBNCy = ApgWon = Alo 4 W4 1
Yn2 =Wnp

Yi=wi= QAL i i=n2-1,..1,

yl = Wt - Qi(3)Alyl—1’ i= n/2 + 1,...,".

The MPCG for a two processor system is implemented as shown in Tables 5.3a and

5.3b for processors Py and P,, respectively.

Both processors compute their respective sections of Cp W;, s and 52 and then
synchronize. Then the n/2 component of v¥ is evaluated by P . After another barrier
synchronization, the processors compute their portions of v¥ and s3. After a third
synchronization, each processor computes its own copy of the scalars 5. Finally, the
X, r,z and p vectors are computed by the processors and the processors are syn-
chronized before beginning the next iteration. Similar decompositions of IT and the

algorithm are used for four, eight and sixteen processors.
5.2. Simulation Results

5.2.1. Miss Ratio/Miss Ratio Degradation

Figure 5.1 shows the MR versus the cache blocksize for both mapping strategies
and cache sizes, all processor configurations and the 64x64 and 128x128 (64Kbyte
cache only) point grid sizes. These curves show a decrease in the MR as the cache
blocksize increases from 8 to 32 bytes and a relatively constant value for larger

blocksizes. The 32Kbyte cache size exhibits a larger MR than the 64Kbyte cache for

238

¢;= [Apk]l, i=1,..,m2

wi, i= 1,...,"/2 - l

SYNC

compute |v
SYN

s t=n2et,
=2 (P)

SYNC
s1=siss)
2_.2 2
R —Sl+52
3_.3 3
S —s1+s1

[x"“], [r""’l], i=1,..,n/72
[z"“], [pkﬂ}, i=1,.,n/2

SYNC

Table 5.3a MPCG Algorithm Executed by Processor P;.

239

¢ = ':pr"]i, i=n/2+1,..,n

= N.,n/2 4+ 1

o],), ezt

[zk+l], [pk“:,, i=n/2+1,...n

SYNC

Table 5.3b MPCG Algorithm Executed by Processor P,.

Miss Ratio, x10(-3)

Miss Ratio, x10(-3)

100
80 -
o 64,32K 2P
60 - 64,64K2P
| o 64,32K,4P
-~ 64,64K 4P
40 4 = 64,32K8P
S - sasaap
20 -
0 Y Y T 14 T T v L hd
2 3 4 5 6 7 8
a. 64x64 Point Grid Size
120
100
| @ 64K,DM,2P
80 - 64K, SA2P
] & 64K DM,4P
60 - 64K,SA 4P
| & 64K,DM,8P
40 O~ 64K,SA 8P
| -+ 64K,DM,16P
20 - -& 64K,SA,16P
0 |] L} L T | L
2 3 4 5 6 7 8

b. 128x128 Point Grid Size, 64Kbyte Cache Size

Figure 5.1 Miss Ratio versus Cache Blocksize, Buth Mapping Strategies
and Cache Sizes, Smaller Grid Sizes, All Processor Configurations.

240

241

the 64x64 point grid size. Also observe an increase in the MR as the number of pro-
cessors and the PDE grid size increase. For the 128x128 point grid size, the direct
mapping strategy has slightly better performance than the set-associative mapping
strategy. This is attributed to the contention resulting from using the LRU replace-
ment policy for 2-way set-associativity and this algorithm. The MR for some of the
larger cache sizes are not shown because their values increase substantially. This is

largely due to the placement contention among the small number of larger blocks.

Figure 5.2 presents the MR versus the cache blocksize for the larger grid sizes
and a two processor system. The parameter is generally constant as the blocksize
varies and its values are larger than the smaller grid size values. In fact, as the PDE
grid size increases, the MR increases. The set-associative mapping strategy and the
64Kbyte cache sizes exhibits better performance for these larger grid sizes. This is in
direct contrast to the smaller grid sizes where direct mapping has the better perfor-
mance. This is because the contention as a result of using the LRU replacement pol-
icy is offset by the increased contention due to the larger grid sizes. This increased
frequency is larger when using direct mapping. This also explains the relatively con-
stant MR over the range of blocksizes considered. All other processor configurations

exhibit this same behavior.

Figure 5.3 illustrates the MR versus the number of processors for a 32-byte
blocksize. For smaller grid sizes, this parameter increases as the number of proces-
sors increase. The values are independent of the blocksize for larger grid sizes. There
is also an order of magnitude increase in the MR for the larger grid sizes. This results

from the fact that the smaller grid sizes allow the cache to capture all reference

Miss Ratlo

Miss Ratlo

242

0.38
L g DRPSEENEESYC RS
0.36 - < 128,DM
-~ 128,SA
.\.__ el | ¥ 256,DM
0.34 ~ -~ 256,SA
% 512,DM
W o 5128A
b - - 1024 DM
0.32 4 W’ -4 1024,SA
0.30 T T -
2 3 4 5 6 7 8
| B
9 2
a. 32Kbyte Cache Size
0.36
0.35 —— *+—a
@ 256,DM
0.34 - 256,SA
-~ 512,SA
0.33 4 u\u—_u_._u__u = 1024,DM
° o ° -0~ 1024,SA
0-32- \A‘__.
|
0.31 | | | 1 L
2 3 4 5 6 7 8
I B
og2

b. 64Kbyte Cache Size

Figure 5.2 Miss Ratio versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, Larger Grid Sizes, Two Processors.

0.08
0.05 +
(-]
= 0.04 ~
(4
2 o034
= ’ |
0.02 +
0.01 e T ——
0 1 2 3 4
log 2 P
a. Smaller Grid Sizes
0.38
r————— A
0.36
2 » ——
=1
£ 034- "
[/}
K]
= —f———
0.32 - ; ;]
0.30 T Y T Y Y Y T
0 1 2 3 4
log P
2
b. Larger Grid Sizes, 32Kbyte Cache Size
0.36
0.35 - —_— .-
o .
b 0.34
=] :
2 _.\.ﬂ
E 0.33 -1 Wﬂ
0.32 4 o A = .
. v ¢ .- —
0.31 T T T y T
0 1 2 3 4
lo P
g 2

c¢. Larger Grid Sizes, 64Kbyte Cache Size

L ERRN

CERE R

243

= 64x64, 32K
-0~ 64x64,64K
- 128,DM,64K
-0~ 128,SA,64K

128,DM,32K
128,5A,32K
256,DM,32K
256,SA,32K
512,DM,32K
512,5A,32K
1024,DM,32K
1024,5A,32K

256,DM,84K
256,SA,64K
512,DM,64K
512,8A,64K
1024,DM,64K
1024,SA,64K

Figure 5.3 Miss Ratio versus the Number of Processors, Both Mapping Strateiges and
Cache Sizes, All Grid Sizes and Processor Configurations, 32-byte Blocksize.

244

localities. This is also demonstrated by the MRD shown in Table 5.4. Here all misses
are a direct result of invalidations for the 64x64 point grid size. The 128x128 point

grid size (64Kbyte cache) also has a relatively higher MRD.

5.2.2. Invalidation Ratio

Figure 5.4 displays the IR versus the cache blocksize for both mapping func-
tions and cache sizes, all grid sizes and two (a) and four (b) processors. This parame-
ter decreases as the cache blocksize and PDE grid sizes increase. The set-associative
IRs are slightly higher than the direct mapping IRs. This is because the lower MR for
set-associative mapping enables more invalidateable blocks to be present in the
cache. The sharp increase in the IR as the blocksize increases from 64 to 128 bytes
(four processor system) results from the fact that the 128-byte block is so large that a

large percentage of the cacheable blocks are shared and modifiable.

Figure 5.5 shows this same IR versus cache blocksize for eight (a) and sixteen
(b) processor systems. These curves also show a decrease in value as the cache block-
size increases. Figure 5.6 presents the IR versus the number of processors for both
mapping functions and cache sizes, all grid sizes and a 32-byte cache blocksize. The
figure shows an increase in the IR as the number of processors increase. Also

observed is the relative independence of the IR on the cache mapping function.

