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ABSTRACT

Data-parallel Digital Signal Processors: Algorithm MapugiArchitecture Scaling and
Workload Adaptation

by

Sridhar Rajagopal

Emerging applications such as high definition televisioDTH), streaming video, im-
age processing in embedded applications and signal pinges$igh-speed wireless com-
munications are driving a need for high performance digiighal processors (DSPs) with
real-time processing. This class of applications dematesrsignificant data parallelism,
finite precision, need for power-efficiency and the need 20’4 of arithmetic units in
the DSP to meet real-time requirements. Data-parallel D8&st these requirements by
employing clusters of functional units, enabling 100’s ofputations every clock cycle.
These DSPs exploit instruction level parallelism and suldwiarallelism within clusters,
similar to a traditional VLIW (Very Long Instruction Word) $P, and exploit data paral-
lelism across clusters, similar to vector processors.

Stream processors are data-parallel DSPs that use a bahdwedarchy to support
dataflow to 100’s of arithmetic units and are used for evalgathe contributions of this
thesis. Different software realizations of the dataflowhia algorithms can affect the per-
formance of stream processors by greater than an ordeagfitude. The thesis first
presents the design of signal processing algorithms thptefimiently on stream proces-
sors by parallelizing the algorithms and by re-orderingftoe of data. The design space

for stream processors also exhibits trade-offs betweémnagitic units per cluster, clusters



and the clock frequency to meet the real-time requiremehésgiven application. This
thesis provides a design space exploration tool for streamegsors that meets real-time
requirements while minimizing power consumption. The pn¢sd exploration method-
ology rapidly searches this design space at compile timeitamze power consumption
and selects the number of adders, multipliers, clusterstlamdeal-time clock frequency
in the processor. Finally, the thesis improves the powetieffcy in the designed stream
processor by adapting the compute resources to run-tim&tieers in the workload. The
thesis presents an adaptive multiplexer network that allthe number of active clusters
to be varied during run-time by turning off unused clusténsus, by efficient mapping of
algorithms, exploring the architecture design space, ancbimpute resource adaptation,
this thesis improves power efficiency in stream processut®ahances their suitability for

high performance, power-aware, signal processing apita
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Chapter 1

Introduction

A variety of architectures have emerged over the past feadiscfor implementing signal
processing applications. Signal processing applicatsuth as filters, were first imple-
mented in analog circuits and then moved over to digitalgresivith the advent of the
transistor. As the system complexity and need for flexipilicreased over the years, signal
processing architectures have varied from dedicated, [tagtpower application-specific
integrated circuits (ASICs) to digital signal process@SPs) to Field-Programmable Gate
Arrays (FPGASs) to hybrid and reconfigurable architecturdsof these architectures are
in existence today (2004) and each provides trade-offs dmtvilexibility, area, power,
performance and cost. The choice of ASICs vs. DSPs vs. FP&AsIlidependent on
the exact performance-power-area-cost-flexibility regmients of a particular application.
However, envisioning that performance, power and flexipdre going to be increasingly
important factors in future architectures, this thesigéts applications requiring high per-
formance, power efficiency and a high degree of flexibilizogrammability) and focuses

on the design of DSPs for such applications.

1.1 Data-parallel Digital Signal Processors

DSPs have seen a tremendous growth in the last few yearsyginew applications such
as high definition television (HDTV), streaming video, ineggrocessing in embedded ap-

plications and signal processing in high-speed wirelessnconications. DSPs are now



(2003) a 4.9 billion dollar strong industry [9], with majopglications being wireless com-
munication systems~(55%), computer systems such as disk drive controllers206),
wired communication systems such as DSL modenisl@) and consumer products such
as digital cameras and digital video disc (DVD) player3 %o).

These new applications are pushing performance limitsxXistiag DSP architectures
due to their stringent real-time needs. Wireless commtinicaystems, such as cellular
base-stations, provide a popular DSP application that shiogvneed for high performance
at real-time. The data rate in wireless communication systs rapidly catching up with
the clock rate of these systems. Figure 1.1 shows the trentie idata rates of LAN and
cellular-based wireless systems. The figure shows thatapdgtween the data rates and
the processor clock frequency is rapidly diminishing (frérarders of magnitude in 1996
to 2 orders of magnitude today (2004) for cellular systemguiring a 100x increase in
the number of arithmetic operations to be done per clockegydlhis implies that, for a 100
Mbps wireless system running at 1 GHz, a bit has to be prodemsgy ten clock cycles.
If there arel0N arithmetic operations to be performed for processing a fowiceless
data in the physical layer, it is necessary to have at I¥agtithmetic units in the wireless
system. Sophisticated signal processing algorithms & insvireless base-stations at the
baseband physical layer to estimate, detect and decodeddiged signal for multiple users
before sending it to the higher layers. These algorithmsregnire 1000’s of arithmetic
operations to process 1 bit of data. Hence, even under thenasi®n of a perfect mapping
of algorithms to the architecture, 100’s of arithmetic arate needed in DSP designs for
these systems to meet real-time constraints. [10].

The need to perform 100’s of arithmetic operations everglclycle stretch the limits
of existing single processor DSPs. Current single procemshitectures get dominated

by register file size requirements and port interconnestioeeded to support the func-
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Figure 1.1 : Trends in wireless data rates and clock freqaen&ources: Intel, IEEE
802.11b, IEEE 802.11a, W-CDMA)

tional units, and do not scale to 100’s of arithmetic unitk, flI2]. This thesis investigates
data-parallel DSPs that employ clusters of functionalautitenable support for 100’s of
computations every clock cycle. These DSPs exploit inftyadevel parallelism and sub-
word parallelism within clusters, similar to VLIW (Very Loninstruction Word) DSPs
such as the TI C64x [13], and exploit data parallelism acctssters, similar to vector pro-
cessors. Examples of such data-parallel DSPs include thgilm stream processor [74],
Motorola’s RVSP [73] and IBM’s eLiteDSP [57]. More specifiiyathe thesis uses stream
processors as an example of data-parallel DSPs that prasbdedwidth hierarchy to en-
able support for 100’s of arithmetic units in a DSP.

However, providing DSPs with 100’s of functional units aezassary but not sufficient
conditions for high performance real-time applicationgn@l processing algorithms need
to be designed and mapped on stream processors so that thiegdalata to the arithmetic

units and provide high functional unit utilization as wellhis thesis presents the design



of algorithms for efficient mapping on stream processorse ¢bmmunication patterns
between the clusters of functional units in the stream memeare exploited for reducing
the architecture complexity and for providing greater alogity in the stream processor
architecture design with the number of clusters.

Although this thesis motivates the need for 100’s of arithienits in DSPs, the choice
of the exact number of arithmetic units needed to meet nead-tequirements is not clear.
The design of programmable DSPs has several design paranaeteoffs that need to be
chosen to meet real-time requirements. Factors such asithker and type of functional
units can be traded against the clock frequency and will chikee power consumption of
the stream processor. This thesis addresses the choicaiariEnof functional units and
clock frequency in stream processors that minimizes theepeansumption of the stream
processor while meeting real-time requirements.

Emerging DSP applications also show dynamic real-timegoerance requirements
in applications. Emerging wireless communication systdiorsexample, provide a vari-
ety of services such as voice, data and multimedia appbicatat variable data rates from
Kbps for voice to Mbps for multimedia. These emerging wisslstandards require greater
flexibility at the baseband physical layer than past statgjasuch as supporting varying
data rates, varying number of users, various decoding @nstengths and rates, adap-
tive modulation and spreading schemes [14]. The thesisawasrthe power efficiency of
stream processors by dynamically adapting the DSP comgpsiteirces to run-time varia-

tions in the workload.



1.2 Design challenges for data-parallel DSPs
1.2.1 Definition of programmable DSPs

One of the main challenges in attaining the thesis objecfidesigning data-parallel DSPs
is to to determine the amount of programmability needed iP®&nd to define and quan-
tify the meaning of the worgprogrammable While there existSysteme International
d'unités (Sl) standard units for areagter?), execution time{econds) and power{V atts),

programmability is an imprecise term.

Definition 1.1 The most commonly accepted term fopegrammablé processor isa-

pable of executing a sequence of instructions that alteb#dsac function of the processor

A wide range of DSPs designs can fall under this definitionhsas fully programmable
DSPs, DSPs with co-processors, DSPs with other applicapexific standard parts (AS-
SPs) and reconfigurable DSPs and this increases the diffictifinding an evaluation

model for the problem posed in this thesis.

1.2.2 Algorithm mapping and tools for data-parallel DSPs

Mapping signal processing algorithms on data-parallel & Quires re-designing the al-
gorithms for parallelism and finite precision. Even if thgaithms have significant par-
allelism, the architecture needs to be able to exploit thallgdism available in the algo-
rithms. For example, while the Viterbi decoding algorithashparallelism in the com-
putations, the data access pattern in the Viterbi trellotsregular which complicates the

mapping of the algorithm on data-parallel DSPs without datgid interconnects (explained

*based on a non-exhaustive Internet seaRthgrammableandflexiblewill refer to the same term in the

rest of this thesis.



later in Chapter 5). Even though DSPs such as the Tl C64x candggammed in a high
level language, they often than not require specific opttiins in both the software code

and the compiler in order to map algorithms efficiently onahehitecture [15].

1.2.3 Comparing data-parallel DSPs with other architectues

The differences in area, power, execution time and progralpility of various architecture

designs makes it difficult to compare and contrast the barafd new design with existing
solutions. The accepted norm of evaluation of the succepsogframmable architecture
designs is to meet the design goal constraints of area, eaedime performance and
power and comparisons against other architectures foremgiet of workload benchmarks
such as SPECint [16] for general purpose CPU workloads. oétjh industry standard
benchmarks exist for many applications such as mediabddtapd BDTI [18], they are

not usually end-to-end benchmarks as a wide range of atigasineed to be carefully cho-
sen and implemented for performance evaluation to form esgmtative workload. Many
dataflow bottlenecks have been observed while connectimgugblocks in an end-to-end
physical layer communication system and this effect hasbeenh modeled in available
benchmarks. This also implies that an algorithm simulatigstem model must first be
built in a high level language such as Matlab to verify thefgenance of the algorithms.

Implementation complexity, fixed point and parallelism lggs and tradeoffs then need
to be studied and input data generated even for programrimaplementations. Thus, al-

though programmable DSPs have the feasibility to impleraedichange code in software,
providing design time reduction, the design time is stiitreeted by the time taken for ex-
ploring algorithm trade-offs, finite precision and parbdile analysis. There have been
various tools such as the Code Composer Studio from Texa&sinents [19], SPW [20]

and Cossap [21], which have been designed to explore swidotifa. A comparison also



entails detailed implementation of the chosen end-to-gstém on other architectures. All
architectures cannot be programmed using the same codea@sdand have implementa-
tion tradeoffs, increasing the time required to perform aalysis.

The design challenges are addressed in this thesis by (h)raeB SPs as programmable
processors that do not have any application-specific unds-processors, (2) hand-optimizing
code to maximize the performance of the algorithms on the, @®Pcomparing data-
parallel DSPs with a hypothetical TI C64x-based DSP coirigithe same number of clus-
ters, and designing a physical layer wireless base-stajistem with channel estimation,

detection and decoding as the application.

1.3 Hypothesis

Stream processors [22] provide a great example of datdlglalxSPs that exploit in-
struction level parallelism, subword parallelism and dadgallelism. Stream processors
are state-of-the-art programmable architectures aimedealia processing applications.
Stream processors have the capability to support 100-&agfCarithmetic units and do
not have any application-specific optimizations. A streawcessor simulator based on
the Imagine stream processor [74] is available for publstritiution from Stanford. The
Imagine simulator is programmed in a high-level languagkalows the programmer to
modify the machine description features such as numberyg®ddf functional units and
their latency. The cycle-accurate simulator and re-tafgetcompiler also gives insights
into the functional unit utilization, memory stalls withetexecution time performance for
the algorithms. A power consumption and VLSI scaling mosl@lso available [23] to give
a complete picture of area, power and performance of therisalting architecture.

The hypothesis is that the power efficiency of stream prarsessan be improved to

enhance its suitability for high performance, power awagaa processing applications,



such as wireless base-stations. This hypothesis will beepro this thesis by designing
algorithms that map well on stream processors, exploriegattchitecture space for low
power configurations and adapting the compute resourcés twdrkload. Although base-
stations have been taken as an example of a high-performen&éad, the analysis and
contributions of this thesis are equally applicable to o#ignal processing applications as

well.

1.4 Contributions

This thesis investigates the design of data-parallel D8P#&ifjh performance and real-
time signal processing applications along with the efficraapping of algorithms to these
DSPs. The thesis uses stream processors as an example adatagbarallel DSPs to
evaluate the contributions presented in this thesis.

The first contribution of this thesis demonstrates the neeckfficient algorithm de-
signs to map on stream processors in order to harness thautepgver of these DSPs.
The thesis shows that the algorithm mapping can simultesigdead to complexity re-
duction in the stream processor architecture. The thegi®®s trade-offs in the use of
subword parallelism, memory access patterns, interelustmmunication and functional
unit efficiency for efficient utilization of stream processo The thesis demonstrates that
communication patterns existing in the algorithms can lpagted to provide greater scal-
ability of the inter-cluster communication network witrethumber of clusters and reduce
the communication network complexity by a factor of logg&tkrs).

The second thesis contribution demonstrates a design sgptmation framework for
stream processors to meet real-time requirements for a gglication while minimizing
power consumption. The design space for stream processloitsite trade-offs between

the number of arithmetic units per cluster, number of chsséand the clock frequency in



order to meet the real-time requirements of a given apjicailhe presented exploration
methodology searches this design space and provides eamdiathitectures for low power
along with an estimate of their real-time performance. Tx@aration tool provides the
choice of the number of adders, multipliers, clusters aedéal-time clock frequency in
the DSP that minimizes the DSP power consumption. The taadesl to design a 32-user
3G base-station with a real-time requirement of 128 Kbpes/asd provides a 64-cluster
DSP architecture with 2/3 adders and 1 multiplier per cluste567786 MHz depend-
ing on memory stalls, as design choices, which are validaiéd analysis and detailed
simulations.

Finally, the thesis improves power efficiency in stream ps3ors by varying the num-
ber and organization functional units to adapt to the compequirements of the applica-
tion and by scaling voltage and frequency to meet the re@-processing requirements.
The thesis presents the design of an adaptive multiplexarmnke that allows the number
of active clusters to be varied during run-time by multiphexthe data from internal mem-
ory on to a select number of clusters and turning off unusestets using power gating.
For the same 3G base-station with 64 clusters, the mulgple&twork provides a power
savings of a factor of 1.94, by turning off clusters when the parallelism falls below 64
clusters.

Thus, by efficient mapping of algorithms, providing a dessgploration framework for
exploring the architecture space for low power configuratj@nd by adapting the architec-
ture to run-time workload variations, this thesis proves the power efficiency in stream
processors can be improved and thus, enhances their $itytédsi high performance and
power-efficient signal processing applications with r@le constraints such as wireless

base-stations.
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1.5 Thesis Overview

The thesis is organized as follows. The next chapter preseintless base-stations as the
application for designing stream processors with evohstandards and data rates with
increasing real-time requirements. Chapter 3 presendsecelwork in DSP architecture
designs and the design constraints and trade-offs explaredch architectural designs.
Chapter 4 provides an overview of stream processors as ampéxa@f data-parallel DSPs
and their programming model. Chapter 5 then shows how dlgos can be parallelized
and efficiently mapped on to stream processors and the ffadaamemory and ALU
operations and the use of packed data. Chapter 6 then shewsetign methodology
and trade-offs in exploring the number of arithmetic unitd ¢he clock frequency needed
to meet real-time requirements for a given DSP workload. p@ra7 presents improved
power efficiency in stream processors, where an adaptiferbétwork is designed that
allows dynamic adaptation of the compute resources to thklead variations. The thesis

concludes in Chapter 8 by presenting the limitations anebtions for extending the thesis.



11

Chapter 2

Algorithms for stream processors: Cellular base-stations

In this thesis, CDMA-based cellular base-stations areidensd for evaluation for pro-
grammable stream processor designs. A wide range of sigoeégsing algorithms for
cellular base-stations, with increasing complexity anthdates depending on the evolu-
tion of CDMA standards, are explored in this thesis for strgmocessor designs. Wireless
base-stations can be divided into 2 categories: indoor$@®ns based on wireless LAN
and outdoor base-stations based on cellular networks su@sd, TDMA and CDMA.
The complexity of outdoor cellular base-stations is highan W-LAN base-stations due
to the use of strong coding required to compensate for lonaitp-noise ratios, need for
complex equalization to account for multipath reflectiond aterference among multiple
users (in CDMA-based systems). Indoor wireless systemawaid the need for equaliza-

tion [24] and can use weaker coding.

2.1 Baseband processing

This chapter assumes that the reader is familiar with CDMgeldacommunication systems
and algorithms implemented in the physical layer of theséesys (See references [25-27]
for an introduction). Figure 2.1 shows a detailed diagrarthefbase-station transmitter.
The network interface in the wireless base-station reeseive data from a land-line tele-
phone network (for voice) or a packet network (for data) drehtsends it to the physical

layer. The physical layer first encodes the data for errarection (symbols), spreads the
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RF Baseband processing Network Interface
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RF TX Spreading Packet
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Control (AGC) and Control
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Figure 2.1 : Base-station transmitter (after Texas Insénis|[1])

signal with a spreading code (chips) and then modulatesi¢imalsin order to map the
signal on to a constellation. A Digital Up Conversion (DUG)performed to convert the
signal into the IF stage and then converted into an analagabkigsing a DAC. A multi-
carrier power amplifier (MCPA) is then used for amplifyingdanroadcasting the signal
over the wireless channel. An ADC is used to provide feedlbad¢ke predistorter, which
compensates for the amplitude and phase distortion due toigin peak to average power
ratio in the non-linear (class AB) power amplifier [28].

The base-station receiver performs the reverse functibtieedransmitter. Figure 2.2
shows the processing at the base-station receiver. A LoweNamplifier (LNA) is first
used to maximize the output signal-to-noise ratio (minanize noise figure), provide linear

gain and provide a stable 5Dinput impedance to terminate the transmission line from the
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Figure 2.2 : Base-station receiver (after Texas Instrumr}

antenna to the amplifier. A digital down converter (DDC) igdigo bring the signal to
baseband.

The computationally-intensive operations occurring ia finysical layer are those of
channel estimation, detection and decoding. Channel astimrefers to the process of
determining the channel parameters such as the amplituteghese of the received signal.
These parameters are then given to the detector, whichtgehectransmitted bits. The
detected bits are then forwarded to the decoder which resrtbeeerror protection code on
the transmitted signal and then sends the decoded infarmiaitis to the network interface
from where it is transferred to a circuit-switched netwddk {/oice) or to a packet network
(for data).

The power consumption of the base-station transmitter midlated by the MCPA
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(around 40W/46 dBm [28]) since the data needs to be traressrotter long distances. Also,
the baseband processing of the transmitter is negligilstgemed to the receiver processing
due to the need for channel estimation, interference claticgl and error correction at the
receiver. The power consumption of the base-station rec&gvdominated by the digital
base-band as the RF only uses a low noise amplifier for rexeplithough the transmitter
RF power is currently the more dominant power consumptianceat the base-station,
the increasing number of users per base-station is inog#se digital processing while
the increasing base-stations per unit area is decreastngRhtransmission power. More
specifically, in proposed indoor LAN systems such as ultdaland systems, [29] where
the transmit range is around-@0 meters, the RF power transmission is around 0.55 mW
and the baseband processing is the major source of powenroption. This thesis con-
centrates on the design of programmable architecturesaetiand processing in wireless
base-station receivers. It should be noted that flexibdéay be used in the RF layers as
well to configure to various standards [30], but it's invgation is outside the scope of this
thesis.

A wide range of signal processing algorithms with increggiomplexity and increas-
ing data rates are studied in this thesis to study their ilnpa@rogrammable architecture
design. Specifically, for evaluation purposes, the algorg are classified into different
generations (2G, 3G, 4G), which represent increasing cexitplin the receiver and in-
creasing data rates. Table 2.1 presents a summary of thetlahge and data rates consid-

ered in this thesis.

2.2 2G CDMA Base-station

Definition 2.1 For the purposes of this thesis, we will consid@Gbase-statioto consist

of simple versions of channel estimation, detection an@diag and which forms a subset
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Standard | Spreading | Maximum Target Algorithms
Users Data Rate | Estimation | Detection| Decoding
2G 32 32 16 Kbps Sliding Matched | Viterbi
per user | Correlator Filter (5,7,9)
3G 32 32 128 Kbps | Multiuser | Multiuser| Viterbi
per user | Estimation | Detection| (5,7,9)
4G 32 32 1 Mbps MIMO Matched | LDPC
per user | Equalization| filter

Table 2.1 : Summary of algorithms, standards and data ratesdered in this thesis

of the algorithms used in a subset of a 3G base-station. faadgi, we will consider
a 32-user base-station providing support for 16 Kbps/useadtgd data rate) employing a
sliding correlator as a channel estimator, a code matched i a detector [31] followed

by Viterbi decoding [32].

Figure 2.3 shows the 2G base-station algorithms considertiis thesis. A sliding corre-
lator correlates the known bits (pilot) at the receiver vtk transmitted data to calculate
the timing delays and phase-shifts. The operations indoirehe sliding correlator used
in our design involves outer product updates. The matchtat fletector despreads the
received data and converts the received 'chips’ into '{iShips’ are the values of a bi-
nary waveform used for spreading the data ’bits’). The dpmma involved in matched
filtering at the base-station involves a matrix vector paidwith complexity proportional
to the number of users. Both these algorithms are amenalplarédiel implementations.
Viterbi decoding [32] is used to remove the error controlingddone at the transmitter.

The strength of the error control code is usually dependerihe severity of the channel.
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2G physical layer signal processing
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Figure 2.3 : Algorithms considered for a 2G base-station

A channel with a high signal to noise ratio need not have a bagtstraint length. The
reason for lower strength coding for channels with high SMRbat the channel decod-
ing complexity is exponential with the strength of the codéterbi decoding typically
involves a trellis [32] with two phases of computation: an-admpare-select phase and a
traceback phase. The add-compare-select phase in Viteekithrough the trellis to find

the most likely path with the least error and has data pdisatigoroportional to the strength
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(constraint length) of the code. However, the tracebaclsghi@ces the trellis backwards
and recovers the transmitted information bits. This trackhs inherently sequential and
involves dynamic decisions and pointer-based chasingh &ge constraint lengths, the
computational complexity of Viterbi decoding increasepanentially and becomes the
critical bottleneck, especially as multiple users needeaécoded simultaneously in real-
time. This is the main reason for Viterbi accelerators in@5&x DSP and co-processors in
the C6416 DSP from Texas Instruments as the DSP cores aréeuodiandle the needed

computations in real-time.

