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GRAVITATIONAL FORCES IN DUAL-POROSITY SYSTEMS 
I. MODEL DERIVATION BY HOMOGENIZATION* 

TODD ARBOGASTt 

Abstract. We consider the problem of modeling flow through naturally fractured 
porous media. In this type of media, various physical phenomena occur on disparate 
length scales, so it is difficult to properly average their effects. In particular, gravita­
tional forces pose special problems. In this paper we develop a general understanding 
of how to incorporate gravitational forces into the dual-porosity concept. We accom­
plish this through the mathematical technique of formal two-scale homogenization. 
This technique enables us to average the single-porosity, Darcy equations that govern 
the flow on the finest (fracture thickness) scale. The resulting homogenized equa­
tions are of dual-porosity type. We consider three flow situations, the flow of a single 
component in a single phase, the flow of two fluid components in two completely 
immiscible phases, and the completely miscible flow of two components. 

1. Introduction. 
It has long been known that fracture systems play a significant role in the fl.ow of 

fluids in porous media. We consider a naturally fractured porous medium that has 
throughout its extent a system of interconnected fracture planes, which we idealize 
as a periodic medium as shown in Fig. 1. If we stay above the Darcy (pore) scale, 
then three scales exist in this system, the scale of the fracture thickness, the scale 
of the average distance between fracture planes, and the scale of the entire porous 
medium. The latter scale is very large, so tractable computer simulation requires 
that effects on the two finer scales be averaged. 

Fig. 1. The idealized periodic medium. 
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The difficulty is in averaging the system in such a way that effects on the inter­
mediate scale are not completely lost. Most of the fluid resides in the porous rock 
(or matrix), but most of the flow takes place in the high permeability fractures. The 
critical physical process to model is the transfer of fluids between the matrix and 
fracture systems. This transfer takes place on the intermediate scale. 

The macroscopic concept of dual-porosity is used to model the flow on its various 
scales [20, 8, 25]. Briefly, one views the fracture system as a porous structure distinct 
from the porous structure of the matrix rock itself. Fluid flows macroscopically in 
the fracture system on the largest scale only, and it is influenced by the interme­
diate scale matrix flow through a macroscopically distributed source or sink, i.e., 
a "transfer function." It is generally assumed that no direct flow between matrix 
blocks occurs; that is, all flow between matrix blocks must go through the fracture 
system. Flow in each matrix block is calculated on the intermediate scale. It is 
influenced by the fracture flow through the imposition of a boundary condition. 
The difficulty in properly formulating this type of model is that one must relate 
fracture quantities defined on the largest scale to matrix quantities defined on the 
intermediate scale. 

Compressional, diffusive, capillary, gravitational, and viscous forces are important 
in moving fluids between the matrix and fracture systems. On the basis of physical 
arguments, many authors have been successful in including the effects of the first 
three forces in dual-porosity models. To a lesser extent, and then only in certain 
cases, they are successful in modeling gravitational and viscous forces, but a general 
way to model these forces in a dual-porosity context seems to be lacking. See, for 
example, the papers [2, 3, 8, 12, 13, 17, 18, 19, 22, 23, 24, 25], and the many references 
therein. 

More recently, dual-porosity models have been derived through an averaging 
technique that is sometimes called formal two-scale mathematical homogenization 
[7, 6, 11]. The advantage of this technique is that the macroscopic, dual-porosity 
model is derived by averaging an accepted, microscopic model of the flow. General 
descriptions of homogenization can be found in [9, 21, 14]. 

The homogenized "tall-block" model of [7] properly incorporates gravitational 
effects in a very special way, because the microscopic equations are averaged only 
in the two nonvertical directions. For full three-dimensional averaging, the homog­
enization as given in the literature does not properly handle gravitational forces. 
Either the effects of gravity are omitted from the matrix flow, or a physically incon­
sistent model is derived. In the latter case, when the fracture system is in gravita­
tional equilibrium, the matrix system is not. This effect will be seen in Section 3. 
In this paper, we derive dual-porosity models by two-scale homogenization that 
properly account for the effects of gravity in the matrix. In the process, we develop 
a general understanding of how gravity is to be represented in the dual-porosity 
context. 

The outline of the paper is as follows. In the next section, we describe in gen­
eral terms how the two-scale homogenization technique works, and we define some 
important notation. Sections 3-6 are concerned with three basic flow situations. 
Section 3 deals with the simplest case of a single component of fluid in a single 
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phase. The microscopic and macroscopic models are presented, along with a de­
scription of some previous macroscopic models. Formal homogenization from the 
microscopic model to the macroscopic one is carried out in detail in Section 4. Sec­
tions 5-6 deal with two components of fluid. In Section 5 the fluids are assumed to 
separate into two distinct, immiscible phases, while in Section 6 the fluids form a 
completely miscible single phase. 

In Part II of this work (5], it is shown by means of some computational results 
that the homogenized dual-porosity model for single phase fl.ow derived here ap­
proximates very well the microscopic description of the fl.ow. 

2. Homogenization as a Geometric Averaging Technique. 
In the two-scale homogenization technique considered in this paper, we begin by 

posing the correct microscopic equations of fl.ow on the porous medium. We then 
define a homogenization parameter €; € = 1 refers to the given, physical medium. 
For each€ < 1 in a decreasing sequence tending to zero, we construct an "equivalent" 
porous medium with matrix blocks that are € times the original size in any linear 
direction (see Fig. 2); € represents the intermediate, fracture spacing scale. On this 
€-medium, we pose a microscopic model of fl.ow that is in some sense equivalent to 
the original € = 1 microscopic model. As € tends to zero, the fl.ow on the family of 
€-media is averaged, and the limiting result is our macroscopic model of the fl.ow . 
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Fig. 2. The first two members of a family of "equivalent" porous media. 

We now describe the geometry of our family of porous media. As depicted in 
Fig. 2, let fl denote the entire medium, and let flj and fl~ denote the fracture 
and matrix part of the €-medium, respectively. The fractures give each €-medium 
a periodic structure. Each period is congruent to € times the unit reference cell Q. 
The fracture part Qt completely surrounds the matrix part Qm (see Fig. 3). For 
simplicity, assume that the centroid of Q is the origin and that Qt is connected. 
Within the €-medium, the period at point x E fl is denoted by QE(x). 

