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ABSTRACT

It is known that the set of asymptotic values of a
function meromorphic in {|z| < 1} is characterized as be-
ing an analytic set in the extended plane. Easy examples
show that there exist analytic sets in the plane which

cannot be the set of asymptotic values of any function

holomorphic in {|z| < 1}. The main object of this thesis
is to obtain a characterization of the set of asymptotic
values of a function holomorphic in {|z| < 1}. As a side
result, it is observed that this characterization applies
also to the class of normal holomorphic functions. A
very simple characterization is obtained for the asymptotic
set 6f a bounded holomorphic function having radial limits
of modulus one a.e. An example is given of a bounded
function holomorphic in {|z| < 1} whose set of asymptotic

values is totally disconnected.
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1. Introduction, A function £ defined in {|z| < 1}

takes the value o as an asymptotic value provided there

exists a non-compact arc in {|z| < 1}, say z = o(t) for
t € [0,1), with both conditions
1imt—-l lo(t)] =1,

lim, 4 flo(t)) = a

satisfied, The main objéct of this thesis is to give a

characterization of the set of asymptotic values, or briefly,

the asymptotic set, of functions holomorphic in {|z| < 1}.
We will employ the notation G(f) for the asymptotic set
of a function f (which may or may not be defined in

{lz] < 1}).

It is well known [8,p.7] that G(f) # ¢ 1f £ 1is holo-
morphic in {|z| < 1}. On the other hand, Lehto and Virtanen
[5,p.58] glve an example of a function £ meromorphic in
{|z] < 1} with G(f) = ¢. In 1931 Mazurkiewicz [9] showed
(in effect) that the asymptotic set of a function meromorphic
in {|z| < 1} is an analytic set. (The definition and useful
properties of analytic sets will be found early in section 3.)
In 1936 Klerst [4] constructed a function meromorphic in
{|z| < 1} whose asymptotic set was a pre-assigned analytic
set in the extended plane. Thus, the asymptotic sets of

functions meromorphic in {|z| < 1} are characterized as beiﬁg

analytic sets, As a corollary, Kierst observed that, given



any finite analytic set G, there exists a holomorphic func-

tion in {|z| < 1} whose finite asymptotic values are exactly
the set G, However, Kierst's holomorphic function neces-
sarily has « as an asymptotic value. Obviously there are
functions holomorphic in {|z| < 1} whose asymptotic sets do
not contain the point « (e.g., the bounded holomorphic
functions). To go a step further, it is easily shown that

(1.1) there exists an analytic set which cannot be

the asymptotic set of any function holomorphic in {|z| < 1},

Consider, for example, the analytic set G = [0,1]., If
G were the asymptotic set of some function f holomorphic'in
{lzl < 13}, tﬁéﬁ the Riemann surface 8 of £ would cover
points not in the interval [0,1]. Let b be such a point,
and let R be a ray from b to <« which does not meet
(0,1]. By a well known argument [8,p.7)] some point of R,
possibly « , must be an asymptotic value of £ ; since
G NR =29, this is a contradiction, On the other hand,
G(f) can be quite cbmplicated for functions £f holomorphic
in {|z| < 1}: 1In Example 2, section 5, we obtain a bounded
holomorphic function whose asymptotic set is totally dis-
connected, Thus we are led to the main objective of this
thesis: To provide a necessary and sufficient condition
under which an analytic set is the asymptotic set of some
function holomorphic in {|z| < 1}, Theorem 7 provides this

characterization,

In section 2 we summarize the notational conventions

employed in this thesis,



Section 3 collects some of the definitions and facts
needed lafer. In particular, analytic sets are discussed,
as are the classes vA, N of MacLane (8], and U of Seidel
(12,p.32].

Some preliminary results are provéd in section 4.
Theorem 1 establishes a fact about £ ¢ A which is needed
in the proof of the main theorem, Theoreﬁ 7, and which is
of interest in itself, Theorem 2 shows that Theorem 7 also
characterizes the asymptotic sets of £ ¢ N . Theorem 3
gives a Riemann surface type proof of the following revamped
version of Kierst's Theorem: If G 1is an analytic set con-
taining « , then there exists f € N with G(f) = a ,

The problem of characterizing the asymptotic sets of
holomorphic functions is examined in section 5. Some neces-
sary properties of the characterization are established, With
examples to show they are not also sufficient. Example 2
shows the existence of a bounded holomorphic function with
totally disconnected asymptotic set. Theorem 5 gives a
simple characterization of G(f) for the special case f €U,

The main result, Theorem 7, is proved in section 6 with

the help of a preliminary result, Theorem 6.



2, Notation, Most of the notation is self-evident,
If £ 1is a function, then ¥ will denote its inverse,
Frequently, when we are dealing with complex-valued functions
f holomorphic in {|z| < 1}, with an associated Riemann sur-
face 3§ covering the w-plane, we shall permit ourselves the
ambiguity of saying that f maps {|z| < 1} onto & , and
that £ maps & onto {|z]| < 1}.

3 indicates the boundary operator, ~ the closure

operator, and ° complementation,

Completion of a proof will be indicated by the symbol

1l



3, Definitions and Facts., Comprehensive treatments
of analytic sets can be found in [2], [7], and [14]). Fol-
lowing Sierpinski [14] we restrict our attention to analytic
sets contained in some metric space,

(3.1) A set G 1is analytic provided there exists a
countable collection of closed sets F(nl...nk), one for

each finite combination (nl...nk) of integers, and
G =U Fy »

the union extending over all sequences N = (n1n2n3...) of

integers with
Fy = F(nl) n F(nlnz) n F(n1n2n3) n...

(3.2) Analytic sets were introduced by Souslin in order
to characterize Borel sets; Souslin's Theorem states that a
subset B of a separable, complete metric space is a Borel
set if, and only if, both B and B’ are analytic. Thus
the class of analytic sets contains all Borel sets, and is
bigger. It may be shown that the class of analytic sets is
closed under countable unions and intersections;

(3.3) Lusin [7,p.151) proved that .bounded analytic
subsets of the real line are measureable,

(3.4) A fact which will be needed later is that a
continuous image of an analytic set contained in a separable,
complete metric space is an analytic set [14,p.219]. How-
evér, the property of analytic sets which makes them so use-

for our purposes is given in the following form of



(3.5) THEOREM OF LUSIN AND SIERPINSKI, A subset G

f a separable, complete metric space is analytic if, and

only if, there exists a function a from (-=,«) onto G

which is continuous on the left [14,p.221]. That is,

a(x-) = a(x). By a straightforward modification we may
assume that o« is defined only on (0,1].

(3.6) Facts about universal covering surfaces are well
known and can be obtained, for instance, in [1]. However,
we wish to emphasize a useful fact which is employed several
times in the proofs to follow., To get oriented, let 3§ be

a surface covering the w-plane; an asymptotic path on 3 1is

a non-compact arc I’ in & whose projection into the w-plane

is an arc which ends at a point, called the asymptotic value

determined by I, We denote by G(3) the set of asymptotic

~

values determined by asymptotic paths on &, Then: If 3

is the universal covering surface of &, then G(3) = G(3).

The proof of this fact is straightforward, making use of
the fact that there exists a local homeomorphism of 3 onto
8, and will be omitted here,

(3.7) A function £ defined in {|z| < 1} is said to

have a point asymptotic value o at (, |¢c| = 1, if there

is an arc T c {|z| < 1} tending to ¢ on which f tends to
the value o, If S 1s an arbitrary set of complex numbers,
then we denote by A(S) the set of points on {|z| = 1} at
each of which £ has a point asymptotic value in the set S,
Now let W denocte the extended complex plane., f 694 if

and only if f 1is holomorphic non-constant in {|z| < 1}



and A(w) is dense on {|z| = 1} [8,p.8].
. MacLane introduced the class A in (8] and proved
there the following two facts which we shall use later.

(3.9) Let £ ¢ A and let {Yn} be a sequence of simple

arcs in {|z| < 1} which tend to an arc vy of {|z| = 1}. 1If
M, = max |£(z) |
Z€Y,

then y = lim inf Hy 0 [8,Theorem 9].
(3.10) Let f£f € A and 1et Yh be a sequence of

distinct simple arcs in {|z| < 1} which tend to the arc v
of {|z]| = 1}. 1If |
2232 1£(2) | = ug

and u  ~ ® as n - ®, then there exists an arc in {|z| < 1}
tending to vy on which f has the asymptotic value =
[8,Theorem 3].

(3.11) The class N of normal holomorphic functions is
defined as follows (8,p.43): £ ¢ N if £ is holomorphic,

non-constant in {|z| < 1} and the set of functions £(T(z)),

where T ranges over all the linear transformations pre-
serving {|z| < 1}, is a normal family., Thus, f ¢ N if

f 1is holomorphic, non-constant in {|z| < 1} and omits two
finite values.

(3.12) MaclLane showed [8,Theorem 17] that N c A and
that if £ € :A/, then £ has only point asymptotic values,
Moreover, if £ ¢ N, and g 1is bounded, holomorphic, then
£+geN [5p.53].