5.2.3. prXICO

Figure 5.7 illustrates the prXICO versus the cache blocksize for both mapping
strategies and cache sizes, all grid sizes and two (a) and four (b) processors. The

graphs show a decrease in value as the blocksize varies from 8 to 16 bytes, an

245

Cache CPUs PDE Gridsize

Size 64 | 128 | 256 | 512 | 1024
2 | = | 1.02 | 101 | 1.00 | 1.00
4 | e | 103101 101! 100

32Kbytes | g | o | 107 | 103 | 101 | 100
16 116 | 1.05 | 1.02 | 101
2 | = | 149 | 101 [1.00 | 100
4 | e | 182102 101! 100

6aKbytes | g | w | 221 | 103 | 101 | 100
16 510 | 1.06 | 1.02 | 101

a. Direct Mapping

Cache PDE Gridsize

sizz. | “PUS M T 128 T 256 T 53 T 1033
2 | = | 102 | 101 | L.o1 | 1.00
4 |« | 104|102 101 100

32Kbytes | g | o | 107 | 103 | 101 | 1.00
16 117 | 1.06 | 1.02 | 101
2 | e~ | 141 | 101 | 1.0l | 100
4 | « | 165] 102 101 | 100

64Kbytes | g | o | 104 | 103 | 101 1.01
16 460 | 1.06 | 1.02 | 101

Table 5.4 MPCG Miss Ratio Degradation, 32-byte Blocksize.

b. Set-Associative Mapping

Invalidation Ratlo, x10(-3)

Invalidation Ratio, x10(-3)

a. Two Processors

5
log .8

20 4

10

4

b. Four Processors

5

log B
g2

6

N

7

ttobddde

(AR REN RN

246

64x64
128,DM
128,SA
256,DM
256,SA
512,DM
512,SA
1024x1024

64x64
128x128
256,0M
256,SA
512,DM
512,SA
1024x1024

Figure 5.4 Invalidation Ratio versus Cache Blocksize, Both Mapping
Functions and Cache Sizes, All Grid Sizes, Two and Four Processors.

247

80
2
g %]
S - 64x64
2 - 128x128
£ 40+ & 256x256
S - 512x512
3 = 1024x1024
T =
£

0 —
2 3 4 5 8 7 8
log B8
a. Eight Processors
100

128x128
256x256
512x512

40 1 1024x1024
20 \\v‘

b. Sixteen Processors

Invalidation Ratlo, x10{-3)
8 8.
todd

n
W o
P
3]
»
~
@

Figure 5.5 Invalidation Ratic versus Cache Blocksiz:?, Both Mapping Functions
and Cache Sizes, All Grid Sizes, Eight and Sixteen F rocessors.

Invalidation Ratlo, x10(-3)

Invalldation Ratlo, x10(-3)

o

0 1 2 3
log, P

a. Direct Mapping

60
50 -
40 -

30 -

0 1 2 3 4
l P
092

b. Set-Associative Mapping

XA KX

KR RN

248

64x64
128x128
256x%256
512x512
1024x1024

64x64
128x128
256x256
512x512
1024x1024

Figure 5.6 invaldation Ratio versus the Number of Pracessors, Both
Mapping Functions and Cache Sizes, All Grid Sizes, 32-byte Blocksize.

249

15
i 10 1 4 64x64
9,; - 128x128
: o 256x256
3 % 512x512
x 5 - & 1024x1024
[~ 8
o | hd i v] M | v 1 |
2 3 4 5 6 7 8
log B
9,
a. Two Processors
20
i \/\w <= 64x64
S 10 - 128x128
ol o 256x256
g < 512x512
x = 1024x1024
s |
2 3 4 5 6 7 8
log B
g 2

b. Four Processors

Figure 5.7 prXICO versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, All Grid Sizes, Two and Four Processors.

250

increase in value as the blocksize increases from 16 to 32 bytes and relatively small
decreases in value as the blocksize varies from 32 to 128 bytes. The increase in this
parameter as the blocksize increases from 16 to 32 bytes is attributed to the fact that
the 32-byte cache size marks a transition that allows a shared block to be modified by
more than one processor, increasing the number of XICOs performed per algorithm

iteration.

Figure 5.8 presents the prXICO versus the cache blocksize for the eight (a) and
sixteen (b) processor systems. The behavior of the graphs are similar to the two and
four processor curves. The prXICO versus the number of processors for both map-
ping strategies and cache sizes, all grid sizes and a 32-byte blocksize is shown in Fig-

ure 5.9. Like the IR, this parameter increases as the number of processors increase.

5.24. prXICS

Figure 5.10 presents the prXICS versus the cache blocksize for both mapping
strategies and cache sizes, all grid sizes and two processors. The direct mapping
curves generally decrease as the blocksize increases from 8 to 16 bytes followed by
an increase in value for the larger grid sizes. This is because increased contention
facilitated by direct mapping results in an increase in the number of RO->EXs per-
formed per iteration. This is not present for the set-associative mapping strategy;
therefore, the prXICS decreases as the blocksize increases. Also observe the decrease

in this parameter as the cache size doubles.

Figure 5.11 displays the prXICS versus the cache blocksize and all other

features considered for the four processor system. This parameter decreases in value

PrxiCo, x10(-3)

prxiCo, x10(-3)

251

30

20 - v
64x64
128x128
10 “1 w

256x256.
512x512
1024x1024

KR KX

20
n\/ - 1o
10 - % 256x256
& 512x512
- 1024x1024
/ﬁ — by
- ° - —
0 T T T T T
2 3 4 5 6 7
log B
92

b. Sixteen Processors

Figure 5.8 prXICO versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes All Grid Sizes, Eight and Sixteen Processors.

PrXICO, x10(-3)

252

30

20 +
64x64
128x128
| 256x256

512x512
1024x1024

KA KR

-— ——"

—— -

o M 1] L] v I v §
0 1 2 3 4 5

log P

2

Figure 5.9 prXICO versus the Number of Processors, Both Mapping
Strategies and Cache Sizes, All Grid Sizes, 32-byte Blocksize.

253

10 12
'] \/ .
~ 9 g -
6 - @ 64 g | = 64
* - 128 "‘6- - 128
] - 256 a o 256
4" - 512 X] - 512
a \’_/ - 1024 84 4 - 1024
21 2+ \—N
0 —rTr—T—r—Tr—r—r——r) e e
2 3 4 5 6 7 8 2 3 4 5 6 7 8
I B
lc:g2 B 092
a. 32Kbyte Cache, Direct Mapping b. 32Kbyte Cache, Set-Associative Mapping
8
7 4
e] z
5 - o 128 e o 128
-‘::] - 256 o - 256
& 4 o 512 3 & 512
s 4 - 1024 ’a‘_ -~ 1024
= \./
2-
1 ’\’_/
1 r9 ‘3 srlirrrre v
2 3 4 5 6 7 8 8
| B
092
c. 64Kbyte Cache, Direct Mapping d. 64Kbyte Cache, Set-Associative Mapping

Figure 5.10 prXiCS versus Cache Blocksize, Both Mapping Sirategies and Cache Sizes,
All Grid Sizes, Two Processors.

prxics, x10(-3)

prXics, x10(-3)

1.0
0.8+
0.6 1
0.4 4
0.2 4 \——0——0
0.0 -
2 3 4 5 6 7
B
log 2
a. Direct Mapping
1.2
1.0 1
0.8 4
0.6 -
0.4~
0.2] *_/‘
-0.0 ;':%9—_
2 3 4 5 6 7 3
log 2 B

b. Set-Associative Mapping

128,DM,32K
128,DM,64K
256,DM
512,0M,32K
512,DM,64K
1024,DM,32K
1024,DM,64K

todddtd

O 128,SA
- 256,SA
& 512,SA
-0~ 1024,SA

Figure 5.11 prXICS versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, All Grid Sizes, Four Processo:s.

254

255

as the blocksize increases from 8 to 32 bytes and remains relatively constant for
larger blocksizes. The 128x128 point grid size and the set-associative mapping stra-
tegy is the only exception. This is because the grid size is so small that the locality is
captured and the 2-way set-associative mapping function allows fewer block conten-
tions as the blocksize increases. This in turn reduces the number of RO->EXs per-

formed per iteration, the major cause of XICSs.

Figure 5.12 illustrates the prXICS versus the cache blocksize and all other
features simulated for the eight processor system. For grid sizes larger than 128x128
points, this parameter decreases slightly as the cache blocksize increases. When using
direct mapping, the 128x128 point grid prXICO decreases as the blocksize increases
from 8 to 16 bytes and then increases for the larger grid sizes. This is because the
increased contention for the larger blocksizes causes more replacements and therefore
more RO->EXs to be performed. The 2-way set-associative mapping function
reduces this contention, resulting in a decrease in the prXICS as the blocksize
increases from 8 to 128 bytes. Although not shown, the 128-byte blocksize (set-
associative mapping) is large enough to increase block contention to the point were
the prXICS increases substantially in value. Finally, for the 128x128 point grid size,

observe the reduction in the prXICS as the cache size doubles.

