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This thesis uses a multiscale approach to identify and manipulate physiologic 

and in vitro developmental milieus towards the functional repair of articular 

cartilage. The overarching goals of this work are to improve knowledge of 

cartilage physiology and to enhance functional engineering of biologic cartilage 

replacements. Towards this end, assessment and modulation of cartilage 

phenotype were undertaken at multiple levels of complexity: gene transcription, 

cytoskeletal architecture, ion channels, single cells, extracellular matrix, intact 

tissue, and the whole joint. 

The first part of this thesis focused on probing cartilage phenotype at the 

single cell level. A quantitative single cell gene expression assay was developed 

and used to quantify cell-to-cell variability and the chondrocyte response to 

growth factors. Next, the viscoelastic compressive properties of single 

chondrocytes were measured and compared to cytoskeleton organization before 

and after growth factor exposure. It was found that growth factors increased 

matrix gene expression and induced cell stiffening in a time- and cartilage zone­

dependent manner. 

The second part of this thesis investigated the modulation of the 

chondrocyte microenvironment for enhanced cartilage tissue engineering. Tissue 
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constructs were grown in vitro using a chondrocyte self-assembly process. In one 

study, it was found that TRPV4 ion channel activation significantly increased 

cartilage matrix production and improved tensile properties in self-assembled 

constructs. In a second study, constructs were exposed to static or dynamic 

application of hypo-osmotic and hyper-osmotic stress. Static application of hyper­

osmotic stress was found to improve construct compressive and tensile 

properties, and their corresponding biochemical mediators, significantly. A third 

study showed that treatment of constructs with ribose, an agent ·used for non­

enzymatic glycation, produced enhanced tissue mechanics and biochemistry in a 

time-dependent manner. 

The third part of this thesis describes efforts to improve the potential 

clinical translatability of in vitro cartilage repair strategies. A technique was 

developed to decellularize xenogenic self-assembled constructs. 

Decellularization resulted in histologic and biochemical cell depletion with 

maintenance of tissue mechanical properties. Additionally, a comprehensive 

characterization of the major tissues of the immature knee joint revealed and 

reinforced important structure-function relationships that will inform future 

cartilage repair strategies. 

The total body of work contained in this thesis contributes significantly 

both to a basic understanding of cartilage physiology as well as to evolving 

strategies for cartilage repair. This thesis advances the field of cartilage tissue 

engineering by examining chondrocyte phenotype, the cell and tissue 

microenvironment, and avenues for clinical translation. 
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Introduction 

The Fabric of Joints in the Human Body is a Subject so much the more entertaining, as it must 

strike every one that considers it attentively with an Idea of fine mechanical Composition. Where­

ever the Motion of one Bone upon another is requisite, there we find an excellent Apparatus for 

rendering that Motion safe and free ... the articulating Cartilages ... 

. . . If we consult the standard Chirurgical Writers from Hippocrates down to the present 

Age, we shall find, that an ulcerated Cartilage is universally allowed to be a very troublesome 

Disease; that it admits of a Cure with more Difficulty than carious Bone; and that, when destroyed, 

it is not recovered. 

William Hunter (1718-1783) 

Of the Structure and Diseases of Articulating Cartilages [115] 
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Motivation 

Nearly three centuries have passed since the pioneering anatomist and surgeon 

William Hunter marveled at the structure-function relationships of articular 

cartilage and remarked on the vexing problem of cartilage disease. To this day, 

articular cartilage degeneration remains an irreversible process that leads 

inexorably to pain and disability and contributes substantially to soaring health 

care costs among a rapidly aging population. There is tremendous clinical need 

for suitable replacements for damaged cartilage, and the field of tissue 

engineering aspires to address this challenge. The studies documented in this 

thesis are motivated by a need to improve our understanding of cartilage 

physiology, as well as to develop strategies to improve the functional engineering 

of biologic cartilage replacements. 

Global objective 

The overall objective of the work described in this thesis was to use a multiscale 

approach to identify and manipulate physiologic and in vitro developmental 

milieus towards the functional repair of articular cartilage. It was hypothesized 

that phenotypic assessment or modulation at multiple levels of complexity- i.e., 

gene transcription, cytoskeletal architecture, ion channels, single cells, the 

extracellular matrix, intact tissue, and the whole joint - would reveal salient 

intervention targets in the development of strategies for cartilage repair. To 

evaluate this global hypothesis, three specific aims were employed (Figure 1-1 ). 
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Specific aim 1 

The first specific aim was to probe cartilage phenotype at the single cell level. A 

single cell gene expression assay was developed to examine the effects of 

attachment time, chondral zone, and growth factors on articular chondrocytes. 

Fluorescent staining and unconfined compression were also performed to 

determine how growth factors affect intracellular organization and chondrocyte 

material properties. It was hypothesized that chondrocytes would exhibit zone­

and time-dependent phenotypic changes detectable at the single cell level in 

response to growth factor exposure. 

Specific aim 2 

The second specific aim was to modulate the chondrocyte microenvironment for 

enhanced cartilage tissue engineering. Three-dimensional tissue constructs were 

engineered in vitro from articular chondrocytes using a self-assembly process. 

These self-assembled constructs served as a model system to evaluate the 

effects of biochemical and biophysical stimuli on engineered cartilage. lon 

channel activation, osmotic stress, and non-enzymatic glycation were evaluated 

separately to determine whether self-assembled constructs would respond with 

increased matrix biosynthesis and improvements in compressive and tensile 

properties. It was hypothesized that exposure to these biochemical and 

biophysical stimuli during in vitro tissue development would enhance extracellular 

matrix production and mechanical integrity in engineered constructs. 
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Specific aim 3 

The third specific aim was to improve the potential clinical translatability of in vitro 

cartilage repair strategies. The first goal of this specific aim was to establish an 

optimal method for the decellularization of xenogenic cartilage. Decellularization 

techniques were tested on self-assembled constructs in an effort to rid the tissue 

of antigenic nuclear material. It was hypothesized that an optimal 

decellularization regimen could be identified that would not compromise tissue 

mechanical properties. The second goal of this specific aim was to conduct a 

comprehensive characterization of the whole knee joint to establish benchmarks 

for future repair strategies that must necessarily engage not just the surfaces of 

joints, but also the fibrocartilage, tendon, and ligament tissues that act in concert 

to support the kinematics of the normal joint. This study involved a thorough 

assessment of the tensile properties, collagen content, and pyridinoline crosslink 

abundance of all the major connective tissues of the immature knee joint. It was 

hypothesized that a precise elucidation of tissue composition would unveil 

important structure-function relationships to be applied in future tissue 

engineering efforts. 



Specific Aim 2 

Cell Microenvironment 
- lon channel modulators 
- Osmotic stress 
- ECM glycation 

Specific Aim 1 

Cell Mechanobiology 
- Chondral zone 
- Growth factors 

Specific Aim 3 

Clinical Translatability 
- Decellularization 
- Whole joint physiology 

Figure 1-1. Multiscale strategies for cartilage repair 

5 

An illustration of the overall design of this thesis , which consists of three specific aims 
that employ intervention and assessment at the nuclear, cellular, matrix, tissue, and 
whole joint levels. 
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Overview of thesis chapters 

The chapters that comprise this thesis are constructed to provide the reader with 

an understanding of current knowledge in the field, descriptions of study designs, 

comprehensive accounts of experimental methods, complete presentations of 

qualitative and quantitative results, and, finally, thorough discussions of the data 

and their implications for future investigations. An overview of the logical 

structure of this thesis follows below. 

Chapter 1 briefly reviews articular cartilage anatomy, physiology, and 

pathophysiology, as well as the clinical and economic burden of degenerative 

joint disease. This chapter serves as a background and motivation for the rest of 

the thesis by describing both the structure-function relationships within articular 

cartilage and the devastating consequences of osteoarthritis. After Chapter 1, the 

remainder of this thesis presents specific details and results of experiments 

performed to address the following global objective: to use a multiscale approach 

to identify and manipulate physiologic and in vitro developmental milieus towards 

the functional repair of articular cartilage. 

Chapters 2 and 3 describe studies that together comprise the first specific 

aim, which was to probe cartilage phenotype at the single cell level. Chapter 2 

details the development of a real-time RT -PCR assay to quantify gene 

expression in single chondrocytes. This assay was used to quantify cell-to-cell 

variability in gene expression, and well as to examine the influence of seeding 

time, chondral zone, and growth factors on the gene expression of important 

anabolic and catabolic ECM proteins. Chapter 3 presents an in-depth 
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investigation of single cell structure-function relationships. Chondrocytes from 

different zones were exposed to growth factors, and assessments were 

performed on chondrocyte gene expression, cytoskeleton architecture, cell 

morphology, and material properties. Unconfined compression was used to 

determine the viscoelastic properties of single chondrocytes, and fluorescent 

staining was performed to assess changes in cytoskeleton organization. The 

real-time single cell RT -PCR assay developed as part of Chapter 2 was used in 

Chapter 3 to evaluate changes in the gene expression of an important 

chondrocyte structural protein. Taken together, these chapters exploring the 

phenotype of the single chondrocyte set the stage for further work on the role of 

the cellular microenvironment in cartilage homeostasis. 

Chapters 4, 5, and 6 together constitute the second specific aim, which 

was to modulate the chondrocyte microenvironment for enhanced cartilage tissue 

engineering. For the studies described in these three chapters, tissue constructs 

were grown in vitro using the self-assembly process, in which articular 

chondrocytes are seeded at a high density into non-adherent, cylindrical molds. 

These chondrocytes condense into free-floating, disc-shaped constructs that 

then proceed to synthesize ECM that resembles articular cartilage found in vivo. 

Chapter 4 describes a study in which the Ca2+ -permeable transient receptor 

potential vanilloid 4 (TRPV4) ion channel was activated in situ to examine 

whether modulating intracellular ion concentrations would result in tissue-level 

changes in the biochemical content and mechanical properties of self-assembled 

constructs. Chapter 5 presents a study in which self-assembled constructs were 
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exposed to hypo-osmotic and hyper-osmotic stress, either in static or dynamic 

conditions. This head-to-head comparison of static versus dynamic, hypo­

osmotic versus hyper-osmotic loading demonstrated that an optimal osmotic 

regimen can be employed to enhance tissue engineered cartilage. Chapter 6 

details a study in which ribose, an agent known for its propensity to initiate non­

enzymatic glycation of collagen, was used to improve construct biochemical and 

biomechanical properties. An optimal treatment time window was determined for 

which construct functional properties experienced the greatest improvement, and 

the study showed that non-enzymatic glycation is an effective method for 

enhancing tissue engineering strategies that does not pose a risk for cytotoxicity 

in vitro. Altogether, the studies presented in Chapters 4, 5, and 6 establish 

powerful methods for producing tissue engineered cartilage with robust 

biochemical and biomechanical properties. 

Chapters 7 and 8 constitute the third specific aim, which was to improve 

the potential clinical translatability of in vitro cartilage repair strategies. Chapter 7 

describes a two-phased study for optimizing the decellularization of xenogenic 

self-assembled articular cartilage constructs. The first phase of the study was a 

head-to-head comparison of various decellularization regimens selected from the 

literature for other tissue types. Based on this comparison, one agent was 

selected that provided the optimal combination of histologic decellularization, 

biochemical decellularization, and maintenance of tissue functional properties. 

The second phase of the study examined various durations of treatment with the 

agent selected in the first phase. This study showed that there exists an ideal 
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intervention window during which tissue can be decellularized without loss of 

important extracellular matrix content. Finally, Chapter 8 presents a study in 

which all the major tissues of the immature bovine knee joint were assessed in 

terms of histology, collagen content, crosslink abundance, and tensile properties. 

The goal of this study was to establish biochemical and biomechanical 

benchmarks for future work on engineering cartilage and other tissues for 

eventual integration into the whole, intact joint. This study examined condylar 

cartilage, patellar cartilage, medial and lateral menisci, cranial and caudal 

cruciate ligaments (analogous to anterior and posterior cruciate ligaments in 

humans), medial and lateral collateral ligaments, and patellar ligament. Results 

from the study reinforced structure-function relationships within the joint and 

provided important data on immature tissue properties. 

The cumulative knowledge established by this thesis is summarized in the 

Conclusions chapter. Results are evaluated in the context of the global objective 

of the thesis. Implications of the data and important recommendations for future 

work are discussed. 



Chapter 1. Articular cartilage structure, function, 

and disease 

10 
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Abstract 

Articular cartilage lines the surfaces of long bones and serves an important role 

in normal joint mechanics. The cells that give rise to cartilage are called 

chondrocytes. The majority of the tissue is made up of an extracellular matrix 

(ECM) comprised largely of collagen type II and proteoglycans, a specialized 

glycoprotein consisting of long chains of glycosaminoglycans (GAG) linked to a 

core protein. Together, the presence and organization of collagen and GAG give 

rise to the tensile and compressive properties of the tissue, respectively. 

Cartilage pathophysiology involves the destruction of ECM and, in some cases, 

phenotypic alteration of chondrocyte metabolism. The inflammatory changes that 

arise from this degradation comprise osteoarthritis, a disease of considerable 

economic and clinical burden. The field of tissue engineering aims to alleviate 

this burden by developing biologic materials in vitro to replace damaged cartilage 

in vivo. A self-assembly process has emerged as one strategy to engineer 

cartilage replacements in vitro. 

Articular cartilage composition 

Articular cartilage is a glistening tissue found at the articulating surfaces of 

diarthrodial joints. Its major functions are to provide lubrication and distribute 

loads during joint motion. Structurally, articular cartilage is an avascular, 

hypocellular tissue composed of a copious extracellular matrix (ECM) [7, 14, 28, 

51]. The sole cell type found within healthy articular cartilage is the chondrocyte, 

which makes up approximately 1-5% of the tissue [9, 93]. Produced by and 
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surrounding these chondrocytes is an ECM rich in collagen type II and 

proteoglycans, the latter of which is made up of long, unbranched, highly charged 

chains of glycosaminoglycans (GAG) covalently linked to a core protein [93, 171, 

188]. In terms of quantitative biochemical content, collagen comprises 

approximately 15-22% of the tissue's wet weight, and GAG comprises 4-7% [7]. 

The remaining wet weight of the tissue is made up of water, which is retained 

within the ECM by fixed negative charges along GAG chains. The strong 

attraction between GAG chains and water produces a cellular osmotic 

microenvironment that can be very different from other tissues in the body [25]; 

these mechanical and osmotic milieus within cartilage are profoundly important 

for chondrocyte homeostasis. Because the tissue lacks a vascular supply, 

chondrocytes are adapted to a low nutrient, hypoxic setting [9]; however, fluid 

flow is essential for nutrient transfer within the tissue. As described in the 

following sections, alterations in the mechanical or osmotic environment of the 

tissue can have deleterious effects on chondrocyte metabolism and ECM 

homeostasis, which can manifest as pathologic changes at the tissue level. 

Tissue organization 

In terms of tissue organization, articular cartilage is characterized by a zonal 

architecture. It can be divided into four distinct zones: superficial, middle, deep, 

and calcified [1 06]. Each zone has been shown to vary in terms of ECM 

composition, biosynthesis, gene expression, chondrocyte morphology, and 

mechanical properties [17, 54, 199, 239, 240]. Differences across zones have 
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also been observed in mechanical properties at the level of the single 

chondrocyte [130, 207, 209-211]. Additionally, one particularly important 

structural feature that varies between zones is the orientation of the network of 

collagen type II [24, 151, 243]. In the superficial zone, collagen is aligned parallel 

to the articulating surface of the tissue. In the middle zone, collagen is organized 

randomly. In the deep zone, collagen is largely oriented in struts perpendicular to 

the subchondral bone. This differential organization confers distinct zone­

dependent mechanical properties that allow proper mechanical function in vivo 

[181]; for example, during joint motion, the superficial zone experiences 

considerable shear stress, whereas the deep zone resists significant 

compressive loads . 

Material properties and mechanical function 

As an orthopaedic tissue, articular cartilage plays a vital role in biomechanics. 

Proper joint function depends on normal cartilage anatomy and physiology. To 

this end, the tissue's physiologic behavior is often defined in terms of its material 

properties. In compressive deformation, articular cartilage is described under 

linear biphasic theory to have three material properties [155]: aggregate modulus 

(i.e., compressive stiffness), permeability (i.e., resistance to fluid flow), and 

Poisson's ratio (a ratio of lateral to axial deformation). The compressive 

properties of the tissue are understood to arise primarily from its GAG content. 

Due to a dense concentration of negative charges within sulfated GAG chains, 

the tissue exerts an attractive pull on cations, thereby creating a positive osmotic 
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pressure that causes swelling [124]. During compressive deformation, the 

interstitial water supports the majority of the initial load, and friction between the 

water and ECM helps to transmit and dissipate forces [108, 218]. Equilibrium is 

reached when the osmotic pressure equals the load, and removal of the load 

causes fluid to return into the tissue. 

In tension, under principles of linear elasticity [118], articular cartilage is 

described by its Young's modulus (i.e., tensile stiffness), ultimate tensile strength 

(i.e., maximum stress before tissue failure), and Poisson's ratio. The tensile 

properties of cartilage are conferred by the dense network of collagen type II in 

its ECM [181]. This tensile integrity depends on collagen fibril diameter and on 

crosslinks between collagen molecules within the helical collagen fibril. During 

tissue maturation, crosslinks form between collagen molecules as a result of both 

enzymatic and non-enzymatic processes [74-76, 181]; these crosslinks serve to 

provide even greater tensile stiffness and strength by reinforce the collagen 

network. 

Pathophysiology of osteoarthritis 

In large part because articular cartilage is avascular and hypocellular, the tissue 

suffers from an intrinsic inability to repair itself after injury [116]. Damage wrought 

by trauma or arthritis is therefore irreversible and leads inexorably to pain and 

disability [28]. In cases where focal defects in the cartilage surface communicate 

with medullary bone, mesenchymal progenitors from the bone marrow can elicit a 

healing response [14, 83]; however, this process generally results in formation of 
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a mechanically inferior tissue that resembles fibrocartilage, which is high in 

collagen type I rather than type II and relatively poor in GAG [38]. Because this 

repair tissue is insufficient to endure the physiologic demands inherent to proper 

cartilage function, further biomechanical breakdown occurs, leading to a cycle of 

degenerative changes that precipitate the onset of osteoarthritis. 

In osteoarthritis, chondrocyte metabolism and ECM biosynthesis cannot 

keep pace with tissue degradation [3]. A combination of biomechanical and 

biochemical processes contribute to this breakdown. As suggested· above, 

biomechanical degradation of the tissue results from altered joint anatomy. Risk 

for cartilage degeneration rises considerably for patients who suffer a traumatic 

injury to another tissue within the joint- for example, a tear in the knee meniscus, 

or a rupture of the anterior cruciate ligament [139]. These injuries prevent normal 

joint mechanics. Even temporarily altered joint kinematics can have devastating 

consequences on cartilage survival [28, 29]. Osteoarthritis is characterized by 

changes at the cell, ECM, and gross macroscopic levels. At the cell level, 

chondrocyte metabolism transitions from anabolic to catabolic synthesis, 

prioritizing the secretion of pro-inflammatory cytokines and matrix 

metalloproteinases (MMP) [4, 107]. At the ECM level, the architecture of the 

collagen network begins to change [91, 144], and loss of GAG ensues, resulting 

in decreased tissue hydration from the reduction in fixed charge density [144, 

145]. Grossly, cartilage ravaged by osteoarthritis is characterized by surface 

roughening and abrasions, fissures, and discoloration [32, 60]. 
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Clinical and economic burden 

Conditions afflicting the orthopaedic soft tissues, including osteoarthritis and 

traumatic injury, result in substantial healthcare costs and work-related disability. 

The prevalence and severity of orthopaedic conditions result in annual costs of 

$510 billion [1 ], of which osteoarthritis alone contributes to $60 billion [30], figures 

which are expected to increase as the population ages. For osteoarthritis alone, 

which can arise as a result of injury to any of these tissues [139], it is projected 

that 67 million individuals will be diagnosed by 2030 [101]. Osteoarthritis is also 

associated with a significant reduction in quality of life due to disabling pain and 

limited physical function [179, 180]. This immobility often leads to an indolent 

lifestyle that precipitates obesity, diabetes, and heart disease, and other co­

morbidities. 

Patients with signs and symptoms of osteoarthritis are typically treated 

conservatively at first, receiving physical therapy [5], medication for pain relief 

and, later, anti-inflammatory drugs or injections. However, these therapies cannot 

arrest or reverse the degenerative changes wrought by osteoarthritis. When pain 

becomes debilitating, a patient's only recourse is surgical intervention [45]. In 

general, surgery offers significant improvements in quality of life, but not all 

patients qualify for surgery; the decision to operate is often guided by patient age 

and co-morbidities [184, 219, 247]. Moreover, surgical treatments such as total 

joint replacement are highly invasive, require extensive recovery and 

rehabilitation times, and may often involve costly revision surgeries [164]. 

Biological treatments such as autografts and allografts present additional 
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challenges such as secondary surgeries, immunogenicity [20], and limited cell 

sources. 

Tissue engineering of articular cartilage 

There is tremendous clinical need for suitable replacements for damaged 

articular cartilage. Tissue engineering has emerged as an attractive strategy for 

growing cartilage within a laboratory for later implantation into patients. A chief 

obstacle to successful orthopaedic tissue engineering, however, is that the tissue 

must possess robust biochemical and biomechanical properties that will allow it 

to thrive in the demanding loading environment of the intact joint [35, 89]. 

Towards this end, strategies have focused on functional tissue engineering, 

wherein optimizing the biomechanical function of engineered constructs is an 

overriding priority. The canonical paradigm in functional tissue engineering is to 

seed cells onto three-dimensional biomaterial scaffolds, then treat these 

developing constructs with exogenous stimuli, such as bioactive agents or 

mechanical bioreactors [66]. 

Some strategies in cartilage tissue engineering depart from the classical 

paradigm by eliminating the use of a scaffold [1 05, 178, 203]. In particular, our 

laboratory has developed an approach termed the self-assembly process, 

wherein chondrocytes are seeded at a high density into non-adherent, shape­

specific molds fabricated from 2% agarose. Within a few hours, the cells 

condense into a tightly-packed, three-dimensional mass. Over the course of the 

following days and weeks, the cells secrete a cartilage-specific ECM, high in 
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collagen type II and GAG. The self-assembly process is associated with high N­

cadherin expression and recapitulates features of in vivo cartilage development, 

such as early pericellular localization of collagen type VI [163]. A key advantage 

of cartilage self-assembly is that, because it does not involve the use of a 

biomaterial scaffold, it circumvents the typical challenges associated with scaffold 

use, such as toxicity, biodegradability, stress shielding, and diminished juxtacrine 

and paracrine signaling [1 05]. Another salient benefit is that, since it is a strictly 

cell-mediated phenomenon, it can serve as a model system for examining the 

direct effects of biochemical [68, 158, 160] and biophysical [62, 64, 67] stimuli on 

cell physiology and in vitro ECM development. 

Although progress has been made in identifying beneficial stimuli for self­

assembly, the functional properties of self-assembled cartilage constructs still fall 

short of native tissue values. Therefore, it is imperative that additional treatment 

modalities be evaluated. Motivated both by clinical need and scientific challenge, 

the work described in this thesis examines cartilage physiology and in vitro 

development at multiple levels of complexity. 
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Chapter 2. Gene expression of single articular 

chondrocytes * 

Chapter published as Eleswarapu SV, Leipzig NO, and Athanasiou KA, "Gene 
expression of single articular chondrocytes," Cell and Tissue Research 2007. 



20 

Abstract 

While previous studies in the field of tissue engineering provide important 

information about articular cartilage, their conclusions are based on population 

averages and do not account for variations in cell subpopulations. To obtain a 

precise understanding of chondrocytes, we investigated the effects of cartilage 

zone and seeding duration on single chondrocyte gene expression to select an 

optimal zone for tissue engineering (Phase 1), followed by an evaluation of 

growth factor exposure on the zone selected in Phase I (Phase II). In Phase I, 

superficial and middle/deep bovine articular chondrocytes were seeded in 

monolayer for 3 or 18 h. In Phase II, middle/deep chondrocytes (selected in 

Phase I) received 100 ng/ml IGF-1 for 3 h. Real-time RT-PCR was used to 

quantify GAPDH abundance and the relative abundances of aggrecan, collagens 

I and II, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase-1 

(MMP-1 ), and tissue inhibitor of metalloproteinase-1 (TIMP-1 ). GAPDH varied 

zonally, but neither time nor IGF-1 had an effect, suggesting that GAPDH is a 

suitable housekeeping gene for comparisons within each zone, but not across 

zones. IGF-1 increased expression of aggrecan (p=0.0003) and collagen II 

(p<0.0001) in middle/deep chondrocytes seeded for 18 h. TIMP-1 expression 

increased with time in control cells (p<0.03), suggesting that chondrocytes enter 

a matrix protective state after seeding. IGF-1 diminished this effect (p<0.03), 

suggesting that treatment with IGF-1 refocuses chondrocytes on matrix 

production rather than on protection from metalloproteinases. Concomitant to 

increasing TIMP-1, MMP-1 was detectable by 18 h in superficial cells, providing 
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further evidence of a trend toward matrix degradation with time. Collagen 1 was 

undetected in all cells, and no differences were observed for COMP, confirming 

that no dedifferentiation or osteoarthritic changes occurred. Taken together, 

these results establish a unique understanding of individual chondrocyte 

behavior. 

Introduction 

Articular cartilage is an avascular tissue with a zonal architecture that serves to 

reduce frictional loading conditions at joint surfaces. The low cellularity and 

absence of vasculature limits the capacity for damaged cartilage to regenerate 

[129]. Cartilage tissue engineering has shown exciting potential for solving the 

problem of regenerating articular cartilage for patients with focal cartilage legions 

or osteoarthritis. Several strategies have been developed for engineering 

functional articular cartilage in vitro, but they fall short in achieving the 

characteristics of native cartilage. A better understanding of chondrocyte biology 

is needed to tailor more successful strategies for cartilage tissue engineering. 

Structurally, articular cartilage can be divided into four distinct zones: 

superficial, middle, deep, and calcified. Zonal differences in extracellular matrix 

composition, biosynthesis, gene expression, cell morphology, and mechanical 

properties have been well documented [17, 54, 199, 239, 240]. Differences in 

mechanical properties across zones have also been observed at the level of the 

single chondrocyte [209]. However, the precise phenotypic differences between 
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zones must be studied more thoroughly at the cellular level to illuminate their 

consequences for cartilage tissue engineering strategies. 

Despite an abundance of studies on the effects of growth factors on 

chondrocyte proliferation and biosynthesis, no study to date has examined the 

fundamental response of an individual chondrocyte to growth factor stimuli. 

Previous studies have examined responses of chondrocyte populations to 

different environmental conditions, but these studies do not take into account 

variations among subpopulations of cells, ·or among single cells. In particular, 

insulin-like growth factor-1 (IGF-1) has shown remarkable promise in stimulating 

matrix synthesis, increased proliferation, and maintenance of phenotype [22, 23, 

52, 55, 87, 147, 228], but further study of chondrocyte behavior is warranted to 

determine whether the documented effects of IGF-1 can be resolved at the single 

cell level, or if those effects are simply representative of differences in 

subpopulations in vitro. 

In response to the need for further investigation of chondrocyte behavior, 

a single cell approach has been proposed and implemented [206]. Briefly, 

chondrocytes are exposed to a variety of physical or biochemical stimuli, and 

then examined for changes in gene expression to ascertain the immediate 

downstream effects of the particular stimuli. While considerable progress has 

been made on the characterization of single chondrocyte biomechanics [121, 

130-132, 209], this study is the first to examine the direct effects of environmental 

conditions on the fundamental biological response of single chondrocytes. Our 

experimental approach (Figure 2-1) was divided into two phases. In Phase I, we 
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sought to determine the effects of cartilage zone and seeding duration on the 

gene expression of single chondrocytes. Specifically, the objective of Phase I 

was to determine the cartilage zone from which chondrocytes are best suited for 

tissue engineering efforts by analyzing the expression of genes associated with 

anabolic, catabolic, and dedifferentiation processes in zonal chondrocytes. This 

objective is in line with our efforts to define a more successful strategy for the 

tissue engineering of articular cartilage, for which a principal aim is to utilize 

highly metabolically active chondrocytes to recapitulate the matrix-rich 

architecture found in vivo. Our initial expectation for Phase I was that 

chondrocytes from the middle/deep zone would be found to be best suited for 

tissue engineering applications, since it has been shown that progressively 

deeper layers of cartilage are more metabolically active and biosynthetic than 

superficial layers [17, 54, 239, 240]. In Phase II, we examined the influence of 

IGF-1 exposure and seeding time on chondrocytes from the zone selected in 

Phase I. In particular, the objective of Phase II was to assess the optimal 

condition for which expression of matrix proteins increased and catabolic 

molecules decreased. Since monolayer culture is associated with 

dedifferentiation [197], we sought to determine phenotypic changes that may 

occur on a short time scale; such changes could have important consequences 

for tissue engineering modalities. 

Real-time reverse transcription-polymerase chain reaction (RT-PCR) was 

used in Phase I to determine the effects of seeding time (3 or 18 h) on 

chondrocytes from both zones, and in Phase II to determine the combinatorial 
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effects of growth factor exposure (1 00 ng/ml IGF-1) and seeding time (3 or 18 h) 

on chondrocytes from the zone selected in Phase I. The overall hypothesis of this 

study was that chondrocytes would exhibit zone- and time-dependent differences 

in gene expression, as well as increased expression of matrix proteins and 

decreased expression of catabolic molecules in response to growth factor 

exposure. Moreover, we expected cells to retain major characteristics of primary 

chondrocytes and exhibit little dedifferentiation. 

Materials and methods 

Tissue harvest and cell seeding 

Articular chondrocytes were harvested aseptically from distal metatarsal cartilage 

of one-year-old steers obtained from local abattoirs. The top 10-20% of the joint 

surface, identified as superficial zone tissue, was removed by drawing a scalpel 

blade firmly across the cartilage. The remaining uncalcified cartilage was 

removed and identified as middle/deep zone tissue. Previous work in our 

laboratory has demonstrated that this zonal abrasion technique successfully 

separates zonal tissue [54]. Harvested tissue was minced into small fragments 

and placed in a solution of 2 mg/ml collagenase type II (Worthington) in 

supplemented Dulbecco's modified Eagle medium (DMEM) containing 10% fetal 

bovine serum (FBS), 100 U/ml penicillin-streptomycin, 0.25 mg/ml fungizone and 

0.1 mM non-essential amino acids (NEAA) (Invitrogen) for 6 h with continuous 

stirring at 37°C and 10% C02• After digestion, the resulting cell suspensions were 

pelleted, with the supernatants removed. Superficial zone chondrocytes and 
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middle/deep zone chondrocytes were resuspended and plated separately onto a 

tissue culture treated plastic dish. Seeding was confined to a 2 em diameter 

circular area using silicone isolators (PGC Scientifics) to yield an approximate 

areal cell density of 3.3 x 104 cells/cm2. The plates were incubated for either 3 or 

18 h at 37°C and 10% C02. 

Growth factor treatment 

After determining which zonal population was more metabolically active and thus 

better suited for tissue engineering (Phase 1), Phase II focused on testing the 

effects of IGF-1. For both cell seeding durations (3 and 18 h), a single zonal 

population of chondrocytes was exposed to either no growth factor (control) or 

100 ng/ml IGF-1 for the final 3 h of attachment, so that IGF-1 exposure time was 

identical for both seeding durations. IGF-1 was obtained from PeproTech Inc. 

