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ABSTRACT

Data-parallel Digital Signal Processors: Algorithm Mapping, Architecture Scaling and

Workload Adaptation

by

Sridhar Rajagopal

Emerging applications such as high definition television (HDTV), streaming video, im-

age processing in embedded applications and signal processing in high-speed wireless com-

munications are driving a need for high performance digitalsignal processors (DSPs) with

real-time processing. This class of applications demonstrates significant data parallelism,

finite precision, need for power-efficiency and the need for 100’s of arithmetic units in

the DSP to meet real-time requirements. Data-parallel DSPsmeet these requirements by

employing clusters of functional units, enabling 100’s of computations every clock cycle.

These DSPs exploit instruction level parallelism and subword parallelism within clusters,

similar to a traditional VLIW (Very Long Instruction Word) DSP, and exploit data paral-

lelism across clusters, similar to vector processors.

Stream processors are data-parallel DSPs that use a bandwidth hierarchy to support

dataflow to 100’s of arithmetic units and are used for evaluating the contributions of this

thesis. Different software realizations of the dataflow in the algorithms can affect the per-

formance of stream processors by greater than an order-of-magnitude. The thesis first

presents the design of signal processing algorithms that map efficiently on stream proces-

sors by parallelizing the algorithms and by re-ordering theflow of data. The design space

for stream processors also exhibits trade-offs between arithmetic units per cluster, clusters



and the clock frequency to meet the real-time requirements of a given application. This

thesis provides a design space exploration tool for stream processors that meets real-time

requirements while minimizing power consumption. The presented exploration method-

ology rapidly searches this design space at compile time to minimize power consumption

and selects the number of adders, multipliers, clusters andthe real-time clock frequency

in the processor. Finally, the thesis improves the power efficiency in the designed stream

processor by adapting the compute resources to run-time variations in the workload. The

thesis presents an adaptive multiplexer network that allows the number of active clusters

to be varied during run-time by turning off unused clusters.Thus, by efficient mapping of

algorithms, exploring the architecture design space, and by compute resource adaptation,

this thesis improves power efficiency in stream processors and enhances their suitability for

high performance, power-aware, signal processing applications.
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1

Chapter 1

Introduction

A variety of architectures have emerged over the past few decades for implementing signal

processing applications. Signal processing applicationssuch as filters, were first imple-

mented in analog circuits and then moved over to digital designs with the advent of the

transistor. As the system complexity and need for flexibility increased over the years, signal

processing architectures have varied from dedicated, fast, low-power application-specific

integrated circuits (ASICs) to digital signal processors (DSPs) to Field-Programmable Gate

Arrays (FPGAs) to hybrid and reconfigurable architectures.All of these architectures are

in existence today (2004) and each provides trade-offs between flexibility, area, power,

performance and cost. The choice of ASICs vs. DSPs vs. FPGAs is still dependent on

the exact performance-power-area-cost-flexibility requirements of a particular application.

However, envisioning that performance, power and flexibility are going to be increasingly

important factors in future architectures, this thesis targets applications requiring high per-

formance, power efficiency and a high degree of flexibility (programmability) and focuses

on the design of DSPs for such applications.

1.1 Data-parallel Digital Signal Processors

DSPs have seen a tremendous growth in the last few years, driving new applications such

as high definition television (HDTV), streaming video, image processing in embedded ap-

plications and signal processing in high-speed wireless communications. DSPs are now
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(2003) a 4.9 billion dollar strong industry [9], with major applications being wireless com-

munication systems (�55%), computer systems such as disk drive controllers (�12%),

wired communication systems such as DSL modems (�11%) and consumer products such

as digital cameras and digital video disc (DVD) players (�7%).

These new applications are pushing performance limits for existing DSP architectures

due to their stringent real-time needs. Wireless communication systems, such as cellular

base-stations, provide a popular DSP application that shows the need for high performance

at real-time. The data rate in wireless communication systems is rapidly catching up with

the clock rate of these systems. Figure 1.1 shows the trends in the data rates of LAN and

cellular-based wireless systems. The figure shows that the gap between the data rates and

the processor clock frequency is rapidly diminishing (from4 orders of magnitude in 1996

to 2 orders of magnitude today (2004) for cellular systems, requiring a 100� increase in

the number of arithmetic operations to be done per clock cycle). This implies that, for a 100

Mbps wireless system running at 1 GHz, a bit has to be processed every ten clock cycles.

If there are��� arithmetic operations to be performed for processing a bit of wireless

data in the physical layer, it is necessary to have at least� arithmetic units in the wireless

system. Sophisticated signal processing algorithms are used in wireless base-stations at the

baseband physical layer to estimate, detect and decode the received signal for multiple users

before sending it to the higher layers. These algorithms canrequire 1000’s of arithmetic

operations to process 1 bit of data. Hence, even under the assumption of a perfect mapping

of algorithms to the architecture, 100’s of arithmetic units are needed in DSP designs for

these systems to meet real-time constraints. [10].

The need to perform 100’s of arithmetic operations every clock cycle stretch the limits

of existing single processor DSPs. Current single processor architectures get dominated

by register file size requirements and port interconnections needed to support the func-
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Figure 1.1 : Trends in wireless data rates and clock frequencies (Sources: Intel, IEEE
802.11b, IEEE 802.11a, W-CDMA)

tional units, and do not scale to 100’s of arithmetic units [11, 12]. This thesis investigates

data-parallel DSPs that employ clusters of functional units to enable support for 100’s of

computations every clock cycle. These DSPs exploit instruction level parallelism and sub-

word parallelism within clusters, similar to VLIW (Very Long Instruction Word) DSPs

such as the TI C64x [13], and exploit data parallelism acrossclusters, similar to vector pro-

cessors. Examples of such data-parallel DSPs include the Imagine stream processor [74],

Motorola’s RVSP [73] and IBM’s eLiteDSP [57]. More specifically, the thesis uses stream

processors as an example of data-parallel DSPs that providea bandwidth hierarchy to en-

able support for 100’s of arithmetic units in a DSP.

However, providing DSPs with 100’s of functional units are necessary but not sufficient

conditions for high performance real-time applications. Signal processing algorithms need

to be designed and mapped on stream processors so that they can feed data to the arithmetic

units and provide high functional unit utilization as well.This thesis presents the design
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of algorithms for efficient mapping on stream processors. The communication patterns

between the clusters of functional units in the stream processor are exploited for reducing

the architecture complexity and for providing greater scalability in the stream processor

architecture design with the number of clusters.

Although this thesis motivates the need for 100’s of arithmetic units in DSPs, the choice

of the exact number of arithmetic units needed to meet real-time requirements is not clear.

The design of programmable DSPs has several design parameter tradeoffs that need to be

chosen to meet real-time requirements. Factors such as the number and type of functional

units can be traded against the clock frequency and will impact the power consumption of

the stream processor. This thesis addresses the choice and number of functional units and

clock frequency in stream processors that minimizes the power consumption of the stream

processor while meeting real-time requirements.

Emerging DSP applications also show dynamic real-time performance requirements

in applications. Emerging wireless communication systems, for example, provide a vari-

ety of services such as voice, data and multimedia applications at variable data rates from

Kbps for voice to Mbps for multimedia. These emerging wireless standards require greater

flexibility at the baseband physical layer than past standards, such as supporting varying

data rates, varying number of users, various decoding constraint lengths and rates, adap-

tive modulation and spreading schemes [14]. The thesis improves the power efficiency of

stream processors by dynamically adapting the DSP compute resources to run-time varia-

tions in the workload.
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1.2 Design challenges for data-parallel DSPs

1.2.1 Definition of programmable DSPs

One of the main challenges in attaining the thesis objectiveof designing data-parallel DSPs

is to to determine the amount of programmability needed in DSPs and to define and quan-

tify the meaning of the wordprogrammable. While there exists� � �� ��� � � �������	
�� �
�
��	� ��� (SI) standard units for area (� ���� �), execution time (���
���) and power (� ����),
programmability is an imprecise term.

Definition 1.1 The most commonly accepted term for aprogrammable� processor isca-

pable of executing a sequence of instructions that alter thebasic function of the processor.

A wide range of DSPs designs can fall under this definition, such as fully programmable

DSPs, DSPs with co-processors, DSPs with other application-specific standard parts (AS-

SPs) and reconfigurable DSPs and this increases the difficulty of finding an evaluation

model for the problem posed in this thesis.

1.2.2 Algorithm mapping and tools for data-parallel DSPs

Mapping signal processing algorithms on data-parallel DSPs requires re-designing the al-

gorithms for parallelism and finite precision. Even if the algorithms have significant par-

allelism, the architecture needs to be able to exploit the parallelism available in the algo-

rithms. For example, while the Viterbi decoding algorithm has parallelism in the com-

putations, the data access pattern in the Viterbi trellis isnot regular which complicates the

mapping of the algorithm on data-parallel DSPs without dedicated interconnects (explained

�
based on a non-exhaustive Internet search.Programmableandflexiblewill refer to the same term in the

rest of this thesis.
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later in Chapter 5). Even though DSPs such as the TI C64x can beprogrammed in a high

level language, they often than not require specific optimizations in both the software code

and the compiler in order to map algorithms efficiently on thearchitecture [15].

1.2.3 Comparing data-parallel DSPs with other architectures

The differences in area, power, execution time and programmability of various architecture

designs makes it difficult to compare and contrast the benefits of a new design with existing

solutions. The accepted norm of evaluation of the success ofprogrammable architecture

designs is to meet the design goal constraints of area, execution time performance and

power and comparisons against other architectures for a given set of workload benchmarks

such as SPECint [16] for general purpose CPU workloads. Although industry standard

benchmarks exist for many applications such as mediabench [17] and BDTI [18], they are

not usually end-to-end benchmarks as a wide range of algorithms need to be carefully cho-

sen and implemented for performance evaluation to form a representative workload. Many

dataflow bottlenecks have been observed while connecting various blocks in an end-to-end

physical layer communication system and this effect has notbeen modeled in available

benchmarks. This also implies that an algorithm simulationsystem model must first be

built in a high level language such as Matlab to verify the performance of the algorithms.

Implementation complexity, fixed point and parallelism analysis and tradeoffs then need

to be studied and input data generated even for programmableimplementations. Thus, al-

though programmable DSPs have the feasibility to implementand change code in software,

providing design time reduction, the design time is still restricted by the time taken for ex-

ploring algorithm trade-offs, finite precision and parallelism analysis. There have been

various tools such as the Code Composer Studio from Texas Instruments [19], SPW [20]

and Cossap [21], which have been designed to explore such tradeoffs. A comparison also
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entails detailed implementation of the chosen end-to-end system on other architectures. All

architectures cannot be programmed using the same code and tools, and have implementa-

tion tradeoffs, increasing the time required to perform an analysis.

The design challenges are addressed in this thesis by (1) defining DSPs as programmable

processors that do not have any application-specific units or co-processors, (2) hand-optimizing

code to maximize the performance of the algorithms on the DSP, (3) comparing data-

parallel DSPs with a hypothetical TI C64x-based DSP containing the same number of clus-

ters, and designing a physical layer wireless base-stationsystem with channel estimation,

detection and decoding as the application.

1.3 Hypothesis

Stream processors [22] provide a great example of data-parallel DSPs that exploit in-

struction level parallelism, subword parallelism and dataparallelism. Stream processors

are state-of-the-art programmable architectures aimed atmedia processing applications.

Stream processors have the capability to support 100-1000’s of arithmetic units and do

not have any application-specific optimizations. A stream processor simulator based on

the Imagine stream processor [74] is available for public distribution from Stanford. The

Imagine simulator is programmed in a high-level language and allows the programmer to

modify the machine description features such as number and type of functional units and

their latency. The cycle-accurate simulator and re-targetable compiler also gives insights

into the functional unit utilization, memory stalls with the execution time performance for

the algorithms. A power consumption and VLSI scaling model is also available [23] to give

a complete picture of area, power and performance of the finalresulting architecture.

The hypothesis is that the power efficiency of stream processors can be improved to

enhance its suitability for high performance, power aware signal processing applications,
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such as wireless base-stations. This hypothesis will be proved in this thesis by designing

algorithms that map well on stream processors, exploring the architecture space for low

power configurations and adapting the compute resources to the workload. Although base-

stations have been taken as an example of a high-performanceworkload, the analysis and

contributions of this thesis are equally applicable to other signal processing applications as

well.

1.4 Contributions

This thesis investigates the design of data-parallel DSPs for high performance and real-

time signal processing applications along with the efficient mapping of algorithms to these

DSPs. The thesis uses stream processors as an example of suchdata-parallel DSPs to

evaluate the contributions presented in this thesis.

The first contribution of this thesis demonstrates the need for efficient algorithm de-

signs to map on stream processors in order to harness the compute power of these DSPs.

The thesis shows that the algorithm mapping can simultaneously lead to complexity re-

duction in the stream processor architecture. The thesis explores trade-offs in the use of

subword parallelism, memory access patterns, inter-cluster communication and functional

unit efficiency for efficient utilization of stream processors. The thesis demonstrates that

communication patterns existing in the algorithms can be exploited to provide greater scal-

ability of the inter-cluster communication network with the number of clusters and reduce

the communication network complexity by a factor of log(clusters).