(3.13) £ ¢ U if f 1is holomorphic, non-constant,
bounded in {|z| < 1} and has radial limits of modulus one
a.e. [12,p.32]. It is known [12,p.36] that if £ ¢ U,
then {|w| = 1} < G(f).

(3.14) An interior function is a map which carries
open sets into open sets and is non-constant on non-degene-
rate continua. Stoilow's theorem rs5,p.2371 gives the
following result: If f is an interior map from {|c| < 1)}
into the finite plane, then there exists a homeomorphism

h of flz] <1} onto flc| < 1} such that £ ° h is holo-

morphic in {|z]| < 13.



4, Preliminary Results, If f ¢ Aand B is a
Borel subset of the sphere, then MacLane [8, Theorem 10]
proved that A(B) 1is measurable. McMillan [10] generalized
this result: If B 1is a Borel set on the sphere, and f
is holomorphic in {|z| < 1}, then A(B) is a Borel set.

The following theorem extends these results to the class
of analytic subsets of the sphere, and Corollary 1 provides
a fact used in the proof of Theorem 7.

THEOREM 1. Let £ E‘A have only point asymptotic

values. If G is an analytic subset of the sphere, then

A(G) 4is an analytic subset of {|z| = 1}.

Proof. Preliminaries. Let g be the Riemann surface

of f covering the w-plane. If n is the projection map
of 3 into the w-plane, then j becomes a metric space

if we define a metric by

p(Pl’PZ) = inf diam n(T),
r
where T is an arc on § from P, to P, and the diameter
of w(r) is measured in the spherical metric of the extended

w-plane.

*
Let 3 be the completion of §; that is, points of .

n* are equivalence classes of Cauchy sequences of points
of 7. (Two Cauchy sequences, (P1,Py,+++) and (Q:Qp,-°)
are equivalent if 1im p(Pn’Qn) = 0.) If we identify the
Cauchy sequence (P,P,...) with P ¢ g, then 5§ c g*. If
P* = (Pl,P2,°°-) and Q* = (Ql,Qz,---) are two points of
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* *
§ , then we define a metric on § Dby

p(B¥,Q") = lim___ p(P,Q,)>

and we are permitted the ambiguity of notation since the
metric on g* coincides on § with the previously defined
metric. Finally, it is evident from the separability of &
that a* is a separable, complete metric space.

We want now to extend the projection map n to the
space G*. 1f P* = (Pl’PZ"") is a point of ﬁ* then
(n(Pl),n(Pz),---) is a Cauchy sequence with respect to the
spherical metric, and lim n(P,) = p exists as a point in

the extended w-plane. We define

ﬁ(P*) = p.

Note that n(a*-g) = G(f), the asymptotic set of f£.
For, 1f P" = (P;,Py,**) € g -5, then we may join P_ to
P, byanarcrT on g such that diam m(T,) tends to
zero. Then, 1if T 1is the arc on 5 obtained by joining
the T together, n(r) is an arc ending at the point
n(P*) = p. Thus I corresponds to an arc in {|z| < 1}
on which f has the point asymptotic value p. On the
other hand, if p ¢ G(f), then there is an arc I c 3
corresponding to a non-compact arc in {|z| < 1} on which
f has the point asymptotic value p. Let (pl’pZ"'°)
be a Cauchy sequence (with respect to the spherical metric)
of points on n(r) with limit point p. Let P be the
point of T ,coﬁering Pps then P* - (Pl’PZ"") has the
properties P € a* and n(P*) = p.
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*
Moreover, = 1is a continuous map of § into the

extended plane: Let n(P*) =p and e>0. Then

Q* ¢ 5 p(®*,Q%)<e)

is open and is mapped by n into

{q € w: o(q,p)<e)

where ¢ 1is the spherical metric of the extended w-plane
w. Thus, = " is continuous.

Next, we extend the homeomorphism % (see section 2)
from g to {|z|<l} to a continuous mapping of a* into
{|z]=1}. Let P € g* - §; there exists an asymptotic
path T in § tending to P* which determines the asymptotic
value n(P*) € G(f). The image of T under % is an arc
y 1in {|z|<l} tending to a point b of {|z|=1} (since
f has only point asymptotic values). Define

£(2%) = b.

: v
-To show that f is well-defined on g* - 3, suppose T

and I, are two arcs on § tending to P*. Then there
exists sequences of points P, €T, Qn €Ty with

lim Pn = lim Qn = P* such that Pn and Qn can be joined
by an arc A, c § for which n(A)) is arbitrarily close
to .n(P*) (in the spherical metric), provided n is large
enough. Let ¥(An) = \,» an arc in {|z|<1}; if Yy = %(rl)
and y, = ¥(r2) end at distinct points of {|z|=1}, then

the Ay tend to an arc of {|z|=1}.. If n(P*) # o, then
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we obtain a contradiction to the fact that the function
f(z) - n(P*) € v4, using (3.9). 1If n(P*) = o, then we
obtain a contradiction to the fact that f(z) has only

point asymptotic values, using.(3.10). Thus vy, and vy,

v
must end at the same point of {|z|=1}, and £ 1is according-

ly well-defined.

To conclude the preliminaries, we want to show that
v , v
f 1is continuous on g’. It suffices to show that f is

. % Y% * .
continuous on § - . Thus, let P ¢ g3 - § with
Vo %
b = £(P"), and let ¢>0. Since f ¢4, there exists (figure 1)
a crosscut A of {|z|<l} in {|z-b|<e} which separates z = 0

and z = b, and whose endpoints on {|z|=1} determine asymptotic

o/

1zi<1

Figure 1.

*
values of f. The image A = f()) in 5 1is closed, hence
%

p(A,P) = d>0: Otherwise, there would exist Q* € A such

* % *
that p(P ,Q ) = 0, i.e., P € A. But this would violate
"the fact that b ¢ \. Now the open set

%
W= @ e 5 o (e ,Q%)<d)

Vv
is mapped by f into {|z-bl<d}, since every point of w
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) ,
can be joined to P by an arc which does not meet A.
Vv

. . *
Thus, £ is continuous at P .

Conclusion of the proof. Let @ be an arbitrary

analytic set in the extended w-plane. Then G 1is of the
form (3.1)

G =UF(H1) N F(nyny) N -
where the F(n1°"nk) are a countable collection of closed
sets, one for each finite set of integers (nl-'-nk), and
the union is taken over all infinite sequences of integers.
Since nw 1is continuous, ﬁ(F(nl"°nk)) = F*(nl"'nk) is
closed in g*. Hence

Y
G* = n(G) = U F*(nl) N F*(nlnz) R

Vv
is an analytic subset of a*. But then, (3.4), f(G*) is
an analytic subset of {|z|<l}. Since, (3.2),

V. %
A(@) = {|z|=1} n £(a")

is the intersection of two analytic sets, the result follows.m

Remark. The proof of this theorem was inspired by
Mazurkiewicz [9] who used this technique to prove (in effect)
that G(f) 1s analytic for £ meromorphic. This result,
for £ holomorphic in {|z|<l}, is contained in the above

*
proof. For, G(f) = w(g =- § is the continuous image of

a closed subset of a separable, complete metric space, and
(3.4) applies.

COROLLARY 1. Let h be a conformal homeomorphism of
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a simply connected domain D onto {|w|<l}. Let G be

an analytic subset of (accessible 3D) and denote by h(a)

the map of G onto {|w|=1} determined by the Carathéodory

boundary correspondence. Then h(G) is an analytic set.

COROLLARY 2. G analytic implies that A(G) is

measurable.

The proof of Corollary 1 follows from the fact that
h(g) 1is simply A(G) for ﬁ. Corollary 2 follows from
(3.3).

The next theorem extends the results of Theorem 6

to the class of normal functions.

THEOREM 2. If f is holomorphic in {|z|<l}, then

there exists g € N with a(g) = G(f).

Proof. Lohwater and Piranian [6, Theroem 6] have
obtained the following result: If E c {|z|=1} is of type
Fg and of measure zero, then there exists a function
bounded and holomorphic in {|z|<l} whose radial limits exist
everywhere on {|z|=1}-E and nowhere on E.

Now if G(f) contains only countably many points, then
» € G(f), using the argument of (1.1). Moreover, the result
of adding a bounded function to a normal function is again
a normal function (3.12). Hence by judiciously selecting
the set E, we may add a Lohwater-Piranian function to the
modular function and so obtain a normal function whose
asymptotic set contains only o, or « and one finite point.

The modular function itself is an example of a normal function
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whose asymptotic set contains « and two finite points.
Thus, applying a suitable linear transformation, we obtain,
in the case where G(f) contains three or less points, a
normal function g with a(g) = G(f).

In the case where @G(f) contains at least two finite
values, say a and b, let § be the Riemann surface of f£
covering the Q-plane. If £ omits the values a and b,
then f ¢ N, (3.11), and we are done. Otherwise remove
all points of § over a and b to obtain a Riemann surface
G- The universal covering surface a of ¢ corresponds to
a function g holomorphic in {|z|<1} which belongs to N ’
since it qmits'three values. Moreover, from the remark

(3.6), we see that a(g) = G(f). [[

We conclude this section by giving a constructive
proof of Kierst's Theorem [4], for the case f holomorphic
in {|z|<1}. Rather than appealing to Theorem 2 and Kierst's

Theorem, we obtain £ ¢ N directly as a feature of the con-

struction.