Figure 5.13 shows the prXICS versus the cache blocksize and all other features
considered for the sixteen processor system. The curves show a decrease in this
parameter as the cache blocksize increases; however, the larger grid sizes do not
demonstrate considerable discrepancies in value. The prXiCS values for the smailer

grid sizes and larger blocksizes are not shown because their values are an order of

prXiCs, x10(-3)

prXicCs, x10(-3)

2 3 4 5 6 7 8
B
log 2
a. Direct Mapping
4
3 =
2 -

2 3 4 5 6 7 8

log 8

b. Set-Associative Mapping

XA RN

LKA RN

256

128,32K
128,64K
256x256
512x512
1024x1024

128,32K
128,64K
256x256
512x512
1024x1024

Figure 5.12 prXICS versus Cache Blocksize, Both Mapping Strategies

and Cache Sizes, All Grid Sizes, Eight Processors.

pPrxics, x10(-3)

prxiCs, x10(-3)

257

128,32K
128,64K
258,32K
256,64K
512,32K
512,64K
1024,32K
1024,64K

tEokddde

log , P

a. Direct Mapping

128,32K
128,64K
256x256
512,32K
512,64K
1024,32K
1024,64K

tokdd

b. Set-Associative Mapping

Figure 5.13 prXICS versus Cache Blocksize, Both Mapping Strategies
and Cache Sizes, All Grid Sizes, Sixteen Processors.

258

magnitude larger than the values shown in the figure. This primarily results from
increased contention and therefore an increase in the number of RO->EXs performed

for these larger blocksizes.

Figure 5.14 presents the prXICS versus the number of processors for both map-
ping strategies and cache sizes, all grid sizes and a 32-byte blocksize. All curves
show a sharp decrease in value as the number of processors increase from two to four
processors. The parameter then increases as the number of processors increase
beyond four with the exception of the 128x128 point grid size. In this case, the
prXICS decreases as the number of processors increase from eight to sixteen. This is

because the grid size/processor tuple is such that fewer block contentions oceur.

5.2.5. Prefetching Strategies

Figure 5.15 offers the MR versus the number of processors for all fetching stra-
tegies, small grid sizes, both mapping functions and cache sizes and a 32-byte block-
size. While all curves indicate an increase in this parameter as the number of proces-
sors increase, the tagged prefetching policy exhibits the best performance, followed
by prefetch-on-miss and finally demand fetching. Also, as the number of processors
increase, the differences beiween these fetching strategies increase. There are no
differences between the values of the direct mapping and set-associative MRs for the
64x64 point grid size; however, direct mapping performs better than set-associative
mapping for the 128x128 point grid size. This is because the set-associative mapping
strategy does not effectively capture the reference locality for this grid size/algorithm

combination.

prXICS, x10(-3)

prXICS, x10(-3)

8
6 - - 128,32K
~o- 128,64K
= 256,32K
4 - -~ 256,64K
= 512,32K
= 512,64K
. -+ 1024,32K
- 1024,64K
0
0 1 2 3 4 5
I P
9 2
a. Direct Mapping
8
6 <@ 128,32K
- 128,64K
< 256,32K
4 ~ -~ 256,64K
= 512x512
- 1024,32K
5 -+ 1024,64K
1
0 Y
0 1 2 3 4 5
log 2P

b. Set-Associative Mapping

Figure 5.14 prXICS versus the Number of Processors, Both Mapping
Strategies and Cache Sizes, All Grid Sizes, 32-byte Blocksize.

259

60 260

_ 50
2 . < 64,df32K
,O; . 40 - == 64,pom,32K
& . & 54,ipf,32K
= 30 -~ 64,2164K
-] & 64,p0m,64K
3 o 64,ipf,64K
= 20 ~
i0 v T M T ¥ T
0 1 2 3 4
log , P
a. 64x64 Point Grid Size, Direct Mapping
60
g %7
S 1 @ 64,df32K
® 40 - - 64,pom,32K
-] . o 64,1pf,32K
= -+ 64,df64K
5 3 - 64,pom,64K
s] o 64,1pt64K
20 -4
10
0
b.
60
50 -
9 1 -2 128,df,64K,DM
g 40 4 - 128,pom,64K,DM
» J - 128,1pf,64K,DM
g 30 -~ 128,df,64K,SA
& _ = 128,p0m,64K,SA
@ o 128,1pf,64K,SA
= 20 -
10 v | d 1] * 1§ A 1
0 1 2 3 4 5
log ,P

C. 128x128 Point Grid Size, 64Kbyte Cache Size

Figure 5.15 Miss Ratio versus the Number of Processors, All Fetching Strategies,
Small Grid Sizes, Both Mapping Functions and Cache Sizes, 32-byte Blocksize.

261

Figure 5.16 presents the MR versus the number of processors for all fetching
strategies, both mapping functions and cache sizes, the 256x256 point grid size and a
32-byte blocksize. All curves show tagged prefetching exhibiting the better perfor-
mance, followed by prefetch-on-miss and demand fetching, respectively. The set-
associative mapping function performs better than direct mapping and the 64Kbyte
cache size exhibits the better performance for direct mapping. There are negligible
differences between the MRs of the two cache sizes for the set-associative mapping
strategy. All curves also show slight decreases in value as the number of processors
increase. This is because the cache does not capture an acceptable portion of the
reference locality for PCG. As a result, for each iteration, every first reference to a
block causes a miss. For a given grid size, as the number of processors increase, the
number of blocks referenced per algorithm iteration decreases, resulting in a decrease
in the MR. All other larger grid sizes possess MR characteristics similar to this
256x256 point grid size.

Figure 5.17 illustrates the IR versus the number of processors for all fetching
strategies, both cache sizes, direct mapping and a 32-byte blocksize. This parameter
increases as the number of processors increase. For all grid sizes, both tagged pre-
fetching and prefetch-on-miss possess a higher IR than demand fetching. Since the
MRs for these prefetching strategies are smaller than the demand fetching MR, more
invalidateable blocks remain in the cache, resulting in the higher IRs. Note that there
are very small discrepancies between the two prefetching IRs. Also observe that as
the PDE grid size increases the IR decreases. Figure 5.18 shows the IR versus the

number of processors for the set-associative mapping strategy. The behavior of these

262

0.33
© 256,df,32K
% =%~ 256,pom,32K
(.5 0.32 o 256,tpf 32K
2 ' - 256,df,64K
S - 256,pom,64K
0 256,pf 64K
0.31 ——————————
0 1 2 3 4 5
log P
°°z
a. Direct Mapping
0.318
& 256,df,32K
2] - 256,p0m,32K
) o 256,tpf,32K
[+ . - y bpoty
@ o314 -~ 256,df,64K
= - 256,pom,64K
O 256,1pf,64K
0.312
0.310 e B R — v
0 1 2 3 4 5

log P
g2

b. Set-Associative Mapping

Figure 5.16 Miss Ratio versus the Number of Processors, All Fetching Strategies, Both
Mapping Functions and Cache Sizes, 256x256 Point Grid Size, 32-byte Blocksize.

L g g | § ¥ L}

log P~
°9,

E-g=

a. 64x64 and 128x128 Point Grid Sizes

3
log , P

b. 256x256 and 512x512 Point Grid Sizes

60
& 50
- o
]
g 407
S)
(4 30
=)
8
§ ¥
s 10
s e
0
0
- 20
2
e
E
g
2
10
k-4
T
3
g
£
0
0
4
g
(-]
* 3 1
g
2
[— 2'1
o
L
g
0

XEEEY

Figure 5.17 Invalidation Ratio versus the Num
Both Mapping Functions and Cache Sizes, Di

3
logzP

o

c. 1024x1024 Point Grid Size

AR R RN RN EY:

S LE RN RN

64x64,df
64x64,pom
64x64,tpf
128x128,df
128,32K,pom
128,64K,pom
128,32K,tpf
128,64K tpf

256,32K,df
256,84K,df
256,32K,pom
256,64K,pom
256,32K, tpf
256,64K,1pf
512,32K,df
512,64K df
512,32K,pom
512,64K,pom
512,32K,1pf
512,64K,1pf

1024,32K,df
1024,64K,df
1024,32K,pom
1024,64K,pom
1024,32K,tpf
1024,64K,tpf

ber of Processors, All Fetching Strategies,
rect Mapping, 32-byte Blocksize.

263

264

60
% 50
] . @ 64x64,df
5 404 - 64x64,pom
g] o 64x64,tpf
3 30 - -~ 128x128,df
H 1 = 128,32K,pom
-§ 20 - O 128,64K,pom
2] -+ 128,tpf
E 10 -
0 -
0 3 5
-]
log ,
a. 64x64 and 128x128 Point Grid Size
20
)
-3 . @ 256x256,df
x -~ 256x256,pom
% o 256x256,tpf
[\ 10 - = 512x512df
s = 512,32K,pom
s € 512,64K,pom
% -+ 512,32K, tpf
g 4 512,64Ktpf
0 L ¥ 4 | 1 1’
0 1 5
log 2l='
b. 256x256 and 512x512 Point Grid Sizes
4
g
e 3-
ol @ 1024,32K,df
2 - 1024,64K,df
P 2 - o 1024,32K,pom
S -0~ 1024,64K,pom
= . & 1024,32Ktpf
3 ; o 1024,64K tof
2]
>
£
0 r r T
0 1 2 3 5
log , P

¢. 1024x1024 Point Grid Size

Figure 5.18 Invalidation Ratio versus the Number of Processors, All Fetching Strategies,
Both Mapping Functions and Cache Sizes, Set-Associa.ive Mapping, 32-byte Blocksize.