The second thesis contribution demonstrates a design spaceexploration framework for

stream processors to meet real-time requirements for a given application while minimizing

power consumption. The design space for stream processors exhibits trade-offs between

the number of arithmetic units per cluster, number of clusters and the clock frequency in
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order to meet the real-time requirements of a given application. The presented exploration

methodology searches this design space and provides candidate architectures for low power

along with an estimate of their real-time performance. The exploration tool provides the

choice of the number of adders, multipliers, clusters and the real-time clock frequency in

the DSP that minimizes the DSP power consumption. The tool isused to design a 32-user

3G base-station with a real-time requirement of 128 Kbps/user and provides a 64-cluster

DSP architecture with 2/3 adders and 1 multiplier per cluster, at 567�786 MHz depend-

ing on memory stalls, as design choices, which are validatedwith analysis and detailed

simulations.

Finally, the thesis improves power efficiency in stream processors by varying the num-

ber and organization functional units to adapt to the compute requirements of the applica-

tion and by scaling voltage and frequency to meet the real-time processing requirements.

The thesis presents the design of an adaptive multiplexer network that allows the number

of active clusters to be varied during run-time by multiplexing the data from internal mem-

ory on to a select number of clusters and turning off unused clusters using power gating.

For the same 3G base-station with 64 clusters, the multiplexer network provides a power

savings of a factor of 1.94�, by turning off clusters when the parallelism falls below 64

clusters.

Thus, by efficient mapping of algorithms, providing a designexploration framework for

exploring the architecture space for low power configurations, and by adapting the architec-

ture to run-time workload variations, this thesis proves that the power efficiency in stream

processors can be improved and thus, enhances their suitability for high performance and

power-efficient signal processing applications with real-time constraints such as wireless

base-stations.
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1.5 Thesis Overview

The thesis is organized as follows. The next chapter presents wireless base-stations as the

application for designing stream processors with evolvingstandards and data rates with

increasing real-time requirements. Chapter 3 presents related work in DSP architecture

designs and the design constraints and trade-offs exploredin such architectural designs.

Chapter 4 provides an overview of stream processors as an example of data-parallel DSPs

and their programming model. Chapter 5 then shows how algorithms can be parallelized

and efficiently mapped on to stream processors and the tradeoffs in memory and ALU

operations and the use of packed data. Chapter 6 then shows the design methodology

and trade-offs in exploring the number of arithmetic units and the clock frequency needed

to meet real-time requirements for a given DSP workload. Chapter 7 presents improved

power efficiency in stream processors, where an adaptive buffer network is designed that

allows dynamic adaptation of the compute resources to the workload variations. The thesis

concludes in Chapter 8 by presenting the limitations and directions for extending the thesis.
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Chapter 2

Algorithms for stream processors: Cellular base-stations

In this thesis, CDMA-based cellular base-stations are considered for evaluation for pro-

grammable stream processor designs. A wide range of signal processing algorithms for

cellular base-stations, with increasing complexity and data rates depending on the evolu-

tion of CDMA standards, are explored in this thesis for stream processor designs. Wireless

base-stations can be divided into 2 categories: indoor base-stations based on wireless LAN

and outdoor base-stations based on cellular networks such as GSM, TDMA and CDMA.

The complexity of outdoor cellular base-stations is higherthan W-LAN base-stations due

to the use of strong coding required to compensate for low signal-to-noise ratios, need for

complex equalization to account for multipath reflections and interference among multiple

users (in CDMA-based systems). Indoor wireless systems canavoid the need for equaliza-

tion [24] and can use weaker coding.

2.1 Baseband processing

This chapter assumes that the reader is familiar with CDMA based communication systems

and algorithms implemented in the physical layer of these systems (See references [25–27]

for an introduction). Figure 2.1 shows a detailed diagram ofthe base-station transmitter.

The network interface in the wireless base-station receives the data from a land-line tele-

phone network (for voice) or a packet network (for data) and then sends it to the physical

layer. The physical layer first encodes the data for error correction (symbols), spreads the
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Figure 2.1 : Base-station transmitter (after Texas Instruments [1])

signal with a spreading code (chips) and then modulates the signal in order to map the

signal on to a constellation. A Digital Up Conversion (DUC) is performed to convert the

signal into the IF stage and then converted into an analog signal using a DAC. A multi-

carrier power amplifier (MCPA) is then used for amplifying and broadcasting the signal

over the wireless channel. An ADC is used to provide feedbackto the predistorter, which

compensates for the amplitude and phase distortion due to the high peak to average power

ratio in the non-linear (class AB) power amplifier [28].

The base-station receiver performs the reverse functions of the transmitter. Figure 2.2

shows the processing at the base-station receiver. A Low Noise Amplifier (LNA) is first

used to maximize the output signal-to-noise ratio (minimize the noise figure), provide linear

gain and provide a stable 50
�

input impedance to terminate the transmission line from the
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Figure 2.2 : Base-station receiver (after Texas Instruments [1])

antenna to the amplifier. A digital down converter (DDC) is used to bring the signal to

baseband.

The computationally-intensive operations occurring in the physical layer are those of

channel estimation, detection and decoding. Channel estimation refers to the process of

determining the channel parameters such as the amplitude and phase of the received signal.

These parameters are then given to the detector, which detects the transmitted bits. The

detected bits are then forwarded to the decoder which removes the error protection code on

the transmitted signal and then sends the decoded information bits to the network interface

from where it is transferred to a circuit-switched network (for voice) or to a packet network

(for data).

The power consumption of the base-station transmitter is dominated by the MCPA



14

(around 40W/46 dBm [28]) since the data needs to be transmitted over long distances. Also,

the baseband processing of the transmitter is negligible compared to the receiver processing

due to the need for channel estimation, interference cancellation and error correction at the

receiver. The power consumption of the base-station receiver is dominated by the digital

base-band as the RF only uses a low noise amplifier for reception. Although the transmitter

RF power is currently the more dominant power consumption source at the base-station,

the increasing number of users per base-station is increasing the digital processing while

the increasing base-stations per unit area is decreasing the RF transmission power. More

specifically, in proposed indoor LAN systems such as ultrawideband systems, [29] where

the transmit range is around 0�20 meters, the RF power transmission is around 0.55 mW

and the baseband processing is the major source of power consumption. This thesis con-

centrates on the design of programmable architectures for baseband processing in wireless

base-station receivers. It should be noted that flexibilitycan be used in the RF layers as

well to configure to various standards [30], but it’s investigation is outside the scope of this

thesis.

A wide range of signal processing algorithms with increasing complexity and increas-

ing data rates are studied in this thesis to study their impact on programmable architecture

design. Specifically, for evaluation purposes, the algorithms are classified into different

generations (2G, 3G, 4G), which represent increasing complexity in the receiver and in-

creasing data rates. Table 2.1 presents a summary of the algorithms and data rates consid-

ered in this thesis.

2.2 2G CDMA Base-station

Definition 2.1 For the purposes of this thesis, we will consider a2G base-stationto consist

of simple versions of channel estimation, detection and decoding and which forms a subset
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Standard Spreading Maximum Target Algorithms

Users Data Rate Estimation Detection Decoding

2G 32 32 16 Kbps Sliding Matched Viterbi

per user Correlator Filter (5,7,9)

3G 32 32 128 Kbps Multiuser Multiuser Viterbi

per user Estimation Detection (5,7,9)

4G 32 32 1 Mbps MIMO Matched LDPC

per user Equalization filter

Table 2.1 : Summary of algorithms, standards and data rates considered in this thesis

of the algorithms used in a subset of a 3G base-station. Specifically, we will consider

a 32-user base-station providing support for 16 Kbps/user (coded data rate) employing a

sliding correlator as a channel estimator, a code matched filter as a detector [31] followed

by Viterbi decoding [32].

Figure 2.3 shows the 2G base-station algorithms consideredin this thesis. A sliding corre-

lator correlates the known bits (pilot) at the receiver withthe transmitted data to calculate

the timing delays and phase-shifts. The operations involved in the sliding correlator used

in our design involves outer product updates. The matched filter detector despreads the

received data and converts the received ’chips’ into ’bits’(’Chips’ are the values of a bi-

nary waveform used for spreading the data ’bits’). The operations involved in matched

filtering at the base-station involves a matrix vector product, with complexity proportional

to the number of users. Both these algorithms are amenable toparallel implementations.

Viterbi decoding [32] is used to remove the error control coding done at the transmitter.

The strength of the error control code is usually dependent on the severity of the channel.
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Figure 2.3 : Algorithms considered for a 2G base-station

A channel with a high signal to noise ratio need not have a highconstraint length. The

reason for lower strength coding for channels with high SNRsis that the channel decod-

ing complexity is exponential with the strength of the code.Viterbi decoding typically

involves a trellis [32] with two phases of computation: an add-compare-select phase and a

traceback phase. The add-compare-select phase in Viterbi goes through the trellis to find

the most likely path with the least error and has data parallelism proportional to the strength
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(constraint length) of the code. However, the traceback phase traces the trellis backwards

and recovers the transmitted information bits. This traceback is inherently sequential and

involves dynamic decisions and pointer-based chasing. With large constraint lengths, the

computational complexity of Viterbi decoding increases exponentially and becomes the

critical bottleneck, especially as multiple users need to be decoded simultaneously in real-

time. This is the main reason for Viterbi accelerators in theC55x DSP and co-processors in

the C6416 DSP from Texas Instruments as the DSP cores are unable to handle the needed

computations in real-time.

2.2.1 Received signal model

We assume BPSK modulation and use direct sequence spread spectrum signaling, where

each active mobile unit possesses a unique signature sequence (short repetitive spreading

code) to modulate the data bits (� �). The base-station receives a summation of the signals

of all the active users after they travel through different paths in the channel. The multipath

is caused due to reflections of the transmitted signal that arrive at the receiver along with

the line-of-sight component. These channel paths induce different delays, attenuations and

phase-shifts to the signals and the mobility of the users causes fading in the channel. More-

over, the signals from various users interfere with each other in addition to the Additive

White Gaussian noise (AWGN) present in the channel. The model for the received signal

at the output of the multipath channel [33] can be expressed as

�� � � � � � �� � (2.1)

where�� � � � is the received signal vector after chip-matched filtering [31, 34], � �

� � 	�
 is the effective spreading code matrix, containing information about the spreading

codes (of length� ), attenuation and delays from the various paths,
� � � �

�

��� ���
 �
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 � �
 ���� � �
 ���� are the bits of� users to be detected,�� is AWGN and	 is

the time index. The size of the data bits of the users
�� is �� as we assume that all paths

of all users are coarse synchronized to within one symbol period from the arbitrary timing

reference. Hence, only two symbols of each user will overlapin each observation window.

This model can be easily extended to include more general situations for the delays [35],

without affecting the derivation of the channel estimationalgorithms. The estimate of the

matrix � contains the effective spreading code of all active users and the channel effects

and is used for accurately detecting the received data bits of various users. We will call this

estimate of the effective spreading code matrix,�� , our channel estimate as it contains the

channel information directly in the form needed for detection.

Consider� observations of the received vector� � � �� � 
 
 
 � �	 corresponding to the

known training bit vectors
 � � 
 � � 
 
 
 � 
	 . Given the knowledge of the training bits, the

discretized received vectors� �, ��, 


, �	 are independent and each of them is Gaussian

distributed. Thus, the likelihood function becomes

p�� � � �� � 


� �	 �� � 
 � � 
 � � 


� 
	 � � �� � 	 exp



�

	�
�� � ��� � �
 � �� ��� � �
 � �� 


After eliminating terms that do not affect the maximization, the log likelihood function

becomes 
 	�
�� � ��� � �
 � �� ��� � �
 � �� 
 (2.2)

The estimate�� , that maximizes the log likelihood, satisfies the followingequation:��� �� � ��� 
 (2.3)

The matrices
���

and
���

are defined as follows:��� �
	�
�� � 
 �
�� ��� �

	�
�� � 
 � ��� 
 (2.4)
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Ignoring the interference from other users for a simple 2G system consideration sup-

porting only voice users (can tolerate more errors), the auto-correlation matrix can be as-

sumed to be an identity matrix, giving a sliding correlator equivalent channel estimate.

�� � ��� 
 (2.5)

For an asynchronous system with BPSK modulation, the channel �� estimate can be ar-

ranged as� � �� � � � � 	
 which corresponds to partial correlation information for the

successive bit vectors
� ��� � � � � �� �� � ��
 , which are to be detected. The matched filter

for the asynchronous case is given by

� � � � ���� ���� � ��� �� � (2.6)

� � � �	�� �� � � 


Based on the algorithms implemented in the 2G base-station,the operation count needed

for attaining 16 Kbps/user data rate and the memory requirements based on a fixed point

analysis is estimated. The breakup of the operation count and the memory requirements

for a 2G base-station are shown in Figures 2.4 and 2.5. A 2G base-station is seen to require

up to 2 GOPs of computation and 120 KB of memory. The operationcount and memory

requirements are used in later chapters to evaluate the choice of DSPs and the amount of

computational power and memory requirements in the DSPs.

2.3 3G CDMA Base-station

Definition 2.2 For the purposes of this thesis, a3G base-stationcontains the elements of a

2G base-station, along with some more sophisticated signalprocessing elements for better

accuracy of channel estimates and for eliminating interference between users. Specifically,
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we consider a 32-user base-station with 128 Kbps/user (coded), employing multiuser chan-

nel estimation, multiuser detection and Viterbi decoding [10].

Figure 2.6 shows the algorithms considered for a 3G base-station in this thesis. Mul-

tiuser channel estimation refers to the process of jointly estimating the channel parame-

ters for all the users at the base-station. Since the received signal has interference from

other users, jointly estimating the parameters allows use to obtain the optimal maximum-
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likelihood estimate of the channel parameters for all users. However, a maximum like-

lihood estimate has a significant increase in computationalcomplexity over single-user

estimates [36], but provides a much more reliable channel estimate to the detector.