THEOREM 3. If G is an analytic set containing o,

then there exists f ¢ ¥ with G(f) = q.

Proof, Just as in the proof of Theorem 2, if ¢
contains less than three points we may construct the proper
function from a modular function and a Lohwater-Piranian
type function. Thus we may assume that a,b, and = ¢ G@.

The proof consists in exhibiting a simply connected hyperbolic

- Riemann surface § whose associated holomorphic function has
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the desired properties.

To begin with, the Theorem of Lusin and Sierpinski
(3.5) gives us a function o : (0,1} -~ G - {=} onto and con-
tinuous on the left. For each finite sequence of indices
(il"'in), ik = 0,1, choose a point P(il-'-in) # 0

satisfying

(1) |P(i; 1) - ol i% 1,275 < 27",

(2) given (il"‘in), none of the four triples
(e, P(i;°°"1), P(il°-°ini)), e = a,b,
i = 0,1 are collinear,

(3) the points a,b, P(il"'in), P(il---inO),

P(il"'inl) have different arguments.

Construction of the surface . First we need to

describe the components which we will fasten together to

~

obtain a preliminary surface 3.
8 : 'The plane cut along the two rays
R(i) = {IP(i)|<|z|<=; arg z = Arg P(i)}, i = 0,1.
8(11...1n): The plane cut along the three rays
R(i,--+i ) and
R(il"'ini) = {lP(il'°'ini)|g|z|<w;
arg z = Arg P(il...ini)], i=0,1,
L(il...in): The plane cut along the ray R(iy---i)).
We construct g

as follows:

lst Level: To S adjoin along each cut R(i;) a copy
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of S(il) so that first order branch points are formed at
the points P(il), i = 0,1. The simply connected bordered
surface §; so formed has 'free" edges along the cuts
R(iliz) in S(il). |

Nth Level: Having obtained 8y-1 @s a simply connect-
ed bordered surface with 2N cuts along the rays R(il---iN)
in S(il°"iN_1), we obtain 3y as follows: Along the cut
R(il---iN) we hang two copies of L(il---iN) and a copy of
S(il---iN), so that a third order branch point is created at

P(il'°'iN)’ according to the scheme of figure 2. Here

/g/é?fdeﬁw /;34; /;tﬂ: ’/54;
PU,'-",.)
s<'i"'lN") c GN-I 'L“l”'in) Leyi Siiy--iy)

Figure 2.

the appropriate edges are identified by letter. The result-
ing simply connected bordered surface 8y has g+l cuts
along the Rays R(il"'iN+l) of the sheets S(il"-iN)
just attached.

We take 3 = LJ Ut it is clear that % is a simply
connected Riemann surface. At this point the easiest way
to obtain §J would be to remove all points of 3 over

a and b, and form the universal covering surface. However,
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we obtain § by the following elementary construction.

Let m be the modular surface having no points over a,

b, and ». Each sheet of 5 is either S, or a S(iy +1),

or a L(il,,,in). We cut each of these sheets along disjoint

arcs from a and b to «, being sure that none of these

cuts sever the branch lines R(i;"""i ) wused in the construc-

tion of 8, and that the cuts made on each S(il-°'in) do

not sever the lines joining P(il'-°in)' to P(il~--in0)

and P(il---inl). (This is the purpose of condition (2).)

To each of these fresh cuts in 3 we attach copies of nm,

cut along the corresponding line, so that logarithmic branch

points are created at the endpoint of the cut, i.e., at

either a or b. The result is a simply connected Riemann

surface § having no points over a,b, or «. For this

reason, §J is hyperbolic and the associated holomorphic

function £ is normal. It remains to show that G(f) = G.
First, G c C(f). By construction, « ¢ Q(f); if

B €G-~ {w}, then a(x) = 8 for some x ¢ (0,1]. Let
X = }; 1,275, 1 = 0,1

be the non-terminating binary expansion of x. Let T be
the polygonal path on § whose successive vertices are the
branch points P(il), P(iliz), P(ilizi3), *++. The projection

y of T into the extended w-plane is an arc tending to 8,

since

n
[P(iqe1) - 8] < [P(iy* i )=a( ﬂlikz'kﬂ +

) |
|a<zl: 1,275 -8l <2+,
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where e - 0, since o is continuous on the left. Now the
image of T in {|z|<1} is a non-compact arc tending to a
point of {|z|=l}, since f ¢ N.- Thus 8 ¢ G(f).

Finally, G(f) c 6 : Let 8 € G(f); as a, b, » € G,
we may. assume 8 # a,b,», and hence |B|<=. Thus, there
exists a non-compact arc I on § whose projection vy
in the w-plane tends to 8. Let P = h(t) be the continuous
map from [0,1) to T. As B8 # a,b,», T cannot end in some
m added to ;, or in some subsurface gy of 5. Hence
there exists a unique monotone increasing sequence {tk} of
values in [0,1), with 1lim ¢, = 1, satisfying the condition
that t, is the largest value of t for which h(t) ¢ Bé-l'
Now h(tk) lies on a boundary componént of & ,, say on
the branch line R(il"'ik), so that h(tk) uniquely determines
the endpoint P(i1-~-ik) of this ray. Now
(4.1) 1imkﬁm|h(tk) - P(il"'ik)l = 0;
otherwise there exists >0 such that for infinitely many
k,

|h(tk) - P(il°--ik)| z g,

However, since y tends to 8, we can find a ko ~such that

for some k,; =2 k, and t ¢ [t, ,l), we have both
1 0 k1
Ih(tkl) - P(il--~ik)| ze
and |h(t) - h(tk1)|<e.

By the construction of §, this means that T must be
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confined to a finite sheeted component of § over

{(|l w - h(tk1)|<e], contradicting the fact that T meets
infinitely many of the branch lines R(il---in). This

establishes (4.1) and hence
8 = ol }1: 1,27,

where the ik's are determined by the P(il---ik) associat-

ed with the h(tk), since
g - a(fl_.inz'“n < l8 - h(g) ] + [h(t) - B(Ly 1)
| K
+ |P(iy tip) - al Z;_-inz'“)!
K -
+ |a(z_]-;in2'n) - o Zlinz‘“)|

Thus G(£f) = c.[J]

Remark. The method of proof used above is similar to that

of Heins [3], who extended Kierst's Theorem to the class of

entire functions.
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5. Necessary Conditions; the Class U, We have
already remarked, (1.l), that there exist analytic sets

which are not asymptotic sets for any functions holomorphic

in {|z| < 1}. However, we can easily establish some

Necessary Conditions on G(f), Let f be holomorphic
in {|z| < 1}, and put D = £({|z| < 1}). Then

(5.1) G(f) is analytic. This result of Mazurkiewicz
(9] was obtained in the remark following Theorem 1.

(5.2) 3D c G(f)" =D, Let & be the Riemann surface
of f over the w-plane; if m 1is the projection map, then
n(3) = D. Suppose first b € aD; then there are points of
D arbitrarily close to b, If L 1is a straight line seg-
ment from a point of D to b, then L must contain an
asymptotic value of f (which may be b): simply consider
a maximal lifting of L into &, beginning at the endpoint
of L in D. Hence either b ¢ G(f) or b is a limit
point of points in G(f), i.e., 3D < G(f) . Next, any
asymptotic value of f must have points of D arbitrarily
close, since asymptotic values are determined by non-
compact arcs on § . Hence, G(f) <D

(5.3) if b € 3D 1is accessible from D , then either

b € G(f), or every arc in D to b must meet G(f). Just

as in (5.2), this result is proved by lifting arcs into & .

(5.4) if b € 3D 1is inaccessible from D , then

b £ G(f). For, if b € Q(f), then there would be an arc T
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on § whose projection vy tends to b. But since T < &,
Yy € D, so that b would be accessible from D.
One naturally asks the question: Are the above neces-

sary conditions also sufficient? I.e., given a domain D

and an analytic set G satisfying the conditions satisfied
by G(f) in (5.1), (5.2), (5.3), (5.4), is there a function
holomorphic in {|z| < 1} whose asymptotic set is G? 1In
view of (5.3), the following example shows that (5.1), (5.2),
and (5.4) are not, in themselves, sufficient:

EXAMPLE 1. Let G be the set {|z| = 1} - {1}. 1In this
case, G satisfies (5.1), (5.2), and (5.4) with D = {|z]<1},
but by (5.3), G cannot be the asymptotic set of any function
holomorphic in {|z| < 1}.

It is not known at this time whether (5.3), together with

(5.1), (5.2), and (5.4), is a sufficient condition,

The following extension of (5.2) is cast in the form of

a theorem for later use.

THEOREM 4, If £ is holomorphic in {|z| < 1}, then

there exists a simply connected domain DO with the properties

(D aDo.c G(f)" < Do-

(2) (inaccessible from DO) 3D, N G(f) = ¢ ,

(3) = £D, .