265

curves are very similar to the direct mapping IRs.

Figure 5.19 displays the prXICO versus the number of processors for all fetch-
ing strategies, both cache sizes, direct mapping and a 32-byte blocksize. This parame-
ter increases as the number of processors increase with tagged prefetching and
prefetch-on-miss having approximately equal but higher probabilities when compared
to demand fetching. The lower MRs for these prefetching strategies also increase the
probability of casting out a cached block. Also note that as the grid size increases the
prXICO decreases. Figure 5.20 presents the prXICO versus the number of processors
for the 2-way set-associative mapping strategy. Like the IR, this parameter also

possesses characteristics similar to its direct mapping associate.

Figure 5.21 presents the prXICS versus the number of processors for all fetching
strategies, both mapping functions and cache sizes, smaller grid sizes and a 32-byte
blocksize. For the 64x64 point grid size (part a) the 64Kbyte prXICSs are very small.
On the other hand, the 32Kbyte prXICSs increase as the number of Processors
increase. This is because more blocks are replaced in the smaller cache size resulting
in a greater number of RO->EX operations performed for a given grid size. The
tagged prefetching values are slightly higher than the prefetch-on-miss values and the
set-associative prXICS exhibits better performance than the direct mapping values.
This also occurs as a result of the increase in the frequency of replaced blocks for
tagged prefetching and direct mapping. When prefetch-on-miss is used with a
32Kbyte cache size the prXICS for the 128x128 point grid size increases by an order
of magnitude. The grid size/cache size/algorithm combination are the three major

factors contributing to this substantial increase. Also observe the set-associative

30
g -
[—]
*
o
[$)
5 10 <
a
e) [) |
0 1 2 3 4 5
log ,P
7 a. 64x64 and 128x128 Point Grid Sizes __
6-
7 54
o o
2 3-
(-8 p
2- Uéj
1 LB | | 1] T v
0 1 4 5
IogzP
b. 256x256 and 512x512 Point Grid Sizes
1.6
—_ 1.4+
A
e T
3
- 1.2
8
x
e 1.0
0.8 . e T —
0 1 2 3 4 5
" log,P

c. 1024x1024 Point Grid Size

tededdd

phédete

266

64x64,df
64x64,pom
64x64,1pf
128x128,df
128,32K,pom
128,64K,pom
128x128,tpf

256x256,df
256x256,pom
256x256,tpf
512x512,df
512x512,pom
512x512,tpf

O 1024x1024,df
-~ 1024x1024,pom
2 1024x1024,tpf

Figure 5.19 prXICO versus the Number of Processors, All Fetching Strategies, Both
Mapping Functions and Cache Sizes, Direct Mapping, 32-byte Blocksize.

30
9
s 20 -
*
o
o
2 1] %
[- %
o |] L) v | §
0 1 5
log 2 P
a. 64x64 and 128x128 Point Grid Sizes
7
6 L
g]
g °7
»
g 47
9 -
x 3 -
n -
2 -
1 B L e e —
0 1 2 3 4 5
log 2P
b. 256x256 and 512x512 Point Grid Sizes
i 1.4 -
'o_ o
E 3
°- 1.2 “
o
x
o 1.0+
0.8 v I v T v T ’ T v
0 1 2 3 4 5

c. 1024x1024 Point Grid Size

267

64x64,df
64x64,pom
64x64,1pf
128x128,df

- 128,32K,pom
128,64K,pom
128x128,tpf

toddhéd

256x256,df
256x256,pom
256x256,tpf
512x512,df
512,32K,pom
512,64K,pom
- 512x512,tpf

A RE R

< 1024x1024,df
-~ 1024,32K,pom
& 1024,64K,pom
~0- 1024x1024,tpf

Figure 5.20 prXICO versus the Number of Processors, All Fetching Strategies, Both
Mapping Functions and Cache Sizes, Set-Associative Mapping, 32-byte Blocksize.

268

30
& o 64,32K,df,sa
z - 64,32Kp,sa
';. & 64,64Kp,tsa
] < 6432Ktsa
X & 64,32K,p,dm
a8 10 © 64,64K,p,t,dm
- 64,32K 1t dn
o T -
0 1 2 3 4
- ‘
log !
a. 64x64 Point Grid Size
600
500 -
¥ 400+
2 L
X 004 < 128,32K,p,sa
8 j - 128,32K,p,dm
% 200+
100
0 v ¥ 1 1 1
0 2 3 4 5

b. 128x128 Point Grid Size, 32Kbyte Cache Size, Prefetch-on-miss

Figure 5.21 prXICS versus the Number of Processors, All Fetching Strategies, Both
Mapping Functions and Cache Sizes, Smaller Grid Siz3s, 32-byte Blocksize.

269

prXICS is larger than its demand fetching counterpart. This counterintuitive behavior

is explained in Section 5.2.4.

Figure 5.22 illustrates the prXICS versus the number of processors for all fetch-
ing strategies, both cache sizes, larger grid sizes, direct mapping and a 32-byte block-
size. This parameter increases as the number of processors increase from four to six-
teen. For grid sizes larger than 128x128 points this parameter decreases as the
number of processors increase from two to four. This behavior is explained in Section
5.2.4. Again, demand fetching has the best performance, followed by prefetch-on-
miss and finally tagged prefetching. Also, for reasons discussed above, the 64Kbyte
cache has a higher prXICS than the 32Kbyte cache size. Furthermore, as the PDE

grid size increases, the prXICS decreases.

Figure 5.23 displays the prXICS versus the number of processors and other
features identical to the previous figure with the exception that the set-associative
mapping function is used. Excluding the prefetching 256x256 point prXICS (64Kbyte
cache only) the behavior of this parameter for this mapping function is similar to that
of the direct mapping prXICS; however, the set-associative prXICS is generally less
than its direct mapping associate. For the 64Kbyte cache size, the prefetching, set-
associative 256x256 point prXICS is higher than the direct mapping value. This is
because the grid size/cache size/cache placement combination is conducive for this

behavior.

Figures 5.24 and 5.25 present the LR and PR versus the number of processors

for both prefetching strategies and cache sizes, a 32-byte blocksize and direct and

PrXICS, x10(-3)

3

prXIics, x10(3) '
o 8 3 8 38 8

2 3
log P
9,

o
-

b. 128x128 and 256x256 Point Grid Sizes

H
3]

&

30
20 -
N ‘\//
0 v N -
0 1 2 3 4 5
P
2

b. 512x512 and 1024x1024 Point Grid Sizes

L AR EEE RN KN

AR A RY

128,32K,df
128,64K,df
128,64K,pom
128,64K,tpf
256x256,df
256,32K,pom
256,64K,pom
256,32K, ipf
258,64K, tpf

512,32K,df
512,64K,df
512,32K,pom
512,64K,pom
512,32K,tpf
512,64K,tpf
1024,32K, df
1024,64K,df
1024,32K,pom
1024,64K,pom
1024,32K, tpf
1024,64K,tpf

Figure 5.22 prXICS versus the Number of Processcrs, All Fetching Strategies,
Both Cache Sizes, Larger Grid Sizes, Direct Mapping, 32-byte Blocksize.

270

AL KR RS

1 2 3 4
log ,P

a. 128x128 and 256x256 Point Grid Sizes

IR I EEXXX]

200
g
Q
=
gg 100
%
[- %
o-
20
2
-]
»
3‘ 10 4
%
.
)

Figure 5.23 prXICS varsus the Number of Processors, All Fetching Strategies,

logzP

b. 512x512 and 1024x1024 Point Grid Sizes

(3]

128,32K,d
128,64K,d
128,64K,p
128,64Kt
256,d

256,32K,p
256,64K.,p
256,32K t
256,64K,t

512,32K,d
512,64K,d
512,32K,p
512,64K,p
512,32K,t
512,64Kt
1024,32K,d
1024,64K d
1024,32Kp
1024,64Kp
1024,32Kt
1024,84Kt

271

Both Cache Sizes, Larger Grid Sizes, Set-Associative Mapping, 32-byte Blocksize.

60
b ol
50 4 /f /4 b
6‘ d L -
g w0 *
%] -
o -
3 * -
H] -
5 20 - e
9 -
10 “ o=
4 >
0 L | hd 1 L]
(4] 1 2 3 4 5
log 2 P
a. 64x64 and 128x128 Point Grid Sizes
0.33 _‘
<
0 0.32 - =
< o
s -~
o -
0.31 4 il
-
-
0.30 T Y T Y T ¥ T v
0 1 2 3 4 5
log P
2

b. 256x256 Point Grid Size

272

64,Ir,pom,32K
64,Ir.tpf,32K
64,Ir,pom,64K
64,Ir.tpf, 64K
128,Ir,pom,64K
128,Ir,tpf, 64K
64,pr,pom,32K
64,pr,ipf,32K
64,pr,pom,64K
64,pr,tpf,64K
128,pr,pom, 64K
128,pr, tpf,64K

256,Ir,pom,32K
256,Ir,tpf,32K
256,Ir,pom,64K
256,Ir.tpf,64K
256,pr,pom,32K
256,pr.,tpf,32K
256,pr,pom,84K
256,pr,tpf, 64K

Figure 5.24 Lookup Ratio and Prefetch Ratio versus the Number of Processors, Both
Prefetching Strategies and Cache Sizes, Direct Mapping, 32-byte Blocksize.