2.2.1 Received signal model

We assume BPSK modulation and use direct sequence spreziduspsignaling, where
each active mobile unit possesses a unique signature saxj(sort repetitive spreading
code) to modulate the data bits1). The base-station receives a summation of the signals
of all the active users after they travel through differeathys in the channel. The multipath

is caused due to reflections of the transmitted signal thiateaat the receiver along with
the line-of-sight component. These channel paths indutereint delays, attenuations and
phase-shifts to the signals and the mobility of the usersesfading in the channel. More-
over, the signals from various users interfere with eacleroith addition to the Additive
White Gaussian noise (AWGN) present in the channel. The hfodéhe received signal

at the output of the multipath channel [33] can be expressed a
r, = Adz + n;, (21)

wherer; € CV is the received signal vector after chip-matched filteri@gy, B4], A €
CN*2K is the effective spreading code matrix, containing infaiioraabout the spreading

codes (of lengthV), attenuation and delays from the various pathss {—1,+1}2% =
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[dii1,d1g, - dri1, dK,i]T are the bits ofK” users to be detected, is AWGN andi is
the time index. The size of the data bits of the uskrns 2K as we assume that all paths
of all users are coarse synchronized to within one symbabgérom the arbitrary timing
reference. Hence, only two symbols of each user will overiagach observation window.
This model can be easily extended to include more genetaltgins for the delays [35],
without affecting the derivation of the channel estimatadgorithms. The estimate of the
matrix A contains the effective spreading code of all active usedstlaa channel effects
and is used for accurately detecting the received data bismus users. We will call this
estimate of the effective spreading code matix,our channel estimate as it contains the
channel information directly in the form needed for det@tti
ConsiderL observations of the received vectar, ry, ..., r; corresponding to the
known training bit vectord,, by, ..., b;. Given the knowledge of the training bits, the
discretized received vectors, ro, ..., r;, are independent and each of them is Gaussian
distributed. Thus, the likelihood function becomes
1 L
p(ri,re,...,r|A, by, by, ..., by) = mexp {— Zl(ri — Ab)(r; — Ab i)} .
i—
After eliminating terms that do not affect the maximizatitre log likelihood function
becomes

=1

{Z(rz — Ab;)" (r; — Abi)} : (2.2)

The estimate\, that maximizes the log likelihood, satisfies the followegpation:
RuA = Ry, (2.3)
The matriceR,;, andR,, are defined as follows:

L L
Ry =» bb Ry, => bl (2.4)
=1

=1
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Ignoring the interference from other users for a simple 2&ey consideration sup-
porting only voice users (can tolerate more errors), the-aatrelation matrix can be as-
sumed to be an identity matrix, giving a sliding correlatquigalent channel estimate.

~

A =R, (2.5)

For an asynchronous system with BPSK modulation, the chaAnestimate can be ar-
ranged asAy, A; € CV*X which corresponds to partial correlation information foe t
successive bit vecto; ;,d; € {+1, —1}%, which are to be detected. The matched filter

for the asynchronous case is given by

yi = RATr 1+ A (2.6)

d; = sign(yi).

Based on the algorithms implemented in the 2G base-stafiemperation count needed
for attaining 16 Kbps/user data rate and the memory req@ngsnbased on a fixed point
analysis is estimated. The breakup of the operation couwhtla memory requirements
for a 2G base-station are shown in Figures 2.4 and 2.5. A 2&-$§tasion is seen to require
up to 2 GOPs of computation and 120 KB of memory. The operattamt and memory
requirements are used in later chapters to evaluate theecbdDSPs and the amount of

computational power and memory requirements in the DSPs.

2.3 3G CDMA Base-station

Definition 2.2 For the purposes of this thesis3@& base-statiogontains the elements of a
2G base-station, along with some more sophisticated sgyoakssing elements for better

accuracy of channel estimates and for eliminating interfee between users. Specifically,
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Figure 2.5 : Memory requirements of a 2G base-station

we consider a 32-user base-station with 128 Kbps/user §pemploying multiuser chan-

nel estimation, multiuser detection and Viterbi decodib@j]

Figure 2.6 shows the algorithms considered for a 3G basessta this thesis. Mul-
tiuser channel estimation refers to the process of joirglyngating the channel parame-
ters for all the users at the base-station. Since the rataigmal has interference from

other users, jointly estimating the parameters allows as#tain the optimal maximum-
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Figure 2.6 : Algorithms considered for a 3G base-station

likelihood estimate of the channel parameters for all usétswever, a maximum like-
lihood estimate has a significant increase in computatiooaiplexity over single-user
estimates [36], but provides a much more reliable chantighate to the detector.

The maximum likelihood solutions also involve matrix insiens, which present dif-
ficulties in numerical stability with finite precision comjations and in exploiting data
parallelism in a simple manner. Hence, we used a conjugatdient descent based al-
gorithm that was proposed in [37] that approximates the imatversions and replaces
the matrix inversion by matrix multiplications, which arenpler to implement and can

be computed in finite precision without loss in bit error reggformance. The details of



22

the implemented algorithm are presented in [37]. The coatprts involve matrix-matrix

multiplications of the order of the number of users and threaging gain.

2.3.1 lterative scheme for channel estimation

A direct computation of the maximum likelihood based chamestimateA involves the
computation of the correlation matric#, and R,,, and then the computation of the
solution to (2.3),R;,'Ry,, at the end of the pilot. A direct inversion at the end of the
pilot is computationally expensive and delays the startatéction beyond the pilot. This
delay limits the information rate. In our iterative algbnt, we approximate the maximum

likelihood solution based on the following ideas:

1. The producR;, R, can be directly approximated using iterative algorithmehsas
the gradient descent algorithm [38]. This reduces the cdéatjpmal complexity and

is applicable in our case becaug, is positive definite (as long as > 2K).

2. The iterative algorithm can be modified to update the egegmas the pilot is being
received instead of waiting until the end of the pilot. THere, the computation per
bit is reduced by spreading the computation over the emtireibg duration. During
the ;™ bit duration, the channel estimata, is updated iteratively in order to get
closer to the maximum likelihood estimate for training léngf i. Therefore, the
channel estimate is available for use in the detector imatelyi after the end of the

pilot sequence.
The computations in the iterative scheme duringithéit duration are given below:
Ry = Ry, " +bb] (2.7)
RY = RV 4 bl (2.8)

AD = AGD _ (R « AUTD — RY). (2.9)
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The term(R.Y « AG-) — R{) in step 3 is the gradient of the likelihood function in (2.2)
at A(—Y for a training length of. The constant is the step size along the direction of the
gradient. Since the gradient is known exactly, the iteeativannel estimate can be made
arbitrarily close to the maximum likelihood estimate byeapng step 3 and using a value
w that is lesser than the reciprocal of the largest eigen\zmmé,()?. In our simulations, we
observe that a single iteration during each bit duratiomufScsent in order to converge to
the maximum likelihood estimate by the end of the traininguemce. The solution con-
verges monotonically to the maximum likelihood estimatthveiach iteration and the final
error is negligible for realistic system parameters. A iletaanalysis of the determinis-
tic gradient descent algorithm can be found in [38] and alaimierative algorithm for
channel estimation for long code CDMA systems is analyz¢@89h

An important advantage of this iterative scheme is thatiteitself to a simple fixed
point implementation, which was difficult to achieve usihg previous inversion scheme
based on maximum likelihood [33]. The multiplication by ttenvergence parameteican
be implemented as a right-shift, by making it a power of twdlesalgorithm converges
for a wide range of: [39].

The proposed iterative channel estimation can also beyead#nded to track slowly
time-varying channels. During the tracking phase, bitsieais from the multiuser detector
are used to update the channel estimate. Only a few itesatiead to be performed for a
slowly fading channel and the previous estimate serves astaiization. The correlation

matrices are maintained over a sliding window of lenths follows,

RI(;? = RI(;Z_I) +b;b] —b;_1b],, (2.10)

R,(,? = Rgi_l)—kbirf—bi_LrﬁL. (2.11)
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2.3.2 Multiuser detection

Multi-user detection [40] refers to the joint detection diftae users at the base-station.
Since all the wireless users interfere with each other ab#se-station, interference can-
cellation techniques are used to provide reliable deteatibthe transmitted bits of all
users. The detection rate directly impacts the real-timmopmance. We choose a parallel
interference cancellation based detection algorithm fdi.jmplementation which has a
bit-streaming and parallel structure using only addersrantipliers. The computations
involve matrix-vector multiplications of the order of theamber of active users in the base-
station.

The multistage detector [41, 42] performs parallel intesfee cancellation iteratively
in stages. The desired user’s bits suffers from interfexeacised by the past or future over-
lapping symbols of various asynchronous users. Detectinigek of bits simultaneously
(multishot detection) can give performance gains [31]. eesv, in order to do multishot

detection, the above model should be extended to includepieubits. Let us consideb

bits at a time{ = 1,2,---, D). So, we form the multishot received vecioe R"? by
concatenating vectors(r;,i = 1,2,--- , D).
Ay A, 0 O d;
O AQ A1 O d2
r = + n;. (2.12)
o Ay :
| 0 0 0 Ay |dp|

Let A € CNPXKD represent the new multishot channel matrix. The initiat sietision

outputsy® € RXP and hard decision output§? € RX? of the detector are obtained
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from a matched filter using the channel estimates as

vO = R[ATY], (2.13)
dO = sign(y©®), (2.14)
yO = yO _RIAT A - diag(AT A)]d¢D, (2.15)
AV = sign(y¥), (2.16)

wherey® andd® are the soft and hard decisions respectively, after eacfe sthithe
multistage detector. These computations are iteratetl for, 2, -- - | M whereM is the
maximum number of iterations chosen for desired performafite structure afi? A <

CKDxKD js gs shown:

ALA, ALA, 0 0
AFA, AFA,+ AFA, AFA 0
Ei (2.17)
o 0 ATA, AlA,+ATA, |

The block tri-diagonal nature of the matrix arises due to desumption that the asyn-
chronous delays of the various users are coarse synchdowiztkin one symbol dura-
tion [33,35]. If the channel is static, the matrix is alsoddeloeplitz. We exploit the
block tri-diagonal nature of the matrix later, for reducitige complexity and pipelining
the algorithm effectively. The hard decisionk, made at the end of the final stage, are
fed back to the estimation block in the decision feedbackerfodtracking in the absence
of the pilot signal. Detectors using differencing methodseénbeen proposed [42] to take
advantage of the convergence behavior of the iterationthele is no sign change of the
detected bit in succeeding stages, the difference is zetdhas fact is used to reduce the
computations. However, the advantage is useful only in chsequential execution of the

detection loops, as in DSPs. Hence, we do not implement ffereticing scheme in our
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design for a VLSI architecture.

Such a block-based implementation needs a windowing girated has to wait until all
the bits needed in the window are received and are availabt®fmputation. This resultsin
taking a window ofD bits and using it to detedd — 2 bits as the edge bits are not detected
accurately due to windowing effects. Thus, there are 2 smidit computations per block
and per iteration that are not used. The detection is donleak®and the two edge bits are
thrown away and recalculated in the next iteration. Howeier stages in the multistage
detector can be efficiently pipelined [43] to avoid edge catapons and to work on a bit
streaming basis. This is equivalent to the normal deteaifam block of infinite length,
detected in a simple pipelined fashion. Also, the compaoitstican be reduced to work on
smaller matrix sets. This can be done due to the block tgahal nature of the matrix

AH A as seen from (2.17). The computations performed on thenetdiate bits reduce to

L = RATA(] (2.18)
C = R[AZA + ATA, — diag(AZAy+ ATA))] (2.19)
y@ = y©@ _ra' P —cal -raly (2.20)
&El) = sign(y;Y). (2.21)

Equation (2.20) may be thought of as subtracting the intemnige from the past bits of
users, who have more delay, and the future bits of the usés have less delay than the
desired user. The left matrix € RX*X stands for the partial correlation between the past
bits of the interfering users and the desired user, the nigittix L, stands for the partial
correlation between the future bits of the interfering esard the desired user. The center
matrixC € RE*K is the correlation of the current bits of interfering usams the diagonal
elements are made zeros since only the interference froer a#ers, represented by the

non-diagonal elements, needs to be canceled. The lowex,ihdepresents time, while
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Figure 2.7 : Operation count break-up for a 3G base-station

the upper index/, represents the iterations. The initial estimates areirddafrom the
matched filter. The above equation (2.20) is similar to thelehchosen for output of the
matched filter for multiuser detection in [44]. The equasi¢®.20)-(2.21) are equivalent to
the equations (2.15)-(2.16), where the block-based nafiiree computations are replaced
by bit-streaming computations.

The breakup of the operation count and the memory requiresniena 3G base-station
are shown in Figure 2.7 and Figure 2.8. An increase in contyglean be observed in the
3G case to 23 GOPs, increasing from 2 GOPs in 2G with an ineti@asemory require-
ments from 120 KB to 230 KB. However, note that the increase@Ps is less due to the

increase in the number of operations than due to the incredlse data rates.

2.4 4G CDMA Base-station

Definition 2.3 For a4G systen5], we consider a Multiple Input Multiple Output (MIMO)
system with multiple antennas at the transmitter and receishe MIMO receiver employs

chip-level equalization followed by despreading and Lowngiy Parity Check (LDPC)
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Figure 2.8 : Memory requirements of a 3G base-station

decoding and provides 1 Mbps/user.

Multiple antenna systems have been shown to provide diydisnefits equal to the
product of the number of transmit and receive antennas aagaciy increase to the min-
imum of the number of the transmit and receive antennas Bl5, MIMO systems can
provide higher spectral efficiency (bits/sec/Hz) than Erantenna systems and can help
support high data rates by simultaneous data transmissi@ the transmit antennas in
addition to higher modulation schemes. Both MIMO and mgkiusystems share similar
signal processing and complexity tradeoffs [46]. A singlensystem with multiple anten-
nas appears very similar to a multi-user system. The MIM{station model is shown

in Figure 2.9.

2.4.1 System Model

For the purposes of this thesis, we will consider a model Wittransmit antennas per
user, M receive antennas at the base-station, K usersdapgezode of length G, QPSK

modulation, with data in real-part, and training on the imagy part of the QPSK symbol
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Figure 2.9 : MIMO system model

on each antenna, with a 32 Mbps real-time tar§etgver 3G). The current model is based
on extending a similar MIMO model for the downlink [47] to thplink. Figure 2.10 shows
the algorithms considered for a 4G base-station in thigghes

The use of a complex scrambling sequence in considered faydtems in this thesis
and requires the need for chip-level equalization as ogptiseymbol level channel esti-
mation and detection in the 3G workload considered eatli@the use of the scrambling
sequence also whitens the noise, reducing the performamedits of multiuser detection
in the 4G system considered. Hence, multiuser detecticgnsel have not been considered
as part of the 4G system model. The base-station performpslemel equalization on the
received signal and equalizes the channel between eadmtitsamtenna of each user and

the base-station. A conjugate-gradient descent [38] seteproposed in [47] is used to

*An actual 3G system [14] uses scrambling sequences (longsgobut is not considered in the 3G
system workload of this thesis due to the use of multiusémasion and detection algorithms that need short

spreading sequences
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perform the chip level equalization and update the chip heatdilter coefficients used in

the equalizer. The symbol is then code match filtered andgbento the decoder.

2.4.2 Chip level MIMO equalization

1. Calculate the covariance matrix

N

-~ _ . Hr-

Cr = N ;r[z]r [1] (2.22)
wherer[] is the vector ofM (F' + 1) chips combined from all receiv&®/ antennas.
This is an outer product update, giving a output complex imaty of size M (F +

1) x M(F +1).
Parameters chosen are= 7, M = 4, N = 4096. This s similar to the outer-product

auto-correlation update in channel estimation for 3G, pikttet it is done at the chip

level, which implies higher complexity.

2. Estimate the channel response (channel estimation)

Estimation of the channel impulse response between tramgit@nna and receive

antennan is determined as:

N
~ (m,t) _

= y— (m)(\ b — — —
k NGTz-zlr [{S(di[i]), t=1,....,T, m=1,...,M, k=1,...,12.23)

This is similar to the outer-product cross-correlationafedn channel estimation for
3G. The completéd matrix is of sizeM (F' + 1) x KT. Itis better to putk” as the
column dimension as all users can be done in parallel and sretkeam processor

implementation simpler.

3. Conjugate Gradient Equalization
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Initialization of the residual with channel estimates:
vi'[0] = h{™" (2.24)
Size ofvisM(F +1) x KT.
Initialization of the gradient:
pi[1] = v;[0], (2.25)
Initialization of the optimal gradient steps:
Ok = ||vi[0]I?, & 1 k= 5t (2.26)
Size of§ is K x T. In thes*" iteration, optimal step can be expressed as:
apli] = 01 1 /R(P [Cprli]), (2.27)
Filter update is determined by the following expression:
fieli] = £ili — 1] + o [ilpx[d], (2.28)
Size of FisM(F +1) x KT
Residual update is given by:
Vil = vili — 1] — oL [i]C, pli (2.29)
Gradient optimal step is computed using:

53,19 = 51 ko lk: = ||Vk[z]||2 B’ [i] = 5%,19/58,19 (2.30)

Finally, the gradient update for the next iteration is detieed using previously com-

puted residual and gradient optimal step:

peli + 1) = vi'[i] + B¢ [i]pk[d] (2.31)
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4. Filtering after finding filter taps

diIG + g) = £ [IG+ gV = 1..L,g = 1..G (2.32)

d is the chip estimate, which is of siZ€T as independent data on each transmit
antenna and each usek. = 256 is the number of symbols. The block is of size

LG x KT.

5. Despreading and Descrambling

bill] = sof(sec[(l — 1) * G +1: 1« GDHdL[(1 — 1)« G+1:1xG]] (2.33)

wherel is the symbol number, ang is the spreading sequence for user

2.4.3 LDPC decoding

Low Density Parity Check codes are experiencing a renewedeist after they have been
shown to outperform all existing decoders such as Turbodaklrscand Viterbi decoders
while requiring lower complexity [48]. It has been showntthRDC codes, in the limit of
infinite block lengths, can achieve reliable communicatetinin 0.0045 dB of the Shan-
non limit. LDPC codes are a class of linear block codes [32fexponding to a parity
check matrixH. The parity check matri¥{;_p)«p for LDPC codes is a sparse matfix
consisting of onlyzeros andones. Given P information bits, the set of LDPC codewords
C'in the code space of lengéh, spans the null space of the parity check makfiin which:

CHT =0.

A sparse matrix is defined as a matrix having sufficient zenoh that the sparsity can be used to provide

savings in memory and/or computations
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For a(W,, W,.) regular LDPC code each column of the parity check makfikasV,
ones and each row ha#/,. ones. If degrees per row or column are not constant, then the
code isirregular. Some of the irregular codes have shown better performéwaceregular
ones. But irregularity results in more complex hardware iaedficiency in terms of re-
usability of functional units. Code ratR is equal toP/@ which means thatQ) — P)
redundant bits have been added to the message so as coerentits.

LDPC codes can be represented effectively by a bi-partitm@agraph. A bi-partite
graph is a graph (nodes or vertices are connected by uneliredges) whose nodes may be
separated into two classes, and where edges may only beatmgyigvo nodes not residing
in the same class. The two classes of nodes in a Tanner gra@itddodes and Check
Nodes. The Tanner graph of a code is drawn according to thenfiolg rule: “Check node
fi»3 =1,..,N — K is connected to bit node;,: = 1, ..., N whenever elemerit;; in H
(parity check matrix) is ane.” The LDPC decoding is shown in Figure 2.11.

LDPC decoding is based on belief propagation that usegiiterdecoding. While two
types of iterative decoders have been proposed; messagiagasd bit-flipping [48], in
this thesis, we focus on the message passing algorithm fardiey (also, called sum-
product decoding). To reduce hardware complexity in the-pumaluct algorithm, we use a
modified min-sum algorithm [49]. The modified Min-Sum aldbm iterates over rows and
columns of the parity-check matrik¥f, and operates on non-zero entries. In a Tanner graph
related to parity check matrix, edges can be seen as infamfiaw pathways and nodes as
processing units. For the parity check matrixthf,_pyxn,j = 1,...,Q — P,i =1,..., P,

assume:

e y;: Received bit.

e R; = {i: hj = 1}: The set of column locations of thees in the ;" row of parity

check matrixH.
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Figure 2.11 : LDPC decoding

Ry = {i' : hjy = 1,i' # i}: The set of column locations of thees in the ;% row

of parity check matrix{, excluding location.

C; = {j : hj = 1}: The set of row locations of thenes in the:™ column of parity

check matrixH.

Cij = {j'  hys = 1,5' # j}: The set of row locations of thenes in thei*” column
of parity check matrix, excluding locatiory.

r;i/(¢ij): The message to be passed from Check nfdéBit nodez;)to Bit node

z;/(Check nodgf;).

The modified Min-Sum decoding algorithm consists of thedeihg steps:
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Step O: Initialization: Read the values from channel in each Bit @ag and send the

messageg;; to corresponding Check nodg¢s

9ij = Ci = Yi- (2.34)

Step 1: Iteration : Compute the messages at Check nodes and pasgue unessages

to each Bit node.

7‘]'1' = (Hi’ERj\iai’j)- min ﬁi’j) (235)

i’ERj\i
where,
aij = Sign(gi;), Bi; = 11gl

Step 2: Compute messages at Bit nodes and pass to Check nodes.

in which ~ is the scaling factor.

Step 3: Update the initial values that were read from channel.

Qi = ci + Xjec;Tji (2.38)

Step 4: Threshold the values calculated in each Bit node to find awodg For every

row indexs:

1 ifQ; <0
P A (2.39)

0 else

Compare the codeword with set of valid codewordsCH” = 0 or if maximum

number of iteration is reached then stop, else go to step 1.
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Figure 2.12 : Operation count break-up for a 4G base-station

2.4.4 Memory and operation count requirements

The breakup of the operation count and the memory requiremiena 4G base-station are
shown in Figure 2.12 and Figure 2.13. An increase in comfjie&n be observed in the 4G
case to 190 GOPs for the 2x4 antenna configuration, incrgésim 23 GOPs in 3G. The

memory requirements are not much affected by the algoritiirhss, we can see that, as
algorithms change and data rates increase from 2G to 3G tind@mount of computations
per second increase almost by an order-of-magnitude cadpathe marginal increase in
memory requirements. However, this implies that memorydadth requirements need

to be increased in order to support more computations/skecon

2.5 Summary

This chapter presents the compute requirements of some aiotimputationally complex
wireless algorithms considered for cellular base-statiorthis thesis. Signal processing

algorithms used in wireless cellular base-stations shgwifstant amounts of data par-
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Figure 2.13 : Memory requirements of a 4G base-station

allelism. As wireless systems have evolved over time, thaebeen an increase in the
compute performance needed in wireless systems due tontlud{@neous increase in data
rates and the increase in the complexity of signal procgsaligorithms for better perfor-
mance. This increase in compute requirements with signifdata parallelism availability
motivates the need for high performance data-parallel D&iyd. The next chapter talks
about existing DSP architectures for implementing sucbrélgms and chapter 5 presents

efficient mapping of these algorithms on stream processors.
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Chapter 3

High performance DSP architectures

This chapter introduces the various types of high-perforcegrocessors that are used for

designing wireless communication systems.