Proof, If <« € G(f), simply take D = {|z] < =}, For
the case = ¢ G(f), some preliminaries are required to obtain

Do' First define
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D = £({|z] < 1}) ,

1
D f({|2‘<1-a), n22,

n

and note that (Dn] is an increasing sequence of bounded

domains in the w-plane with oD, < D. Let D: be the un-
bounded component of D;'. Then Dz = (DZ)-; is a simply
connected, bounded domain with

A) D_ <D

(B) D) < ab_ ;
the first inclusion follows from the definition of D: . The

second results from the fact that for any set S, both 38 < aS
and 3(S™’) = 3(S8") hold. Then (B) follows, since
% ®, =, _ O -
oD, = a[(Dn) 1= a(Dn) c 3D

=]
n ;

but ,D: is a component of D;’ , SO
De < a(D>') = 3D D
8D, < 3(d,") = 3D, < aD_ .

o
As a final preliminary, we note that the D; form an in-

creasing sequence of simply connected domains, Thus
Bk
D, = %gnn

k
is a simply connected domain. Observe that D; is just the

maximal simply connected, bounded domain such that aD: c aDn

%

That is, D, "fills in the holes in D_."

It remains to show that D, has the desired properties,
First, 3D < G(£)” < D_7; .this follows from (5.2) if we
show that D c D, and 3D, < aD. To obtain the first inclusion,
note D -UDn CUD?1 =D

o + For the second inclusion, let
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b ¢ D3 then b ¢ D. But every neighborhood of b contains
points of some Dz, hence a point of aD: < 3D, by (B).

But 3D, =D, so every neighborhood of b contains points

of D, i,e,, b € 3D.

Also, (inaccessible) 3D, N G(f) = ¢, since inaccessible
boundary points of D, must be inaccessible boundary points
of D, and (5.4) applies.

Finally, = ¢ D,, since each Dz is bounded. (I

Remark, Example 1 shows that the necessary condition
given by Theorem 4 is not sufficient., That is, if G is an
analytic set and D, is a simply connected domain satisfying
the three conditions of the theorem (with G(f) replaced by
G), then it does not follow that G is the asymptotic set
of some function holomorphic in {|z| < 1}.

A natural thought would be to search for topological
properties which an asymptotic set must possess, However,
in view of (1.1) and Example 1, questions of compactness are
immediately excluded. The following example shows that
questions of connectivity must also be excluded,

EXAMPLE 2, There exists a bounded, holomorphic function

in {|z| < 1} whose asymptotic set is totally disconnected.

Proof, We will obtain below a subdomain B of {|z|<1]}
whose accessible boundary is a totally disconnected set,
Using the universal covering sﬁrface B of B, we obtain
the desired function, in view of (3.6).

Let T be the open isosceles triangle (i.e., a simply

connected region of triangular shape) in {y > 0} of height
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three abutting on [0,1]. Let T = 3T N {y>0}. The con-
struction below proves the existence of a subdomain D of
T whose accessible boundary includes I plus a totally
disconnected set; moreover D~ = T , It remains merely to
map T~ topologically onto sectors of {|w| s 1} to obtain
the desired domain.

In order to facilitate the description of D, three types
of auxiliary sets will be defined: Necks h , laces & , and
diamonds & ., D will arise as the complement in T of the
diamond necklace () 8 .

Necks, Let L be a closed line segment and h >0 . A
neck h(L,h) about L of width h is a set constructed as
follows: Let In’ n=1,2,3,... be the open intervals removed
from L in the standard construction of the Cantor subset of
L, with L the "middle third." Let T, bé an isosceles
(closed) triangle of height h whose base is I,. For each
In’ let Tn be a triangle congrﬁent to T1 whose base 1is

<)

In' Put J = L_, Tn UL, and let 31 be the reflection of
1
J in L. Then

n(L,h) = J U I

Clearly h 1is closed and contains the line segment L. This

is illustrated by Figure 3.

.
,\/\A/Jl\/,\/\k
V\/V\/V\/V

Figure 3
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Laces., A lace will be a countable collection of lines
parallel to {y = 0}. Intuitively, £ consists of lines
clustering on {y = 0}. Then Sk: is obtained from Sk-l
by first adding in a neighborhood of each line L ¢ £,.1 2
sequence of lines which cluster on L from both sides, then
by removing £ 1 from the set of 1ines so obtained, To

make these ideas precise, a little bit of arithmetic is

necessary:

Oth Lace, Take £g = {y = 0}

lst Lace, Let n; be a positive integer and e; = zI,

Define L(elnl) = {y = e12-n1}, and set

2nd Lace, For i=1,2, let n, be positive integers

and e, = +1. Define

L(elnl,eznz) {y = elz'“l + 2'2e22'n1'n2}

then put

éI)l i_) L(inl,inz) .

Kth Lace, For i=1,...,k, let n, be positive integers

and e; = +1. Define e

Llegny,.ooeym) = {y = eg2 Lo+ ek2'2k+22'“1"“'n¥
and put

.£k = LJ=1 nl;)=1 L(inl,...,:i:nk) .
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Diamonds, These will be closed sets which form a de-
creasing sequence,

1st Diamond, Let h be the neck of width 1 about
the line segment [0,1]. Put

&1 =n .
2nd Diamond, The intersection &§; N &, (a necklace!)
is a countable collection of line-‘segments, called links,
finitely many contained in each L(elnl) €£y. If L is
a link on L(eyn;), construct the neck n(L,Z-ZZ'nl); take
ﬂz to be the union of all such necks, together with £O N @1.
Then &8, c 8§, and 8, is closed. This is illustrated by

Figure 4, (For convenience, the horizontal distances are

lengthened in the illustratiom.)

d
o
"";,.2.

VA, \ A A 4
v VY 7"V\VV
\ 7
a Hn& in £zn2;

Figure 4,
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Kth Diamond. The intersection &, _; n L1 is a
countable collection of closed line segments, called links,
finitely many contained on each L(eyng,...,e o, 1) € & 4.
If L is a link on L(elnl""’ek-lnk-l)’ construct the

neck

-2k+2 -ny-...-
n(L, 2 2 1 -1y

and take as Sk the union of all such necks plus

(®,n£,) U (®N£q) U ... U (8 oNg, o) .

Then ﬁk c Sk-l and ﬁk is closed.

Significant Properties of the Diamonds,

(5.5) Between any two adjacent lines in &, 4, say

L(elnl""’ek-lnk-l) and L(elnl,...,ek_l(nk_1+1)) ,

there exists an open strip S parallel to {y = 0} which

meets none of the necks in &, , i.e., S c QE . This is

illustrated by Figure 5. We say that S is a free strip

between the indicated lines.

| !
22060 Nt /

L (RN

/Some necy in a

{ |
2202 " SNt

\

—

N\

Llen,y e, .+

. . !
zz(k-l) 2n,+---+n“_'+l Figure 5
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(5.6) ﬁé is a domain. Clearly Dé is open.,_
Connectedness is proved by induction on k. First,
si is connected. Suppose next that ﬂé-l is con-
nected. It suffices to show that any point P € ﬂé
can be joined to a point of Sé-l by a path a C Sﬁ.
Thus, let P € &1 N ﬂé .  Then '

P g () U (B1N8y) U...U (B oNey ) U (B 1N ) s

and hence P does not belong to any of the links used
in constructing the necks for &, ;. But P must be-
long to some neck in Sk-l’ hence must lie strictly between

two of the lines in the lace £k-1 used to construct 8

k’
else P € L1 N ﬁk-l c ﬂk . Let these lines be those of
(5.5). By the geometry of the necks, P can be joined to
the free strip S by a vertical line in Qé, and hence,
/
by a path in S, to sk-l .
The Domain D, Define 8 = ﬂ S , a set which might

as well be called a diamond necklace. Then, put

D=T -8,

Since D =T N Ljﬂé and the 8& are an increasing sequence
of domains, D 1is a domain. |

The Boundary of D. Clearly T c 3D; we show that the
boundary points of 3D - I' which are accessible from D
form a totally disconnected set. Put B = 3D - T .

By construction, for any &k and any link L used
in the construction of ﬁk’ the Cantor set on L 1is acces-

sible from D, and no other point of L.
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Note that if b € B, then there are lines of LJSk
arbitrarily close to b. From this it follows that
any neighborhood of b meets a free strip ScD’
between two adjacent lines of some Ly Hence, if
bl’bZ € B, with Im b1 < Im b2, then there is a free
strip § c D’ separating b; and b,.

Now 8D - " © B; let C « 3D - T be a connected set
containing more than one point. We will show that C
must contain an inaccessible boundaﬁx point. By the
preceding remark, C must be a subset of some line ¢
parallel to {y=0}. If ¢ EEL)Sk, then C < L, where L
is some link used in the construction of some ﬁk, But
we have seen that only the Cantor set on L 1is accessible,
Thus C must contain inaccessible points.

On the other hand, possibly ¢ £ L)&k. But then

C N 4 contains an interval I of positive length, and

1cBcs=Ns ,

so it is possible to determine a nested sequence of necks
Mo with I c n © @k. But diam e = 0 as k -» =, so
I cannot have positive length, Hence C N ¢ must reduce
to a point. l'ﬂ

We conclude this section with a theorem which helps
to give a simple characterization of G(f) for f£ € u
(see (3.13)). The method of proof was used by Ohtsuka
[13] to establish another fact about the class U.
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THEOREM 5. Let G be an analytic set with the

property
{lw|] = 1} €@ < {|w] = 1}

There exists f ¢ U with G(f) = G .