This concentration of IGF-1 represented a saturation concentration, as 

determined by values reported in the literature [52, 87, 244]. 

Single chondrocyte isolation 

After cell attachment, the media was removed and the culture dish was filled with 

fresh supplemented DMEM containing 30 mM HEPES buffer (Fisher Scientific) 

warmed to 37°C to sustain the culture in ambient laboratory conditions. IGF-1 was 

included in the fresh media for the IGF-1 treated groups. Chondrocytes were 

captured using a glass micropipette pulled and microforged to an inner diameter 

of approximately 15 IJm and a CeiiTram Vario hydraulic microaspirator 
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(Eppendorf). Firmly attached single cells were collected by gentle suction 

pressure. Captured cells were then ejected into lysis buffer (Stratagene) for RNA 

isolation. 

RNA isolation and real-time RT-PCR 

Total RNA was isolated from single chondrocytes using the Absolutely RNA 

Nanoprep protocol (Stratagene) with DNase I treatment. The purified total RNA 

for each chondrocyte was eluted into a volume of 8 ml for the RT reaction. Single 

cell RNA was incubated with 1 mM dNTPs, 0.5 !JM oligo(dT)2o primers, and 0.5 

!JM random hexamers for 5 min at 65°C to anneal primers to the template RNA, 

followed by addition of buffer, 2.5 mM MgCI2, 1 mM dithiotheitol (DTT), 

SuperScript Ill RT enzyme (Invitrogen), and RNase inhibitor for 10 min at 25°C 

for further primer annealing, 50 min at 50°C for reverse transcription, and 5 min 

at 85°C to terminate the reaction. Gene expression was assayed using multiplex 

real-time PCR performed on a Rotor-Gene 3000 (Corbett Research) with 

HotStarTaq polymerase (Qiagen), 5 mM MgCI2, and 2.5 mM dNTPs. The 

HotStarTaq polymerase was activated at 95°C for 15 min, followed by 55 cycles 

of 95°C for 15 sand 60°C for 30 s. Fluorescence measurements (on Cy5, FAM, 

and ROX) were taken every cycle at the end of the 60°C step to provide a 

quantitative, real-time analysis of the genes analyzed. Primers were synthesized 

by Sigma-Genosys (Woodlands), and gene-specific hydrolysis probes were 

synthesized by Biosearch Technologies (Novato). Primer and probe sequences 

and concentrations for aggrecan, collagen I, collagen II, and glyceraldehyde 3-
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phosphate dehydrogenase (GAPDH) were used as reported previously [52]. The 

oligonucleotide sequences for cartilage oligomeric matrix protein (COMP), matrix 

metalloproteinase-1 (MMP-1 ), and tissue inhibitor of metalloproteinase-1 (TIMP-

1) are provided in Table 2-1. These were designed from bovine mRNA 

sequences from the National Center for Biotechnology Information (NCB I). Three 

separate PCR reactions were performed on each single cell eDNA sample: (1) 

aggrecan I collagen II I GAPDH, (2) collagen II COMP I GAPDH, and (3) MMP-1 

I TIMP-11 GAPDH. 

Evaluation of GAPDH as a housekeeping gene 

GAPDH abundance was determined quantitatively from real-time PCR. The 

threshold cycle ( CT) for GAPDH in each single cell eDNA sample was determined 

at 20% of the maximum of the second derivative of fluorescence with respect to 

cycle number, as determined by comparative quantitation analysis in the Rotor-

Gene 6.0 program. Efficiency of the PCR was calculated by running a standard 

curve for serially diluted eDNA from large populations of bovine chondrocytes. 

Abundance values (A) were determined using a method adapted from Pfaffl [169]. 

Briefly, A is determined as follows, where E is primer efficiency: 

Higher abundance values indicate that the gene is expressed to a greater extent 

than genes with lower abundance values. 
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Relative abundance 

Relative abundance for each gene of interest was normalized using GAPDH to 

account for variations in the overall transcriptional level in individual cells, as well 

as for minor errors in pipetting and RNA isolation. Genes of interest were 

aggrecan, collagen I, collagen II, COMP, MMP-1, and TIMP-1. The Cr for each 

gene of interest was calculated as described for GAPDH. Relative abundance 

(R) of each gene of interest (GO/) was calculated from E and Cr: 

(1 + .E )CT,GAPDH 

R - GAPD/1 

GO/ (1 +EGO/ )CT,GOI 

Relative abundance values greater than 1.0 indicate that the gene of interest is 

expressed to a greater extent than GAPDH. 

Statistics 

All results are reported as mean ± standard deviation. Abundance and relative 

abundance data were checked for normal distribution with statistical measures in 

JMP IN 5.1 (SAS Institute) before linear statistics were performed with JMP. For 

Phase I, the effects of cartilage zone (superficial vs. middle/deep) and seeding 

time (3 h vs. 18 h) on the abundance of GAPDH and the relative abundances of 

genes of interest were tested with two-factor ANOVA. For Phase II, a single 

zonal population was selected to test the effects of seeding time (3 h vs. 18 h) 

and growth factor exposure (control vs. 100 ng/ml IGF-1) on the abundance of 

GAPDH and the relative abundances of genes of interest with two-factor ANOV A. 

If a significant difference (p<O.OS) was found, a post-hoc analysis using Tukey's 
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Honestly Significant Difference (HSD) was performed to test significance for all 

comparisons. 

Results 

Phase 1: Influence of cartilage zone and seeding time 

It was found that all abundance and relative abundance data exhibited a log­

normal distribution; therefore all statistics were performed with log transformed 

data. Data ori GAPDH abundance are presented in Figure 2-2. No significant 

difference in GAPDH expression was found from 3 h to 18 h, but cartilage zone 

emerged as a significant factor for GAPDH abundance (p<0.0001 ). As a 

consequence of the zonal variation in GAPDH abundance results, relative 

abundance comparisons can be made within each zone, but not across zones. 

Superficial zone relative abundance results are presented in Figure 2-3. In 

superficial cells, TIMP-1 expression approximately tripled from 3 h to 18 h 

(p<0.03) (Figure 2-3C). Concurrently, MMP-1 was undetectable at 3 h but was 

detected at 18 h (Figure 2-3D). No significant differences were found for 

superficial cells in the relative abundances of aggrecan, collagen II, or COMP 

over time. Middle/deep zone relative abundance results are presented in Figure 

2-4. In middle/deep cells, collagen II significantly decreased from 3 h to 18 h by 

approximately 60% (p<0.05) (Figure 2-48). TIMP-1 expression approximately 

tripled from 3 h to 18 h (Figure 2-4C). However, no significant differences were 

found in aggrecan, COMP, or MMP-1 relative abundances from 3 h to 18 h. 

Collagen I expression was not detected in any middle/deep or superficial cells. 
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GAPDH abundance was three times greater in middle/deep chondrocytes 

compared to superficial chondrocytes. Due to this increased metabolic activity, 

middle/deep chondrocytes were selected for Phase II of this study. 

Phase II: Effects of seeding time and /GF-1 on middle/deep cells 

Data in Phase II were collected separately from Phase I, and statistics were 

performed on log transformed data to provide a Gaussian distribution. GAPDH 

abundance was not found to be significantly different across treatment groups 

within the middle/deep zone. GAPDH abundance results were as follows for 

middle/deep chondrocytes: at 3 h, control cells were 3.8 x 10"10 ± 2.9 x 10-10 and 

IGF-1 treated cells were 3.4 x 10-10 ± 2.5 x 10-10, while at 18 h, control cells were 

5.0 x 10-10 ± 2.7 x 10-10 and IGF-1 treated cells were 4.5 x 10-10 ± 3.4 x 10-10. 

Therefore, relative abundance comparisons can be made across treatments for 

all genes of interest. For aggrecan relative abundance, seeding time (p=0.0002) 

and IGF-1 treatment (p<0.002) were significant factors. On post-hoc analysis, the 

interaction of seeding time and IGF-1 treatment revealed that aggrecan relative 

abundance in middle/deep chondrocytes treated with IGF-1 and seeded for 18 h 

was significantly different from all other groups (p=0.0003), with expression 

approximately six times the average of the other groups (Figure 2-5A). Seeding 

time alone was significant for collagen II relative abundance in middle/deep 

chondrocytes (p<0.006). Additionally, collagen II relative abundance in 

middle/deep chondrocytes treated with IGF-1 and seeded for 18 h was 

significantly different from all other groups (p<0.0001 ), with expression 
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approximately three times the average of the other groups, as revealed by post­

hoc analysis on the interaction of seeding time and IGF-1 treatment (Figure 2-58). 

Other significant differences among treatment groups for collagen II relative 

abundance are noted in Figure 2-58. For TIMP-1 relative abundance, seeding 

time (p<0.0001) and IGF-1 treatment (p<0.01) were significant factors. On post­

hoc analysis, the interaction of seeding time and IGF-1 treatment revealed that 

TIMP-1 relative abundance in control middle/deep chondrocytes seeded for 18 h 

was significantly different from all other groups (p<0.03), with an expression 

approximately four times the average of the other groups (Figure 2-5C). No 

significant differences were found in MMP-1 (Figure 2-50) or COMP relative 

abundances in middle/deep cells. Collagen I expression was once again not 

detected in any cells. 

Discussion 

This study succeeded in quantifying gene expression in single articular 

chondrocytes for the first time. Questions of cartilage maintenance and 

phenotype have been investigated at the tissue and cell population levels, but the 

single cell approach to study articular cartilage provides important insights into 

the fundamental physiology of chondrocytes. We have attempted to address 

several major aspects of cartilage tissue engineering: the role of cartilage zones 

in shaping chondrocyte behavior, how cell attachment time influences gene 

transcription, and the effect of growth factor stimulation on the regulation of 
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matrix genes. The full exploration of these issues at the single cell level allows a 

more accurate picture of chondrocyte behavior to emerge. 

In Phase I of this study, we compared chondrocytes from the superficial 

and middle/deep zones to determine which zone was best suited as a source of 

cells for the purpose of cartilage tissue engineering. Our first step in Phase I was 

to evaluate differences in GAPDH expression across zones to determine its use 

as an internal reference, or housekeeping gene, in multiplex real-time PCR. 

Once thought to be an optimal endogenous control due to its ubiquitous 

expression and moderate abundance, GAPDH has been shown to vary in certain 

experimental conditions [34, 56, 111]. It is becoming increasingly clear that 

GAPDH may be an inappropriate internal standard for real-time PCR in the 

absence of proper, experiment-specific validation. In particular, GAPDH has 

been shown recently to be an unsuitable housekeeping gene in comparing 

injured cartilage to healthy tissue, even when total RNA is normalized to account 

for differences in the number of viable cells available for analysis [127]. Moreover, 

another candidate gene often used as an internal control, ~-actin, was recently 

shown to vary across zones [131]. Thus, it is crucial to identify cases in which 

GAPDH can and cannot be used as an internal standard for cartilage studies. We 

sought to determine the suitability of GAPDH as an internal standard by 

examining its abundance. The findings of this study demonstrate a zone­

dependent difference in GAPDH abundance (Figure 2-2). However, seeding time 

did not have an effect on GAPDH expression in cells from the same zone. These 

results indicate that GAPDH is an unsuitable housekeeping gene for 
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comparisons between the middle/deep and superficial zones of cartilage. On the 

other hand, GAPDH does serve as an appropriate housekeeping gene within a 

particular zone. It should be noted that while groups within a zone were not 

significantly different, the amount of variability from cell to cell was quite large 

(with a large range for sample size), as evidenced by each group's standard 

deviation. However, there is no means by which to normalize RNA otherwise, 

and the variability observed may result not only from cell-to-cell variation, but 

from potential loss of material in the multiple steps in RNA isolation and handling, 

which is precisely the sort of error accounted for though the use of a 

housekeeping gene. Hence, the use of GAPDH as a housekeeping gene in 

single cell work was warranted. 

Furthermore, these results illustrate an important, fundamental metabolic 

difference between middle/deep and superficial chondrocytes. Manifold 

differences between cartilage zones have been demonstrated previously [17, 54, 

131, 132, 199, 209, 239, 240]. By honing in on GAPDH, we have evaluated a 

gene constitutively expressed by all metabolically active cells in the body. That a 

zone-dependent difference is detectable provides further evidence that 

chondrocytes from different zones may be metabolically, and thus fundamentally, 

different. Additionally, the greater abundance of GAPDH in middle/deep 

chondrocytes compared to superficial chondrocytes agrees with past work 

showing that progressively deeper layers of cartilage are more metabolically 

active than superficial layers [17, 54, 239, 240]. These observations of GAPDH 
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abundance establish the need for further study on the constitutive metabolic 

behavior of zonal chondrocytes. 

The greater metabolic activity in middle/deep chondrocytes led us to 

select that zone for further experimentation in Phase II, in which we examined 

the combinatorial effects of seeding duration and IGF-1 exposure on middle/deep 

chondrocytes. Treatment with IGF-1 did not result in a significant difference in 

GAPDH abundance in middle/deep chondrocytes, further establishing GAPDH as 

a suitable housekeeping gene for comparisons made within a particular zone. 

Seeding time alone was not a significant factor in the expression of aggrecan or 

collagen II in superficial chondrocytes (Phase 1), but it was significant in the 

expression of aggrecan and collagen II in middle/deep chondrocytes (Phases I 

and II). IGF-1 was found to significantly increase aggrecan and collagen II gene 

expression over time in middle/deep chondrocytes (Figures 2-SA and 2-58). This 

effect was pronounced even though the exposure time to IGF-1 was limited to 3 h, 

indicating that only a minimal duration of growth factor exposure is necessary to 

elicit positive signals for matrix production. Increased aggrecan and collagen II 

gene expression in the presence of IGF-1 agrees with previous work on 

chondrocyte populations [52] and periosteal explants [150]. The latter study 

corroborates our observation that brief exposure to IGF-1 is sufficient to enhance 

aggrecan and collagen II expression. Overall, translating the sum of our 

observations into applications for tissue engineering, the optimal environmental 

conditions for matrix production by middle/deep chondrocytes appears to be a 

combination of longer seeding combined with IGF-1 treatment. 
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In addition to the effects of seeding time and growth factor exposure on 

the expression of important matrix molecules, we studied changes in MMP-1 and 

TIMP-1 expression in both Phase I and Phase II. MMP-1 is an important 

component in cartilage degradation and tissue remodeling, while TIMP-1 acts to 

keep the effects of MMP-1 in check [231]. Together, the balance of MMP-1 and 

TIMP-1 mediates matrix degradation in cartilage. With longer seeding, TIMP-1 

increased significantly in superficial cells (Figure 2-3A) and middle/deep cells 

(Figure 2:.5C). In superficial chondrocytes, MMP-1 was undetectable at 3 h but 

was expressed by 18 h (Figure 2-38). These results suggest that as 

chondrocytes attach in monolayer, they have a tendency to initiate catabolic 

gene expression (MMP-1) and concomitantly enter a state of cell protection 

(TIMP-1 ). Even though MMP-1 was not shown to be significantly different with 

time in middle/deep chondrocytes, TIMP-1 upregulation suggests that the cells 

appear prepared to cope with catabolic trends. However, IGF-1 diminishes the 

effect of seeding time on TIMP-1 expression in middle/deep chondrocytes. In 

doing so, IGF-1 appears to refocus the cell on matrix production, as evidenced by 

the increased levels of aggrecan and collagen II (Figures 2-5A and 2-58), rather 

than on protection of the cell from metalloproteinases (conferred by TIMP-1 ). It 

has been shown that a population of articular chondrocytes in culture react to 

interleukin-1 (IL-1 ), a known modulator of matrix degradation, by expressing 

TIMP-1 sooner than MMP-1 [2]. That study's observation that TIMP-1 expression 

precedes MMP-1 expression in vitro is in agreement with our finding that TIMP-1 
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was upregulated prior to any detectable change in MMP-1 expression in single 

chondrocytes. 

No change in collagen I or COMP was observed in either zone for any 

condition. Collagen I served as a negative control for chondrocytic phenotype, 

since collagen I is found abundantly in fibroblast-like cells and is a marker for 

chondrocyte dedifferentiation [53]. Therefore, it is clear that all cells examined in 

this study were phenotypically chondrocytes and had not yet experienced 

dedifferentiation. Similarly, increases in COMP have been associated with 

osteoarthritic changes in articular cartilage [193, 205], and so it is expected that 

COMP expression may only increase dramatically in deleterious environmental 

conditions. COMP has also been shown to be a good marker of chondrocyte 

phenotype that is downregulated during dedifferentiation [248]. The absence of a 

change in COMP expression in either zone indicates that the chondrocytes 

examined in this study retained a fairly healthy, non-osteoarthritic phenotype. 

Finally, the real-time single cell RT-PCR (scRT-PCR) assay developed in 

the course of this work serves as a powerful tool for amplifying the considerably 

small amount of starting mRNA in a single chondrocyte. The assay affords us the 

ability to quantify precise changes in gene expression from one cell to the next. 

While scRT-PCR has emerged as a robust technique in studying other cell types, 

such as neurons [97] and T cells [125], the technique has remained unused in 

the field of cartilage tissue engineering until now. Moreover, our scRT-PCR 

assay for chondrocytes will be useful in future studies focusing on 

mechanotransduction at the cellular level. 
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The work presented here establishes a unique understanding of 

chondrocyte biology at the level of the single cell. In total, single chondrocyte 

gene expression was shown to be influenced by a combination of seeding time 

and exposure to IGF-1, while a clear metabolic difference was demonstrated 

across cartilage zones. This study lays the groundwork for future investigations 

of the mechanobiology of single chondrocytes, especially in determining the 

combinatorial effects of direct compression and growth factor exposure on 

chondrocyte gene expression [131, 206, 208]. Already, IGF-1 together with 

dynamic compression have been shown to synergistically enhance protein and 

proteoglycan content in chondrocyte-seeded agarose constructs [147]. Much 

work remains to be done at the single cell level to confirm or explain these 

phenomena observed at higher levels. An understanding of individual 

chondrocyte behavior would yield major insight into the development of novel 

strategies for articular cartilage regeneration. 
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Single cell approach to study the influences of growth factor exposure, seeding time, and 
cartilage zone on biosynthetic and catabolic gene expression. 
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GAPDH mRNA abundance in middle/deep (M/D) and superficial (Sup) chondrocytes. 
Results are presented as mean ± standard deviation. Groups marked "A" are 
significantly different from groups marked "B" (p < 0.0001 ). Values for n ranged from 12 
to 19. 
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Aggrecan (a), collagen II (b), TIMP-1 (c), and MMP-1 (d) mRNA relative abundance in 
superficial chondrocytes. TIMP-1 (c) increased from 3 to 18 hours (* , p<0.03). MMP-1 
was expressed (#) from 3 to 18 hours (D). Values for n were 5 at 3 hours and 6 at 18 
hours for TIMP-1 , and 4 at 18 hours for MMP-1 . 
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Figure 2-4. Phase I middle/deep zone gene expression results 
Relative abundances of aggrecan (a), collagen II (b), TIMP-1 (c), and MMP-1 (d) in 
middle/deep chondrocytes. Collagen II (b) decreased from 3 to 18 hours (*, p<O .OS). 
Values for n ranged from 3 to 14. 
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Figure 2-5. Phase II gene expression results 
Effects of seeding time and IGF-1 treatment on middle/deep chondrocytes . (a) IGF-1 
significantly increases aggrecan in middle/deep chondrocytes seeded for 18 hours (*, 
p=0.0003). (b) Collagen II relative abundance in IGF-1 treated middle/deep chondrocytes 
seeded for 18 hours was significantly greater than all other treatment groups (#, 
p<0.0001 ), while control and IGF-1 treated middle/deep chondrocytes seeded for 3 hours 
were significantly different (p<0.05). (c) TIMP-1 increases significantly from 3 to 18 hours 
in middle/deep control chondrocytes (+, p<0.03). (d) MMP-1 was unchanged in 
middle/deep chondrocytes. Values for n ranged from 7 to 14 for aggrecan, 6 to 13 for 
collagen II , 6 to 11 for TIMP-1, and 3 to 7 for MMP-1. 
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Table 2-1. Sequences for real-time RT -PCR target genes 
Primer/probe sequences, dyes, and quenchers for real-time PCR target genes. 

Gene name 
(accession number, product size) 

Cartilage oligomeric matrix protein 
{X? 4326, 72bp) 

Matrix Metalloproteinase-1 
{X? 4326, 82bp) 

Tissue Inhibitor of Matrix 
Metalloproteinase-1 
{NM174471, 75bp) 

Forward primer (5' to 3'), concentration 
Reverse primer (5' to 3'), concentration 
Probe (5' to 3'), concentration, dye/quencher 

TCAGAAGAGCAACGCAGAC,100nM 
TCTTGGTCGCTGTCACAA, 100 nM 
CAGAGGGATGTGGACCACGACTTC, 100 nM, 

ROX/BHQ-2 

CAAATGCTGGAGGTATGATGA,50nM 
AATTCCGGGAAAGTCTTCTG,50nM 
TCCATGGATGCAGGTTATCCCAAA, 125 nM, 

Cy5/BHQ-2 

GAGATCAAGATGACTAAGATGTTCAA,75nM 
GGTGTAGATGAACCGGATG,75nM 
AGGGTTCAGTGCCTTGAGGGATG, 100 nM, 

ROX/BHQ-2 
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Abstract 

Ascertaining how mechanical forces and growth factors mediate normal and 

pathologic processes in single chondrocytes can aid in developing strategies for 

the repair and replacement of articular cartilage destroyed by injury or disease. 

This study examined effects of TGF-131 and IGF-1 on the biomechanics and 

cytoskeleton of single zonal chondrocytes. Superficial and middle/deep bovine 

articular chondrocytes were seeded on tissue culture treated plastic for 3 and 18 

h and treated with TGF-131 (5 ng/ml), IGF-1 (1 00 ng/ml), or a combination of 

TGF-131 (5 ng/ml) + IGF-1 (100 ng/ml). Single chondrocytes from all treatments 

were individually studied using viscoelastic creep testing and stained with 

rhodamine phalloidin for the F-actin cytoskeleton. Lastly, real-time RT-PCR was 

performed for 13-actin. Creep testing demonstrated that all growth factor 

treatments stiffened cells. Image analysis of rhodamine phalloidin stained 

chondrocytes showed that cells from all growth factor groups had significantly 

higher fluorescence than controls, mirroring creep testing results. Growth factors 

altered cell morphology, since chondrocytes exposed to growth factors remained 

more rounded, exhibited greater cell heights, and were less spread. Finally, real­

time RT -PCR revealed no significant effect of growth factor exposure on 13-actin 

mRNA abundance. However, 13-actin expression varied zonally, suggesting that 

this gene would be unsuitable as a PCR housekeeping gene. These results 

indicate that TGF-131 and IGF-1 increase F-actin levels in single chondrocytes 

leading to stiffening of cells; however, there does not appear to be direct 

transcriptional regulation of unpolymerized 13-actin. This suggests that the 
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observed response is most likely due to signaling cross-talk between growth 

factor receptors and integrin/focal adhesion complexes. 

Introduction 

Existing research has highlighted the need for the complete characterization of 

cellular milieus, especially toward understanding the processes of 

mechanotransduction in native and engineered tissues. Such knowledge would 

foste·r understanding of mechanical forces and their role in cell and tissue 

function. It would also be vital to elucidating disease etiologies, as well as the 

processes of formation and regeneration in tissues. In terms of tissue 

engineering, this knowledge would provide insight into the forces required for 

directing cells toward growing functional tissues in vitro. 

Articular cartilage has been chosen as a leading target for tissue 

engineering for the simple fact that one in five adults experience significant 

morbidity due to cartilage injury and disease. Furthermore, articular cartilage 

engineering may appear to be an easy problem to tackle, considering that the 

tissue is avascular and contains very few cells. However, the tissue has a 

complex structure, exhibits a high degree of heterogeneity, and functions under 

an intensely strenuous environment. Articular cartilage is normally divided into 

four zones: superficial, middle, deep, and calcified. As reviewed [129], each zone 

has distinct differences in extracellular matrix (ECM) distribution, biosynthesis, 

gene expression, cell morphology, and physical properties. 
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Tissue engineering of cartilage thus far has proven unsuccessful in terms 

of replicating a fully functional tissue capable of withstanding the strenuous 

biomechanical environment within synovial joints. So far researchers have 

revealed that two stimuli, mechanical forces and chemical signals, seem to be 

important for influencing cartilage tissue formation, as well as its disease 

pathways. Studies with explants and chondrocytes have demonstrated that 

specific regimens of hydrostatic pressure, compression, and fluid forces can 

induce positive changes in gene expression and matrix synthesis [31, 94, 175, 

191, 216, 229], while other regimens, namely static loads, can induce 

degenerative changes [31, 175]. However, the precise levels of mechanical 

stimulation necessary to elicit chondrocyte response to mechanical loading are 

not clearly understood. A variety of growth factors and cytokines have been 

studied for their potential use in stimulating articular cartilage regeneration. Two 

growth factors have shown the most promise as demonstrated by stimulation of 

matrix synthesis, increased proliferation, and maintenance of phenotype: 

transforming growth factor-131 (TGF-131) [81, 82, 143, 174, 186] and insulin-like 

growth factor-1 (IGF-1) [22, 23, 87, 142, 162, 228). It has also been shown that 

these growth factors can have synergistic effects when treating chondrocytes 

[244]. 

Previous research demonstrates the tremendous promise growth factors 

have shown for influencing cells toward tissue formation [22, 23, 81, 82, 87, 142, 

143, 162, 174, 186, 228, 244]. Most cartilage or chondrocyte based studies have 

analyzed the response of explants or large populations of cells. These studies 
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are important for understanding physiological responses of cartilage, but they 

neglect to account for variations among either single cells or subpopulations of 

cells. Thus, it is necessary to take a reductionist approach by first studying single 

chondrocyte physiology to fully understand how cell responses translate to 

overall cartilage responses [206]. We are specifically interested in examining how 

growth factors influence single chondrocytes and how mechanical forces can 

modify these responses. 

To date, several groups have attempted to describe cell signaling after 

TGF-~1 and IGF-1 treatment. These studies have focused on signaling between 

TGF-~1 and IGF-1 growth factor receptors and integrins [128, 198, 204]. The 

process of integrin activation in conjunction with IGF-1 stimulation has been 

linked to the activation of signaling intermediates in several cell types. One such 

study demonstrated that chondrocytes plated on type I or type II collagen 

followed by IGF-1 stimulation resulted in association of focal adhesion kinase 

(FAK) with a1 integrins, vinculin, and paxillin, as well as induction of greater She 

(adaptor protein) expression [204]. It was postulated that IGF-1 receptors 

cooperate with integrins to regulate focal adhesion proteins and are linked to the 

MAPK signaling pathway by a common She-growth factor bound protein 2 

(GRB2) intermediate. TGF-~1 stimulation has also been tied to integrin activation 

in chondrocytic cells. For example, one study has shown that TGF-~1 stimulation 

and a2~1 integrin activation (by type II collagen stimulation) led to synergistic 

increases in the phosphorylation of Smad2 and Smad3 [198]. The signaling 

between TGF-~1 and integrins was demonstrated to occur before Smad 
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phosphorylation. It has also been demonstrated that inhibiting FAK decreases 

cell attachment and blocks integrin signaling [128]. 

Before one can hope to describe the mechanotransductive processes 

occurring in vivo and in vitro in native and engineered cartilage, a better 

understanding of individual chondrocyte behavior is necessary. We have 

previously described the development of devices able to mechanically test single 

adherent chondrocytes and osteoblasts [121, 130, 213] for determining their 

mechanical properties. The most recent setup of our device utilizes unconfined 

creep compression on single cells [130]. 

The overall objective of this study was to determine what effects TGF-~1 

and IGF-1 would have on the mechanical properties of single articular 

chondrocytes, temporally and as a function of zone. The primary goal of this 

study was to quantify biomechanical alterations in single chondrocytes pertinent 

toward tissue regeneration or the etiology of disease states. Understanding a 

single chondrocyte's biomechanical response to static compression has 

implications towards understanding the forces responsible for initiating both 

anabolic and catabolic changes in cartilage. Based on the known actions of TGF­

~1 and IGF-1 [22, 23, 81, 82, 87, 128, 142, 143, 162, 174, 186, 198, 204, 228, 

244], our hypothesis was that these growth factors would lead to preservation of 

a more rounded chondrocytic phenotype. Based on previous work, we expected 

to observe differences between zones [209], growth factor treatments [22, 23, 81, 

82, 87, 128, 142, 143, 162, 174, 186, 198, 204, 228, 244], and possible 

synergistic effects between TGF-~1 and IGF-1 [244]. For this study we used 
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single cell unconfined creep compression, fluorescence microscopy, and real­

time RT-PCR to determine what effects the growth factors TGF-f31 (5 ng/ml), 

IGF-1 (100 ng/ml), and a combination of TGF-f31 (5 ng/ml) and IGF-1 (100 

ng/ml), would have on zonal chondrocytes after 3 and 18 h of attachment. 

Materials and methods 

Cell culture 

Articular cartilage was obtained from the distal metatarsal joint of approximately 

18 month old steers obtained from local abattoirs. Chondrocyte harvest, isolation, 

and culture followed previously described protocols [130]. Briefly, the superficial 

and middle/deep zones were separated and digested overnight at 37°C and 10% 

C02 in a solution of 2 mg/ml collagenase type 2 (Worthington) in supplemented 

Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum 

(FBS), 100 U/ml penicillin-streptomycin, 0.25 1-1g/ml fungizone, and 0.1 mM non­

essential amino acids (NEAA) (Invitrogen). After digestion, the cell mixture was 

centrifuged and resuspended in supplemented DMEM. The cell suspension was 

seeded onto a tissue culture treated plastic (TCP) 150 x 20 mm dish (plasma 

treated by Techno Plastic Products) and confined to a 2 em diameter area using 

silicone isolators (PGC Scientifics) to yield an areal cell density of approximately 

3.3 x 104 cells/cm2. The plates were incubated for either 3 or 18 hat 37°C and 

10% C02 prior to compression testing. These seeding times were selected such 

that we could characterize cellular events occurring immediately after attachment. 
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Three h is usually the approximate time that cells begin attaching. Cells are more 

firmly attached by the overnight, 18 h time point. 

Growth factor treatment 

The growth factors TGF-131 and IGF-1 were selected for this study. These growth 

factors were used at a single concentration each, based on high or saturation 

values found in the literature [22, 23, 81, 82, 87, 142, 143, 162, 174, 186, 228, 

244]. For TGF-131 and· IGF-1, concentrations of 5 ng/ml and 100 ng/ml, 

respectively, were selected for experimentation. A third growth factor treatment 

was selected using a combination of TGF-131 and IGF-1 at a concentration of 5 

ng/ml and 100 ng/ml, respectively. Both growth factors were obtained from 

PeproTech Inc. For both cell seeding times (3 and 18 h), cells were exposed to 

the appropriate growth factor for the final 3 h of attachment. The design of this 

experiment is presented in Table 3-1. 

Single cell creep testing 

Unconfined creep compression tests were performed using a system developed 

in our laboratory, originally designed for displacement-controlled indentation 

testing of single cells [213]. Since its original design, this device has been 

modified first for indentation creep testing [121] and finally for the purpose of 

unconfined creep testing [130]. This device is designed to apply a constant stress 

on adherent cells while employing cantilever beam theory to track the resulting 
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cellular deformation. Single cell unconfined compression is achieved by the 

application of a 50.8 llm diameter tungsten probe (Advanced Probing). 

