
USE OF COMPUTERS TO SOLVE 

MODEL EQUATIONS 

by S .  N. Davis, Jr.  

The intimate connection between the complexity of the model 
that can be analyzed and computer availability was pointed 

out in the previous paper. This warrants spending some time discussing 
the use of computers to solve different types of transport and rate 
phenomena problems. This paper will emphasize the aspects of computer 

which may affect the choice of how (or whether) to solve a 
problem. It will be assumed that we have been given a physical 

problem and have decided on an adequate mathematical model. We then 
need to decide what type of computer would be most efficient in solving 
the model equations. Currently our choice is between the use of a digital 
or an analog computer, but obviously there is no choice if only one type 
of machine is on hand. In the future (and currently in a few laboratories) 
the use of hybrid analog-digital computers may also be feasible. 

The characteristics of digital and analog computers that make the use 
of one type clearly superior over the other in the solution of some 
problem can be stated rather easily. Digital machines perform arithmetic 
operations quite accurately and at high speed but in sequence. Analog 
machines perform arithmetic operations and integration of many variables 
simultaneously but with limited accuracy and with limited capacity for 
the size of problem that may be solved. Thus in problems requiring a 
large number of algebraic operations the use of a digital computer is 
mandatory. In problems requiring the integration of many differential 
equations the use of an analog computer has decided advantages. Even 
in this second case a digital computer could also be used, and the ultimate 
choice (if offered) is an economic one. 

The body of this paper will be devoted to expanding on those factors 
which are important in determining the feasibility of different types of 
computer solutions. We shall consider in turn the use of digital and analog 
computers, and then show how advantages of both types of computers 
may be combined in a hybrid unit. Finally, a few examples of digital and 
analog solutions of transport problems will conclude the paper. 

Editor's Note: Mr. Davis is  Associate Professor of Chemical Engineering at  Rice 
University. 



RICE UNIVERSITY STUDIES 

Digitlit Computmtion 

The utility of digital computers has been greatly enhanced by two 
simultaneous developments: 1 )  increases in size and speed of available 
machines, and 2) increases in sophistication of machine programs that 
permit more "natural" and easier communication links beiween the user 
and the machine. The  parallel between these two developments is aptly 
described by the computer terms for the objects: "hardware" and 
"software." Unfortunately,  even with t he  software tha t  has been 
developed it is still necessary to understand something about how com- 
puters work to use them effectively. 

First, the importance of sequential operations in a digital computer 
should be recognized. With few exceptions a digital computer performs 
only one operation at a time. This means that code and data must be fed 
to the machine, the machine "told" in what order to start doing arithmetic 
and logical operations, and data read back out in some predetermined 
order. Furthermore, the time required for the solution of any problem 
is proportional (in a general sense) to the number of these operations. 

Second, i t  should be noted that every move that is to  be made during 
the solution of a problem has to be prescribed exactly. Many "obvious" 
decisions that an engineer would make in the solution to a problem are 
not a part of the natural intelligence of a computer. If a root of an equation 
is sought by the time honored "trial and error method," exactly what 
action is to be taken when a trial is completed must be known. When to 
terminate such procedur.es and what action to take if it is decided that 
the error is too large must both be spelled out. Frequently of great 
importance (and not often anticipated by the engineer) is the fact that the 
computer must be told how to decide whether a specified procedure has 
worked or not, and what to do if for some reason the procedure has not 
worked. 

We will next consider some of the most colnmon general types of 
problems that arise in the solution of model equations for physical 
systems. The  three types that will be discussed have been broken down 
according to how much initial numerical analysis needs to be performed 
before the problem is ready for digital solution. 

The first class of problems consists of those that are initially specified 
in terms of algebraic equations. An example might be the behavior of a 
collection of bacteria uncier assumed steady state conditions (i .  e., there 
are no changes with time in the physical system analyzed). The re  
generally are known amounts of different materials put into such a system 
and (possibly unknown) amounts of material removed, but the balance 
equations state that the net result is nil for each conserved entity. The  
problem is that the balance equations usually give information about the 
conditions in the system in implicit form. Thus, if x,, x2, and x ,  describe 
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the of bacteria, the oxygen concentration, and the food 
oncentration, respectively, the equations that relate these are usually 
of the form: 

where each equation describes a balance for some pertinent quantity. 
The symbols a ,  P,  and y are included to indicate that there are generally 
problem parameters that may be different in different circumstances or 
that might not be known precisely when the problem is first being 
analyzed. Indeed, one of the purposes of the analysis might be to deter- 
mine the values of unknown parameters to make experimental data 
coincide with model predictions. 