Let ej denote the standard unit vector in the jth Cartesian direction, where e3 

points in the direction of gravity. In general, x will denote a position in fl, and y 

will denote a position in Q as measured from its centroid. For any x E fl, let x~(x) 
denote the centroid of the €-period Q\x) containing x. As depicted in Fig. 3, we 
define y by x = x~ ( x) + e_y. For heuristic purposes we may consider that x selects an 
€-period QE ( x) of fl on the intermediate scale, while EY determines a point within 
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Fig. 3. The unit cell Q and its relation to 
a point x = x~(x) + EY in the €-medium. 

that period on the fine scale; that is, we consider x as x~( x ), and we determine 
points in the enlarged, congruent period Q by y = c 1 (x - x~(x)). 

In this paper, homogenization (i.e., E ----+ 0) will result in a macroscopic, dual­
porosity model that is formulated in six space dimensions. Three of the space 
dimensions represent the entire medium [l over which the fracture system fl.ow 
occurs. This fl.ow is an average of the fl.ow over the two finer scales, so it is no 
longer restricted to the physical fractures. At each point x E D, there exists a three 
dimensional, now infinitely small, matrix block Q0(x) congruent to the original cell 
Q on which matrix fl.ow occurs on the intermediate scale. 

Let 8 denote "boundary of," and assume that the E's are chosen so that 8D C 
8Dj. The matrix-fracture interface is then BD:n. Let v denote the outward unit 
normal vector to this surface (BD:n or 8Qm)-

Obviously, the success of our homogenization is critically dependent on whether 
the €-medium problems are indeed "equivalent" to the E = 1 case. This question 
can be laid to rest only by field, laboratory, or numerical experiments; numerical 
results are presented in Part II of this work [5]. However, we can expect to obtain a 
reasonable macroscopic model of the fl.ow only if the microscopic description satisfies 
the following four properties. 

(Pl) The correct microscopic model of Darcy fl.ow is obtained if E = 1. 

(P2) For each E, Darcy fl.ow under the influence of gravity occurs in the fractures 
and within the scaled matrix blocks; that is, if any matrix block Q:n is 
expanded to unit size Qm, the transformed equations reflect Darcy's law. 

(P3) If the fracture system is in equilibrium in the vicinity of a matrix block, that 
block's boundary condition reflects this equilibrium. 

(P4) If the entire system is in equilibrium in the vicinity of a matrix block, there 
must be agreement between the total mass of each phase in that matrix 
block as calculated from the scaled and unscaled versions of the governing 
equations. 

Property (Pl) assumes that we stay above the Darcy scale, so that Darcy's law 
governs the system when E = 1. Property (P2) is necessary to describe the physics 
of the fl.ow for E < 1. Properties (P3) and (P4) are new. The effect of (P3) is that as 
E tends to zero, the matrix is influenced by the fracture system in such a way that 
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the fracture system appears to be in gravitational equilibrium on the intermediate, 
fracture spacing scale. We include (P4) as a statement of conservation of mass. 
When we scale the matrix problem as required by (P2)-(P3), we generate changes 
in the phase pressures which may change the total mass of each phase. 

Each of the microscopic models that we consider below will satisfy these four 
properties for each E, and consequently also for the macroscopic model. In all 
cases we ignore outer boundary conditions on 8[l since we are interested in internal 
flow; likewise, we ignore external sources/sinks. We also neglect to specify the 
initial conditions. For medium and fluid properties, we use subscript f for fracture 
quantities and m for matrix quantities. 

We close this section with some general notation for the medium. Let g denote 
the gravitational constant. Let </Jj and kj denote the fracture porosity and absolute 
permeability defined on the finest, fracture thickness scale (so </Jj ~ 1 and kj is 
very large). Denote by </Jm the matrix porosity, and by km the matrix permeability. 
These are defined on the pore scale. Finally, let <pf and k f denote the fracture system 
quantities defined on the intermediate, fracture spacing scale. These quantities must 
be determined from homogenization, though clearly 

(2.1) ,I. _ IQ1I ,i.* 

'f't - IQI 'f't 

(where I· I denotes the volume or area of the given domain). In general, porosities 
are pressure dependent and permeabilities are symmetric, positive definite tensors. 
Apart from the medium's fracture structure, we tacitly assume for convenience that 
the medium is homogeneous. This assumption is unnecessary [7, 6]. 

3. Single Phase, Single Component Flow. 
In this section, we consider a single component of fluid in a single phase. Let 

p, p(p ), and µ denote the fluid pressure, density, and viscosity, respectively. The 
simplest way to satisfy Property (P3) is to treat pressure gradient effects on the 
same footing as gravitational effects. This is easily done if the concept of pseudo­
potential [16] applies to the system. It is defined by 

(3.1) <P- -- -X3 1P d1r 

- Po p(1r)g ' 

where Po is some reference pressure and X3 is the depth. Then \7 p - p(p )ge3 

p(p )g\l<P; i.e., the pseudo-potential determines the flow. Note that 

(3.2) p = 'ljJ(<P + X3) 

for the function 'ljJ equal to the inverse of the integral in (3.1) as a function of p; also, 
'Ip satisfies 'ljJ' = p( 'Ip )g and gives the gravitational equilibrium pressure distribution 
p = 'ljJ( <P + X3) for some constant <P. 

We now describe our microscopic model defined on the finest scale. It represents 
Darcy fl.ow imposed over the entire medium on the scale of the fracture thickness, 
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with porosity and permeability discontinuous across the interface an:n. For nota­
tional convenience, let a(p) = (p(p ))2 g / µ. The fracture flow on the €-medium is 
governed by 

(3.3a) 

(3.3b) 

(3.3c) 

! [1j(pj)p(pj)] - V · [a(pj)kjVPj] = 0, x E ilj, 

Pt= 1/J(Pj + X3), XE 51j, 

a(pj)kjVPj · V = E2 a(p~)km VP~· v, XE an:n. 