After cell attachment, the media were removed from the culture dish and 

replaced with supplemented media containing 30 mM HEPES buffer (Fisher 

Scientific, Pittsburgh, PA) warmed to 37°C to buffer pH changes when moving to 

ambient conditions. TGF-r31, IGF-1, or the combination of TGF-r31 and IGF-1 were 

included in the fresh media for the corresponding treatment group. The dish was 

then placed into the apparatus and maintained at ambient conditions for creep 

testing. 

Creep testing was performed as described previously [130]. Briefly, single 

cells were creep tested using a test load of 50 nN. This test load was lower than 

what was previously used and resulted in cellular strains at or below 30% to 

conform to continuum model assumptions. The contact stress for each cell was 

determined via reticle measurement (Nikon USA) of the cell diameter before 

compression. Contact stress was calculated by dividing the test load by the area 

of the cell. Cell height was determined by comparing probe contact with the cell 

to the measured distance to the dish. 

Determination of single chondrocyte material properties 

The creep response of single chondrocytes to unconfined compression was 

modeled using a closed-form continuum mechanics model presented earlier 

[130]. Briefly, to model the creep response, a solid disc geometry was used to 

describe a chondrocyte attached to a substrate. Studies in our laboratory using 
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interferometry suggested this to be an appropriate approximation for the shape of 

a single chondrocyte [201]. With this geometry in mind, we considered the cell as 

a disc, under small deformation exposed to an instantaneous and constant load. 

From the standard linear solid (Kelvin) model, and assuming the cell to be 

isotropic, incompressible, and homogeneous, the following solution was 

formulated to describe the viscoelastic creep response of a cell: 

uz(r,O,t) = -z(r,O) 1 + _e -1 e r, H(t) 2a [ ( r ) _ _!_ l 
3£oo Ta 

E, = £.(::) 
/-l = Eoo(Ta -TJ 

where Uz is the deformation, a is the contact stress, E is the relaxed modulus, z 

is the height of the cell, ts is the creep time constant, te is the stress relaxation 

time constant, H(t) is the unit step function, Eo is the instantaneous modulus, and 

IJ is the intrinsic viscosity. 

Creep experimentation generated three sets of data for each cell: 

displacement versus time, force versus time, and force versus displacement. The 

force versus time data were used to confirm constant force during testing, while 

the force versus displacement data were used to determine contact with the cell. 

The resulting creep curves were fitted and material properties were generated for 

the viscoelastic model via the non-linear Levenburg-Marquardt method, using 

MATLAB 6.5 (MathWorks). 
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Fluorescence microscopy: F-actin staining 

To compare the filamentous actin (F-actin) distribution and organization, all 

treatment groups {Table 3-1) were stained with rhodamine phalloidin. 

Fluorescent derivatives of phallotoxins have been demonstrated to specifically 

bind to filamentous, but not to globular actin (G-actin) [49]. A number of studies 

have used fluorescently modified phallotoxins to quantify the amount of F-actin 

though fluorescent measurements, including image analysis [1 04, 120, 133, 177]. 

Chondrocytes were seeded using the protocol above, except they were cultured 

on 24 x 30 mm tissue culture treated Thermanox plastic coverslips (Nalgene). 

Silicon isolators and the same cell density were used for seeding. After the 

culture period, cells were washed twice with PBS warmed to 37°C. The cells 

were then fixed with fresh 3. 7% paraformaldehyde for 10 min at room 

temperature, washed three times with PBS, and then permeablized in 0.1% 

Triton X-100 in PBS for 5 min. After three more PBS washes, the fixed cells were 

incubated in rhodamine phalloidin (2 U per coverslip; Molecular Probes) in 1% 

BSA in PBS for 20 min, followed by three final washes with PBS. Each 

Thermanox coverslip was mounted between a microscope slide and glass 

coverslip using Prolong Gold with DAPI (Molecular Probes). These samples 

were viewed with an Axioplan 2 microscope (Carl Zeiss) and a CooiSNAPHa 

CCD camera (Photometries). Images were acquired and analyzed using 

Metamorph 4.15 (Universal Imaging Corporation). All images were acquired in 

gray scale and colorized for presentation using Metamorph. For comparison of 

staining intensity, light exposure was kept to a minimum, and exposure time for 
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digital photographs was kept at 30 ms. Overlaying and image processing were 

accomplished with Adobe Photoshop 7.0 (Adobe Systems). 

The relative intensity of F-actin was determined for multiple cells in each 

treatment group using Metamorph to analyze the raw images. A region of interest· 

was selected around a single cell and from this an average intensity (gray value) 

was obtained. The same size region was also selected over a nearby area 

without any cells to obtain a reading for the background fluorescence. The 

difference of these numbers was the cell's relative staining intensity. Average 

gray value (AGV) in a region of interest was determined with the following 

equation: AGV = total of all gray values I the total number of pixels. No threshold 

was set in the measurement of AGV for this analysis. 

Gene expression of {3-Actin 

Generally speaking, in healthy non-muscle tissue two isoforms (13- and y-) of 

actin exist within a cell. Although little is known about the exact functions of each 

isoform, 13- and y-actins have been associated with numerous microfilament 

structures and 13-actin has been implicated in cell migration and cell motility. 

Populations of 2 x 105 chondrocytes were seeded in 24 well TCP plates. 

Each treatment group is represented in triplicate, yielding 48 samples. After 3 

and 18 h of attachment, samples were lysed and their RNA was isolated using 

the RNAqueous kit (Ambion). Total RNA concentration and purity were measured 

by a NanoDrop spectrophotometer (NanoDrop Technologies), which allows 

standardization by total RNA for the reverse transcription (RT) reaction. Before 
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the RT reaction, RNA was subjected to DNase treatment. For the RT reaction, 38 

IJL of RNA was incubated with oligo(dT} primer at 65°C for 5 min. After cooling to 

room temperature, a 50 IJL reaction was incubated with the RNA-oligo(dT} mix, 

buffer, 4mM dNTPs (1 mM each dNTP}, 40 U RNase inhibitor, and 50 U 

Stratagene StrataScript RT enzyme for 60 min at 42°C. After eDNA synthesis, 

real-time PCR amplification for ~-actin was performed using a RotorGene 3000 

(Corbett Research). A forward primer, reverse primer, and gene-specific probe 

were used. The 5' to 3' sequences for the forward primer, reverse primer, and 

probe were designed from bovine and human mRNA sequences from the 

National Center for Biotechnology Information (NCBI). The probe chemistry used 

in PCR reactions is 5' FAM and 3' BHQ-1. For real-time PCR analysis of each 

sample, 1 IJL of DNA sample, buffer, 3.5 mM MgCI, 0.2 mM DNTPs, 100 nM of 

each forward and reverse primer, 100 nM probe, and 0.625 U HotStarTaq 

(Qiagen, Valencia, CA) were prepared in a 25 IJL reaction volume. The real-time 

analysis involves a 15 min activation step, followed by 50 cycles of 15 s at 95°C, 

30 s at 60°C, and a fluorescence measurement. 

The calculation of mRNA abundance of ~-actin for all sample groups is 

facilitated by normalization with respect to total RNA concentration into the RT 

reaction. Abundance (A) was calculated from the takeoff cycle (Ct) of ~-actin and 

the efficiency (E) of the reaction determined from a standard curve. The 

abundance equation used (adapted from Pfaffl) [169] was: 
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The abundance was used to compare the expression of 13-actin in all treatment 

groups. 

Data/statistical analysis 

All results are reported as mean ± standard deviation. Statistical analysis of the 

data were performed using JMP IN 5.1 (SAS Institute). The effects of zone, 

attachment time, and growth factor treatment were tested with three-factor 

ANOV A. The significance of these factors was determined for gene abundance. 

Where ANOVA reveals differences, a Tukey's Honestly Significant Difference 

(HSD) post hoc test was performed to make pair-wise comparisons among 

means. 

Results 

Viscoelastic properties 

An example of a typical creep curve from a single cell is presented in Figure 3-1. 

This viscoelastic response was demonstrated by all 240 cells that were tested. 

These creep data were separately curve fit using the equation presented such 

that the instantaneous modulus, relaxed modulus, and apparent viscosity were 

determined for each treatment. A summary of the mean material properties (E.,, 

E0 , 1-1) is presented in Figure 3-2. Compression with a test load of 50 nN did not 

appear to change cell area during testing or the calculation of contact stress. 

Experimentation required 15 animals and statistical analysis showed that animal 
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was not a significant factor for any cell property (E.o, Eo, IJ, cell diameter, and cell 

height). 

Three-factor ANOVA with post hoc analysis showed that each growth 

factor treatment (TGF-131, IGF-1, and TGF-131 + IGF-1) was a significant factor 

compared to no growth factor treatment for both the relaxed modulus (Figure 3-

2A, p<O.OOP1) and instantaneous modulus (Figure 3-28, p<0.0001 ). Individual 

growth factor treatments were not statistically different from each other, and 

synergism was not observed from the combination of TGF-131 + IGF-1. Growth 

factor treatment increased the relaxed modulus by 86% over controls and 

increased the instantaneous modulus by 136%. Furthermore, the combination of 

TGF-131 and IGF-1 significantly increased the apparent viscosity (Figure 3-2C) by 

45% over controls (p=0.01 ). Attachment time did not have a significant effect on 

instantaneous modulus (p=0.57), relaxed modulus (p=0.17), or apparent viscosity 

(p=0.06). ANOVA also showed that zone was a significant factor on the relaxed 

modulus (p=0.0025), with superficial cells having a total mean relaxed modulus 

(0.91 ± 0.28 kPa) that was 11% larger than middle/deep cells (0.82 ± 0.25 kPa). 

The interaction of zone and growth factor treatment was significant for the 

relaxed modulus (p<0.0001) and post hoc analysis showed that the interaction 

term superficiai*(TGF-131 + IGF-1) resulted in a significantly higher relaxed moduli 

than middle/deep*(TGF-131 + IGF-1) and all other interactions (Figure 3-2A, 

p<0.05). This zone*growth factor interaction may have leveraged the effect of 

zone in the statistical analysis of the relaxed modulus. 
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Cells appeared more spread at 18 h, as demonstrated by smaller heights 

and greater diameters than cells at 3 h. After 3 h of attachment, cells had an 

average height of 7.40 ± 2.15 !Jm and an average diameter of 11.94 ± 1.21 IJm. 

In comparison, after 18 h attachment cell height was 6.09 ± 1.93 IJm and cell 

diameter was 13.00 ± 1.34 IJm. ANOVA showed significant effects of attachment 

time with cell height decreasing from 3 to 18 h (p<0.0001) and cell diameter 

increasing from 3 to 18 h (p<0.0001 ). Additionally, chondrocytes treated with 

growth factors {TGF-131, IGF-1, and TGF-131 + IGF-1) had significantly greater cell 

heights as compared to control cells {p<0.0001) but were not significantly 

different from each other. At 3 h, growth factor treatment led to an average cell 

height of 7.86 ± 2.07 !Jm compared to control cells at 6.00 ± 1.76 !Jm. For growth 

factor treatment at 18 h of attachment, cell height was 6.60 ± 1.84 !Jm, whereas 

that of controls was 4.42 ± 1.11 !Jm. Three-factor ANOVA showed that growth 

factor treatment was a significant factor on cell diameter (p=0.003). Growth factor 

treatment led to smaller cell diameters (12.22 ± 1.24 IJm) compared to control 

cells (12.50 ± 1.54 !Jm). Zone was not a significant factor for cell height or 

diameter. 

Actin staining/fluorescent intensity 

The results of cell staining with rhodamine phalloidin and DAPI for all treatment 

groups are presented in Figure 3-3. Cell spreading increased from 3 to 18 h of 

seeding time as did the degree of actin organization. A majority of chondrocytes 

from the growth factor treatment groups (Figure 3-3E-P) exhibited a brighter halo 
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at the periphery of the cell as compared to control cells (Figure 3-3A-D). Images 

taken after 18 h of seeding (Figure 3-3 left 8 panels) showed larger cells with 

discernable stress fibers, which were not visible at 3 h (Figure 3-3, right 8 panels). 

Seven to ten fluorescent images of cells were taken from each treatment 

group at 1 OOX magnification. Collectively, the images contained an average of 51 

cells for each treatment group. Average relative intensity values were determined 

for each treatment. The average relative intensity values mirrored the creep 

compression results (Figure 3-4) and post hoc analysis showed an 86% increase 

for each growth factor treatment over controls (p<0.0001 ). The TGF-~1 group 

also exhibited a significant decrease in fluorescent intensity in comparison to 

IGF-1 and in comparison to TGF-~1 + IGF-1 (p<0.0001 ). Fluorescence intensity 

decreased by 24% at 18 h attachment as compared to 3 h (p=0.0004). 

{3-actin gene expression 

Real-time PCR analysis was completed in duplicate on 48 samples, a standard 

dilution curve (serial dilutions of stock DNA: 1 OX, 1 OOX, 1 ,OOOX, 1 O,OOOX), and 

no-template controls (NTCs), requiring two runs on the RotorGene. NTC 

amplification was not observed and reaction efficiency for each run was 96% and 

97%. The results of ~-actin abundance (Figure 3-5) did not show a significant 

effect for any growth factor treatment (p=0.70), attachment time (p=0.09), or zone 

(p=0.54 ). However, a significant interaction was seen for zone and attachment 

time (p<0.0001 ). This is due to the fact that superficial zone chondrocytes had a 
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significantly lower (p<0.0001) abundance (2.80 ± 0. 76 x 1 o-7 ) at 3 h as compared 

to 18 h (4.63 ± 1.80 x 1 o-7). 

Discussion 

The unconfined creep compression results of this study demonstrate for the first 

time that the growth factors TGF-131 and IGF-1, alone and in combination, 

significantly increase the stiffness of single zonal chondrocytes without 

synergistic effects observed between the two growth factors. Measurements of 

cell dimensions also demonstrate that these growth factor treatments alter the 

morphology of chondrocytes. The creep testing results further confirm that a 

viscoelastic model, assuming simple disc geometry, is suitable for modeling the 

response of a single chondrocyte to unconfined creep compression. This model 

also serves as a valuable tool for distinguishing the effects of growth factors on 

the mechanical properties of single cells. These findings yield important 

information toward understanding the process of mechanotransduction, which is 

gaining prominence as a crucial actor in tissue homeostasis and disease, as well 

as in the formation and maintenance of cell phenotypes. Determination of single 

cell mechanical properties fosters understanding of a cell's local mechanical 

environment and that environment's role in shaping cellular physiology. 

Specifically for chondrocytes, it is important to understand the precise forces 

germane to tissue formation, and the etiopathogenesis of osteoarthritis, and how 

growth factors can modify these responses. Examination of single chondrocytes 

has already revealed important information in terms of relating mechanical 
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properties to disease states [6, 224], cytoskeletal composition [225), and the 

actions of growth factors [128, 198, 204]. This study adds to the current 

knowledge of growth factor effects on the cytoskeleton of single chondrocytes 

and provides insight to the study of basic cell functions. 

The findings of this study demonstrate that separate techniques can be 

utilized to obtain similar information on the biomechanical nature of single 

chondrocytes. Creep compression of single chondrocytes showed mechanical 

stiffening induced by growth factors that corresponded with higher relative 

intensity measurements of chondrocytes stained with rhodamine phalloidin. 

These concomitant increases suggest that treatment with TGF-~1 and/or IGF-1 

increases the levels of F-actin within chondrocytes. This further implies that 

treatment with TGF-~1 and/or IGF-1 leads to an increase in the number of actin 

filaments with concomitant or subsequent cellular stiffening. Previous work has 

shown that actin microfilaments and possibly intermediate filaments contribute 

significantly to the biomechanical properties of single chondrocytes as measured 

by micropipette aspiration [225]. Also, TGF-~1 and IGF-1 have previously been 

shown to increase the attachment of chondrocytes when compared to serum free 

controls [138, 204], suggesting increased focal adhesions and greater actin 

organization due to growth factor exposure. The growth factor treatments used in 

this study appear to affect cell stiffening in a similar manner, since analogous 

results were seen in all growth factor groups. Growth factor stimulation seems to 

be necessary for increases in F-actin as well as for cell stiffening to occur, since 

cells seeded for 3 and 18 h that were not exposed to growth factors did not show 



63 

increased levels ofF-actin or any cell stiffening. Further, synergistic effects were 

not observed when chondrocytes were stimulated with both TGF-J31 and IGF-1. 

These observations suggest the possibility of a common, yet currently unknown, 

mechanism. 

The cell stiffening and increased F-actin that chondrocytes exhibited after 

TGF-J31 and IGF-1 exposure most likely involves a gene and/or protein response 

within single cells. These growth factors have a well documented effect on gene 

expression [81; 82, 244]; therefore, the stiffening mechanism may involve 

transcriptional changes of cytoskeletal and cytoskeletal related proteins. 

However, this does not appear to be the case since the expression of J3-actin, as 

measured by real-time RT-PCR, demonstrates that TGF-J31 and IGF-1 do not 

significantly increase mRNA levels for J3-actin. We speculate that this may 

indicate that the pool of monomeric actin (G-actin) available for polymerization 

may not be increasing from direct transcription of the actin gene. Even though J3-

actin gene expression does not increase with growth factor treatment, 

translational regulation of G-actin levels may be occurring. A likely candidate 

could include eukaryotic initiation factor 2A (e1F2A) which has been 

demonstrated to regulate protein translation and is important in actin cytoskeletal 

organization in yeast [122]. These findings suggest that the observed response 

of chondrocytes to TGF-J31 and IGF-1 is most likely occurring somewhere at the 

protein level. Previous research concerning chondrocytes, integrin activation, and 

stimulation by TGF-J31 or IGF-1 has shown that signaling between focal adhesion 

complexes and growth factor receptors may occur [128, 198, 204]. For IGF-1 it is 
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clear that a She and Shc-GRB2 complex are important intermediates for linking 

to the MAPK pathway [204]. Current research has not yet revealed intermediate 

proteins connecting TGF-f31 and integrins to cell signaling or specifically Smad 

signaling. The increases in F-actin and cell stiffening seen in this study most 

likely involve intracellular signaling proteins that localize at focal adhesions as 

well as adaptor proteins. 

Zonal differences in articular cartilage and isolated chondrocytes have 

been well characterized, not only in gene expression and synthesis [17, 18, 54], 

but also in mechanical properties [209]. Several findings in this study further 

confirm that superficial chondrocytes differ physiologically from middle/deep 

chondrocytes. These data are in agreement with results from a recent study in 

our laboratory [209] that showed biomechanical differences between superficial 

and middle/deep chondrocytes. The real-time PCR results for expression of f3-

actin also illustrate differential responses of superficial and middle/deep cells 

during cell attachment. These results suggest that f3-actin does not serve as a 

desirable housekeeping gene for chondrocytes, since expression is not constant 

across all treatments. As Figure 3-5 shows, middle/deep chondrocytes maintain 

a relatively constant level of f3-actin expression from 3 to 18 h of attachment time, 

while superficial chondrocytes have a lower level of f3-actin expression at 3 h. By 

18 h f3-actin expression increases to a level equal to that of middle/deep 

chondrocytes at both 3 and 18 h attachment. This may be due to a differential 

response of superficial cells as compared to middle/deep cells when cells are 

digested from tissue and plated. The lower abundance of f3-actin mRNA at 3 h 
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does not seem sufficient to affect either the mechanical properties or the amount 

of F-actin in superficial chondrocytes. Some explanation can be garnered from 

previous work that has demonstrated that differences exist in the organization 

and the quantities of both actin and vimentin in zonal chondrocytes. Zonal 

differences have been observed in actin microfilament organization in vivo and in 

cells grown in monolayer [57, 117, 126] as well as in vimentin filament assembly 

and disassembly during organ culture [57]. It is interesting to note that zonal 

differences in cell morphology were not observed in this study. If chondrocytes 

exhibited similar morphologies to what is seen in situ, one would expect 

superficial cells to exhibit smaller cell heights and larger cell diameters than 

middle/deep zone cells. It appears that collagenase digestion followed by 

seeding in monolayer may alter the cytoskeleton such that morphology 

differences between zones no longer exist. 

In contrast to studies with other cell types, attachment time did not play a 

factor in increasing chondrocyte stiffness as measured by single cell creep 

compression. The mechanical testing results of this study confirm a previous 

study from our group that demonstrated no significant effect of attachment time 

on any of the material properties of single chondrocytes as determined with the 

same creep testing device [209]. In contrast, fluorescence intensity of F-actin 

decreased from 3 to 18 h (Figure 3-4 ). Decreased intensity measurements most 

likely are due to a diminished actin polymerization front, since less of a bright 

halo was seen in fluorescent staining of single cells at 18 h of attachment (Figure 

3-3). This may suggest that chondrocytes at 3 h have a denser network of actin 
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microfilaments at the cell periphery where the cell is actively attaching and 

spreading. Previous research has correlated increases in cell stiffness with 

increased cell spreading and ECM contacts in bovine endothelial cells tested by 

twisting attached magnetic beads on the cell surface [232, 233]. These differing 

behaviors can be attributed to cell type. Bovine articular chondrocytes do not 

adhere as easily as endothelial cells; at 3 h of attachment, chondrocytes remain 

round and are not firmly attached. Many of these cells can be detached by 

prodding with the compression probe or by a harsh PBS wash. At 18 h, 

chondrocytes are just starting to spread; however, a large percentage of rounded 

cells remain. There may be a threshold number of focal adhesions required to 

significantly stiffen a cell; therefore, attachment times greater than 18 h could 

show increased chondrocyte spreading and possibly increased cell stiffening. 

We propose that the combination of integrin activation from cellular 

attachment and stimulation with TGF-131 and IGF-1 leads to increased actin 

polymerization as characterized by increases in F-actin and stiffening of the 

cytoskeleton. The increased polymerization is most likely due to signaling 

between integrins and growth factor receptors. These findings offer important 

information for cartilage physiology, tissue engineering of articular cartilage, and 

osteoarthritis. The activation of integrins though ECM binding and cross-talk with 

growth factor receptors might be a crucial process in vivo, especially for cartilage 

regeneration. The results of this study demonstrate that 3 h of TGF-131 and IGF-1 

exposure cause significant changes to the actin cytoskeleton of single 

chondrocytes. This response may be short term or may continue with prolonged 
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growth factor exposure. It is possible that cytoskeletal stiffening is part of a 

chondrocyte's preparation for the increased synthetic or proliferative activities 

that have been observed previously in populations of these cells. Our group is 

particularly interested in understanding how mechanical forces and growth 

factors affect processes in single chondrocytes (Figure 3-6). This study 

establishes that by administering a characterized mechanical testing environment 

to single chondrocytes, their biomechanical response to external stimuli, such as 

growth factors, can be determined. The next step is to use this knowledge to 

correlate changes in gene expression and signaling with the direct compression 

of single chondrocytes. Growth factor stimulation surely plays a role in this 

response and may offer synergistic effects with certain modalities of mechanical 

stimulation. For cartilage, such synergism may influence tissue regeneration or 

inhibit damage/disease states caused by injurious mechanical loading. 

Connecting the application of force to changes in cell gene expression and 

signaling has broad implications; not only for the study of mechanotransduction, 

but for understanding disease etiologies and the formation or regeneration of 

tissues. 
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Figure 3-1. Viscoelastic creep response of a single chondrocyte 
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Creep curve from a single chondrocyte, representing a typical viscoelastic response. 
The viscoelastic curve fit is included (dashed gray line). 
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Figure 3-2. Viscoelastic properties of single articular chondrocytes 
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Viscoelastic properties as a function of growth factor treatment, zone, and seeding time. 
The relaxed modulus (A) and instantaneous modulus (B) were significantly greater for 
growth factor treated chondrocytes as compared to controls (* , p<0.0001 ). The 
combination of TGF-131 + IGF-1 significantly increased the apparent viscosity (C) over 
controls (#, p=0.01) but not compared to other growth factor treatments. Values of n 
ranged from 13 to 20. 
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F-actin is stained with rhodamine phalloidin (red} and the nucleus is stained with DAPI 
(blue). Cells have more intense F-actin staining in growth factor groups and are less 
spread than control cells. Also , all groups show increased cell spreading from 3 to 18 h. 
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# 

IGF-1 TGF-~ 1 + lGF-1 

# 

!GF-l TGF-~1 + !GF-l 

For superficial zone chondrocytes (A) and middle/deep zone chondrocytes (B). Results 
are presented as average ± standard deviation . Symbols *, + indicate significance over 
controls (p<0.0001 ), while# indicates significant over TGF-131 and controls (p<0 .0001 ). 
In general , there is agreement between the compressive modulus and F-actin intensity. 
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IGF-1 TGF-~1 +IGF-1 

JGF-1 TGF-PI +IGF-I 

Superficial (A) and middle/deep (B) chondrocytes mRNA abundance. Results are 
presented as average ± standard deviation. Asterisk (*) indicates significance of 3 h as 
compared to 18 h for superficial zone (p<0 .0001 ). 
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Growth factors have been shown to affect nuclear and integrin/focal adhesion signaling 
(right side of figure). Mechanical forces can be sensed by a variety of cellular proteins, 
such as mechanosensitive ion channels and integrins. These forces have also been 
shown to affect nuclear and integrin/focal adhesion signaling (left side of figure). Our 
group hopes to determine the interplay that may exist when cells are exposed to both 
stimul i. 
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Chapter 4. TRPV4 channel activation improves the 

tensile properties of self-assembled cartilage * 

Chapter submitted for publication as Eleswarapu SV and Athanasiou KA, 
"TRPV4 channel activation improves the tensile properties of tissue engineered 
articular cartilage." 
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Abstract 

A persistent hurdle in cartilage tissue engineering is to produce tissues with 

biochemical and biomechanical properties robust enough to meet the aggressive 

physiological demands of the native joint. In an effort to improve these properties, 

tissues grown in vitro are often subjected to mechanical stimuli that aim to 

recapitulate in vivo loading conditions. These mechanical stimuli are thought to 

produce downstream alterations in intracellular ion concentrations, which 

ultimately give rise to increased biosynthesis. There is mounting evidence that 

these perturbations in the cellular microenvironment are regulated by the Ca2+­

permeable transient receptor potential vanilloid 4 (TRPV4) channel. In this study, 

we examined the effects of targeted TRPV4 activation on self-assembled 

articular cartilage constructs. The objectives of this study were 1) to determine 

whether TRPV4 activation would enhance self-assembled constructs, 2) to 

identify an optimal treatment time window for TRPV4 activation, and 3) to 

compare TRPV4 activation to Na+/K+ pump inhibition, which has been shown 

previously to improve construct tensile properties. This study employed a two­

phased approach. In Phase I, self-assembled constructs were grown for 4 weeks 

and subjected to treatment with the TRPV4 agonist 4alpha-phorbol-12, 13-

didecanoate (4alpha-PDD) during three treatment time windows: t=6-10 days, 

t=10-14 days, and t=14-18 days. Treatment during t=10-14 days produced an 

88% increase in collagen and a 153% increase in tensile stiffness. This treatment 

window was carried forward to Phase II. In Phase II, we performed a head-to­

head comparison between TRPV4 activation using 4alpha-PDD and Na+/K+ 
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pump inhibition using ouabain. Treatment with 4alpha-PDD produced 

improvements on par with ouabain (91% to 107% increases in tensile stiffness). 

The results of this study demonstrate the effectiveness of ion channel modulation 

as a strategy for improving engineered tissues. To our knowledge, this is the first 

study to examine TRPV4 channel activation in tissue engineering. 

Introduction 

Injury to the cartilage found at the articulating surfaces of diarthrodial joints is 

irreversible and leads inescapably to pain and disability [28]. Tissue engineering 

aims to replace damaged articular cartilage by producing biologic replacements 

in vitro for eventual in vivo implantation. A persistent hurdle in cartilage tissue 

engineering is to produce tissues with biochemical and biomechanical properties 

robust enough to meet the aggressive physiological demands of the native joint 

[51]. To address this challenge, our laboratory has developed a self-assembly 

process for engineering cartilage constructs [1 05]. Self-assembly involves 

seeding chondrocytes at high density into pre-fabricated, non-adherent, 

cylindrical molds. Cells condense into free-floating, disc-shaped constructs and, 

over time, synthesize an extracellular matrix (ECM) rich in collagen and sulfated 

glycosaminoglycans (GAG), components that give the tissue its tensile and 

compressive integrity [163]. To date, however, native tissue functional properties 

remain elusive. 

In pursuit of strategies to improve the properties of engineered cartilage 

constructs, researchers in the field have developed a variety of mechanical 
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stimulation techniques that purport to reproduce the dynamic physiologic loading 

conditions experienced by native cartilage in the intact joint. Some of these 

strategies include dynamic compression [46, 114, 134, 136, 147, 154], fluid shear 

[58, 59, 246], hydrostatic pressure [65, 71, 92, 215, 226, 234], and osmotic stress 

[72, 73, 194, 195]. Unifying these strategies is the idea that changes in the 

macroscopic environment of the tissue can give rise to beneficial perturbations in 

the in situ cellular microenvironment. Dynamic changes at the cellular level 

manifest physiologically as transient alterations in intracellular ion concentrations. 

For example, hydrostatic pressure inhibits the action of the Na+/K+ pump [92], an 

ATPase that pumps ions against a concentration gradient to maintain a higher 

intracellular concentration of K+ than Na+. Thus, by inhibiting the Na+/K+ pump, 

hydrostatic pressure produces increased levels of intracellular Na+. A recent 

study from our group [160] showed that the selective inhibition of the Na+/K+ 

pump using 20 !JM ouabain in self-assembled cartilage constructs was able to 

produce significant increases in collagen content and tensile properties, a result 

that recapitulated our group's previous success with hydrostatic pressure [63]. 

Another example of a dynamic tissue-level stimulus giving rise to changes 

at the cellular level is cyclic deformational loading. During joint motion, 

compressive loading of cartilage causes fluid expulsion, which creates a 

temporary hyper-osmotic microenvironment for chondrocytes within the tissue. 

This hyper-osmotic stress has been shown to produce transient increases in 

intracellular Ca2+ [72, 73, 245], which can drive gene expression toward ECM 

biosynthesis [167, 222]. The precise mechanism underlying this osmoregulation 
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in cartilage remains unclear. However, there is mounting evidence that the 

chondrocyte response to osmotic stress may be regulated by the transient 

receptor vanilloid 4 (TRPV4) channel [90, 170], a Ca2+-permeable membrane 

protein found across many tissue types [112]. Although a handful of recent 

papers have examined the molecular and cellular physiology of the TRPV4 

channel in chondrocytes, no study to date has selectively targeted the TRPV4 

channel for use in a tissue engineering strategy. 

Encouraged by results from the literature that suggest that the TRPV4 

channel plays a vital role in chondrocyte physiology, we decided to examine the 

effects of TRPV4 activation on self-assembled articular cartilage constructs. The 

objectives of this study were 1) to determine whether TRPV4 activation would 

enhance the biochemical and biomechanical properties of self-assembled 

constructs, 2) to identify an optimal treatment time window for TRPV4 activation, 

and 3) to compare TRPV4 activation to Na+/K+ pump inhibition. This study 

employed a two-phased approach. In Phase I, constructs were self-assembled 

from bovine chondrocytes and subjected to treatment with the TRPV4 agonist 

4a-phorbol-12,13-didecanoate (4a-PDD) during three treatment time windows: 

t=6-10 days, t=10-14 days, and t=14-18 days. Constructs were grown until t=28 

days, at which time they were evaluated morphologically, biochemically, and 

biomechanically. The optimal 4a-PDD treatment time window was then carried 

forward to Phase II. In Phase II, we performed a head-to-head comparison 

between TRPV4 activation using 4a-PDD and Na+/K+ pump inhibition using 

ouabain; we also examined the combination of 4a-PDD and ouabain. It was 
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hypothesized that 1) TRPV4 activation would improve construct properties, 2) an 

optimal treatment time window exists for which constructs undergo greatest 

improvement, and 3) activation of TRPV4 would produce results comparable to 

those observed with inhibition of the Na + /K+ pump. Assessments included gross 

morphology, biochemical analysis for GAG and collagen, and biomechanical 

testing. 