The maximum likelihood solutions also involve matrix inversions, which present dif-

ficulties in numerical stability with finite precision computations and in exploiting data

parallelism in a simple manner. Hence, we used a conjugate-gradient descent based al-

gorithm that was proposed in [37] that approximates the matrix inversions and replaces

the matrix inversion by matrix multiplications, which are simpler to implement and can

be computed in finite precision without loss in bit error rateperformance. The details of
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the implemented algorithm are presented in [37]. The computations involve matrix-matrix

multiplications of the order of the number of users and the spreading gain.

2.3.1 Iterative scheme for channel estimation

A direct computation of the maximum likelihood based channel estimate �� involves the

computation of the correlation matrices
���

and
���

, and then the computation of the

solution to (2.3),
� ���� � ��

, at the end of the pilot. A direct inversion at the end of the

pilot is computationally expensive and delays the start of detection beyond the pilot. This

delay limits the information rate. In our iterative algorithm, we approximate the maximum

likelihood solution based on the following ideas:

1. The product
� ���� � ��

can be directly approximated using iterative algorithms such as

the gradient descent algorithm [38]. This reduces the computational complexity and

is applicable in our case because
���

is positive definite (as long as� � �� ).

2. The iterative algorithm can be modified to update the estimate as the pilot is being

received instead of waiting until the end of the pilot. Therefore, the computation per

bit is reduced by spreading the computation over the entire training duration. During

the 	�� bit duration, the channel estimate,�� , is updated iteratively in order to get

closer to the maximum likelihood estimate for training length of 	. Therefore, the

channel estimate is available for use in the detector immediately after the end of the

pilot sequence.

The computations in the iterative scheme during the	�� bit duration are given below:� ����� � � ������� � 
 �
�� (2.7)� ����� � � ������� � 
 � ��� (2.8)�� ��� � �� �����
� � �� ����� � �� �����

�

� ����� � 
 (2.9)
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The term�� ����� � �� �����
�

� ����� � in step 3 is the gradient of the likelihood function in (2.2)

at �� ����� for a training length of	. The constant� is the step size along the direction of the

gradient. Since the gradient is known exactly, the iterative channel estimate can be made

arbitrarily close to the maximum likelihood estimate by repeating step 3 and using a value

� that is lesser than the reciprocal of the largest eigenvalueof
� ����� . In our simulations, we

observe that a single iteration during each bit duration is sufficient in order to converge to

the maximum likelihood estimate by the end of the training sequence. The solution con-

verges monotonically to the maximum likelihood estimate with each iteration and the final

error is negligible for realistic system parameters. A detailed analysis of the determinis-

tic gradient descent algorithm can be found in [38] and a similar iterative algorithm for

channel estimation for long code CDMA systems is analyzed in[39].

An important advantage of this iterative scheme is that it lends itself to a simple fixed

point implementation, which was difficult to achieve using the previous inversion scheme

based on maximum likelihood [33]. The multiplication by theconvergence parameter� can

be implemented as a right-shift, by making it a power of two asthe algorithm converges

for a wide range of� [39].

The proposed iterative channel estimation can also be easily extended to track slowly

time-varying channels. During the tracking phase, bit decisions from the multiuser detector

are used to update the channel estimate. Only a few iterations need to be performed for a

slowly fading channel and the previous estimate serves as aninitialization. The correlation

matrices are maintained over a sliding window of length� as follows,� ����� � � ������� � 
 �
�� � 
 ��	
���	 � (2.10)� ����� � � ������� � 
 � ��� � 
 ��	 ����	 
 (2.11)
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2.3.2 Multiuser detection

Multi-user detection [40] refers to the joint detection of all the users at the base-station.

Since all the wireless users interfere with each other at thebase-station, interference can-

cellation techniques are used to provide reliable detection of the transmitted bits of all

users. The detection rate directly impacts the real-time performance. We choose a parallel

interference cancellation based detection algorithm [41]for implementation which has a

bit-streaming and parallel structure using only adders andmultipliers. The computations

involve matrix-vector multiplications of the order of the number of active users in the base-

station.

The multistage detector [41, 42] performs parallel interference cancellation iteratively

in stages. The desired user’s bits suffers from interference caused by the past or future over-

lapping symbols of various asynchronous users. Detecting ablock of bits simultaneously

(multishot detection) can give performance gains [31]. However, in order to do multishot

detection, the above model should be extended to include multiple bits. Let us consider�
bits at a time (	 � �� � � � � � �� ). So, we form the multishot received vector� � � � � by

concatenating� vectors��� � 	 � �� � � � � � �� �.

� �

�
��������

� � � � � �
� � � � � �
...

. . . . . . � �
� � � � �

�
�������	

�
��������

� �
� �
...

��

�
�������	
� �� 
 (2.12)

Let 
 � � � � 	
 � represent the new multishot channel matrix. The initial soft decision

outputs� ��� � � 
 � and hard decision outputs�� ��� � � 
 � of the detector are obtained
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from a matched filter using the channel estimates as

� ��� � � �
� � � � (2.13)�� ��� � �	�� �� ��� � � (2.14)

� ��� � � ���
�

� �
�
 �

�	�� �
�
 �� �� ����� � (2.15)�� ��� � �	�� �� ��� � � (2.16)

where� ��� and �� ��� are the soft and hard decisions respectively, after each stage of the

multistage detector. These computations are iterated for� � �� � � � � � �� where
�

is the

maximum number of iterations chosen for desired performance. The structure of
�
 �

� 
 � 	
 � is as shown:
�
��������

��� � � ��� � � � �

��� � � ��� � � � ��� � � ��� � � �

...
. . . . . .

...
� � ��� � � ��� � � � ��� � �

�
�������	


 (2.17)

The block tri-diagonal nature of the matrix arises due to theassumption that the asyn-

chronous delays of the various users are coarse synchronized within one symbol dura-

tion [33, 35]. If the channel is static, the matrix is also block-Toeplitz. We exploit the

block tri-diagonal nature of the matrix later, for reducingthe complexity and pipelining

the algorithm effectively. The hard decisions,��, made at the end of the final stage, are

fed back to the estimation block in the decision feedback mode for tracking in the absence

of the pilot signal. Detectors using differencing methods have been proposed [42] to take

advantage of the convergence behavior of the iterations. Ifthere is no sign change of the

detected bit in succeeding stages, the difference is zero and this fact is used to reduce the

computations. However, the advantage is useful only in caseof sequential execution of the

detection loops, as in DSPs. Hence, we do not implement the differencing scheme in our
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design for a VLSI architecture.

Such a block-based implementation needs a windowing strategy and has to wait until all

the bits needed in the window are received and are available for computation. This results in

taking a window of� bits and using it to detect� �

� bits as the edge bits are not detected

accurately due to windowing effects. Thus, there are 2 additional computations per block

and per iteration that are not used. The detection is done in blocks and the two edge bits are

thrown away and recalculated in the next iteration. However, the stages in the multistage

detector can be efficiently pipelined [43] to avoid edge computations and to work on a bit

streaming basis. This is equivalent to the normal detectionof a block of infinite length,

detected in a simple pipelined fashion. Also, the computations can be reduced to work on

smaller matrix sets. This can be done due to the block tri-diagonal nature of the matrix�
� �
 as seen from (2.17). The computations performed on the intermediate bits reduce to

� � � � ���� �� � � (2.18)

� � � � ���� �� � � ���� �� �
�

�	�� � ���� �� � � ���� �� ��� (2.19)

� ���� � � ����
�

� �� ��������
�

� �� ������
�

�� �� ������� � (2.20)�� ���� � �	�� �� � ��� � 
 (2.21)

Equation (2.20) may be thought of as subtracting the interference from the past bits of

users, who have more delay, and the future bits of the users, who have less delay than the

desired user. The left matrix
� � � 
 	
 , stands for the partial correlation between the past

bits of the interfering users and the desired user, the rightmatrix
�� , stands for the partial

correlation between the future bits of the interfering users and the desired user. The center

matrix
� � � 
 	
 , is the correlation of the current bits of interfering usersand the diagonal

elements are made zeros since only the interference from other users, represented by the

non-diagonal elements, needs to be canceled. The lower index, 	, represents time, while
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Figure 2.7 : Operation count break-up for a 3G base-station

the upper index,�, represents the iterations. The initial estimates are obtained from the

matched filter. The above equation (2.20) is similar to the model chosen for output of the

matched filter for multiuser detection in [44]. The equations (2.20)-(2.21) are equivalent to

the equations (2.15)-(2.16), where the block-based natureof the computations are replaced

by bit-streaming computations.

The breakup of the operation count and the memory requirements for a 3G base-station

are shown in Figure 2.7 and Figure 2.8. An increase in complexity can be observed in the

3G case to 23 GOPs, increasing from 2 GOPs in 2G with an increase in memory require-

ments from 120 KB to 230 KB. However, note that the increase inGOPs is less due to the

increase in the number of operations than due to the increasein the data rates.

2.4 4G CDMA Base-station

Definition 2.3 For a4G system[45], we consider a Multiple Input Multiple Output (MIMO)

system with multiple antennas at the transmitter and receiver. The MIMO receiver employs

chip-level equalization followed by despreading and Low Density Parity Check (LDPC)
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decoding and provides 1 Mbps/user.

Multiple antenna systems have been shown to provide diversity benefits equal to the

product of the number of transmit and receive antennas and a capacity increase to the min-

imum of the number of the transmit and receive antennas [45, 46]. MIMO systems can

provide higher spectral efficiency (bits/sec/Hz) than single antenna systems and can help

support high data rates by simultaneous data transmission on all the transmit antennas in

addition to higher modulation schemes. Both MIMO and multiuser systems share similar

signal processing and complexity tradeoffs [46]. A single user system with multiple anten-

nas appears very similar to a multi-user system. The MIMO base-station model is shown

in Figure 2.9.

2.4.1 System Model

For the purposes of this thesis, we will consider a model withT transmit antennas per

user, M receive antennas at the base-station, K users, spreading code of length G, QPSK

modulation, with data in real-part, and training on the imaginary part of the QPSK symbol
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Figure 2.9 : MIMO system model

on each antenna, with a 32 Mbps real-time target (�� over 3G). The current model is based

on extending a similar MIMO model for the downlink [47] to theuplink. Figure 2.10 shows

the algorithms considered for a 4G base-station in this thesis.

The use of a complex scrambling sequence in considered for 4Gsystems in this thesis

and requires the need for chip-level equalization as opposed to symbol level channel esti-

mation and detection in the 3G workload considered earlier�. The use of the scrambling

sequence also whitens the noise, reducing the performance benefits of multiuser detection

in the 4G system considered. Hence, multiuser detection schemes have not been considered

as part of the 4G system model. The base-station performs chip-level equalization on the

received signal and equalizes the channel between each transmit antenna of each user and

the base-station. A conjugate-gradient descent [38] scheme as proposed in [47] is used to

�
An actual 3G system [14] uses scrambling sequences (long codes), but is not considered in the 3G

system workload of this thesis due to the use of multiuser estimation and detection algorithms that need short

spreading sequences
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perform the chip level equalization and update the chip matched filter coefficients used in

the equalizer. The symbol is then code match filtered and thensent to the decoder.

2.4.2 Chip level MIMO equalization

1. Calculate the covariance matrix

��r
� �
�

��
�� � � �	��� �	� (2.22)

where�
�	� is the vector of

� �� � �� chips combined from all receive
�

antennas.

This is an outer product update, giving a output complex matrix
� �

of size
� �� �

�� � � �� � ��.
Parameters chosen are� � � �� � 
 �� � 
��	. This is similar to the outer-product

auto-correlation update in channel estimation for 3G, except that it is done at the chip

level, which implies higher complexity.

2. Estimate the channel response (channel estimation)

Estimation of the channel impulse response between transmit antenna� and receive

antenna� is determined as:

��� �� ��� �
�

�
� ��

��
�� � � �� � �	�� �� �� �	�� � � � �� 
 
 
 � � � � � �� 
 
 
 �� � 	 � �� 
 
 
 ��(2.23)

This is similar to the outer-product cross-correlation update in channel estimation for

3G. The complete
 matrix is of size
� �� � �� � � � . It is better to put� as the

column dimension as all users can be done in parallel and makes stream processor

implementation simpler.

3. Conjugate Gradient Equalization
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Initialization of the residual with channel estimates:

� � � ��� � �� �� ����
(2.24)

Size of� is
� �� � �� � � � .

Initialization of the gradient:

� � ��� � � �� ��� � (2.25)

Initialization of the optimal gradient steps:

� �� �� � ��� �� ��� ��� � � ���� � � �� �� (2.26)

Size of
�

is � � � . In the	�� iteration, optimal step can be expressed as:

� �� �	� � � ���� �� ���� �	�� �� � �	�� � (2.27)

Filter update is determined by the following expression:

� �� �	� � � �� �	 � �� � � �� �	�� � �	� � (2.28)

Size of� is
� �� � �� � � �

Residual update is given by:

� �� �	� � � �� �	 � ��
� � �� �	�� �� � �	� (2.29)

Gradient optimal step is computed using:

� �� �� � � ���� � � ���� � ��� �� �	� ��� � �� � �	� � � ���� �� �� �� (2.30)

Finally, the gradient update for the next iteration is determined using previously com-

puted residual and gradient optimal step:

� � �	 � �� � � � � �	� � � �� �	�� � �	� (2.31)
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4. Filtering after finding filter taps

�� �� ��� � � � � � ��� � ��� � � �� � � �

� � � � �

� (2.32)

�� is the chip estimate, which is of size� � as independent data on each transmit

antenna and each user.� � ��	 is the number of symbols. The block is of size�� � � � .