3.1 Traditional solutions for real-time processing

DSP architectures designs have traditionally focused owiging and meeting real-time
constraints, for example, in cellular base-station [5]e Bther factors have been cost, flex-
ibility and time-to-market. Advanced signal processingpaithms, such as those in base-
station receivers, present difficulties to the designertduke implementation of complex
algorithms, higher data rates and desire for more channebile users) per hardware
module. A key constraint from the manufacturing point ofaie attaining a high channel
density. This implies that a large number of mobile usersinede processed by a single
hardware module (RF interface + DSP + co-processors) [5].

Traditionally, real-time architecture designs employ & ofiDSPs, co-processors, FP-
GAs, ASICs and application-specific standard parts (AS&®Psheeting real-time require-
ments in high performance applications such as wireless-sations [2-5]. Figure 3.1,
for example, shows a traditional base-station architeali@sign. The chip rate processing
is handled by the ASSP, ASIC or FPGA while the DSPs handleythnel rate processing
and use co-processors for decoding. The DSP can also implgrakts of the MAC layers

and control protocols or can be assisted by a RISC processor.
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Figure 3.1 : Traditional base-station architecture des[g@r5]

The heterogeneous nature of the architecture workloads¢hASICs,DSPs,FPGAS,
co-processors) in traditional designs make partitionindpe workloads and programming
them in this heterogeneous environment an important relsedrallenge [50, 51]. How-
ever, dynamic variations in the system workload such astrans in the number of users
in wireless base-stations, will require a dynamic re-parting of the algorithms which
may not be possible to implement in traditional FPGAs and@sSh real-time. The het-
erogeneous nature of the workload also impacts channeitgasssingle-chip integration
of the entire system will present difficulties in programmend adapting the various het-
erogeneous modules on the same chip.

This thesis presents the hypothesis that DSP architeatarelgse designed to meet real-
time requirements in wireless systems without the use ofiGgipn-specific hardware.
Hence, this thesis restricts the DSP design to homogenpoagrammable architectures

that meet the following criteria:

1. The programmable DSP architectures are fixed-point pemes. This is because

signal processing algorithms can be typically implememtefthite precision, often
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with less than or equal to 16-bit precisions [10]. This alidiar power efficiency in

the design.
2. The DSPS can support 100 or more arithmetic units to magtiree constraints.

3. The DSPs architectures do not have any applicationfspeptimization that is ren-
dered useless by the lack of use of that application. For pigrthis thesis does not
consider providing an instruction for Viterbi ACS [52] orte&rbi co-processors as
in the TI C6416 DSP [13, 53]. This is because such instrust@mrhardware cannot
be re-used by other applications and limits the programiiyabi the system. The
design choice to provide a high degree of programmabilitpraatically precludes
solutions such as combinations of DSPs with ASICs, FPGAB st#tic reconfigu-
ration, application-specific co-processors for DSPs ampdi@iion-specific standard

processors (ASSPs) in this thesis.

3.2 Limitations of single processor DSP architectures

Traditional single processor DSP architectures such a8#x DSP by Texas Instru-
ments [13] employ VLIW architectures and exploit instroatievel parallelism (ILP) and
subword parallelism. Such single processors DSPs can anly limited arithmetic units
(less than 10) and cannot directly extend their architesttio 100’s of arithmetic units.
This is because, as the the number of arithmetic units isesem an architecture, the size
of the register files and the port interconnections startidating the architecture [11, 12].
This growth is shown as a cartoon in Figure 3.2. The cartoarsésl to show that, foV
arithmetic units, the area of the register files grow#/a$54]. While the use of distributed
register files may alleviate the register file explosion atdbst of increased penalty in reg-

ister allocation [11], there is an associated cost in exiplgiLP due to limited size of reg-
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Figure 3.2 : Register file explosion in traditional DSPs vaiéimtralized register files. Cour-
tesy: Scott Rixner

ister files, dependencies in the computations and the ezgiatl functional unit allocation
and utilization efficiency of the compiler. It has been shdhait even with sophisticated
techniques, it is very difficult to exploit ILP beyond 5 [53}lence, multi-processor DSP

solutions are required to support 100’s of arithmetic units

3.3 Programmable multiprocessor DSP architectures

This thesis considers multiprocessors that are complgtelgrammable and have the po-
tential to support greater than 100 arithmetic units. Mudicessor architectures can be
classified into Single Instruction Multiple Data (SIMD) ahtlltiple Instruction Multiple
Data (MIMD) architectures, based on the Flynn taxonomy .[F&)r the convenience of
this thesis, we classify them further as shown in Figure S@ne of the examples shown
in Figure 3.3 may fit in other categories as well. The follogvsubsections traverse the
figure from left to right to demonstrate the benefits of exjplgi explicit data parallelism

for DSPs. The figure shows that the combination of exploirsgruction level parallelism
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(ILP) and Data Parallelism (DP) leads to the design of daralfel DSPs. Data-parallel
DSPs exploit data parallelism, instruction level par&lel and subword parallelism. Al-
ternate levels of parallelism such as thread level parsithebxist and can be considered

after this architecture space has been fully studied ankbeag

3.3.1 Multi-chip MIMD processors

The first MIMD processors have been implemented as looselgled architectures as in
the Carnegie Mellon Star machine (©nb8]. Each processor in a loosely coupled system
has a set of I/O devices and a large local memory. Processonfianicate by exchanging
messages using some form of message-transfer system [&@ely coupled systems are
efficient when interaction between tasks are minimal. Lioseupled DSP architectures
have been used in the Tl C4x processors [59, 60], where thencmcation between pro-
cessors is done using communication ports. The tradeoffsi®fprocessor design have
been the increase in programming complexity and the needifr /0O bandwidth and
inter-processor support. Such MIMD solutions are alsoadliffito scale with processors.
While the C4x processor is no longer used due to the desigigb&hperformance VLIW
DSPs such as the C6x [13], many 3rd party DSP vendors suchraaice [61] use com-
munication libraries built around the C4x communicatiomtpa@and use FPGASs to provide
the interconnection network. The disadvantages of theivolip MIMD model and archi-

tectures are the following:

1. Load-balancing algorithms for such MIMD architecturesot straight-forward [62]
similar to heterogeneous systems studied earlier in thapten. This makes it diffi-
cult to partition algorithms on this architecture modelexsplly when the workload

changes dynamically.
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2. The loosely coupled model is not scalable with the numlbgrocessors due to

interconnection and 1/0O bandwidth issues [58].

3. /O impacts the real-time performance and power consiompf the architecture.

4. Design of a compiler for a MIMD model on a loosely couplechétecture is difficult
and the burden is left to the programmer to decide on the ighgopartitioning on

the multiprocessor.

3.3.2 Single-chip MIMD processors

Single-chip MIMD processors can be classified into 3 categorsingle-threaded chip
multiprocessors (CMPs), multi-threaded multiprocesgdt$s) and clustered VLIW ar-
chitectures as shown in Figure 3.3. A CMP integrates two orencomplete processors
on a single chip [63]. Therefore, every unit of a processatuglicated and used inde-
pendently of its copies. In contrast, a multi-threaded gssor interleaves the execution of
instructions of various threads of control in the same gelTherefore, multiple program
counters are available in the fetch unit and multiple cotstare stored in multiple registers
on the chip. The latencies that arise during computationsifigle instruction stream are
filled by computations of another thread, thereby providiatjer functional unit utilization
in the architecture. The Tl C8x Multimedia Video Proces3d¥P) [64] is the first CMP
for DSPs developed at Tl. Other CMP systems have been projgosé as Cradle’s 3SoC,
Hydra and the IBM Power4 [63, 65]. Multi-threading increagestruction level parallelism
in the arithmetic units by providing access to more than glsimdependent instruction
stream. Since, the programmer has a detailed knowledgdaerfiependencies and sub-
tasks in many signal processing applications, controtuesibns for independent threads

can be easily inserted and this has been shown to be prouwndditsan image processing
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applications [66].

Clustered VLIW architectures are another example of VLIWhétectures that solve
the register explosion problem by employing clusters otfiomal units and register files.
Clustering improves cycle time in two ways: by reducing tistaihce the signals have to
travel within a cycle and by reducing the load on the bus [Qlistering is beneficial for
applications which have limited inter-cluster communimat However, compiling for clus-
tered VLIW architectures can be difficult in order to scheda¢ross various clusters and
minimize inter-cluster operations and their latency. Thmpilation problem gets harder
with increasing the number of clusters [12, 67, 68]. Henbgstered VLIW architectures
typically use a very small number of clusters. For examgie, TI C6x series of high
performance DSPs use 2 clusters [69] while the multifiow TRA&chitecture used 2-4
clusters [70].

Although single chip MIMD architectures eliminate the I/Gttleneck between multi-
ple processors, the load balancing and architecture gcalues still remain. Currently,
single chip MIMD architectures do not scale to providing '$0&f arithmetic units in the
processor and allowing tools and compilers to load baldmeartchitecture efficiently. The
availability of data parallelism in signal processing apgions is not utilized efficiently in

MIMD architectures.

3.3.3 SIMD array processors

SIMD processing refers to processing of identical processsdhe architecture that execute
the same instruction but work on different sets of data imlpelr An SIMD array processor
is referred to processor designs targeted towards impletien of arrays or matrices.
There are various types of interconnection methodologses! fior array processors such

as linear array (vector), ring, star, tree, mesh, systotaya and hypercubes. For example,
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llliac-1V implemented a mesh network array of 64 processms the Burroughs Scientific
Processor (BSP) implemented a linear vector processorithuaywrime number of memory
banks to reduce memory-bank conflicts [58]. ClearSpeed i &hother example of a
vector processor that only has nearest neighbor connectidithough vector processors
have been the most popular version of array processors, beessu processors are still

being used in scientific computing.

3.3.4 SIMD vector processors

The high levels of data parallelism demonstrated in chapiaiow vector processors to
approach the performance and power efficiency of custongdgsivhile simultaneously
providing the flexibility of a programmable processor [72Jector machines were the
first attempt at building super-computers, starting from @ray-1 machine in 1972 [58].
Vector processors such as Cray-1 were traditionally design exploit data parallelism
but did not exploit instruction level or sub-word parakshi. These processors executed
vector instructions such as vector adds and multiplicatart of a vector register file. The
number of memory banks is equal to the number of processobstiat all processors can
access memory in parallel. Newer vector processors sucbchisr MRAM and CODE [72]
exploit ILP, subword and data parallelism and have beengs®g for media processing

applications.

3.3.5 Data-parallel DSPs

The thesis defines data-parallel DSPs as architecturegxpédit ILP, SubP and DP as
explained in Figure 3.3. Examples of such processors aredBMteDSP [57], Motorola’s
RVSP [73] and the Imagine stream processor from Stanford [74

Stream processors are state-of-the-art programmablgeithies aimed at media pro-
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cessing applications. Stream processors enhance dati#epBSPs by providing a band-
width hierarchy for data flow in signal processing applicasi that enable support for hun-

dreds of arithmetic units in the data-parallel DSP.

Definition 3.1 Streamsrefer to the data which is produced or acquired as a stream of
elements, each of which is relevant for a short period of tierel which goes through
the same computations. The characteristics of data straertbat elements have a high

degree of spatial locality, but limited temporal locali#g] 74].

In addition to having spatial locality, data access pa#t@nrstream processor applica-
tions are such that entire input and output sets are knowen farithe computations. These
characteristics allow prefetching of data, hiding mematgmhcies.

Stream processors exploit data parallelism similar toargetocessors but with a few
differences as shown in [22]. The key differences are in geeaf a bandwidth hierarchy
and in instruction sequencing, allowing it to reduce bamilwdemands on memory and al-
lowing support for more ALUs than a vector processor for &gimnemory bandwidth [22].
Stream processors can also be thought of as clustered VLdéépsors with the exception
that each cluster works with the same instruction. Thisaadlstream processors to exploit
data parallelism instead of ILP and also allows the abilitystipport a larger number of
clusters in the architecture. The thesis specifically fesumn stream processors as an ex-
ample of data-parallel DSPs and uses stream processo@t@at/sthe contributions of this

thesis. Stream processors are explained in more detaiingkt chapter.

3.3.6 Pipelining multiple processors

An alternate method to attain high data rates is to providéiphel processors that are

pipelined. Such processors would be able to take advanfage streaming flow of data
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through the system. The disadvantages of such a designatréhéharchitecture would
need to be carefully designed to match the system througimaliis not flexible enough to
adapt to changes in system workload. Also, such a pipelipsés would be difficult to
program and suffer from I/O bottlenecks unless implemeate@l SoC. However, this is the
only way to provide desired system performance if the amotipairallelism exploitation

does not meet the system requirements.

3.4 Reconfigurable architectures

Definition 3.2 Reconfigurable architectures are defined in this thesis as programmable
architectures that change the hardware and/or the inteecbions dynamically so as to
provide flexibility with simultaneous benefits in executiime due to the reconfiguration

as opposed to turning off units to conserve power.

Reconfigurable architectures [4, 75—-83] are becoming asingly popular choices for
wireless systems. Such architectures are more favorabkesier-stations in an initial evalu-
ation phase as they don’t have stringent constraints onpawnea, form-factor and weight
as mobile handsets [83].

There have been various approaches to provide and use toisfigurability in pro-
grammable architectures [4]. The first approach is the 'FPG¥proach, which adds a
number of high-level configurable functional blocks to a gy@h purpose device to opti-
mize it for a specific purpose such as wireless [75, 76]. Thersdapproach is to develop
a reconfigurable system around a programmable ASSP. Thkapproach is based on a

parallel array of processors on a single die, connected bganfigurable fabric.

*General definition: A reconfigurable processor is a micropssor with erasable hardware that can

rewire itself dynamically.
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3.5 Issues in choosing a multiprocessor architecture for euation

The choice of a multiprocessor architecture for a wirelggdieation is not a simple one.
While this thesis primarily targets performance and powsecondary metrics such as cost,
precision, data width, memory, tools and multiprocessaladzlity [18] play a major role
in design choices for multiprocessors. Stream processdranee data-parallel DSPs by
providing a bandwidth hierarchy to support 100’s of arithimanits. They also have been
implemented, designed and fabricated to verify the systesigd. Open-source tools are
also available for designing and evaluating stream praces$tream processors are used
as the reference data-parallel DSP architecture in thigghe evaluate the contributions of
this thesis.

The architectures and tools that have been developed imthestry are not open-
source, providing little scope for architecture modifioas and/or investigating problems
or modifications with tools and compilers. This restricts oboice to academic research
tools, which are open-source, but do not have the completestgpport and/or have tools
still under the evaluation/development phase. Finallg, dinchitecture and tools should
be flexible enough in order to support modifications and aksauitable for application
workloads.

A stream processor simulator based on the Imagine streacegsor is available for
public distribution from Stanford. The Imagine simulatoutd be programmed in a high-
level language and allows the programmer to modify the nmectiescription features such
as number and type of functional units and their latency. dywe-accurate simulator
and re-targetable compiler also gives insights into thetional unit utilization, memory
stalls along with the execution time performance for th@atgms. A power consumption
and VLSI scaling model is also available to give a completdéupe of area, power and

performance of the final resulting architecture.
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3.6 Summary

The need for real-time processing in high performance egfitins make multiprocessor
DSPs necessary to support 100’s of arithmetic units. There aariety of combinations
for multiprocessor DSPs in the (instruction level par@l®l, subword parallelism, data
parallelism, coarse-grained pipelining and multi-thiagyl space. The greater the types
of parallelism and pipelining exploited in the DSP, the ¢ge#s the complexity of the as-
sociated software and compiler tools in order to supportatichitecture. Current single
processor DSPs such as the TI C64x explore the (instruathegl parallelism, subword
parallelism) space. This thesis explores the (instrudewal parallelism, subword paral-
lelism, data parallelism) space using stream processdrsimgreased complexity in the
software and compiler tools for investigating this thesis ferformance benefits due to
the abundant data parallelism observed in the algorithnthapter 2. The next chapter
presents the architecture framework of stream processarsliacusses the complexity of

the tools and the programming language.
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Chapter 4

Stream processors

4.1 Introduction

Special-purpose processors for wireless communicatierisqm well because of the abun-
dant parallelism and regular communication patterns witbtiysical layer processing.
These processors efficiently exploit these charactesistidkeep thousands of arithmetic
units busy without requiring many expensive global comroation and storage resources.
The bulk of the parallelism in wireless physical layer psgiag can be exploited as data
parallelism, as identical operations are performed regabn incoming data elements.
A stream processor can also efficiently exploit data pdistite as it processes indi-
vidual elements fronstreamsof data in parallel. Figure 4.1 shows the various paralelis
levels exploited by a stream processor. Traditional DSRdo@xinstruction level paral-
lelism (ILP) [55] and subword parallelism [84, 85]. Streangessors, being data-parallel
DSPs, exploit data parallelism (DP) similar to Single lastron Multiple Data (SIMD)
vector processors, in addition to ILP and subword parahelienabling high performance

programmable architectures with hundreds of Arithmetit bogic Units (ALUS).

Definition 4.1 The general definition oflata parallelismis the number of operations in
the data that can be executed in parallel. Thus, subwordlglema is also a form of data
parallelism. Moreover, in many machines, loops that hava garallelism can be unrolled
to show up as instruction level parallelism. Hence, in thesis data parallelisms defined

as the parallelism available in the data after exploitingveard parallelism (packing) and
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Figure 4.1 : Parallelism levels in DSPs and stream procgssor

instruction level parallelism (loop unrolling).

Streams are stored in a stream register file, which can effigieransfer data to and
from a set of local register files between major computatidigal register files (LRFs),
co-located with the arithmetic units inside the clustengally feed those units with their
operands. Truly global data, data that is persistent througthe application, is stored
off-chip only when necessary. These three explicit levearage form an efficient com-
munication structure to keep hundreds of arithmetic urfiisiently fed with data. The
Imagine stream processor developed at Stanford is thefiptémentation of such a stream
processor [22].

Figure 4.2 shows the architecture of a stream processdn, Gviarithmetic clusters.

Operations in a stream processor all consume and/or prastuegms which are stored
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Figure 4.2 : A Traditional Stream Processor

in the centrally located stream register file (SRF). The twajanstream instructions are
memory transfers and kernel operations. A stream memangfeaeither loads an entire
stream into the SRF from external memory or stores an ertears from to the SRF to
external memory. Multiple stream memory transfers can osiooultaneously, as hardware
resources allow. A kernel operation performs a computatiom set of input streams to
produce a set of output streams. Kernel operations arerpegtbwithin a data parallel

array of arithmetic clusters. Each cluster performs theesapguence of operations on
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independent stream elements. The stream buffers (SB®) #ilkosingle port into the SRF
array (limited for area/power/delay reasons) to be timdtiplaxed among all the interfaces
to the SRF, making it appear that there are many logical patdsthe array. The stream
buffers (SBs) also act as prefetch buffers and prefetchdkeefdr kernel operations. Both
the SRF and stream buffers are banked to match the numbensiéd. Hence, kernels
that need to access data in other SRF banks need to use theluster communication
network for communicating data between the clusters.

Figure 4.3 shows the internal details of a stream processsiec. The arithmetic clus-
ters get data from the stream buffers connected to the SRFIoEal register files (LRF)
enable support for 10’s of ALUs within each cluster, overaugthe register file area and
interconnection network explosion with increasing ALUghe traditional centralized reg-
ister file architectures [54]. Kernels executing in thehametic clusters, sometimes need
to index into small arrays or lookup tables. The scratchpatlin the clusters provide
this functionality. The intra-cluster communication netwallows communication of data
within the cluster ALUs and the scratchpad while the infeister communication network
allows communication of data across clusters. The intestel communication unitis used
for applications that are not perfectly data parallel anedi® communicate variables or
data across clusters. The inter-cluster communicatiorr®pned by the communication

unit within each cluster.

4.2 Programming model of the Imagine stream processor

Stream applications are programmed at two levels: kernglstieam. The kernel code
represents the computation occurring in the applicatioméwhe stream code represents
the data communication between the kernels. Figure 4.4 sktwsvstream processor pro-

gramming model. The kernel code takes the input stream patigrms the computations
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Figure 4.3 : Internal details of a stream processor cluatipted from Scott Rixner [6]

and produces output streams, while the stream code diredataflow within the stream
processor.

Figure 4.5 provides an example of stream processor prognagnusing kernels and
streams. The example code in Figure 4.5(a) shows a toy eranfiplector addition and
subtraction, that shows ILP, DP and subword parallelisme $tieam code uses C++
derivatives and includes library functions that issueastrenstructions to the stream pro-
cessor. The kernel programs operate on these data strednesegsute on the microcon-
troller and arithmetic clusters of the stream processore @&ample shows the example
broken into stream and kernel components in Figure 4.5(hg Siream code consists of

the add and subtract kernels and directs the data to and fimketnels similar to functions



57

Kernel
Input Stream Output

data data
Matched Interference
Received Filter Cancellation Viterbi Decoded
signal ” decoding bits
Channel

estimation

Figure 4.4 : Programming model

in C. The kernels are written for a single cluster with thewlealge that all clusters will

be executing the same instruction, but on different datathénevent where inter-cluster
communication is required, each cluster has a cluster igvtagh can be used to identify
the cluster and send/receive data from/to the right clu$tes subtract kernel exploits sub-
word parallelism by doing two subtracts simultaneouslye Timer loop in the cluster is
unrolled and pipelined to exploit ILP. Thus, ILP, DP and sobsvparallelism are exploited

in stream processors using the kernel/stream code progragnmodel.

4.3 The Imagine stream processor simulator

The Imagine stream processor simulator [86] is a cycletatelsimulator for stream pro-
cessors developed at Stanford. The stream and kernel coelegitien in StreamC and
KernelC languages, which are a subset of the C++ programlaimguage. The language
syntax is available in the User’s guide [86].

Figure 4.6 shows the Imagine simulator programming modiest,Rhe kernelC code
is scheduled using the scheduler tast¢). Theiscdtool is used to compile all kernels

before using the Imagine cycle-accurate simulator. Thedualer produces up to four
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int a[1024], b[1024],sum[1024];
short c[1024],d[1024], diff[1024];

for (i=0;i<1024 ; ++i) DP
{
sum[i]=a[il+blil; | | p

diff[i] = c[i] -d[i|; «<—— | Subword

(a) Example Program

kernel add(istream<int> a, istream<int> b, ostream<int> sum)

{
int inputA, inputB, output;
loop_stream(a)
{
a >> inputA;
b >> inputB;
stream<int> a(1024); _ .
stream<int> b(1024); output =a + b;
stream<int> sum(1024); .
stream<hali2> ¢(512); | sum << output;
stream<half2> d(512);
stream<half2> diff(512); }
add(a,b,sum); - -
sub(c,d,diff); kernel sub(istream<half2> c, istream<half2> d,
ostream<half2> diff)
{

int inputC, inputD, output;
loop_stream(c)
{

¢ >> inputC;

d >> inputD;

output=c- d;
// 2 simultaneous subtracts due to subword parallelism

diff << output;

}

(b) Stream processor implementation

Figure 4.5 : Stream processor programming exar(glés regular code ; (b) is stream +
kernel code
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Figure 4.6 : The Imagine stream processor simulator progriagnmodel

output files for each kernel. It first produces a human-reledatdicrocode (.uc) file that
is used by the cycle-accurate simulator to run the microotlat. The instructions in the
microcode are executed by the microcontroller which théredales the operations in the
clusters. A schedule visualizer file (.viz) is also producdthe .viz file can be read by
the schedule visualizeB¢hedVigwhich shows a graphical representation of the compiled
schedule of the kernel. A binary microcode file (.raw) file anslpecial binary file (.lis)
directly readable by Verilog, can also be output using conuiriene options. The machine
description file (.md) is used kigcdto tell the compiler the nature of the architecture, the
type and number of functional unit¢scd being a retargetable compiler can compile for
the architecture based on the architecture descripticethas the machine description file.
The output of the scheduler and the streamC code feed intbrtagine cycle-accurate
simulator (sim). The simulator can also function in a debug moli@epug, where only

functional verification is done. The cycle-accurate sirtarigrovides detailed statistics
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Figure 4.7 : The schedule visualizer provides insights erstihedule and the dependencies

such as execution time, memory stalls, microcontrolldisséad functional unit utilization.