Materials and methods 

Chondrogenic medium 

This study employed a chemically defined medium termed "chondrogenic 

medium," which has been used previously by our group [62, 160, 163] and 

contains the following components: DMEM with 4.5 mg/ml of glucose and L­

glutamine (Invitrogen); 100 nM dexamethasone (Sigma); 0.1 mM non-essential 

amino acids (Invitrogen); 1% ITS+ (insulin, human transferrin, and selenous acid; 

BD Biosciences ); 1% penicillin-streptomycin-fungizone (BioWhittaker); 50 J..lg/ml 

ascorbate-2-phosphate; 40 J..lg/ml L-proline; and 100 J..lg/ml sodium pyruvate 

(Fisher Scientific). Importantly, chondrogenic medium contains 151 mM Na+, 5.2 

mM K+, and 1.7 mM Ca2+, which are near physiologic serum concentrations [93]. 

Medium osmolarity was assessed using a VAPRO 5520 vapor pressure 

osmometer (Wescor) and was determined to be -347 mOsm. 
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Chondrocyte isolation 

Cartilage was harvested from the distal femurs and patellofemoral grooves of 

week-old male calves (Research 87, Inc.) shortly after slaughter, then digested in 

0.2% collagenase type II (Worthington) for 24 h. To normalize variability among 

animals, each leg came from a different animal, and cells from 8 legs were 

pooled to create a mixture of chondrocytes. Separate harvests were conducted 

for each phase of this study. Cells were counted using a hemocytometer and 

then frozen at -8ooc in DMEM containing 20% FBS and 10% DMSO. 

Preparation of agarose wells for construct self-assembly 

Cylindrical, non-adherent wells were prepared using a technique adapted from 

previous work [1 05, 163]. Briefly, a stainless steel mold consisting of 5 mm 

diameter cylindrical prongs was placed into sterile, molten 2% agarose in a 48-

well plate. The agarose solidified at room temperature for 1 h, and the stainless 

steel mold was carefully removed. Two changes of chondrogenic medium were 

used to completely saturate the agarose well by the time of cell seeding. 

Self-assembly of cartilage constructs 

Chondrocytes were thawed and counted within 5 days of being isolated and 

frozen. After thawing, cell viability was >90%. To create each construct, 5.5 

million cells in 100 J,JL of chondrogenic media were seeded into each cylindrical 

agarose well, followed by addition of 400 J,JL chondrogenic media after 4 h. Cells 

settled and condensed into free-floating cylindrical disc-shaped constructs; t=1 
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day was defined as 24 h after seeding. All constructs were cultured in the 

agarose wells until t=10 days, at which point they were gently unconfined and 

transferred to 48-well plates unrestricted by circumferential confinement. 

Constructs received 500 !JL medium change every 24 h and remained in culture 

until t=28 days. All culture was performed at 3rC and 1 0% C02 . 

Phase 1: Evaluation of time windows for TRPV4 activation 

In Phase I, we tested the hypothesis that TRPV4 channel activation can improve 

the biochemical and biomechanical properties of tissue engineered cartilage. We 

further sought to determine the optimal time window for performing this 

stimulation. Self-assembled constructs were treated with a TRPV4 channel 

agonist, 4a-PDD (Enzo Life Sciences), during three treatment windows: t=6-10 

days, t=10-14 days, and t=14-18 days. During treatment, constructs were 

cultured in petri dishes for 1 h with -4 ml chondrogenic medium containing 1 0 

!JM 4a-PDD. Control constructs were also moved to petri dishes containing 

chondrogenic medium during this time. Treatment was followed by a 30 min 

wash step in chondrogenic medium without 4a-PDD before the constructs were 

returned to their wells. Treatment occurred at the same time every day over the 

course of 5 days. 

Phase II: TRPV4 activation versus Na+IK+ pump inhibition 

A previous study from our group showed that inhibition of the Na+/K+ pump 

improved the tensile properties of tissue engineered cartilage [160]. In Phase II, 
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we performed a head-to-head comparison between TRPV4 activation and Na+/K+ 

pump inhibition. We further sought to determine the effects of the combination of 

these two stimuli. The regimen for TRPV4 activation was chosen from the most 

effective treatment time window determined in Phase 1: 10 !JM 4a-PDD during 

t=10-14 days (see Results section for details). The regimen for Na+/K+ pump 

inhibition was selected from previous work done by our group [160]: 20 j.JM 

ouabain during t=10-14 days. During t=10-14 days, constructs were cultured in 

petri dishes for 1 h with -4 ml chondrogenic medium containing either 10 !JM 4a­

PDD, 20 !JM ouabain (Sigma), or both agents. Control constructs were also 

moved to petri dishes containing chondrogenic medium during this time. 

Treatment was followed by a 30 min wash step in chondrogenic medium before 

the constructs were returned to their wells. Treatment occurred at the same time 

every day over the course of 5 days. 

Gross morphology and specimen portioning 

At t=28 days, constructs were removed from culture. Photographs were taken, 

and dimensions were measured from photographs using lmageJ software 

(National Institutes of Health). Wet weights (WW) were recorded, and constructs 

were portioned for analysis. A 3 mm diameter punch was taken from the 

construct's center for indentation testing. The remaining outer ring was split into 

portions for biochemical analysis and tensile testing. 
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Biochemical analysis 

Biochemical samples were weighed wet, frozen, and lyophilized. Samples were 

digested with 125 IJg/mL papain (Sigma) for 18 hat 65°C. Total DNA content was 

assessed with the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen), and cell 

number was estimated assuming 7.8 pg DNA per cell. Sulfated GAG content was 

quantified using the Blyscan Glycosaminoglycan Assay (Biocolor). Following 

hydrolysis with 4 N sodium hydroxide for 20 min at 11 0°C, total collagen content 

was quantified with a modified chloramine-T hydroxyproline assay [1 05, 238]. 

Sircol collagen standard (Biocolor) was used such that the standard curve 

reflected collagen amount, eliminating the need to convert hydroxyproline to 

collagen. Total collagen and sulfated GAG were normalized to WW and cell 

number for making comparisons. 

Tensile testing 

Tensile specimens were cut into dog-bone shapes with 1 mm gauge lengths. 

Specimen thickness and width were measured from photographs using lmageJ 

software. Specimens were then affixed with glue to paper tabs outside the gauge 

length, and these tabs were gripped during testing. A uniaxial materials testing 

system (lnstron Model 5565) was employed to determine tensile properties. 

Tensile tests were performed until failure at a strain rate of 1% of the gauge 

length per second. Force-displacement curves were generated, and stress-strain 

curves were calculated by normalizing to specimen dimensions. Young's 

modulus, a measure of tensile stiffness, was determined by least squares fitting 
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of the linear region of the stress-strain curve. The ultimate tensile strength (UTS) 

was determined as the maximum stress reached during a test. 

Creep indentation testing 

A creep indentation apparatus was used to determine the compressive behavior 

of each construct [12). Each 3 mm sample was affixed to a stainless steel 

surface and equilibrated for 20 min in PBS. A 0. 7 g (0.007 N) mass was applied 

with a 0.8 mm diameter flat, porous indenter tip, and specimens crept until 

equilibrium. Specimen thickness was measured from photographs using lmageJ 

software. Aggregate modulus, a measure of compressive stiffness, was 

calculated using a semi-analytical, semi-numeric, linear biphasic model [12]. 

Statistical analysis 

All quantitative biochemical and biomechanical assessments were made using 

n=6-8. Data are presented as means ± standard deviations. Single factor ANOVA 

was employed in each phase of the study to assess for differences among 

experimental groups. Statistical significance was defined as p<O.OS. If significant 

differences were observed, a Tukey's HSD post hoc test was performed to 

determine specific differences among groups. All statistical analyses were 

performed using JMP 9.0.2 (SAS Institute). 
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Results 

Phase 1: Evaluation of time windows for TRPV4 activation 

In Phase I, we studied the effects of treating self-assembled articular cartilage 

constructs with 4a-PDD, an agonist of the TRPV4 channel. We examined the use 

of 10 1JM 4a-PDD during three different treatment time windows: t=6-10 days, 

t=10-14 days, and t=14-18 days. Gross morphological measurements of all 

constructs at t=28 days are presented in Table 4-1. No differences were found in 

construct diameter, thickness, or wet weight (WW) among groups. 

Biochemical analyses were conducted to quantify construct cellularity, 

collagen content, and GAG content. Construct biochemical data are provided in 

Table 4-2. No differences were found in cell numbers across treatment times. 

Collagen/WW was highest in constructs treated with 4a-PDD during days 10-14 

(88% increase over control), followed by constructs treated during days 14-18 

(40% increase over control). When normalized to cell number, these differences 

in collagen content were maintained, with approximately the same magnitude 

increases. There were no differences observed in GAG content across treatment 

time windows. 

Uniaxial tensile and creep indentation tests were performed to determine 

construct tensile and compressive properties. Tensile stiffness and strength data 

for Phase I are shown in Figure 4-1. Young's moduli for control, treatment on 

days 6-10, treatment on days 10-14, and treatment on days 14-18 were 269 ± 73, 

328 ± 80, 681 ± 224, and 464 ± 69 kPa, respectively. Constructs treated with 4a­

PDD during days 10-14 had the highest Young's moduli (153% increase over 
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control). UTS values for control, treatment on days 6-10, treatment on days 10-

14, and treatment on days 14-18 were 112 ± 43, 138 ± 27, 261 ± 94, and 182 ± 

46 kPa, respectively. Constructs treated with 4a-PDD during days 10-14 had the 

highest UTS (133% increase over control). With respect to compressive stiffness, 

the aggregate moduli for control, treatment on days 6-10, treatment on days 10-

14, and treatment on days 14-18 were 75 ± 19, 72 ± 21, 82 ± 20, and 76 ± 25 

kPa, respectively; no differences were found in aggregate moduli across groups. 

Altogether, treatment with 4a-PDD during days 10-14 provided the 

greatest increases in collagen content and tensile properties. Based on these 

results, this treatment regimen was carried forward into Phase II. 

Phase II: TRPV4 activation versus Na+/K+ pump inhibition 

In Phase II, we compared the effects of TRPV4 activation to the effects of Na+/K+ 

pump inhibition, and we further studied whether the combination of these two 

stimuli would outperform their individual use. Self-assembled articular cartilage 

constructs were treated with either 10 !JM 4a-PDD, 20 !JM ouabain, or a 

combination of the two during t=10-14 days. Constructs were grown in culture to 

t=28 days. At the end of culture, constructs treated with ouabain or with the 

combination of 4a-PDD and ouabain were visibly smaller than control constructs 

or constructs treated with 4a-PDD alone (Figure 4-2). Diameter, thickness, and 

WW values are provided in Table 4-1. Constructs treated with ouabain or with 

both agents had significantly smaller diameters ( 17% and 14% decreases from 
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control, respectively), thicknesses (49% and 33% decreases), and wet weights 

(60% and 57% decreases). 

Construct biochemical data for Phase II are provided in Table 4-2. 

Treatment with 4a-PDD, ouabarn, or their combination resulted in significant 

increases in collagen/WW compared to control (increases of 80%, 118%, and 

93%, respectively), but no differences between each other. Collagen production 

per cell was greatest in constructs treated with 4a-PDD (85% increase over 

control), with no differences among control, ouabain, or the combination 4a-PDD 

and ouabain. GAG/WW was not different across groups, but GAG production per 

cell was significantly decreased in constructs treated with ouabain (60% 

decrease from control) and the combination of 4a-PDD and ouabain · (57% 

decrease from control). No differences were observed in cell number across 

groups. 

Biomechanical properties were again assessed with uniaxial tensile and 

creep indentation testing. Tensile stiffness and strength data for Phase II are 

shown in Figure 4-3. Young's moduli for control, treatment with 4a-PDD, 

treatment with ouabain, and combined treatment were 282 ± 105, 538 ± 133, 572 

± 136, and 583 ± 121 kPa, respectively. Treatment with 4a-PDD, ouabain, and 

their combination resulted in significant increases in Young's moduli compared to 

control (91 %, 103%, and 107% increases, respectively), but no differences 

between each other. UTS values for control, treatment with 4a-PDD, treatment 

with ouabain, and combined treatment were 106 ± 29, 203 ± 64, 256 ± 89, and 

251 ± 61 kPa, respectively. Treatment with ouabain or with the combination of 
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4a-PDD and ouabain produced the greatest improvements in construct UTS 

(141% and 136% increases over control, respectively), followed by treatment 

with 4a-PDD (91% increase over control, but not statistically significant). In terms 

of compressive properties, aggregate moduli for control, treatment with 4a-PDD, 

treatment with ouabain, and combined treatment were 67 ± 14, 73 ± 18, 67 ± 19, 

and 74 ± 23 kPa, respectively; no differences were found in aggregate moduli 

across groups. 

Discussion 

This study employed a two-phased approach to evaluate the effects of TRPV4 

channel activation on tissue engineered articular cartilage. Experimental results 

supported the hypotheses motivating this study: 1) TRPV4 activation resulted in 

significant improvements in construct biochemical and biomechanical properties; 

2) culture days 10-14 were identified as the optimal treatment time window to 

produce the greatest improvements in constructs; and 3) activation of TRPV4, a 

Ca2+-permeable channel, produced results comparable to Na+/K+ pump inhibition. 

To our knowledge, this is the first study to examine TRPV4 channel activation in 

tissue engineering. The results of this investigation demonstrate that direct 

chemical modulation of intracellular ion concentrations can be a powerful tool in 

tissue engineering. 

In Phase I, it was found that the optimal time window for TRPV4 activation 

in self-assembled articular cartilage constructs is during culture days 10-14. 

Compared to control, treatment with the TRPV4 channel agonist 4a-PDD during 
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days 10-14 led to significant improvements in collagen content (88% increase), 

tensile stiffness (153% increase), and tensile strength (130% increase). However, 

constructs were not improved by treatment during days 6-10 or 14-18, thereby 

highlighting the importance of timing during in vitro tissue development. The 

beneficial effects of treatment during days 10-14 are corroborated by previous 

work showing that other stimuli also produce their maximal effects during this 

time window [63, 68, 160]. To understand why this time period is so crucial, it is 

important to consider the developmental milestones of constructs during self­

assembly, a process that has been shown to resemble in vivo cartilage 

development [163]. During self-assembly, collagen production peaks between 

days 10-14 of culture, while GAG production continues indiscriminately. This 

rapid synthesis of GAG with no new collagen secretion contributes to pre-stress 

within the nascent ECM, thereby compromising the engineered tissue's tensile 

properties [158, 200]. Directly modulating this imbalance between GAG and 

collagen has been shown to improve the tensile properties of self-assembled 

constructs [158, 159). Thus, during days 10-14, before collagen production 

tapers and GAG production ramps up, cells within the developing construct may 

be more susceptible to interventions that induce new collagen biosynthesis. 

Based on the results from Phase I, the optimal treatment time window of t= 1 0-14 

days was carried forward to Phase II. 

In Phase II, TRPV4 activation using 4a-PDD was compared to Na+/K+ 

pump inhibition using ouabain. A previous study from our group showed that 

inhibition of the Na+/K+ pump using 20 1-JM ouabain during days 10-14 of culture 
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improved the collagen content and tensile properties of self-assembled articular 

cartilage constructs [160], results that were corroborated by the present study. It 

was found that 10 IJM 4a-PDD produced improvements in construct tensile 

properties that were comparable to 20 IJM ouabain, with no added benefit when 

the two stimuli were combined. Specifically, application of either 4a-PDD or 

ouabain led to an approximately 2-fold increase in tensile stiffness. Though each 

agent produced an identical net enhancement in tensile stiffness, it is clear from 

the differences in construct sizes and biochemical content that the precise 

physiological responses to these agents, and therefore the mechanisms 

underlying tensile improvements, vary considerably. 

Notably, treatment with ouabain significantly reduced GAG production on 

a per-cell basis. Lower GAG levels are associated with decreased size and wet 

weight in cartilage [10], and the subsequent reduction in size in ouabain-treated 

constructs led to an increase in the percentage of collagen per wet weight, even 

though the per-cell production of collagen did not change. These phenomena 

suggest that ouabain treatment promotes a maturational growth phenotype, in 

which the tissue maintains a uniform size during ECM synthesis and remodeling, 

rather than an expansive growth phenotype, in which the tissue experiences a 

volumetric increase in size during ECM deposition [1 0, 110, 158]. Maturational 

growth in cartilage is associated with greater tensile integrity compared to 

expansive growth. 

Unlike ouabain, treatment of constructs with 4a-PDD resulted in increased 

collagen production per cell, with no change in GAG production per cell. This net 
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increase in collagen deposition at a steady level of GAG production is likely 

responsible for the improved tensile stiffness of constructs treated with 4a-PDD. 

It should be noted, however, that 4a-PDD did not increase tensile strength (UTS) 

to the same magnitude achieved with ouabain. Therefore, it is possible that the 

benefits of maturational growth seen with ouabain treatment outweigh the 

biosynthesis triggered by 4a-PDD. Moreover, combined treatment with 4a-PDD 

and ouabain resulted in the same changes in size and biochemical content 

observed for treatment with ouabain alone, implying that Na+/K+ pump inhibition 

predominates over TRPV4 activation in producing effects at the cell and tissue 

levels. This observation is similar to a result from a previous study in which 

constructs were treated with a combination of ouabain and ionomycin, a Ca2+ 

ionophore; the combo did not outperform individual ouabain or ionomycin [160]. 

Further work is necessary to determine how alterations in intracellular ion 

concentrations elicited by direct or indirect stimuli lead to changes in chondrocyte 

ECM synthesis. lon channels are thought to be involved in the cellular response 

to dynamic compression [46, 114, 154], fluid shear [58, 59, 246], hydrostatic 

pressure [65, 92, 226, 234], and osmotic stress [72, 73, 194, 195]. In particular, 

the TRPV4 channel has been shown to play a central role in regulating the 

chondrocyte response to osmotic stress [90, 170], as well as in promoting 

chondrogenic differentiation [156]. TRPV4 may also be implicated in osmotic 

stress-related pathogenesis of osteoarthritis [48]. The present study 

demonstrates that TRPV4 activation in engineered cartilage constructs can 

produce observable, tissue-level changes. Because of the osmosensitivity of 
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TRPV4, it will be important in the future to examine the combined effects of 

osmotic stress and TRPV4 modulation on tissue engineered cartilage. Future 

studies that involve confocal imaging of intact self-assembled constructs may 

provide a better understanding of the importance of TRPV4 during in vitro tissue 

development. 

In summary, this study investigated whether activation of the Ca2+­

permeable TRPV4 channel would alter the biochemical and biomechanical 

properties of tissue engineered articular ·cartilage. It was shown that TRPV4 

activation improved construct tensile properties, that the effects of TRPV4 

activation were time-dependent, and that net improvements were on par with 

those produced by inhibiting the Na+/K+ pump. To our knowledge, this is the first 

study to examine TRPV4 channel activation in tissue engineering. The results of 

this study demonstrate the effectiveness of ion channel modulation as a strategy 

for improving the functional properties of engineered tissues. Further 

investigation of the role of TRPV4 in self-assembled constructs should be 

undertaken at both a mechanistic level (e.g., examine cell volume regulation and 

calcium transients in situ) and at a functional engineering level (e.g., assessment 

of different durations of TRPV4 activation, or combining TRPV4 activation or 

inhibition with hyper-osmotic or hypo-osmotic stimulation). 
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Table 4-1. Growth metrics of tissue engineered constructs. 
In Phase I, no differences were found in construct diameter, thickness, or wet weight 
(WW) among groups. In Phase II, constructs treated with ouabain or with both 4a-PDD 
and ouabain had significantly reduced diameters (0.83x and 0.86x control, respectively), 
thicknesses (0.51x and 0.67x control), and WW (0.40 and 0.43x control). Data are 
presented as means ± standard deviations. Lowercase letters denote significant 
differences within a column; groups not connected by the same letter are considered 
significantly different (p<0.05). 

Grou~ Diameter {mm} Thickness {mm} WW {mg} 
Phase I (10 pM 4a-PDD) 

Control 6.29 ± 0.17 0.62 ± 0.05 36.7 ± 3.1 
Treatment on days 6-10 6.27 ± 0.16 0.63 ± 0.05 37.2 ± 2.8 
Treatment on days 10-14 6.31 ± 0.18 0.63 ± 0.05 36.2 ± 2.4 
Treatment on days 14-18 6.26 ± 0.16 0.62 ± 0.06 37.2 ± 2.8 

Phase II 
Control 6.35 ± 0.06 a 0.68 ± 0.10 a 38.3 ± 1.5 a 
10 J,JM 4a-PDD 6.30 ± 0.13 a 0.63±0.10a 39.6 ± 2.3 a 
20 J,JM ouabain 5.29 ± 0.04 b 0.35 ± 0.08 b 15.2 ± 0.6 b 

Combo 5.45 ± 0.18 b 0.45 ± 0.08 b 16.3 ± 1.3 b 
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Table 4-2. Biochemical content of tissue engineered constructs. 
In Phase I, collagen/WW was highest in constructs treated with 4a-PDD during days 10-
14 (1.88x control), followed by constructs treated during days 14-18 (1.40x control). 
These differences in collagen content were upheld when normalized to cell number. 
There were no differences observed in GAG content in Phase I. In Phase II, treatment 
with 4a-PDD, ouabain, or their combination resulted in significant increases in 
collagen/WW compared to control (1.80x, 2.18x, and 1.93x control, respectively), but no 
differences between each other. Collagen production per cell was greatest in constructs 
treated with 4a-PDD (1.85x control). GAG production per cell was significantly 
decreased in constructs treated with ouabain (0.40x control) and the combination of 4a­
PDD and ouabain (0.43x control). No differences in cell number were observed in Phase 
I or Phase II. Data are presented as means ± standard deviations. Lowercase letters 
denote significant differences within a column; groups not connected by the same letter 
are considered significantly different (p<0.05). 

Group 
Total cells Collagen GAG Collagen GAG 

{x 1 06} {%WW} {%WW} {IJg/106 cells} {IJg/1 06 cells} 
Phase I 

Control 5.64±0.33 5.9±0.7c 3.6±0.5 383±60c 232±44 
Days 6-10 5.73±0.37 6.2±1.1 be 3.7±0.4 401±82bc 245±39 
Days 10-14 5.71±0.43 11.1±2.38 3.4±0.9 694± 978 212±46 
Days 14-18 5.67±0.46 8.3±1.1b 3.7±0.7 548±123ab 242±62 

Phase II 
Control 5.73±0.24 5.5±0.7b 4.0±0.8 363±37b 268±508 

10 1-1M 4a-PDD 5.79±0.29 9.8±1.88 4.5±1.1 669±1278 305±748 

20 1-1M ouabain 5.55±0.20 11.9±2.58 4.0±1.1 325±67b 108±28b 
Combo 5.71±0.26 10.5±2.78 4.1±1.3 296±63b 116±39b 
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Figure 4-1. Phase I tensile properties of cartilage constructs 
(A) Tensile stiffness for all groups. Constructs treated with 4a-PDD during days 10-14 
had the highest Young's moduli (153% greater than control). (B) Tensile strength for all 
groups. Constructs treated with 4a-PDD during days 10-14 had the highest ultimate 
tensile strength (UTS) (133% greater than control). Data are presented as means + 
standard deviations. Lowercase letters denote significant differences; groups not 
connected by the same letter are considered significantly different (p<0 .05). 
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Control 10 !-LM 4a -PDD 20 1-LM ouabain Combo 

Figure 4-2. Phase II gross morphology of tissue engineered constructs 
Photographs taken at 4 weeks. From left to right: representative photographs of 
constructs from the control group, treated with 10 1-JM 4a-PDD, treated with 20 1-JM 
ouabain , and treated with both with 10 1-1M 4a-PDD and 20 1-JM ouabain. Constructs 
treated with ouabain or with both 4a-PDD and ouabain were visibly smaller than control 
constructs or constructs treated with 4a-PDD alone. Scale markings are spaced 1 mm 
apart. 



98 

A soo B 400 

a a a 
700 8:. 350 

10 
.lt(. a -

Q. 600 £300 :. Cl 

~ 500 
1: 
~ 250 

:; -(/) 

"8 400 .!!! 200 
::lE ·u; 
.CII 300 1: 150 
Cl ~ 
1: Q) 
::l 200 iO 100 
~ E 

100 
:;::; 

50 5 
0 0 

Control 4u-PDO Ouabain Combo Control 4u-PDD Ouaba in Combo 

Figure 4-3. Phase II tensile properties of cartilage constructs 
(A) Tensile stiffness for all groups. Treatment with 4a-PDD, ouabain , and their 
combination resulted in significant increases in Young's moduli compared to control 
(91 %, 103%, and 107% increases, respectively) , but no differences between each other. 
(B) Tensile strength for all groups. Treatment with ouabain or with the combination of 4a­
PDD and ouabain improved construct UTS (141% and 136% increases over control , 
respectively) , followed by treatment with 4a-PDD (91% increase over control , but not 
statistically significant) . Data are presented as means + standard deviations. Lowercase 
letters denote significant differences; groups not connected by the same letter are 
considered significantly different (p<0.05) . 
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Abstract 

Articular cartilage lacks an intrinsic capacity to heal in response to trauma or 

arthritis. As such, there is a need for suitable biomaterial replacements for 

damaged cartilage. Tissue engineering aims to fulfill this need by fabricating cell­

based replacements in vitro. A central objective of cartilage tissue engineering is 

to develop a biomaterial with robust biochemical and biomechanical properties. 

Osmotic loading has been shown to enhance biosynthesis in single cells, but 

there is a lack of literature on the effects of osmotic loading on engineered 

cartilage constructs. The objectives of this study were 1) to determine whether 

osmotic loading would enhance the biochemical and biomechanical properties of 

self-assembled articular cartilage constructs, and 2) to identify an optimal 

osmotic loading regimen for greatest construct improvement. Self-assembled 

constructs were grown for 4 weeks and were subjected to static (0 Hz) or 

dynamic (0.00083 Hz) application of hypo-osmotic (250 mOsm) or hyper-osmotic 

(450 mOsm) loading for 1 h per day during days 10-14 of culture. !so-osmotic 

control constructs (350 mOsm) were grown in parallel, and construct morphology, 

histology, collagen and sulfated glycosaminoglycan (GAG) content, and tensile 

and compressive properties were evaluated. It was found that the optimal 

osmotic loading regimen was static application of hyper-osmotic medium. 

Compared to iso-osmotic controls, static hyper-osmotic constructs exhibited 

significant increases in GAG/WW (64% increase), collagen/WW (65% increase), 

compressive stiffness (94% increase), tensile stiffness (70% increase), and 

tensile strength (94% increase). Dynamic osmotic loading did not improve self-
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assembled construct properties, though future work should examine different 

dynamic loading regimens. We conclude that osmotic loading is a powerful 

method for improving cellular biomaterials and that specific regimens exist to 

achieve optimal functional properties. 

Introduction 

Articular cartilage lines the surfaces of diarthrodial joints and serves to provide 

lubrication and load distribution during motion. Proper mechanical function is 

conferred by a copious extracellular matrix (ECM) composed primarily of 

collagen type II and glycosaminoglycans (GAGs). Due to the tissue's avascularity 

and hypocellularity, it lacks an intrinsic capacity to heal. Damage wrought by 

trauma or arthritis is therefore irreversible and leads inexorably to pain and 

disability [28]. Thus, there is considerable need for a suitable biomaterial 

replacement for damaged cartilage. Tissue engineering strives to address this 

need by fabricating cell-based replacements in vitro. A central goal of cartilage 

tissue engineering is to develop a biomaterial with robust biochemical and 

biomechanical properties [51). 

Toward this end, our laboratory has developed a self-assembly process 

for engineering cartilage constructs [1 05]. In this technique, chondrocytes are 

seeded at a high density into pre-fabricated, non-adherent, cylindrical molds. In a 

process that resembles in vivo cartilage development, cells first condense into 

free-floating, disc-shaped constructs and then proceed to synthesize ECM [163]. 

Since this method does not employ a scaffold, it sidesteps concerns often 
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associated with traditional tissue engineering strategies, such as toxicity, 

biodegradability, and impaired cell signaling [1 05]. Additionally, because the self­

assembly process is a purely cell-mediated phenomenon, it can serve as a 

· model system for evaluating the direct effects of exogenous stimuli on cell 

behavior and ECM production [64, 67, 68, 159, 160]. 

Osmotic stress has been shown previously to affect cellular behavior and 

enhance biosynthesis in single chondrocytes [41, 42, 72, 73, 194-196, 222], and 

it is known to play a role in native cartilage function [21, 44, 77, 96, 134]. Despite 

the abundance of information on the behavior of suspended cells and native 

tissue in response to osmotic stress, there is a dearth of such evidence for 

engineered tissues, except for a recent study in which mature chondrocytes were 

encapsulated in agarose hydrogels and exposed to continuous hyper-osmotic 

stress [165]. It is widely understood that osmotic loading is an indirect 

consequence of deformational loading of articular cartilage in vivo. During joint 

motion, compressive loads force fluid out of the tissue, thereby creating a 

temporary effective hyper-osmotic microenvironment for chondrocytes within the 

tissue. This hyper-osmotic stress has been shown to result in shrinkage of cells 

[72], calcium fluxes across cell membranes and reorganization of actin stress 

fibers [72, 73, 245], alteration in nuclear geometry [79], greater 

nucleocytoplasmic transport [80], and increased intracellular signaling that drives 

gene expression [222], and, ultimately, ECM biosynthesis [1 02, 113, 167, 223]. 

Encouraged by these results from the literature, we decided to examine 

the effects of static and dynamic osmotic loading on self-assembled articular 
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cartilage constructs. The objectives of this study were 1) to determine whether 

osmotic loading would enhance the biochemical and biomechanical properties of 

self-assembled constructs, and 2) to identify an optimal osmotic loading regimen 

for greatest construct improvement. Constructs were self-assembled from bovine 

chondrocytes and subjected to 1 h of static or dynamic application of hypo­

osmotic or hyper-osmotic loading during days 10-14 of culture. Control constructs 

were grown in parallel, and construct morphology, histology, biochemical content, 

and biomechanical properties were assessed at the end of 4 weeks. It was 

hypothesized that 1) osmotic loading would improve construct properties and 2) 

an optimal osmotic loading regimen exists for which constructs undergo greatest 

improvement. 