Proof, By the Theorem of Lusin and Sierpinski, (3.5),
there exists a function a:(0,1] - G onto and continuous on

the left,

For each finite system of indices (il,...,in), i, = 0,1,
choose a point P(il,...,in) satisfying

1) |P(il...in)| <1;

2) P(0), P(l) 1lie on distinct radii;

3) P(il...in), P(il...inO), P(il...inl) lie on distinct
radii;

4) Ia(f‘lliikz'k) - P(i;...1)] < 27" n=2,

For each n, let R(il...in) be the closed segment of the
radius through P(il...in), of length 4(n) < 2'n, and 1yihg
in the annulus {IP(il...in)l s |z| < 1} (see Figure 6).

R“l“'i")

121<1

Figure 6.
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Let 8§ be a copy of the sphere cut along R(0) and
R(1). For each finite system (il...in) of indices,
ik = 0,1, let S(il...in) be a copy of the sphere cut
along R(il...in), R(il...iHO), R(il...inl), as in Figure 7,

So S Sw

Figure 7.

Join S(i), i=0,1, to S, so as to form first order
branch points at the endpoints of R(0), R(1); denote by
81 the bordered surface so constructed. Now Sl has four
boundary slits, along R(ij), i,j = 0,1 , so attach to each
slit R(ij) of Sl a copy of S(ij) so that first order
. branch points are created at the endpoints of R(ij); let
82 be the bordered surface so obtained. The boundary of
8, consists of the eight slits R(ijk), i,j,k = 0,1 . ConQ

tinuing in this manner we obtain
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8 -8 8. c ...

Now define

s -Us .
n

I~ is clear from the construction that 8 1is a Riemann
surface of planar character [1l,p.175]. Moreover, by choosing
£(n) small enough, 8 has null boundary [1,pp.204-206].
Hence there exists a 1-1 conformal mapping ¢ of 8 onto
a plane domain D in the W-plane whose boundary B is a
closed set of harmonic measure zero (since 8 has null
boundary).

Let & be the part of 8 over {|w| < 1}; then & is
connected and (3) is a subdomain D <D bounded by B
" and countah}y many closed curves 'Cn , each of which is the
image under ¢ of a simple, closed, schlicht curve r, omn
8§ 1lying over {|y| = 1}.

The universal covering surface 50 of D, is a hyper-
bolic Riemann surface; let | be the 1-1 conformal mapping
of 50 onto “z| < ﬂ .  Composing ﬁ with the projection
pP: ﬁo - Do , we obtain a holomorphic function h(z) £from
{]z] < 1} onto D, . Similarly composing é with the

projection m: § - {|w| < 1}, we obtain a holomorphic func-

tion g(W) from D, onto {|w] < 1}. This is illustrated
in Figure 8.
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Ot

iwl <t 1z) <1

VV-ﬂnn

Figure 8.

We show now that the function f = g o h has the desired
properties. Clearly f maps {|z| < 1} onto {|w| < 1}. By
a theorem of Nevanlinna [11,p.209], the set of points on
{|z| = 1} at which h has radial limits in the set B is
of measure zero. Thus h has radial limits lying on the
closed curves C_ a.e. on {|z| = 1}, and it follows that f
has radial limits of modulus one a.e, Thus f €U ; it re-
mains to show that G(f) = G .

First, G < G(f): If a € G, 1let oa(x) = a, where
X =2 ikZ'k, 4, = 0,1, is the non;terminating binary ex-

pansion of x., Consider the branch points P(il...in) on 8
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determined by the indices (iliz...) in this expansion,
Construct a polygonal line T in & as follows: join
P(il) to P(iliz) by a line segment in S(il) N &; join
P(iliz) to P(iliZi3) by a line segment in S(iliz) n g,
etc, Now the projection n(l') = v lies in {|w| < 1} and
ends ét the point a ¢ {|w1 < 1}: v is polygonal and passes
successively through the points P(il...in) with

Il
[PLyedg) - al s PG 1) - a(E 42 )
2ok

< 27" 4 €

where €y " 0 as n - » , since o 1is continuous on the
lleft. Finally, since T -is a non-compact arc on § , T
corresponds via the map | o ; to an arc Yy in {|z]| < 1},
which tends to a point of {|z| = 1}, and on which f has
the asymptotic value a . Thus a ¢ a(f).

Next, G(f) c G: if a € G(f) and |a] = 1, then a € G
by hypothesis. Thus suppose |a| < 1, Then there exists an
arc vy in {|z| < 1} tending to {|z| = 1} mapped by f onto
an arc f(y) in {|w| < 1} ending at. a. By the construction
of £, £(vy) 1is the projection of a non-compact arc I on &.
Since |a| < 1, T cannot tend to one of the arcs r, of 8
over {|w|l = 1}. So I must meet infinitely many of the
branch lines. Since n(I') = £(y) tends to a, T meets

Infinitely many branch lines R(il...in) an odd number of
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times. These R(il...in) uniquely determine their endpoints

P(il...in), which form a sequence of points tending to a.

The indices (il...in) so determined give rise to a binary

expansion
x= L 1,27k
and a = a(x), since
la-a(x)| s |a-P(i;...1 )] + |P(il...in)-a(é;.ik2'k)|
¥ |q<z:: 127%) - o] .

Thus a € @ , and hence G(f) c G ,ﬂu

COROLLARY. An analytic set G is the asymptotic set

property {|w| = 1} «c G < {|w]| =1} .
Proof. It is known [12,p.37] that if £ ¢ U , then

{|w] = 1} € G(f)" < {|w| < 1}. Then the theorem completes
the proof, [I]



37

6. A Characterization, We first characterize the
asymptotic sets of holomorphic functions which map {|z| - 1}
onto {|w| < 1}. This result is then used to prove Theorem 7,
which extends the.characterization to . arbitrary functions
holomorphic in {|z| < 1}.

THEOREM 6., Let G be an analytic set satisfying

G c {|w] =1}. Then G 4is the asymptotic set of a function

f mapping {|z| < 1} onto {|w| < 1} if, and only if, for all

r, O<r<l, there exists a holomorphic function g, ma in

{|z] < 1} into {|w| < 1} with the properties

(1) g, maps a closed Jordan region topologically

onto {|w| = r} ,

(2) ag,) ca .

Proof, Necessity, Let f map {|z]| < 1} onto {l|lw| < 1}
and let G(f) be the asymptotic set of £. Then G(f) is
analytic, (5.1), and G(f) < {|w| s 1}. Let r be fixed,
O<r<l; we obtain &y by constructing a suitable Riemann

surface G .

Preliminaries to the construction, Let a,b € G(£f)

with -1l<a<-(l-r) and 1l-r<b<l, Let a be a simple arc
joining a and b with the properties
(1) o c {y20} N {l-r<|w|<l} ;
(2) o meets {y=0} only at a,b ;
(3) o passes through no branch point projections of

the Riemann surface § associated with the function

f , except possibly a and b .
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Let B be a simple arc in {ys0} N {l-r<|w|<l} with
properties (2) and (3). Then o U B bounds a Jordan
domain J containing {|w| = r}.

Consider first the arc a; & covers {|w| < 1}, so
each w € ¢ 1is an interior point of a simple open arc
Yo © aup, where Y is the projection of a simple open
arc T in 8 . By the compactness of a , finitely

many Y, = Y; , i=1,...,n , cover g ; we may assume

i .
that this finite covering {Yi} is non-redundant, that

W precedes w;,; on a, i=1,...,n-1 , and that w,=a,
Wn=b . Finally, we take for I, the piece of Ty lying
over a, and for Ty the piece of I'y lying over «a .
Let A1 be the maximal continuation of r, over o
If Ay covers ola,b], then we are done. Otherwise, Ay
determines an asymptotic value a; €a, i.e;, a, € G(f)
Since the covering is non-redundant, a; €Yy il = 2

1

Let A, be the continuation of r; over a[al,b]; if

1
Ay covers a[al,b], then we are done., Otherwise, Ay

determines an asymptotic value a, € o« , and we have

a, €Y, , i, 23 ., Now let A, be the continuation of

2 i, 2 _ 3
Tiz over a[az,b], and repeat the process established above.
Since there are only finitely many Ty the process is
completed after finitely many steps, say m steps, with
Ay covering a[am,b]

Thus we have obtained a finite sequence of simple arcs

in. 8§ , Msoveshy whose projections Al,...,xm cover o

and are disjoint except possibly for endpoints. Moreover,



39

the endpoints of each A, are points of G(f).

In the same way, we obtain a finite sequence /A;,...,/p

of arcs in 8 , whose projections 81s++.50p cCOVer B and
are disjoint except possibly for endpoints. Moreover, the
endpoints of each 5, are points of G(f).

Construction of the Riemann Surface G . J is the

Jordan region bounded by « U 8 and containing {|w| = r}
Let 34 be a copy of & cut along the arc Ao Al’ is

not a crosscut of 3 since Ay contains a point over a.