The scheduler output for the visualizer (.viz) can be useprtwide insights on the
scheduled output and the dependencies. These insighthearbé used to modify the
kernelC program and/or the machine description file in otdémprove the performance
of the kernel code on the stream processor. Figure 4.7 st@esheduler visualizer output
for a kernel. The visualizer shows the schedule of the ojeraitin each cluster of the
stream processor and the dependencies between the vanati®hal units (not shown in
the figure for clarity reasons). The kernelC code is modifi@skla on the visualizer output
until the programmer is satisfied with the output schedulimefkernelC code. The figure
shows a typical schedule for a floating point matrix-matrixltiplication on 3 adders and
2 multipliers. FMUL and FADD correspond to the floating pomultiplication and add
instructions and the Y-axis shows the execution time in $eofirtycles.

The schedule visualizer also provides insights on mematigssts shown in Figure 4.8.
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The figure shows the schedule of the microcontroller. If tineasn data to run the kernel
is not present in the SRF, then the microcontroller stabiskbrnel until data from external

memory is loaded in the SRF, causing memory stalls.

4.3.1 Programming complexity

Your new hardware won't run your old software

— Balch’s Law

The use of a non-standard programming language is one okthbdttlenecks in the
usage of the Imagine stream processor programming modelstféam processor compiler
tools do not perform automatic SIMD parallelization and tla¢aflow of the application
must be carefully scheduled by the programmer. The SIMDlletization is simple for

applications such as vector addition where the parall@izas explicit, but the analysis
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gets difficult with more complex kernels with multiple legeaif data parallelism.

The use of a non-standard language implies that all apmitatvritten by other pro-
grammers need to be re-written in order to map to stream psoce. Although a C com-
piler for stream processors would provide this functiagathe design of such a compiler
that automates the SIMD parallelism and breaks the codesirdgams and kernels is a hard
5and important research problem by itself [87].

Furthermore, the mapping of an algorithm into streamC anget€ code is not straight-
forward. Ideally, kernels should be written such that thenkbcode maximizes the func-
tional unit efficiency, thereby maximizing the performarmde¢he stream processor. There
is no unique way of achieving this goal and the burden is tethe programmer to design
efficient kernels. However, thechedVizool provided with the simulator enables the pro-
grammer to efficiently and visually analyze the static sciedf the kernel and provides
insights into the design of efficient kernels.

Note that there is always a trade-off between high level aogning using standard
languages and the efficiency of the compiled code. In manyedadd systems involving
DSPs, the difference between C code and assembly code caficsigtly impact perfor-
mance [88]. Even for compiling C code, the DSP programmedsiéeknow the tradeoffs
in the usage of the various compiler options. Memory managnm DSPs is also not
automated and has to be allocated by the programmer. Fonthey the use of certain
features in DSPs such as Direct Memory Access (DMA) or cagseors requires the pro-
grammer to have a detailed knowledge of the DSP architeetudethe application [89].
The Imagine stream processor implements a streaming mesgstgm using memory ac-
cess scheduling [90]. The streaming memory system furgtasnan automated DMA
controller, prefetching streams of data into the strearnstegfile of the stream processor,

eliminating the need to hand-schedule memory operatiohmagine.
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Thus, providing efficient programming tools is still a cleaifje for processor designs
for application-specific systems. While the current prograng complexity of the stream
processor may limit its widespread acceptance, it doesmoact the contributions of this
thesis. Further research in providing programming toalsfieeam processors that can au-
tomate SIMD parallelization and provide interfaces withnstard programming languages
such as C/C++ is required for rapid and efficient softwarestiggment for stream proces-

SOrs.

4.4  Architectural improvements for power-efficient streamprocessors

This thesis extends the base stream processor in two diomengtirst, the thesis explores
the entire architecture space to come up with processogriesd meet real-time require-
ments at the lowest power. The Imagine stream processagrdasttanford can be viewed
as an example of one specific mapping of the stream processutegture space. The
stream processor space is shown in Figure 4.9. New prosesanrbe designed in this
space for applications such as wireless basestations. Jure §hows a (3 adder, 1 multi-
plier, 64 cluster) configuration in fixed point suitable fd& ®ase-stations as an example,
which is elaborated in detail in chapters 6 and 7.

Secondly, this thesis extends the stream processor arthiteat the inter-connection
network level by proposing a multiplexer network betwees 8RF and the clusters that
allows unused clusters to be turned off when data paratieisnsufficient. A broadcasting
network is also proposed to replace the inter-cluster comoation network that reduces
the interconnection length Byg, (clusters). The proposed architectural improvements are
shown in Figure 4.10. These improvements allow power savinghe stream processor

and are discussed in detail in chapters 5 and 7.
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Figure 4.9 : Architecture space for stream processors

4.5 Summary

Stream processors, being data-parallel DSPs, exploitistguction level parallelism, sub-
word parallelism and data parallelism. Stream processare been shown the ability to
support 100’s of arithmetic units due to the use of a bandwitérarchy, enabling high
performance DSP systems. The exploitation of data pasafieh stream processors in-
creases the complexity of the programming language and iiagools. The following
chapter 5 shows how the algorithms presented in chapterdtodxe designed for efficient

implementation on stream processors.
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Chapter 5

Mapping algorithms on stream processors

This chapter presents the mapping of wireless algorithstaudsed in chapter 2 on stream
processors, based on the Imagine stream processor simidde mapping algorithms
on stream processors, the following factors can used asrpsahce indicators: the num-
ber of adders, multipliers, clusters and clock frequenaydee to meet real-time perfor-
mance, the functional unit utilization of the adders andtipliérs within a cluster and the
cluster utilization, memory stall minimization, companis with the theoretical number
of additions and multiplications required by the algoritAmd the amount of data paral-
lelism in the algorithm vs. the number of clusters used inatohitecture. Many of these
performance indicators require trade-offs that need todbefally explored and analyzed
during the mapping process. There can be orders-of-matmitariations in performance
of algorithms depending on how the mapping of the algoritisnsiplemented on stream
processors. This chapter shows the mapping of wirelessitdgs on stream processors

and the associated trade-offs.

5.1 Related work on benchmarking stream processors

Stream processors have been benchmarked and their penfoerstudied for workloads
such as stereo depth extraction, MPEG-2 encoding, QR deausitign, space-time adap-
tive processing, polygon rendering, FFT, convolution, D&1Td FIR [8]. Table 5.1 shows

the performance results of these applications on the Inesgjhream processor.
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Applications Arithmetic Bandwidth Application Performance

Stereo Depth Extraction 11.92 GOPS (16-bit) 320x240 8-bit gray scale at 198 fp
MPEG-2 Encoding 15.35 GOPS (16- and 8-bit) 320x288 24-bit color at 287 fps

QR Decomposition 10.46 GFLOPS 192x96 decomposition in 1.44 ms
Polygon Rendering (PR) 5.91 GOPS 35.6 fps for 720x720 (ADVS)
PR with Shading 4.64 GOPS 16.3M pixels/sec, 11.1M vertices/sq
Discrete Cosine Transform  22.6 GOPS (16-bit) 34.8 ns per 8x8 block (16-bit)
7x7 Convolution 25.6 GOPS (16-bit) 1.5 us per row of 320 pixels
FFT 6.9 GFLOPS 7.4 us per 1,024-point FFT
STAP 7.03 GOPS 11.7 ms per interval
FIR 17.57 GOPS (16-bit) 2048 output, 13-tap FIR filter

Table 5.1 : Base Imagine stream processor performance fdiarapplications [8]

This chapter presents the mapping of algorithms for wisesgstems as a broader ex-
ample with stringent real-time constraints for the implatagon of algorithms on stream
processors. While wireless communication applicatioasesimany of the algorithms such
as FFT, QRD and FIR filtering, wireless applications haveerfoiite-precision require-
ments than media processing applications, have many ntzegd operations and have
complex error-control decoding algorithms, as seen in @rah Wireless applications
also need to target high functional unit efficiency and mimarmemory stalls for power

efficiency in the architecture.

Y
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5.2 Stream processor mapping and characteristics

Figure 5.1 presents the detailed view of the physical layecgssing from a DSP perspec-
tive. The A/D converter provides the input to architectuviich is typically in the 8-12 bit
range. However, programmable architectures can typisaibpport only byte-aligned units
and hence, we will assume a 16-bit complex received datseahgut of the architecture.
Since the data will be arriving in real-time at a constang i@t million chips/second), it
becomes apparent from Figure 5.1 that unless the processituge at the same rate, the
data will be lost. The real and imaginary parts of the 16-biadare packed together and
stored in memory. Note that there is a trade-off betweenngiaf the low precision data
values in memory and their efficient utilization during cangdions. Certain computations

may require the packing to be removed before the operatiande performed. Hence,
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at every stage, a careful decision was made to decide thet@ftpacking on the data for
memory requirements and its effect on the real-time perdoirs.

The channel estimation block does not need to be computed ei¥e&nd needs evalu-
ation only when the channel statistics have changed over. tirar the basis of this thesis,
we classify the update rate of the channel estimates as arc64pdata bits. The re-
ceived signal first passes through a code matched filter wirimbides initial estimates of
the received bits of all the users. The output of the code neakdilter is then sent to three
pipelined stages of parallel interference cancellatid&)®here the decisions of the users’
bits are refined. The input to the PIC stages are not packedvide efficient computation
between the stages. In order to exploit data parallelisrthiosequential Viterbi traceback,
we use a register-exchange based-scheme [7], which peoaitteward traceback scheme
with data parallelism that can be exploited in a parallehaecture. The Viterbi algorithm
is able to make efficient use of sub-word parallelism and égiihe detected bits are packed
to 4 bits per word before being sent to the decoder. Whiléhallutsers are being processed
in parallel until this point, it is more efficient to utilizeath parallelism inside the Viterbi
algorithm rather than exploit data parallelism among uséisis is because processing
multiple users in parallel implies keeping a lot of localiaetmemory state in the archi-
tecture that may not be available. Also, it is more desirébkxploit non-user parallelism
whenever possible in the architecture as those compusatiexm be avoided if the number
of active users in the system change. Hence, a pack and eeJoudfer is used to hold
the detected bits until 64 bits of each user has been receiliee transpose unit shown
in Figure 5.1 is obtained by consecutive odd-even groupoegaeen the matrix rows as
proposed in the Altivec instruction set [91].

The output bits of the Viterbi decoder are binary and heneedrto be packed before

sending it to the higher layers. Due to this, the decodingised32 bits at a time so that



70

a word of each user is dumped to memory. During the forward gasugh the Viterbi
trellis, the states start converging as soon as the lengtiegfass exceeds 6wherex is
the constraint length. The depth of the Viterbi trellis ipkat 64 where the first 32 stages
contain the past history which is loaded during the algarithitialization and the next 32
stages process the current received data. The path metdcsuaviving states of the new
data are calculated while the old data is traced-back angpddmNhen a rate/2 Viterbi
decoding (typical rate) is used, the 64 detected bits of eaeh in the pack and re-order
buffer gets absorbed and new data can now be stored in thiesbloc

Note that the sequential processing of the users impligsstirae users attain higher
latencies than other users in the base-station. This waldena significant problem as the
users are switched at every 32 bit intervals. Also, the Istestian could potentially re-order
users such that users with more stringent latency requitenseich as video conferencing
over wireless can have priority in decoding.

For the purposes of this thesis, we will consider a Viterlwatkng based on blocks of
64 bits each per user. We will assume that the users use ami$tingths 5, 7 and 9 (which
are typically used in wireless standards). Thus, userslaubr constraint length will have
lower amounts of data parallelism that can be exploited ¢tvimnplies that power will be
wasted if the architecture exploits more data parallelisamtfor the lowest parallelism
case) but will have the same decrease in computational exityhs well.

Since performance, power, and area are critical to the degigny wireless communi-
cations system, the estimation, detection, and decodguitims are typically designed
to be simple and efficient. Matrix-vector based signal psso® algorithms are utilized
to allow simple, regular, limited-precision fixed-pointroputations. These types of op-
erations can be statically scheduled and contain signtfigarallelism. It is clear from

the algorithms in wireless communications that variable@am of work needs to be per-
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formed in constant time and this motivates the need for abflexarchitecture that adapts
to the workload requirements. Furthermore, these charsiite are well suited to parallel

architectures that can exploit data parallelism with samfmited precision computations.

5.3 Algorithm benchmarks for mapping: wireless communicatons

The benchmarks serve to study the design performance afugstream processor con-
figurations, design efficient mapping of the kernel benclk®and to extrapolate the per-
formance of new algorithms proposed in this thesis that ieset kernels. While perfor-
mance of standard media processing algorithms have beem@mted and mapping stud-
ied, wireless algorithms such as Viterbi decoding, matnixtrix multiplications and matrix
transposing have not been extensively implemented onnstpeacessors and hence, their
mapping on stream processors is not well-known. Differefiwsare realizations of the
dataflow in the algorithms can affect the performance ofastr@rocessors by more than
an order-of-magnitude. This section documents the mapygiagme of the major wireless

algorithms used in this thesis.

5.3.1 Matrix transpose

Since there is only limited storage within the arithmetiosters, implementing matrix
transpose by using the internal register files, scratchpaldtize inter-cluster communi-
cation network is not a feasible solution. However, a trasspof a matrix can be obtained
by consecutive odd-even groupings between the matrix r&djs [This approach, based
on the Altivec instruction set, can be directly applied toadaarallel architectures and is
shown in Figure 5.2. The matrix is divided into 2 parts, basedows and an odd-even
grouping is performed on the matrix elements. Iterating grbcedurelog,(rows), pro-

duces a transpose of the matrix. This is best understood Hkingoout a small example as
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< N : IN
0 A B C D | —~ A B C D
1 3 | 4
ouT
M2l 1 [ 213 ]a] M ALl1 LB
C 3 D
Repeat LOG(M ) times
{
| IN = OUT;

}

Figure 5.2 : Matrix transpose in data parallel architedwsing the Altivec approach

shown in Figure 5.3.

Figure 5.4 shows the real-time performance of stream psocegor matrix transpose
within the clusters. For & x N matrix transpose, the data parallelism in the architeacture
@. Thus, for a 32x32 matrix transpose, up to 512 elements carmbgposed in parallel.
If we assume 32-bit data (no subword parallelism), we carm hgwvto 512 clusters in the
architecture. However, greater than 128 clusters is diffiouphysically implement in a
real-architecture [23] and is hence, shown as a dotted hirnleéigure 5.4. The physical
limitations in scaling the architecture beyond 128 clusteise due to the interconnection
network between the clusters becoming a bottleneck topgahdgata from one end of the
cluster to another. Also, an increase in chip area decre¢hsageld and reliability of the
chip during fabrication.

The functional unit utilization of the stream processor fimatrix transpose is shown
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1 2 3 4 1 9210 15 913

56 7 8 » 311 412 5 261014

9101112 513 6 14 3 71115

13141516 715 816 4 81216
Steps for a 4x4 transpose on 4 clusters

readin1t 2 3 4

readin910 1112

change 123 4 into 1 3 2 4 using the comm network
change 910 11 12 into 11 9 12 10 using the comm network
select 1 92 10 as each is in a different cluster

select 11 3 12 4 as each is a different cluster

change 11 312 4 into 3 11 4 12 using the comm network
sendout19210and3 11412

ONOoOOALND=

repeat on the next set of inputs toget5136 14and 7 158 16....
repeat once more to get the matrix transpose

Figure 5.3 : A 44 matrix transpose on a 4-cluster processor

in Figure 5.5. As expected, the functional unit utilizatisrvery poor due to the lack of
arithmetic operations in matrix transpose (odd-even graupnly). Hence, even a 1 adder,

1 multiplier configuration only attains 35% and 17% utilibaton stream processors.

5.3.2 Matrix outer products

Matrix outer products occur frequently in operations sucbarelations in channel estima-
tion. A matrix outer product is easily implemented on dateafsal architectures because
the input to the matrix outer products are vectors and carabidyestored within the clus-

ters, enabling all computations to occur within the clusi@nce the 2 vectors have been

read in.
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Figure 5.4 : 32x32 matrix transpose with increasing cligster

Auto-exploration of adders and multipliers for matrix transpose
10)

Execution time (normalized) with FU utilization (+,*)

#Multipliers
#Adders

Figure 5.5 : ALU utilization variation with adders and mplters for 32x32 matrix trans-
pose
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Figure 5.6 : Performance of a 32-length vector outer prodesalting in a 32x32 matrix
with increasing clusters

Figure 5.6 shows the performance of a 32-length vector qartatuct on data parallel
architectures. The parallelism of the matrix outer prodsidimited by the parallelism of
the input vectors, although it is conceivable that if all #lements of 1 vector could be
broadcast to all elements of the other vector in a hypotakdichitecture, the entire matrix
can be computed simultaneously. The number of operatien©gv?).

Figure 5.7 shows the ALU utilization variation with adderslanultipliers. While an
outer product in theory does not have any additions, incneimg the loop indices in a
software implementation cause additions. However, it israsting to note that adding
of more than 1 arithmetic unit does not give any performaneeebts for a 32-cluster

implementation as there is not sufficient instruction Igaaiallelism to be exploited.

5.3.3 Matrix-vector multiplication

Matrix-vector multiplications and matrix-matrix multiphtions are extremely common in

advanced signal processing algorithms for wireless syst®atrix-vector multiplications
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Auto-exploration of adders and multipliers for outerproduct

Execution time (normalized) with FU utilization(+,*)

#Multipliers #Adders

Figure 5.7 : ALU utilization variation with adders and mpliers for 32-vector outer prod-
uct

can be of two typest? x b and A x b, where the difference is the way the matrix data is
used for the computation (row-wise or column-wise). Altbuhe data ordering does not
affect the number of arithmetic operations, it can have aisgg@nt impact on performance,
especially when implemented on a data parallel architectur

Figure 5.8 shows the mapping of a matrix-vector multiplmatn a data parallel ar-
chitecture. The vector is first loaded in the clusters andrib#ix is streamed through the
clusters to produce the resulting vector. As can be seen figare 5.8(a), matrix-vector
multiplication of the formA xb can be very inefficient on stream processors as the output of
the dot product of the row of a matrix with the vector resultsiscalar. While computing
the dot product in a tree-based fashion on a parallel aathite, onlylog(n) of the clusters
on an average, do useful work, resulting in loss in efficieMdgtrix-vector multiplication
of the formA* xb maps better on stream processors as each cluster can can@iéement
of the result and the dot product is iterated within a clystiminating the need for inter-

cluster communication for the dot-product computatiomc8id? x b is more efficient,
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C A(i,:) ) C A(i,)*b(i) >
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+
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v(i) = A(i,:)*b ( y = A**b )

(@y=AD (b)y = A*b (c) y = (AH)H*b

Figure 5.8 : Matrix-vector multiplication in data paralbaichitectures

there is an alternative way of computirgs b as(A#)# x b, which does a matrix transpose
in the clusters as shown earlier and follows it = b.

Figure 5.9 shows the performance of the three different waysatrix-vector compu-
tations with increasing clusters. It can be seen that thepotation of A x b provides
almost an order of magnitude better performance than theutation of A x b, demon-
strating the importance of data ordering for computatiana data parallel architecture. It
is also extremely interesting to note that the performaricé b does not change signif-
icantly with the number of clusters. The reason for this & s the number of clusters
increase, the amount of work inside the kernel decreasadinig to lower ILP. Also, the
efficiency of the dot product computation decreases withemsing clusters due to the in-
crease in inter-cluster communication for the dot prodoechgutation. The third scheme,
shown in Figure 5.8(c), has a high starting overhead duedathtrix transpose being
done within the clusters, but scales well with the numbedwdters, narrowly beating the

computation ofA x b.
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Figure 5.9 : Performance of a 32x32 matrix-vector multgtion with increasing clusters

5.3.4 Matrix-matrix multiplication

Matrix-matrix computation can be implemented as a matagtgr computation over a loop
except for the fact that the matrix cannot be stored in a reigas in the matrix-vector case.
Hence, both the matrices need to be streamed through therslder computation of the
matrix-matrix product. Also, vector elements in matrixete multiplications are stored
in adjacent locations, irrespective of whether the vecdreated as a row or a column
vector. This is incorrect in the case of vectors that are glag matrix in matrix-matrix
multiplications.

Figure 5.10 shows the implementation of different forms 82a32 matrix-matrix mul-
tiplication on stream processors. The figure shows thattdredard matrix-multiplication
A x B maps well on stream processors as the elements of every ramx nda can be
broadcast to all rows of matriB to compute the dot-product of the result without any

inter-cluster communication except broadcasting, sintibathe A# x b computation in
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Figure 5.10 : Performance of a 32x32 matrix-matrix multgtion with increasing clusters

the matrix-vector product, where the matrix refersBand the vector refers to the row
of matrix A. The computation oA x B, similar to the computation oA b requires
inter-cluster communication and has decreasing ILP withieasing clusters, providing
no benefits with increasing clusters. However, since theusmof computation to com-
munication ratio is higher in matrix-matrix multiplicatis, transposing the matri® can
provide significant performance improvements as the costeomatrix transpose is amor-
tized over the increase in computations. The computationadfix-multiplications involv-
ing A% x B andA# x B¥ is more expensive in stream processors as column elements of
matrix A are required to be broadcast to the elements of m&rixHence, computing
C = A" andC x B for computingA# x B, and computing * A and transposing the re-
sult for computingA# «+ B¥ are the preferred solutions for these types of matrix-matri

multiplications.
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5.3.5 Viterbi decoding

The Viterbi algorithm shows data parallelism in the 'addnpare-select’ operations of its
trellis. However, the data parallelism is again implicitlahe trellis needs to be re-ordered
before the parallelism can be exploited by a data-paraitbligecture. Figure 5.11(a) shows
the trellis structure used in Viterbi decoding. The datafselism of the trellis is dependent
on the constraint length of the convolutional code and isoarptial with the constraint
length. Hence, stronger codes (larger constraint lengtiib& more data parallelism. If we
assume that each trellis state (or a group of states in thes e& Viterbi exhibits subword
parallelism) in the vertical direction maps to a clusteg, dtommunication between adjacent
nodes of the trellis in the horizontal direction requiregircluster communication. Hence,
the Viterbi trellis needs to be re-ordered between suceessid-compare-select operations
as shown in Figure 5.11(b) in order to make the communicatipticit and map to a data-
parallel architecture. The re-ordering of the data reguéne odd-even grouping as can be
observed from the input and output node labels in the shuffidis.