273

70
] @ 64,Ir,pom,32K
60 - < 64)Ir.tpf,32K
-] & 64,Ir,pom,84K
T 507 - 64,Ir,tpf,64K
x 40 - = 128,Ir,pom,64K
o . o 128,irtpf,64K
% 30 - -4 64,pr,pom,32K
& . -4 64,0r,1pf 32K
5 20 = 64,pr,pom,64K
4 == 64,pr,tof,64K
10 4 = 128,pr,pom,64K
d ~% 128,pr,tpf,64K
0 . e ———
0 1 2 3 4 5
|
og 2P
a. 64x64 and 128x128 Point Grid Sizes
0.0 .__—_.
-2 256,Ir,pom,32K
& - 256,Ir,tpf,32K
° 0.31 4 o 256,Ir,pom,64K
s -~ 256,I1,tpf,64K
5 = 256,pr,pom
o 256,pr,tpf
0.30 e e —
0 1 2 3 4 5

| P
092

b. 256x256 Point Grid Size

Figure 5.25 Lookup Ratio and Prefetch Ratio versus the Number of Processors, Both
Prefetching Strategies and Cache Sizes, Set-Associative Mapping, 32-byte Blocksize.

274

set-associative mapping, respectively. The characteristics of these graphs are identi-
cal to the demand fetching graphs presented and discussed in the previous section.
The prefetching behavior parallels all of the prefetching behavior discussed thus far
for this algorithm. That is, prefetch-on-miss exhibits better performance than tagged
prefetching. Also observe the intuitive behavior of the higher LRs. Finally, for rea-
sons discussed earlier, set-associative mapping has better performance than direct
mapping for the larger grid sizes; however, the converse is true for the smaller grid

sizes shown.

5.2.6. Multiprocessor Speedup

Figure 5.26 presents the speedup versus the number of processors for direct
mapping, both cache sizes, all grid sizes, a 32-byte blocksize and the single bus inter-
connection network. While the speedup increases as the number of processors
increase for large grid sizes, the actual values obtained are far from linear. Further-
more, the 128x128 and 256x256 point grid sizes reach a peak value when eight pro-
cessors are used. The 64x64 point grid sizes reaches a peak value for four processors.
The major cause of the low speedups is the single bus interconnection network. As
the number of processors increase, the upper bound on the interconnection waiting

he

"

time increases linearly. As the cache size doubles the speedup increases fo
128x128 point grid size. This is a result of the decrease in the MR for this grid size as
the cache doubles. Figure 5.27 illustrates this same speedup versus the number of
processors for the set-associative mapping strategy. These curves are similar to the

direct mapping speedups.

SPEEDUP

275

SPEEDUP

20
1.8
1 @ B84x64
1.6 - 128x128
| _ o 256x256
- 512x512
1.4 & 1024x1024
124
1.0 ety
0 1 2 3 4 5
log P
2
a. 32Kbyte Cache Size
25
20+ o 64x64
< 128x128
; & 256x256
PU - 512x512
1.5+ //\ = 1024x1024
1.0 e —
0 1 2 3 4 5
log P
2

b. 64Kbyte Cache Size

Figure 5.26 Speedup versus the Number of Processors, Direct Mapping, Both
Cache Sizes, All Grid Sizes, 32-byte Blocksize, Single Bus Interconnection.

276

20
1.8 -
.) o 64x64
2 1.6 - - 128x128
a 1 & 256x256
& 14 - 512x512
7] & 1024x1024
1.2
1.0 Y T Y T Y T Y T T
(4] 1 2 3 4 5
log P
2
a. 32Kbyte Cache Size
2.5
0-
o 2 0 G64x64
8 -~ 128x128
%) - 256x288
% == 512x512
1.5 = 1024x1024
1.0 ¥ T Y T v T ¥ 1 ¥
0 1 2 3 4 5
| P
9 2

b. 64Kbyte Cache Size

Figure 5.27 Speedup varsus the Number of Processors, Set-Associative Mapping,
Both Cache Sizes, All Giid Sizes, 32-byte Blocksize, Single Bus Interconnection.

277

Figure 5.28 displays the speedup versus the number of processors for direct
mapping, both cache sizes, all grid sizes a 32-byte biocksize and the full crossbar
interconnection network. The speedups shown in this figure increase as the number of
processors increase for all grid sizes. Assuming a lower bound interconnection wait-
ing time of 0, the full crossbar performance in considerably better than the single bus
network. Moreover, the set-associative mapping speedups are somewhat higher than
the direct mapping values as shown in Figure 5.29. Both mapping strategies show the
lower speedups obtained by the 128x128 and 256x256 point grid sizes for the
64Kbyte cache size and the 16 processor system. The 128x128 point grid size also
exhibits a lower speedup value for the 32Kbyte cache size and the 16 processor sys-
tem. With these exceptions there are no appreciable differences between the speedup

values as the cache size increases.

Figure 5.30 illustrates the speedup versus the number of processors for all fetch-
ing strategies, direct rapping, both cache sizes, a 32-byte blocksize and a single bus
interconnection network. The 64x64 and 256x256 point grid sizes are observed. Both
of these grid sizes show demand fetching exhibiting better performance than the
identical speedups for prefetch-on-miss and tagged prefetching. The additional time
needed to prefetch blocks, lookup blocks in cache directories and service the addi-
tional XIs required by prefetching do not offset the decrease in the MR for these stra-
tegies. This directly effects the effective memory access time and therefore the wait-
ing time for the single bus systems. This results in the lower speedups obtained by
these prefetching strategies. The increase in the cache size does cause slight increases

in the speedups for all fetching strategies and grid sizes considered here.

278

15

10 4 0 64x64
% %~ 128x128
o o 256x256
w < 512x512
> 5 - 1024x1024

0 |] Ll L L

0 1 2 3 4 5
log P
2
a. 32Kbyte Cache Size

15

10 + o 64x64
2 ‘ - 128x128
m o 256x256
w < 512x512
7} 5 - = 1024x1024

o] L} |]

0 1 2 3 4 5
log P
2

b. 64Kbyte Cache Size

Figure 5.28 Speedup versus the Number of Processors, Direct Mapping, Both
Cache Sizes, All Grid Sizes, 32-byte Blocksize, Full Crossbar Interconnection.

279

20
[@ 64x64
-
2 10 = 2oeaes
17}
8 - 512x512

& 1024x1024
o) | ¥]
0 2 3 4 5
[P
°9 2
a. 32Kbyte Cache Size
20
O B64x64

& -~ 128x128
8 10 4 o 256x256
w - 512x512
& = 1024x1024

0 L | —

0 1 2 3 4 5

log P
2

b. 64Kbyte Cache Size

Figure 5.29 Speedup versus the Number of Processors, Set-Associative Mapping, Both
Cache Sizes, All Grid Sizes, 32-byte Blocksize, Full Crossbar Interconnection.

20
1.8 -
1.6
% 4
Q 1.4 -
w
m o
o
» 1.2 1
o u/c/\
0.8 1] 1 1]
0 1 2 ‘4
log P
2
a. 32Kbyte Cache Size
2 ﬁ
. A
=
3 , D/?\
w
w
o
7]
0 T T T T
0 1 2 4
log P

2

b. 64Kbyte Cache Size

A RE R

AR R

280

64x64,df
64x64,pom
64x64,tpf
256x256,df
256x256,pom
256x256,tpf

64x64,df
64x64,pom
64x64,1pf
256x256,df
256x256,pom
256x258, tpf

Figure 5.30 Speedup versus the Number of Processors, All Fetching Strategies, Direct
Mapping, Both Cache Sizes, 32-byte Blocksize, Single Bus Interconnection.

281

Figure 5.31 presents the speedup versus the number of processors for all fetch-
ing strategies, the set-associative mapping function, both cache sizes, a 32-byte
blocksize and the full crossbar system. The two, four and eight processor systems
show identical speedup values for all fetching strategies. Demand fetching exhibits
better performance than both prefetching strategies for sixteen processors and the
256x256 point grid size. While the cache size does not effect the speedup of the
64x64 point grid size, the 256x256 point grid size speedup decreases as the cache size

increases for all fetching strategies. This behavior is also shown in Figure 5.29.