Similarly, none of the A ,a -are crosscuts; Now attach the
edge hy of 3, to the edge A of J. Since /iy is not
a crosscut, the structure so obtained has a free edge along
hy» sO additional copies of 3, must be attached so as to
form logarithmic branch points at the endpoints of Ao which
are already points of G(f). The resulting surface is a

. bordered Riemann surface, the border resulting from the
"free" boundary of J, not from any free edges over Ayt
There are none,

We repeat the construction for each of the edges
xk;ék of J, and so obtain an unbordered Riemann surface
4 . However, 6 is possibly not simply connected, as would
be the case if both endpoints of some /\k,Ak were points
of 8 . But the universal covering surface ¢ of 6 is a
hyperbolic Riemann surface qver {|w| < 1}; we take g. to

be the holomorphic function mapping {|z| < 1} onto G

(section 2). From the construction of G ,
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(1) g, maps a closed Jordan region topologically

onto {|w| s r} ,

(2) a(g,) < G(f) .

The last assertion follows from the fact that G(gr) = G(f) ,
since in effect ¢ "cpntains" the surface § .

Sufficiency, Let G be an analytic set satisfying
G” < {|w| s 1} . By hypothesis, for all r, O<r<l, there
is a holomorphic function g. mapping {|z| < 1} into
{|w] < 1} with the properties:

(1) g, maps a closed Jordan region topologically

onto {|w| =< r} ,

(2) a(g.) ca .,

We construct first an interior map h (3.14) of a
suitable subdomain D of {|z| < 2} onto {|w| < 1}, whose
set of asymptotic values is precisely the analytic set G ,
Then, using the universal covering surface D of D , we
obtain an interior map h of {|z] < 1} onto {|w| < 1}
whose asymptotic set is G . By the result of (3.14), we
can compose ﬁ with a homeomorphism of the unit disc to
obtain a function f holomorphic from {lz] < 1} onto
{lw| < 1} with G(f) = G . We will use the following two
lemmas,

LEMMA 1, Given r, O<r<l , there exists a holomorphic
function mapping {1 < |z| < 2} into {|w| < 1}, which maps
{|z] = 1} topologically onto {|w| = r}, and whose asymptotic

values as |z| - 2 are in G,
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To prove Lemma 1, let J be the closed Jordan
region in {|z| < 1} mapped by g, topologically onto

{lw|] s r}. Let B(z) be a conformal homeomorphism of

£- plane Z- plane w- plane

Figure 9.

{lz] < 1} - J onto {1<]¢|<2}, which maps aJ topologically
v .
onto {|¢{| = 1}. Then 8, © B 1is the desired function

(Figure 9).

LEMMA 2. Given r’Rl’RZ’ with O<r<1, O<R1<R2, there

exists a holomorphic function mapping {(Ry<lz-z |<R,} into

{lw| < 1}, which maps {lz-zol = Rz} topologically onto

{[w| = r}, and whose asymptotic values as |z-z,| = R, are
in @, |

To prove Lemma 2, let ((t) be a conformal homeo-
morphism of (R1<|t-zo|<R2} onto {l<|z|<2} which carries
{|t-zo| = R2} énto {|]z] = 1}. Then g, ° g o ¢ 1is the
desired mapping,
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A closed set F . Terminology: The intervals ob-

tained by dividing an arbitrary interval I into five
subintervals of equal length will be called the Oth, lst,
2nd, 3rd, and 4th subintervals of I,

Now define inductively a sequence of closed sets,
each consisting of a finite union of disjoint closed
intervals, as follows: Take Fo = [0,1); having defined
Fn-l as a finite union of closed intervals, Fn consists

of the 1lst and 3rd closed subintervals of each interval in

Fn-l .

Define

then F 1is closed and

F=(xe¢(0,1): x= ) (2+)5%, 1=0,1]
1

Note that each of the 2 intervals in Fn has for

its left endpoint one of the numbers

n

x= ) (20,+1)5 %, 1.=0,1.
1

Hence there is a 1-1 correspondence between the intervals
in F_ and the set of indices (il"’in)’ i,=0,1 . This
provides a convenient indexing of the intervals used to

define F. Thus I(il...in) is one of the intervals in

Fna
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The Domain D, We will define D as the union of
certain 'circle" regions in {|z|<2}. Define C(i;---i )
as the circle with diameter I(il---in).

Let B = {l<|z|<2}.

Let E be the closed circle region bounded by {|z|=1}
and C(iy), i, = 0,1.

With each interval I(il"'in) we associate three

closed circle regions, Q(il'°-in), S(il---in), and T(il...in)

Q(il"'in) is a closed annulus whose outer boundary is
C(il---in) and whose inner boundary is a circle Cl(il---in)
so chosen that Q(il"'in) is disjoint from I(il---i

= 0,l.

n in+l)’

‘in+l .
S(il--'in) is a closed circle region bounded by

Cl(il'--in), C(il"'inO), C(il"'inl), and a circle

Cz(il'--in) disjoint from the preceding three circles.
T(il'--in) is an annulus which contains its outer

boundary Cz(il"'in) but not its inner boundary C3(il'°'in).
Now take

D=BUEWU kJ(Q(il...in) U \J s(il...in) U LJ T(il...in

It is easy to see that D is a subdomain of {|z|<2} with

).

boundary

aD = {|z|=2 uFru U Cy(iyreri).

These circle regions are illustrated by Figure 10.
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Coo Cw

O 2

It

Q)

Tco
C3‘0)
C,(0)

Cco) Ccor)

C,00)
Cco0)
S(o)
Figure 10.

The interior map h, We will define h by piecing
together interior functions defined on the subregions of D
discussed above. First, some preliminaries are required.

Let o be a function from (0,1] onto G which
is continuous on the left (3.5). For each finite set of
indices (il'°'in)’. ik = 0,1, choose a point P(il"'in)

in the complex w-plane satisfying the conditions
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@ |PEyi] < 1,
(®) P(0) # P(1),

(c) P(il-~-in), P(i,"*i 0), P(i;--+i 1) are distinct,

n
(d) Ia(ZE'ikZ'k) - P(ipeei)] <27, ns 2.

About each point P(il°--in) construct a circle c(il---in)

of radius R(il---in) satisfying the ‘conditions
(e) c*(il"°in) c {|w|<1}, where c* = (interior C) ue,
(£) cg n ci = ¢
(&) € (iy- -1 ), €(ip---1 0), € (i;--+1 1) are disjoint,
(h) R(ip---i) <277,

For each (il---in) let q(il...in) be an interior
mapping of the closed annulus Q(i1-~-in) onto the disc
c*(il---in) determined by a homeomorphism from Q(il---iﬁ)
to a two-sheeted covering of c*(il---in) whose sheets are
joined along an interior branch line. Q(il-.-in) maps
C(il---in) and Cl(il'°'in) topologically onto c(il---in)
in such a way that coherent orientations of C(il---in) and
Cl(il---in) with respect to Q(il---in) are transformed by
q(il~--in) into the same orientation of c(il--°in).

Choose r;, O<ry<l, so that ({|w|<r;} contains
c*(O), c*(l). By Lemma 1, there exists a holomorphic function
b(z) of B into {|w|<l) which maps {|z|=1} topologically onto
{|w|=r;} and whose asymptotic values as |z| - 2 are in G.

Define h =b on B.

Next, there exists a homeomorphism e of E onto

({lw]<rq) - €"(0) u ¥ @)
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with the properties

e=b on f{|z|=1},
q(0) on C(0),
q(1) on C(1).

This well known extension of homeomorphisms can be obtained

in [16). This is illustrated by Figure 11.

Z-plane w- plane
Figure 11.
Define h = e on E.
Define h = q(il---in) on Q(il°°'in).

To define h on S(il---in) and T(il--~in), choose ros
O<rn<l; so that flwl<rn} contains ¢ (11---1n), c (11 i,0),
and ¢ (il---inl). By Lemma 2 there exists a holomorphic
function t(il---iﬁ) mapping T(il---in) into {|w]|<l}
which maps CZ(il"'in) topologically onto {|w|=rn} and
whose asymptotic values as 2z - Cq(iy--+i ) are in aq.

Define  h = t(il---in) on T(il-~-in).

Now we have the following topological mappings defined
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on the boundary of S(il"'in) (Figure 12):
g(il'-'in) from Cl(il---in) to c(il---in)
q(il---inO) from C(il---in0) to c(il---iHO)
q(il---inl) from C(il---inl) to c(il---inl)

t(il°"in) from C,(iy---i)) to {|w|=rn},

Figure 12,

These homeomorphisms can be extended [16] to a homeo-

morphism s(i1°"in) of S(i1°--in) onto
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(Clw] s £} = € (dy-eei) U € (g i 0) U e (iyrr-i 1))T

Define h = s(iy-++i)) on S(iy.<.i)).