5. Despreading and Descrambling

���� ��� � sgn
���� � ��� � �� � � � � � � � � ��� �� �� ��� � �� � � � � � � � � �� (2.33)

where� is the symbol number, and�� is the spreading sequence for user	.

2.4.3 LDPC decoding

Low Density Parity Check codes are experiencing a renewed interest after they have been

shown to outperform all existing decoders such as Turbo decoders and Viterbi decoders

while requiring lower complexity [48]. It has been shown that LPDC codes, in the limit of

infinite block lengths, can achieve reliable communicationwithin 0.0045 dB of the Shan-

non limit. LDPC codes are a class of linear block codes [32] corresponding to a parity

check matrix
 . The parity check matrix
 ���� �	� for LDPC codes is a sparse matrix�,
consisting of only� ��
� and
���. Given� information bits, the set of LDPC codewords
�

in the code space of length	 , spans the null space of the parity check matrix
 in which:
�
 � � �.



A sparse matrix is defined as a matrix having sufficient zeros such that the sparsity can be used to provide

savings in memory and/or computations
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For a �� � �� � � regular LDPC code each column of the parity check matrix
 has� �

��� and each row has� � 
���. If degrees per row or column are not constant, then the

code isirregular. Some of the irregular codes have shown better performance than regular

ones. But irregularity results in more complex hardware andinefficiency in terms of re-

usability of functional units. Code rate
�

is equal to� �	 which means that�	 � � �
redundant bits have been added to the message so as correct the errors.

LDPC codes can be represented effectively by a bi-partite Tanner graph. A bi-partite

graph is a graph (nodes or vertices are connected by undirected edges) whose nodes may be

separated into two classes, and where edges may only be connecting two nodes not residing

in the same class. The two classes of nodes in a Tanner graph are Bit Nodes and Check

Nodes. The Tanner graph of a code is drawn according to the following rule: “Check node
�� � � � �� 


�� � � is connected to bit node� � � 	 � �� 


�� whenever element�� � in 

(parity check matrix) is a
��.” The LDPC decoding is shown in Figure 2.11.

LDPC decoding is based on belief propagation that uses iterative decoding. While two

types of iterative decoders have been proposed; message passing and bit-flipping [48], in

this thesis, we focus on the message passing algorithm for decoding (also, called sum-

product decoding). To reduce hardware complexity in the sum-product algorithm, we use a

modified min-sum algorithm [49]. The modified Min-Sum algorithm iterates over rows and

columns of the parity-check matrix,
 , and operates on non-zero entries. In a Tanner graph

related to parity check matrix, edges can be seen as information flow pathways and nodes as

processing units. For the parity check matrix of
 ���� �	� � � � �� 


�	 � � � 	 � �� 


� � ,

assume:

� � �: Received bit.

� �� � �	 � �� � � ��: The set of column locations of the
��� in the� �� row of parity

check matrix
 .
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Figure 2.11 : LDPC decoding

� �� �� � �	
 � �� �� � �� 	
 �� 	�: The set of column locations of the
��� in the� �� row

of parity check matrix
 , excluding location	.
� � � � �� � �� � � ��: The set of row locations of the
��� in the 	�� column of parity

check matrix
 .

� � ��� � �� 
 � �� � � � �� � 
 �� � �: The set of row locations of the
��� in the 	�� column

of parity check matrix
 , excluding location� .

� �� �� �� �� �: The message to be passed from Check node
��

/(Bit node�� )to Bit node

� �/(Check node
��

).

The modified Min-Sum decoding algorithm consists of the following steps:
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Step 0: Initialization: Read the values from channel in each Bit node � � and send the

messages� �� to corresponding Check nodes
��

.

� �� � �� � � � 
 (2.34)

Step 1: Iteration : Compute the messages at Check nodes and pass a unique messages�� �

to each Bit node.

�� � � �� ����� ��� ��� � 
 �������� �� � ��� � (2.35)

where,

� �� � sign���� � � � �� � 	� �� 	

Step 2: Compute messages at Bit nodes and pass to Check nodes.

��� � ��� � 
� ���� �� �� � � � � � (2.37)

in which � is the scaling factor.

Step 3: Update the initial values that were read from channel.

	 � � �� � 
� ��� �� � (2.38)

Step 4: Threshold the values calculated in each Bit node to find a codeword. For every

row index	:

��� �

��
��

� 	�	 � � �
� ����

(2.39)

Compare the codeword with set of valid codewords. If��
 � � � or if maximum

number of iteration is reached then stop, else go to step 1.
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Figure 2.12 : Operation count break-up for a 4G base-station

2.4.4 Memory and operation count requirements

The breakup of the operation count and the memory requirements for a 4G base-station are

shown in Figure 2.12 and Figure 2.13. An increase in complexity can be observed in the 4G

case to 190 GOPs for the 2x4 antenna configuration, increasing from 23 GOPs in 3G. The

memory requirements are not much affected by the algorithms. Thus, we can see that, as

algorithms change and data rates increase from 2G to 3G to 4G,the amount of computations

per second increase almost by an order-of-magnitude compared to the marginal increase in

memory requirements. However, this implies that memory bandwidth requirements need

to be increased in order to support more computations/second.

2.5 Summary

This chapter presents the compute requirements of some of the computationally complex

wireless algorithms considered for cellular base-stations in this thesis. Signal processing

algorithms used in wireless cellular base-stations show significant amounts of data par-
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Figure 2.13 : Memory requirements of a 4G base-station

allelism. As wireless systems have evolved over time, therehas been an increase in the

compute performance needed in wireless systems due to the simultaneous increase in data

rates and the increase in the complexity of signal processing algorithms for better perfor-

mance. This increase in compute requirements with significant data parallelism availability

motivates the need for high performance data-parallel DSP design. The next chapter talks

about existing DSP architectures for implementing such algorithms and chapter 5 presents

efficient mapping of these algorithms on stream processors.
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Chapter 3

High performance DSP architectures

This chapter introduces the various types of high-performance processors that are used for

designing wireless communication systems.

3.1 Traditional solutions for real-time processing

DSP architectures designs have traditionally focused on providing and meeting real-time

constraints, for example, in cellular base-station [5]. The other factors have been cost, flex-

ibility and time-to-market. Advanced signal processing algorithms, such as those in base-

station receivers, present difficulties to the designer dueto the implementation of complex

algorithms, higher data rates and desire for more channels (mobile users) per hardware

module. A key constraint from the manufacturing point of view is attaining a high channel

density. This implies that a large number of mobile users need to be processed by a single

hardware module (RF interface + DSP + co-processors) [5].

Traditionally, real-time architecture designs employ a mix of DSPs, co-processors, FP-

GAs, ASICs and application-specific standard parts (ASSPs)for meeting real-time require-

ments in high performance applications such as wireless base-stations [2–5]. Figure 3.1,

for example, shows a traditional base-station architecture design. The chip rate processing

is handled by the ASSP, ASIC or FPGA while the DSPs handle the symbol rate processing

and use co-processors for decoding. The DSP can also implement parts of the MAC layers

and control protocols or can be assisted by a RISC processor.
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Figure 3.1 : Traditional base-station architecture designs [2–5]

The heterogeneous nature of the architecture workloads (mix of ASICs,DSPs,FPGAs,

co-processors) in traditional designs make partitioning of the workloads and programming

them in this heterogeneous environment an important research challenge [50, 51]. How-

ever, dynamic variations in the system workload such as variations in the number of users

in wireless base-stations, will require a dynamic re-partitioning of the algorithms which

may not be possible to implement in traditional FPGAs and ASICs in real-time. The het-

erogeneous nature of the workload also impacts channel density as single-chip integration

of the entire system will present difficulties in programming and adapting the various het-

erogeneous modules on the same chip.

This thesis presents the hypothesis that DSP architecturescan be designed to meet real-

time requirements in wireless systems without the use of application-specific hardware.

Hence, this thesis restricts the DSP design to homogeneous,programmable architectures

that meet the following criteria:

1. The programmable DSP architectures are fixed-point processors. This is because

signal processing algorithms can be typically implementedin finite precision, often
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with less than or equal to 16-bit precisions [10]. This allows for power efficiency in

the design.

2. The DSPS can support 100 or more arithmetic units to meet real-time constraints.

3. The DSPs architectures do not have any application-specific optimization that is ren-

dered useless by the lack of use of that application. For example, this thesis does not

consider providing an instruction for Viterbi ACS [52] or Viterbi co-processors as

in the TI C6416 DSP [13, 53]. This is because such instructions or hardware cannot

be re-used by other applications and limits the programmability of the system. The

design choice to provide a high degree of programmability automatically precludes

solutions such as combinations of DSPs with ASICs, FPGAs with static reconfigu-

ration, application-specific co-processors for DSPs and application-specific standard

processors (ASSPs) in this thesis.

3.2 Limitations of single processor DSP architectures

Traditional single processor DSP architectures such as theC64x DSP by Texas Instru-

ments [13] employ VLIW architectures and exploit instruction level parallelism (ILP) and

subword parallelism. Such single processors DSPs can only have limited arithmetic units

(less than 10) and cannot directly extend their architectures to 100’s of arithmetic units.

This is because, as the the number of arithmetic units increases in an architecture, the size

of the register files and the port interconnections start dominating the architecture [11, 12].

This growth is shown as a cartoon in Figure 3.2. The cartoon isused to show that, for�

arithmetic units, the area of the register files grows as� � [54]. While the use of distributed

register files may alleviate the register file explosion at the cost of increased penalty in reg-

ister allocation [11], there is an associated cost in exploiting ILP due to limited size of reg-
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Figure 3.2 : Register file explosion in traditional DSPs withcentralized register files. Cour-
tesy: Scott Rixner

ister files, dependencies in the computations and the register and functional unit allocation

and utilization efficiency of the compiler. It has been shownthat even with sophisticated

techniques, it is very difficult to exploit ILP beyond 5 [55].Hence, multi-processor DSP

solutions are required to support 100’s of arithmetic units.

3.3 Programmable multiprocessor DSP architectures

This thesis considers multiprocessors that are completelyprogrammable and have the po-

tential to support greater than 100 arithmetic units. Multiprocessor architectures can be

classified into Single Instruction Multiple Data (SIMD) andMultiple Instruction Multiple

Data (MIMD) architectures, based on the Flynn taxonomy [56]. For the convenience of

this thesis, we classify them further as shown in Figure 3.3.Some of the examples shown

in Figure 3.3 may fit in other categories as well. The following subsections traverse the

figure from left to right to demonstrate the benefits of exploiting explicit data parallelism

for DSPs. The figure shows that the combination of exploitinginstruction level parallelism
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(ILP) and Data Parallelism (DP) leads to the design of data-parallel DSPs. Data-parallel

DSPs exploit data parallelism, instruction level parallelism and subword parallelism. Al-

ternate levels of parallelism such as thread level parallelism exist and can be considered

after this architecture space has been fully studied and explored.

3.3.1 Multi-chip MIMD processors

The first MIMD processors have been implemented as loosely coupled architectures as in

the Carnegie Mellon Star machine (Cm�) [58]. Each processor in a loosely coupled system

has a set of I/O devices and a large local memory. Processors communicate by exchanging

messages using some form of message-transfer system [58]. Loosely coupled systems are

efficient when interaction between tasks are minimal. Loosely coupled DSP architectures

have been used in the TI C4x processors [59, 60], where the communication between pro-

cessors is done using communication ports. The tradeoffs ofthis processor design have

been the increase in programming complexity and the need forhigh I/O bandwidth and

inter-processor support. Such MIMD solutions are also difficult to scale with processors.

While the C4x processor is no longer used due to the design of higher performance VLIW

DSPs such as the C6x [13], many 3rd party DSP vendors such as Sundance [61] use com-

munication libraries built around the C4x communication ports and use FPGAs to provide

the interconnection network. The disadvantages of the multi-chip MIMD model and archi-

tectures are the following:

1. Load-balancing algorithms for such MIMD architectures is not straight-forward [62]

similar to heterogeneous systems studied earlier in this chapter. This makes it diffi-

cult to partition algorithms on this architecture model especially when the workload

changes dynamically.
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2. The loosely coupled model is not scalable with the number of processors due to

interconnection and I/O bandwidth issues [58].

3. I/O impacts the real-time performance and power consumption of the architecture.

4. Design of a compiler for a MIMD model on a loosely coupled architecture is difficult

and the burden is left to the programmer to decide on the algorithm partitioning on

the multiprocessor.

3.3.2 Single-chip MIMD processors

Single-chip MIMD processors can be classified into 3 categories: single-threaded chip

multiprocessors (CMPs), multi-threaded multiprocessors(MTs) and clustered VLIW ar-

chitectures as shown in Figure 3.3. A CMP integrates two or more complete processors

on a single chip [63]. Therefore, every unit of a processor isduplicated and used inde-

pendently of its copies. In contrast, a multi-threaded processor interleaves the execution of

instructions of various threads of control in the same pipeline. Therefore, multiple program

counters are available in the fetch unit and multiple contexts are stored in multiple registers

on the chip. The latencies that arise during computation of asingle instruction stream are

filled by computations of another thread, thereby providingbetter functional unit utilization

in the architecture. The TI C8x Multimedia Video Processor (MVP) [64] is the first CMP

for DSPs developed at TI. Other CMP systems have been proposed such as Cradle’s 3SoC,

Hydra and the IBM Power4 [63, 65]. Multi-threading increases instruction level parallelism

in the arithmetic units by providing access to more than a single independent instruction

stream. Since, the programmer has a detailed knowledge of interdependencies and sub-

tasks in many signal processing applications, control instructions for independent threads

can be easily inserted and this has been shown to be provide benefits in image processing
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applications [66].