Figure 5.32 displays the iteration time degradation versus the number of proces-
sors for both cache sizes, mapping functions and interconnection networks con-
sidered, a 32-byte blocksize and the 64x64 and 256x256 point PDE grid sizes. This
degradation increases as the number of processors increase. Also, the degradation is
greater for the single bus interconnection network. This is because in addition to the
effective memory access time degradation, the enabled coherence waiting time also
increases the amount of time needed to execute each algorithm iteration. This waiting
time degradation is. not a factor when using the lower bound waiting time of 0 for the
full crossbar interconnection network. In general, these curves show the time needed
to execute one iteration of PCG with enabled coherence to be between 1.05 and 1.65

times the disabled coherence iteration time.

5.3. PCG Conclusions

For larger grid sizes, the MR is generally independent of the cache bocksize and

the number of of processors. Its value ranges from 0.30 to 0.38 dependent upon the

15

10 -+

SPEEDUP

log P
g2

3

oo

a. 32Kbyte Cache Size

12

10 5

SPEEDUP

-

b. 64Kbyte Cache Size

ahdhta

KR R

64x64,df
64x64,pom
64x64,tpf
256x256,df
256x256,pom
256x256,tpf

64x64,df
64x64,pom
64x64,tpf
256x256,df
256x256,pom
256x256,tpf

Figure 5.31 Speedup versus the Nurriber of Processors, All Fetching Strategies,
Set-Associative Mapping, Both Cache Sizes, Full Crossbar Interconnection.

282

1.7
1.6 4
1.5 1
1.4-
13

1.2 4

lteration Time Degradation

1.14

— 8

1.0

1.7

1 2 3 4

log P
g2

a. Direct Mapping

1.6
1.5
1.4 1
13-

Iteration Time Degradatlon

log P
g2

b. Set-Associative Mapping

thobbdee

toddded

283

64,32K,sb
64,32K,cb
64,64K,sb
64,64K.cb
256,32K,sb
256,32K,cb
256,64K,sb
256,64K,cb

64,32K,sb
64,32K,cb
64,64K,sb
64,64K,cb
256,32K,sb
256,32K,cb
256,64K,sb

Figure 5.32 Heration Time Degradation versus the Number of Processors, Both Cache
Sizes, Mapping Functions and Interconnection Networks, 32-byte Cache Blocksize.

284

PDE grid size. The set-associative mapping strategy exhibits the better performance
for the larger grid sizes. For smaller grid sizes the MR decreases as the cache block-
size increases and it increases as the number of processors increase. For a 32-byte
blocksize, the smaller grid size MRs range from 0.01 to 0.06 as the number of proces-
sors increase. Finally, the MR for the 128x128 point grid size and 64Kbyte cache size

has better performance when direct mapping is used as discussed in section 5.2.1.

The IR generally decreases as the cache blocksize and the PDE grid size
increases for all processor configurations. This value also increases as the number of
processors increase. For a 32-byte blocksize, the IR ranges from 0.005 to 0.055 as
the number of processors increase. The prXICO initially decreases as the cache
blocksize increases from 8 to 16 bytes, then it increases as the blocksize increases
from 16 to 32 bytes and finally, it gradually decreases as the cache blocksize
increases beyond 32 bytes. This occurs for all processor configurations. Also, this
parameter decreases as the PDE grid size increases. Furthermore, for a given block-
size, the prXICO increases as the number of processors increase. For a 32-byte block-
size the prXICO ranges from 0.005 to 0.015 as the number of processors increase for

a 128x128 point PDE grid size.

“The behavior of the prXICS for the FCG is not as consistent as the other param-
eters used in this stady; however, this parameter generally decreases as the cache
blocksize ..creases. As the number of processors increase from two to four, the
prXICS decreases. It then increases as the number of processors increase for larger
grid sizes or it increases as the number of processors increase from four to eight and

then decreases as the number of processors decrease from eight to sixteen (smaller

285

grid sizes). The value of the prXICS is generally lower than the other parameters
observed in this study. For example, this parameter ranges from 0.005 to 0.001 as the
number of processors increase for the 128x128 point PDE grid size. In summarizing
the demand fetching parameters, the MR has the larger value for the PCG algorithm.
This is followed by the IR, an order of magnitude lower than the MR for large PDE
grid sizes. The prXICO is slightly lower than the IR and finally, the prXICS is sub-

stantially lower than the prXICO.

Like Jacobi’s algorithm and SOR, the PCG prefetching strategies generally
reduce the MR but increases the IR, the prXICO and the prXICS. Tagged prefetching
exhibits the best MR of all fetching strategies, followed by prefetch-on-miss and
finally demand fetching. All other parameters studied show demand fetching exhibit-
ing the best performance, followed by prefetching-on-miss and finally tagged pre-
fetching. In fact, the prefetching prXICSs are considerably higher than their demand
fetching counterpart for the 128x128 and 256x256 point grid sizes. The LR and PR
also contribute to the performance degradation of the algorithm. Intuitively, the LR
is larger than the PR and the tagged prefetching LR and PR are larger than the

prefetch-on-miss values.

The single bus speedup curves are extremely low for this algorithm. This is
largely the result of the long waiting time imposed by the bus. For a 32Kbyte cache
size, the PCG algorithm speedup ranges from 1.2 to 1.7 as the number of processors
increase from 2 to 16 processors for the large PDE grid sizes. A lower bound waiting
time of zero for the full crossbar interconnection network results much larger speedup

values for this system. The same 32Kbyte cache size has a speedup range from 1.8 to

286

14.8 as the number of processors increase from 2 to 16. Moreover, the prefetching
speedup values are lower than the demand fetching values, particularly for the single
bus interconnection network. The iteration time degradation increases as the number
of processors increase for a given blocksize. For the 256x256 point grid size, the
enabled coherence protocol executes the PCG algorithm between 1.15 and 1.25 times

the disabled algorithm (per iteration).

287

CHAPTER 6

CONCLUSION

This chapter begins by comparing the values of the performance parameters
obtained for each parallel PDE algorithm studied. This includes the algorithm speed-
ups and ITDs. The motivations of this work are then discussed briefly, followed by
explanations as to what knowledge was acquired. Finally, suggestions for future work

are delineated.

6.1. Algorithm Comparisons

In the following discussions use of the phrase smaller grid sizes refers to those
grid sizes where all data used in executing the algorithm maps into unigue cache
block frames with one exception. That being some grid sizes and the 32Kbyte cache
size where some processor references to blocks holding synchronization primitives

contend with references to other data blocks.

For smaller grid sizes the MR decreases as the cache blocksize increases and it
increases as the number of processors increase. In instances where more than one
PDE grid size falls into the small grid size category, the MR decreases as the PDE
grid size increases. In cases where there are differences between the two cache sizes,
the 64Kbyte cache size exhibited the better MR. Moreover, for smaller grid sizes, the
MR is independent of the mapping strategy. For the 64x64 point grid size, the SOR

MR is higher than Jacobi’s MR and the PCG MR exhibited the worst performance for

288
this grid size.

For larger grid sizes the MR decreases as the cache blocksize increases for
Jacobi and SOR but remains relatively constant as the blocksize is varied for PCG.
Furthermore, for all three algorithms, this parameter is generally independent of the
number of processors for these larger grid sizes. Additionally, the SOR and Jacobi
MRs are relatively independent of the PDE grid size, and the decomposition strategy.
Moreover, SOR exhibits the best MR, followed by Jacobi and then PCG if set-

associative mapping is considered or by PCG and then Jacobi if direct mapping is

considered.

For all three algorithms considered, the IR decreases as the cache blocksize and
the PDE grid size increase and it increases as the number of processors increase. The
decomposition strategies considered for SOR and Jacobi show that the rectangular
IRs are larger for smaller blocksizes. The converse is true for larger blocksizes. There
are no IRs for larger grid sizes when executing Jacobi’s algorithm (direct mapping
only). This is because cache blocks exhibiting invalidation potential are replaced
before they (invalidations) occur. PCG has the largest IR followed by SOR. Although
smaller, Jacobi’s IRs are relatively close to the SOR values, especially for smaller
grid sizes. Since a smalier MR provides an environment for more block invalidations,
the slightly larger IRs for SOR are intuitive. However, while the PCG MRs are larger
than Jacobi and SOR, so are the iKs. This is because the PCG write-back probability

(0.3) is larger than the SOR (0.17) and Jacobi (0.2) values.

289

The prXICO generally decreases as the cache blocksize increases and it
increases as the number of processors increase. The exceptions are the direct map-
ping strategy when executing SOR and the smaller blocksizes when executing PCG.
Jacobi’s algorithm has the lowest prXICO, followed by SOR and finally PCG, having
the highest prXICO. Like the other parameters considered, the prXICS increases as
the cache blocksize increases and it decreases as the number of processors increase.
However, when executing Jacobi’s algorithm using the square decomposition stra-
tegy and the direct mapping function, this parameter increases as the cache blocksize
increases (see section 3.2.4 for an explanation). This decomposition strategy/mapping
function combination also produces the largest prXICS for all algorithms considered.
When considering the other decomposition strategy/mapping function combinations,
SOR produces the largest prXICS and PCG exhibits the smallest values of these

parameters.