Thus h 1is defined on all of D. To verify that h
is an interior map, note that h clearly has this property
on the interiors of the distinguished subregions of D. On
the common boundaries of these subregions h ' is defined by
a homeomorphism which is the restriction of the interior
mappings of the abutting subregions. It remains to verify
that these homeomorphisms defined on the circles f|z| = 1},
C(il---in), Cl(il---in), Cz(il"'in) ~induce compatible
orientations on the circles {|w| =r }, €(i;*'*i ). But
this is straightforward: An orientation of {|z| = 1} in-
duces an orientation on each C(il---in), Cl(il---in),
02(11-3-in) as well as induces an orientation of {|w| = r;]
through the mapping b. Now this orientation of {|w| = ryl
induces orientations on all circles {|w| = r. s C(iy---i)
which are compatible with the orientations induced there by
the mappings e, q(ilﬁ--in), s(il...in) and ~t(il--'in).

Finally, the hypothesis implies that {|w| = 1} c ¢,
so that there exist c(il---in) arbitrarily close to
{lw] = 1}. Hence in defining the maps t(iy-ri)) we use
r, arbitrarily close to 1, so that h maps D onto

{lw] < 13.

The asymptotic values of h, First, a(h) c g. If

a € G(h), then there exists a non-compact arc y in D

which is mapped by h into an arc h(y) tending to a.
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y ends at a point ¢ € aD: Otherwise vy~ contains distinct
points of 3D, and, by the way h was constructed, this
contradicts the fact that h(y) tends to a point. Now

if ¢ € {|z|=2}, or if ( Dbelongs to one of the circles
C3(i1---in), then Lemma 1 or Lemma 2 assures us that

a € G. The remainder of 3D is F; if ¢ ¢ F, then

-]

c = % (21, +1)57%, i = 0,1,

and the finite sets of indices (il'~-in) determined by this
expansion correspond to annulii Q(il"'in) which tend to

¢. Since y must meet all these Q(i;---i), h(y) must

. . * o { th

ave a point w_ € C (11 1n), wi w,~a as n - =,

But then

©

a=a( L 1,279,
1
since
=~ . ok . .
la - &(zgllkz ) | S|a'Wn| + (Wn-P(ll"‘ln)I
c s L -k
+ P(ig i) - al )% 1,279
L. -k 2. -k
+ |G,(Zlk2 )-a(ZlkZ )|
1 1
Each of the terms on the right hand side tend to zero as

n - «, Hence a ¢ (.

Next, G c G(h). If a ¢ a, then a = a(x), where

W

X = Zl 127k, i, = 0,1;



50
’

thus x corresponds to a unique value y ¢ F given by

- . -k

y = 2; (21,41) 575,
Using the (il°°'in) determined by the expansion of x,
we construct a polygonal line L in {|w|<l} joining in

guccesSion P(il), P(iliz)’ «++, Since

' = . -k L. -k
la - P(il---in)lsla - a(gikZ )|+|cc(zl 1,2°7) - P(il-“in)l,

it follows that I must end at a. But one of the pre-
images ¢ of L by h is an arc in D tending to vy.
To see this, simply piece 4 together from the crosscuts
of the various Q(il"°in) and S(i1°--in) which are
mapped by h into L. Here of course we consider only
those Q's and S's which are determined by the expansion
of x, since they collapse on y. Thus h has the asymp-
totic value a on 4, so a ¢ G(h).

We have obtained G = G(h). As remarked at the outset
of the proof, f 1is obtained by considering the universal
covering surface of D and a suitable homeomorphism. In
view of (3.6), we have a(f) = a(h), and the proof is
complete. [I]

Before stating and proving the main theorem, we need
a final

LEMMA. Llet G c {|w|<r}, O<r<e, be an analytic set.

I1f g is holomotphic in {|z|<1} and maps a Jordan region

topologically onto {|lw|sr}, then there exists a function

f holomorphic in {|z|<1},'with a(f) = a(g) U G, whose
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Riemann surface g contains a schlicht sheet over {|w|<%r}.

Proof, We obtain £ by the construction of its
Riemann surface §. First, some preliminaries. As usual
.we appeal to the Theroem of Lusin and Sierpinski (3.5). Thus,
let o : (0,1 - G be onto and continuous on the left. For

each x ¢ (0,1], we have a unique non-terminating binary
expansion:
X = z;' 127", i =0,1.

For each finite set of indices (il---in), ik = 0,1 we define
a point P(il-~-in) with the properties

(1? |P(iy---i)| <

(2) Arg Py # Arg Py

(3) Arg P(il°'°in), Arg P(il'°'in0), Arg P(il"'inl)

are pair-wise distinct.

. 2 . -k -n
(4) |P(iqr-+i)) - o E;i 12 <27, n = 2.

With each P(il"-in) we associate a closed segment S(il---in)
on the radius through P(i;**'i ), of length < 2°% . with
P(iy.--i ) one of its endpoints, and contained in flwl<ry.
The Riemann surface ¢ of g contains a schlicht
domain D over {|w|s<r}l. For each finite set of indices
(il---in), let q(il---in) be a copy of ¢ whose schlicht
domain D(il---in) has been severed along the three disjoint
seqments S(il---in), S(il---iHO), S(il---inl). .Let Go
be a copy of G whose schlicht domain Dy has been cut

along the segments S(0), S(1), and a radial segment R,

disjoint from S(0), S(1), 1lying in the annulus {% < |z| < r}.
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Let G_; be a copy of ¢ whose schlicht domain D_; has
been cut along the segment R. '

Construction of @#. This is simply a matter of joining
thé slit copies of ¢ together in a natural way, then taking

the universal covering surface of the Riemann surface so

obtained.

Oth level. Let &0 be the structure cbtained by
joining G_q and (g together so as to form first order
branch points at the endpoints of R, which then forms a
branch line. 50 has a schlicht sheet over {|w| < %}, aﬁd
free edges along the cuts S5(0), S(1) in Gg.

lst level. To the free edges of %O along S(il)
attach a single copy of q(il) so that first order branch
points are created at the endpoints of S(il). Denoté the
resulting structure ;1; it has free edges along the four
cuts S(iliz), ik = 0,1,

Nth level, To the free edges of &y , along S(il-'-iN)
attach a copy of q(il---iN) so that first order branch
points are formed at tHe endpoints of S(il---iN). Denote
the resulting bordered surface %N; it has 2N+1 cuts
S(il---iN+1), each with two free edges.

Now take 3 = LJ%N. 3 has a schlicht disc over
{lw| < %r), since 30 has one. Let G(&) be the set of
asymptotic values determined by asymptotic paths on &

(see(3.6)). We want to show that

a(3) = a(g) U G.
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First, G(&) c G(g) UG: Let a € G(%); then there
is a non-compact arc A on 3 whose projection n(A) in-
to the w-plane tends to a. If A 1is contained in oﬁly
finitely many 3N’ then A must end in some attached copy
Q(il...in) of G and thus determine a as an asymptotic
value in G(g). On the other hand, suppose A meets in-

finitely many of the branch lines S(il...in) of §. Let

Q(il...iN) be the last intersection of A with &N-l (hence

Q(i,...1y) € some S(i,...iy)), and observe that the lengths
1 N 1 N

of the S(il...in) become small as n - «, Now let

- ¥ -n
X = Z; inZ
be the point of (0,1] deterinined by the indices of the
successive Q(i;...iy). Then a = o(x), i.e., a € G,

since

la - a(x)| s |a - Q(il...in)| + |Q(il...in) - P(il...
L -k
+ |P(iy...4) - af 21 4,279 |
n
+laC 50 1,27 - o 2 274

1
Thus, G(3) c G(g) UG ,
For the reverse inclusion, it is clear from the con-
struction of 3 that G(g) c G(&). If a € G, then a =
for some |

x= 3 42%, 1 =0,1;

1

i)

a(x)
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then the polygonal line L, obtained by joining the successive
branch points P(il), P(iliz)---, determined by the expansion
of x, provides us with a non-compact arc on 3 determining
a as an asymptotic value. Hence, G c a(E).

To complete the proof, let § be the universal cover-

A

ing surface of §. § contains a schlicht sheet over
{lw] < %r}, since & does. 1In view of (3.6), the associated
holomorphic function in {|z| < 1} has the set G(g) U G as

its asymptotic set G(f).ﬂ]

We now state and prove the main theorem.

THEOREM 7. Let G be a subset of the extended complex

plane. G is the set of asymptotic values of

function £

a
holomorphic in {|z| < 1} if, and only if, G is an anmalytic

set and either « ¢ G or

(1) there exists a simply connected domain D, with the

properties

(8) = ¢D,
(b) D, = G” < Dy,
(c) (inaccessible 3D,) N G = ¢;

(2) given any compact connected subset K of D,

there exists a holomorphic function 81 mapping

{1z] < 1} into D with the properties

(d) g, maps a Jordan region topologically

onto a Jordan region containing K,

(&) g < a.
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Proof, Necessity. Let f be holomorphic in {|z| < 1}.

The asymptotic set G(f) of = is analytic (5.1) in the
extended plane. Suppose o« ¢ G(f). By Theorem 4, G(f)
necessarily satisfies (1). Now let XK be a compact, connect-
ed subset of D,. Then (2) will follow just as in the
necessity proof of Theorem 6 if we can show there exists
a Jordan arc 8 in £({|z]| <1 }) which bounds a Jordan
region in D, containing K.