The traceback in Viterbi decoding to parse the survivorestand recover the decoded
bits is sequential and uses pointer-based addressing @ twalecode the data. Hence,
traceback in Viterbi is not suitable for implementation ateda-parallel architecture. How-
ever, the surviving states can be updated and the decodeaétivered using an alternative
approach, based on register exchange [7]. In register ageh#éhe register for a given node
contains the information bits associated with the surgvpartial path that terminates at
that node. This is shown in Figure 5.12. The figure shows thister contents during de-
coding. Only the surviving paths have been drawn, for glaiis the decoding operation
proceeds, the contents of the registers are updated andregexth The register exchange
method structure looks exactly the same as the add-conspéeet operation structure and

hence, can exploit data parallelism in the number of stdtess, the same odd-even group-
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Figure 5.11 : Viterbi trellis shuffling for data parallel &rtectures

ing can be applied for register-exchange and map it on toaukatallel architecture.

The number of bits that a register must store is a functioh@ftiecoding depth, which
is typically around 5 times the constraint length. Sincestegs in programmable architec-
tures are typically 32-bit wide, we use 2 registers per stadeir current implementation in
order to provide a decoding depth of 64 so that constraimgtheof 5-9 are handled. More
registers can be added if further decoding depths are desirine application for better

performance.



Figure 5.12 : Viterbi decoding using register-exchange [7]

The real-time performance of Viterbi decoding is shown igufe 5.13, the perfor-
mance variation is studied with the number of clusters ardtnstraint lengths. It can be
seen that increasing the number of clusters provides hegtéormance in the application
due to data parallelism exploitation and after the entita garallelism has been exploited,
additional clusters do not provide any gains. For exampmastaint length 9 Viterbi de-
coding shows a data parallelism of 64 since it has 256 statgés<an pack 4 states in a
32-bit register using subword parallelism. It is intenegtto observe from the figure that
decoding for all constraint lengths show the same perfoomamce the maximum data
parallelism is achieved.

Figure 5.14 shows the ALU utilization for Viterbi decodingdtivvarying number of
adders and multipliers per cluster. The execution timeeabesas with increasing adders and
multipliers but saturates after the 3 adder, 1 multiplierfuration with a functional unit
utilization of 62% each on the adders and the multiplierse fimctional unit utilization is
almost independent of the constraint length as the consteigth only changes the data

parallelism (loop iteration count) in the application.
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Figure 5.13 : Viterbi decoding performance for 32 users &oying constraint lengths and
clusters

Auto—exploration of adders and multipliers for kernel "acskc"

Instruction count with FU utilization(+,*)

5 5 #Multipliers

#Adders

Figure 5.14 : ALU utilization for ’Add-Compare-Select’ kezl in Viterbi decoding
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5.3.6 LDPC decoding

The access patterns for the bit node and check node comgmgatiLDPC decoding shown
in Chapter 2 create bottlenecks in stream processor impigtiens. Although similar
access problems are faced in Viterbi decoding, the decoaiymsature of the Viterbi
trellis graph made it possible for re-arranging the datdnwitsimple odd-even data re-
ordering. Random interconnections are necessary betwieandcheck nodes [48] for
providing performance benefits using LDPC. The Tanner gfaphDPC decoding is also
a connected graph (path exists from every node to any othg)nmaking it difficult to
re-order the data for grouping and reducing inter-clusbenmunication.

Figure 5.15 shows an example of the access patterns neeldiédade and check node
computations for LDPC decoding. This access pattern madisatcess extremely diffi-
cult for stream processors as stream processors are bsttéaming ordered data without
any strides or indexed access. In order to overcome thikhetik, researchers [92] have
very recently (2004) provided a SRF modification that allavdexed access to the stream
register files, allowing addressing of data from differeaws in the SRF. With this mod-
ification, the LDPC decoding becomes similar to the Viterbcading algorithm imple-
mentation shown in the previous subsection. The implenientaf LDPC decoding using
indexed SRF needs considerable change to the currenttmithge and modifications to

the stream processor simulator and is hence, left as futork at this point in time.

5.3.7 Turbo decoding

Turbo decoding [32] is a competing decoding algorithm to KDdecoding and is proposed
in extensions to the 3G standards such as the HSDPA (HighdIpeenlink Packet Ac-
cess) standard, that provides a 10 Mbps downlink data rdte.tdrbo decoder performs

iterative decoding using two Viterbi decoders. Howeves \iterbi decoders used in Turbo
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Figure 5.15 : Bit and check node access pattern for LDPC diegod

decoding typically have a smaller constraint length anadcbehave lower data parallelism.
Hence, alternative implementations such as running ongoldecoder per user per cluster
should be considered. A Turbo decoder also requires thefustedeavers between data.
If the interleaver used is a block interleaver, it can be enmnted as a matrix transpose.
However, if the interleaver is chosen as a random interteasen the HSDPA standard,
Turbo decoding suffers from the same limitations of LDPC lenpentations requiring ac-
cess to random memory banks. The SRF modifications for intexeess [92] would
be useful for Turbo decoding using a random interleaver dk Wae thesis focused on
LDPC decoding over Turbo decoding for a potential 4G systeirPC decoding showed

greater potential for mapping on a stream processor dus togh degree of explicit data

parallelism.
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5.4 Tradeoffs between subword parallelism and inter-clustr commu-

nication

Subword parallelism exploitation has been a major innovain recent microprocessor
designs [84, 85] for performance benefits in media procgdsiat require limited bit pre-
cision (typically< 8 bits). However, while processing a kernel on a stream pemeabat
uses subword parallelism, the amount of subword parattedis the inputs may not match
the subword parallelism of the outputs. In such cases of subparallelism mismatches,
the output data ends up in being in the wrong cluster and heeqaires additional inter-
cluster communications in order to transfer the data toitite cluster.

Figure 5.16 shows an example where the input and output datésons of a kernel do
not match. The example in Figure 5.16 shows a squaring of laitiii4mber that doubles
the precision due to multiplication to 32-bitdn this case, since the input data is packed,
input data elements 1 and 2 will go to cluster 0, elements 3atudcluster 1 and so on.
After multiplication, the 32-bit results of elements 1 and/ill lie in cluster 0, 3 and 4 in
cluster 1. However, the result can no longer be packed (keeB®;bit number). Outputting
the result directly at this point implies that the output Webloe 1, 3, 5, 7, 2, 4, 6, 8 instead of
1,2,3,...,8. Thus, the data needs to be re-ordered within the clustéis.additional re-
ordering using inter-cluster communication can be quifge@sive as shown in the example
of Figure 5.16.

For purposes of this example, we will assume a latency of ledpc read and write, a
4 cycle latency on multiplication and a 2 cycle latency oriirtluster communication and
addition. Furthermore, we will assume all units are pipsdimnd the compiler generates

the optimal code (shown) for this example. From the exanypéecan see that not having

*We will assume that we need the entire 32-bit precision abthput
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SAr:gzrghW a | 1i2 3:4 5.6 7:8
inty; # Multiplication
for(i=1;i < 8 ; ++i)
{ o p 1 3 5 7
y[i] = a[i]"ali];
} q 2 4 6 8
Packed Data (Ideal): * Re-ordering data
Read 1
multiplications 5 p 1 3 X X
write 6
write 7
Total: 7 cycles m S ! X X
Packed Data (Actual) : n X X 2 4
Read 1
multiplications 5 a [ x| [ x] [ ] [ 8]
comm 7
comm 8 * Add
add 9
comm 11 p 1 3 2 4
comm 12
e 14 LS ’ : K
Total : 14 cycles ¢ Re-ordering data
Unpacked Data: p 1 2 3 4
Read 1
Read 2
multiplications 5 q S 6 ! 8

multiplications 6
write 6
write 7

Total: 7 cycles

Figure 5.16 : Example to demonstrate trade-offs betweewaidbparallelism utilization
(packing) and inter-cluster communication in stream pssoes
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packed the data reduces the execution time by half agaiokegalata at the expense of
twice the amount of data memory storage for the unpacked ohgta.

Thus, the example seeks to clarify that tradeoffs betweekipgand inter-cluster com-
munication should be carefully considered while mappinglgorithm on processors ex-

ploiting subword and data parallelism.

5.5 Tradeoffs between data reordering in memory and arithméc clus-
ters

Since all applications are not perfectly data parallel, yieernels require data re-ordering
in order to place the data in the right clusters. For exangpheatrix transpose requires the
data in clusters to be transposed before it can be used byelk&he programmer has two
choices for data re-ordering between memory and the arttbrclesters.

Data re-ordering in memory can be pipelined with other kisrive order to provide
savings in performance as shown in Figure 5.17.

It is usually preferable to do data re-ordering in the kesiiet the following reasons:

1. If the data uses subword parallelism, it is not possibiotdata re-ordering in mem-
ory as all memory re-ordering operations work on 32-bit dathe stream processor.
To re-order subword data, DRAM should support subword acaed this increases

the complexity of the streaming memory system controller.

2. Datare-ordering in external memory can be more than ar @fdnagnitude expen-
sive in terms of performance. For media and communicatiomsgssing, the latency
of the DRAM is less important than the DRAM bandwidth as théadaattern is
known to the programmer/compiler and can be easily préwégtissued in advance.

Non-single stride accesses can decrease the DRAM bandwidiing it more ex-
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Figure 5.17 : Example to demonstrate trade-offs betweem r@ardering in memory and
arithmetic clusters in stream processors

pensive for data re-ordering. Single stride accesses e hown to achieve 97%
of the DRAM bandwidth while random accesses have shownamaihly up to 14%
of the DRAM bandwidth [90]. This can be seen from Figure 5MBere a matrix
transpose is shown using re-ordering in memory vs. re-orgémnside the arithmetic
clusters. The plot shows a 32-cluster stream processoitecttire and the variation
of the memory re-ordering time with the DRAM clock, varyingttveer3 and8 CPU
clock cycles. The DRAM clock is assumed slower than the CRidkchs in most
microprocessors [93], the DRAM clock is a multiple of the R0k speed (66-133
MHz) and lags behind the CPU clock (0.3-1 GHz).

3. Re-ordering operations in memory conflicts with other rmgnhoad-store operations

and may increase the memory stalls for other kernels requdata from memory.

4. Data re-ordering in external memory is usually more egpenin terms of power

consumption, given off-chip accesses and increased ayeeihcurred during the
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Figure 5.18 : Matrix transpose in memory vs. arithmetic @sfor a 32-cluster stream
processor

data re-ordering.

However, as seen in Figure 5.17(b), if real-time perforneaisccritical, then data re-
ordering may provide better performance for applicationshich the data re-ordering can

be hidden in other kernels.

5.5.1 Memory stalls and functional unit utilization

While the data re-ordering operations in matrix transpoase @xplicit, some kernels such
as Viterbi have implicit data re-ordering, done for re-oidg the trellis states. Now, the

data re-ordering can be similarly be done in memory and istels. Removing the data re-
ordering from the kernel and pushing it to the memory (therse of matrix transpose) can
again produce similar trade-off questions and can attailopeance benefits and increased
adder-multiplier utilization at the expense of increasezimary stall latencies. Since we

have seen that data re-ordering in memory is usually morerestpe, data re-ordering is
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done within the kernels for algorithms having implicit da@aordering.

5.6 Inter-cluster communication patterns in wireless sysms

Future microprocessor designs are going to be communinchtbond instead of capacity-
bound [94]. The wire delay has exceeded the gate delay indénology and the effects
of inductance, capacitance and delay of wires are becomargasingly important in mi-

croprocessor design, especially as more transistors acertieg smaller and increasing in
number with technology [95]. The number of cycles neededtoraunicate data between
the furthest clusters is going to increase due to the iner@asire delay. Hence, techniques
to reduce inter-cluster communication are needed to pecstdling of microprocessor de-
signs with technology. The inter-cluster communicatiotwaek needs the longest length
wires in stream processors. By investigating the intestelucommunication patterns for
all the wireless kernels investigated, we note that althdhg inter-cluster network is fully

connected in stream processors, we use only 2 operatiohs inter-cluster communica-

tion network in wireless applications.
1. odd-even grouping(shown by packing, transpose and Viterbi algorithms)
2. broadcasting 1 cluster to all clustergshown in matrix-based computations)

This can be achieved via a single 32-bit interconnectiondwes all clusters, decreas-
ing the wire length bylog,(C), and decreasing the interconnections of the inter-cluster
communication network by the number of clusters. More inguatty, it allows greater
scaling of the inter-cluster communication network with ttumber of clusters as all inter-
connections are only nearest neighbor connections. Odd-gnouping can be achieved in
8 cycles by adding a specialized network that loads the fat#,doads the second data in

the next cycle and then outputs the odd and even data in asthaecycles. Broadcasting
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can be done in 2 cycles by storing the clusters’ output in estegthe first cycle and then
broadcasting it in the second cycle. This reduced intestelucommunication network is
shown in Figure 5.19. As can be seen from Figure 5.19(a) t# ttansfer between the fur-
thest clusters (0 and 3 in this case) will limit the cycle tifaed clock frequency) due to the
wire length and due to the parasitic load effects causedaltigetinter-connections. The
reduction in wire length byog,(C), the reduction in the number of interconnectiong’by
and the use of neighboring interconnects only allows greatding of the inter-connection
network with the number of clusters in the stream proceddus relates back to the overall
Ilwo power improvements to stream processors proposed iptéhé (Figure 4.10).

The broadcasting support from 1 cluster to all clustersasloomplete distribution of
data to all clusters. The data can then be matched with treegsor id to decide whether
the data is useful or not. However, this may increase thadgtéor random inter-cluster

data movement by the number of clusters.

5.7 Stream processor performance for 2G,3G,4G systems

Figure 5.20 shows the performance of stream processors fidtyaoaded 2G and 3G
base-station with 32 users at 128 Kbps and 16 Kbps resphctifée architecture as-
sumes sufficient memory in the SRF to avoid accesses to ekimemory (256 KB) and
3 adders and 3 multipliers per cluster (chosen becausexadgorithms tend to use equal
number of adders and multipliers). For our implementatiba fully loaded base-station,
the parallelism available for channel estimation and diteds limited by the number of
users while for decoding, it is limited by the constraintdén(as the users are processed
sequentially).

Ideally, we would like to exploit all the available paraigeh in the algorithms as that

would lower the clock frequency. Having a lower clock freqaog has also been shown
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Output: 1357 :7 8

Total : 8 cycles

(a) Odd-even grouping on the default inter-cluster communication network
O(C?) wires, O(C?) interconnections, 8 cycles
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communication support _
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(a) Odd-even grouping on the modified inter-cluster communication network

with only nearest neighbor interconnections

O(Clog(C)) wires, O(C) interconnections, 8 cycles

Figure 5.19 : A reduced inter-cluster communication nekweith only nearest neighbor
connections for odd-even grouping
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Figure 5.20 : Real-time performance of stream processar@@and 3G fully loaded
base-stations

to be power efficient as it opens up the possibilities of retythe voltage [96], thereby
reducing the effective power consumptia@i(? ). While Viterbi at constraint length 9
has sufficient parallelism to support up to 64 clusters dtiéald, channel estimation and
detection algorithms do not benefit from extra clustersirgaexhausted their parallelism.
The mapping of a smaller size problem to a larger clusteradsmegets complicated because
the algorithm mapping has to be adapted by some means eitkeftiare or in hardware
to use lower number of clusters while the data is spread athesentire SRF.

From the figure, we can see that a 32-cluster architectureoparate as a 2G base-
station at around 78 MHz and as a 3G base-station around 935 MEireby validating
the suitability of Imagine as a viable architecture for 3Gdatation processing. It is also
possible that other multi-DSP architectures such as [97eaadapted and are viable for
3G base-station processing. However, the lack of multi-BifRilators and tools limit our
evaluation of these systems.

The use of an indexed SRF [92] is required for implementin&C decoder on stream
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processors. Since the current tools did not support thiakibty, a detailed implementa-
tion of a 4G system was not considered. However, this wikeafonly the SRF access
performance and will require modifications only to the stn€acode. The next chapter
shows the expected performance of a 4G system based on &kémmementation and

using an estimate for memory stalls.

5.8 Summary

This chapter shows that, in spite of algorithms having abahdiata parallelism, algo-
rithms need to be modified in order to map efficiently on strgmotessors. This is be-
cause the data that can be processed in parallel is not aebeatgned to the DSP cluster
utilizing that data. Hence, expensive inter-cluster comitation operations or memory
re-ordering operations are required to bring the data toigie cluster before it can be uti-

lized. This creates trade-offs between utilization of satparallelism, memory access
patterns and execution time. This thesis finds that the idlgos implemented in this thesis
can be designed to use only two inter-cluster communicaiaiterns. Hence, a special-
ized inter-cluster communication network can be used ttacepthe general inter-cluster
communication network, reducing the DSP complexity andigiing greater scalability of

the design with increasing clusters. This chapter thus deitnates the benefits of a joint
algorithm-architecture design for efficient algorithm maqg and architecture complexity
reduction. The next chapter 6 presents the trade-offs idohgcthe number of arithmetic

units and the clock frequency in order to meet real-time ireguents with minimum power

consumption and chapter 7 shows how the designed architechn then adapt to varia-

tions in the workload for improved power-efficiency.
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Chapter 6

Design space exploration for stream processors

6.1 Motivation

Progress in processor technology and increasing consusnaauttl have brought in inter-
esting possibilities for embedded processors in a varieptatforms. Embedded proces-
sors are now being applied in real-time, high performanggtad signal processing appli-
cations such as video, image processing and wireless coroatimms. The application of
programmable processors in high performance and realeimieedded applications poses
new challenges for embedded system designers. Althougirgronable embedded pro-
cessors trade flexibility for power-efficiency with custootugions, power awareness is an
important goal in embedded processor designs. Given a aamtklvith a certain real-time
design constraint, there is no clear methodology on desigan embedded stream pro-
cessor that meets performance requirements and provides gdficiency. The number
of clusters in the stream processor, the number of aritltneiis and the clock frequency
— each can be varied to meet real-time constraints but cam &aignificant variation in
power consumption.

An exhaustive simulation for exploration is limited by ttaede architecture parameter
exploration space [98] and limitations of compilers foreain processors [99], necessi-
tating hand optimizations for performance. Efficient dasgxploration tools are needed
to restrict the range of detailed simulations to a finite amalssubset, depending on the

available compute resources and the simulation time. M@reembedded systems such
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as wireless are evolving rapidly [10, 100]. The designedede evaluate a variety of can-
didate algorithms for future systems and would like to getikjestimate of the lowest
power embedded processor that meets real-time for eacls oahdidate algorithms. This
thesis provides a tool to explore the choice of ALUs withiclealuster, the number of
clusters and the clock frequency that will minimize the powensumption of a stream
processor. Our design methodology relates the instrutdhe parallelism, subword par-
allelism and data parallelism to the organization of the Alibkan embedded stream pro-
cessor. The thesis exploits the relationship between ttnese parallelism levels and the
stream processor organization to decouple the joint eaptor of the number of clusters
and the number of ALUs within each cluster, providing a dcastduction in the design
space exploration and in programming effort. The desigriaeapon methodology also
provides insights to the functional unit utilization of theocessor. The design exploration
tool exploits the static nature of signal processing wakbto provide candidate config-
urations for low power along with an estimate of their réaie performance. Our design
exploration tool also automates machine description eaptm and ALU efficiency calcu-
lation at compile time. A sensitivity analysis of the desigithe technology and modeling
enables the designer to check the robustness of the degupration. Once the design
exploration tool churns out candidate configurations,itietasimulations can then be per-
formed for those configurations to ensure that the designatlee specifications.

Similar challenges are faced by designers implementingritfigms on FPGAs [101].
Most FPGA tool vendors such as Xilinx, allow multiple levelisdesign verification and
timing closure in their design tools. The aim is to allow a fasctional verification fol-

lowed by detailed timing analysis and using successiveggfents to attain timing closure.
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6.1.1 Related work

The combination of completely programmable solutions glatth the need for high per-
formance presents new challenges for the embedded systgmeies, who have tradition-
ally focused on exploring heterogeneous solutions to fiedost flexibility, performance
and power trade-offs [50]. Design space exploration has bealied for VLIW-based em-
bedded processors [67, 102] for performance and power.elteekniques directly relate to
a design exploration for a single cluster stream procestmrever, exploring the number
of clusters in the design adds an additional dimension teéaech space. It is not clear as
to how to partition the arithmetic units into clusters anel tiumber of arithmetic units to be
put within each cluster. Design space exploration has asa Btudied for on-chip MIMD
multiprocessors based on linear programming methods [tO8hd the right number of
processors (clusters) for performance and energy constraissuming a fixed configura-
tion for parameters within a cluster. The design space eafm using these techniques
for stream processors need a more exhaustive and compleh $easimultaneous opti-
mization for the number of clusters and the number and ty@aitfmetic units within a
cluster. The tradeoffs that exist between exploiting ILEhw a cluster and across clusters
increases the complexity of the design exploration. Theisrehows that the explicit use of
data parallelism across clusters in a stream processorecexyboited to provide a simpler
method to find the right number of clusters and the number gpelstof arithmetic units

within a cluster.

6.2 Design exploration framework
This thesis presents a design space exploration tool hieusssed on two important ob-

servations.

Observation 6.1 Signal processing workloads are compute-bound and thewmp@ance
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can be predicted at compile-time.

The execution time of signal processing workloads is fgrigdictable at compile time
due to the static nature of signal processing workloadsurgEi¢.1 shows the execution
time for a workload being composed of two parts: computatipg, .., and stallss;q;.
The processor clock frequency needed to attain real-tirdeastly proportional to the ex-
ecution time and we will use frequency instead of time in thalgsis in the rest of the
thesis. The memory stalls are difficult to predict at compitee as the exact area of over-
lap between memory operations and computations is detedronly at run-time. The
microcontroller stalls depend on the data bandwidth regliny the arithmetic units in the
clusters and vary with the algorithms, the number of cleséeid the availability of the data
in internal memory. Some parts of the memory and microcdietrstalls are constant due
to internal memory size limitations or bank conflicts and @b change with the compu-
tations. As the computation time decreases due to addifianithmetic units (since we
are compute-bound), some of the memory stalls start gedtipgsed and are thus, variable
With feompute- The real-time frequency needed to account for constantanestalls that
do not change with computations is denotedfhy,;. The worst-case memory stall§,e.»
occurs when the entire ILP, DP and SubP are exploited in theggsor, which changes the

problem from compute bound to memory bound. Hence, the mestall time is bounded

by fconst andfmem-

f = fcompute + fstall where fconst S fstall S fmem (61)

It is interesting to note the increase in memory stalls wathidr clock frequencies. In
a traditional microprocessor system with a constant cordigun, the memory stalls tends

to decrease with lower clock frequencies of the processoeghe caches have more time
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Figure 6.1 : Breakdown of the real-time frequency (executime) of a workload

now to get data from external memory. However, in this cdsentumber of clusters in the

stream processor are increasing to decrease the cloclefregwhile keeping the memory

bandwidth the same. This implies that the memory now has woceomore data to the

SRFs at the same bandwidth, thereby increasing the numiséaltsfin the architecture.