This lower value for the PCG prXICS is inconsistent with the PCG behavior of
the previously discussed parameters when compared to the Jacobi and SOR parame-
ters. This is because prXICSs occur as a result of replacing RO blocks located in two
caches. When executing PCG, this does not occur as often as it does for Jacobi’s

algorithm and SOR.

The relationship between the algorithm parameters when prefetching is used is
identical to the relationship between these parameters when demand fetching is used.
That is, the PCG prefetching MRs are larger than the Jacobi values which in turn are
larger than the SOR values. Also, the PCG prefetching IRs and prXICOs are larger

than the SOR prefetching parameters which in turn are larger than the Jacobi

290

parameters. Furthermore, the SOR prefetching prXICSs ar- larger than the Jacobi and
PCG prXICSs, respectively. This is explained by the fact that the behavior of the pre-
fetching parameters relative to the demand fetching values are the same for all three
algorithms considered. Moreover, the PCG LRs and PRs are larger than the SOR and

Jacobi values, respectively.

Although the behavior of the prefetching parameters is similar to the demand
fetching measures, the actual values are quite different. Both prefetching strategies
intuitively reduce the MR over demand fetching; however, the probability of all XI
operations actually increase (over demand fetching values) when prefetching. The
explanation for this behavior arises from the fact that for the three algorithms con-
sidered, the successful prediction of the reference activity increases the number of
shared modifiable blocks in the private caches. This in turn increases the probability
of XI operations. Since prefetching increases the interconnection network waiting
time, causing considerable performance degradation, this increase in XI operations
adds to this degradation and results in prohibitive performance degradation for these

algorithms.

For the single bus system, the SOR algorithm exhibits the largest speedup, fol-
lowed by Jacobi’s algorithm and finally, PCG. This is largely the result of the MRs of
each algorithm, coupled with the single bus waiting time, since they (MRs) are typi-
cally an order of magnitude larger than the other parameters evaluated. The PCG
algorithm exhibits the best speedup followed closely by SOR and Jacobi’s algorithm,
recpectively. PCG also has the highest ITD followed by approximately equal SOR

and Jacobi ITDs. The direct mapping values are the only exception. When using this

291

mapping function, Jacobi’s algorithm has the highest ITD (64x64 point grid size

excluded) followed by PCG and SOR, respectively.

6.2. Research Summaries

Unfortunately, the advances obtained in developing parallel processing systems
have not occurred in the design of parallel algorithms. In fact, only recently has con-
siderable work been done in this area. The motivations of this thesis research were to
determine the extent of the performance degradation of specific parallel algorithms
(PDEs) as a result of implementing cache coherence in a multiprocessing system. The
effects of other architectural multiprocessor features directly related to cache design
as well as the effects of parallel PDE algorithm design characteristics on the perfor-
mance of these algorithms also served as inducements for this study. This work
shows that the MR is the dominant parameter for all algorithms considered. Whereas
the MR is used in evaluating the performance of caches in general, the ITD is used to

study the unique performance degradation resulting from cache coherence.

Varying cache design features such as the mapping function, cache size and
cache blocksize does not seem to have a significant impact on the performance degra-
dation of the algorithm. For example, the ITDs for PCG are relatively independent of
the mapping function as shown in Figure 5.32. The most significant impact on the
ITD is the PDE grid size and the interconnection network. More specifically, when
using a single bus system, if the PDE grid size is such that all data blocks map into
unique cache block frames, then the degradation resulting from implementing cache

coherence is optimum. This is verified by the 64x64 point ITDs of all three algo-

292

rithms. The values of these ITDs are relatively higher than all other grid

size/interconnection network combinations.

The ITDs of each algorithm show that implementing cache coherence results in
a parallel algorithm iteration time that is ne greater than 1.6 (PCG) or 1.45 (SOR and
Jacobi) times the disabled coherenc:e execution time. Furthcrmore, on the average,
implementing the coherence protocol evaluated in this study results in SOR and
Jacobi parallel algorithm iteration times beiween 5 to 10 percent slower than their
disabled coherence times. When using the direct mapping strategy, the enabled
coherence parallel algorithm iteration time falls to beiween 10 to 30 percent slower
than the disabled coherence times for Jacobi’s algorithm. Moreover, the PCG enabled
coherence parallel algorithm iteration time is generally 10 to 30 percent slower than

the disabled coherence times.

The behavior of all other parameters considered in this study is intuitive. That is,
the single-bus system, the square decomposition strategy (for a 32-byte blocksize),
32Kbyte cache size and the smaller grid sizes produce higher performance degrada-
tions than the full crossbar system, the rectangular decomposition strategy, the
64Kbyte cache size and the larger grid sizes, respectively. With the exception of the
direct mapping/Jacobi’s algorithm combination, the ITDs are relatively independent
of the cache mapping function. As a result of the considerable performance degrada-
tion for this exception, it is suggested that the the two grid implementation of
Jacobi’s algorithm studied here should not be used. Furthermore, since the two grid
implementation prohibitively degrades Jacobi’s algorithm and since PCG generally

has a higher ITD, SOR is best suited for the coherence algorithm considered in this

293

work. PCG is second best, followed by Jacobi’s algorithm.

6.3. Future Work

This work concentrated on how a specific implementation of one particular
feature of a general purpose shared-memory multiprocessor arc xtecture, cache
coherence, effects the performance of three parallel PDE algorithms. All performance
parameters obtained in this study are strongly dependent upon the actual algorithm
implementations evaluated. Therefore, generalizations about the paralle! PDE algo-
rithms considered cannot be made from the results obtained. This work serves as a
cutting edge. Numerous extensive studies are needed to obtain more detailed insights

on the performance of parallel PDE algorithms.

Firstly, other implementations of the algorithms evaluated, particularly SOR and
PCG should be studied. For Jacobi’s algorithm and SOR, only 5-point discretizations
on a square grid with rectangular and square decomposition strategies were con-
sidered. Future work may include 7-point, 9-point, 13-point or other point discretiza-
tions. Also, other decomposition strategies, like triangular and hexagonal [16] should
be evaluated. Various preconditioning matrices have been proposed for parallel
PCGs. The performance degradations resulting from these implementations need to
be researched. Moreover, the effects of other coherence protocols (software or
hardware implementable) on several implementations of individual parallel PDE
algorithms and/or the effects individual coherence protocols of the performance of

other algorithms should be considered.

294

Furthermore, only data independent algorithms are considered in this work,
Suggestions for future work include evaluating the performance degradation resulting
from implementing cache coherence on data dependent algorithms such as sorting
and searching. Moreover, only upper and lower speedup bounds are considered in this
work. A detailed model of the interconnection networks, evaluating the average wait-
ing times, is needed. This model may then be used in conjunction with parameters
used to measure performance degradation resulting from cache coherence. Finally, a
close examination of other multiprocessor architectural features such as pipelining,
input/output (I/O) and other interconnection networks is needed to provide a better
understanding of the underlying factors that cause performance degradations in paral-

lel algorithms.

[1]

(2]

[3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

REFERENCES

Voigt, Robert G., ‘“Where are the Parallel Algorithms?,” Proceedings of the
1985 National Computer Conference, vol. 54, pp.329-334 (1985).

Ortega, J. A. and Voigt, R. G., ““Solution of Partial Differential Equations on
Vector and Parallel Computers,’’ SIAM Review, 27(2), pp.140-240 (June 1985).

Young, D., Iterative Solution of Large Linear Systems, New York: Academic
Press (1971).

Manuel, Tom, ‘‘How Sequent’s New Model Outruns Most Mainframes,’’ Elec-
tronics, 60(11), pp.76-79 (May 28, 1987).

Hill, Mark, Eggers, Susan, Larus, Jim, Taylor, George, Adams, Glenn, Bose, B.
K., Gibson, Garth, Hansen, Paul, Kelier, Jon, Kong, Shing, Lee, Corinna, Lee,
Daebum, Pendleton, Joan, Ritchie, Scott, Wood, David, Zorn, Ben, Hilfinger,
Paul, Hodges, Dave, Katz, Randy, Ousterhout, John, and Patterson, Dave,
‘‘Design Decisions in SPUR,”’ Computer, 19(10), pp.8-22 (November, 1986).

Tucker, S. G., ““The IBM 3090 System: An Overview,”’ IBM System Journal,
25(1), pp.4-19 (1986).

Smith, Alan J., ‘“‘Cache Memories,” Computing Surveys, 14(3), pp.473-
530 (September 1982).