For the matrix, 

(3.4a) 

(3.4b) 

(3.4c) 

! [1m(P~)p(p~)] - E
2 V · [a(p:n)km VP:n] = 0, x E n:n, 

p~ = 1/J(P:n + x~ 3 + €-
1(x3 - x~ 3)), XE n:n, , , 

We also need to define the pseudo-potential reference value P;ef on each matrix 
block Q:n(x). This turns out not to be critical, since any reasonable definition gives 
rise to the macroscopic model presented below. Consequently, for a given Pj, let 
us simply define P;ef on Q~ ( x) such that 

(3.5a) if>j = 1a~E I / Pj(X, t) da(X), 
m laQ~(x) 

(3.5b) [ (fPmP) (1/J(<Pj - P;ef + x~,3(x) + E-
1 (X3 - x~,3(x)))) dX 

}Q~(x) 

= [ (1mP)(¢(<Pj + X3)) dX. 
}Q~(x) 

So P;ef is a function of if>j(t) and x~,3(x). 
Our four properties are reflected in this family of governing equations. When 

€ = 1, we have imposed Darcy flow over the medium in the standard way, since 
then P;ef = 0, (3.3c) enforces continuity of the mass flux across 851~, (3.4c) enforces 
continuity of the pressures ( or pseudo-potentials) across an:n, and (3.3b ), (3.4b) 
define the pressures from the pseudo-potentials and the depth. Thus (Pl) holds. 

The matrix equations have been scaled so that (P2) holds. To see this on Q~(x), 
let x = x~,3(x) + EY and <P~(y, t) = P~(x, t) for y E Qm, Then Vc.P~ = €VP~, and 
(3.4a)-(3.4b) is simply unscaled Darcy flow: 

! [1m(P:n)p(p:n)] - V · [a(p:n)km vci:n] = 0, y E Qm, 

P~ = 1/J(<P:n + X~ 3 + Y3), Y E Qm, 
' 

We have actually scaled km by €2 in (3.3c) and (3.4a). If there is no such scaling, 
fluid flows more rapidly between the fractures and the matrix system as a whole 
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when € < 1, because there are more, smaller blocks. In that case, the microscopic 
models for € < 1 cannot be expected to approximate the € = 1 case. However, if the 
matrix permeability decreases at some appropriate rate, the matrix-to-fracture flow 
rate can be maintained. A dimensional argument shows that t:2 is the correct factor 
[7, 6, 11]. We also require that the matrix pseudo-potential be defined in (3.4b) 
by recognizing that the depth of a point in the matrix must be defined on both 
the intermediate and large scales; depth in the fracture pseudo-potential (3.3b) is 
defined on the large scale only. Note that then (3.4c) represents a scaled continuity 
of the pseudo-potentials. 

If the fracture system is in gravitational equilibrium, i.e., <l>j is constant, the same 
is true of the matrix boundary condition, so (P3) holds. Pressure varies around the 
block, since in this case (3.4b) gives the matrix boundary condition as 

which is the gravitational equilibrium pressure distribution for some constant <J>:ef 
that may vary from matrix block to matrix block. These constants are set by (3.5) 
which reflects (P4). 

We should comment on the solvability of (3.5). In the (uninteresting) case of 
an incompressible rock and fluid, the pseudo-potential reference is undefined and 
immaterial, so set <J>:ef = 0. Otherwise, consider the function ( <f>mP )( 1P( · ) ). This 
function is strictly monotonically increasing and continuous; therefore, for P1 = 
maxxeQ~(x)(C 1 - l)(X3 - x~,3(x)) and P2 = minxeQ~(x)(t:-1 

- l)(X3 - x~,3(x)), 

{ (<f>mP)(1P(<l1 - P1 + x~,3(x) + t:-1(X3 - <,3(x)))) dX 
} Q~(x) 

::; [ (<f>mP)(1P(<l1+X3))dX 
} Q~(x) 

::; [ (<f>mP)(1P(<l1 - <l>2 + x~,3(x) + t:- 1 (X3 - x~,3(x)))) dX. 
} Q~(x) 

Consequently, there is a unique iJ>:ef between P1 and 'P2 solving (3.5b ). 
The macroscopic model that results from homogenization ( € -+ 0) follows. An 

early version of it appeared in [4]. For the fracture system, we obtain for the fracture 
pseudo-potential iJ>~( x, t) that 

(3.6a) a[ o oJ 1 / a[ o oJ at ¢>1(P1)P(P1) + IQI }Qm at <f>m(Pm)P(Pm) dy 

- V · [a(p1)k1V<l>1J = 0, x E il, 

(3.6b) PJ = 1P('Pf + X3), XE il, 

where (2.1) defines <f>t and kt is defined below in (4.12) and (4.17). For the matrix, 
for each x E [l there is a block congruent to Qm on which iJ>~(x, y, t) is determined 
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from 

(3. 7a) 

(3.7b) 

(3.7c) 

! [ <Pm(P~)p(p~1i)] - Vy · [a(p~)km VyP~] = 0, y E Qm, 

p~ = 1P(P~ + X3 + Y3), YE Qm, 

P~ = Pf - P~ef, YE 8Qm, 

In this equation, x is merely a parameter identifying the overall location within 
the medium, the equations are posed in terms of y E Qm, and Vy is the gradient 
with respect to the y-variable. Finally, for a given 4>} and depth x 3 , we define 
P~ef( 4>}, X3) such that 

Again, the monotonicity of <PmP insures a unique solution to (3.8) unless the rock 
and fluid are incompressible. In that case, set P~ef = 0. Note that for slightly 
compressible rock and fluid, P~ef ~ 0. 

This model says that the fracture system, being highly permeable, rapidly comes 
into equilibrium on the fracture spacing scale locally. This equilibrium is defined in 
terms of the pseudo-potential, and it is reflected in the matrix equations through 
the boundary condition (3.7c). Note also that mass is conserved between the matrix 
and fracture systems, since fluid fl.ow out of the matrix shows up in the fractures 
through the integral in (3.6a). 

We end this section by reviewing three previous models for a single component 
in a single phase [7, 6, 11]. First, if no €-scaling is made to (3.3)-(3.4), and (3.5) 
is omitted, then homogenization produces not a dual-porosity but a single porosity 
macroscopic model (see, e.g., the two-phase results of [1, 10]) of the form: 

(3.9a) 

(3.9b) 

! [¢>(P°)p(P°)] - V · [a(P°)kV4'0 ] = 0, x E il, 

p
0 = 1P(P0 + x 3 ), x E il, 

where¢>= (<PjlQtl + <PmlQml)/IQI is the average porosity and k is some average 
permeability. It is well known that this model is inadequate to capture important 
features of a fractured porous medium (see, e.g., [20] and Part II of this work [5]). 