Definition 6.1 Data Parallelism(DP) can be defined as the number of data elements that

require the exact same operations to be performed in anitigoand is architecture-

independent. In this thesis, we define a new testuster data parallelism (CDP < DP),

as the parallelism available in the data after exploitingfSand ILP. Thus, cluster data

parallelism is the maximum DP that can be exploited acrasstets without significant

decrease in ILP or SubP.
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ILP exploitation within a cluster is limited due to finite mgces within a cluster such
as finite register sizes, inter-cluster communicationléngcks and finite number of input
read and output write ports. Increasing some of the resewweh as register file sizes are
less expensive than adding an extra inter-cluster comratioicnetwork [23], which can
cause a significant impact on the chip wiring layout and pavesisumption. Any one of
these bottlenecks is sufficient to restrict the ILP. Alsqleiting ILP across basic blocks
in applications with multiple loops is limited due to the goiher [99]. Signal processing
algorithms tend to have significant amounts of data paisithe[10, 22, 23, 104]. Hence,
DP is available even after exploiting ILP, and can be useetdhe number of clusters as

CDP.

Observation 6.2 Due to limited resources within a cluster, not all DP can ba@ted as
ILP in stream processors via loop unrolling. The unutiliZ2f can be exploited across

clusters as CDP.

This observation allows us set the number of clusters acupitd the CDP and set
the ALUs within the clusters based on ILP and SubP, decoghe problem of a joint
exploration of clusters and ALUs within a cluster into indadent problems. This provides
a drastic reduction in the exploration space and in progreagmffort for various cluster
configurations. The observation is best demonstrated byan@e of the Viterbi decoding
algorithm used in wireless communication systems.

Figure 6.2 shows the performance of Viterbi decoding wittreéasing clusters in the
processor foB2 users done sequentially, assuming a constant cluster ooeatfign of 3
adders and multipliers in a cluster. The data parallelism in Viterbicdeing is propor-
tional to the constraint lengtlk’, which is related to the strength of the error control code.

A constraint lengttd Viterbi decoder hag®~! = 256 states, and hence has DP256,
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Figure 6.2 : Viterbi decoding performance for varying coastt lengths and clusters

and can use 8-bit precision to pack 4 states in one clusté&¥Su), reducing the CDP
to 2X—3 = 64. Hence, increasing the number of clusters bey®&hdoes not provide per-
formance benefits. However, as the clusters reduce &dmo 4 for K = 9, there is an
almost linear relationship between clusters and exectitio@, showing that the ILP and
SubP being exploited can be approximated as being indeptaotihe CDP. The deviation
of the performance curve with clusters from a slope-afrepresents the variation of ILP
with CDP.

This thesis bases the design exploration framework on tbeasgumptions that were

discussed in this section.

6.2.1 Mathematical modeling
Let the workloadWW, consist ofL algorithm kernels executed sequentially on the data-
parallel stream processor; given by ko, ... , k. Let the functional units in the embedded

processor be assumed to solely adders and multiplierdyégourpose of this analysis. Let
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the respective execution time of the kernelste, m, ¢), t2(a, m, ¢), ...,tr(a, m, c¢), where
(a,m,c) be the number of adders per cluster, the number of multgpper cluster and the
number of clusters respectively. Let the cluster data [edisth in each of these kernels be
defined agdp, cdp,, .. .,cdpr.

Figure 6.3 explains the design framework proposed for gatallel embedded stream
processors. The design phase consists of a worst-caseoadriiat needs to be designed
to meet real-time constraints in a programmable architect@fhe exploration tool then
searches for the best,(n, ¢, f) configuration that minimizes the power consumption of
the processor for that workload. Once the chip is desigriesatchitecture can run the
workload as well as other application workloads by dynafticdapting ¢, m,c, f,V)
parameters to match that of the application. Thus, the isolytrovides possibilities for
using this designed architecture for investigating rumetivariations in the workload and
adapting to the variations.

Our design goal is to finda(m,c) and the real-time frequency, such that the power

P4,m,c) IS minimized.

min P = min C(a,m,c)V?f(a,m,c) (6.2)

a‘imicif a’7mic7f

whereC(a,m, ¢) is the loading capacitanc¥ is the supply voltage anfi(a, m, c) is the
clock frequency need to meet real-time requirements. Thdeifor the capacitance is
derived from the Imagine stream processor implementatiohis presented in the next
section.

The power consumption of the DSP is also dependent on thageewitching activity
in the DSP. However, the switching activity can be relateth&functional unit utilization,

which in turn can be related to the execution time. Howevarispof the chip such as
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Figure 6.3 : Design exploration framework for embeddedstrprocessors

the stream register file and the microcontroller can stilabsumed to have a fairly con-
stant switching activity. Since the design exploratioagrio provide solutions having high
functional utilization as well as low execution time, theiteling activity variations are

assumed to not significantly affect the design decisionsaaadence, currently assumed

to be constant in the design exploration.
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6.2.2 Capacitance model for stream processors

To estimate the capacitance, we use the derivation for gredrg stream processor from
[23], which is based on the capacitance values extracted fih@ Imagine stream proces-
sor fabrication. The equations in [23] have been modifiecktate to the calculation of
C(a, m, c) in this thesis instead of energy in [23]. Also, the equatioos consider adders
and multipliers as separate ALUs instead of a global ALU astered in [23]. The model
does not consider the static power dissipation in the pemreshe static power dissipa-
tion is directly proportional to the number of transistonsidnence, the capacitance [105].
The static power dissipation is also a function of leakadeces of transistors and varies
with technology. Static power dissipation does not affaetminimization and choice of
(a, m,c) , although it will affect the actual power number that is autfrom the model
for a given technology. The model can be improved by addirtgticgpower consumption
factor based on [105] in the cost function for the optimiaati

The thesis first describes the parameters used in the denyathich is shown in Table
6.1. The following equations are then used to calculate #pacitance model for the
design exploration. For simplicity, we ignore the m, c) subscripts in the capacitances
C and areasA below, except for the final’(a, m, ¢) in equation (6.3). The capacitance
C(a,m,c) is composed of the capacitance of the stream registeCfjlg (per cluster),
the capacitance of the inter-cluster communication nekwigy;.. (per cluster), the cluster

capacitanc€’,;;; and the micro-controller capacitancg,.



106

Parameter | Value Description
Agram 16.1 Area of 1 bit SRAM used for SRF or microcontroller (grids)
Agp 230.3 Area per stream buffer (SB) width (grids)
Winaitiptier 515 Datapath width of a multiplier (tracks)
Wi g 92.1 Datapath width of 2 LRFs (tracks)
Wp 1551 Scratchpad datapath width
h 640 Datapath height for all cluster components
Cuw 1 Normalized wire propagation capacitance per wire track
Cruultiplier | 6.3€+5 Cap. of ALU operation (normalized 1@,,)
Csram 8.7 SRAM access cap. per bit (normalizeddgq)
Cs 155 Cap. of 1 bit of Stream Buffer (SB) access (normalized’ig
Ciry 7.9e+4 Local reg. file cap.(normalized @)
Csp 1.6e+6 Scratchpad cap. (normalizeddg,)
T 55 Memory latency (cycles)
b 32 Data width of the architecture
Gory 0.5 Width of SRF bank per N (words)
Ggp 0.2 Average number of SB accesses per ALU operation in typicaleie
Geomm 0.2 COMM units required per N
Gsp 0.2 SP units required per N
1, 196 Initial width of VLIW instructions (bits)
I, 40 Additional width of VLIW instructions petVy,
L, 6 Initial number of cluster SBs
L, 6 Required number of non-cluster SBs
L, 0.2 Additional SBs required per N
Tm 20 SRF capacity needed per ALU for each cycle of memory latewoyds)
Tue 2048 Number of VLIW instructions required in microcode storage
N(a,m) a+m Number of ALUs per cluster
@ 0.1,0.01 ratio of adder to multiplier cap. (power)
W adder 155 datapath width of an adder (tracks)

Table 6.1 : Summary of parameters
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(6.3)
(6.4)
(6.5)
(6.6)

(6.7)

(6.8)
(6.9)

(6.10)
(6.11)
(6.12)
(6.13)
(6.14)
(6.15)

(6.16)
(6.17)

Nyy(a,m)(y/ Npy(a,m)b)(24/ Ny (a,m)b+ h + 2Weyy (a,m) + 2Wief) +

v/ Npu(a,m) 34/ Nyu(a,m)b + b+ Wty + Wirg) Nt (a, m)b
Niu(a,m)Wiph + NWp(a,m)h + Ngy(a,m)Wph + Agy
cNeomm (aa m)b\/E(Ncomm (aa m)b\/E +2 V Acst + As'rf)

(6.18)

(6.19)
(6.20)

Tuc * (Io + Ianu(CL, m))Asram + (Ianu(aa m))\/Asrf + Agist + Acomm (6.21)

Thus, by varyinge, m, ¢, the change in the capacitan€4a, m, c) can be calculated

and used in the design exploration. The processor clockuémcy is dependent on the

processor voltage as follows:

(6.22)

whereV; is the threshold voltage [106]. Now, to achieve a real-timegjdiencyf, the
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processor voltage also needs to be set accordingly. Henooe giquations (6.2) and (6.22),

we get

min P = minC(a,m, C)f(3a,m,c) (6.23)

a,m,c a,m,c

The design space exploration tool shown in the next sectmim@es equation (6.23) to
find the number and organization of the arithmetic units thimimize the power consump-

tion.

6.2.3 Sensitivity analysis

As transistors have gone towards the deep-submicron redimadransistors are getting
shorter and saturating at lower drain-to-source voltaty@S][ The relationship between the
drain current and the gate-to-source voltage has gone dommduadratic to linear [107].
This has affected the delay variation in the transistor withage from being quadratic as
shown in equation (6.23) to being linear with voltage.

Hence, the power equations are going down from being culijaalratic. Decreasing
the threshold voltage helps but the trends still continu¢hasthreshold voltage cannot
be decreased at the same rate as the drain-to-source vdl@gje The actual number is
very much technology dependent. Hence, to analyze thets&ysof the design to the

technology, we assume,

V x f? where(0<¢g<1) (6.24)
min P = minC(a,m, c)f(’;’m’c) (6.25)

where (2 <p < 3)

This model can be thus generalized to allow the designerttihee@umber fop, plug it in

and minimize the equation to design the architecture.
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Similarly, functional units in an actual physical realipat can have different power
consumption values than those used in a power model. If wares2 types of functional
units such as adders and multipliers in the design, we neadde| the power consumption
of one relative to the other to make the values used indepe¢rdehe technologies and
actual implementations. The power consumption of adderéirmear with the bit-widtm
and the multiplier power consumptions are quadratic wighditrwidth [108]. Hence, in the
thesis, using equally aggressive 32-bit adders and mieklt§plwe will assume variations in
adder power to be betwe@rD1 and0.1 of the multiplier power. As will be seen later, this
variation is notimportant as the additional register filed the intra-cluster communication
network that gets added with the functional units dominlagg@ower consumption instead

of the functional units by themselves.

Pogder = O(n) (626)
Pmultiplie'r = O(nQ) (627)
Padder = ax* Pmultz'plie'r (628)

where (0.01 <a<0.1)

The organization of the stream processor provides a bamklwiérarchy, which al-
lows prefetching of data and mitigates memory stalls in theasn processor [104, 109].
Memory stalls have been shown to accountier 16% of the total execution time in me-
dia processing workloads [109] aB% of the execution time in wireless communication
workloads [100]. Stalls are caused in stream processoroduaits for memory transfers
(both external memory and microcontroller stalls), inédfncies in software pipelining of
the code, and time taken to dispatch microcontroller codmfthe host processor to the

microcontroller [109]. In order to model memory stalls araserve the sensitivity of the
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design to the stalls, we model the worst-case gtall, to be25% of the workload at the
minimum clock frequency that is needed for real-tifhe- f,,;, where the entire available
ILP, DP and SubP are exploited. This thesis model variatilomsemory and microcon-
troller stalls using a parametgrbetween) and1 to explore the sensitivity of the design

tools to the stalls. Hence, from equation (6.1),

fstall = (1 - ﬂ)fmem where (0 S ﬂ S 1) (629)

fstall = 025(1_18)fmm (630)

B = 1 represents the no-stall case ghid= 0 represents the worst-case memory stall
fmem. The minimum real-time frequency,.;,., IS computed during the design exploration.
There are other parameters in an embedded stream prodeasoah affect performance
and need exploration such as the number of registers antiniigedepth of ALUs [67,
98,102]. These parameters affect the ILP for a cluster amddyaendirectly affect the
CDP. Although an exploration for these parameters will @ftbe actual choice for the
design, the design exploration methodology does not chasgee decouple ILP and DP

in our design exploration. In order to stress the design auzitogy and our contributions,
we focus on the exploration @&, m, ¢, f) for power minimization and their sensitivity to
three parametergo, 3, p). Once(a, m, ¢, f) have been decided, other parameters can be

set based on this configuration.

6.3 Design space exploration

The thesis starts the design exploration with an over-gromed hypothetical architecture,
having infinite clusters and infinite ALUs within each clusfghis point is then revised by

decreasing clusters and ALUs to find smaller configurations the real-time frequency

begins to increase. This revised architecture configuratidi exploits all the possible ILP,
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SubP and DP available in the algorithms and is givenddy,{,mmqz,mazx(cdp)). From
this point on, we explore trade-offs between frequency aphcitance in equation (6.25)

to find the configuration that attains real-time at the lovpester.

6.3.1 Setting the number of clusters

To find the number of clusters needed, we compile all kernelseear maximum CDP levels,
assuming a sufficiently large number of adders and multgpfer cluster. The thesis then
runs kerneli with (@02, Mmaz, cdp;) Where a,,q.., mmq. are a sufficiently large enough
number of adders and multipliers per cluster to exploit trelable ILP in all kernels. The
compile-time execution for kernels given byt; ... mumes cdp;)-

Hence, the real-time frequeng¢ya, m, c) is given by

fam,e(MHz) = Real-time target(Mbps) * Execution time per bit(a,m,c) 3®.

fmin = Real-time target * Execution time per Qit{.,, Mqz, MaxX(cdp)6.32)
cdp;

L
famanimma) = [stan + Real-time target » [ -‘ Li(amas Momaz cdp:) (6.33)
=1

Cc

Equation (6.33) reduces the frequency by half with clusterlding based on the obser-
vation of linear benefits of frequency with clusters withine tCDP range. It also shows
that if the number of clusters chosen are greater than thiablaCDP, then there is no
reduction in execution time. Thg,.; term accounts for stalls in the execution time that
are not predicted at compile-time, and is computed usingtsans (6.32) and (6.1). The

number of clusters that minimizes the power consumptioivisrgby

Hclifn P(amaz,mmam,c,f) = chfn C(amawa Mmaz, C) f(z;mamymmamyc) (634)

Thus, by computing(a,..... mn..,cip) at cOMpile time and plotting this function for the

desired range of clusters and for varyimgthe number of clusters that will minimize the
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power consumption is determined. The choice of clusteradependent of: as it gets

factored out in the minimization of equation (6.34).

6.3.2 Setting the number of ALUs per cluster

Once the number of clusterds set, the number of ALUs within each cluster needs to be
decided. The number of adders and multipliers are now vémed (1, 1) t0 (amaz, Mmaz)

to find the trade-off point that minimizes the power consumpbf the processor. The
design tool can handle varying ALUs without any changes énapplication code. Hence,
an exhaustive compile-time search can be now done withenctbimstrained space to find
the right number of adders and multipliers that meets figa-tvith minimum power con-

sumption. The power minimization is now done using

min Pgm.cf) = min C(a, m, c)f([;’m,c) (6.35)

a)m)f a)m)f

The design tool also provides information about ALU efficieis based on the schedule.
It can be shown that this power minimization is related to imézation of the ALU ulti-
lization, providing us with insights about the relationweén power minimization and the

ALU utilization. The choice of ALUs inside a cluster is deplemt onc, 5 andp.

6.3.3 Relation between power minimization and functional uit efficiency

The power minimization methodology discussed above alguiges us with insights into
the functional unit utilization of the embedded procesdororder to explore this, let us
consider the multiplier as a sample functional unit and seassume the other parameters

(adders and clusters) as constant.
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min P,y = minC(m)f(pm) (6.36)
1
min P,y = max ——— 6.37
un Fm) T Ty (6.37)
MP
= max ————— (6.38)
m C(m)f(pm)

whereM is the total number of multiplications occurring in the wim&d which is a con-

stant.

mP  MP
min P,y = max ———-— (6.39)
m m C(m) mpf(pm)
mP M \?
= max 6.40
m C(m) <mf(m)) (6.40)

Since the frequency needed to meet real-time is directly proportional to thecakien
time, the number of multiplications divided by the total rugn of multipliers and the

frequency is directly proportional to the multiplier utidition,M,,;;.

p

min Py, = max %Mum (6.41)
= max —2 My (6.42)
™ C(m)»

Thus, we can see that the power minimization is directlyteelao maximization of a
scaled version of the functional unit utilization. The tada derived here is based purely
on the power minimization model and is independent of thea@rchitecture. The exact
relation betweed'(m) andm for the embedded stream processor can be obtained from the
equations in the appendix. To a first level approximat{of;) can be assumed to be linear
with m, although there are secondary terms present due to thecinster communication

network. This is a useful result as we now know that in addit@ power minimization,
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the exploration also maximizes functional unit efficieneysome manner, which should be

expected of any power minimization based design explaratio

6.4 Results

For evaluation of the design exploration methodology, tesigh concept was applied
for designing a3G wireless base-station embedded processor that meetineate-
quirements. For the purposes of this thesis, we consid@ruser base-station with28
Kbps/user (coded), employing multiuser channel estimatiwultiuser detection and Viterbi
decoding [10, 100]. This was considered to be the worst-asaskload that the processor
needed to support in the design.

The design boundary conditions used for the workload arevstio Table 6.2. Ideally,
the CDP range should be decided by the exploration tool \wihelp of the compiler. The
compiler should automatically exploit all the availablé’l{using loop unrolling) and SubP
and set the remaining DP as CDP. In the absence of the corapilglity to automate this
process, the CDP has been set manually after exploringeliffamounts of loop unrolling
and finding out the changes in ILP. The cluster configuratsovaried up td12 clusters
as that is the maximum CDP available. Similarly, the addedsraultipliers are varied up
to 5 and3 respectively as we have seen ILP saturating above thesgumations with no
benefits in performance. These ranges will be confirmed iddéiséggn exploration process.

Table 6.3 shows the break-up of the workload computationati@ining the lowest
real-time frequency that is obtained at compile-time ugiggation (6.32). The CDP varies
in the algorithms betwees2 and512, justifying the range for CDP exploration in Table
6.2. Also note that since 99% of the real-time frequency is needed due to kernels that
require32 and64 clusters, there is little advantage in exploring a highenber of clusters.

The minimum real-time frequency needggl, is estimated to b838 MHz for the design
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Parameter | Min | Max

CDPrange| 32 | 512

c 4 512
a 1 5
m 1 3

Table 6.2 : Design parameters for architecture explorammhwireless system workload

10*

10°F

Frequency (MHz)

10° L L
10° 10 10° 10°
Clusters

Figure 6.4 : Variation of real-time frequency with increagclusters

workload.

Figure 6.4 shows the real-time frequency of the workloadhwitreasing clusters as
0 is varied, using equations (6.33). Since the minimum CDBRisthe execution time
decreases linearly untd2 and then no longer provides a linear decrease as seen from
equation (6.33). Further increasing the clusters alfavelusters has almost no effect
on the execution time as the algorithms using the higher GikE kess thari% of the

workload time, as shown in Table 6.3.
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Algorithm Kernel CDP | Cycles| MHz needed
Correlation update 32 177 1
Matrix mul 32 | 10822 43
Estimation Iteration 32 261 1
transpose 512 95 <1
Matrix mul L 32 5449 22
Matrix mul C 32 5577 22
Detection Matched filter 32 | 17822 71
Interference Cancellation 32 | 20685 83
Packing 256 57 <1
Re-packing 64 120 <1
Decoding Initialization 64 4192 17
Add-Compare-Select | 64 | 63488 254
Decoding output 64 5632 23
Min real-time frequencyfin = f(5,3,512) 538
Mathematically required ALU op count 24 GOPs

Table 6.3 : Real-time frequency needed for a wireless biadens providingl 28 Kbps/user
for 32 users
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Figure 6.5 : Minimum power point with increasing clustersl aariations inp and 3. The
thin lines show the variation with. (a¢maz,Mmaz) = (5,3)

Figure 6.5 shows the variation of the normalized power withiéasing clusters as clock
frequency decreases to achieve real-time execution of thklead. This is obtained from
equation (6.34). The thick lines show the ideal, no stalegafs? = 1 and the thin lines
show the variation a8 decreases t0. Figure 6.5 usesi,..,mMmaqz) = (5,3) as the number
of adders and multipliers per cluster. The figure shows ti@pbwer consumption reduces
drastically up to a factor of00x as the number of clusters reachi&sclusters fromd
clusters, since the reduction in clock frequency outwetflesncrease in capacitance due
to increased ALUs. Afte64 clusters, the increase in capacitance outweighs the small
performance benefits, increasing the power consumptiocorisidy, the figure shows that
the design choice for clusters is actually independente¥#iue ofp and as all variations

show the same design solution.
e Cluster choice 64 clustersv (p, «, 3)

Once the number of clusters are set, a similar explorati@oime within a cluster to

choose the number of adders and multipliers within a clusterminimizing power using
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Figure 6.6 : Real-time frequency variation with varying addand multipliers for = 64,
a = 0.01, 8 =1,p = 3, refining on thga, m, ¢) = (5, 3, 64) solution

equation (6.35). Figure 6.6 shows the variation of the tiea¢- frequency with increasing
adders and multipliers. The utilization of the adders andtipliers are obtained from

a compile-time analysis using the design tool and are repted ag-+, ) respectively.
The figure shows that after thd adder,1 multiplier) point there is very little benefit in
performance with more adders or multipliers. This is thenparhere the entire ILP is
exploited and adding more units does not produce any beneftwever, the Z adder,1
multiplier) point has a higher ALU utilization for the sammaunt of work. Hence, one
could expect one of these configurations to be a low powetisalas well. The actual low
power point depends on the variationafs, p in the design. For the case @f= 0.01, § =

1,p = 3,the(a, m,c) = (3,1, 64) obtains the minimum power as computed from equation

(6.35).
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Figure 6.7 shows the power minimization sensitivity of thiels within each cluster
with p, 8 anda. The columns in Figure 6.7 represent the variationg. iithe first 3 rows
show the sensitivity of the design to variations in memoaj{sts, while the last row shows
the sensitivity of the design t@. By looking at the array of subplots, the following obser-
vations can be made. First, there are two candidate confignseof(a, m, c¢) that emerge
after a sensitivity analysis(2, 1,64) and(3,1,64). Second, the design is most sensitive
to variations inp. It can be seen that = 2 always selects the, 1, 64) configuration and
p = 3 always selects the (3,1,64) configuration. This is expezs$adhriations i affect the
power minimization in the exponent. Figure 6.6 shows that2h1, 64) and(3, 1, 64) con-
figurations have among the highest ALU utilizations and shisws the correlation between
power minimization in Figure 6.7 and ALU utilization in Figru6.6. Third, the design is
also sensitive to memory stalls For 3 = 0, p = 2.5, the design choice i€, 1, 64) and it
changes td3, 1,64) asg increases. Finally, the last row shows that the design adively
insensitive toa variations. This is because, the register files and asgaciatra-cluster
communication network that get added with increase in ALOsthate the power con-
sumption, taking’0 — 79% of the cluster power for the configurations studied. Thetelu
power, on the other hand, takes betwé&n- 61% of the total chip power.