Materials and methods 

Medium formulations 

This study employed three medium formulations: control medium, hypo-osmotic 

medium, and hyper-osmotic medium. Osmolarity was monitored using a VAPRO 

5520 vapor pressure osmometer (Wescor). !so-osmotic control medium 

(approximately 350 mOsm) is a chondrogenic medium described extensively by 

our group [64, 159, 163]: Dulbecco's modified Eagle's medium (DMEM) with 4.5 

mg/ml of glucose and L-glutamine (Invitrogen); 100 nM dexamethasone 

(Sigma); 0.1 mM non-essential amino acids (Invitrogen); 1% ITS+ (insulin, 

human transferrin, and selenous acid; BD Scientific); 1% penicillin-streptomycin­

fungizone (BioWhittaker); 50 J.Jg/ml ascorbate-2-phosphate; 40 !Jg/ml L-proline; 
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and 100 j.Jg/ml sodium pyruvate (Fisher Scientific). Hypo-osmotic medium (250 

mOsm) was prepared by titrating distilled water into control medium. Hyper­

osmotic medium (450 mOsm) was prepared by adding sucrose to control 

medium. 

Chondrocyte isolation 

Cartilage harvested from the distal femur and patellofemoral grooves of 1-week­

old male calves (Research 87) was digested in 0.2% collagenase type II 

(Worthington) for 24 h. To normalize variability among animals, each leg came 

from a different animal, and cells from 8 legs were pooled to create a mixture of 

chondrocytes. Cells were counted using a hemocytometer and then frozen at -

80°C in DMEM containing 20% FBS and 10% DMSO. 

Preparation of agarose wells for construct self-assembly 

Cylindrical, non-adherent wells were prepared using a technique adapted from 

previous work [1 05, 163]. Briefly, a stainless steel mold consisting of 5 mm 

diameter cylindrical prongs was placed into sterile, molten 2% agarose in a 48-

well plate. The agarose solidified at room temperature for 60 min, and the 

stainless steel mold was carefully removed. Two changes of control medium 

were used to completely saturate the agarose well by the time of cell seeding. 
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Self-assembly and osmotic loading of cartilage constructs 

Chondrocytes were thawed and counted within 5 days of being isolated and 

frozen. After thawing, cell viability was >90%. To create each construct, 5.5 

million cells in 100 j..JL of control medium were seeded into each cylindrical 

agarose well, followed by addition of 400 IJL control medium after 4 h. Cells 

settled and coalesced into free-floating cylindrical disc-shaped constructs; t=1 

day was defined as 24 h after seeding. All constructs were cultured in the 

agarose wells until t=1 0 days, at which point they were ·gently unconfined and 

transferred to 48-well plates unrestricted by circumferential confinement. 

Constructs received 500 j..JL medium change every 24 h and remained in culture 

until t=28 days. All culture was performed at 3rC and 10% C02. 

This study examined the following five groups: control, Low Static, Low 

Dynamic, High Static, and High Dynamic. Control constructs received iso­

osmotic control medium during t=1-28 days. Low Static constructs received hypo­

osmotic medium for 1 h during t=10-14 days. Low Dynamic constructs were 

exposed to a 2-hour-long alternating regimen of 10 min of hypo-osmotic medium 

followed by 10 min of control medium during t=10-14 days. High Static constructs 

received hyper-osmotic medium for 1 h during t=1 0-14 days. High Dynamic 

constructs were exposed to a 2-hour-long alternating regimen of 10 min of hyper­

osmotic medium followed by 10 min of control medium during t=1 0-14 days. All 

constructs received control medium when not undergoing treatment. During the 

Low Dynamic and High Dynamic treatment regimens, medium was added and 
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removed with care to minimize flow-induced shear effects on constructs. 

Constructs were assigned randomly to experimental groups. 

Gross morphology and histology 

At t=28 days, constructs were removed from culture. Photographs were taken, 

and dimensions were measured from photographs using lmageJ software 

(National Institutes of Health). Wet weights (WW) were recorded, and constructs 

were portioned for analysis. A · 3 mm diameter punch was taken from the 

construct's center for indentation testing. The remaining outer ring was split into 

portions for histology, quantitative biochemistry, and tensile testing. For histology, 

constructs were cryoembedded and sectioned at 14 !Jm. Samples were fixed in 

10% formalin and stained with Safranin-0/fast green (GAG). 

Quantitative biochemistry 

Biochemistry samples were weighed wet, frozen, and lyophilized. Dry weights 

(DW) were measured, after which samples were digested with 125 !Jg/ml papain 

(Sigma) for 18 h at 65°C. Total DNA content was assessed with a PicoGreen 

Assay (Invitrogen), and cell number was estimated assuming 7.7 pg DNA per cell. 

Sulfated GAG content was quantified using the Blyscan Glycosaminoglycan 

Assay (Biocolor). Following hydrolysis with 4 N sodium hydroxide for 20 min at 

110°C, total collagen content was quantified with a modified chloramine-T 

hydroxyproline assay [1 05, 238]. Sircol collagen standard (Biocolor) was used 

such that the standard curve reflected collagen amount, eliminating the need to 
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convert hydroxyproline to collagen. Total collagen and sulfated GAG were 

normalized to WW and DW for making comparisons. 

Creep indentation testing 

A creep indentation apparatus was used to determine compressive behavior of 

each construct [12]. Each sample was affixed to a stainless steel surface and 

equilibrated for 20 min in PBS. A 0.7 g (0.007 N) mass was applied with a 0.8 

mm diameter flat, porous indenter tip, and specimens crept until equilibrium. 

Specimen thickness was measured from photographs using lmageJ software. 

Aggregate modulus, a measure of compressive stiffness, was calculated using a 

semi-analytical, semi-numeric, linear biphasic model [12]. 

Tensile testing 

Tensile specimens were cut into dog-bone shapes with 1-mm gauge length. 

Specimen thickness and width were measured from photographs using lmageJ 

software. Specimens were then affixed with glue to paper tabs outside the gauge 

length, and these tabs were gripped during testing. A uniaxial materials testing 

system (lnstron Model 5565) was employed to determine tensile properties. 

Tensile tests were performed until failure at a strain rate of 1% of the gauge 

length per second. Force-displacement curves were generated, and stress-strain 

curves were calculated by normalizing to specimen dimensions. Young's 

modulus, a measure of tensile stiffness, was determined by least squares fitting 
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of the linear region of the stress-strain curve. The ultimate tensile strength (UTS) 

was determined as the maximum stress reached during a test. 

Statistical analysis 

All quantitative biochemical and biomechanical assessments were made using 

n=S-9. Data are represented as means ± standard deviations. To compare 

among treatment groups, single-factor ANOVA was employed, and statistical 

significance was defined as P<0.05. If significant differences were observed, a 

Fisher LSD post hoc test was performed to determine specific differences among 

groups. 

To determine whether biochemical data correlated with biomechanical 

data, pairwise correlation analyses were performed using at least 20 data points. 

Probability distributions were inspected for each variable (collagen/WW, 

collagen/OW, GAG/WW, GAG/OW, Young's modulus, UTS, and aggregate 

modulus). Spearman's rank correlation coefficients (p) were then calculated to 

assess non-parametric statistical dependence between biochemical and 

biomechanical variables. Statistical significance for each Spearman's p was 

defined as P<0.05. All statistical analyses were performed using JMP 9.0.2 (SAS 

Institute). 
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Results 

Gross appearance and histology 

At t=28 days, constructs from every group had similar flat surfaces with no 

surface abnormalities (Figure 5-1). Diameter, thickness, and WW values are 

provided in Table 5-1. High Static and High Dynamic had significantly greater 

diameter (both 1.1 Ox control) compared to all other groups. Low Dynamic and 

High Dynamic had the greatest thicknesses (1.15x and 1.12x control, 

respectively), followed by High Static (1.07x control). Low Dynamic and High 

Dynamic had significantly greater WW (1.07x and 1.06x control, respectively) 

compared to all other groups. On histology, all constructs stained positively for 

GAG (Figure 5-1). 

Quantitative biochemistry 

Cell numbers are shown in Table 5-2. High Static had a significantly higher cell 

number (1.16x control) compared to all other groups. 

GAG/WW is shown in Figure 5-2A. GAG/WW values for control, Low 

Static, Low Dynamic, High Static, and High Dynamic were 3.9±0.4%, 4.4±0.6%, 

3.5±0.7%, 6.5±1.1%, and 4.2±0.7%, respectively. High Static had the greatest 

GAG/WW (1.64x control). GAG/DW, provided in Table 5-2, showed a similar 

trend to that observed for GAG/WW. 

Collagen/WW is shown in Figure 5-3A. Collagen/WW values for control, 

Low Static, Low Dynamic, High Static, and High Dynamic were 3.3±0.7%, 

4.5±0.8%, 3.2±0.6%, 5.4±0.9%, and 3.7±0.6%, respectively. High Static had the 
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highest collagen/WW (1.65x control), followed by Low Static (1.38x control). Low 

Dynamic and High Dynamic were not different from control. Collagen/OW, 

provided in Table 5-2, showed a similar trend to that observed for collagen/WW. 

Biomechanical evaluation 

Compressive stiffness, represented by aggregate modulus, is shown in Figure 5-

28. Aggregate moduli for control, Low Static, Low Dynamic, High Static, and 

High Dynamic were 54±12, 61±16, 51±14, 104±33, and 60±19 kPa, respectively. 

Trends for aggregate moduli followed those of GAG/WW. The highest aggregate 

modulus was found in the High Static group (1.94x control). 

Tensile stiffness and strength are shown in Figure 5-3. Young's moduli for 

control, Low Static, Low Dynamic, High Static, and High Dynamic were 374±93, 

430±146, 241±74, 635±122, and 411±196 kPa, respectively. High Static had the 

highest Young's moduli (1.70x control). Low Dynamic had the lowest Young's 

moduli (0.64x control). UTS values for control, Low Static, Low Dynamic, High 

Static, and High Dynamic were 99±55, 189±67, 130±30, 192±50, and 125±57 

kPa, respectively. High Static and Low Static had the highest UTS (1.94x and 

1.92x control, respectively), followed by High Dynamic (1.32x control). 

Correlation analysis 

Probability distributions were inspected in the raw data for each biochemical and 

biomechanical variable. Biochemical assessments (collagen/WW, collagen/OW, 

GAG/WW, and GAG/OW) conformed to normal distributions, but biomechanical 
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properties (tensile stiffness, tensile strength, and compressive stiffness) were 

found to have negative skews. Pairwise correlation analyses were performed 

between biomechanical properties and biochemical assessments. Based on the 

skewness of the biomechanical data, correlations were evaluated by calculating 

Spearman's p and associated P-values (Table 5-3). Strong, statistically 

significant correlations were found between collagen and all three biomechanical 

properties. Statistically significant correlations were found between GAG/WW 

and all three biomechanical properties, but GAG/ow· appeared to correlate only 

with aggregate modulus. 

Discussion 

This study examined the effects of static and dynamic osmotic loading during 

self-assembly of articular cartilage constructs. Experimental results supported the 

hypotheses motivating this study: 1) osmotic loading of self-assembled 

constructs produced significant increases in biochemical and biomechanical 

properties, and 2) static exposure to hyper-osmotic medium was identified as the 

optimal osmotic loading regimen to produce the greatest improvements in 

constructs. Although the literature is replete with studies examining the effects of 

osmotic stress on individual cells [41, 42, 72, 73, 194-196, 222] and native tissue 

explants [21, 44, 77, 96, 134], this is the first study to undertake a systematic, 

head-to-head comparison of static and dynamic osmotic loading regimens on 

tissue engineered cartilage. Moreover, this is the first study to examine the direct 

effects of osmotic loading in a scaffoldless, cell-based biomaterial platform. The 
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results of this investigation demonstrate the power of osmotic loading as a 

stimulus to improve cellular biomaterials. 

It was found that the optimal regimen for osmotic loading of self­

assembled constructs is static application of hyper-osmotic medium for 1 h 

during t=10-14 days (the High Static group). Compared to control constructs, 

High Static constructs exhibited significant increases in GAG/WW (64% increase), 

collagen/WW (65% increase), compressive stiffness (94% increase), tensile 

stiffness (70% increase), arid tensile strength (94% increase). The beneficial 

effects observed with treatment during t= 1 0-14 days are corroborated by 

previous studies showing that other stimuli also produce their maximal effects 

when applied to constructs during the same time window [68, 160]. 

The improvements observed at the construct level are likely the 

consequences of changes occurring at the cellular level in response to osmotic 

stress. A number of potential cellular mechanisms have been proposed to 

explain the chondrocyte response to changes in osmolarity. For example, 

chondrocytes cope with osmotic stress through volume regulation. Cells undergo 

shrinkage in a hyper-osmotic environment; this cellular strain is associated with 

calcium transients and actin cytoskeleton reorganization [72, 73, 245], both of 

which are known to affect downstream signaling and, ultimately, gene expression. 

Furthermore, it has been shown previously that hyper-osmotic loading increases 

GAG synthesis at the cellular level, an effect shown to require p38 mitogen­

activated protein kinase (MAPK) signaling [1 02]. Signaling via p38 MAPK also 

plays a role in hyper-osmotic stress-induced expression of SOX9, a transcription 
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factor important in regulating cartilage ECM genes [222]. Additionally, recent 

evidence suggests that hyper-osmotic stress induces a change in nuclear 

geometry, resulting in altered chromatin condensation, increased nuclear 

lacunarity, and greater nucleocytoplasmic transport [79, 80]. It is possible that 

volume regulation, signaling, and nuclear alteration operate in concert to produce 

tissue-level changes in the ECM over time; to test this hypothesis, a thorough 

examination of chondrocytes in situ during self-assembly must be undertaken. 

It was found that, compared to controls, static application of hypo-osmotic 

medium for 1 h during t=10-14 days (the Low Static group) produced significant 

increases in collagen/WW (38% increase) and tensile strength (92% increase), 

but not in tensile stiffness. This absence of an effect in tensile stiffness is 

unexpected, given the relatively strong Spearman's p and P-values in pairwise 

correlations between collagen/WW and all three biomechanical properties (Table 

5-3). One possible explanation is that collagen abundance may preferentially 

determine the tissue's failure point (and thus strength), whereas other 

components within the network, such as crosslinks, may determine the network's 

response to strain (and thus stiffness) [181]. As in High Static constructs, the 

effects observed in Low Static constructs may be explained by cellular changes 

in response to alterations in construct microenvironment. In particular, hypo­

osmotic stimulation has been shown previously to induce actin reorganization 

and calcium signaling [73, 173]. Future work involving confocal imaging of intact 

self-assembled constructs may provide a better understanding of these and other 

responses to hypo-osmotic and hyper-osmotic stimulation. 
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Dynamic osmotic loading did not improve self-assembled constructs. The 

motivation to study dynamic osmotic loading comes from evidence in the 

literature that cyclic compressive deformation improves the properties of 

engineered cartilage [146, 161]. It is thought that fluid fluxes contribute to 

transitory alterations in tissue osmolarity that are sensed and responded to by 

chondrocytes. Previous studies have shown that replicating these compression­

induced changes in osmolarity using dynamic osmotic loading may induce 

cellular biosynthesis [41, 42]. Guided by evidence in the literature that the time 

constant for regulatory volume decrease following hyper-osmotic stress is on the 

order of 5-8 min [33, 78, 173], we chose to examine a cyclic regimen of 10 min of 

osmotic load followed by 10 min of control medium (frequency of 0.00083 Hz) for 

2 h during t=10-14 days. Because no effect was observed with a regimen of 

0.00083 Hz, future work should evaluate a faster regimen, such as 0.0125 Hz 

[41 ], to determine if dynamic osmotic loading can produce detectable changes in 

self-assembled constructs. It is important to note, however, that just as 

differences were observed between static and dynamic stimulation in this study, 

static application of hydrostatic pressure on self-assembled constructs has been 

shown previously to outperform dynamic application (0.1 Hz and 1 Hz) [67]. It is 

possible that self-assembled constructs may not exhibit the same response to 

stimuli as scaffold-based biomaterials. Now that the present study demonstrates 

that self-assembled constructs respond successfully to static hyper-osmotic 

stimulation, future studies are merited to examine different frequencies of 

dynamic osmotic loading, as well as longer time courses of static application. 
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Pairwise correlation analyses revealed that collagen correlated strongly 

with all three biomechanical properties (tensile stiffness, tensile strength, and 

compressive stiffness), but GAG/OW correlated only with compressive stiffness, 

and not the tensile data (Table 5-3). The conventional understanding of cartilage 

structure-function relationships is that collagen confers the tissue's tensile 

properties and GAG gives rise to its compressive properties. The pairwise 

correlations suggest, however, that collagen fibers and GAG molecules may 

work in concert to provide compressive stiffness. Follow-up studies should 

examine the precise distribution of GAG within the collagen network of the self­

assembled construct to shed light on the complex interplay between these ECM 

components. 

Based on the results of this study, static application of hyper-osmotic 

medium appears to be the most promising osmotic loading regimen for improving 

the biochemical and biomechanical properties of self-assembled articular 

cartilage constructs. Further investigation of the role of medium osmolarity on 

self-assembled constructs should be undertaken at both a mechanistic level (e.g., 

examine cell volume regulation and calcium transients in situ) and at a functional 

engineering level (e.g., assessment of faster dynamic loading regimens, or 

increasing the duration of exposure to osmotic stress during static loading). 

To our knowledge, this is the first study to perform a head-to-head 

comparison of static and dynamic osmotic loading regimens on tissue 

engineered cartilage. It is also the first study to examine the direct effects of 

osmotic loading in a scaffoldless, cell-based biomaterial. Static hyper-osmotic 
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stimulation of self-assembled constructs produced the greatest improvement in 

biochemical and biomechanical properties, including a near doubling of tensile 

stiffness and strength. Dynamic osmotic loading did not improve construct 

properties. The results of this study demonstrate the effectiveness of osmotic 

loading as a strategy for improving the functional properties of cellular 

biomaterials. 
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Table 5-1. Growth metrics of self-assembled constructs 
Both static and dynamic exposure to hyper-osmotic medium (High Static and High 
Dynamic, respectively) resulted in 10% increases in construct diameter compared to 
control. Dynamic exposure to both hypo-osmotic and hyper-osmotic medium (Low 
Dynamic and High Dynamic, respectively) resulte9 in 15% and 12% increases in 
construct thickness compared to control, as well as in 7% and 6% increases in construct 
wet weight. Data are presented as means ± standard deviations. Lowercase letters 
denote significant differences within a column; groups not connected by the same letter 
are significantly different (P<0.05). 

Control 
Low Static 
Low Dynamic 
High Static 
High Dynamic 

Diameter (mm) 
5.81 ± 0.15 c 

6.04 ± 0.19 b 

6.04 ± 0.12 b 

6.39 ± 0.12 a 

6.45 ± 0.07 a 

Thickness lmm) 
0.52 ± 0.04 
0.51 ± 0.05 b 

0.60 ± 0.04 a 

0.56 ± 0.03 ab 

0.59 ± 0.04 a 

Wet Weight (mg) 
38.4 ± 1.7 b 

38.7 ± 1.3 b 

41.0 ± 1.5 a 

38.2 ± 1.4 b 

40.7 ± 0.7 a 
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Table 5-2. Biochemical analysis of self-assembled constructs 
Cell number, collagen/dry weight, and GAG/dry weight of self-assembled constructs. 
Static exposure to hyper-osmotic medium (High Static) resulted in a 16% increase in cell 
number compared to control, with no other significant differences in cell number among 
the other groups. High Static also had the highest collagen/OW (50% greater than 
control) and GAG/OW (42% greater than control). Data are presented as means ± 
standard deviations. Lowercase letters denote significant differences within a column; 
groups not connected by the same letter are significantly different (P<0.05). 

Control 
Low Static 
Low Dynamic 
High Static 
High Dynamic 

5.44 ± 0.32 
5.63 ± 0.45 
5.35 ± 0.73 

6.28 ± 0.45 a 

5.41±0.49 

Collagen/OW (mg/mg) 
0.28 ± 0.08 be 

0.31 ± 0.06 be 

0.24 ± 0.07 e 

0.42 ± 0.07 a 

0.34 ± 0.06 ab 

GAG/OW (mg/mg) 
0.33 ± 0.08 b 

0.32 ± 0.10 b 

0.42 ± 0.08 ab 

0.47 ± 0.06 a 

0.38 ± 0.07 ab 
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- Table 5-3. Pairwise correlations between biomechanics and biochemistry 
Correlations are reported as Spearman's rank correlation coefficients (Spearman's p). 
Associated p-values are included. At least 20 data points were evaluated in each 
pairwise analysis. Statistically significant correlations were found between collagen and 
all three biomechanical properties. Statistically significant correlations were also found 
between GAGIWW and all three biomechanical properties, but GAG/OW appeared to 
correlate only with compressive stiffness. 

Collagen/WW 
Collagen/OW 
GAGIWW 
GAG/OW 

Tensile stiffness 
Spearman's p P 

0.6426 0.0009 
0.8656 <0.0001 
0.4479 0.032 
0.0899 0.68 

Tensile strength Compressive stiffness 
Spearman's p P Spearman's p P 

0.7209 0.0002 0.6055 0.0013 
0.6944 0.0005 0.5078 0.011 
0.6128 0.0031 0.7037 <0.0001 
-0.1767 0.44 0.4577 0.021 
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Control Low Static Low Dynamic High Static High Dynamic 

Figure 5-1. Gross morphology and histology of self-assembled constructs 
Photographs at 4 weeks. From left to right: representative images of constructs from 
control , Low Static, Low Dynamic, High Static, and High Dynamic treatment groups. 
Constructs had a similar flat circular appearance with no surface abnormalities (top row). 
All constructs stained positively for GAG (bottom row). 
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Control low Static Low Dynamic High Static High Dynamic 

Figure 5-2. GAG content and compressive stiffness of constructs 
(A) GAG/WW for all groups. Static exposure to hyper-osmotic medium (High Static) 
resulted in a 64% increase in construct GAG/WW compared to control. (B) Compressive 
stiffness for all groups. High Static constructs had the highest aggregate moduli (94% 
greater than control). As expected , trends for aggregate moduli followed GAG/WW 
trends. Data are presented as means ± standard deviations. Lowercase letters denote 
significant differences; groups not connected by the same letter are sign ificantly different 
(P<0.05). 
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Figure 5-3. Collagen and tensile properties of self-assembled constructs 
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(A) Collagen/WW for all groups. Static exposure to hyper-osmotic medium (High Static) 
resulted in the greatest increase in construct collagen/WW (65% greater than control) , 
followed by static exposure to hypo-osmotic medium (Low Static, 38% greater than 
control). (B) Tensile stiffness for all groups. High Static constructs had the highest 
Young 's moduli (70% greater than control). Low Dynamic constructs had the lowest 
Young's moduli (36% less than control). (C) Tensi le strength for all groups. High Static 
constructs and Low Static constructs had the highest UTS (94% and 92% greater than 
control, respectively), followed by High Dynamic constructs (32% greater than control) . 
As expected, trends for tensile properties followed collagen/WW trends. Data are 
presented as means ± standard deviations. Lowercase letters denote sign ificant 
differences; groups not connected by the same letter are significantly different (P<0.05). 
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Chapter 6. Temporal assessment of ribose 

* treatment on self-assembled carti I age 

Chapter published as Eleswarapu SV, Chen JA, and Athanasiou KA, 
"Temporal assessment of ribose treatment on self-assembled articular cartilage 
constructs," Biochemical and Biophysical Research Communications 2011. 
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Abstract 

Articular cartilage lacks an ability to repair itself in response to degradation from 

traumatic injury or osteoarthritis. As such, there is a substantial clinical need for 

suitable replacements of damaged cartilage. Tissue engineering aims to fulfill this 

need by developing biologic replacement tissues in vitro. A major goal of 

cartilage tissue engineering is to produce tissues with robust biochemical and 

biomechanical properties. One technique that has been proposed to improve 

these properties in engineered tissue is the use of non-enzymatic glycation to 

induce collagen crosslinking, a particularly attractive solution because it avoids 

the risks of cytotoxicity posed by conventional crosslinking agents such as 

glutaraldehyde. The objectives of this study were 1) to determine whether 

continuous application of ribose would enhance the biochemical and 

biomechanical properties of self-assembled articular cartilage constructs, and 2) 

to identify an optimal time window for continuous ribose treatment. Self­

assembled constructs were grown for 4 weeks using a previously established 

method and were subjected to continuous 7 -day treatment with 30 mM ribose 

during the first, second, third, or fourth week of culture, or for the entire 4-week 

duration of culture. Control constructs were grown in parallel, and all groups were 

evaluated for gross morphology, histology, cellularity, collagen and sulfated 

glycosaminoglycan (GAG) content, and compressive and tensile mechanical 

properties. Compared to control constructs, it was found that treatment with 

ribose during week 2 and for the entire duration of culture resulted in significant 

62% and 40% increases in compressive stiffness, respectively; significant 66% 
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and 44% increases in tensile stiffness; and significant 50% and 126% increases 

in tensile strength. Similar statistically significant trends were observed for 

collagen and GAG. In contrast, constructs treated with ribose during week 1 had 

poorer biochemical and biomechanical properties, although they were 

significantly larger and more cellular than all other groups. Based on these 

results, we conclude that non-enzymatic glycation with ribose is an effective 

method for improving tissue engineered cartilage and that specific temporal 

intervention windows exist to achieve optimal functional properties. 

Introduction 

Articular cartilage covers the surfaces of diarthrodial joints and serves to reduce 

friction and distribute loads during joint motion. Structurally, articular cartilage is 

an avascular, hypocellular tissue with an abundant extracellular matrix (ECM) 

rich in collagen type II and glycosaminoglycans (GAGs), which give rise to the 

tissue's tensile and compressive properties, respectively. Due to its avascularity 

and hypocellularity, cartilage lacks an intrinsic capacity to repair itself after painful 

destruction brought on by traumatic injury or osteoarthritis [28). In the United 

States, osteoarthritis and related conditions contribute to direct expenditures of 

$281.5 billion annually, a figure expected to increase as the population ages [1]. 

It is projected that 67 million people in the United States will be diagnosed with 

osteoarthritis by 2030 [101]. Thus, there is a substantial clinical need for suitable 

replacements of damaged or diseased cartilage. The field of tissue engineering 

aims to fulfill this need by developing biologic replacement tissues in vitro for 
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eventual in vivo implantation. A fundamental objective of cartilage tissue 

engineering is to produce tissues with robust biochemical and biomechanical 

properties [35]. 

· To address this objective, our laboratory has developed a self-assembly 

process for engineering cartilage constructs [1 05]. The self-assembly process 

involves seeding chondrocytes at a high density into pre-formed, non-adherent, 

cylindrical wells. Cells coalesce into disc-shaped constructs and, over time, 

undergo biochemical and biophysical changes that approximate in vivo cartilage 

development [163]. Unlike traditional tissue engineering strategies, the self­

assembly process does not employ a biomaterial scaffold, thereby circumventing 

the typical challenges associated with scaffold use, such as toxicity, 

biodegradability, stress shielding, and diminished juxtacrine and paracrine 

signaling [1 05]. An important advantage of the self-assembly process is that, 

since it is a strictly cell-mediated phenomenon, it can serve as a model system 

for examining the direct effects of biochemical [68, 158, 160] and biophysical [62, 

64, 67] stimuli on cell physiology and in vitro ECM development. Although 

progress has been made in identifying beneficial stimuli for self-assembly, the 

functional properties of self-assembled cartilage constructs still fall short of native 

tissue values. Therefore, it is imperative that additional treatment modalities be 

evaluated. 

One technique that has been proposed to improve the biomechanical 

properties of engineered tissue is the use of non-enzymatic glycation to induce 

collagen crosslinking [70, 86, 137, 190]. Collagen crosslinking through non-
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enzymatic glycation involves three steps [26]. First, the aldehyde group of a 

reducing sugar, such as ribose, reacts with the nucleophilic E-amino residue of 

lysine in the collagen polypeptide to form an unstable, reversible Schiff base 

(double-bond between carbon and nitrogen). One advantage of using ribose is 

that formation of the Schiff base occurs more rapidly with ribose compared to 

other sugars (e.g., 17x faster than glucose), largely due to its preferentially open­

chain configuration [26]. In the second step of non-enzymatic glycation, the Schiff 

base undergoes Amadori rearrangement (movement of the double-bond from 

carbon-nitrogen to carbon-oxygen), producing a stable, less reversible ketone. 

Finally, over time, the Amadori products are degraded to form a variety of 

advanced glycation end-products (AGEs) [157], which accumulate in the ECM. 

Traditionally, the accumulation of AGEs has been understood to be an unwanted 

biochemical manifestation of aging and diabetes [26, 119, 152]. However, 

researchers have begun to recognize the potential benefits of non-enzymatic 

glycation as a tool to improve engineered tissue properties, especially without the 

risk of cytotoxicity posed by conventional crosslinking methods like 

glutaraldehyde fixation [70, 86, 103, 137, 189, 190]. 

In a recent experiment from our laboratory, self-assembled cartilage 

constructs were subjected to a 3.5 h treatment with one of four exogenous 

crosslinking agents on the final day of construct culture (t=28 days) [70]. A head­

to-head comparison across treatment groups revealed that ribose produced the 

greatest improvements in tensile stiffness and ultimate tensile strength, beating 

glutaraldehyde, genipin, and methylglyoxal, as well as the control group. 
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Encouraged by these results and other studies in the literature, we decided to 

examine the effects of continuous ribose treatment on self-assembled cartilage 

constructs at different time windows throughout 4 weeks of culture. 

The objectives of this study were 1) to determine whether continuous 

application of ribose would enhance the biochemical and biomechanical 

properties of self-assembled articular cartilage constructs, and 2) to identify an 

optimal time window for continuous ribose treatment. Constructs were self­

assembled from bovine chondrocytes and subjected to continuous 7 -day 

treatment with ribose during culture weeks 1, 2, 3, or 4, or for the entire 4-week 

duration of culture. Control constructs were grown in parallel. It was hypothesized 

that 1) ribose would improve construct biochemical and biomechanical properties, 

2) an optimal treatment time window exists for which constructs undergo greatest 

improvement, and 3) ribose treatment for the entire duration of culture would 

produce the greatest effect on constructs. Assessments included gross 

morphology, histology, quantitative biochemistry, and biomechanical testing. 

Materials and methods 

Media formulations 

This study employed two medium formulations: "control medium" and "ribose 

medium." Control medium is a chondrogenic medium described extensively by 

our group [64, 158, 160]: Dulbecco's modified Eagle's medium (DMEM) with 4.5 

mg/ml of glucose and L-glutamine {Invitrogen); 100 nM dexamethasone 

(Sigma); 0.1 mM non-essential amino acids (Invitrogen); 1% ITS+ (insulin, 
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human transferrin, and selenous acid; BD Scientific); 1% penicillin-streptomycin­

fungizone (BioWhittaker); 50 IJg/mL ascorbate-2-phosphate; 40 IJg/mL L-proline; 

and 100 IJg/mL sodium pyruvate (Fisher Scientific). Ribose medium is control 

medium plus 30 mM D-ribose (Sigma). This concentration of ribose was selected 

from literature that demonstrated beneficial effects of 30 mM ribose on specimen 

mechanical properties, with no deleterious effects on cell viability [70, 86]. Our 

chosen concentration of 30 mM ribose is far below the 250 mM ribose shown to 

be tolerated well by chondrocytes in vitro [190]. 

Chondrocyte isolation 

Bovine chondrocytes were isolated as previously described [68]. Cartilage 

harvested from the distal femur and patellofemoral groove of 1-week-old male 

calves (Research 87) was digested in 0.2% collagenase type II (Worthington) for 

24 h. Each leg came from a different animal, and cells from 8 legs were pooled to 

create a mixture of chondrocytes. Cells were counted using a hemocytometer 

and then frozen at -80°C in DMEM containing 20% fetal bovine serum (FBS) and 

10% dimethyl sulfoxide (DMSO). 