Clustered VLIW architectures are another example of VLIW architectures that solve

the register explosion problem by employing clusters of functional units and register files.

Clustering improves cycle time in two ways: by reducing the distance the signals have to

travel within a cycle and by reducing the load on the bus [12].Clustering is beneficial for

applications which have limited inter-cluster communication. However, compiling for clus-

tered VLIW architectures can be difficult in order to schedule across various clusters and

minimize inter-cluster operations and their latency. The compilation problem gets harder

with increasing the number of clusters [12, 67, 68]. Hence, clustered VLIW architectures

typically use a very small number of clusters. For example, the TI C6x series of high

performance DSPs use 2 clusters [69] while the multiflow TRACE architecture used 2-4

clusters [70].

Although single chip MIMD architectures eliminate the I/O bottleneck between multi-

ple processors, the load balancing and architecture scaling issues still remain. Currently,

single chip MIMD architectures do not scale to providing 100’s of arithmetic units in the

processor and allowing tools and compilers to load balance the architecture efficiently. The

availability of data parallelism in signal processing applications is not utilized efficiently in

MIMD architectures.

3.3.3 SIMD array processors

SIMD processing refers to processing of identical processors in the architecture that execute

the same instruction but work on different sets of data in parallel. An SIMD array processor

is referred to processor designs targeted towards implementation of arrays or matrices.

There are various types of interconnection methodologies used for array processors such

as linear array (vector), ring, star, tree, mesh, systolic arrays and hypercubes. For example,
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Illiac-IV implemented a mesh network array of 64 processorsand the Burroughs Scientific

Processor (BSP) implemented a linear vector processor but with a prime number of memory

banks to reduce memory-bank conflicts [58]. ClearSpeed [71]is another example of a

vector processor that only has nearest neighbor connections. Although vector processors

have been the most popular version of array processors, meshbased processors are still

being used in scientific computing.

3.3.4 SIMD vector processors

The high levels of data parallelism demonstrated in chapter2 allow vector processors to

approach the performance and power efficiency of custom designs, while simultaneously

providing the flexibility of a programmable processor [72].Vector machines were the

first attempt at building super-computers, starting from the Cray-1 machine in 1972 [58].

Vector processors such as Cray-1 were traditionally designed to exploit data parallelism

but did not exploit instruction level or sub-word parallelism. These processors executed

vector instructions such as vector adds and multiplications out of a vector register file. The

number of memory banks is equal to the number of processors such that all processors can

access memory in parallel. Newer vector processors such as vector IRAM and CODE [72]

exploit ILP, subword and data parallelism and have been proposed for media processing

applications.

3.3.5 Data-parallel DSPs

The thesis defines data-parallel DSPs as architectures thatexploit ILP, SubP and DP as

explained in Figure 3.3. Examples of such processors are IBM’s eLiteDSP [57], Motorola’s

RVSP [73] and the Imagine stream processor from Stanford [74].

Stream processors are state-of-the-art programmable architectures aimed at media pro-
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cessing applications. Stream processors enhance data-parallel DSPs by providing a band-

width hierarchy for data flow in signal processing applications that enable support for hun-

dreds of arithmetic units in the data-parallel DSP.

Definition 3.1 Streamsrefer to the data which is produced or acquired as a stream of

elements, each of which is relevant for a short period of time, and which goes through

the same computations. The characteristics of data streamsare that elements have a high

degree of spatial locality, but limited temporal locality [73, 74].

In addition to having spatial locality, data access patterns in stream processor applica-

tions are such that entire input and output sets are known prior to the computations. These

characteristics allow prefetching of data, hiding memory latencies.

Stream processors exploit data parallelism similar to vector processors but with a few

differences as shown in [22]. The key differences are in the use of a bandwidth hierarchy

and in instruction sequencing, allowing it to reduce bandwidth demands on memory and al-

lowing support for more ALUs than a vector processor for a given memory bandwidth [22].

Stream processors can also be thought of as clustered VLIW processors with the exception

that each cluster works with the same instruction. This allows stream processors to exploit

data parallelism instead of ILP and also allows the ability to support a larger number of

clusters in the architecture. The thesis specifically focuses on stream processors as an ex-

ample of data-parallel DSPs and uses stream processors to evaluate the contributions of this

thesis. Stream processors are explained in more detail in the next chapter.

3.3.6 Pipelining multiple processors

An alternate method to attain high data rates is to provide multiple processors that are

pipelined. Such processors would be able to take advantage of the streaming flow of data
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through the system. The disadvantages of such a design are that the architecture would

need to be carefully designed to match the system throughputand is not flexible enough to

adapt to changes in system workload. Also, such a pipelined system would be difficult to

program and suffer from I/O bottlenecks unless implementedas a SoC. However, this is the

only way to provide desired system performance if the amountof parallelism exploitation

does not meet the system requirements.

3.4 Reconfigurable architectures

Definition 3.2 Reconfigurable� architectures are defined in this thesis as programmable

architectures that change the hardware and/or the interconnections dynamically so as to

provide flexibility with simultaneous benefits in executiontime due to the reconfiguration

as opposed to turning off units to conserve power.

Reconfigurable architectures [4, 75–83] are becoming increasingly popular choices for

wireless systems. Such architectures are more favorable inbase-stations in an initial evalu-

ation phase as they don’t have stringent constraints on power, area, form-factor and weight

as mobile handsets [83].

There have been various approaches to provide and use this reconfigurability in pro-

grammable architectures [4]. The first approach is the ’FPGA+’ approach, which adds a

number of high-level configurable functional blocks to a general purpose device to opti-

mize it for a specific purpose such as wireless [75, 76]. The second approach is to develop

a reconfigurable system around a programmable ASSP. The third approach is based on a

parallel array of processors on a single die, connected by a reconfigurable fabric.

�
General definition: A reconfigurable processor is a microprocessor with erasable hardware that can

rewire itself dynamically.
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3.5 Issues in choosing a multiprocessor architecture for evaluation

The choice of a multiprocessor architecture for a wireless application is not a simple one.

While this thesis primarily targets performance and power,secondary metrics such as cost,

precision, data width, memory, tools and multiprocessor scalability [18] play a major role

in design choices for multiprocessors. Stream processors enhance data-parallel DSPs by

providing a bandwidth hierarchy to support 100’s of arithmetic units. They also have been

implemented, designed and fabricated to verify the system design. Open-source tools are

also available for designing and evaluating stream processors. Stream processors are used

as the reference data-parallel DSP architecture in this thesis to evaluate the contributions of

this thesis.

The architectures and tools that have been developed in the industry are not open-

source, providing little scope for architecture modifications and/or investigating problems

or modifications with tools and compilers. This restricts our choice to academic research

tools, which are open-source, but do not have the complete tool support and/or have tools

still under the evaluation/development phase. Finally, the architecture and tools should

be flexible enough in order to support modifications and also be suitable for application

workloads.

A stream processor simulator based on the Imagine stream processor is available for

public distribution from Stanford. The Imagine simulator could be programmed in a high-

level language and allows the programmer to modify the machine description features such

as number and type of functional units and their latency. Thecycle-accurate simulator

and re-targetable compiler also gives insights into the functional unit utilization, memory

stalls along with the execution time performance for the algorithms. A power consumption

and VLSI scaling model is also available to give a complete picture of area, power and

performance of the final resulting architecture.
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3.6 Summary

The need for real-time processing in high performance applications make multiprocessor

DSPs necessary to support 100’s of arithmetic units. There are a variety of combinations

for multiprocessor DSPs in the (instruction level parallelism, subword parallelism, data

parallelism, coarse-grained pipelining and multi-threading) space. The greater the types

of parallelism and pipelining exploited in the DSP, the greater is the complexity of the as-

sociated software and compiler tools in order to support thearchitecture. Current single

processor DSPs such as the TI C64x explore the (instruction level parallelism, subword

parallelism) space. This thesis explores the (instructionlevel parallelism, subword paral-

lelism, data parallelism) space using stream processors with increased complexity in the

software and compiler tools for investigating this thesis for performance benefits due to

the abundant data parallelism observed in the algorithms ofchapter 2. The next chapter

presents the architecture framework of stream processors and discusses the complexity of

the tools and the programming language.
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Chapter 4

Stream processors

4.1 Introduction

Special-purpose processors for wireless communications perform well because of the abun-

dant parallelism and regular communication patterns within physical layer processing.

These processors efficiently exploit these characteristics to keep thousands of arithmetic

units busy without requiring many expensive global communication and storage resources.

The bulk of the parallelism in wireless physical layer processing can be exploited as data

parallelism, as identical operations are performed repeatedly on incoming data elements.

A stream processor can also efficiently exploit data parallelism, as it processes indi-

vidual elements fromstreamsof data in parallel. Figure 4.1 shows the various parallelism

levels exploited by a stream processor. Traditional DSPs exploit instruction level paral-

lelism (ILP) [55] and subword parallelism [84, 85]. Stream processors, being data-parallel

DSPs, exploit data parallelism (DP) similar to Single Instruction Multiple Data (SIMD)

vector processors, in addition to ILP and subword parallelism, enabling high performance

programmable architectures with hundreds of Arithmetic and Logic Units (ALUs).

Definition 4.1 The general definition ofdata parallelismis the number of operations in

the data that can be executed in parallel. Thus, subword parallelism is also a form of data

parallelism. Moreover, in many machines, loops that have data parallelism can be unrolled

to show up as instruction level parallelism. Hence, in this thesis,data parallelismis defined

as the parallelism available in the data after exploiting subword parallelism (packing) and
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Figure 4.1 : Parallelism levels in DSPs and stream processors

instruction level parallelism (loop unrolling).

Streams are stored in a stream register file, which can efficiently transfer data to and

from a set of local register files between major computations. Local register files (LRFs),

co-located with the arithmetic units inside the clusters, directly feed those units with their

operands. Truly global data, data that is persistent throughout the application, is stored

off-chip only when necessary. These three explicit levels of storage form an efficient com-

munication structure to keep hundreds of arithmetic units efficiently fed with data. The

Imagine stream processor developed at Stanford is the first implementation of such a stream

processor [22].

Figure 4.2 shows the architecture of a stream processor, with
�

arithmetic clusters.

Operations in a stream processor all consume and/or producestreams which are stored
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Figure 4.2 : A Traditional Stream Processor

in the centrally located stream register file (SRF). The two major stream instructions are

memory transfers and kernel operations. A stream memory transfer either loads an entire

stream into the SRF from external memory or stores an entire stream from to the SRF to

external memory. Multiple stream memory transfers can occur simultaneously, as hardware

resources allow. A kernel operation performs a computationon a set of input streams to

produce a set of output streams. Kernel operations are performed within a data parallel

array of arithmetic clusters. Each cluster performs the same sequence of operations on
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independent stream elements. The stream buffers (SBs) allow the single port into the SRF

array (limited for area/power/delay reasons) to be time-multiplexed among all the interfaces

to the SRF, making it appear that there are many logical portsinto the array. The stream

buffers (SBs) also act as prefetch buffers and prefetch the data for kernel operations. Both

the SRF and stream buffers are banked to match the number of clusters. Hence, kernels

that need to access data in other SRF banks need to use the inter-cluster communication

network for communicating data between the clusters.

Figure 4.3 shows the internal details of a stream processor cluster. The arithmetic clus-

ters get data from the stream buffers connected to the SRF. The local register files (LRF)

enable support for 10’s of ALUs within each cluster, overcoming the register file area and

interconnection network explosion with increasing ALUs inthe traditional centralized reg-

ister file architectures [54]. Kernels executing in the arithmetic clusters, sometimes need

to index into small arrays or lookup tables. The scratchpad unit in the clusters provide

this functionality. The intra-cluster communication network allows communication of data

within the cluster ALUs and the scratchpad while the inter-cluster communication network

allows communication of data across clusters. The inter-cluster communication unit is used

for applications that are not perfectly data parallel and need to communicate variables or

data across clusters. The inter-cluster communication is performed by the communication

unit within each cluster.

4.2 Programming model of the Imagine stream processor

Stream applications are programmed at two levels: kernel and stream. The kernel code

represents the computation occurring in the applications while the stream code represents

the data communication between the kernels. Figure 4.4 shows the stream processor pro-

gramming model. The kernel code takes the input stream data,performs the computations
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Figure 4.3 : Internal details of a stream processor cluster,adapted from Scott Rixner [6]

and produces output streams, while the stream code direct the dataflow within the stream

processor.

Figure 4.5 provides an example of stream processor programming using kernels and

streams. The example code in Figure 4.5(a) shows a toy example of vector addition and

subtraction, that shows ILP, DP and subword parallelism. The stream code uses C++

derivatives and includes library functions that issue stream instructions to the stream pro-

cessor. The kernel programs operate on these data streams and execute on the microcon-

troller and arithmetic clusters of the stream processor. The example shows the example

broken into stream and kernel components in Figure 4.5(b). The stream code consists of

the add and subtract kernels and directs the data to and from the kernels similar to functions
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in C. The kernels are written for a single cluster with the knowledge that all clusters will

be executing the same instruction, but on different data. Inthe event where inter-cluster

communication is required, each cluster has a cluster id tagwhich can be used to identify

the cluster and send/receive data from/to the right cluster. The subtract kernel exploits sub-

word parallelism by doing two subtracts simultaneously. The inner loop in the cluster is

unrolled and pipelined to exploit ILP. Thus, ILP, DP and subword parallelism are exploited

in stream processors using the kernel/stream code programming model.