Dubois, Michel and Briggs, Faye” A., ‘‘Synchronization, Coherence and Order-
ing of Events in Multiprocessors,”” Computer, 21(2), pp.9-21 (February, 1988).

Dubois, M. and Briggs, F. A., “‘Effects of Cache Coberency in Multiproces-
sors,”’ IEEE Transactions on Computers, C-31(11) (November 1982).

Archibald, James and Baer, Jean-Loup, ‘‘Cache Coherence Protocols: Evalua-
tion Using a Multiprocessor Simulation Model,’” ACM Transactions on Com-
puter Systems, 4(4), pp.273-298 (November, 1986).

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

296

Lee, Roland L., Yew, Pen-Chung, and Lawrie, Duncan H., ‘‘Multiprocessor
Cache Design Considerations,” Proceedings of the 14th Annual International
Symposium on Computer Architecture, pp.253-262 (June 1987).

Fox, Geoffrey C. and Otto, Steve W., ‘‘Algorithms for Concurrent Processors,”’
Physics Today, 37(5), pp.50-59 (May, 1984).

Vrsalovic, Dalibor, Gehringer, Edward F., Segall, Zary Z., and Siewiorek,
Daniel P., ““The Influence of Paralle]l Decomposition Strategies on the Perfor-
mance of Multiprocessors Systems,”” Proceedings of the 12th Annual Interna-
tional Symposium on Computer Architecture, pp.396-405 (June, 1985).

Saltz, Joel H., Naik, Vijay K., and Nicol, David M., ‘‘Reduction of the Effects
of the Communication Delays in Scientific Algorithms on Message Passing
MIMD Architectures,”” ICASE Report, no. 86-4, NASA Langley Research
Center, Hampton, VA (January, 1986).

Rattner, J., “‘Concurrent Processing: A New Direction in Scientific Comput-
ing,”” Proceedings of the 1985 National Computer Conference, vol. 54, pp.157-
166 (1985).

Reed, Daniel A., Adams, Loyce M., and Patric, Merrell L., ‘“Stencils and Prob-
lem Partitionings: Their Influence on the Performance of Multiple Processors
Systems,’’ IEEE Transactions of Computers, C-36(7), pp.845-858 (July, 1987).

Dubois, Michel, *‘Throughput Analysis of Cache-Based Multiprocessors with
Multiple Buses,”” IEEE Transactions on Computers, 37(1), pp.58-70 (January
1988).

Dubois, Michel, ‘‘Effect of Invalidations on the Hit Ratio of Cache-Based Mul-
tiprocessors,’’ Proc. of the 1987 International Conference on Parallel Process-
ing, pp.255-257 (August 1987).

Brantley, W. C., McAuliffe, K. P., and Weiss, J., ‘‘RP3 Processor-Memory Ele-
ment,’”” Proceedings of the 13th Annual Symposium of Computer
Architecture (June 1986).

Cheriton, David R., Slavenburg, Gert A., and Boyle, Patrick D., ‘‘Software-
Controlled Caches in the VMP Multiprocessor,” Proceedings of the 13th
Annual Symposium on Computer Architecture, pp.366-374 (June 1986).

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

297

Cheriton, David R., Gupta, Anoop, Boyle, Patric D., and Goosen, Hendrick A.,
‘“The VMP Multiprocessor: Initial Experience, Refinements, and Performance
Evaluation,’’ (manuscript), Department of Computer Science, Stanford Univer-
sity, CA (1987).

Yeh, P. C,, “‘Shared Cache Organization for Multiple-Stream Computer Sys-
tems,”” Technical Report R-904, Corrdinated Science Lab., University of
Niineis (January, 1981,

Goodman, James R., ‘‘Using Cache Memory to Reduce Processor-Memory
Traffic,”” Proceedings of the 10th Annual Symposium on Computer Architec-
ture, pp.124-131 (June 1983).

Rudolph, Larry and Segall, Zary, ‘‘Dynamic Decentralized Cache Schemes for
MIMD Parallel Processors,’”” 11th Annual International Symposium on Com-
puter Architecture, pp.340-347 (June 1984).

Papamarcos, Mark S. and Patel, Janak H., ‘‘A Low-Overhead Coherence Solu-
tion for Multiprocessors with Private Cache Memories,’’ 11th Annual Interna-
tional Symposium on Computer Architecture, pp.348-354 (June 1984).

Archibald, J. and Baer, J. L., ‘‘An Economical Solution to the Cache Coherence
Problem,”” 11th Annual International Symposium on Computer Architecture,
Pp-355-362 (June 1984).

Frank, Steven J., ““Tightly Coupled Multiprocessor Systems Speeds Memory-
access Times,’’ Electronics, 57(1), pp.164-169 (January 12, 1984).

Katz, R. H., Eggers, S. J., Wood, D. A., Perkins, C. L., and Sheldon, R. G.,
“Implementing a Cache Consistency Protocol,”” Proceedings of the 12th
Annual International Symposium on Computer Architecture, pp.276-283 (June
1985).

Bitar, P. and Despain, A., ‘‘Multiprocessor Cache Synchronization: Issues,
Innovations, Evolution,”” Proceedings of the 13th Annual International Sympo-
sium on Computer Architecture (June 1986).

Sweazey, Paul and Smith, Alan Jay, ‘“‘A Class of Compatible Cache Con-
sistency Protocols and their Support by the IEEE Futurebus,”” Proceedings of
the 13th Annual International Symposium on Computer Architecture, pp.414-
423 (June, 1986).

298

[31] Tang, C. K., *‘Cache System Design in the Tightly Coupled Multiprocessor
System,” Proc. 1976 AFIPS National Computer Conference, pp.740-
753 (1976).

[32] Censier, L. M. and Feautrier, P., ‘‘A New Solution to Coherence Problems in
Muiticache Systems,”” IEEE Trancactions on Computers, C-27(12), pp.1112-
1118 (December 1978).

[33] Yen, Wei C., Yen, David W. L., and Fu, King-Sun, ‘‘Data Coherence Problem
in a Multicache System,”” IEEE Transactions on Computers, C-34(1), pp.56-
65 (January, 1985).

[34] Hwang, K. and Briggs, F. A., Computer Architecture and Parallel Processing,
New York: McGraw-Hill (1984).

[35] Scheurich, Christoph and Dubois, Michel, ‘‘Correct Memory Operation of
Cache-Based Multiprocessors,”” 14th Annual International Symposium on
Cumputer Architecture, pp.234-243 (June 1987).

[36] Smith, Alan Jay, ‘‘Sequential Program Prefetching in Memory Hierarchies,”’
Computer, 11(12), pp.7-21 (December, 1978).

[37] Abraham, S., Gottlieb, A., and Kruskal, C., ‘‘Simulating Shared-Memory Paral-
lel Computers,’’ Ultracomputer Note Number 70, Courant Institute, NYU (April
1984).

[38] Abu-Sufah, W. and Kwok, A. Y., ‘‘Performance Irediction Tools for Cedar: A
Multiprocessor Supercomputer,” Proceedings of the 12th Annual Symposium
on Computer Architecture, pp.406-413 (June 1985).

[39] Axerold, T. S., Dubois, P., and Elgroth, P., ‘A Simulator for MIMD Perfor-
mance Prediction--Application to the S-1 MkIla Multiprocessor,’’ Parallel
Computing, 1(3), North-Holland, pp.237-274 (1984).

[40] Dubois, Michel, Briggs, Faye® A., Patil, Indira, and Balakrishnan, Meera,
“Trace-Driven Simulations of Parallel and Distributed Algorithms in Multipro-
cessors,”” International Conference on Parallel Processing (August 1986).

[41]

[42]

[43]

[44]

[45]

[46]

299

Evans, D. J., ‘‘Parallel SOR Iterative Methods,’’ Parallel Computing, 1(1),
pp-3-18 (1984).

Jayasimha, Doddaballapur N., ‘‘Parallel Access to Synchronization Variables,”’
Proc. of the 1987 International Conference on Parallel Processing, pp.97-
99 (August 1987).

Lewis, John Gregg and Rehm, Ronald G., ‘‘The Numerical Solution of a Non-
separable Elliptic Partial Differentail Equation by Preconditioned Conjugate
Gradients,”” Journal of Research of the National E::reau of Standards, 85(5),
pp-387-390 (September-October, 1980).

Concus, P., Golub, G., and O’Leary, D., “‘Sparse Matrix Computations,”” A
Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic
Partial Differentail Equations, ed. Rose, Academic Press, New York (1976).

Lichnewsky, A., ‘“‘High Speed Computations,”’ Some Vector and Parallel
Implementations of Preconditioned Conjugate Gradient Algorithms, ed. J. S.
Kowalik, pp.343-359, Springer, Berlin (1984).

Meurant, Gerard, ‘‘Multitasking the Conjugate Gradient Method on the CRAY
X-MP/48,”’ Parallel Computing, 5(3), pp.267-280 (1987).