The form of the equations to  be solved (1-3) is usually so complex 
that no explicit solution can be found. Many schemes have been devised 
for finding solutions of equations such as these but nearly all are based 
on one of two techniques: 

1)  Each function f,(x,, x,, x:,, a)  is split into two parts of the form: 

such that the first part (g,) of each is simple enough to solve explicitly 
for the unknowns x,, x,, x,, that appear in them. As an example:g, = x17 
g2=x2, g:i=~:t.  Then, assumed values of the unknowns (x:, x;, x:;) are used 
to estimate the remaining part of the functions. We then proceed to solve 
for the unknowns x,, x,, x, in: 

6, (XI, x,, x:,, a) = -h ,  (x?, x!, X?, a)  (5) 
s:! (xt, x2, x:,, PI  = -h, (x?, x4, x'l, p) ( 6 )  
g:i (XI, ~ 2 ,  x.19 Y )  = -h.r (x?, x!, x!i, Y )  (7) 

This gives better values (we hope) for the unknowns to get a better 
estimate for each h. Thus, repeated computation of the h's and solution 
for the x's are expected to give better and better values for the unknowns. 
The procedure is terminated usually when the differences between suc- 
cessive values of the x's are sufficiently small. 

2) The second general method for solving the equations involves 
defining an overall error associated with a particular guess for the un- 
knowns. For  example, if we guess that x, = x'ji'l x, = x F ~  x:, = xi,'" then 

might be used to measure how far we are from satisfying the three 
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equations. Then we seek values of x";'which minimize the error (however 
it is defined), E'". The search for a minimum value of a function is one 
of the topics covered in a later paper. It suffices here to i~d ica t e  that this 
process also leads to repeated computation of algebraic functions of the 
unknowns x, with the hope that eventually values will be found for them 
that satisfy the system equations. 

The second class of problems consists of those that may be found as 
solutions to sets of ordinary differential equations. Such problems arise 
for example in determining bow systems change with time. Thus, if the 
balance equations tell us not that all conserved entities that go into 
some region come out somewhere else but that the difference accumulates 
in the region, the balance equations have the form: 

dx, - -- 
dt f.(x,,xz,p) 

Normally we also know that the unknowns have specified values at 
some time t ,  , i. e.: 

x, (t,,) = x: ( 1  1 )  

In the first class of problems everything in the equations was algebraic 
and could be computed (i. e., the computer could calculate f, if x,, x,, x,, 
and a are given). In the second class of problems the operation of 
differentiation is not algebraic so  that digital solution in the present form 
is impossible. Furthermore, digital computers operate only on numbers 
whereas equations (9-12) imply that we are looking for continuous 
functions of time. In a digital solution we can generally find values for the 
unknowns only at discrete instants of time t,, . This is normally done by 
seeking values for the x's at t = t,, -I- A t ,  t ,  + 2At, etc. If we designate 
t h  = to + kAt and x,,, = x,(t, + kAt) the general form of a numerical 
approximation to the differential equations may be: 

XI,, = gl (~II , - , ,  x.?,\-,, a )  (13) 

x21% = g2 (X~!\-I, x? l~-~ ,  b) (14) 

Thus, again the digital computer is used to compute changes in a set 
of unknowns in terms of old values for them. Fortunately, most com- 
puters contain software packages that take care of aH the details of the 
numerical solution of sets of ordinary differential equations. All the user 
needs to do is write his equation in some standard form (such as equations 
[9-121) then specify the time step At, the initial values for the x's, the 
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relations (f's), the number of steps to be computed (i. e., when 
to stop), and print out or store information (i. e., what is to be done with 
[he computed values). 

 fall of the unknowns are not specified at the same time (or value of 
the independent variable) to but at two or more times then additional 
problems arise. One usually proceeds by using trial and error, as in the 
first problem, to guess the unknown initial values and step-wise compute 
to the time when the values are specified. The difference between the 
computed values and the specified value is then used to correct the 
guessed initial values. Problems of this type are referred to as boundary 

problems while those with all known initial conditions are called 
initial value problems. Generally boundary value problems require con- 
siderable care just to insure that a solution will be found and in addition 
may require a large amount of computer time to find accurate results. 