4.3 The Imagine stream processor simulator

The Imagine stream processor simulator [86] is a cycle-accurate simulator for stream pro-

cessors developed at Stanford. The stream and kernel codes are written in StreamC and

KernelC languages, which are a subset of the C++ programminglanguage. The language

syntax is available in the User’s guide [86].

Figure 4.6 shows the Imagine simulator programming model. First, the kernelC code

is scheduled using the scheduler tool (iscd). The iscd tool is used to compile all kernels

before using the Imagine cycle-accurate simulator. The scheduler produces up to four
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int a[1024], b[1024],sum[1024];


short c[1024],d[1024], diff[1024];


for (i = 0; i < 1024 ; ++i)


{


      sum[i] = a[i] + b[i];


      diff[i] = c[i] - d[i];


}


stream<int> a(1024);


stream<int> b(1024);

stream<int> sum(1024);


stream<half2> c(512);


stream<half2> d(512);


stream<half2> diff(512);


add(a,b,sum);


sub(c,d,diff);


kernel add(istream<int> a, istream<int> b, ostream<int> sum)


{


int inputA, inputB, output;


loop_stream(a)


{


a >> inputA;


b >> inputB;


output = a + b;


sum << output;


}


}


kernel sub(istream<half2> c, istream<half2> d,


ostream<half2> diff)


{


int inputC, inputD, output;


loop_stream(c)


{


c >> inputC;


d >> inputD;


output = c -  d;


// 2 simultaneous subtracts due to subword parallelism


diff << output;


}


}


(a) Example Program


(b) Stream processor implementation


DP


ILP


Subword


Figure 4.5 : Stream processor programming example(a) is regular code ; (b) is stream +
kernel code
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Figure 4.6 : The Imagine stream processor simulator programming model

output files for each kernel. It first produces a human-readable microcode (.uc) file that

is used by the cycle-accurate simulator to run the microcontroller. The instructions in the

microcode are executed by the microcontroller which then schedules the operations in the

clusters. A schedule visualizer file (.viz) is also produced. The .viz file can be read by

the schedule visualizer (SchedViz) which shows a graphical representation of the compiled

schedule of the kernel. A binary microcode file (.raw) file anda special binary file (.lis)

directly readable by Verilog, can also be output using command line options. The machine

description file (.md) is used byiscd to tell the compiler the nature of the architecture, the

type and number of functional units.Iscd, being a retargetable compiler can compile for

the architecture based on the architecture description based on the machine description file.

The output of the scheduler and the streamC code feed into theImagine cycle-accurate

simulator (isim). The simulator can also function in a debug mode (IDebug), where only

functional verification is done. The cycle-accurate simulator provides detailed statistics
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Figure 4.7 : The schedule visualizer provides insights on the schedule and the dependencies

such as execution time, memory stalls, microcontroller stalls and functional unit utilization.

The scheduler output for the visualizer (.viz) can be used toprovide insights on the

scheduled output and the dependencies. These insights can then be used to modify the

kernelC program and/or the machine description file in orderto improve the performance

of the kernel code on the stream processor. Figure 4.7 shows the scheduler visualizer output

for a kernel. The visualizer shows the schedule of the operations in each cluster of the

stream processor and the dependencies between the various functional units (not shown in

the figure for clarity reasons). The kernelC code is modified based on the visualizer output

until the programmer is satisfied with the output schedule ofthe kernelC code. The figure

shows a typical schedule for a floating point matrix-matrix multiplication on 3 adders and

2 multipliers. FMUL and FADD correspond to the floating pointmultiplication and add

instructions and the Y-axis shows the execution time in terms of cycles.

The schedule visualizer also provides insights on memory stalls as shown in Figure 4.8.
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Figure 4.8 : The schedule visualizer also provides insightson memory stalls

The figure shows the schedule of the microcontroller. If the stream data to run the kernel

is not present in the SRF, then the microcontroller stalls the kernel until data from external

memory is loaded in the SRF, causing memory stalls.

4.3.1 Programming complexity

Your new hardware won’t run your old software

– Balch’s Law

The use of a non-standard programming language is one of the key bottlenecks in the

usage of the Imagine stream processor programming model. The stream processor compiler

tools do not perform automatic SIMD parallelization and thedataflow of the application

must be carefully scheduled by the programmer. The SIMD parallelization is simple for

applications such as vector addition where the parallelization is explicit, but the analysis
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gets difficult with more complex kernels with multiple levels of data parallelism.

The use of a non-standard language implies that all applications written by other pro-

grammers need to be re-written in order to map to stream processors. Although a C com-

piler for stream processors would provide this functionality, the design of such a compiler

that automates the SIMD parallelism and breaks the code intostreams and kernels is a hard

5and important research problem by itself [87].

Furthermore, the mapping of an algorithm into streamC and kernelC code is not straight-

forward. Ideally, kernels should be written such that the kernel code maximizes the func-

tional unit efficiency, thereby maximizing the performanceof the stream processor. There

is no unique way of achieving this goal and the burden is left to the programmer to design

efficient kernels. However, theSchedViztool provided with the simulator enables the pro-

grammer to efficiently and visually analyze the static schedule of the kernel and provides

insights into the design of efficient kernels.

Note that there is always a trade-off between high level programming using standard

languages and the efficiency of the compiled code. In many embedded systems involving

DSPs, the difference between C code and assembly code can significantly impact perfor-

mance [88]. Even for compiling C code, the DSP programmer needs to know the tradeoffs

in the usage of the various compiler options. Memory management in DSPs is also not

automated and has to be allocated by the programmer. Furthermore, the use of certain

features in DSPs such as Direct Memory Access (DMA) or co-processors requires the pro-

grammer to have a detailed knowledge of the DSP architectureand the application [89].

The Imagine stream processor implements a streaming memorysystem using memory ac-

cess scheduling [90]. The streaming memory system functions as an automated DMA

controller, prefetching streams of data into the stream register file of the stream processor,

eliminating the need to hand-schedule memory operations inImagine.



63

Thus, providing efficient programming tools is still a challenge for processor designs

for application-specific systems. While the current programming complexity of the stream

processor may limit its widespread acceptance, it does not impact the contributions of this

thesis. Further research in providing programming tools for stream processors that can au-

tomate SIMD parallelization and provide interfaces with standard programming languages

such as C/C++ is required for rapid and efficient software development for stream proces-

sors.

4.4 Architectural improvements for power-efficient streamprocessors

This thesis extends the base stream processor in two dimensions. First, the thesis explores

the entire architecture space to come up with processor designs to meet real-time require-

ments at the lowest power. The Imagine stream processor design at Stanford can be viewed

as an example of one specific mapping of the stream processor architecture space. The

stream processor space is shown in Figure 4.9. New processors can be designed in this

space for applications such as wireless basestations. The figure shows a (3 adder, 1 multi-

plier, 64 cluster) configuration in fixed point suitable for 3G base-stations as an example,

which is elaborated in detail in chapters 6 and 7.

Secondly, this thesis extends the stream processor architecture at the inter-connection

network level by proposing a multiplexer network between the SRF and the clusters that

allows unused clusters to be turned off when data parallelism is insufficient. A broadcasting

network is also proposed to replace the inter-cluster communication network that reduces

the interconnection length by
���

� ���� ���� ��. The proposed architectural improvements are

shown in Figure 4.10. These improvements allow power savings in the stream processor

and are discussed in detail in chapters 5 and 7.
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Stream Processor Architectures


Typical Variable Parameters:


Clusters

ALUS: Adders, Multipliers


Register File size/Memory

Precision: Fixed/Floating


8-cluster,


3 +, 2 x, 1 /, floating point


( The Imagine stream


processor at Stanford)


64-cluster,


3 +, 1 x, fixed point


(A 3G Base-station)


Figure 4.9 : Architecture space for stream processors

4.5 Summary

Stream processors, being data-parallel DSPs, exploiting instruction level parallelism, sub-

word parallelism and data parallelism. Stream processors have been shown the ability to

support 100’s of arithmetic units due to the use of a bandwidth hierarchy, enabling high

performance DSP systems. The exploitation of data parallelism in stream processors in-

creases the complexity of the programming language and compiling tools. The following

chapter 5 shows how the algorithms presented in chapter 2 need to be designed for efficient

implementation on stream processors.
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Chapter 5

Mapping algorithms on stream processors

This chapter presents the mapping of wireless algorithms discussed in chapter 2 on stream

processors, based on the Imagine stream processor simulator. While mapping algorithms

on stream processors, the following factors can used as performance indicators: the num-

ber of adders, multipliers, clusters and clock frequency needed to meet real-time perfor-

mance, the functional unit utilization of the adders and multipliers within a cluster and the

cluster utilization, memory stall minimization, comparisons with the theoretical number

of additions and multiplications required by the algorithmand the amount of data paral-

lelism in the algorithm vs. the number of clusters used in thearchitecture. Many of these

performance indicators require trade-offs that need to be carefully explored and analyzed

during the mapping process. There can be orders-of-magnitude variations in performance

of algorithms depending on how the mapping of the algorithmsis implemented on stream

processors. This chapter shows the mapping of wireless algorithms on stream processors

and the associated trade-offs.

5.1 Related work on benchmarking stream processors

Stream processors have been benchmarked and their performance studied for workloads

such as stereo depth extraction, MPEG-2 encoding, QR decomposition, space-time adap-

tive processing, polygon rendering, FFT, convolution, DCT, and FIR [8]. Table 5.1 shows

the performance results of these applications on the Imagine stream processor.



67

Applications Arithmetic Bandwidth Application Performance

Stereo Depth Extraction 11.92 GOPS (16-bit) 320x240 8-bit gray scale at 198 fps

MPEG-2 Encoding 15.35 GOPS (16- and 8-bit) 320x288 24-bit color at 287 fps

QR Decomposition 10.46 GFLOPS 192x96 decomposition in 1.44 ms

Polygon Rendering (PR) 5.91 GOPS 35.6 fps for 720x720 (ADVS)

PR with Shading 4.64 GOPS 16.3M pixels/sec, 11.1M vertices/sec

Discrete Cosine Transform 22.6 GOPS (16-bit) 34.8 ns per 8x8 block (16-bit)

7x7 Convolution 25.6 GOPS (16-bit) 1.5 us per row of 320 pixels

FFT 6.9 GFLOPS 7.4 us per 1,024-point FFT

STAP 7.03 GOPS 11.7 ms per interval

FIR 17.57 GOPS (16-bit) 2048 output, 13-tap FIR filter

Table 5.1 : Base Imagine stream processor performance for media applications [8]

This chapter presents the mapping of algorithms for wireless systems as a broader ex-

ample with stringent real-time constraints for the implementation of algorithms on stream

processors. While wireless communication applications share many of the algorithms such

as FFT, QRD and FIR filtering, wireless applications have more finite-precision require-

ments than media processing applications, have many matrixbased operations and have

complex error-control decoding algorithms, as seen in Chapter 2. Wireless applications

also need to target high functional unit efficiency and minimize memory stalls for power

efficiency in the architecture.
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Figure 5.1 : Estimation, detection, decoding from a programmable architecture mapping
perspective

5.2 Stream processor mapping and characteristics

Figure 5.1 presents the detailed view of the physical layer processing from a DSP perspec-

tive. The A/D converter provides the input to architecture,which is typically in the 8-12 bit

range. However, programmable architectures can typicallysupport only byte-aligned units

and hence, we will assume a 16-bit complex received data at the input of the architecture.

Since the data will be arriving in real-time at a constant rate (4 million chips/second), it

becomes apparent from Figure 5.1 that unless the processingis done at the same rate, the

data will be lost. The real and imaginary parts of the 16-bit data are packed together and

stored in memory. Note that there is a trade-off between storing of the low precision data

values in memory and their efficient utilization during computations. Certain computations

may require the packing to be removed before the operations can be performed. Hence,
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at every stage, a careful decision was made to decide the extent of packing on the data for

memory requirements and its effect on the real-time performance.

The channel estimation block does not need to be computed every bit and needs evalu-

ation only when the channel statistics have changed over time. For the basis of this thesis,

we classify the update rate of the channel estimates as once per 64 data bits. The re-

ceived signal first passes through a code matched filter whichprovides initial estimates of

the received bits of all the users. The output of the code matched filter is then sent to three

pipelined stages of parallel interference cancellation (PIC) where the decisions of the users’

bits are refined. The input to the PIC stages are not packed to provide efficient computation

between the stages. In order to exploit data parallelism forthe sequential Viterbi traceback,

we use a register-exchange based-scheme [7], which provides a forward traceback scheme

with data parallelism that can be exploited in a parallel architecture. The Viterbi algorithm

is able to make efficient use of sub-word parallelism and hence, the detected bits are packed

to 4 bits per word before being sent to the decoder. While all the users are being processed

in parallel until this point, it is more efficient to utilize data parallelism inside the Viterbi

algorithm rather than exploit data parallelism among users. This is because processing

multiple users in parallel implies keeping a lot of local active memory state in the archi-

tecture that may not be available. Also, it is more desirableto exploit non-user parallelism

whenever possible in the architecture as those computations can be avoided if the number

of active users in the system change. Hence, a pack and re-order buffer is used to hold

the detected bits until 64 bits of each user has been received. The transpose unit shown

in Figure 5.1 is obtained by consecutive odd-even groupingsbetween the matrix rows as

proposed in the Altivec instruction set [91].