We put D = £(f|z]| < 1}) and utilize in general the
notation established in Theorem 4 to prove the existence
of Do'

Observe first that the component C of 3D  containing
CIR is precisely 3D, - If this were not the case, then
C - 3D, would not be void. Now D c D; implies (C-3D_) < D_,
so that (C - aDo) N Dz # ¢ for some n. But this implies
cn Dn # ¢, and since Dn c D, we have a contradiction.
Thus C = 3D,.

Now let h be the parallel slit mapping of D onto
the plane less certain bounded horizontal slits. h 1is a
conformal homeomorphism and carries aDO into a élit So‘
There are two cases to consider: either KN D=4 or
KND# ¢. |

If KND= g, the connectedness of K implies the
existence of a unique component Di of D’ containing K.
The boundary Cq of Di corresponds to a slit §1- We

have C; # 3D, since otherwise K c D/, hence S; N S = 4.
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Figure 13.

We may then construct a closed Jordan arc vy in h(D) which
separates 8§ and S, (Figure 13). The Jordan arc 8 = K(y)
in D separates Cy from aDO, hence bounds a Jordan region
in DO containing K.

If KnD# ¢, we must have h(K n D). bounded away
from‘ SO. Otherwise, there exist a_ ¢ K N D such that

lim h(an) € S,. We may assume lim a, = a, exists; put

bn = h(an) and 1lim bn = bo. We must have a € Kn aD.
Let C2 be the component of 3D containing a,» and let

02 correspond to a slit S2 under the mapping h. Since

dist(K,aDo) >0, Cy # aD,, so that S2 N So = ¢. Let v,
be a closed Jordan arc in h(D) which separates S, and

S,» and let Yo be a closed Jordan arc in h(D) which

separates v, and S,+ This is illustrated by Figure 14.



57

Figure 14,

v
Now h carries Yor Y2 into Jordan arcs 842 By in D

with the properties that By separates C2 and aDO, while
85 separates 8, and aDo. Then the subdomain Sz of D
bounded by C2’ By must be disjoint from the one, 85
bounded by 8_, 3D. Then, h(ﬂo) n h(ﬁz) = ¢. But 9,
contains all a s except possibly finitely many, since
lima_ =a, € Gy, so that h(ﬁz) contains all but finitely
many bn' But since 1lim bn = bo € 8., h(@o) must contain
all but finitely many b_. Thus h(8,) N h(9,) # ¢, a
contradiction.

Thus, h(K n D) is bounded away from S, It is
then possible to construct a closed Jordan arc vy in h(D)
which separates h(K n D) and So' Then 8 = ﬁ(y) is the
desired arc in D which bounds a Jordan region in D,

containing K.

The rest of the necessity proof mimics that of Theorem

6 and will not be repeated here.
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Sufficiency, In view of Theorem 3, it suffices to
consider an analytic set G, not containing o, for which
conditions (1) and (2) hold. We seek a function £ holo-
morphic in {|z| < 1} whose asymptotic set is precisely G.
There are two cases to consider.

1. D, 1is hyperbolic. Let h be a conformal homeo-

morphism of D_ onto {|w| < 1}. Let vy, be the closed

Jordan arc in D, which h carries onto {lw] = 1-%},
X
n=2,3,..., then y; =y, U (subdomain of D, bounded

by yn) is compact. By condition (2), there exists a func-
tion g holomorphic in {|z] < 1} which maps a Jordan region
topologically onto Yz and has G(gn) c G. For each n,
define f = ho g (Figure 15); then fn is a holomorphic

function mapping {|z| < 1} into {|w| < 11 and carrying a

IwWl< |

1Z1< 1 Figure 15.

Jordan regién topologically onto {|w| < 1—%}. Since G N 3D,

is an analytic set consisting only of accessible boundary
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points, the boundary correspondence associated with h casts
G N 3D, into an analytic subset B of flw] = 1}, by Corollary
1 of Theorem 1. Moreover, h carries the analytic set

¢ N D, into an analytic set E ¢ {lwl < 1}. Define

S = L? G(fn) U E U B;

then S is an analytic subset of {|w]| < 1} with 8~ < {|w| = 1}.
By Theorem 6, there exists a holomorphic function F mapping
{1z] < 1} onto {|w| < 11 with G(F) = S. Now define f = ;oF;
then f maps {|z| <1} onto D_, and it will be shown that
a(f) = q.

First, G(f) € G, Let a ¢ G(f). Since D_ 1is hyperbolic,
f 1is a normal function, so that there is an arc A c {|z| < 1}
ending at a point of {|z| = 1} which is carried by £ into

an arc A‘ in D, tending to a.

If a ¢ D,» then F = hof must have the asymptotic
value ’h(a) on ). That is,

h(a) ¢ Ua(f) uE U B;
the only interesting possibility is h(a) ¢ a(fn). Here

there exists an arc Ay c flz}] < 1} ending at a point of

: h
: 2
f
rad

e
fn

Figure 16.
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flz| = 1} which is carries by f_  into an arc A = {lw] < 1}
Vv
ending at h(a). Since g = ho £ it follows that

n’
a ¢ a(gy) < G.
If a € aD,, then a ¢ (accessible aDo), since f

maps {|z| < 1} onto D  (5.4). There exists an arc

» c {|z] < l}ending at a point of f|z| = 1} which is carried
a h
£ >
~~ r
£
/F—/’
Figrue 17.

by f into an arc A in Dj tending to a. Now h
carries |\ into an arc ending at a point ¢ € f{lw| = 11}.
Thus F has the asymptotic value (¢ on 1\, so that
c € LJ(l(fn) UB. If ¢ €¢B, then a € @ by the definition
of By if ¢ € a(fn), then there exists an arc 1q in
{lz] <1} on which £  has the asymptotic value (. But
then gh = KOfn must have the asymptotic value a on K
so that a ¢ a(gn) c G.

Thus, G(f) c a.

Next, @ c G(f)., Let a E.G; again there are two cases

to consider.
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If a ¢ D, then h(a) € E, so h(a) ¢ a(F). If ) is an
arc in {|z| < 1} ending at a point of {|z|=1} on which F has
the asymptotic value h(a), then h~F = £ must have the
asymptotic value a on ). Thus a ¢ a(f).

If a ¢ oD, , then by.hypothesis a ¢ (accessible aDo).
If A 1is an arc in D tending to a, then h(A) is an
arc in {|w| < 1} tending to a point ¢ € B. Since ( € G(F),
there exists an arc 1, in {|lz] < 1} tending to a point of
{lz] = 1} on which F has the asymptotic value ; but then
f = KOF must have the asymptotic value a on A s hence
a ¢ a(f).

Thus, G = G{(f). This completes the proof of the
first case.

The second case is

2, Do is parabolic., In this case we don't have the
advantageous conformal homeomorphism h of the first case.
However, we can apply the Lemma, since in this case we do
have the advéntage of @ Nab, = po.

Let G, =GN {|lw] < n}; then G, is analytic and
G =LJGn. By hypothesis (2), there exis;s a holomorphic func-
tion g  mapping {lz] < 1} into D,, with a(g,) < G, and
carrying a Jordan region topologically onto f{|w| < n}. The
Lemma implies the existence of a function £ holomorphic
in {|z| < 1}, with a(f) = a(g,) U G,, Whose Riemann sur-
face 3§, contains a schlicht sheet D over {|w] = %}.
Thus, for any integer n, 5, 1is schlicht over {|w1 < %}.

Let B be the segment [-%,-%] and vy the segment [%,%].
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Cut Dy ¢ "y along B8 and the remaining Dn C 8, along
both B8 and y. Now form a Riemann surface ; by joining
the 8 along common cuts according to the following scheme:
For n odd, join 5, to 8,41 along B so as to form
first order branch points over -% and -%; for n even,
join 8, to #,4q along vy so as to form first order

branch points over % and %.

A

It is evident that the asymptotic paths on & determine
the same asymptotic values as do those asymptotic paths on

the various 8> namely L)G(fn); but L}G(fn) = L)(G(gn) U Gn) =
G.

~

Let 7 Dbe the universal covering surface of j.
Using (3.6), we see that § determines the same asymptotic
set as does %, and hence the function £ holomorphic in
flz] < 1} determined by 3 has G(f) = G.

This completes the proof of the theorem. ﬂ]

COROLLARY. The characterization of the theorem is

also a characterization of the asymptotic sets of normal

holomorphic functions.

Proof, This is implied by Theorem 2. [ﬂ

Remark, MacLane [8] gives an example of holomorphic
function mapping {|z| < 1}vonto.t|w| < w} with o ¢ G(f).
Hence the second case considered above may actually arise.

In closing, we mention the following conjecture.

CONJECTURE, Theorem 7 holds with condition (2) replaced

by
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(2') given compact K< D, there exists a

domain D, with the properties
/
(d’) Kc D, < D,
(b) (accessible) 3D, < G.

Example 1 shows that some condition (2) is necessary to
characterize the asymptotic sets of holomorphic functions
in {|z] < 1}. It is easy to see that (2') implies (2),

so the conjecture does give a sufficient condition.
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