For the second model, start with a microscopic model that omits (3.5) and defines 
depth on the large scale only, so that (3.4b )-(3.4c) becomes 

(3.10a) 

(3.10b) 

p~ = 1P(P~ + x3), x E il~, 

p~ = Pt, XE an:n, 

where the latter represents continuity of the pressures. Then we obtain the macro­
scopic dual-porosity model (3.6)-(3. 7), except that y3 is absent from (3. 7b) and 
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P~ef = 0. Since VyX3 = 0, a(p?n)km VyP?n = µ- 1(p(p?n))2km VyP?n, and gravi­
tational effects are missing from the matrix equations. The important boundary 
condition (3.7c) reads simply as 

(3.11) p~ = p~, y E 8Qm, 

The third previous model arises by omitting (3.5) and replacing (3.4c) by (3.1Gb). 
Then the macroscopic model is (3.6)-(3.7) except that (3.7c) is replaced by (3.11). 
Gravity appears in the matrix equation. Unfortunately, this model has a peculiar 
steady-state, gravitational "equilibrium." If the two time derivative terms are zero 
and there is no external flux on 8[l into the fractures, then the matrix and fracture 
fluxes should be zero, i.e., the pseudo-potentials should be constant. If P~ is con­
stant, P?n cannot be constant because of (3.11). As a consequence, the equations 
predict that some perpetual circulation of fluid occurs in the matrix. 

The second and third previous models have been presented in [2, 6, 11], and they 
arose by considering the equations in terms on the pressures rather that the pseudo­
potentials. The full model (3.6)-(3.8) has both gravity in the matrix equations and 
a matrix boundary condition which is consistent with this fact. 

4. Formal Homogenization of Single Phase, Single Component Flow. 
We now consider the formal homogenization of the system (3.3)-(3.5). We use 

many of the techniques of [21, 15, 7, 11]. We begin by recalling the asymptotic 
scaling relations 

( 4.1) 

For some functions P)(x, y, t) and P~(x, y, t), R = 0, 1, 2, ... , we assume the formal 
asymptotic expansions 

CX) 

( 4.2a) Pj(x, t)"' L lP)(x, y, t), x E fl, y E Qf, 
f=O 

CX) 

(4.2b) P~(x,t) "'L/p~(x,y,t), x E fl, y E Qm, 
f=O 

where the gj} are periodic in y with period Qf, reflecting the periodicity and con­
nectivity of the medium. 

We note that if some smooth function P depends on 1r\ x) "' I:~o l1rf ( x, y ), 

then by expansion about 1r0 , Taylor's Theorem shows that 

(4.3) F( ,,-') - F ( t ,,,,.,) = F( ,,-0
) + t ,' F', 

for some pl that depend on the 1r£'s (e.g., P 1 = P'(1r0 )1r1 ). Also, by the change of 
variables X = x~(x) + EY, 

(4.4) 1 P(1rf(X))dX = i 1 P(1rf(x~(x) + Ey))dy 
Q~(x) Qm 

~ ,' im [F( 1r
0 (x, y)) + t. h'(x, y)l dy. 
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Substituting the formal expansions ( 4.1 )-( 4.2) into (3.3)-(3.5) and isolating co­
efficients of powers of E yield an infinite number of equations for the P) and P~. 
We analyze the first few equations below. 

An application of ( 4.3) to (3.3b) yields 

00 

(4.5) pj(x, t) "'1/J(Pf(x, y, t) + x3) + L /¢l(x, y, t), 
l=l 

so that in fact pj(x,t),..., I:~ 0 lp)(x,y,t) can be expanded as in (4.2a), with the 
P}(x, y, t) periodic in y. The Eo terms define 

(4.6) Pf(x, Y, t) = 1/J(Pf(x, Y, t) + X3), x E il, y E Qf· 

We will soon see that Pf is independent of y, so that (3.6b) holds. In an entirely 
similar way, we analyze (3.4b). Since x~ 3 + E-1(x3 - x~ 3 ) = X3 + y3 - EY3, we 
conclude that we can expand p~(x, t),..., t~o lp~(x, y, t), and that (3.7b) holds. 
It is now trivial to obtain (3.7a) from the €

0-terms of (3.4a). Also, (3.4c) defines 
the expansion P;ef"' I:~o E"(4>} - 4>~), from which (3.7c) follows. 

The E-2 terms of (3.3a), together with the E-1 terms of (3.3c) are, for x E il, 

(4.7a) 

(4.7b) 

- Vy· [a(pf )kjVy4>f] = 0, y E Qf, 

a(pf )kjVyPJ · v = 0, y E 8Qm. 

Since Pf and Pf are periodic across 8Q, this equation implies that Pf is a constant 
with respect toy. To see this, simply multiply (4.7a) by Pf, integrate over y E Qf, 
apply one of the Green's identities (i.e., integrate by parts), and note that the 
boundary integral is zero by periodicity: 

(4.8) 0 = - [ Vy· [a(pf)kjVyPf]Pfdy JQ, 
= [ a(pf)kjVyPf·VyPfdy- [ a(pf)kjVyPf·vQ,Pfda(y) JQ, laQ1 

= [ a(p1 )kjV yPJ · V yPJ dy ~ 0. JQ, 

Hence VyPf = 0 and we write that 

(4.9) P1 = P1(x, t) and Pf = p1(x, t) only, 

where the latter conclusion uses ( 4.6). Thus the macroscopic fracture flow is defined 
on the large scale only. 
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A result analogous to (4.4) for boundary integrals applied to (3.5a) implies an 
expansion for <i1; moreover, <if= IBQml-1 faQm Pf da(y) = Pf. Now (4.4) applied 
to (3.5b) gives that 

(4.10) t31 (</>mp)(¢(<ij - P;ef + x~,a(x) + Ya)) dy 
Qm 

=i 1 (¢>mP)(¢(<ij+x~,3(x)+ty3))dy. 
Qm 

Since x~ 3 (x) = X3 - ty3 , the t 0 -terms can be extracted with (4.3), and then (3.6b) 
gives (3.8). It remains only to show that (3.6a) holds. 

Using (4.9) to delete y-derivatives of Pf and Pf, the C 1 terms of (3.3a) and the 
t 0 terms of (3.3c) are, for x E fl, 

( 4.lla) 

(4.llb) 

- Vy· [a(p1)kjVyP}] = 0, y E Qf, 

a(pf )kj (V yPJ + V xPJ) · v = 0, y E 8Qm. 