The final type of problem that we will discuss includes any system 
in which the variables are continuous functions of two or more indepen- 
dent variables. In time dependent systems if there are also continuous 
changes in the unknowns with position then the variables are generally 

by (sets of) partial differential equations. The time dependent 
heat equation: 

is the prototype of such equations. Again we must abandon the search 
for continuous functions o f t  and x and look for values of the unknown(s) 
at discrete instants of time t,, and position X I , .  If we limit our discussion 
to the usual case t, = to + nAt, x,, = x,, + kAx and let T(t,,, x,,) = TnI, 
then numerical procedures can be found to approximate the differential 
equation by a set of algebraic equations such as: 

Note that this is similar to what was found in the case of ordinary differen- 
tial equations but now the single unknown T has been replaced by a 
whole set of unknowns T,, . The solution may be carried out in much the 
same manner however, if the problems are of the initial value type. In 
boundary value problems in partial differential equations (e. g., steady 
heat conduction in two spatial dimensions) the general form for the 

rete approximations is implicit in the unknowns so that some trial 
error scheme is often adopted to find the solution. 
lthough the procedures outlined above may appear to be straight- 

ward, a number of problems present serious obstacles to their imple- 
tation. Some major obstacles are: 
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I )  It may be difficult to force trial and error solutions to converge for 
the entire range of parnn~eters to be analyzed. 

2) The errors committed in replacing differential equations by discrete 
equations are quite dependent on the step size At andlor Ax. (In order 
to make these errors sufficiently small it may be necessary to use very 
small steps which would require many repetitions of the iteration compu- 
tation to cover the range of time desired or may - even worse - increase 
the number of variables at different points in space beyond the storage 
capacity of the computer.) 

3)  Estimation of errors is quite complex so that appropriate step sizes 
must be set either quite conservatively or found by repeating the same 
calculations with a range of sizes. 

The backbone of rnodern electronic analog computers is the high gain 
amplifier since it allows the operations of addition, integration, and func- 
tion generation to be performed with relatively small errors. In most 
machines multiplication of variables is performed using function genera- 
tion elements so that this operation also depends on amplifiers. The 
ability to integrate continuously is a prime advantage of analog machines. 
The requirement of an amplifier for each algebraic operation is the major 
stumbling block to the use of analogs for the solution of complex 
problems. 

Of the three types of problems discussed in the digital section of this 
paper, analog machines have found their greatest use in solving the 
second type. This is not surprising since the whole construction of analogs 
is based on their use as differential equation solvers. Even in the solution 
of sets of ordinary differential equations, problems may arise if the 
equations are the boundary value type. Then trial and error methods 
must be used to find correct initial conditions for the problems. The ability 
of modern analogs to perform very rapidly and repetitively so that the 
solution of a given problem may be repeated many times a second allows 
the solution for the change in one variable to be displayed on a scope; 
thus, the search for proper initial conditions can be done visually in 
rapid order. 

Hybrid Cornputcrtion 

The ability of analog computers to perform continuous integration of 
sets of ordinary differential equations very rapidly is a feat that cannot 
be matched by even the fastest digital computer. The analog is severely 
limited, however, in the type and number of algebraic and logical opera- 
tions that it can perform, and in the accuracy of these operations. Thus, 
there is considerable effort being expended to develop hybrid machines 
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which will utilize the best features of both types. Such machines may be 
ideal for solving problems in which a search for best system parameters 
to experimental values or for optimum conditions in a system 
must cover wide ranges of conditions. In such problems many solutions 
to the same set of differential equations must be performed before the 
desired conditions are approached. If these can be done using analog 
techniques and only the final few integrations pe~formed numerically, 
a great saving of time may be possible. 

Examples of Computers Used to Analyze Reaction Scherne 

The simplified Krebs Cycle was chosen for a brief study using both an 
analog and a digital computer to illustrate some properties of both. The  
purpose of the study was to determine how a cyclic reaction scheme 
recovers from sudden changes in external  conditions. T h e  eight 
intermediate components in the cycle must reach steady state values 
that depend on external (to the cycle) conditions such as 1, supply or 
R\ to 0\ reactions. After changes in any of these conditions some time 
must elapse before the cycle achieves a new steady state level. 