The output bits of the Viterbi decoder are binary and hence, need to be packed before

sending it to the higher layers. Due to this, the decoding is done 32 bits at a time so that
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a word of each user is dumped to memory. During the forward pass through the Viterbi

trellis, the states start converging as soon as the length ofthe pass exceeds 5*� where� is

the constraint length. The depth of the Viterbi trellis is kept at 64 where the first 32 stages

contain the past history which is loaded during the algorithm initialization and the next 32

stages process the current received data. The path metrics and surviving states of the new

data are calculated while the old data is traced-back and dumped. When a rate��� Viterbi

decoding (typical rate) is used, the 64 detected bits of eachuser in the pack and re-order

buffer gets absorbed and new data can now be stored in the blocks.

Note that the sequential processing of the users implies that some users attain higher

latencies than other users in the base-station. This would not be a significant problem as the

users are switched at every 32 bit intervals. Also, the base-station could potentially re-order

users such that users with more stringent latency requirements such as video conferencing

over wireless can have priority in decoding.

For the purposes of this thesis, we will consider a Viterbi decoding based on blocks of

64 bits each per user. We will assume that the users use constraint lengths 5, 7 and 9 (which

are typically used in wireless standards). Thus, users withlower constraint length will have

lower amounts of data parallelism that can be exploited (which implies that power will be

wasted if the architecture exploits more data parallelism than for the lowest parallelism

case) but will have the same decrease in computational complexity as well.

Since performance, power, and area are critical to the design of any wireless communi-

cations system, the estimation, detection, and decoding algorithms are typically designed

to be simple and efficient. Matrix-vector based signal processing algorithms are utilized

to allow simple, regular, limited-precision fixed-point computations. These types of op-

erations can be statically scheduled and contain significant parallelism. It is clear from

the algorithms in wireless communications that variable amount of work needs to be per-
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formed in constant time and this motivates the need for a flexible architecture that adapts

to the workload requirements. Furthermore, these characteristics are well suited to parallel

architectures that can exploit data parallelism with simple, limited precision computations.

5.3 Algorithm benchmarks for mapping: wireless communications

The benchmarks serve to study the design performance of various stream processor con-

figurations, design efficient mapping of the kernel benchmarks and to extrapolate the per-

formance of new algorithms proposed in this thesis that use these kernels. While perfor-

mance of standard media processing algorithms have been documented and mapping stud-

ied, wireless algorithms such as Viterbi decoding, matrix-matrix multiplications and matrix

transposing have not been extensively implemented on stream processors and hence, their

mapping on stream processors is not well-known. Different software realizations of the

dataflow in the algorithms can affect the performance of stream processors by more than

an order-of-magnitude. This section documents the mappingof some of the major wireless

algorithms used in this thesis.

5.3.1 Matrix transpose

Since there is only limited storage within the arithmetic clusters, implementing matrix

transpose by using the internal register files, scratchpad and the inter-cluster communi-

cation network is not a feasible solution. However, a transpose of a matrix can be obtained

by consecutive odd-even groupings between the matrix rows [91]. This approach, based

on the Altivec instruction set, can be directly applied to data parallel architectures and is

shown in Figure 5.2. The matrix is divided into 2 parts, basedon rows and an odd-even

grouping is performed on the matrix elements. Iterating this procedure,
���

� ��
� ��, pro-

duces a transpose of the matrix. This is best understood by working out a small example as
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Figure 5.2 : Matrix transpose in data parallel architectures using the Altivec approach

shown in Figure 5.3.

Figure 5.4 shows the real-time performance of stream processors for matrix transpose

within the clusters. For a
� �� matrix transpose, the data parallelism in the architectureis

� �� . Thus, for a 32x32 matrix transpose, up to 512 elements can betransposed in parallel.

If we assume 32-bit data (no subword parallelism), we can have up to 512 clusters in the

architecture. However, greater than 128 clusters is difficult to physically implement in a

real-architecture [23] and is hence, shown as a dotted line in Figure 5.4. The physical

limitations in scaling the architecture beyond 128 clusters arise due to the interconnection

network between the clusters becoming a bottleneck to transport data from one end of the

cluster to another. Also, an increase in chip area decreasesthe yield and reliability of the

chip during fabrication.

The functional unit utilization of the stream processor formatrix transpose is shown
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Steps for a  4x4  transpose on 4 clusters


1.  read in 1   2   3   4

2.  read in 9 10 11 12


3.  change 1 2 3 4 into 1 3 2 4 using the comm network


4.  change 9 10 11 12 into 11 9 12 10 using the comm network


5.  select  1 9 2 10 as each is in a different cluster


6.  select 11 3 12 4 as each is a different cluster


7.  change 11 3 12 4 into 3 11 4 12 using the comm network


8.  send out 1 9 2 10 and 3 11 4 12


repeat on the next set of inputs  to get 5 13 6 14 and 7 15 8 16….


repeat once more to get the matrix transpose


Figure 5.3 : A 4�4 matrix transpose on a 4-cluster processor

in Figure 5.5. As expected, the functional unit utilizationis very poor due to the lack of

arithmetic operations in matrix transpose (odd-even grouping only). Hence, even a 1 adder,

1 multiplier configuration only attains 35% and 17% utilization on stream processors.

5.3.2 Matrix outer products

Matrix outer products occur frequently in operations such as correlations in channel estima-

tion. A matrix outer product is easily implemented on data parallel architectures because

the input to the matrix outer products are vectors and can be easily stored within the clus-

ters, enabling all computations to occur within the clusters once the 2 vectors have been

read in.
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Figure 5.6 : Performance of a 32-length vector outer productresulting in a 32x32 matrix
with increasing clusters

Figure 5.6 shows the performance of a 32-length vector outerproduct on data parallel

architectures. The parallelism of the matrix outer productis limited by the parallelism of

the input vectors, although it is conceivable that if all theelements of 1 vector could be

broadcast to all elements of the other vector in a hypothetical architecture, the entire matrix

can be computed simultaneously. The number of operations are O(� �).
Figure 5.7 shows the ALU utilization variation with adders and multipliers. While an

outer product in theory does not have any additions, incrementing the loop indices in a

software implementation cause additions. However, it is interesting to note that adding

of more than 1 arithmetic unit does not give any performance benefits for a 32-cluster

implementation as there is not sufficient instruction levelparallelism to be exploited.

5.3.3 Matrix-vector multiplication

Matrix-vector multiplications and matrix-matrix multiplications are extremely common in

advanced signal processing algorithms for wireless systems. Matrix-vector multiplications
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can be of two types
�� � �

and
� � �

, where the difference is the way the matrix data is

used for the computation (row-wise or column-wise). Although the data ordering does not

affect the number of arithmetic operations, it can have a significant impact on performance,

especially when implemented on a data parallel architecture.

Figure 5.8 shows the mapping of a matrix-vector multiplication on a data parallel ar-

chitecture. The vector is first loaded in the clusters and thematrix is streamed through the

clusters to produce the resulting vector. As can be seen fromFigure 5.8(a), matrix-vector

multiplication of the form
� � � can be very inefficient on stream processors as the output of

the dot product of the row of a matrix with the vector results in a scalar. While computing

the dot product in a tree-based fashion on a parallel architecture, only�
� �� � of the clusters

on an average, do useful work, resulting in loss in efficiency. Matrix-vector multiplication

of the form
�� � � maps better on stream processors as each cluster can computean element

of the result and the dot product is iterated within a cluster, eliminating the need for inter-

cluster communication for the dot-product computation. Since
�� � �

is more efficient,
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Figure 5.8 : Matrix-vector multiplication in data parallelarchitectures

there is an alternative way of computing
� � �

as ��� �� � �
, which does a matrix transpose

in the clusters as shown earlier and follows it by
�� � �

.

Figure 5.9 shows the performance of the three different waysof matrix-vector compu-

tations with increasing clusters. It can be seen that the computation of�� � �
provides

almost an order of magnitude better performance than the computation of� � �
, demon-

strating the importance of data ordering for computations on a data parallel architecture. It

is also extremely interesting to note that the performance of
� � �

does not change signif-

icantly with the number of clusters. The reason for this is that as the number of clusters

increase, the amount of work inside the kernel decreases, leading to lower ILP. Also, the

efficiency of the dot product computation decreases with increasing clusters due to the in-

crease in inter-cluster communication for the dot product computation. The third scheme,

shown in Figure 5.8(c), has a high starting overhead due to the matrix transpose being

done within the clusters, but scales well with the number of clusters, narrowly beating the

computation of
� � �

.
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5.3.4 Matrix-matrix multiplication

Matrix-matrix computation can be implemented as a matrix-vector computation over a loop

except for the fact that the matrix cannot be stored in a register as in the matrix-vector case.

Hence, both the matrices need to be streamed through the clusters for computation of the

matrix-matrix product. Also, vector elements in matrix-vector multiplications are stored

in adjacent locations, irrespective of whether the vector is treated as a row or a column

vector. This is incorrect in the case of vectors that are partof a matrix in matrix-matrix

multiplications.

Figure 5.10 shows the implementation of different forms of a32x32 matrix-matrix mul-

tiplication on stream processors. The figure shows that the standard matrix-multiplication

� � � maps well on stream processors as the elements of every row matrix � can be

broadcast to all rows of matrix� to compute the dot-product of the result without any

inter-cluster communication except broadcasting, similar to the �� � �
computation in
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the matrix-vector product, where the matrix refers to� and the vector refers to the row

of matrix � . The computation of�� � � , similar to the computation of� � �
requires

inter-cluster communication and has decreasing ILP with increasing clusters, providing

no benefits with increasing clusters. However, since the amount of computation to com-

munication ratio is higher in matrix-matrix multiplications, transposing the matrix� can

provide significant performance improvements as the cost ofthe matrix transpose is amor-

tized over the increase in computations. The computation ofmatrix-multiplications involv-

ing �� � � and�� � � � is more expensive in stream processors as column elements of

matrix � are required to be broadcast to the elements of matrix� . Hence, computing
� � �� and

� � � for computing�� � � , and computing� � � and transposing the re-

sult for computing�� � � � are the preferred solutions for these types of matrix-matrix

multiplications.
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5.3.5 Viterbi decoding

The Viterbi algorithm shows data parallelism in the ’add-compare-select’ operations of its

trellis. However, the data parallelism is again implicit and the trellis needs to be re-ordered

before the parallelism can be exploited by a data-parallel architecture. Figure 5.11(a) shows

the trellis structure used in Viterbi decoding. The data parallelism of the trellis is dependent

on the constraint length of the convolutional code and is exponential with the constraint

length. Hence, stronger codes (larger constraint length) exhibit more data parallelism. If we

assume that each trellis state (or a group of states in this case, as Viterbi exhibits subword

parallelism) in the vertical direction maps to a cluster, the communication between adjacent

nodes of the trellis in the horizontal direction requires inter-cluster communication. Hence,

the Viterbi trellis needs to be re-ordered between successive add-compare-select operations

as shown in Figure 5.11(b) in order to make the communicationexplicit and map to a data-

parallel architecture. The re-ordering of the data requires an odd-even grouping as can be

observed from the input and output node labels in the shuffledtrellis.

The traceback in Viterbi decoding to parse the survivor states and recover the decoded

bits is sequential and uses pointer-based addressing in order to decode the data. Hence,

traceback in Viterbi is not suitable for implementation on adata-parallel architecture. How-

ever, the surviving states can be updated and the decoded bits recovered using an alternative

approach, based on register exchange [7]. In register exchange, the register for a given node

contains the information bits associated with the surviving partial path that terminates at

that node. This is shown in Figure 5.12. The figure shows the register contents during de-

coding. Only the surviving paths have been drawn, for clarity. As the decoding operation

proceeds, the contents of the registers are updated and exchanged. The register exchange

method structure looks exactly the same as the add-compare-select operation structure and

hence, can exploit data parallelism in the number of states.Thus, the same odd-even group-



81

X(0)


X(2)


X(4)


X(6)


X(8)


X(10)


X(12)


X(14)


X(1)


X(3)


X(5)


X(7)


X(9)


X(11)


X(13)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


b. Shuffled Trellis


X(0)


X(2)


X(4)


X(6)


X(8)


X(10)


X(12)


X(14)


X(1)


X(3)


X(5)


X(7)


X(9)


X(11)


X(13)


X(15)


X(0)


X(2)


X(4)


X(6)


X(8)


X(10)


X(12)


X(14)


X(1)


X(3)


X(5)


X(7)


X(9)


X(11)


X(13)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


b. Shuffled Trellis
a. Trellis


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


a. Trellis


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


X(0)


X(1)


X(2)


X(3)


X(4)


X(5)


X(6)


X(7)


X(8)


X(9)


X(10)


X(11)


X(12)


X(13)


X(14)


X(15)


Figure 5.11 : Viterbi trellis shuffling for data parallel architectures

ing can be applied for register-exchange and map it on to a data-parallel architecture.

The number of bits that a register must store is a function of the decoding depth, which

is typically around 5 times the constraint length. Since registers in programmable architec-

tures are typically 32-bit wide, we use 2 registers per statein our current implementation in

order to provide a decoding depth of 64 so that constraint lengths of 5-9 are handled. More

registers can be added if further decoding depths are desired in the application for better

performance.
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Figure 5.12 : Viterbi decoding using register-exchange [7]

The real-time performance of Viterbi decoding is shown in Figure 5.13, the perfor-

mance variation is studied with the number of clusters and the constraint lengths. It can be

seen that increasing the number of clusters provides betterperformance in the application

due to data parallelism exploitation and after the entire data parallelism has been exploited,

additional clusters do not provide any gains. For example, constraint length 9 Viterbi de-

coding shows a data parallelism of 64 since it has 256 states and can pack 4 states in a

32-bit register using subword parallelism. It is interesting to observe from the figure that

decoding for all constraint lengths show the same performance once the maximum data

parallelism is achieved.