This is a linear elliptic problem for P} in terms of Pf. To solve it, find wi(Y), 
j = 1, 2, 3, such that 

( 4.12a) 

(4.12b) 

- Vy· [kjVywj] = 0, y E QJ, 

kjVyWj · V = -kjej · v, y E BQm, 

where the Wj are periodic across BQ, and then 

(4.13) 

for some 7r( x) independent of y. 
Finally, the t 0 and t 1 terms of (3.3a) and (3.3c) are 

( 4.14a) 

(4.14b) 

! [</>j(p,)p(p,)] 

- Vy · [ a(p1 )kj (V yP} + V xP}) + a 1 kj (V yP} + V xPJ)] 

-Vx · [a(p,)kj(VyP} + VxP1)] = 0, x E fl, y E Qf, 

[a(p1 )kj(VyP} + V xPJ) + a 1 kj(VyPJ + V xP1)] · v 

= a(p?n)km VyP?n · v, x E fl, y E 8Qm, 

where (4.3) defines a 1 = a'(p1)p}. We remove the y dependence in (4.14a) by 
macroscopically averaging over the cell Qf, i.e., by integrating over Qf and dividing 
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by IQI. By the Divergence Theorem, (4.14b), the Divergence Theorem again, and 
(3.7a), the second term becomes 

(4.15) 

The second equality above used the periodicity of the P) and P} to handle 8Q C 

8Q f and the fact that the normal vectors reversed direction as we went from Q f 
to Qm. This term is the macroscopic, distributed matrix source (i.e., the "transfer 
function"). 

The third term in (4.14a) can be rewritten with (4.13) as 

( 4.16) 

where 8kj is the Kronecker delta and we define the tensor k f by 

(4.17) 3 ) 1 * 8wj 
kJ,ij = L -

1
Q

1 
r kf,ik (a+ 8kj dy. 

k=l j Q1 Yk 

It is known that this definition results in k1 being symmetric and positive definite 
(see, e.g., [6]). 

Combining ( 4.14a) with ( 4.15) and ( 4.16), we obtain (3.6a), and the derivation 
of the macroscopic model is complete. The argument of this section can be made 
completely mathematically rigorous if the problem is linearized, see [6]. 
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5. Two-Phase, Completely Immiscible Flow. 
In this section we consider the flow problem for two fluids when they form two 

distinct phases. Results completely analogous to the previous two sections are 
obtained. 

Subscript 1 refers to the wetting phase, and 2 to the nonwetting phase. Denote by 
Si and kri( s 1 ), i = 1, 2, the phase saturation and relative permeabilities, respectively. 
Let Pc(s1 ) denote the capillary pressure. Analogous to (3.1), we can define the 
pseudo-potential for each phase as 

(5.1) 

for some reference pressure Po,i- We define '!Pi so that Pi = '!Pi(Pi + x3); moreover, 
'IP~ = Pi( '!Pi)g. 

The microscopic model of Darcy flow over the entire medium on the fine scale 
follows, wherein ai(P) = (pi(p))2g/µi. For each fracture phase i = 1,2, 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

- v' · [ai(Pi,t )kjkri,t( S~,t )v'Pi,f] = 0, X E ilf, 

Pi,!= '!Pi(Pi,f + X3), XE ilf, 

( 
f ) f f Pc,f 8 1,1 = P2,1 - P1,f, 

For the matrix, for i = 1, 2, 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

(5.3e) 

s~ m + s; m = 1, x E n:n, 
' ' 

( 
f ) f f Pc,m 8 1,m = P2,m - P1,m, x E n:n, 
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Define the <.P;efi, i = 1,2, on Q~(x) for given <.Pif by the following: 
' ' 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

(5.4e) 

(5.4£) 

~i,f = 1a~e I f <.Pi,j(X, t) da(X), 
m laQ~(x) 

ftHX) = "Pi(~i,f - <l>;ef,i + x~,3(x) + E-
1(X3 - x~,3(x))), 

fiHX) = "Pi(~i,f + X3), 

sHX) = p;~(p; - PD and sHX) = 1 - sL 
' 

sHX) = p;,~(p; - PD and sHX) = 1 - sL 

[ <Pm(P~ )Pi(ffeDsi dX = [ <Pm(P~ )Pi(fiDsi dX. 
}Q~(x) }Q~(x) 

It is not obvious that (5.4) has a unique solution. We show this to be true in the 
Appendix. 

As in Section 3, our properties (Pl)-(P4) are reflected in this family (5.2)-(5.4) 
of microscopic governing equations. 

The macroscopic model that results from homogenization follows. For each frac­
ture phase i = 1, 2, for <l>?,1(x, t) we have that 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

! [</J1(P~,1)Pi(P?,1)s?,f] + l~I lm ! [<Pm(Ptm)Pi(P?,m)s?,m] dy 

- V · [ai(P?,1)k1kri,J(s~,1)V<l>?,1] = 0, x E fl, 

P?,f = "Pi(<P?,f + X3), XE fl, 

st1 + st1 = 1, x E fl, 

( o ) o o n Pc,f 8 1,J = P2,J - P1,J, X E Jt, 

where <PJ and k1 are defined in (2.1), (4.12), and (4.17). For the matrix, for each 
x E fl and i = 1, 2, we have for <l>? m(x, y, t) that 

' 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

(5.6e) 

0 0 1 8 1 m + 8 2 m = , 
' ' 

( 0) 0 0 Q Pc,m 8 1,m = P2,m - P1,m, Y E m, 

<l>? m = <l>? f - <.P~ef i, Y E 8Qm. 
' ' ' 

Define <P~ef,l <l>?,1, X3 ), i = 1, 2, for given <l>?,1 and X3 by 

(5.7a) 

(5.7b) 

(5.7c) 

P?(Y) = "Pi(<P?,1 - <P~ef,i + X3 + Y3), 
-o ( ) -1 ( -o -o ) d -o ( ) 1 -o 8 1 Y = Pc,m P2 - P1 an 8 2 Y = - S1, 

ldml !Qm <Pm(f>~)Pi(f>?)s? dy = <Pm(P~,1)Pi(P?,1)s?,1· 
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The question of the solvability of (5.7) is considered in the Appendix. Note that 
P~ef i must vary considerably with time on each matrix block even if the rock and 
fluids are incompressible. 