Figure 6.5 shows thé4 cluster architecture to be lower power than 32ecluster case.
However, a64 cluster configuration will never attain 100% cluster efficg as clusters
33 — 64 will remain unutilized when the CDP falls belog4. A 64 cluster architecture
obtains only &4% cluster utilization for the workload but is seen to havewadopower
consumption than &2 cluster architecture with &0% cluster utilization, merely due to
the ability to lower the clock frequency, which balances tha increase in capacitance.
Figure 6.8 shows the cluster utilization for a 32 and 64 elusrchitecture. When the

CDP during execution falls below 64 (which occurs for algons having CDP = 32 in the
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Figure 6.7 : Sensitivity of power minimization {9 « andg for 64 clusters
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Figure 6.8 : Variation of cluster utilization with clusterdex

workload), clusters 33-64 remain unused for 46% of the tisiéhare is not enough CDP
in those algorithms to utilize those clusters.

It is clear from the plot that further power savings can beawtdd by dynamically
turning off entire clusters when the CDP falls below 64 austduring execution. Since
clusters in the 64 cluster architecture consume 58% of tte pmwer consumption of
the chip, turning off the 32 unused clusters can reduce theepoonsumption by up to
28% during run-time. A multiplexer network between the ined memory and clusters
can be used to provide this dynamic adaptation for powemngavby turning off unused
clusters [100] using power-gating. Further power can aksedved by turning off unused
functional units when workloads having different ALU utgditions are getting executed.
The benefits due to this adaptation are limited as the ALUswoe only 25% of the

power consumption in the 64 cluster architecture configomat
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6.4.1 Verifications with detailed simulations
The design exploration tool gave two candidates as the butl variations inp, « and

8.
e Designl:(a,m,c): (00, 00,00) — (5,3,512) — (5,3,64) — (2,1,64)
e Designll:(a,m,c) : (00,00,00) — (5,3,512) — (5, 3,64) — (3,1, 64)

The design starts from a hypothetical infinite machine regméed agoo, oo, 00) and
successively refines on the architecture to provide low p@aerdidate architectures. Ta-
ble 6.4 provides the design verification of the tool (T) witbyale-accurate simulation (S)
using the Imagine stream processor simulator that can peodatails on the execution
time, such as the computation time, memory stalls and macrivoller stalls. The design
tool models the compute part of the workload very realifiiic@he relatively small errors
are due to the assumption of ILP being independent of CDP ardalthe prologue and
epilogue effects of loops in the code that were ignored. hiesis did not modeb accu-
rately as it can be seen that the actual memory stalls wegerlgiian the maximum range
used forfg,.;. This is because the maximum range for; was based on the assumption
that the stalls would never exceed 25% of the execution tirhes thesis observes that this
does not hold true as the execution time started to decregisenereasing clusters and
the system changed from being compute bound to memory bododiever, even after
increasingfs:.; to a larger range, the design exploration tool still produttee same two
candidate choices for evaluation. Both the design canelidate also very close in their
power consumptions, with th@, 1,64) configuration being only — 11% different than
the (2, 1, 64) configuration. An alternate graphical version of the tablshiown in Figure

6.9.
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Choice B | Compute Total | Real-time C Relative Power
(a,m,c) time Stalls time | frequency| (a,m,c) Consumption
(cycles) | (cycles)| (cycles)| (MHz) p=2 | p=2.5 | p=3
Designl | T| 0 163560 33792 | 197532 786
(2,1,64) | T | 0.5 | 163560 16896 | 180456 718
T 1 163560 0 163560 651
S 166174 | 56583 | 222757 887 1 1 1 1
Designll| T | 0 142410 33792 | 176382 702
(3,1,64) | T | 0.5 | 142410 16896 | 159306 634
T 1 142410 0 142410 567
S 147721 65130 | 212851 848 1.21 1.11 1.09 1.05
Human | T | O 214241 33792 | 248213 988
(3,3,32) | T | 0.5 | 214241 16896 | 231137 920
T 1 214241 0 214241 853
S 223432 35261 | 258693 1030 1.18 1.61 1.74 1.85
Table 6.4 : Verification of design tool output (T) with a dégdi cycle-accurate simulation
(S)

We also compare the candidate configurations from our tottl icarefully chosen

configuration [10, 100]. The analysis was done for the wa#lkernels based on the data

parallelism and the operation mix. @, 3,32) configuration was chosen since the algo-

rithms show equal number of additions and multiplicatiamd a minimum data parallelism

of 32 [10]. Our design tool provides us with lower power configimas than the carefully

chosen human configuration and improves the power efficiefittye design by a factor of

1.61 — 1.85x for the chosen workload.

6.4.2 2G-

3G-4G exploration

Figure 6.10 shows the real-time clock frequency for a 2G4&&design exploration. The

use of the design exploration tool allows the designer toagtdel of the performance

of the system within minutes of writing the code instead cérgting a lot of effort on

simulation time and deciding processor parameters, aligwie designer to quickly check
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Figure 6.9 : Verification of design tool output (T) with a détd cycle-accurate simulation

(S)

the utility of the candidate algorithms in the design. Therm@nbers are approximate and
are based on a kernelC implementation of the code withouingrthe streamC code to
run the kernels. This was done since the kernels for LDPCdiegaould be written and
can thus, provide performance estimates, even withoutsbefithe streamC code, which
models the memory latency issues.

The figure shows the impact of the data rates on the real-tioo& requency require-
ments. The target data rates are used to demonstrate howraase in data rates would
affect the real-time clock frequency without any changedlgerithms. The linear scaling
is an extrapolation since the data rates also depend onfattters such as bandwidth. The
reason for the extrapolation is because current systenws allpport for multiple data rates
and the figure normalizes the data rates while comparingréifit algorithm standards. In
2G and 3G systems, Viterbi decoding had a CDP of 64 and doedrthe computations.

In the 4G system, the channel estimation dominates the catiguitime and has a paral-
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Figure 6.10 : Real-time clock frequency for 2G-3G-4G systevith data rates

lelism of 32. Hence, the number of clusters fell from 64 to 82the 4G system.

6.5 Summary

This thesis develops a design exploration tool that expltrade-offs between the orga-
nization and number of ALUs and the clock frequency in emieeldstream processors.
The design methodology relates the instruction level paisin, subword parallelism and

data parallelism to the organization of the ALUs in an emleeldstream processor. The
thesis decouple the exploration phase of clusters and Aldd<lpster into independent

explorations, providing a drastic reduction in the seapdts. The design exploration tool
outputs candidate configurations that attain low powergieith an estimate of their real-

time performance. With improvements in compilers for endsetistream processors, the
design exploration tool heuristic can also be improved lopiporating techniques such

as integer linear programming for jointly explorifig, m, ¢, f) as well as exploring other



126

processor parameters such as register file sizes and gigdpths of ALUs. Also, once
the design is done for the worst case, a multiplexer netwetlwéen the internal memory
and the clusters [100] can be used to adapt the clusters iedaeld stream processors
with run-time variations in the workload to further improwe power efficiency. The next
chapter 7 shows how power efficiency in stream processorbeamproved by adapting

the compute resources to workload variations.
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Chapter 7

Improving power efficiency in stream processors

Techniques used for high performance design and low powggulare the same

— Mark Horowitz [110]

7.1 Need for reconfiguration

The design exploration scheme proposed in chapter 6 detbigrséream processor for the
worst case workload in order to ensure real-time conssan met in the worst case.
Since real-time design constraints have to be met for thestwase, design applications
such as full capacity base-station must employ enough resstio meet those constraints
at a reasonable frequency and voltage. However, baserstatrely operate at full ca-

pacity [111]. At lower capacity workloads, far fewer resoes are required to meet the
real-time constraints, so many of the resources will be ussfticiently.

This thesis proposes to dynamically adapt the resourcestoéam processor to match
the workload, improving the efficiency of stream process&usch a adaptive stream pro-
cessor can adjust the frequency, voltage, and arithmetaurees, significantly reducing
power dissipation under lightly loaded conditions.

Stream processors exploit data parallelism available tiegtions and all clusters ex-
ecute the same instruction on different data sets in a SIMBr@@a In order to use the
lowest voltage and frequency (power efficiency),the nundferlusters used in a stream

processor should be designed depending on the data paralVailable in the applica-
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tion. Table 7.1 shows the available data parallelisior the base-station with variation in
the number of users (U) and the decoding constraint lengthvilile it is possible to vary
other system parameters such as the coding rate (R) andrdeespy gain (N) in the table,
we decided to keep them constant in order to fix the targetrddtato 128 Kbps/user as
changing these two parameters affects the target datasratelldn wireless standards [14].
From the table, we can observe that the available data plsall reduces as we go from
the full capacity base-station case of 32 users, consteagth 9 (32,9) to lower capacity
systems. Based on the data parallelism, if we choose a 32eclarchitecture as the worst
case architecture for evaluation, we see that as we go demndase (32,9) to other cases,
none of the other workloads meet the minimum data parattefisquired to keep all the
clusters busy. Hence, there needs to be reconfiguratiorodymovided in stream proces-
sors to turn off unused clusters and allow clusters to dynaltyimatch the available data

parallelism in the workload.

7.2 Methods of reconfiguration

Three different mechanisms could be used to reroute thamstdata appropriately: by
using the memory system, by using conditional streams, gndsing adaptive stream

buffers.

7.2.1 Reconfiguration in memory

A data stream can be realigned to match the number of actistect by first transferring
the stream from the SRF to external memory, and then relgddenstream so that it only is

placed in SRF banks that correspond to active clustersré&igd shows how this would be

*The data parallelism in this context is defined as the datallpism available after packing and loop

unrolling



129

Workload | Estimation | Detection | Decoding
(U,K) J(U.N) SUN) | f(UKR)
4,7) 32 4 16
(4,9) 32 4 64
(8,7) 32 8 16
(8,9) 32 8 64
(16,7) 32 16 16
(16,9) 32 16 64
(32,7) 32 32 16
(32,9) 32 32 64

Table 7.1 : Available Data Parallelism in Wireless Commatian Workloads (U = Users,
K = constraint length, N = spreading gain (fixed at 32), R = ngdiate(fixed at rate 1/2)).
The numbers in columns 2-4 represent the amount of dataglemal

accomplished on an eight cluster stream processor. In theefig 16 element data stream,
labeled Stream A in the figure, is produced by a kernel runoimgll eight clusters. For
clarity, the banks within the SRF are shown explicitly anel stream buffers are omitted.
Therefore, the stream is striped across all eight bankseoSRF. If the machine is then
reconfigured to only have four active clusters, the streagds & be striped across only the
first four banks of the SRF. By first performing a stream stastruction, the stream can
be stored contiguously in memory, as shown in the figure. Taetream load instruction
can be used to transfer the stream back into the SRF, onlg tisnfirst four banks. The
figure shows Stream’Aas the result of this load. As can be seen in the figure, thenseco
set of four banks of the SRF would not contain any valid dat&toeam A.

This mechanism for reconfiguration suffers from severaitétions. First, the memory
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Figure 7.1 : Reorganizing Streams in Memory

access stride needed to transfer the data from 8 clustersltgsters is not regular. The
non-uniform access stride makes the data reorganizatierteemely difficult task and in-
creases memory stalls. Next, the reconfiguration causesomydrank conflicts during the
transfer as multiple reads (during reconfiguration to highember of clusters) or writes
(during reconfiguration to lower number of clusters) aredeekfrom the same bank. Also,
one of the motivations for stream processor design is to Keeparithmetic units busy so
that data transfer between memory and the processor cormisized. Forcing all data
to go through memory whenever the number of active clussethanged directly violates
this premise. In Chapter 5, we show that using external mgmoaeorganize data streams
for Viterbi decoding results in a larger execution time tlfahe reorganization were done

within the clusters. Finally, memory operations are expenis terms of power consump-



131

Cluster index 0 1 2 3 0 1 2 3
Conditional Buffer Data| A B A B C D
Condition Switch 1 1 0 0 1 1 0 0
Data received A B - - C D - -
Access 0 Access 1

A 4-cluster stream processor reconfiguring to 2
clusters using conditional streams

Figure 7.2 : Reorganizing Streams with Conditional Streams

tion. The increase in power consumption combined with thesiase in execution time due

to stalls makes reconfiguration using memory an undesisablgion for reconfiguration.

7.2.2 Reconfiguration using conditional streams

Stream processors already contain a mechanism for reamgmiata streams using condi-
tional streams [112]. Conditional streams allow data stied be compressed or expanded
in the clusters so that the direct mapping between SRF bartkslasters can be violated.
When using conditional streams, stream input and outputdipes are predicated in each
cluster. If the predicate is true (1) in a particular cluskem it will receive the next stream
element, and if the predicate is false (0), it will receivelgame. As an example, consider
an eight cluster stream processor executing a kernel theadng a stream conditionally.
If clusters 1, 5, and 7 have a true predicate and the othetectubave a false predicate,
then cluster 1 will receive the first stream element, clustentll receive the second stream

element, and cluster 7 will receive the third stream elem@ite first cluster to have a
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true predicate on the next read operation will receive thetfostream element. In this
way, conditional input streams are delivered to the clgstera sparse manner. Similarly,
conditional output streams compress data from disjoirgtehs into a contiguous stream.

In order to use conditional streams to deactivate clustieesactive clusters would al-
ways use a true predicate on conditional input or outpustreperations and inactive
clusters would always use a false predicate. This has teetedf sending consecutive
stream elements only to the active clusters. As explain¢tlli], conditional streams are
used for three main purposes: switching, combining, and lw@ancing. Using condi-
tional streams to completely deactivate a set of clustaesailty a fourth use of conditional
streams.

In a stream processor, conditional input streams are imgréeal by having each cluster
read data from the stream buffer as normal, but instead ettyrusing that data, it is first
buffered. Then, based upon the predicates, the bufferedislatent to the appropriate
clusters using an intercluster switch [112]. Conditionalput streams are implemented
similarly: data is buffered, compressed, and then traresfieto the SRF. Therefore, when
using conditional streams, inactive clusters are not indgtive. They must still buffer and
communicate data. Furthermore, if conditional streamsaheady being used to switch,
combine, or load balance data, then the predicates must dédi@doto also account for

active and inactive clusters, which complicates programgmi

7.2.3 Reconfiguration using adaptive stream buffers

From Figure 4.2, we can observe that the input to the cluateke directly from the stream
buffers, which are banked to match the number of clustersisTif the data parallelism
decreases below the number of clusters, the data for trenstnell lie in the wrong bank

and hence, cannot be accessed directly by the correspocidstgr.
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Therefore, to successful deactivate clusters in a streagepsor, stream data must be
rerouted so that active clusters receive the appropridatefoam other SRF banks as well.
Hence, an interconnection network between the streamrsudfed the clusters is needed
in order to adapt the clusters to the data parallelism. A/fainnected network allowing
data to go to any cluster would be extremely expensive indaiarea, power and latency.
In fact, stream processors already have a inter-clustenaaritation network that can be
used to route data to any cluster. The intercluster commatioit network is not only a
significant part of cluster power dissipation, but have ddagency and area requirements
as well.

To investigate better networks, we make use of the fact thatriot necessary to ar-
bitrarily turn off any cluster since all clusters are ideati Hence, we only turn off only
those clusters whose cluster identification number is graatin the data parallelism in
the algorithms. We further simplify the interconnectionwerk by making the clusters
turn off only in powers of two, since most parallel algorithvorkloads generally work on
datasets in powers of two.

The reconfigurable stream processor is shown in Figure h&rdconfigurable stream
processor allows the ability to turn the clusters on anddgfhending on the available data
parallelism using an interconnection network within thream buffers. This interconnec-
tion network allows the stream buffers to become adaptitke¢avorkload. In the absence
of any reconfiguration needed such as in case (32,9) of Tab)ehé interconnection net-
work acts as an extended stream buffer, providing the gldiprefetch more data while
behaving as a reconfiguration support when the data pasailletduces below the number
of clusters.

Figure 7.3 shows how the adaptive stream buffers would t@éraeconfiguration is

needed. The switches in the mux/demux network are set toatahé flow of the data to
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the clusters. There ateg,(C) stages required in the stream buffer if complete reconfigu-
ration to a single cluster is desired, whéras the number of clusters. The reconfiguration
network allows the stream processor to stripe and acceasdaiss all the SRF banks and
provides high memory efficiency as well instead of limititg tdata storage to that of the
parallelism present in the data stream and zero-paddingaah8RF banks. The adaptive
stream buffers also provide higher SRF bandwidth to apjptina with insufficient data par-
allelism since all the SRF banks can be accessed and ut#izzdin cases with insufficient
data parallelism.

The example in Table 7.2 shows a 4-cluster stream processonfiguring to 1 cluster.
We can see that each stage of the multiplexer network hoéddata until it is completely
read into the clusters. This is done using counters for emehra buffer stage (not shown
for clarity). Also, stalls need to be handled by the multyglenetwork. The adaptive
stream buffer network adds a latencylef, (C) to the data entering the clusters. However,
the adaptive stream buffers can prefetch data even if tteterkiare stalled, allowing it to
have the potential to hide latencies or even improve peidoga if clusters have significant
stalls.

The multiplexer/demultiplexer network shown in Figure &3er data stream. Each
input stream is configured as a multiplexer and each outpesirst is configured as a de-
multiplexer during execution of a kernel. The cluster rdguration is done dynamically
by providing support in the instruction set of the host peswe for setting the number of
active clusters during the execution of a kernel. By defalltthe clusters are turned off
when kernels are inactive, thereby providing power savehgshg memory stalls and sys-
tem initialization. Another advantage of providing recgnfiation using the multiplexer
network is that users do not have to modify their kernel cadectount for this reconfigu-

ration support.
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Figure 7.3 : Reorganizing streams with an adaptive stredfarbu

The current implementation of the multiplexer network addatency oflog,(C) + 2
cycle for the data to flow through the multiplexer network.nide, all the data entering the
clusters are delayed by 7 cycles for a 32-cluster streanepsot. However, the multiplexer
network behaves as an extended stream buffer and allowgd&iching to occur in the
multiplexer network, allowing the ability to absorb thedaty. Also, it is possible that the
kernel does not read the data during the first 7 cycles (oréhmek can be re-scheduled by
the compiler such that the first read occurs after 7 cyclesyvé¥er, the current implemen-
tation stalls the clusters for 7 cycles for all kernels. Iitespf this, we can see a reduction
in the micro-controller stalls for some of the kernels. ®aBl3 compares the reconfig-
urable stream processor with the base stream processdrefdult capacity base-station
case (32,9) that does not require any reconfiguration, iyeslowing us to evaluate the
worst case performance of the dynamically reconfiguralbdegssor. From the table, we

can observe that for kernels such as 'matrix multiplicafmml’, there was a reduction in
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Input Data from SB ABCDEFGH

Time | Stage 1| Stage 2| Cluster

1 ABCD - -
ABCD AB -

ABCD AB

EFGH CD

2

3

4 ABCD CD
5

6 EFGH EF
7

m O O W >»

EFGH EF

Table 7.2 : Example for 4:1 reconfiguration case (c) of FiguB Y-axis represents time.
Data enters cluster 1 sequentially after an additionahtatef 2 cycles

the stall time due to the adaptive stream buffers, althobghmet result was a slight degra-
dation in performance. The current implementation for #enfigurable stream processor
needs to run at 1.12 GHz to meet real-time constraints assepito 1.03 GHz for a tra-
ditional stream processor when no reconfiguration is reguirHowever, by turning off
the clusters when memory stalls are present, the reconlffilgustream processors can still

more power-efficient even in the no reconfiguration case,thisds is shown in the next

section.

7.3 Imagine simulator modifications

A ’setClustersifit clusters)’ is added in the stream code to set the number sfetkire-

quired for the kernel execution. This instruction is scHeduo execute just before the



Kernel Calls Base New
busy | stalls | busy | stalls
Update channel matrix| 1 223 544 223 533
Matrix multiplication 1 12104 | 4934 | 11464 | 5324
Iterate for new estimates 1 272 996 206 1057
Matrix mult. for L 1 6537 67 6218 22
Matrix mult. for C 1 6826 | 2075 | 6506 | 2052
Matrix transpose 5 1075 | 1425 | 1070 | 1380
Matched Filter 67 18492 | 2479 | 18492 | 3752
Interference Cancellation 197 | 35854 | 13396, 35854 | 17139
Pack data 1 289 0 289 7
Repack data 6 444 24 444 54
Viterbi Init. 32 4736 0 4736 224
Add Compare Select | 1024 | 114688 O 114688| 7168
Extract Decoded bits | 32 5952 0 5792 | 224
Kernel Time 223432| 25940| 224918 38936
Memory Time - 25261 - 34645
Total Time 258693 298499
Real-time frequency 1.03 GHz 1.2 GHz

Table 7.3 : Worst case reconfigurable stream processorrpafce
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kernel executes and gets reset at the end of the kernel tesedimt the clusters can be

turned off for the maximum time period possible. The streaza@e now looks as follows:

setClusters(16); //use 16 clusters only for the next kernel
kernell(inputl,input2,input3,.. , outputl);
setClusters(8);

kernel2(inputl,....,outputl, output2,...);

7.3.1 Impact of power gating and voltage scaling

Power gating and voltage scaling are recent innovationsawiging power-efficiency in
microprocessors. Their impact on reconfiguration is priegkeim this thesis.

Power gating [105, 113, 114] gates the supply voltage touhetfonal units. The main
advantage of power gating is to save leakage power, whiakcisrhing increasingly impor-
tant in processor design due to technology scaling. Thelgateuitry does not dissipate
any power when turned off. However, there is power dissypakliy the gating circuitry
and the power switching device itself. Figure 7.4 shows aamgx®e of the power gating
functionality. The power switching device needs to be laggeugh in width to handle
the average supply current during operation. Note thatiiming off clusters using power
gating, the width required would exceed maximum transistidths. This is because, the
clusters consume-80% of the chip power. Hence, in this case, multiple powemgat
devices need to be used to turn off a single cluster.