Preparation of agarose wells for construct self-assembly 

Cylindrical, non-adherent wells were prepared in a 48-well plate using a 

technique adapted from previous work [105, 163]. A stainless steel mold 

consisting of 5 mm diameter cylindrical prongs was placed into sterile, molten 2% 

agarose in a 48-well plate. The agarose solidified at room temperature for 60 min, 
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and the stainless steel mold was carefully removed. Two changes of control 

medium were used to completely saturate the agarose well by the time of cell 

seeding. 

Self-assembly and culture of cartilage constructs 

Cells were thawed and counted within 5 days of being isolated and frozen. After 

thawing, chondrocyte viability was >90%. To create each construct, 5.5 million 

cells in 100 !JL of control medium were seeded into each cylindrical agarose well, 

followed by addition of 400 !JL control medium after 4 h. Cells settled and 

coalesced into free-floating cylindrical disc-shaped constructs; t=1 day was 

defined as 24 h after seeding. All constructs were cultured in the agarose wells 

until t=10 days, at which point they were gently and aseptically unconfined and 

transferred to 48-well plates unrestricted by circumferential confinement. 

Constructs received 500 !JL medium change every 24 h and remained in culture 

until t=28 days. All culture was at 3rC and 10% C02. 

This study examined six groups, named as follows: Control, Week 1, 

Week 2, Week 3, Week 4, and All Weeks. Controls received control medium 

during t=1-28 days. Ribose-treated constructs received ribose medium during 

t=1-7 days (Week 1), t=S-14 days (Week 2), t=15-21 days (Week 3), t=22-28 

days (Week 4), or t=1-28 days (All Weeks). All ribose-treated constructs received 

control medium when not undergoing ribose treatment. Constructs were 

assigned randomly to experimental groups. 
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Gross morphology and histology 

At t=28 days, all constructs were removed from culture for assessment. 

Photographs were taken, and construct diameters were measured from digital 

photographs using lmageJ software (National Institutes of Health). Total 

construct wet weights (WW) were recorded, and constructs were portioned for 

analysis. A 3 mm diameter punch was taken from the construct's center for 

indentation testing. The remaining outer ring was split into portions for histology, 

quantitative biochemistry, and tensile testing. For histology, constructs were 

cryoembedded and sectioned at 14 j..lm. Samples were fixed in 10% formalin and 

stained with Safranin-0/fast green to examine GAG distribution and picrosirius 

red to examine collagen content. 

Quantitative biochemistry 

Biochemistry samples were weighed wet, frozen overnight, and lyophilized. Dry 

weights (OW) were measured, after which samples were digested with 125 

j..Jg/ml papain (Sigma) in 50 mM phosphate buffer, pH=6.5, containing 2 mM N­

acetyl cysteine for 18 h at 65°C. Total DNA content was assessed with the 

Quanti-iT PicoGreen dsDNA Assay (Invitrogen), and cell number was calculated 

based on an estimation of 7.7 pg DNA material per cell. Sulfated GAG was 

quantified using the Blyscan Glycosaminoglycan Assay kit (Biocolor), based on 

1 ,9-dimethylmethylene blue binding. Following hydrolysis with 4 N sodium 

hydroxide for 20 min at 11 ooc, total collagen content was quantified with a 

chloramine-T hydroxyproline assay [238]. Sircol collagen assay standard 
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(Biocolor) was used such that the standard curve reflected collagen amount, 

eliminating the need to convert hydroxyproline to collagen. Total collagen and 

sulfated GAG were normalized to WW and DW for making comparisons among 

treatment groups. 

Creep indentation testing 

A creep indentation apparatus was used to determine the compressive creep and 

recovery behavior of each construct [12]. Each sample was affixed to a stainless 

steel surface with cyanoacrylate glue and equilibrated for 20 min in PBS. A 0.7 g 

(0.007 N) mass was applied with a 0.8 mm diameter flat, porous indenter tip, and 

specimens crept until equilibrium. Specimen thickness was measured from digital 

photographs using lmageJ software. Aggregate modulus, a measure of 

compressive stiffness, was calculated using a semi-analytical, semi-numeric, 

linear biphasic model [12]. 

Tensile testing 

Each tensile specimen was cut into a dog-bone shape with a 1-mm gauge length. 

Specimen thickness and width were measured from digital photographs using 

lmageJ software. Specimens were then affixed with cyanoacrylate glue to paper 

tabs outside the gauge length, and these tabs were gripped during testing. A 

uniaxial electromechanical materials testing system (lnstron Model 5565) was 

employed to determine tensile properties. Tensile tests were performed until 

failure at a strain rate of 1% of the gauge length per second. Force-displacement 
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curves were generated, and stress-strain curves were calculated by normalizing 

data to specimen dimensions. The apparent Young's modulus, a measure of 

tensile stiffness, was determined by least squares fitting of the linear region of 

the stress-strain curve. The ultimate tensile strength (UTS) was determined as 

the maximum stress reached during a test. 

Statistical analysis 

All quantitative assessments were made using n=5-9. Numerical data are 

represented as means ± standard deviations. To compare among treatment 

groups, single-factor ANOVA was employed, with Fisher LSD post hoc testing 

when warranted. Significance was defined as p<0.05. 

Results 

Gross appearance and histology 

At the end of culture (t=28 days), all constructs were circular discs with enough 

structural integrity to be easily manipulated during all construct assessments. 

Constructs from every group had a similar flat surface appearance with no 

obvious surface abnormalities (Figure 6-1 ). Construct diameters and wet weights 

(WW) are provided in Table 6-1. Week 1 constructs had significantly greater 

diameters (1.06x control) and wet weights (1.34x control) compared to all other 

groups. On histology, all constructs stained positively for collagen and GAG 

throughout their thicknesses (Figure 6-1 ). 
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Quantitative biochemistry 

Cell number, shown in Table 6-1, was estimated from DNA content using a 

conversion factor of 7. 7 pg DNA per cell. Week 1 constructs were found to have 

a higher cell number (1.63x control} than every other group, with no other 

differences between groups. 

Construct GAG/WW for each group is compared in Figure 6-2A. GAG/WW 

values for control, Week 1, Week 2, Week 3, Week 4, and All Weeks constructs 

were 4.6±0.6%, 3.8±0.7%, 6.2±1.5%, 4.4±1.3%, 5.0±0.6%, and 6.2±0.7%, 

respectively. Week 2 and All Weeks constructs had the greatest GAG/WW (1.34x 

and 1.35x control, respectively). Week 1 constructs had the least GAG/WW 

(0.82x control). GAG per dry weight (DW), provided in Table 6-1, showed a 

similar trend to that observed for GAG/WW. 

Construct collagen/WW for each group is compared in Figure 6-3A. 

Collagen/WW values for control, Week 1, Week 2, Week 3, Week 4, and All 

Weeks constructs were 5.0±0.6%, 4.6±0.9%, 7.6±1.3%, 5.9±1.9%, 5.2±0.6%, 

and 10.1 ±3.4%, respectively. All Weeks constructs had the highest collagen/WW 

(2.04x control), followed by Week 2 constructs (1.53x control). Week 1, Week 3, 

and Week 4 constructs were no different from control. Similar trends were 

observed for collagen/OW (Table 6-1); however, Week 2 and All Weeks 

constructs did not differ from each other in collagen/OW. 
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Biomechanics 

Creep indentation was employed to determine the aggregate modulus, a 

measure of compressive stiffness, of each self-assembled construct. Aggregate 

moduli for all constructs are compared in Figure 6-28. Aggregate moduli for 

control, Week 1, Week 2, Week 3, Week 4, and All Weeks constructs were 

138±34, 64±22, 193±38, 131±27, 152±41, and 224±45 kPa, respectively. Trends 

for aggregate moduli followed those observed for GAG/WW. The highest 

aggregate moduli were found in All Weeks constructs (1.62x· control), followed by 

Week 2 constructs (1.40x control). Week 1 constructs had the lowest aggregate 

moduli (0.46x control}. 

Tensile axial strain-to-failure testing was employed to determine the 

Young's modulus and UTS of each self-assembled construct. Young's moduli 

and UTS for all constructs are compared in Figure 6-3. Young's moduli for control, 

Week 1, Week 2, Week 3, Week 4, and All Weeks constructs were 717±160, 

457±106, 1034±141, 888±181, 669±130, and 1192±340 kPa, respectively. All 

Weeks constructs had the highest Young's moduli (1.66x control), followed by 

Week 2 constructs (1.44x control). Week 1 constructs had the lowest Young's 

moduli (0.64x control). UTS values for control, Week 1, Week 2, Week 3, Week 4, 

and All Weeks constructs were 366±61, 411±147, 551±147, 465±101, 376±110, 

and 830±188 kPa, respectively. Trends for UTS appeared to reflect trends in 

collagen/WW. All Weeks constructs had the highest UTS (2.26x control}, 

followed by Week 2 constructs (1.50x control}. 
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Discussion 

This study examined the effects of continuous ribose treatment over various time 

windows during self-assembly of articular cartilage constructs. Experimental 

results supported the hypotheses motivating the study: 1) treatment of self­

assembled constructs with ribose produced significant increases in biochemical 

and biomechanical properties; 2) week 2 was identified as the optimal treatment 

time window to produce the greatest improvements in constructs; and 3) 

continuous ribose treatment for the entire duration of culture had the greatest 

effect on construct properties, notably producing a 62% increase in compressive 

stiffness, a 66% increase in tensile stiffness, and a 126% increase in tensile 

strength compared to control. To the best of our knowledge, this is the first study 

not only to systematically compare ribose treatment over various time windows 

during in vitro tissue development, but also to examine the direct effects of ribose 

treatment on both cells and their surrounding ECM during tissue engineering. 

This study demonstrates the effectiveness of ribose as an agent to improve 

tissue engineered materials. 

It was found that the optimal time window for ribose treatment is during 

week 2 (t=B-14 days). Compared to controls, week 2 constructs exhibited 

significant improvements in GAGIWW (34% increase), collagen/WW (53% 

increase), compressive stiffness (40% increase), tensile stiffness (44% increase), 

and tensile strength (50% increase). To understand why intervening during week 

2 can lead to such dramatic improvements in construct properties, it is important 

to consider the developmental milestones of self-assembling constructs. A 
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previous study from our laboratory characterized matrix development during self­

assembly [163]. A principal finding of that work was that collagen production 

reaches a plateau between days 10-14 of culture, after which GAG production 

predominates. It is thought that the rapid increase in GAG production with no 

new collagen formation contributes to pre-stress within the fledgling collagen 

network, thereby compromising the engineered tissue's tensile mechanical 

properties [158, 200]. Altering this imbalance between GAG and collagen has 

been shown to improve the tensile properties of self-assembled constructs [158, 

159] and native articular cartilage explants [1 0]. During week 2, before collagen 

production halts and GAG production ramps up, the developing ECM may be 

more susceptible to interventions like ribose that either reinforce existing matrix 

or induce new matrix biosynthesis. The beneficial effects of ribose treatment 

during week 2 are corroborated by previous work showing that other biochemical 

and biophysical stimuli also produce their maximal effects when applied to 

constructs during week 2 [62-64, 67, 68, 110, 160]. 

One interesting finding is that the results for collagen content reflected 

trends seen for tensile strength but do not track as closely with differences 

observed for tensile stiffness. It is widely understood that the tensile properties of 

cartilage are conferred by the tissue's collagen network. Collagen networks have 

complex, multi-scale structure-function relationships governed by peptide 

abundance, fibril organization, and crosslink presence [181]. A possible 

explanation for the fidelity between tensile strength and collagen content is that 

collagen abundance may preferentially determine the tissue's failure point (and 
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thus strength), whereas individual crosslinks within the network may determine 

the fiber bundle response to strain (and thus stiffness). Future studies on native 

cartilage should be undertaken to tease out structure-function relationships 

between collagen abundance, crosslinks, tensile stiffness, and tensile strength. 

Increased GAG content and compressive stiffness in ribose-treated 

constructs may be explained by the effects of crosslinking, as well. Glycation­

mediated crosslinking may be trapping GAGs within the stiffer, crosslinked 

network, thereby preventing GAG loss over the duration of culture. Higher 

compressive stiffness may be explained by tighter packing of GAG within the 

crosslinked collagen network. One way to test this hypothesis in the future may 

be to examine the ratio of GAG to pentosidine, a molecule derived from ribose 

that is responsible for crosslinks between lysine and arginine residues in collagen 

[181]. By studying correlations between GAG and pentosidine, inferences can be 

made about the effect of collagen crosslinking on GAG retention or loss. 

Although the guiding principle underlying this study is that ribose induces 

crosslinking of the ECM through non-enzymatic glycation, the observed changes 

in biochemical content and biomechanical properties may be further explained by 

cellular metabolism or osmotic stress. Ribose is known to play a role in cellular 

metabolism [26], particularly as part of the pentose phosphate pathway [202], 

and therefore may influence chondrocyte biosynthesis during self-assembly. 

Additionally, the presence of ribose increases the effective osmolarity of ribose 

medium compared to control medium. Cells undergo shrinkage in a hyperosmotic 

environment; the resulting cellular strain is thought to alter chromatin 
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condensation and nucleocytoplasmic transport [79, 80]. The downstream effect 

of these nuclear changes may be increased biosynthesis of GAG or collagen, 

especially in response to continuous hyperosmotic stress. To test this concept in 

the future, one could examine the use of a non-reducing sugar such as sucrose 

to modulate osmolarity while preventing glycation; alternatively, the osmolarity of 

ribose-supplemented medium could be titrated using distilled water. 

Of note is that constructs treated with ribose during the first week of 

culture exhibited significant decreases in biochemical and biomechanical 

properties but increases in size and cell number compared to all other groups. 

During the first week of culture, in a process resembling chondrogenesis in vivo 

[95], it has been shown previously by our laboratory that the nascent construct's 

efforts are focused primarily on cell clustering and condensation through 

upregulation of N-cadherin and other adhesion molecules, rather than on ECM 

synthesis [163]. As such, there is very little ECM available as a substrate for 

glycation by ribose. Thus, the prevailing effect of early ribose treatment may be 

metabolic or osmotic, rather than crosslink forming. Metabolically, it is possible 

that ribose had the effect of shunting cellular biosynthesis towards cell 

proliferation [26], which may explain the 63% increase in cell number in 

constructs treated with ribose during week 1. Thus it is not surprising that, given 

the greater cell number, constructs treated during week 1 have a larger size 

compared to constructs from other groups. It is important to note that despite the 

greater cell number and size, these constructs were unable to keep up with ECM 

synthesis observed in other groups. These effects are similar to results obtained 
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in a previous study from our group that investigated initial cell seeding initial cell 

seeding density in self-assembly and revealed an upper limit for effective tissue 

engineering [183]. 

Constructs treated with ribose throughout the entire duration of 4-week 

culture exhibited the greatest improvements in biochemical and biomechanical 

properties. It is possible that the beneficial effects seen with week 2 treatment 

were able to mitigate the negative effects seen with week 1 treatment in this 

group of constructs. Most importantly, however, the success of these constructs 

demonstrates that treatment with 30 mM ribose can be used safely in tissue 

engineering strategies with no risk of in vitro cytotoxicity. Future work is 

warranted, however, to assess biocompatibility in vivo, since previous work in the 

literature has suggested that AGEs may mark ECM proteins for targeted 

proteolysis [26]. 

This work provides evidence that continuous treatment with ribose can 

significantly enhance the biochemical and biomechanical properties of self­

assembled cartilage constructs. We have identified an optimal time window for 

ribose application. Additionally, we provide evidence that 30 mM ribose can be 

used safely in vitro without risk of cell death or other deleterious effects. Finally, a 

major innovation of this study is that it evaluated ribose application during self­

assembly, a purely cell-mediated phenomenon, from which direct effects on both 

cells and ECM were ascertained for the first time. 
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Figure 6-1. Gross morphology and histology of self-assembled constructs 
Photographs at 4 weeks. From left to right: representative images of constructs from 
Control, Week 1, Week 2, Week 3, Week 4, and All Weeks ribose treatment groups. 
Constructs had a similar flat circular appearance with no surface abnormalities (top row). 
All constructs stained positively for collagen (middle row) and GAG (bottom row). 
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Figure 6-2. GAG content and compressive stiffness of constructs 
(A) GAG/WW for all groups. Ribose treatment during Week 2 and All Weeks had the 
greatest GAG/WW (34% and 35% > control, respectively). Week 1 had the least 
GAG/WW (18% < control) . (B) Compressive stiffness for all groups. The highest 
aggregate moduli were found in All Weeks (62% > control) , followed by Week 2 (40% > 
control). Week 1 had the lowest aggregate moduli (54% < control) . As expected , trends 
for aggregate moduli followed GAG trends . Data are presented as means + standard 
deviations. Groups not connected by the same letter are significantly different (p<0.05). 
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Figure 6-3. Collagen and tensile properties of self-assembled constructs 
(A) Collagen/WW for all groups. Ribose treatment during All Weeks had the highest 
collagen/WW (1 04% > control), followed by Week 2 (53% > control). (B) Tensile stiffness 
for all groups. The highest Young's moduli were found in All Weeks (66% > control), 
followed by Week 2 (44% > control). Week 1 had the lowest Young's moduli (36% < 
control). (C) Tensile strength for all groups. All Weeks had the highest UTS (126% > 
control), followed by Week 2 (50% > control). UTS trends appeared to reflect 
collagen/WW trends. Data are presented as means + standard deviations. Groups not 
connected by the same letter are significantly different (p<0.05). 
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Table 6-1. Growth metrics and biochemical content of constructs 
Diameter, wet weight, cell number, collagen/dry weight, and GAG/dry weight of self­
assembled constructs. Ribose treatment during Week 1 had the largest diameter (6% > 
control), wet weight (34% > control), and cell number (63% > control), with no other 
significant differences among the other groups. Week 2 and All Weeks had the highest 
collagen/OW (50% and 53% > control, respectively), and All Weeks had the highest 
GAG/OW (23% > control). Data are presented as means ± standard deviations. 
Asterisks and lowercase letters denote significant differences within a column; groups 
not connected by the same letter are significantly different (p<0.05). 

Oia. ww Cells Collagen/OW GAG/OW 
{mm} {mg} {x106} {mg/mg} (mg/mg} 

Control 5.92±0.22 22.0±1.3 5.39±1.20 0.34±0.08 b 0.30 ± 0.03 b 
Week 1 6.28±0.2* 29.4±1.8* 8.78±2.51* 0.25±0.06 c 0.24 ± 0.02 c 
Week2 5.78±0.10 20.4±1.3 4.89±0.68 0.51±0.08 a 0.33 ± 0.05 ab 
Week3 5.80±0.17 20.6±1.7 4.68±1.66 0.44±0.11 ab 0.32 ± 0.04 ab 
Week4 5.93±0.13 21.9±1.5 5.39±1.00 0.31±0.07 c 0.29 ± 0.04 b 
All Weeks 5.92±0.23 20.5±0.2 6.01±1.33 0.52±0.07 a 0.37 ± 0.06 a 
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Chapter 7. Decellularization of tissue engineered 

cartilage* 

• Chapter published as Elder BD+, Eleswarapu SV+, and Athanasiou KA, 
"Extraction techniques for the decellularization of tissue engineered articular 
cartilage constructs," Biomaterials 2009. + = Equal contribution. 
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Abstract 

Several prior studies have been performed to determine the feasibility of tissue 

decellularization to create a non-immunogenic xenogenic tissue replacement for 

bladder, vasculature, heart valves, knee meniscus, temporomandibular joint disc, 

ligament, and tendon. However, limited work has been performed with articular 

cartilage, and no studies have examined the decellularization of tissue 

engineered constructs. The objective of this study was to assess the effects of 

different decellularization treatments on articular cartilage constructs, engineered 

using a scaffoldless approach, after 4 wks of culture, using a two-phased 

approach. In the first phase, five different treatments were examined: 1) 1% SDS, 

2) 2% SDS, 3) 2% Tributyl phosphate, 4) 2% Triton X-100, and 5) Hypotonic 

followed by hypertonic solution. These treatments were applied for either 1 h or 8 

h, followed by a 2 h wash in PBS. Following this wash, the constructs were 

assessed histologically, biochemically for cellularity, GAG, and collagen content, 

and biomechanically for compressive and tensile properties. In phase II, the best 

treatment from phase I was applied for 1, 2, 4, 6, or 8 h in order to optimize the 

application time. Treatment with 2% SDS for 1 h or 2 h significantly reduced the 

DNA content of the tissue, while maintaining the biochemical and biomechanical 

properties. On the other hand, 2% SDS for 6 h or 8 h resulted in complete 

histological decellularization, although GAG content and compressive properties 

were significantly decreased. Overall, 2% SDS, for 1 or 2 h, appeared to be the 

most effective agent for cartilage decellularization, as it resulted in 

decellularization while maintaining the functional properties. The results of this 
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study are exciting as they indicate the feasibility of creating engineered cartilage 

that may be non-immunogenic as a replacement tissue. 

Introduction 

Injuries to articular cartilage, whether traumatic or from degeneration, generally 

result in the formation of mechanically inferior fibrocartilage, due to the tissue's 

poor intrinsic healing response [27]. As such, tissue engineering strategies have 

focused on developing replacement tissue in vitro for eventual in - vivo 

implantation. One such strategy employs a "self-assembly process" [1 05] in 

which chondrocytes can be used to form robust tissue engineered constructs 

without the use of a scaffold. 

Although engineered articular cartilage tissue has recently been created 

with biochemical and biomechanical properties in the range of native tissue 

values [67], there are currently two significant limitations to cartilage tissue 

engineering. First, human cells are scarce in number and difficult to procure, and 

passage of these cells leads to dedifferentiation [53]. These issues make the use 

of autologous cells for cartilage repair difficult. Additionally, the majority of 

cartilage tissue engineering approaches have employed bovine or other animal 

cells, and tissues grown from these cells are xenogenic. Thus, their use may 

result in a severe immune response following implantation, though this has not 

been fully elucidated. 

It is believed that a decellularized xenogenic tissue may be a viable option 

as a replacement tissue, as the antigenic cellular material will be removed while 
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preserving the relatively non-immunogenic extracellular matrix (ECM), as 

described in an earlier review [85]. Ideally, this will also preserve the 

biomechanical properties of the tissue. For instance, an acellular dermal matrix 

[43] has seen successful use clinically as the FDA approved Alloderm product. 

Additionally, acellular xenogenic tissues have been created for many 

musculoskeletal applications, including replacements for the knee meniscus 

[220], temporomandibular joint disc [141], tendon [39], and ACL [242], as well as 

in other tissues including heart valves, bladder "[185], artery [50], and small 

intestinal submucosa. However, studies demonstrating the effects of tissue 

decellularization on cartilage are limited, and there are no studies demonstrating 

the effects of decellularization on musculoskeletal tissue engineered constructs. 

Therefore, the objective of this study was to determine the effects of 

multiple decellularization treatments on construct cellularity, biochemical, and 

biomechanical properties. A two-phased approach was used in which an 

appropriate agent for decellularization was selected in phase I, and an 

appropriate treatment time was selected in phase II. It was hypothesized that 

cells could be removed from self-assembled constructs while preserving the 

biochemical and biomechanical properties. To test this hypothesis, self­

assembled articular cartilage constructs were cultured for 4 wks, and then treated 

with 1% sodium dodecyl sulfate (SDS), 2% SDS, 2% Tributyl Phosphate (TnBP), 

2% Triton X-100, or a hypotonic/hypertonic solution, for either 1 or 8 h. These 

treatments were selected from prior literature. Next, the treatment selected in 

phase I was applied for a period of 1, 2, 4, 6, or 8 h in phase II. The effects of the 
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decellularization treatments were assessed on construct cellularity and functional 

properties. 

Materials and methods 

Chondrocyte isolation and seeding 

Cartilage was harvested from the distal femur of week-old male calves (Research 

87) shortly after slaughter, and chondrocytes were isolated following digestion 

with collagenase type 2 (Worthington). To normalize variability among animals, 

each leg came from a different animal, and cells from all legs were combined 

together to create a mixture of chondrocytes; a mixture of cells from five legs was 

used in the study. Cell number was determined on a hemocytometer, and a 

trypan blue exclusion test indicated that viability remained >90%. Chondrocytes 

were frozen in culture medium supplemented with 20% FBS (Biowhittaker) and 

10% DMSO at -80°C for 1 day prior to use. After thawing, viability was greater 

than 90%. A stainless steel mold consisting of 5 mm dia. x 10 mm long cylindrical 

prongs was placed into a row of a 48-well plate. To construct each agarose well, 

sterile, molten 2% agarose was added to wells fitted with the die. The agarose 

solidified at room temperature for 60 min, after which the mold was removed from 

the agarose. Two changes of culture medium were used to completely saturate 

the agarose well by the time of cell seeding. The medium was DMEM with 4.5 

giL-glucose and L-glutamine (Biowhittaker), 100 nM dexamethasone (Sigma), 

1% Penicillin/Streptomycin/Fungizone (PIS/F) (Biowhittaker), 1% ITS+ (BD 

Scientific), 50 f..lg/ml ascorbate-2-phosphate, 40 f..lg/ml L-proline, and 100 f..lg/ml 
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sodium pyruvate (Fisher Scientific). To seed each construct, 5.5 x 106 cells were 

added in 100 ~-tl of culture medium. Constructs formed within 24 h in the agarose 

wells and were cultured in the same well until t=1 0 days, after which they were 

unconfined for the remainder of the study, as described previously [69]; t=O was 

defined as 24 h after seeding. 

Decel/ularization phase I 

At t=4 weeks, self-assembled constructs (n=6/group) were removed from culture 

and exposed to one of five decellularization treatments, for either 1 h or 8 h. The 

decellularization treatments included: 

1) 1% SDS 

2) 2% SDS 

3) 2% TnBP 

4) 2% Triton X-100 

5) Hypotonic/Hypertonic Solution (half-time of each) 

a. Hypotonic: 10 mM Tris HCI, 5 mM EDTA, 1 1-1M PMSF 

b. Hypertonic: 50 mM Tris HCI, 1 M NaCI, 10 mM EDTA, 1 IJM PMSF 

All treatments included 0.5 mg/ml DNase Type I, 50 IJg/ml RNase, 0.02% EDTA, 

and 1% P/S/F, in PBS. Both 1 h control and 8 h control groups were exposed to 

this same solution without detergent treatments. These treatments were applied 

at 3rC with agitation. Following the 1 h or 8 h treatment, the constructs were 

washed for 2 h in PBS at 3rC with agitation. Additionally, an untreated control 
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was assessed immediately following construct removal from culture, without the 

treatment or wash steps. 

Decellularization phase II 

At t=4 weeks, self-assembled constructs (n=6/group) were removed from culture 

and exposed to 2% SDS for 1, 2, 4, 6, or 8 h. As in phase I, all treatments 

included 0.5 mg/ml DNase Type I, 50 IJg/ml RNase, 0.02% EDTA, and 1% P/S/F, 

in PBS. These treatments were applied at 3rC with agitation. Following the SDS 

treatment, the constructs were washed for 2 h in PBS at 3rC with agitation. 

Additionally, an untreated control was assessed immediately following construct 

removal from culture, without the treatment or wash steps. 

Histology 

After freezing, samples were sectioned at 14 ~-tm. To determine construct 

cellularity, a hematoxylin & eosin (H&E) stain was used. A Safranin-0/fast green 

stain was used to examine GAG distribution,[187, 212] and picrosirius-red was 

employed for collagen content. 

Quantitative biochemistry 

Samples were frozen overnight and lyophilized for 48 h, followed by re­

suspension in 0.8 ml of 0.05 M acetic acid with 0.5 M NaCI and 0.1 ml of a 10 

mg/ml pepsin solution (Sigma) at 4°C for 72 h. Next, 0.1 ml of 10x TBS was 

added along with 0.1 ml pancreatic elastase and mixed at 4 oc overnight. A 



152 

Picogreen Cell Proliferation Assay Kit (Molecular Probes) was used to assess 

total DNA content. GAG content was quantified using the Blyscan 

Glycosaminoglycan Assay kit (Biocolor), based on 1 ,9-dimethylmethylene blue 

binding. After hydrolysis with 2 N NaOH for 20 min at 11 0°C, total collagen 

content was determined using a chloramine-T hydroxyproline assay [237]. 

Indentation testing 

Samples were assessed with an indentation apparatus, as described previously 

[11]. A 0.7 g (0.007 N) mass was applied with a 1 mm flat-ended, porous indenter 

tip, and specimens crept until equilibrium, as described elsewhere [1 05]. For the 

constructs treated for 1 h with the hypotonic/hypertonic solution and 8 h with 1% 

SDS, 2% TnBP, or 2% Triton X-100, a 0.27 (0.0027 N) mass was applied instead 

to maintain equivalent strains. Strains generally ranged from 3-9%. Preliminary 

estimations of the aggregate modulus of the samples were obtained using the 

analytical solution for the axisymmetric Boussinesq problem with Papkovich 

potential functions [99, 217]. The sample biomechanical properties, including 

aggregate modulus, Poisson's ratio, and permeability were then calculated using 

the linear biphasic theory [13]. 

Tensile testing 

A uniaxial materials testing system (lnstron Model 5565) was employed to 

determine tensile properties with a 50 N load cell, as described previously [15]. 

Briefly, samples were cut into a dog-bone shape with a 1-mm-long gauge length. 
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Samples were glued to paper tabs with cyanoacrylate glue outside of the gauge 

length. The 1-mm-long sections were pulled at a 1% constant strain rate. All 

samples broke within the gauge length. Stress-strain curves were created from 

the load-displacement curve and the cross-sectional area of each sample, and · 

Young's modulus was calculated from each stress-strain curve. 

Statistical analysis 

All biomechanical and biochemical assessments were made using n=6: In phase 

I, the three control groups were compared using a single factor ANOVA. As no 

difference was noted, only the culture control was used in the final analysis. To 

compare treatment groups in both phases, a single factor ANOVA was used, and 

a Tukey's HSD post hoc test was used when warranted. Significance was 

defined asp< 0.05. 

Results 

Gross appearance and histology 

In all groups, the construct diameter was approximately 6 mm at 4 wks. In phase 

I, treatment for 8 h with either 1% SDS or the hypotonic/hypertonic solution 

resulted in a significant decrease in construct thickness (Table 7-1 ). Additionally, 

treatment for 8 h with 1% SDS, 2% SDS, 2% Triton X-1 00, or the 

hypotonic/hypertonic solution resulted in a significant decrease in construct wet 

weight (Table 7-1). In phase II, treatment with 2% SDS for 6 h or 8h resulted in a 

significant decrease in construct thickness and wet weight (Table 7-2). 
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Figure 7-1 displays the histological results of phase I. Extensive staining 

for cell nuclei was observed in the H&E staining of the control group. Treatment 

with 1% SDS for 1 h reduced the number of cell nuclei, while treatment for 8 h 

eliminated all nuclei from the construct. The 2% SDS treatment had similar 

results. However, treatment with 2% TnBP or 2% Triton X-100, for either time 

point, had no effect on the number of nuclei. Both hypotonic/hypertonic 

treatments resulted in a slight reduction in number of cell nuclei. All 

decellularization treatments for 8 h resulted in ·a significant reduction or complete 

elimination of staining for GAGs. Additionally, 1 h treatment with the 

hypotonic/hypertonic solution reduced the GAG content. However, there were no 

apparent differences in GAG staining among the 1 h treatments with 1% SDS, 

2% SDS, 2% TnBP, 2% Triton X-100, and the control. Finally, all constructs 

demonstrated extensive staining for collagen, although the 8 h decellularization 

treatments resulted in slight alterations in construct morphology. 