The formal homogenization of the system (5.2)-(5.4) proceeds as in the previous 
section, except that we must be careful to properly account for the degeneracy of 
the relative permeabilities. We formally expand Pi,f and Pi,m in powers of E as in 
( 4.2) above, with the fracture quantities being periodic in y. Arguing in analogy to 
the single-phase, single component case (see ( 4.5)-( 4.6)), we easily conclude from 
(5.2b)-(5.2d) and (5.3) that Pi,t, si,f' Pi,m' si,m, and 4>;ef,i can be expanded as in 
( 4.2), again with the fracture quantities being periodic in y, and that in fact the 
€

0-terms satisfy (5.5b )-(5.5d) and (5.6). 
As in (4.7)-(4.9) above, we want to conclude that 

(5.8) P?,1 = P?,1(x, t), P?,1 = P?,1(x, t), and s?,1 = s?,1(x, t) only. 

This can be seen by considering the C 2 terms of (5.2a) and the E-1 terms of (5.2e), 
together with (5.5b )-(5.5d). We get that for i = 1, 2, 

(5.9a) 

(5.9b) 

- 'Vy· [o:(P?,1)kjkri,t(s~,1)'vyP?,1] = 0, y E QJ, 

o:(P?,1)kjkri,J(st1)'vyP?,1 · v = 0, y E 8Qm, 

from which we conclude that (kjkri,t(s~,1))1 12'vyP?,1 = 0. But since kri,J(s~,1) 
may be zero, we must be careful to conclude (5.8) [7, 11]. If kr1,1(s~,1) = 0 for 

y E Qf,I C Qf, then s~,f is at its residual saturation there, which is independent of 

y. Also then, kr2,1(s~,1) =I- 0, so 'vyPg,1 = 0 for y E Q/,1· Finally, (5.5b) and (5.5d) 
give that 'v yP~,1 = 0 for y E Q/,1· We argue similarly if kr2,1(st1) = 0 for y E 
Q /,2 C Q f, and more simply if both are nonzero for y E Q J \ { Q f,I U Q /,2}. Assuming 
continuity of P?,1, 'v yP?,t = 0 on all of Qt, so the P?,1 are indeed independent of y 
(since Qf is connected). Finally, (5.5b )-(5.5d) give us the same conclusion for the 

0 d 0 Pi,t an si,J· 
We can now obtain (5.7) from (5.4) using (4.3)-(4.4). 
The E-1 terms of (5.2a) and the Eo terms of (5.2e) imply that for i = 1, 2, 

(5.10a) 

(5.10b) 

- 'Vy· [o:(P?,1)kjkri,t(s~,1)'vyP},1] = 0, y E Q/, 

o:(P?,f )kjkri,t( stt) ('v yP~,1 + 'v xP?,t) · v = 0, y E 8Qm. 

Using (4.12) above, we conclude that either 

3 ~,1;0 
1 ~ lr.l:'i,f 

Pi,f = ~ ~Wj + ?ri, 
j=l J 

(5.11) 

for some 7ri(x) independent of y, or kri,t(s~,1) = 0. This ambiguity does not hinder 
us in the rest of the argument. 

Finally we turn to the Eo terms of (5.2a) and the E1 terms of (5.2e). As in the 
analysis (4.14)-(4.17) of Section 4, use of (5.6a), (5.8), (5.11), and (4.17) lead us to 
(5.5a) for each phase, and the derivation is complete. 
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6. Two Component, Completely Miscible Flow. 
We consider now two components in a single phase. In this section, density and 

viscosity depend on the concentrations of the two components. Let c denote the 
concentration of one of them ( the other is then 1 - c ). We write the mass balance 
equation for this selected component, as well as the mass balance equation for the 
total fluid (i.e., the sum of the two component mass balance equations). We will 
need the molecular diffusion coefficient in the fractures defined on the scale of the 
fracture thickness, Dj, and the diffusion/dispersion tensor in the matrix, Dm(u), 
which is a function of the Darcy velocity u. 

Since p = p(c,p), there is no pseudo-potential for this system. However, the equi­
librium concentration distribution will be constant, because of molecular diffusion. 
Analogous to (3.1), we can define the gravitational equilibrium pressure distribu­
tion '1/J( e, X3) for a given fixed concentration e as the solution to 8'1/J( e, X3) / 8x3 
p( e, '1/J( e, X3) )g; that is, for some reference pressure Po, 

(6.1) 1
¢(e,xa) d1r 

Po p(e,1r)g=X3. 

The inverse of '1/J, again for a fixed l, is denoted by 'I/J-1(l, · ). For any pressure p, 
'lp-l(e,p) = J,p [p(e, 1r)gJ-l d1r is the pseudo-potential plus X3 under the condition 

Po 
that concentration is in equilibrium. 

The microscopic model follows. Again it merely represents Darcy flow over the 
medium on the scale of the fracture thickness. For the fractures, 

(6.2a) 

(6.2b) 

(6.2c) 

(6.2d) 

(6.2e) 

:t [</>j(pj )p( cj,pj )cj] 

+ v' · [p(cj,pj)(cjuj'€ - Djv'cj)] = 0, x E ilj, 

! [</>j(pj)p(cj,pj)] + v' · [p(cj,pj)u?] = 0, x E fl1, 

For the matrix, 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

(6.3e) 

! [</>m(P~)p(c~,p~)c~] 

+Ev'· [p(c~,p~)(c~u~ - EDm(u~)v'c~)] = 0, x E .a:n, 

! [</>m(P~)p(c~,p~)] +Ev'· [p(c~,p~)u~] = O, x E n:n, 
u~ = -µ(c~)- 1km [Ev'p~ - p(c~,p~)ge3], x E n:n, 
c~ = cj, x E 8.fl:n, 
p~ = '1jJ(c~,1P-I(cj,pj) -4>:ef + (E-l - l)(x3 - x~,3)), XE 8.fl:n. 
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The auxiliary condition defining P:er is given by 

(6.4a) 

(6.4b) 

(6.4c) 

cf = 18~€ I f cj(X, t) da(X), 
m laQ:n(x) 

if!f = IB~f I / [¢- 1 (cf(t),pj(X, t)) - X 3] da(X), 
m laQ~(x) 

[ ( <PmP) (c\ ¢(c\ if!€ - P:er + x~,3 + E-
1
(X3 - x~,3 ))) dX 

}Q~(x) 

= [ (<PmP)(c\¢(c\if!f+X3))dX. 
}Q~(x) 

For fixed concentration c, ( <PmP )( c, ¢( c, · ) ) is monotone and increasing, so a solution 
exists unless <Pm and p do not change with pressure, in which case set P:ef = 0. 