The dynamics of chemical reactions are readily simulated using an 
analog computer. An EAI TR48 was used in this study. Preliminary 
studies of the behavior of small cycles similar to the eight-member one 
showed that changes in the cycle occur on two quite different time 
scales. The  slowest changes are those associated with the establishment 
of a gross balance in the total amount of intermediates present. This is 
just a balance between production (I-, in Figure 8 of the paper by Deans) 
and loss (MI,). More rapid changes occur in establishing the ratios of 
the different 1's in the cycle. Since the first time constant is readily 
computed for any proposed r, and M the rest of the study was devoted to 
determining how rapidly the components adjust their ratios. This second 
phase of the analog study offers a good example of what can be done 
easily with a small analog and what cannot because of size limitations. 
The dynamics of the 1, were assumed to be governed by a set of ordinary 
differential equations of the form: 

where n-1 and n+l must be interpreted as components before and after 
n in the cycle. All other conditions (such as Rs, O,, I,) were assumed 
constant. The I,, differential equation was replaced by the algebraic 
relation: 
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on the grounds that the process of achieving equilibrium with respect to 
loss and production of total I occurs so slowly that the total I is fixed. 

The  form of r,, was then chosen as: 

rn = f It ,- ,  - bI,, (19) 

Actually a different forward rate constant f and backward constant b 
should be associated with each reaction n, but lack of experimental 
evidence for these dictated some choice and all being equal is the simplest, 
The complete dynamics of the ring could then be specified by a single 
constant LY = blf since the equations may be written: 

where y,, = I,,II and T = ft. The algebraic relation is further: 

Each of the seven differential equations requires use of an integrator in 
an analog simulation. The sum of y,, in the algebraic relation may be 
found using 1 to 3 summers. Thus the dynamics of the ring may be studied 
with a relatively small analog computer. Only a quarter of the amplifiers 
on the TR48 were used in this part of the simulation. If we wished to 
modify the reaction model so that changes in R!, and Oh: occur as a 
result of other reactions (as was done in studies with small three- and 
four-member rings) we find that the capacity of a 48 amplifier analog is 
easily reached. This limitation is set by the number of multipliers available 
(five on the computer used) to account for reactions which may proceed 
at rates like: 

s7 = fl,;Ou - b17Rh (22) 

At best, simulation of such a reaction rate requires one multiplier and two 
additional amplifiers besides that used in multiplication. 

A second capacity limitation was found when it was decided to use 
as a measure of the deviation in ring ratios from equilibrium the sum: 

where ss indicates steady state values. Simulation of the differential 
equations plus this error criterion used up 44 amplifiers. Table 1 shows 
the times found, using this circuit, for E to be reduced to 10% and to 1 %  
of its initial value after an initial condition with all I zero except Ie=l. 
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TABLE I 

a = b/f r a t  E=0.1 E, r a t  E =  0.01 E, 

The analytical solution to the set of equations: 

<$ 

is of the general form: Plus C yn = 1.0 
= 2 

re the A, are roots of a polynomial associated with the differential 
ations. Generally all of the Ak have negative real parts and thus all 
exponentiaIs in the series decay with time. The X, with smallest real 
t determines the time required for any disturbance to decay to some 
y small value. A digital program was written for the Rice University 

rnputer to (a) determine coefficients of the polynomial for the differen- 
1 equations, and then (b) to use a routine which computes all the roots 
a polynon~ial to determine the root with smallest real part. 

Table 11 shows some of the results of these calculations. 

TABLE I 1  
a min [Re A,] = y In ( 100>/r 

k 

0 -0.293 15.7 
0.25 -0.366 12.6 
0.50 -0.43 9 10.5 
0.75 -0.5 13 9.97 
1 .OO -0.586 7.83 

For very long times, variations in ~n(7) would follow: 

An upper bound on the time required for some error criterion to decay 
to say 1 % of its initial value may thus be found as: 

T = In (EIE,)ly (27) 

For E/E, = 0.01 this is: 
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The last column in Table I 1  shows these values. Comparison with Table 1 
indicates that these estimates are indeed always larger than were found 
in the analog study within the accuracy pf the analog simulation. 
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