The addition of a gating device can result in reduced perfmee and decreased noise

margins due to the drop across the gating device and theifiaregpacitances added.
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GND Unit

Figure 7.4 : Power gating

Also, there is a latency between the arrival of the signalito tn the functional unit and
the operation of the functional unit. Due to huge capac#aran the power supply nodes,
several clock cycles will be needed to allow the power supphgach its operating level.
Dynamic voltage scaling (DVS) allows the scaling of the gssor voltage and clock
frequency, depending on the application’s requirementscd3sors generally operate at a
fixed voltage and require a regulator to control the voltaggply variation. The voltage
regulator for DVS is different from a standard voltage regot [115]. This is because
in addition to regulating voltage for a given frequency, ishalso change the operating
voltage, when a new frequency is requested. Since the hezdves no knowledge of the
time for voltage and frequency switching, the operatingeyssoftware controls the clock

frequency by writing to a register in the system controlestat

7.4 Power model

Don't believe the 33rd order consequences of a first orderehod

— Golomb’s Don’ts of mathematical modeling

The power model for stream processors is based on [23] wdltiads to account for
the adaptive stream buffers. The parameters used in povadysanin this thesis are as

shown in Table 7.4 and Table 7.5. All energy values shown atenespect taF,,. Based
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Description Value

ALU operation energy 632578

LRF access energy 79365

Energy of SB access/bit 155

SRAM access energy/bit 8.7

SP access energy 1603319

Norm. wire energy/track{,,) 1

Table 7.4 : Power consumption table (normalizedipunits)

on the models in [23], with modifications to account for fixealm ALUs, the length of
a wire track is0.455 micron, a cluster is 1400 wire tracks wide and it take®& pJ to
propagate a signal across a single wire track. The modiicsitare based on a low power
version of stream processors for embedded systems (Seén(CPpapter 6 in [116]). The
power consumption of the mux network is wire length capacéedominant to a first order
approximation [23]. Assuming a linear layout of the clustéwrorst case), the total wire
length of the mux network fot bit is 341 units, where the unit is the distance between
2 clusters. For 8 streams with 32 bits of wire each, the mux adtwises a total wire of
length approximatel$41 « 1400 = 8 x 32 x 0.455 = 55 meters with a power consumption of
5 11J [23]. An on-off latency of 7 cycles is based on clocking thdtiplexer network. The
pipelining depth of the multiplexer netwotkg, (clusters). For a 32-cluster architecture,
this evaluates to 5 cycles. In addition, 2 cycles are addedglinterfacing the network to

the SRF and the clusters.



141

Parameter Value
No. of clusters 32
Adders/cluster 3
Multipliers/cluster 3

Stream block size| 32 words

Stream Buffer size 256 KB

DRAM frequency | fcrk/8

Adder latency 2 cycles

Multiplier latency | 4 cycles

Off-On latency < 7 cycles

Table 7.5 : Key simulation parameters

7.4.1 Cluster arrangement for low power

The clusters can be re-ordered according to bit-reverstidedf locations and this can be
shown to minimize the wire length frod41 units per bit to80 units per bit, (from O§?)

to O(n * log(n))), wheren is the number of clusters. The power consumption of this
network is less than 1% of a single multiplier and this hasgligible effect on the power
consumption of the stream processor design. Figure 7.5sstimeffect of layout of wire

length.
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minimize inter-connection
lengths

(a) Original layout

Figure 7.5 : Effect of layout on wire length

7.5 Results
7.5.1 Comparisons between reconfiguration methods

There have been three different methods of reconfiguratimmgsed in this chapter, namely
(a) Reconfiguration in memory, (b) Reconfiguration usingditional streams and (c) Re-
configuration using a multiplexer network.

Out of the three, only (a) and (c) allow the processor to cetety turn off the unused

clusters. This is because (b) requires the use of the spadchnd the inter-cluster com-
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munication network in order to support conditional streafise ALUs in (b) can still be
turned off to save power. However, the scratchpad and tee-ahister network are two of
the most expensive parts in the clusters in terms of poweswaption [23], and hence, the
ability for power savings using (b) for reconfiguration isiied.

Reconfiguration in memory suffers from numerous disadgeda First, it requires a
special stride pattern that is not native to the stream gsmre For example, when a 4-
cluster processor reconfigures to 2-clusters using merniergtride patternis[1256 ....],
which is a specialized stride access pattern and would reguplicit hardware and soft-
ware support to maintain for reconfiguration. Secondly, mgwlata via memory adds a
significant latency to the reconfiguration. For example ptdia5 shows that moving data
via clusters is more than a order-of-magnitude faster thavimg data via memory for op-
erations such as a matrix transpose which has a strided ngerooess pattern. Finally, it
increases the memory requirements of the processor. Fargeawhile reconfiguration
to half the number of clusters, a matrix of si¥ex N requiring/NV rows in aN-cluster ma-
chine, will require2N rows after reconfiguration t&//2 clusters. Hence, reconfiguration
in memory is not considered as a viable solution for adagtieglata parallelism.

Hence, it can be seen that reconfiguring using the multiplegivork is the only so-
lution that allows power savings with a minimum impact on é&xecution time. Figure
7.6 quantifies the amount of execution time increase dueetintinoduction of the multi-
plexer network. In order to compare the increase in executine, a 32-user system with
constraint length 9 Viterbi decoding is considered. Thistemn does not require any re-
configuration. Hence, Figure 7.6 allows us to see the overbéaroviding the ability to
reconfigure using conditional streams (CS) and the overbeptbviding reconfiguration
using a multiplexer network (MUX) between the SRF and thatelts. It can be seen that

the multiplexer network has a lower latency than conditistr@ams but is more expensive
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x 10° (32,9) on 32-clusters using Base, Conditional Streams (CS), Mux Network (MUX)
3.5 T T T

[ 1 Computations
Hl stalls

15F b

Execution Time (cycles)

051 q

Base Cs MUX
Reconfiguration methods

Figure 7.6 : Comparing execution time of reconfigurationhnds with the base processor
architecture

if there is no reconfiguration in the system (Base).

Figure 7.7 shows the impact of the conditional stream regardiion (CS) and the
multiplexer network reconfiguration (MUX) as the constta@mngth in the system changes
from constraint length 9 to constraint length 7 on 32-clissteThus, it can be seen that
reconfiguration using the multiplexer network not only pesrthe ability to turn off clus-
ters for power savings but also provides a faster executioa than reconfiguration using

conditional streams.

7.5.2 \Voltage-Frequency Scaling

Figure 7.8 shows the clock frequency needed by the recoafifgiistream processor to
meet real-time requirements of 128 Kbps/user. We can s¢ashhe workload decreases,

the percentage of cluster busy time and microcontrolldisstacrease. However, the mem-
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x 10° Re—configuring to (32,7) on 32-clusters using Conditional Streams (CS), Mux Network (MUX)
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Figure 7.7 : Impact of conditional streams and multiplex@&ork on execution time

ory stall time does not decrease with the workload. This sabee as the workload de-
creases from (32,9) to the (4,7) case, some of the memotly #tat were hidden during

kernel execution suddenly became visible due to the casrefipg decrease in the kernel
execution time. The reconfigurable stream processor needa it 1.12 GHz to meet real-
time for the full capacity workload and can run at 345.1 MHzwlhe workload decreases
to the (4,7) case.

Figure 7.9 shows the corresponding cluster utilizatiomagem with the workload and
the cluster index. We can see that in the full capacity ca8@®J3all clusters are equally
utilized at 87%. The clusters are idle and are turned off 13%h@®time due to memory
stalls. However, as the workload decreases, the reconlilgustream processor turns off
unutilized clusters to lower their utilization factor anave power. For example, we can

see in case (4,9) that only the first 4 clusters are being ug&ba utilization, while the re-
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Figure 7.8 : Clock Frequency needed to meet real-time remqénts with varying workload

maining 28 clusters are being used at 20% utilization. Tlaptde stream buffer provides
the needed data alignment to collect the data from all theRR2 I&anks and stream buffers
into only those clusters that are active. Thus, by turnirfiguofised clusters during peri-
ods of memory stalls and insufficient data parallelism, néigoirable stream processors are
able to provide power-efficient wireless base-stations.

However, it is not practical to run the clock of the reconfafle stream processor at
just the right frequency to meet real-time. There are ongwagossible frequency levels in
programmable processors and these are standardized dhiterfage with external DRAM
clock frequencies. Hence, the reconfigurable stream psocegeds to be over-clocked to
work at these fixed frequencies. However, the clusters camrbed off during spare cycles
now available as well. In this thesis, we assume frequereids/oltages used in the latest
TM5800 Transmeta Crusoe chip [93], with an extension to 1H2 Gase at 1.4 V.

Power saving is achieved in the reconfigurable stream psocesie to turning off clus-
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Figure 7.9 : Cluster utilization variation with cluster esdand with workload

ters during over-clocking (the idle time due to mismatciwssn the frequency needed and
the actual frequency used), during memory stalls and dwa@ngels having clusters with
insufficient data parallelism. This is shown in Table 7.6.ofder to evaluate the benefits
of the adaptive stream buffers, the base case comparis@susnad to be a stream pro-
cessor that already supports dynamic voltage and frequeoading. We can see from the
table that the adaptive stream buffers yields savings ingp@wven in the no reconfigura-
tion case (32,9) of a full capacity base-station due to tygmff clusters during memory
stalls and over-clocking. We can see that the adaptiverstirdfers yield an additional
15-85% power savings over that provided by simple frequemty voltage scaling in the

architecture.
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Workload| Freq (MHz) | \Woltage Power Savings (W) Power (W) Savings
needed| used| (V) clocking | Memory | Clusters| New | Base
4,7) 345.09 | 433 | 0.875 | 0.325 1.05 0.366 | 0.30 | 2.05 | 85.14%
4,9) 380.69 | 433 | 0.875 0.193 0.56 0.604 | 0.69 | 205 | 66.41%
(8,7) 408.89 | 433 | 0.875 0.089 0.54 0.649 | 0.77 | 205 | 6244 %
(8,9) 463.29 | 533 | 0.950 | 0.304 0.71 0.643 | 1.33 | 2.98 | 55.46 %
(16,7) 528.41 | 533 | 0.950 | 0.020 0.44 0.808 | 1.71 | 298 | 4254 %
(16,9) | 637.21| 667 | 1.050 | 0.156 0.58 0.603 | 3.21 | 455 | 29.46 %
(32,7) 902.89 | 1000| 1.300 | 0.792 1.18 1.375 | 7.11 | 10.46| 32.03%
(32,9) | 1118.25| 1200| 1.400 | 0.774 1.41 0.000 | 12.38| 14.56| 14.98 %
Estimated Cluster Power Consumption 78 %
Estimated SRF Power Consumption 11.5%
Estimated Microcontroller Power Consumption 10.5%
Estimated Chip Area 45.7mm?

Table 7.6 : Power Savings
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7.5.3 Comparing DSP power numbers

A 3G base-station built in software require24 GOPs (theoretical arithmetic operations).
This exceeds the current capabilities of single process#? Bystems. It becomes very
difficult to compare multi-processor DSP systems due toatians in processor technol-
ogy, area, target performance, clock frequency, memoryfamctional units. This thesis
makes an attempt to provide estimates of how a stream prrcessefits over a system
design where multiple DSPs are connected together. Typigabers quoted for DSPs
requiring the implementation of sophisticated algorithmase been 1 DSP per user [117].
A 3G base-station design in software may require 32 DSPs @iMi8z to meet perfor-
mance requirements, when including memory stalls, comeffeciencies and algorithmic
dependencies. Hence, a 32 DSP architecture at 600 MHz magdbel to compare and
contrast power consumptions for the physical layer prangss wireless base-stations. [A
600 MHz TI VLIW DSP was chosen as the reference DSP as congpanismbers were
available for the DSP for that frequency [118] and for the sgmocess technology as the
Imagine stream processor implementation).

Table 7.5.3 shows the power consumption of 32 C64x DSPs, paiter numbers for
a 600 MHz C64x DSP at 1.2 V, implemented in a 0/ process technology taken
from [118]. It can be seen that 32 C64x DSPs consume 35.2 Wwépwhen includ-
ing 1/0 and EMIF peripherals. However, if the peripherale excluded, 32 DSP cores
consume 10.22 W of power. In contrast, a 32-cluster streawegsor with 4 16x16 mul-
tipliers in each DSP (to make a fair comparison with the Tl P8&sumes 9.6 W of
power at 600 MHz. This is because there is only a single miortroller in the stream
processor that issues instructions to all units comparé&2 tmicro-controllers in the 64x
DSP cores. However, note that these numbers are to be takeasoa rough estimate of

power consumption due to variations in process technolagydesign parameters such as
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Processor Power

1 C64x DSP core (CPU + L1) 0.31 W
1 C64x DSP core (CPU + L1+ L2+ EMIR) 0.72W
1 C64x DSP chip (total) 1.1wW

32 C64x DSP chips >35.2W
32 C64x DSP cores (CPU + L1) >10.22 W

32 cluster stream processor 9.6 W

Table 7.7 : Comparing DSP power numbers. The table showsdherpreduction as
the extraneous parts in a multi-processor DSP are elindrtatéorm a single chip stream
processor

the number of registers and as the actual power consummhe determined only by an
implementation. The inter-cluster communication netwagkveen the DSPs is accounted
for in the stream processor while an ideal inter-clustermaomication network is assumed
for the TI DSPs. Hence, the power consumption of 32 C64x DSPBscwill actually be
greater than 10.22 W.

7.5.4 Comparisons with ASIC based solutions

Figure 7.10 shows the performance comparisons between,38Bam processors and
ASICs for Viterbi decoding. The reason for using Viterbi ddmg as a comparison point is
that Viterbi decoding being a well-known and implementegbathm can be used for pre-
dicting the performance of stream processors against ASjilementations. The Viterbi
decoding algorithm can be easily implemented on ASICs an@dAsPto meet 1 bit per
clock cycle, requiring 128 KHz to provide 128 Kbps data ragsuming a fully unrolled

system [119]. The DSP and the stream processor numbers eavedbtained from a
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software implementation.

It is interesting to see from the figure that both stream psoes and ASICs show the
same characteristics while exploiting data-parallelistie ACS computations. The figure
assumes that the ASIC is able to decd@a®/2% ~3 bits every clock cycle. The effective DP
for a constraint length K decoder2&—!. However, the stream processor implementation
exploits subword parallelism and does 4 ACS operations iludter. Hence, to make the
plot scale the same, 4 ACS units in the ASIC are grouped tegeth a single ACS unit,
giving rise to a net maximum DP on the graph2&s3. Typical Viterbi decoders [119, 120]
are able to decode a bit every clock cycle. Hence, it is asduhe with lower number
of ACS units, they would scale linearly in frequency, espligisince the clock frequency
range is in KHz. There is a 2 orders-of-magnitude perforraatifference between the
stream processor implementation and an ASIC/FPGA impléstien while there is a 1-2
order-of-magnitude difference between the stream procésgplementation and a single
processor C6416 DSP implementation. The single dot in thedigefers to a software
DSP implementation of Viterbi decoding for constraint [dn§. This difference translates
to power as well. For example, if an ASIC were to run at 128 Kikzpower consumption
would translate roughly to around 1OV extrapolating from numbers in [119, 120] com-
pared to a 100 mW stream processor implementation at aroimdHz. In contrast, the
C64x DSP would take around 250 mW for a full software impletagan at around 400
MHz. A C64x DSP with a co-processor solution would performitar to the ASIC solu-
tion with an additional overhead of the data transfer betvike DSP and the co-processor.
However, the overhead of such data transfer is typically fkan 5% and does not impact
the order-of-magnitude differences in comparisons. ThECAShd stream processor num-
bers for power should only be taken as rough estimates asvherdmplementations are

needed for accurate comparisons.
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Viterbi decoding for rate 1/2 for 1 user at 128 Kbps each user
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Figure 7.10 : Performance comparisons of Viterbi decodind8&Ps, stream processors
and ASICs

7.6 Summary

This chapter shows how power efficiency in stream procestsigined for the worst case
in chapter 6 can be improved by using an adaptive multipleetwork that adapts the
compute resources in the design to the workload variatidingre are different ways of
reconfiguring the data to use the right number of clustersvé¥er, only the multiplexer
network allows the stream processor to turn off unused etsshereby adapting the clus-
ters to the data parallelism of the application. Dynamit¢age and frequency scaling adapt
the voltage and frequency to match the real-time requirésndrnus, by adapting clusters
and the frequency in the stream processor, power efficiehttyedDSP is improved, pro-

viding significant savings in power while maintaining réiate performance.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Traditional DSP architectures have explored (ILP, SubPalfmism space for providing
high performance DSP architectures. Data-parallel DSWe taken the traditional DSP
architecture space a step further to (ILP, SubP, DP) by é@xpdathe explicit data paral-
lelism in signal processing applications. This thesis B=am processors as reference
data-parallel DSP for evaluating the contributions of thissis. This thesis explores the
processor architecture space and provides power efficemtefficient algorithm mapping
for stream processors.

This thesis addresses the design of stream processorggfopaiformance real-time
embedded applications. This thesis first shows the desigigofithms for efficient map-
ping on stream processors such that they provide executinenttenefits while simultane-
ously simplifying the DSP architecture by demonstratingigras in the inter-cluster com-
munication network. The thesis then takes the next step§dmg the stream processor
and setting the number of arithmetic units, clusters andkbek frequency such that the
stream processor meets real-time requirements with themam power consumption. Fi-
nally, the thesis improves power efficiency in stream pregesdesigned using the above
exploration by adapting the compute resources to run-tianations in the workload.

The increase in the parallelism space for stream processorss at an associated cost

of increase in complexity of the tools that are needed tazatithe architecture efficiently.
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At the time of this thesis, there are still no compilers treat take code written in standard
programming languages such as C and run them efficiently @sttkam processors dis-
cussed in this thesis. Although the availability of highita parallel applications allows
significant performance benefits for stream processorng #re performance limits in this
(ILP, SubP, DP) space as well. If the applications need fofop@ance is greater than
the available (ILP, SubP, DP), other parallelism levelshsag thread-level parallelism or
pipelining multiple DSPs can be considered. This, of coureaes at a cost of increased

complexity of the design tools.

8.2 Future work
8.2.1 MAC layer integration on the host processor

This thesis focuses on the compute parts of the algorithntaia-parallel high perfor-
mance DSP applications. In most cases, these applicatiter$aice with other layers in
the system. For example, a wireless system after proce®rgpta in the physical layer,
needs to interface the data output with other layers sucheM®C layer. The control

aspects of the MAC and higher layers could create potentiliemecks in the system.

8.2.2 Power analysis

Don't believe that the model is the reality

— Golomb’s Don’ts of mathematical modeling

The power model used in this thesis is an extrapolated maedon the base stream
processor implementation for the Imagine architecturaatfsrd. Although the thesis has
done a sensitivity analysis of the design to the power matdeluse of voltage-frequency

scaling, power gating and cluster variations can causeseimdghe design and power esti-
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mates, especially when mapped to newer technology pracessé as 90 nm technology
processes. A hardware implementation is needed in ordegrity the performance and

power benefits that are shown to be achievable in this thesis.

8.2.3 Pipelined, Multi-threaded and reconfigurable procesors

Pipelining and multi-threading are ways to increase thép@ance beyond that obtained
by data parallelism. However, tools need to be designedahtmate partitioning of
data on multiple pipelined resources and provide dynanaid lmalancing. Multi-threading
designs need to ensure that real-time constraints are alatted due to multi-threading
as the threading analysis is usually dynamic. Reconfigaredsnputing are new concepts
for designing DSP applications. The architectures andstaelre not stabilized during this
thesis investigation. Reconfigurable computing showsidensble promise for the DSP
domain, if tools can be designed for efficient mapping atgams written in high level

languages on such processors.

8.2.4 LDPC and Turbo decoding

As explained in Chapter 5, the data access pattern for LDRGdiieg requires the use of
an indexed SRF [92]. Implementing LDPC decoding would regjoonsiderable change in
the simulator tools and changes in the thesis made usingdewould have to be ported
to the new simulator tools. Hence, it has been left as futuekvat this point in time.
However, the use of the indexed SRF makes the LDPC decodipigimentation similar to
Viterbi decoding and this has been studied in depth in Chd&pt&he use of indexed SRF
would also assist in building random interleavers neededuiobo decoding, as discussed

in Chapter 5.
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8.3 Need for new definitions, workloads and architectures

We are at a point where there has been an explosion in theageneht and use of technol-
ogy in embedded systems. While embedded systems havednadlif been in an ASIC or
DSP design flow, there is now a range of proposed architectweh as DSPs, ASICs, FP-
GAs, co-processors, reconfigurable processors, ASSPBsARIicrocontrollers and any of
their combinations. Each of these designs have differadietoffs in terms of area-time-
power utilization, varying levels of programmability anfferent tools for utilization. With
the integration and combination of several of these deyitdsas become increasingly
complicated to categorize and define these technologiesiame importantly, compare
them. We need a new taxonomy to classify these systems ama deé meaning of the
terms such aprogrammable, flexible, reconfigurable, ASIP, D&k ASSPsuch that it
allows us to compare and contrast an implementation agalieshatives.

Secondly, with the moving trends towards programmabletsols for embedded sys-
tems, there is a growing need for new standardized worklé@dwireless applications.
This saves design time for hardware designers by allowiegitto use the standardized
workloads as performance benchmarks also also allows laaed¥esigners to compare and
contrast different architectures. However, this also re¢hat the compilation tools should
have sufficiently developed in order to use a standardizegliage to map the workload on
the architecture.

Finally, computer architects have predicted the end of ¢lael reven for conventional
microprocessor design [94]. Even in conventional archites, the terminology and ar-
chitecture designs no longer fall under the classical Figmonomy [56]. Computer archi-
tectures are exploring trade-offs between simultaneous-thveading and chip multipro-
cessors and also merging of these solutions [63]. It hasrbedocreasingly important to

continuously iterate in determining the limits of prograatrte architecture designs, find-
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ing solutions to alleviate those limits providing new ciisations for solutions.

This thesis lays the foundation work for building high-merhance, power-efficient
DSPs that target real-time constraints in embedded systéhis thesis improves power-
efficiency at two levels. First, this thesis improves powiiciency in the design space
exploration, by searching for lowest power candidate s&echires that meet real-time con-
straints. Second, the thesis improves power efficiencydamtrdware level by dynamically
adapting the number of clusters to the data parallelism aming off unused clusters for
power savings and by proposing a new inter-cluster comnatioic network with a reduced

interconnect complexity.
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Appendix A

Tools and Applications for distribution

The appendix details the software modifications and additto the Imagine stream pro-

cessor simulator

A.1 Design exploration support

The design exploration tool implements the design spacéoratipn methodology ex-
plained in Chapter 6. Tools have been built to automate tBegdespace exploration by
giving the exploration parameter range. The tools evaltl@ecompute requirements of
the workload at compile time and predict the configuratiaat thill minimize power con-
sumption while still meeting real-time requirements. Tbel$ also provide insights into
the expected functional unit utilization of the stream @ssor. The compiler uses a perl
script that auto-generates the machine description filthEoparameters under exploration

but requires no change in the base stream processor simchate.

A.2 Reconfiguration support for power efficiency

The support for power efficiency incorporates significardrgfes into the stream proces-
sor simulator code. The code now incorporates a new stresimuation called 'setClus-
ters(int)’ that is used before each kernel to set the numieetove clusters and power-gate
the unused clusters during run-time. The compiling and lpmgftools have been modified

to become aware of this new instruction. A ’sleep’ instroisthas also been added inside
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the kernel compiler code, that allows the compiler to tufruafised arithmetic units during

compile time analysis.

A.3 Applications

A range of algorithms explained in Chapter 2 have been imetged in Matlab, C, and in
the Imagine stream processor language for analysis. Foiedl gnalysis and modifications
have been performed on the algorithms in order to designalleband fixed-point archi-
tecture. The Matlab code is also used as a data-generatitenfopthe stream processor
code and is used for verification of results from the outpuhefstream processor.

All the designed software tools and applications are akglBor download in the public

domain. For details, please contact the author.
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