We can easily check that Properties (Pl)-(P4) hold. 
The homogenized macroscopic model follows. For the fracture system, we solve 

for p}(x, t) and c}(x, t) such that 

(6.5a) 8 [ o o o o] 1 / 8 [ ( o ) ( o o ) o ] 8t <Pt(Pt)p(ct,Pt)ct + IQ! }Qm 8t <Pm Pm P cm,Pm Cm dy 

+ V · [p(c'.r,P'.,-)(cfuf - DtVcf)] = 0, x E il, 

(6.5b) 8[ o oo] 1 / 8[ o o o] 8t <Pt(Pt )p(ct,Pt) + IQ! }Qm 8t <Pm(Pm)p(cm,Pm) dy 

+ V · [p(cf,Pf )uf] = 0, x E il, 

(6.5c) uf = -µ(cf)- 1 kt[Vpf - p(cf,Pf)ge3], 

where (2.1), (4.12), and (4.17) above, and (6.13) and (6.19) below define <Pt, kt, 
and D t. For the matrix we find for x E il, P?n ( x, y, t) and c?n ( x, y, t) satisfying 

(6.6a) :t [</>m(P~,i)p(c?n,P?n)c?n] 

(6.6b) 

(6.6c) 

(6.6d) 

(6.6e) 

+Vy· [p(c?n,P?n)(c?nu?n- Dm(u?n)Vyc?n)] = 0, y E Qm, 

! [</>m(P?n)p(c?n,P?n)] +Vy· [p(c?n,P?n)u?n] = 0, YE Qm, 

u?n = -µ(c?n)- 1 km[Vyp?n-p(c?n,P?n)ge3], YE Qm, 

c?n = cf, y E 8Qm, 

P?n = ¢(c?n,¢-1(cf,Pf)-P~er+Y3), YE 8Qm. 

The auxiliary condition defining P~ef( c~, p~) is 

(6-7) 1dm I lm ( <f>mP) ( cf, ¢(cf, VJ-1
( cf,Pf) - P~ef + Y3))dy = </>m(Pf )p( Cf ,Pf). 
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Again, P~ef ~ 0 for slightly compressible rock and fluids; if these are incompressible, 
set P~ef = 0. 

For the formal homogenization, we expand pj, cj, p~, and c~ in powers of E as 
in (4.2), the first two periodic in y. By (6.3c), u~ can be expanded as usual, and 
(6.6c) defines u?n. However, (6.2c) implies that for some uj'\x, y, t) periodic in y, 

*,f ""'00 f *,l • f t uf ,....., L.,f=-I E uf ; 1n ac, 

(6.8a) 

(6.8b) 

*,-1 ( 0 )-1 k*r7 0 uf =-µcf fvYPf, 

*,o ( o)-lk*(n 1 n o ( o o) ) ( -1)lk*n o uf =-µcf f vyPf + vxPf -p cf,Pf ge3 - µ fvYPf· 

It is straightforward to obtain the rest of (6.6) from (6.3), noting that P:ef can be 
expanded in powers of E. After substituting for uj'\ the E-2 terms of (6.2a)-(6.2b) 

and the C 1 terms of (6.2d)-(6.2e) enable us to conclude easily that 

(6.9) Pt = P1(x, t) and c1 = c1(x, t) only. 

We now consider (6.4). With the argument of (4.4), we expand cf to see that 
c0 = c1, and then we use the two variable Taylor Theorem to expand 

to see that <ii0 = 1/J-1 (c1,p1) - x 3 • As a consequence, (6.7) follows from (6.4c). 

The C 1 terms of (6.2b) and the Eo terms of (6.2e) are 

(6.10a) 

(6.10b) 

- Vy· [µ(c1)-1 p(c1,p1)kjVyp}] = 0, y E Qf, 

µ(c})- 1 p(c},P1)kj(Vyp} + VxPJ - p(c1,P1)ge3) · V = 0, y E 8Qm, 

and, recalling (4.12), they easily imply that 

3 a o 
1 ~ Pf ( o o) pf = ~ 8x . W j - p Cf' pf gw3 + 71" 

j=l J 

(6.11) 

for some 7r(x) independent of y. Similarly, using (6.10a), the C 1 terms of (6.2a) 
and the Eo terms of (6.2d) become 

(6.12a) 

(6.12b) 

- Vy· [p(cf,Pf )DjVyc}] = 0, y E Qf, 

p(c1,P1)Dj(Vyc} + Vxcf) · v = 0, y E 8Qm. 

We need to find Wj(Y), j = 1, 2, 3, which is periodic across 8Q and satisfies 

(6.13a) 

(6.13b) 

- Vy· [Vywj] = 0, y E Qf, 

VyWj · V = -ej · v, y E 8Qm. 

18 



Then 

(6.14) 
3 aco 

1 L f A t C = -w·+1,, 
f ax. J 

j=l J 

for some e(x) independent of y. 
Finally, the t:0 terms of (6.2a) and the t:1 terms of (6.2d)-(6.2e) give, again using 

the two variable Taylor's Theorem for an analogue of ( 4.3), 

(6.15a) 

(6.15b) 

! [</>j(P1)p(c1,P1)c1] 

+Vy · [p( c1, Pt) ( c1uj'1 + c}uj'0 
- Dj(V ye} + V xc})) 

+ p1 (c1uj•0 
- Dj(Vyc} + Vxc1))] 

+ V x · [p(c1,p1)(c1uj'0 
- Dj(Vyc} + V xc1))] 

= 0, x E il, y E Q/, 

[p(c1,P1)(c}uj' 1 + c}uj'0 
- Dj(Vyc} + V xc})) 

+ p1 (c1uj•0 
- Dj(Vyc} + V xc1))] · v 

= p(c?n,p~1J(c?nu?n- Dm(u?n)Vyc?n) · v, x E il, y E 8Qm. 

This equation is similar to ( 4.14), so we argue in analogy to ( 4.15)-( 4.17). Integrate 
over y E Q/ and divide by IQJ. As in (4.15), with (6.6a), we conclude that 

(6.16) 

With (6.8b) and (6.11), we define the macroscopic fracture Darcy velocity as 

(6.17) 0 1 / * 0 
uf = IQJ }Qt u/ dy 
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The expression in square brackets is k1, so this is (6.5c). Now (6.14) gives us that 

(6.18) - l~I l, Vx · [p(c~,p~)(c~uj'
0 

-Dj(Vyc} + Vxc~))] dy 

= -Vx · [p(c1,P1)(cfuf-DJ(Vxc1))], 

where the tensor D f is defined by 

(6.19) 

Combining, we obtain (6.5a). We obtain (6.5b) in an entirely similar manner. 
The macroscopic model is now complete. It would seem that we should replace 

D f by a velocity dependent coefficient, though our homogenization does not predict 
this. 