Figure 7-2 displays the histological results of phase II. Extensive staining 

for cell nuclei was observed in the H&E staining of the control group. Increasing 

decellularization was observed with 2% SDS treatment from 1-4 h, while 6 or 8 h 

application times were required for complete histological decellularization. 

Treatment for 1 and 2 h resulted in maintenance of GAG and collagen staining, 

while the 4 h treatment resulted in decreased staining. However, treatment for 6 

and 8 h resulted in no GAG staining and poor collagen staining. 

Quantitative biochemistry 
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In phase I, several decellularization treatments resulted in a significant reduction 

in construct DNA (Figure 7-3). Treatment for 1 h with 2% SDS or the 

hypotonic/hypertonic solution, as well as 8 h treatment with 1 or 2% SDS or the 

hypotonic/hypertonic solution all resulted in a significant reduction of the DNA in 

the constructs. However, treatment with 2% TnBP or 2% Triton X-1 00 for either 

amount of time had no effect on construct DNA. In phase II, all application times 

resulted in a significant decrease in DNA content, although treatment for 8 h 

resulted in the greatest decrease (Figure 7-4). 

For phase I, the effects of the decellularization agents on construct GAG 

content are found in Figure 7 -5c. Treatment with 1% or 2% SDS for 1 h had no 

effect on GAG content, while all other treatments significantly reduced the GAG 

content of the constructs. Additionally, all 8 h treatments resulted in complete or 

nearly complete removal of GAG from the constructs. Finally, there were no 

significant changes in total collagen content following treatment with the 

decellularization agents (Figure 7-5d). For phase II, the effects of the 

decellularization agents on construct GAG content are found in Figure 7 -6c. 

Treatment with 2% SDS for 1 or 2 h maintained GAG content, while 4 h 

treatment resulted in a significant decrease in GAG content. However, treatment 

for 6 or 8 h resulted in complete elimination of GAG. Treatment for 1, 2, 4, or 6 h 

did not significantly alter the collagen content, while treatment for 8 h resulted in 

a slight decrease in collagen content. 
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Biomechanical evaluation 

For phase I, the effects of the various decellularization treatments on construct 

aggregate modulus are displayed in Figure 7 -5a. Treatment for 1 h with 1% or 

2% SDS as well as with 2% TnBP maintained the compressive stiffness. 

However, treatment for 8 h with 1% SDS, 2% TnBP, and 2% Triton X-100 

significantly reduced the aggregate modulus. The groups treated for 8 h with 

either 2% SDS or the hypotonic/hypertonic solutions were too weak to be 

mechanically tested with creep indentation. Additionally, the effects of the various 

decellularization treatments on Poisson's ratio and permeability are displayed in 

Table 7-3. A significant decrease in Poisson's ratio was noted for the groups 

treated for 8 h with 1% SDS, 2% TnBP, and 2% Triton X-100. Finally, only 

treatment for 8 h with 1% SDS resulted in a significantly decreased permeability. 

For phase II, the effects of the various application times on construct aggregate 

modulus are displayed in Figure 7-6a. There was no significant difference in 

compressive stiffness with treatment for 1 and 2 h, while the 4 h treatment 

significantly reduced the stiffness. Additionally, the 6 and 8 h treatment resulted 

in constructs that were untestable in compression. As shown in Table 7-4, the 1, 

2, and 4 h treatments did not result in significant changes in permeability and 

Poisson's ratio. 

Figure 7 -5b indicates the tensile properties of the constructs treated with 

the various agents in phase I. Treatment for 1 h with 1% SDS, 2% TnBP, or 2% 

Triton X-100 maintained the tensile stiffness. A 1 h treatment with 2% SDS 

actually increased the Young's modulus. However, 8 h treatments with 2% SDS, 
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2% TnBP, and 2% Triton X-100 significantly decreased the Young's modulus. 

Figure 7 -6b displays the tensile properties of the constructs treated in phase II. 

Treatment with 2% SDS for 1 h resulted in a slight increase in tensile properties, 

although this was not significant. Treatment for 2 and 4 h maintained the tensile 

stiffness while treatment for 6 h resulted in reduced tensile stiffness. Constructs 

treated for 8 h were untestable in tension. 

Discussion 

To the best of our knowledge, this is the first study to decellularize hyaline 

articular cartilage tissue using a detergent-based approach, and this is the only 

study to decellularize musculoskeletal tissue engineered constructs. The 

objective of this study was to assess the effectiveness of multiple 

decellularization protocols on self-assembled articular cartilage constructs, and to 

determine an appropriate application time for the treatment. A two-phased 

approach was used. In phase I, a two-factor approach was employed, in which 

five different treatments were examined at two application times each. In phase II, 

the effects of multiple treatment times were examined. 

The results of this study indicated that SDS, at concentrations of either 1% 

or 2%, is an effective treatment for tissue decellularization, thus confirming our 

hypothesis that cells could be significantly reduced from engineered constructs 

while maintaining the biomechanical properties. An ionic detergent, SDS typically 

is able to solubilize the nuclear and cytoplasmic cell membranes. Although all 

SDS treatments led to cell removal, treatment with 2% SDS appeared the most 
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promising, although application time also had significant effects. For instance, 

treatment with 2% SDS for 1 h resulted in a 33% decrease in cellularity, while 

maintaining both GAG and collagen content, as well as maintaining compressive 

stiffness. This treatment even resulted in an increase in tensile stiffness; a similar 

increase in tensile properties was observed in a study of ACL decellularization 

[242]. On the other hand, treatment with 2% SDS for 8 h led to complete 

histological decellularization, as well as a 46% decrease in DNA content. 

However, this treatment also resulted in loss of all GAG and compressive 

stiffness, as well as a decrease in tensile stiffness. Treatment with 2% SDS for 8 

h also resulted in a significant decrease in construct WW, presumably as a result 

of the GAG loss, which would also decrease the tissue hydration. As 2% SDS 

resulted in the greatest decrease in DNA content as well as maintained or 

increased biomechanical and biochemical properties, it was selected for use in 

phase II. 

Treatment with 2% SDS for 1 h resulted in tissue decellularization while 

maintaining construct functional properties. Although SDS at all application times 

led to decellularization, 6 or 8 h was required for complete histological 

decellularization. However, these time points resulted in complete removal of 

GAG as well as extremely poor compressive stiffness. However, the reduction in 

collagen content and tensile properties was less pronounced. On the other hand, 

as in phase I, treatment for 1 h resulted in a significant reduction in DNA content, 

while maintaining all biochemical and biomechanical properties, and even 

increasing tensile stiffness. The observed increase in tensile stiffness with a 1 h 
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application of SDS suggests an effect of the detergent on collagen fibers within 

the engineered construct. SDS is known to have a propensity to disrupt non­

covalent bonds in proteins and confer negative charges on proteins that have 

been denatured. The application of SDS for 1 h followed by a wash step may 

have had a transient effect on collagen architecture, wherein collagen fibers 

unfold as described previously [166], and then return to their native 

conformations, reforming non-covalent bonds and strengthening interactions in 

the process. The putative mechanism may have led to the observed increased 

tensile stiffness at 1 h. With greater time in SDS, the effect is not observed, 

suggesting that any recovery undergone by collagen is counterbalanced by the 

detergent's aggregate effect on the rest of the tissue architecture. 

It must be noted that although treatment with 2% SDS for 6 or 8 h resulted 

in complete histological decellularization, it did not result in complete elimination 

of DNA. It appeared that SDS treatment was effective at achieving complete lysis 

of cell membranes and nuclear membranes, as H&E staining did not reveal any 

indication of the presence of cell nuclei, while the DNase treatment was not 

completely effective in degrading the DNA following membrane lysis. It is 

possible that a higher DNase concentration is required to achieve more complete 

elimination of DNA. Additionally, as nucleases were only added during detergent 

treatment, it is possible that adding a nuclease during the wash step would 

enable the nucleases to more effectively destroy the remaining DNA. 

However, the exact level of tissue decellularization requisite to eliminate 

an immune response, as well as the proper assessment of decellularization, is 
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currently unclear. For instance, a recent study by Gilbert et al. [84] demonstrated 

that several commercially available ECM scaffold materials contained 

measurable amounts of DNA; some even demonstrated histological staining for 

nuclear material. These products have all been used successfully clinically, so it 

is possible that the remaining DNA and nuclear material in the engineered 

cartilage constructs may result in a limited host response. Additionally, as it is 

believed that the joint space is relatively immune privileged, as reviewed 

previously [182], it is possible that complete decellularization of the tissue is not 

required. Furthermore, it is unclear if decellularization should be assessed 

histologically merely as elimination of cell nuclei, or if a more complete 

assessment involves quantifying the tissue's DNA content, as prior studies have 

utilized differing approaches. For example, Lumpkins et al. [141] found that 1% 

SDS treatment for 24 h resulted in complete removal of cell nuclei, although they 

did not assess the DNA content of the tissue. On the other hand, Dahl et al. [50] 

examined the effects of a hypotonic/hypertonic treatment and found that there 

was complete removal of cell nuclei, but no decrease in DNA content. To study 

this issue further, in vivo studies are warranted to determine if there is threshold 

of decellularization at which an immune response is eliminated. 

Although it was less effective than the 2% concentration, 1% SDS 

displayed similar effects. For example, treatment for 1 h resulted in a 15% 

decrease in DNA content, while maintaining GAG and collagen content, as well 

as maintaining biomechanical properties. Additionally, treatment for 8 h resulted 
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in a 37% decrease in DNA content, loss of all GAG and compressive stiffness, as 

well as a decrease in tensile stiffness. 

On the other hand, treatment with Triton X-1 00 and TnBP did not appear 

promising, as they had a minimal effect on tissue decellularization, and resulted 

in a slight decrease in GAG content. Several prior studies have indicated the 

ineffectiveness of Triton X-100, although it was used in this study as it is believed 

to have minimal effects on protein-protein interactions [85]. For example, Dahl et 

al. [50] examined the effects of 1% Triton X-1 00 on porcine carotid arteries, and 

found that this treatment resulted in similar cellularity to control and no decrease 

in DNA content. In another study on tendon decellularization, Cartmell and Dunn 

[39] examined the effect of 1% Triton X-100 for 24 h, and found that cell density 

remained similar to control. Contrary to our results, this study also demonstrated 

complete decellularization with 1% TnBP, although a 48 h treatment was 

required. Therefore, it is possible that TnBP treatment may result in 

decellularization of self-assembled constructs at longer application times, 

although the GAG loss after as little as 8 h prevents the use of longer application 

times. 

Finally, although a hypotonic/hypertonic treatment has been an effective 

decellularization agent in this study as well as prior studies, it did not appear to 

be a viable treatment for self-assembled cartilage constructs, as it had severely 

detrimental effects on construct functional properties. For instance, treatment for 

as little as 1 h resulted in nearly complete loss of compressive and tensile 

stiffness, while constructs treated for 8 h were untestable mechanically. 
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Additionally, treatment at both application times resulted in nearly complete 

elimination of GAG content. 

Based on these results, treatment with 2% SDS appears to be the most 

promising and should be examined further in future studies. In vivo studies 

should be performed to determine the immune response to the decellularized 

tissue. Additionally, the effects of different decellularization treatments on 

complement activation should be addressed in future in vitro studies. 

Furthermore, as this study aimed to reduce the cellularity, additional studies are 

needed to investigate the elimination of the Gala1 ,3 epitope, which plays a 

significant role in hyperacute rejection of xenografts [172]. Treatment for 1 or 2 h 

maintained biomechanical and biochemical properties, while simultaneously 

significantly reducing the DNA content of the tissue. Additionally, treatment for 6 

or 8 h resulted in complete histological decellularization, but also resulted in 

elimination of GAG and compressive stiffness. Although the results of this study 

did not result in a completely decellularized construct with maintenance of 

biochemical and biomechanical properties, the results are promising and indicate 

the potential of a decellularized articular cartilage construct that could be used to 

treat damaged cartilage tissue without eliciting an immune response. 



Table 7-1. Phase I Construct wet weight and thickness values 

Treatment Group Construct WW (mg) 
Control 14.8±1.1 
1% SDS, 1 h 14.3±1.0 
1% SDS, 8 h 8.8±1.28 

2% SDS, 1 h 12.3±1.1 
2% SDS, 8 h 9.3±2.68 

2% TnBP, 1 h 15.2±1.1 
2% TnBP, 8 h 12.2±1.2 
2% Triton X-100, 1 h 13.7±1.2 
2% Triton X-100, 8 h 11.2±1.78 

Hypo/Hyper 1 h 15.0±3.0 
Hypo/Hyper 8 h 7 .0+1.38 

8 Significantly lower than control (p<0.05) 

Thickness (mm) 
0.49±0.03 
0.50±0.02 
0.38±0.048 

0.43±0.05 
0.47±0.08 
0.53±0.06 
0.49±0.04 
0.47±0.05 
0.47±0.08 
0.40±0.09 
0.35±0.048 
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Table 7-2. Phase II construct wet weight and thickness values 

Treatment Group Construct WW (mg) 
Control 19.9±3.3 
1 h 16.0±4.1 
2 h 15.8±3.6 
4 h 14.8±2.5 
6 h 9.3±1.9a 
8 h 10.7+1.8a 
aSignificantly lower than control (p<0.05) 
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Thickness (mm) 
0.73±0.14 
0.73±0.16 
0.66±0.10 
0.56±0.09 
0.53±0.07a 
0.53±0.08a 
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Table 7-3. Values for Poisson ratio and permeability from Phase I 

Treatment Group Poisson Ratio 
Control 0.30±0.07 
1% SDS, 1 h 0.26±0.04 
1% SDS, 8 h 0.07±0.098 

2% SDS, 1 h 0.26±0.1 0 
2% SDS, 8 h Not testable 
2% TnBP, 1 h 0.24±0.13 
2% TnBP, 8 h 0.04±0.038 

2% Triton X-100, 1 h 0.16±0.11 
2% Triton X-100, 8 h 0.04±0.048 

Hypo/Hyper 1 h 0.14±0.14 
Hypo/Hyper 8 h Not testable 
8 Significantly lower than control (p<0.05) 

Permeability (x10"14 m4/Ns) 
14.3±3.9 
15.6±8.0 
2.0±1.68 

12.6±6.3 
Not testable 

5.5±3.1 
7.3±7.5 
4.3±2.6 
5.1±4.7 
14.9±6.6 

Not testable 
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Table 7-4. Values of Poisson ratio and permeability from Phase II 

Treatment Group Poisson Ratio 
Control 0.13±0.07 
1 h 0.09±0.08 
2 h 0.08±0.08 
4 h 0.09±0.09 
6 h Not testable 
8 h Not testable 
aSignificantly lower than control (p<0.05) 

Permeability {x1 0"14 m4/Ns) 
32.0±18.2 
27.0±15.2 
15.5±4.4 

66.3±77.3 
Not testable 
Not testable 
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Figure 7-1. Histology for Phase I 
Photomicrographs demonstrating construct cellularity, GAG content, and collagen 
content for various treatment groups in phase I. 1 Ox original magnification. Treatment 
with 2% SDS for 1 h decreased cellularity while preserving GAG content, while treatment 
for 8 h eliminated all nuclei, but also eliminated all GAG. 
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Figure 7-2. Histology for Phase II 
Photomicrographs demonstrating construct cellularity, GAG content, and collagen 
content for treatment groups in phase II. 1 Ox original magnification. Treatment with 2% 
SDS for 1, 2, and 4 h decreased cellularity while preserving GAG and collagen content, 
while treatment for 6 and 8 h eliminated all nuclei, but also eliminated GAG and reduced 
collagen. 
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Figure 7-3. DNA content of constructs following decellularization in phase I 
Treatment with 2% SDS or the hypotonic/hypertonic solutions at either application time 
significantly decreased construct DNA content. Columns and error bars represent means 
and standard deviations. Groups denoted by different letters are significantly different 
(p<0.05) . 
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Figure 7-4. DNA content of constructs following decellularization in phase II 
Treatment with 2% SDS at all application times significantly reduced DNA content, while 
treatment for 8 h resulted in the greatest reduction in DNA content. Columns and error 
bars represent means and standard deviations. Groups denoted by different letters are 
significantly different (p<0.05). 
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Figure 7-5. Construct properties following decellularization in phase I 
(a) All 8 h treatments either significantly reduced compressive stiffness , or were 
untestable. Treatment for 1 h with 1% or 2% SDS, or 2% TnBP maintained compressive 
stiffness . (b) Treatment with 1% SDS for 1 h maintained tensile stiffness, while treatment 
with 2% SDS for 1 h increased tensile stiffness. (c) All 8 h treatments resulted in nearly 
complete GAG removal, while both 1% and 2% SDS for 1 h maintained GAG content. 
(d) Treatment with SDS or TnBP maintained collagen content, while treatment with 
Triton X-1 00 or the hypotonic/hypertonic combination significantly reduced total collagen 
content. Columns and error bars represent means and standard deviations . Groups 
denoted by different letters are significantly different (p<0.05). 
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6h 

6h Bh 

(a) 2% SDS treatment for 1 or 2 h maintained compressive properties, while treatment 
for 6 or 8 h resulted in constructs that were untestable in compression. (b) Treatment for 
1, 2, or 4 h maintained tensile stiffness, while 6 and 8 h treatments significantly reduced 
tensile stiffness. (c) Treatment for 1 or 2 h maintained GAG content, while treatment for 
6 or 8 h resulted in near complete GAG removal. (d) Treatment for 1, 2, 4, or 6 h 
maintained collagen content, while treatment for 8 h resulted in a reduction in collagen 
content. 
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Chapter 8. Structure-function relationships in the 

* immature knee joint 

• Published as Eleswarapu SV+, Responte OJ+, and Athanasiou KA, "Tensile 
properties, collagen content, and crosslinks of the immature knee joint," PLoS 
ONE 2011. +=Equal contribution. 
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Abstract 

The major connective tissues of the knee joint act in concert during locomotion to 

provide joint stability, smooth articulation, shock absorption, and distribution of 

mechanical stresses. These functions are largely conferred by the intrinsic 

material properties of the tissues, which are in turn determined by biochemical 

composition. A thorough understanding of the structure-function relationships of 

the connective tissues of the knee joint is needed to provide design parameters 

for efforts in tissue engineering. · 

The objective of this study was to perform a comprehensive 

characterization of the tensile properties, collagen content, and pyridinoline 

crosslink abundance of condylar cartilage, patellar cartilage, medial and lateral 

menisci, cranial and caudal cruciate ligaments (analogous to anterior and 

posterior cruciate ligaments in humans, respectively), medial and lateral 

collateral ligaments, and patellar ligament from immature bovine calves. Tensile 

stiffness and strength were greatest in the menisci and patellar ligament, and 

lowest in the hyaline cartilages and cruciate ligaments; these tensile results 

reflected trends in collagen content. Pyridinoline crosslinks were found in every 

tissue despite the relative immaturity of the joints, and significant differences 

were observed among tissues. Notably, for the cruciate ligaments and patellar 

ligament, crosslink density appeared more important in determining tensile 

stiffness than collagen content. 

To our knowledge, this study is the first to examine tensile properties, 

collagen content, and pyridinoline crosslink abundance in a direct head-to-head 
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comparison among all of the major connective tissues of the knee. This is also 

the first study to report results for pyridinoline crosslink density that suggest its 

preferential role over collagen in determining tensile stiffness for certain tissues. 

Introduction 

The major connective tissues of the knee joint act in concert during locomotion to 

provide joint stability, smooth articulation, shock absorption, and distribution of 

mechanical stresses [28, 123, 241]. These functions are largely conferred by the 

intrinsic material properties of the tissues, which are in turn determined by their 

biochemical compositions. Based on structure-function relationships, each 

connective tissue of the knee joint can be conceptualized along a continuum from 

hyaline to fibrocartilaginous to fibrous (Figure 8-1 ). These tissues have received 

considerable attention in both basic science and clinical literature, but much work 

remains to be done to elucidate the contributions of particular biochemical 

components to important mechanical parameters, especially with respect to 

applications in tissue engineering. Approaches in tissue engineering are guided 

heavily by the interplay of native tissue structures and their corresponding 

functional correlates. To better understand these relationships, this study 

examines the biochemical composition and tensile properties of the major 

connective tissues of the immature bovine knee joint. 

The knee is a pivotal hinge joint that permits flexion, extension, and limited 

rotation through coordinated action of its hyaline, fibrocartilaginous, and fibrous 

connective tissues. Hyaline cartilage is found at the condylar surfaces of the 
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femur and tibia, as well as on the patella. Fibrocartilage comprises the medial 

and lateral menisci, which are crescent-shaped structures interposed between 

the femoral and tibial condyles. Fibrous tissue makes up the major ligaments of 

the knee joint, in particular the patellar ligament, the collateral ligaments, and the 

cruciate ligaments. The patellar ligament provides stability to the patella as it 

glides over the patellofemoral groove and femoral condyles. The medial and 

lateral collateral ligaments (MCL and LCL) are extracapsular ligaments that 

protect the medial and lateral sides of the knee from a contralateral outside or 

inside bending force, respectively. The anterior and posterior cruciate ligaments 

(ACL and PCL) are intracapsular ligaments that stabilize the knee during rotation 

and bending. Together, these tissues contribute significantly to normal knee 

function. 

The connective tissues of the knee joint are known to derive their 

mechanical properties from their biochemical components, but precise structure­

function relationships remain elusive beyond general notions of the role of the 

extracellular matrix (ECM). Structurally, each of these tissues is hypocellular and 

possesses an ECM rich in collagen, with varying amounts of glycosaminoglycans 

(GAGs) [7, 176]. In general, collagen is known to be largely responsible for the 

tensile integrity of these tissues, while GAGs, predominant in hyaline cartilage 

and sparse in fibrous tissues, contribute to compressive strength [181]. In 

addition to total collagen content, the amount of crosslinking present in the 

collagen network has been shown to play an important role in tissue tensile 

properties [24]. In examining tissue tensile properties, two important measures of 
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tensile integrity are Young's modulus and ultimate tensile strength (UTS). 

Young's modulus is a measure of a material's tensile stiffness, and the UTS is 

the maximum stress a material can withstand. Though collagen content and 

crosslinking are known to play a role in tensile mechanics, their precise structure­

function relationships with respect to Young's modulus and UTS remain unclear. 

Pyridinoline crosslinks have been shown to correlate with both tensile strength 

and stiffness in articular cartilage [235], but there is a dearth of literature 

describing the contribution of pyridinoline crosslinks to the mechanical behavior 

of fibrocartilage or ligament tissues. 

In humans, conditions afflicting the connective tissues of the knee, such 

as traumatic injury and osteoarthritis, contribute to substantial healthcare costs 

and work-related disability [1, 101, 139]. The field of tissue engineering aims to 

improve orthopaedic medicine by providing functional replacements for damaged 

or diseased joint tissues. Recent tissue engineering efforts have focused on 

major connective tissues such as hyaline cartilage [105, 148], meniscus [109, 

230], tendon [36, 37], and ligament [98]. Although various approaches have been 

employed to engineer these tissues, it has been difficult to reproduce native 

collagen organization and attain native mechanical properties. Various types of 

mechanical [16, 71, 148, 168] and biochemical [88, 158] stimuli have been 

studied to improve construct properties, and both scaffold-free [1 05, 178, 203] 

and scaffold-based [47, 153] approaches have been investigated for connective 

tissue engineering applications. An additional consideration in these tissue 

engineering efforts has been the cell source used to produce constructs. 
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Comparisons of cell types have shown that immature cells exhibit increased 

biosynthesis [227], making them promising candidates for tissue engineering. 

Immature cells have been used to produce constructs with clinically relevant 

dimensions [105] and mechanical properties on par with native tissue. To make 

informed cell source choices, it is necessary to establish a comprehensive 

understanding of the physiology of immature joint tissues. Moreover, while 

studies on the knee joint are well represented in the literature, it is important to 

note that much of what is known about the structure-function relationships of 

these tissues comes from assessments of adult rather than immature joints, 

whether human or animal. Given the prevalence of knee injuries in the pediatric 

population [140], along with a greater push towards using immature tissues as 

cell sources for tissue engineering, a thorough elucidation of the biochemistry of 

immature knee joint tissues, not just adult tissues, is warranted. An 

understanding of immature joint physiology may also yield insight into tissue 

development by providing a reference to which adult tissues can be compared, 

as well as informing a general understanding of factors at play in pediatric joint 

injury. Additionally, because orthopaedic explant and tissue engineering studies 

are relying more readily on bovine tissues [16, 100, 105, 135, 192], it is 

imperative that a full assessment of the bovine joint be undertaken. 

The objective of this study was to perform a comprehensive 

characterization of the tensile properties, collagen content, and pyridinoline 

crosslink abundance of the major connective tissues of the immature bovine 

knee joint. Tissues of interest were femoral condylar and patellar cartilage, 



179 

medial and lateral menisci, cranial and caudal cruciate ligaments (analogous to 

the ACL and PCL in humans, respectively), medial and lateral collateral 

ligaments, and patellar ligament. It was hypothesized that trends in tensile 

properties would reflect those in collagen content; that tensile properties and 

collagen content would be higher in fibrocartilaginous and ligamentous tissues 

than in hyaline tissues; and that pyridinoline crosslinks would be found in all 

tissues, in spite of the immaturity of the tissues. Results from this investigation 

reinforce the interplay of tissue biomechanics and biochemical content and 

provide design parameters for future efforts concerned with connective tissue 

engineering for joint repair. 

Materials and methods 

Tissue harvest and specimen preparation 

Tissue specimens were harvested from the knee joints of 6 one-week-old male 

bovine calves (Research 87, Boston, MA), shortly after slaughter of the animals 

for commercial use in the food industry. To normalize variability among animals, 

each leg came from a different animal. Hyaline femoral condylar cartilage (CC), 

hyaline patellar cartilage (PC), medial meniscus (MM), lateral meniscus (LM), 

cranial cruciate ligament (CraCL), caudal cruciate ligament (CauCL), medial 

collateral ligament (MCL), lateral collateral ligament (LCL), and patellar ligament 

(PL) were taken. For CC and PC specimens, the cartilage was separated from 

subchondral bone with a scalpel. For MM and LM specimens, the femoral and 

tibial surfaces, as well as the inner 1/3 and outer 1/3 portions of the annulus, 
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were sliced away, leaving the approximate interior circumferential portion of the 

specimen for assessment. CraCL, CauCL, MCL, LCL, and PL were taken whole 

from their attachments. 

From each freshly harvested specimen, a 3 mm dermal biopsy punch was 

used to obtain samples for histology, quantitative biochemistry, and high 

performance liquid chromatography (HPLC). The remainder of each specimen 

was then prepared for tensile testing. Tensile specimens were stored for a 

maximum of 24 h in phosphate buffered saline with protease inhibitors at 4 oc 

and were allowed to equilibrate to room temperature prior to testing. 

Histology 

Samples were cryo-embedded and sectioned at 14 IJm. Sections were fixed in 

formalin for 10 min and then stained with either picrosirius red or safranin 0/fast 

green as described previously [1 05]. Samples were dehydrated in an ascending 

series of ethanol and mounted with coverslips prior to imaging. 

Quantitative biochemistry 

Biochemistry samples were weighed wet, frozen, lyophilized for 48 h, and then 

digested in a phosphate buffer with 1251-Jg/ml papain (Sigma) for 18 hat 65°C. 

A chloramine-T hydroxyproline assay was employed to quantify total collagen 

content after 2 N NaOH hydrolysis for 20 min at 11 0°C [8]. Total collagen was 

normalized to tissue wet weight and tissue dry weight. 
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High performance liquid chromatography (HPLC) 

HPLC was performed to quantify the abundance of pyridinoline crosslinks. 

Samples were weighed wet, digested in 800 IJL of 6 N HCI at 100°C for 20 h, and 

then dried using a vacuum concentrator. Samples were re-suspended in 50 IJL of 

an aqueous solution containing 10 nmol pyridoxine/ml and 2.4 !Jmol 

homoarginine/ml and then diluted fivefold with an aqueous solution of 0.5% 

HFBA acetonitrile in 10% acetonitrile. 10 !JL of each sample was injected into a 

25· mm C18 column (Shimadzu) and eluted using a solvent profile described 

previously [19]. To quantify the amount of crosslink in each sample, pyridinoline 

standards (Quidel) were employed to create a calibration curve. 

Tensile testing 

Each specimen was cut into a dog-bone shape with a 1-mm-long gauge length. 

Although this tissue preparation may limit comparison to an in vivo context, it was 

important to maintain consistent mechanical testing procedures across tissue 

types so that comparisons could be made between tissues without the risk of 

introducing confounding variables. The specimen was photographed alongside a 

ruler, and lmageJ software was used to determine the width and thickness. A 

uniaxial electromechanical materials testing system (lnstron Model 5565) was 

employed to determine tensile properties with a 50 N (CC and PC only) or 5 kN 

load cell (all other tissues). CC and PC specimens were affixed with 

cyanoacrylate glue to paper tabs outside of the gauge length for gripping; all 

other specimens were gripped directly outside of the gauge length. MM and LM 
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specimens were tested in the circumferential direction. CraCL, CauCL, MCL, LCL, 

and PL specimens were tested in the longitudinal direction. Tensile tests were 

performed until failure within the gauge length at a strain rate of 1% of the gauge 

length per second. Force-displacement curves were generated, and stress-strain 

curves were calculated by normalizing data to specimen dimension. The 

apparent Young's modulus, a measure of specimen tensile stiffness, was 

determined by least squares fitting of the linear region of the stress-strain curve. 

The ultimate tensile strength (UTS) was determined as the maximum stress 

reached during a test. 

Statistical analysis 

All biochemical, HPLC, and tensile assessments were made using n=5-6. To 

compare among tissues, a single-factor analysis of variance was employed, and 

a Fisher least significant difference post hoc test was used when warranted. 

Significance was defined as p<0.05. 

Results 

Histology 

Representative histology for hyaline cartilage, meniscus, and ligament are shown 

in Figure 8-2. Staining for collagen was observed in all tissues, though hyaline 

cartilage exhibited less extensive collagen staining compared to either meniscus 

or ligament. Extensive staining for GAG was observed in the hyaline cartilage 
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specimens, but was not qualitatively observed in meniscus or ligament 

specimens. 

Collagen content 

The collagen/wet weight for CC, PC, MM, LM, CraCL, CauCL, MCL, LCL, and PL 

were 6.7±2.6%, 5.1±1.4%, 22.7±5.3%, 26.7±7.5%, 4.6±0.9%, 2.8±1.2%, 

19.4±4.6%, 20.9±0.3%, and 21.2±3.5%, respectively (Figure 8-3A). Fibrocartilage 

tissues (MM and LM) had the highest collagen content; the fibrocartilage tissues 

averaged together had 4.1 x the collagen content of the hyaline tissues and 6. 7x 

the collagen content of the cruciate ligaments. Among just the fibrous tissues, the 

collateral ligaments (MCL and LCL) and PL had higher collagen content than the 

cruciate ligaments (CraCL and CauCL); in particular, the collateral ligaments 

averaged together had 5.4x the collagen content of the cruciate ligaments. The 

cruciate ligaments were not significantly different from the hyaline cartilage 

tissues (CC and PC) in collagen content. The collagen/dry weight for CC, PC, 

MM, LM, CraCL, CauCL, MCL, LCL, and PL were 45.6±10.3%, 46.5±16.2%, 

91.6±16.4%, 93.5±10.6%, 72.6±12.1%, 86.8±10.7%, 70.8±16.1%, 81.7±9.3%, 

and 84.1±11.6%, respectively (Figure 8-38). 