Appendix. Two-phase reference potentials. 
In this appendix we consider the solvability of ( 5.4) and ( 5. 7) for the reference 

potentials. For simplicity of notation, we concentrate on (5. 7), which we rewrite for 
fixed <l!?,1 and x3 as 

(A.1) 

where 

(A.2a) 

(A.2b) 

(A.2c) 

(A.2d) 

l [ A 

Fi(6,6) = IQml }Qm <l>m(Y3 - 6)Pi(Y3 - ei)X 

X Si(J1(y3 - 6) - J2(y3 - 6))dy 

- Jm(O)pi(O)Si( Ji (0) - J2(0)), 

Ji(e) = 1fi('P~,f + X3 + e), 

Jm(e) = <Pm( Ji (e)) and Pi(e) = Pi( Ji(e)), 

S1(e) = p;~(-e) and S2 = 1 - S1. 
' 

Let us clarify the mathematical assumptions on our physical quantities. We 
assume monotonicity: 0 < J: < oo, 0 ~ J'm < oo, 0 ~ Pi < oo, and 0 ~ min Si ~ 
Si = -S~ ~ oo. The latter assumption says that p~)n has a positive minimal 
slope, and that its slope can become infinite at some points. Also, for some residual 
saturations si,r and i = 1, 2, 

0 < Jm(-oo) ~ Jm(e) < 1, 0 < Pi(-oo) ~ Pi(e) ~ Pi(+oo) < +oo, 

and 0 ~ Si,r ~ Si(e) ~ 1 - S2/i,r ~ 1. 
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Denote the partial derivative of Fi with respect to e; by V;Fi. These are eas­
ily computed if we note that ~: = 9Pi by (5.1), and we define w = JmSig > 
Jm(-oo) min Sig > 0. Omitting the arguments, 

(A.3a) 

(A.3b) 

(A.3c) 

VjFj = 1~:1 lm { (viJmPi + Jmf>DSi(~1 - ~2) + (pi)2w }dy < 0, 

'D2F1 = IQlml lm p1p2wdy > 0, 

'D1F2 = IQlml lm { -J'mfJ2S2(~1 - ~2) + P1P2W }dy. 

Only the sign of 'D1F2 is unclear. We consider the solvability of (A.l) in several 
distinct cases. 

If the rock and fluids are incompressible, then F1 = -F2 and ( A. 1) gives a 
single condition for the saturations. By (5.1) these depend only on the difference 
P~ef 2 - P~ef 1, which is uniquely defined by the strict monotonicity of S1. 

Now assu~e that at least one of the two fluids or the rock is compressible. Con­
sider first the case wherein we have a single phase in the unscaled problem; that 
is, one of the Si(~1 (0) - ~ 2 (0)) is at its residual value Si,r· If, say, the second 
phase is absent near 8Qm, assume this to be true of the scaled problem as well, so 
that S1 = (1 - S2,r) is maximal and S2 = S2,r is residual wherever it appears in 
( A .1 )-(A. 2). Then no boundary condition is needed for the second phase, P~ef 2 is 
not needed, and we can omit F2 = 0. We get P~ef 1 from F1 = 0 if the rock or first 
fluid are compressible; otherwise, P~ef 1 is immate~ial. Similar considerations apply 
if the first phase is absent near 8Qm.' 

The multiphase compressible case is the most difficult. In this case, Si,r < 
Si( ~1 (0) - ~2(0)) < 1 - S2;i,r for i = 1, 2. Let us fix 6 and consider whether 
we can solve F1 ( 6, 6) = 0. There must be at least one solution 6, since 

lim F1 ( 6 , 6) 
{1-+-00 

= ¢m(+oo)p1(+oo)(l - S2,r) - ¢m(O)h(O)S1(1,b1(0)-1,&2(0)) > 0 

and 

Since F1 strictly decreases with 6, this solution is unique, and we can define a 
function 6(6) such that F1(6(6),6) = 0. 

We note that 

0 = !:; (6(6),6) = 'D1F1(6(6),6)~U6) + 'D2F1(6(6),6), 

so that 

(A.4) 
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In fact, from (A.3), 

Since w has a positive minimum, so does ei(6); consequently, limer+±oo 6(6) = 
±oo. 

Now consider whether we can solve F2(6(6), 6) = 0. First let 

and note that 

0 = lim F1(6(6),6) 
6---oo 

= Jm(+oo)p1(+00)£- Jm(O)p1(0)S1(¢1(0) - ¢2(0)), 

which implies that 

£ = Jm(0)~1(0)S1(¢1(0) - ¢2(0)). 

<Pm ( +oo )p1 ( +oo) 

We use this result to show that 

lim F2(6(6), 6) 
6---oo 

= ¢m( +oo )h( +oo )(1 - £) - ¢m(O)p2(0)S2( ¢1 (0) - ¢2(0)) 

= [Jm(+oo)- Jm(O)]p2(+00) 

h [ /J2 (0) h h 

+ <Pm(0)p2( +oo) 1 - h( +oo) S2( "Pl (0) - '1f2(0)) 

p1 (O) h h ] 

- Pi(+oo)S1(¢1(0) -¢2(0)) 

> 0, 

since at least one of Jm, Pt, and P2 is compressible. In a similar way, we show 
that lim6--+oo F2(6(6), 6) < 0. This insures that there is at least one solution 
to F2(6(6),6) = 0. We claim that F2(6(6),6) is decreasing in 6, so that the 
solution is unique. This will complete our demonstration of the solvability of (A.1). 

Note that, with (A.4), 

!f: (6(6), 6) = 'D1F2(6(6), 6)e~ (6) + 'D2F2(6 (6), 6) 

= CD1F1 'D2F~~::1F2'D2F1 )(6(6),6). 
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Since the denominator is negative, we consider only the sign of the numerator. 
Using (A.3) and collecting expressions containing the rock and fluid compressibility 
(derivative) terms into T > 0, we see that 

'D1 F1 'D2 F2 - 'D1 F2 'D2 F1 

= T+ IQ
1ml l_ (fh)'wdy IQ

1ml l_ (i;,)'wdy- Cdml l_ PIP,wdy)' 

~ T> 0, 

by the Cauchy-Schwarz inequality, and our result follows. 
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