Pyridinoline crosslink content 

Pyridinoline was resolved as one peak for all samples. Pyridinoline normalized to 

tissue wet weight (pyd/ww) for CC, PC, MM, LM, CraCL, CauCL, MCL, LCL, and 

PL were 0.303±0.101, 0.174±0.049, 0.498±0.160, 0.534±0.115, 0.374±0.087, 
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0.565±0.204, 0.414±0.123, 0.422±0.067, and 0.585±0.069 nmol/mg, respectively 

(Figure 8-3C). Pyd/ww was highest in PL, while CauCL, LM, and MM samples 

trended higher compared to all other tissues. The hyaline cartilages (CC and PC) 

had the lowest pyd/ww. The fibrocartilage tissues averaged together had a 

pyd/ww 2.16x that of the hyaline cartilages, and all of the ligament tissues 

averaged together had a pyd/ww 1.98x that of the hyaline cartilages. 

Pyridinoline normalized to collagen content (pyd/col) for CC, PC, MM, LM, 

CraCL, CauCL, MCL, LCL, and PL were 5.69±3.85, 3.68±1.59, 2.28±0.88, 

2.17±0.92, 8.32±2.12, 16.08±4.53, 2.22±0.85, 2.02±0.34, and 2.80±0.42 

nmol/mg, respectively (Figure 8-30). Statistically, CauCL had the highest pyd/col 

and CraCL the second highest, followed by the hyaline cartilages. The collateral 

and patellar ligaments and both menisci were not statistically different from each 

other and were less than the cruciate ligaments and the hyaline cartilages. 

CauCL had a pyd/col 1.93x that of the CraCL, 3.43x that of the hyaline cartilages, 

7 .22x that of the fibrocartilage tissues, and 7 .59x that of the collateral ligaments. 

Tensile properties 

The Young's moduli for CC, PC, MM, LM, CraCL, MCL, LCL, and PL were 

8.4±4.1, 4.6±1.8, 25.9±7.0, 21.6±6.2, 2.1±1.0, 11.6±5.9, 13.2±5.8, 16.9±4.07, 

27.5±2.8 MPa, respectively (Figure 8-4A). The UTS for CC, PC, MM, LM, CraCL, 

MCL, LCL, and PL were 7.0±2.2, 3.9±0.7, 15.1±4.5, 24.6±2.0, 1.4±0.6, 7.4±5.9, 

10.1±6.4, 14.9±3.9, and 15.7±3.3 MPa, respectively (Figure 8-48). MM, LM, and 

PL exhibited significantly higher stiffnesses (Young's moduli) and strengths 
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(UTS) compared to the other tissues, while CC, PC, CraCL, and CauCL were 

among the softest and weakest in tensile properties. Also of note, among the 

cruciate ligaments, CauCL was significantly stiffer and stronger than CraCL; 

Young's modulus and UTS for CauCL were both 5.4x the values for CraCL. 

Discussion 

This study examined the major connective tissues of the immature bovine knee 

joint, motivated by a need to understand the interplay of biomechanics and 

biochemistry in immature connective tissues, as well as to establish design 

parameters for in vitro tissue engineering efforts. In the present study, differences 

were found across tissue types with respect to histology, collagen content, 

pyridinoline crosslink abundance, and tensile properties. In addition to reinforcing 

orthopaedic structure-function relationships, to our knowledge, this study is the 

first to examine these parameters in a direct head-to-head comparison among all 

of the major connective tissues of the knee, the first to assess pyridinoline 

crosslink abundance in all the tissues of a bovine joint, and the first to report 

results for pyridinoline crosslink abundance that suggest its preferential role over 

collagen in determining stiffness for certain tissues. 

In the present study, tissues of interest were first examined histologically 

for the presence of collagen and GAGs to infer qualitative structural differences 

underlying the biomechanical distinctions between these different tissues. 

Meniscus and ligament specimens appeared nearly identical, exhibiting 

extensive staining for collagen with no observable GAG staining (Figure 8-2). 



186 

Hyaline cartilage, by contrast, exhibited less collagen staining than either 

meniscus or ligament, but also significant GAG staining. These histological 

trends correspond to the notion of knee joint connective tissues spanning a 

continuum between hyaline tissue (high collagen, high GAG) and fibrous tissue 

(high collagen, low GAG) (Figure 8-1 ). These qualitative histological differences 

relate to the functional roles of these tissues: fibrous tissues (ligaments and 

tendons) and fibrocartilage tissues (menisci) experience tremendous tensile 

stresses during locomotion, while hyaline cartilage experiences a balance of both 

tensile and compressive stresses, though preferentially the latter. 

Tissue tensile properties, especially in connective tissues, are derived in 

part from collagen content [181], as well as from other matrix components, such 

as elastin [214]; therefore, it was hypothesized that trends in tensile properties 

would reflect trends in collagen content. In this study, collagen content was 

quantified in each tissue and normalized to tissue wet weight (Figure 8-3A). It 

was found that the menisci had the highest collagen content, followed by the 

patellar ligament and the collateral ligaments. Collagen content was lowest in the 

hyaline cartilages and the cruciate ligaments. As expected, the tensile properties 

(Figure 8-4) appear to reflect the general trends observed in collagen content 

normalized to wet weight. In particular, it was found that the menisci and patellar 

ligament exhibited significantly higher stiffness (Young's moduli) and strength 

(UTS} values compared to the other tissues, while the hyaline cartilages and the 

cruciate ligaments were among the softest and weakest in tensile properties. 
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The differences in tensile properties among the ligament tissues (high in 

patellar ligament, medium in collateral ligaments, and low in cruciate ligaments) 

may reflect the anatomical development of these tissues, since the 

stiffer/stronger tissues are extracapsular ligaments, and the softer/weaker tissues 

are intracapsular ligaments. In particular, the patellar ligament arises from fibers 

of the quadriceps muscle attaching inferiorly to the tibial tuberosity, hence the 

term "patellar tendon" often used interchangeably with patellar ligament, given 

the tendinous origin; the cruciate ligaments develop posteriorly from the articular 

interzone; and the collateral ligaments form independently of the joint capsule 

(LCL) or from mesenchymal condensation in the joint capsule (MCL) [149]. 

Furthermore, of particular interest was the finding that CraCL is significantly 

softer and weaker than CauCL. Future studies should seek to examine whether 

this relationship is maintained in adult cows, as well as whether it is observed in 

humans (i.e., between the ACL and PCL). Taken together, the tensile data 

described above contribute important information about the tensile properties of 

immature tissues, especially in light of the increasing incidence of knee joint 

injuries among youths [140]. Additionally, these tensile properties may serve as 

important benchmarks to determine success criteria for in vitro engineering of the 

major knee joint connective tissues, all of which play important roles in 

mechanical function. Tissue engineering efforts aimed at recapitulating native 

tissue structures should strive to reproduce native tissue biomechanical 

properties, as well. 
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Crosslink analysis with HPLC showed that the different joint tissues had 

varying pyridinoline abundances that contributed to tensile stiffness. The data 

showed that the hyaline cartilages and the cruciate ligaments exhibited the 

highest pyridinoline levels (Figure 8-3). Both the patellar ligament and CauCL 

exhibited higher tensile stiffness values that paralleled pyridinoline content but 

not the amount of collagen. Although pyridinoline has been shown to correlate 

with tensile strength and stiffness in bovine articular cartilage [235], this is the 

first study to show that pyridinoline also contributes to the mechanical properties 

of other joint tissues. These results also corroborate structure-function 

relationships in other species. For example, a study of the rat tendon 

demonstrated that pyridinoline was a better indicator of ultimate stress than 

collagen content [40]. These structure-function relationships illustrate the 

importance of crosslinking in a variety of joint tissues. 

Pyridinoline content is known to generally increase as tissues matures, but 

this study provides comprehensive, quantitative benchmarks that can be 

compared to adult tissue values. For instance, the observed pyridinoline 

abundances for condylar cartilage and meniscus fibrocartilage are approximately 

50% and 70% of the mature values, respectively [76, 235]. These pyridinoline 

results can inform future tissue engineering efforts that aim to reproduce the 

biochemical composition of native tissues. Because engineered cartilage has 

shown less collagen crosslinking than native tissue, strategies such as increasing 

lysyl oxidase expression [61] may be needed to increase pyridinoline formation. 

Other stimuli such as TGF-131 have been shown to increase pyridinoline content 
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in articular cartilage [221] and could potentially be beneficial for enhancing 

crosslinking in engineered tissue as well. Considering the role of pyridinoline in 

tissue mechanics [235, 236] and the inherently mechanical nature of knee joint 

connective tissues, crosslinking should be a central focus of future tissue 

engineering approaches. 

This study provides biochemical and biomechanical data describing 

hyaline, fibrocartilaginous, and fibrous tissues of the immature bovine knee joint. 

These data elucidate important structure-function relationships that can inform 

directed approaches for functional connective tissue engineering. In particular, 

future tissue engineering approaches should aim to incorporate methods for 

improving crosslinking, since crosslink abundance may be a more relevant 

predictor of tensile stiffness than collagen content for certain tissues, as 

evidenced by the relationships identified in the cruciate ligaments and patellar 

ligament. Future work may expand on this study by examining temporal 

development and maturation of the collagen network and tensile properties, or by 

making direct comparisons in pyridinoline crosslink abundance between 

immature and adult tissues. Finally, an assessment of these parameters in 

disease states such as osteoarthritis or traumatic injury models such as ligament 

rupture may shed light on predisposing factors. 
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Articular Cartilage Meniscus Ligament 

More hyaline Fibrocartilaginous More fibrous 

Figure 8-1. Continuum of knee joint connective tissues 
Based on their structural compositions , the major connective tissues of the knee joint 
can be conceptualized along a continuum from hyaline (condylar and patellar cartilage) , 
to fibrocartilaginous (meniscus), to ribrous (ligament). 
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Hyaline Meniscus 

GAG 

Figure 8-2. Histology of representative joint tissues 
Picrosirius red staining for collagen showed that hyaline cartilage, meniscus, and 
ligament all had significant collagen content. The meniscus and ligament samples 
stained more intensely for collagen than hyaline cartilage. Safranin 0/fast green sta ining 
for GAG showed that hyaline cartilage had significant GAG content; meniscus and 
ligament did not exhibit GAG stain ing . 
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Figure 8-3. Collagen and pyridinol ine content of joint tissues 
(A) Collagen normalized to wet weight was significantly higher for the menisci, collateral 
ligaments, and patellar ligament. (B) Collagen normalized to dry weight was highest in 
the menisci and lowest in the hyaline cartilages . (C) Pyridinoline normalized to wet 
weight was highest for menisci, patellar ligament, and the caudal cruciate ligament. 
Crosslink content was lowest for patellar cartilage. (D) Pyridinoline normalized to 
collagen was highest for the hyaline cartilages and cruciate ligaments. Groups denoted 
by different letters are significantly different (p<O .OS) . 
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Figure 8-4. Tensile properties of joint tissues 
(A) Young's modulus was highest for the menisci and patellar ligament and lowest for 
the cranial cruciate ligament. (B ) Ultimate tensile strength was also higher for the patellar 
ligament and the menisci. Groups denoted by different letters are significantly different 
(p<O.OS). 
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Context 

Damage to articular cartilage is irreversible and leads inescapably to significant 

physical debilitation. The clinical and economic consequences of osteoarthritis 

illuminate the urgency with which suitable replacements for cartilage are needed. 

Researchers in the field of tissue engineering have labored to develop methods 

for fabricating tissues in vitro that possess the biochemical and biomechanical 

properties of native, healthy cartilage. However, a biochemically and 

biomechanically robust engineered tissue continues to elude the field. 

Background information salient to this mission was reviewed in Chapter 1 of this 

thesis. Successful tissue engineering depends on a thorough understanding of 

tissue anatomy, physiology, and pathophysiology. The experiments described in 

this thesis were motivated by a need to improve overall understanding of 

cartilage physiology, as well as to develop strategies to enhance the functional 

engineering of articular cartilage. Towards this end, the global objective of this 

thesis was to use a multiscale approach to identify and manipulate physiologic 

and in vitro developmental milieus towards the functional repair of articular 

cartilage. The following sections will review some of the major results of the 

experiments described in this thesis. 

Chondrocyte physiology 

The first part of this thesis (Chapters 2 and 3) focused on probing cartilage 

phenotype at the single cell level. The motivation for this work was that a precise 

understanding of chondrocyte behavior is needed for future efforts in tissue 
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engineering. Because the chondrocyte is the sole cell type found within cartilage 

and is exclusively responsible for ECM biosynthesis, it is important to develop an 

understanding of how external variables, such as the cell's originating cartilage 

zone or bioactive agents like growth factors, can affect the chondrocyte's 

metabolism. 

In Chapter 2, a single cell approach was proposed and implemented to 

examine single chondrocyte gene expression as a function of these external 

variables (Figure 2-1 ). In this approach, chondrocytes are exposed to a variety of 

physical or biochemical stimuli, and then examined for changes in gene 

expression to ascertain the immediate downstream effects of the particular 

stimuli. The experimental design of the study described in Chapter 1 was divided 

into two phases. In Phase I, chondrocytes were isolated from either the 

superficial or middle/deep zone of cartilage and then seeded for a short (3 hours) 

or long (18 hours) duration. At that point, the expression of key ECM genes was 

assessed using a real-time single cell RT-PCR assay developed especially for 

the study. Key objectives of Phase I were to quantify cell-to-cell variability, 

determine the validity of GAPDH as a housekeeping gene in single chondrocyte 

gene expression studies; and assess zone- and time-dependent differences in 

monolayer chondrocyte culture. Another objective was to determine the cartilage 

zone from which chondrocytes are more metabolically active at the 

transcriptional level, since it is important in tissue engineering to know whether a 

cell type is capable of recapitulating the ECM-rich architecture found in vivo. 

There were several major results from Phase 1: single chondrocyte gene 
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expression follows a log-normal distribution; cell-to-cell variability could be 

quantified; GAPDH is a valid housekeeping gene for studies examining gene 

expression across different time scales within a subpopulation of chondrocytes, 

but cannot be used to compare expression across different zonal subpopulations; 

and modulators of catabolic activity, TIMP-1 and MMP-1, were expressed 

significantly between 3 and 18 hours. The middle/deep zone was determined to 

be more metabolically active than the superficial zone at the level of single cell 

gene transcription. 

Based on the results of Phase I, the middle/deep zone was carried 

forward to Phase II of the study, in which the combinatorial effects of seeding 

time and growth factor exposure were evaluated. Important results emerged from 

Phase II. First, the GAPDH results from Phase I were corroborated: no difference 

was found in GAPDH within the middle/deep zone, even with growth factor 

treatment. Second, treatment of chondrocytes with IGF-1 was found to increase 

the single cell expression of cartilage-specific genes in a time-dependent fashion: 

aggrecan and collagen type II were both expressed at super-significant levels 

(p<0.0001) in response to IGF-1 and overnight cell attachment in monolayer. 

Finally, it was shown that TIMP-1 expression could be modulated with growth 

factor treatment, and that collagen type I was not expressed in primary cells 

seeded in monolayer, suggesting that cartilage maintains its phenotype in 

monolayer before passaging. Altogether, the results from Chapter 2 demonstrate 

that chondrocyte metabolic activity can be influenced at the single cell level by 

growth factors, and that detectable changes happen even on short timescales. 
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In Chapter 3, the single cell approach and gene expression assay 

developed in the preceding chapter were adapted to examine chondrocyte 

mechanobiology. Chondrocytes from the superficial and middle/deep zone were 

seeded for 3 or 18 hours and exposed to TGF-131", IGF-1, or a combination of the 

two growth factors. Cell behavior was then evaluated using single cell unconfined 

creep compression, fluorescent staining for actin filaments, and gene expression 

of 13-actin, an important component of the cell cytoskeleton. Instantaneous and 

relaxed moduli were determined for single chondrocytes from each zone, at each 

time point, and in the presence of each growth factor condition. It was found that 

growth factor treatment led to super-significant (p<0.0001) increases in 

compressive moduli compared to controls, with no differences between the 

growth factors selected. Additionally, superficial zone cells had higher relaxed 

moduli than middle/deep zone cells. The interaction between zone and growth 

factor had a significant effect on compressive moduli, suggesting that the effects 

of growth factors on subcellular cytoskeleton organization cell subpopulation­

dependent. The effects observed in compressive moduli were reflected in actin 

cytoskeleton fluorescent staining, which showed that growth factor treatment 

increased staining intensity super-significantly compared to controls. Intensity 

was shown to decrease over time. In terms of transcriptional changes at the 

single cell level, 13-actin abundance was shown to vary in a time-dependent 

manner, but in general, there were no major differences in 13-actin abundance; 

this result appears to indicate that whatever changes occur in the actin 

cytoskeleton as a result of growth factor treatment are not modulated at the gene 
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transcriptional level, but rather at the post-transcriptional, post-translational, or 

cell biophysical level. 

The combined results from Chapters 2 and 3 of this thesis show that 

single cell behavior can be modulated and examined to yield important insights 

into chondrocyte metabolism and physiology. A single cell gene expression 

assay was developed and validated, single chondrocyte gene expression was 

detected and quantified, viscoelastic compressive properties of single 

chondrocytes ·were measured, and the effects of chondral zone, seeding time, 

and growth factors were assessed. The cumulative knowledge from the studies 

described in these chapters motivate future work on single chondrocyte 

physiology. For example, now that baseline ECM gene expression and 

compressive properties have been determined for single cells, it will be important 

to determine how cell mechanics can influence cell metabolism. Given that 

cartilage is a highly mechanical tissue, and that ECM synthesis by chondrocytes 

is hypothesized to result from complex mechanotransduction pathways, further 

studies should be undertaken in which cells are stimulated mechanically and 

then analyzed at the gene expression level. Furthermore, it is essential that any 

mechanobiological response in chondrocytes is assessed both in static and 

dynamic conditions, since cartilage homeostasis and health are highly dependent 

on dynamic deformation, while static compression of cartilage is typically 

associated with catabolic changes. 



200 

Cellular microenvironment and self-assembly 

The second part of this thesis (Chapters 4, 5, and 6) examined chondrocytes at a 

higher level of complexity. Tissue engineered cartilage was used as a model 

·system to evaluate the effects of modulating the cell microenvironment on ECM 

biosynthesis and tissue mechanics. This work was motivated both by 

observations described in the first two chapters of this thesis, as well as 

increasing evidence that intervention at the cell and ECM levels can have 

important consequences for tissue composition and function. The goal of the 

second part of this thesis was to produce tissues with greater biochemical and 

biomechanical properties by treating self-assembled cartilage constructs during 

in vitro development. 

In Chapter 4, a Ca2+ -permeable, osmoregulatory channel called transient 

receptor potential vanilloid 4 (TRPV4) was evaluated for its role in tissue 

physiology. It was hypothesized that activation of TRPV4 would result in 

increased matrix production and enhanced biomechanical properties in self­

assembled constructs. This study consisted of two phases. In Phase I, constructs 

were treated with a TRPV4 agonist, 4a-PDD, during culture days 6-10, 10-14, or 

14-18. The goals of this phase were to determine whether TRPV4 activation 

could produce tissue-level effects, and to identify whether the effects of TRPV4 

activation are time-dependent. It was found that TRPV4 activation resulted in 

biochemical and biomechanical changes at the tissue-level, and that the 

beneficial effects occurred only as a result of treatment during days 10-14 of 

construct development. This underscored the importance of timing during in vitro 
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cartilage self-assembly and highlighted the fact that cell metabolism and 

responsiveness to stimuli vary during the course of tissue development. Based 

on the results of Phase I, the TRPV4 treatment regimen during culture days 10-

14 was carried forward to Phase II of the study. 

In Phase II, the effects of TRPV4 activation were compared to the effects 

of Na+/K+ pump inhibition, which has been shown in previous work to increase 

the tensile properties of self-assembled constructs. TRPV4 activation with 4a­

PDD was compared to Na + /K+ pump inhibition with ouabain during days 10-14 of 

culture; the combination of these two agents was also assessed. It was found 

that 4a-PDD produced effects on self-assembled constructs that are comparable 

to those produced by ouabain: significant increases in both tensile properties and 

collagen content. The combination of both agents did not outperform each 

agent's individual use. While both agents showed the same net improvement in 

construct mechanical properties, it was clear from gross morphology and GAG 

data that the mechanisms for these improvements vary considerably between the 

two treatments. Notably, constructs treated with ouabain alone or the 

combination 4a-PDD and ouabain were significantly smaller and GAG-depleted 

compared to control constructs or constructs treated with 4a-PDD alone. Further 

work is necessary to determine how alterations in intracellular ion concentrations 

elicited by direct or indirect stimuli lead to changes in ECM synthesis and 

biomechanical properties. Future mechanistic studies on cell volume regulation 

and calcium transients in situ may provide some clues to the role of ion channel 

physiology during in vitro tissue development. Furthermore, it may be of interest 
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to study the effects of ion channel modulators in the presence of hyper-osmotic 

or hypo-osmotic loading, since ion channels are known to play a role in 

managing cell homeostasis in response to osmotic stress. 

In light of the results with TRPV4 activation, Chapter 5 focused on a study 

in which osmotic loading was evaluated on self-assembled constructs during 

development. This study was motivated by work in the literature that has shown 

that osmotic stress affects cellular behavior and ECM biosynthesis in cells in 

monolayer or suspension. Osmotic stress is also known to play a role in native 

cartilage function, due to the attractive pull on water generated by the high 

density of fixed charges created by tightly-packed GAG in the tissue. It was 

hypothesized that osmotic loading would produce beneficial effects on construct 

biochemical and biomechanical properties. Constructs were subjected to static or 

dynamic application of hypo-osmotic or hyper-osmotic stress for 1 hour per day 

during culture days 10-14. It was found that the optimal loading regimen was 

static application of hyper-osmotic medium, which resulted in significant 

increases in GAG and collagen content, compressive stiffness, and tensile 

stiffness and strength. Dynamic osmotic loading had no effects on construct 

functional properties. These results suggest that osmotic loading may be an 

important component of future strategies in the functional tissue engineering of 

articular cartilage. Future work should aim to understand the precise 

physiological changes occurring at the cellular level in situ during osmotic loading 

of constructs. It is possible that cell volume changes produced in situ, with cells 

resident within an intact ECM, differ considerably from changes observed in cells 
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in monolayer or suspension. Confocal imaging techniques should be adapted to 

study the effects of osmotic loading and other changes in the cell 

microenvironment on tissue engineered constructs. It is possible that osmotic 

stress has an effect not just in terms of cell volume or ion channel-mediated 

homeostasis, but also at the level of MAPK signaling and gene expression. 

Further studies may be able to elucidate these changes by subjecting constructs 

to osmotic stimulation and then assessing changes at the cell and gene level 

immediately after stimulation, rather than weeks later at the·gross tissue level. 

Chapter 6 described a study in which self-assembled cartilage constructs 

were exposed to ribose, an agent known for its propensity to elicit non-enzymatic 

glycation of collagen. Glycation of collagen precipitates a cascade of biochemical 

reactions that lead ultimately to the formation of advanced glycation end-products 

(AGEs), which are known to crosslink the ECM and increase tissue stiffness. 

Crosslinking agents have been studied extensively in many tissues, but one 

impediment to adapting these agents in tissue engineering strategies is that they 

are often cytotoxic and produce significant inflammatory effects. Ribose is a 

particularly attractive solution because it avoids the negative effects of 

conventional crosslinking agents. The goal of the study described in Chapter 6 

was to use ribose as both a biochemical and biophysical mediator of construct 

functional properties. Constructs were subjected to continuous 7 -day treatment 

with ribose during culture weeks 1, 2, 3, or 4, or for the entire 4-week duration of 

culture. It was found that treatment with ribose produces beneficial effects on 

construct biomechanical properties, and that these effects are time-dependent, 
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having occurred with treatment during week 2, but not with treatment during the 

other weeks. Additionally, ribose treatment during week 1 appeared to have a 

deleterious effect on construct properties. These results emphasized the role of 

timing in construct development in vitro, corroborating the results from Chapter 4: 

based on the studies described in Chapters 4 and 6, it appears that week 2 of 

culture is an important time window for intervention with biochemical or 

biophysical stimuli. Furthermore, the effects of ribose may not be entirely 

crosslink-dependent, since construct biomechanical improvements were 

accompanied by increases in biochemical content. These results suggest that 

ribose has an important metabolic influence on cells in situ. Future work should 

aim to tease out the differential contributions of cell metabolism and ECM 

crosslinking to the tissue-level effects of ribose treatment. One possible method 

to make this comparison would be to quantify the levels of pentosidine, a 

molecule involved in glycation-mediated crosslinking, in constructs with and 

without ribose treatment. It will also be important to compare levels to levels of 

pentosidine to levels of pyridinoline, the molecule involved in enzymatic 

crosslinking of collagen. Additionally, cell population gene expression in 

engineered constructs can be assessed in response to ribose exposure; if 

metabolic changes are responsible for tissue level increases in ECM, constructs 

may show increases in cartilage-specific ECM gene expression. 

The combined results of the studies in Chapters 4, 5, and 6 show that 

modulating the cellular microenvironment in self-assembled constructs can 

produce tissue level improvements in construct biochemical and biomechanical 
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properties. Future investigations should aim to clarify whether these tissue level 

responses are manifestations of biochemical or biophysical changes. The 

techniques developed in these studies can be adapted in future tissue 

engineering strategies that combine them with other, more macroscopic tissue 

stimulation regimens (for example, direct compression or hydrostatic pressure). 

The combination of stimuli may produce additive or synergistic effects on tissue­

level improvements in ECM production and tensile and compressive properties. 

Improving clinical translatability 

The third part of this thesis (Chapter 7 and 8) focused on improving the potential 

clinical translatability of in vitro cartilage repair strategies. These studies aimed to 

address the issue of clinical translatability from two directions. The first goal was 

to establish an optimal method for the decellularization of xenogenic cartilage. 

This goal was motivated by a need for methods to reduce the immunogenic 

potential of xenogenic tissues for future in vivo applications. Prior work has been 

performed to determine the feasibility of tissue decellularization to create non­

immunogenic xenogenic tissue replacements for bladder, vasculature, heart 

valves, and other tissues; however, there has been a dearth of studies on 

cartilage decellularization. The second goal was to conduct a comprehensive 

characterization of the whole knee joint to establish benchmarks for future tissue 

repair strategies. This goal was motivated by the fact that future strategies in 

cartilage tissue engineering must incorporate important information about the 

other connective tissues resident in the healthy, intact joint. Furthermore, the 
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knowledge gained from a complete characterization of the major connective 

tissues of the knee will be particularly important in tailoring biochemical and 

biophysical stimuli within other tissue engineering strategies. 

Chapter 7 described a study in which different decellularization treatments 

on self-assembled articular cartilage constructs were evaluated using a two­

phased approach. In Phase I, five different decellularization treatments were 

examined: 1% SDS, 2% SDS, 2% tributyl phosphate, 2% Triton X-1 00, and 

hypotonic/hypertonic solutions. It was found that treatment with 2% SDS 

outperformed the other agents in terms of reduction in construct DNA content 

(i.e., biochemical decellularization) while maintaining construct functional 

properties. This treatment was carried forward to Phase II, in which 2% SDS 

treatment was evaluated over different application times (1, 2, 4, 6, or 8 hours). 

Complete histological decellularization was achieved with longer application of 

SDS, but GAG content was severely depleted and compressive properties were 

decreased after longer treatment. These results suggest that SDS treatment for 

2-4 hours may be the most effective method for decellularizing cartilage while 

maintain construct properties. This study demonstrated that decellularization 

techniques can be adapted for xenogenic cartilage repair strategies. It further 

demonstrated that construct functional properties must be prioritized in future 

work on decellularization regimens. Future work should aim to minimize GAG 

loss and maintain compressive properties in constructs undergoing 

decellularization. One potential method is to use crosslinking agents to fix GAG 

within the tissue prior to decellularization. This may be accomplished by the use 
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of ribose, as suggested by Chapter 6 of this thesis, or by the use of an agent like 

periodate, a chemical that has been shown to fix GAG within glutaraldehyde­

treated heart valves. 

Chapter 8 presented a study in which a comprehensive characterization 

was undertaken of the tensile properties, collagen content, and pyridinoline 

crosslink abundance of the major connective tissues of immature bovine knee 

joint. This work was motivated by the need to develop a thorough understanding 

of the structure-function relationships of knee joint tissues, which can provide 

important insight into design parameters for efforts in tissue engineering. 

Condylar cartilage, patellar cartilage, medial and lateral menisci, cranial and 

caudal cruciate ligaments, medial and lateral collateral ligaments, and patellar 

ligament were harvested from immature bovine calves. Assessments included 

histology, quantification of collagen content, measurement of pyridinoline 

crosslink abundance, and uniaxial strain-to-failure testing. It was found that 

tensile stiffness and strength were greatest in the menisci and patellar ligaments, 

and lowest in the hyaline cartilages and cruciate ligaments; these trends reflected 

trends in collagen content, underscoring the importance of the collagen network 

in determining a tissue's response to tensile stress. Furthermore, pyridinoline 

crosslinks were found in every tissue despite the relative immaturity of the joints. 

It was found that the cruciate ligaments contained a high density of crosslinks, an 

interesting result given that the cruciate ligaments were also found to have a 

lower concentration of collagen compared to other, stiffer tissues. This study 

delivered important data on native joint tissue physiology and provides key 
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results that will inform future tissue engineering strategies. Further studies should 

undertake a similar characterization of the tensile properties, collagen content, 

and crosslink abundance of mature knee joint tissues to determine functional 

changes during the course of tissue maturation. It will be important in such future 

studies to examine the abundance of pentosidine crosslinks in addition to 

pyridinoline crosslinks, since pentosidine, as detailed in Chapter 6, can appear 

as a result of age-related stiffening of tissues. 

The cumulative results presented in Chapters 7 and 8 provide important 

benchmarks for future work involving the translation of in vitro advances in 

cartilage repair to in vivo clinical therapies. The success of any of the strategies 

detailed in this thesis will ultimately depend on the ability of a biologic 

replacement to survive within the harsh physiologic environment of the native 

joint. This survival will be decided overwhelmingly by joint mechanics and the 

host immune response. Information from Chapters 7 and 8 provide a starting 

point for future translational studies. It will be important in the future to pursue in 

vivo studies to evaluate the technologies explored in this thesis. Animal studies 

can be performed to assess immune reactions as well as tissue survival in 

immobilized and, ultimately fully mobile joints. The strategies presented in this 

thesis can be used to optimize self-assembled constructs for use in such animal 

models. 
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Significance 

The total body of work contained in this thesis contributes significantly both to a 

basic understanding of cartilage physiology as well as to evolving strategies for 

cartilage repair. This thesis examined tissue behavior at multiple levels of 

complexity: gene transcription, cytoskeletal architecture, ion channels, single cell 

mechanics, the extracellular matrix, intact tissue, and total joint physiology. This 

thesis also advanced the field of cartilage tissue engineering by presenting 

strategies for improving the biochemical and biotnechanical properties of 

cartilage grown in vitro using a self-assembly process. Finally, a decellularization 

technique was optimized towards the future clinical translatability of the cartilage 

repair strategies developed in this thesis. The cumulative results of this thesis 

serve as an exciting contribution to the field of cartilage regeneration. 
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