Figure 5.14 shows the ALU utilization for Viterbi decoding with varying number of

adders and multipliers per cluster. The execution time decreases with increasing adders and

multipliers but saturates after the 3 adder, 1 multiplier configuration with a functional unit

utilization of 62% each on the adders and the multipliers. The functional unit utilization is

almost independent of the constraint length as the constraint length only changes the data

parallelism (loop iteration count) in the application.
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5.3.6 LDPC decoding

The access patterns for the bit node and check node computations in LDPC decoding shown

in Chapter 2 create bottlenecks in stream processor implementations. Although similar

access problems are faced in Viterbi decoding, the decomposable nature of the Viterbi

trellis graph made it possible for re-arranging the data with a simple odd-even data re-

ordering. Random interconnections are necessary between bit and check nodes [48] for

providing performance benefits using LDPC. The Tanner graphfor LDPC decoding is also

a connected graph (path exists from every node to any other node), making it difficult to

re-order the data for grouping and reducing inter-cluster communication.

Figure 5.15 shows an example of the access patterns needed inbit node and check node

computations for LDPC decoding. This access pattern makes data access extremely diffi-

cult for stream processors as stream processors are built for streaming ordered data without

any strides or indexed access. In order to overcome this bottleneck, researchers [92] have

very recently (2004) provided a SRF modification that allowsindexed access to the stream

register files, allowing addressing of data from different rows in the SRF. With this mod-

ification, the LDPC decoding becomes similar to the Viterbi decoding algorithm imple-

mentation shown in the previous subsection. The implementation of LDPC decoding using

indexed SRF needs considerable change to the current infrastructure and modifications to

the stream processor simulator and is hence, left as future work at this point in time.

5.3.7 Turbo decoding

Turbo decoding [32] is a competing decoding algorithm to LDPC decoding and is proposed

in extensions to the 3G standards such as the HSDPA (High Speed Downlink Packet Ac-

cess) standard, that provides a 10 Mbps downlink data rate. The turbo decoder performs

iterative decoding using two Viterbi decoders. However, the Viterbi decoders used in Turbo
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decoding typically have a smaller constraint length and hence, have lower data parallelism.

Hence, alternative implementations such as running one Turbo decoder per user per cluster

should be considered. A Turbo decoder also requires the use of interleavers between data.

If the interleaver used is a block interleaver, it can be implemented as a matrix transpose.

However, if the interleaver is chosen as a random interleaver as in the HSDPA standard,

Turbo decoding suffers from the same limitations of LDPC implementations requiring ac-

cess to random memory banks. The SRF modifications for indexed access [92] would

be useful for Turbo decoding using a random interleaver as well. The thesis focused on

LDPC decoding over Turbo decoding for a potential 4G system as LDPC decoding showed

greater potential for mapping on a stream processor due to its high degree of explicit data

parallelism.
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5.4 Tradeoffs between subword parallelism and inter-cluster commu-

nication

Subword parallelism exploitation has been a major innovation in recent microprocessor

designs [84, 85] for performance benefits in media processing that require limited bit pre-

cision (typically� � bits). However, while processing a kernel on a stream processor that

uses subword parallelism, the amount of subword parallelism on the inputs may not match

the subword parallelism of the outputs. In such cases of subword parallelism mismatches,

the output data ends up in being in the wrong cluster and hence, requires additional inter-

cluster communications in order to transfer the data to the right cluster.

Figure 5.16 shows an example where the input and output data precisions of a kernel do

not match. The example in Figure 5.16 shows a squaring of a 16-bit number that doubles

the precision due to multiplication to 32-bits�. In this case, since the input data is packed,

input data elements 1 and 2 will go to cluster 0, elements 3 and4 to cluster 1 and so on.

After multiplication, the 32-bit results of elements 1 and 2will lie in cluster 0, 3 and 4 in

cluster 1. However, the result can no longer be packed (beinga 32-bit number). Outputting

the result directly at this point implies that the output would be �� � � � � � � � � 
 � 	 � � instead of

�� � � � � 
 
 
 � �. Thus, the data needs to be re-ordered within the clusters. This additional re-

ordering using inter-cluster communication can be quite expensive as shown in the example

of Figure 5.16.

For purposes of this example, we will assume a latency of 1 cycle for read and write, a

4 cycle latency on multiplication and a 2 cycle latency on inter-cluster communication and

addition. Furthermore, we will assume all units are pipelined and the compiler generates

the optimal code (shown) for this example. From the example,we can see that not having

�
We will assume that we need the entire 32-bit precision at theoutput
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packed the data reduces the execution time by half against packed data at the expense of

twice the amount of data memory storage for the unpacked input data.

Thus, the example seeks to clarify that tradeoffs between packing and inter-cluster com-

munication should be carefully considered while mapping analgorithm on processors ex-

ploiting subword and data parallelism.

5.5 Tradeoffs between data reordering in memory and arithmetic clus-

ters

Since all applications are not perfectly data parallel, many kernels require data re-ordering

in order to place the data in the right clusters. For example,a matrix transpose requires the

data in clusters to be transposed before it can be used by a kernel. The programmer has two

choices for data re-ordering between memory and the arithmetic clusters.

Data re-ordering in memory can be pipelined with other kernels in order to provide

savings in performance as shown in Figure 5.17.

It is usually preferable to do data re-ordering in the kernels for the following reasons:

1. If the data uses subword parallelism, it is not possible todo data re-ordering in mem-

ory as all memory re-ordering operations work on 32-bit datain the stream processor.

To re-order subword data, DRAM should support subword access and this increases

the complexity of the streaming memory system controller.

2. Data re-ordering in external memory can be more than an order of magnitude expen-

sive in terms of performance. For media and communications processing, the latency

of the DRAM is less important than the DRAM bandwidth as the data pattern is

known to the programmer/compiler and can be easily pre-fetched/issued in advance.

Non-single stride accesses can decrease the DRAM bandwidth, making it more ex-
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Figure 5.17 : Example to demonstrate trade-offs between data reordering in memory and
arithmetic clusters in stream processors

pensive for data re-ordering. Single stride accesses have been shown to achieve 97%

of the DRAM bandwidth while random accesses have shown to attain only up to 14%

of the DRAM bandwidth [90]. This can be seen from Figure 5.18,where a matrix

transpose is shown using re-ordering in memory vs. re-ordering inside the arithmetic

clusters. The plot shows a 32-cluster stream processor architecture and the variation

of the memory re-ordering time with the DRAM clock, varying between� and� CPU

clock cycles. The DRAM clock is assumed slower than the CPU clock as in most

microprocessors [93], the DRAM clock is a multiple of the PCIbus speed (66-133

MHz) and lags behind the CPU clock (0.3-1 GHz).

3. Re-ordering operations in memory conflicts with other memory load-store operations

and may increase the memory stalls for other kernels requiring data from memory.

4. Data re-ordering in external memory is usually more expensive in terms of power

consumption, given off-chip accesses and increased cycle time incurred during the
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data re-ordering.

However, as seen in Figure 5.17(b), if real-time performance is critical, then data re-

ordering may provide better performance for applications in which the data re-ordering can

be hidden in other kernels.

5.5.1 Memory stalls and functional unit utilization

While the data re-ordering operations in matrix transpose was explicit, some kernels such

as Viterbi have implicit data re-ordering, done for re-ordering the trellis states. Now, the

data re-ordering can be similarly be done in memory and in clusters. Removing the data re-

ordering from the kernel and pushing it to the memory (the reverse of matrix transpose) can

again produce similar trade-off questions and can attain performance benefits and increased

adder-multiplier utilization at the expense of increased memory stall latencies. Since we

have seen that data re-ordering in memory is usually more expensive, data re-ordering is
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done within the kernels for algorithms having implicit datare-ordering.

5.6 Inter-cluster communication patterns in wireless systems

Future microprocessor designs are going to be communication-bound instead of capacity-

bound [94]. The wire delay has exceeded the gate delay in 0.18� technology and the effects

of inductance, capacitance and delay of wires are becoming increasingly important in mi-

croprocessor design, especially as more transistors are becoming smaller and increasing in

number with technology [95]. The number of cycles needed to communicate data between

the furthest clusters is going to increase due to the increase in wire delay. Hence, techniques

to reduce inter-cluster communication are needed to provide scaling of microprocessor de-

signs with technology. The inter-cluster communication network needs the longest length

wires in stream processors. By investigating the inter-cluster communication patterns for

all the wireless kernels investigated, we note that although the inter-cluster network is fully

connected in stream processors, we use only 2 operations in the inter-cluster communica-

tion network in wireless applications.

1. odd-even grouping(shown by packing, transpose and Viterbi algorithms)

2. broadcasting 1 cluster to all clusters(shown in matrix-based computations)

This can be achieved via a single 32-bit interconnection busover all clusters, decreas-

ing the wire length by
���

� �� �, and decreasing the interconnections of the inter-cluster

communication network by the number of clusters. More importantly, it allows greater

scaling of the inter-cluster communication network with the number of clusters as all inter-

connections are only nearest neighbor connections. Odd-even grouping can be achieved in

8 cycles by adding a specialized network that loads the first data, loads the second data in

the next cycle and then outputs the odd and even data in consecutive cycles. Broadcasting
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can be done in 2 cycles by storing the clusters’ output in a register the first cycle and then

broadcasting it in the second cycle. This reduced inter-cluster communication network is

shown in Figure 5.19. As can be seen from Figure 5.19(a), if data transfer between the fur-

thest clusters (0 and 3 in this case) will limit the cycle time(and clock frequency) due to the

wire length and due to the parasitic load effects caused due to the inter-connections. The

reduction in wire length by
���

� �� �, the reduction in the number of interconnections by
�

and the use of neighboring interconnects only allows greater scaling of the inter-connection

network with the number of clusters in the stream processor.This relates back to the overall

lwo power improvements to stream processors proposed in Chapter 4 (Figure 4.10).

The broadcasting support from 1 cluster to all clusters allows complete distribution of

data to all clusters. The data can then be matched with the processor id to decide whether

the data is useful or not. However, this may increase the latency for random inter-cluster

data movement by the number of clusters.

5.7 Stream processor performance for 2G,3G,4G systems

Figure 5.20 shows the performance of stream processors for afully loaded 2G and 3G

base-station with 32 users at 128 Kbps and 16 Kbps respectively. The architecture as-

sumes sufficient memory in the SRF to avoid accesses to external memory (256 KB) and

3 adders and 3 multipliers per cluster (chosen because matrix algorithms tend to use equal

number of adders and multipliers). For our implementation of a fully loaded base-station,

the parallelism available for channel estimation and detection is limited by the number of

users while for decoding, it is limited by the constraint length (as the users are processed

sequentially).

Ideally, we would like to exploit all the available parallelism in the algorithms as that

would lower the clock frequency. Having a lower clock frequency has also been shown
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to be power efficient as it opens up the possibilities of reducing the voltage [96], thereby

reducing the effective power consumption (
� � � � ). While Viterbi at constraint length 9

has sufficient parallelism to support up to 64 clusters at full load, channel estimation and

detection algorithms do not benefit from extra clusters, having exhausted their parallelism.

The mapping of a smaller size problem to a larger cluster sizealso gets complicated because

the algorithm mapping has to be adapted by some means either in software or in hardware

to use lower number of clusters while the data is spread across the entire SRF.

From the figure, we can see that a 32-cluster architecture canoperate as a 2G base-

station at around 78 MHz and as a 3G base-station around 935 MHz, thereby validating

the suitability of Imagine as a viable architecture for 3G base-station processing. It is also

possible that other multi-DSP architectures such as [97] can be adapted and are viable for

3G base-station processing. However, the lack of multi-DSPsimulators and tools limit our

evaluation of these systems.

The use of an indexed SRF [92] is required for implementing a LDPC decoder on stream
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processors. Since the current tools did not support this capability, a detailed implementa-

tion of a 4G system was not considered. However, this will affect only the SRF access

performance and will require modifications only to the streamC code. The next chapter

shows the expected performance of a 4G system based on a kernelC implementation and

using an estimate for memory stalls.

5.8 Summary

This chapter shows that, in spite of algorithms having abundant data parallelism, algo-

rithms need to be modified in order to map efficiently on streamprocessors. This is be-

cause the data that can be processed in parallel is not necessarily aligned to the DSP cluster

utilizing that data. Hence, expensive inter-cluster communication operations or memory

re-ordering operations are required to bring the data to theright cluster before it can be uti-

lized. This creates trade-offs between utilization of subword parallelism, memory access

patterns and execution time. This thesis finds that the algorithms implemented in this thesis

can be designed to use only two inter-cluster communicationpatterns. Hence, a special-

ized inter-cluster communication network can be used to replace the general inter-cluster

communication network, reducing the DSP complexity and providing greater scalability of

the design with increasing clusters. This chapter thus demonstrates the benefits of a joint

algorithm-architecture design for efficient algorithm mapping and architecture complexity

reduction. The next chapter 6 presents the trade-offs in deciding the number of arithmetic

units and the clock frequency in order to meet real-time requirements with minimum power

consumption and chapter 7 shows how the designed architecture can then adapt to varia-

tions in the workload for improved power-efficiency.
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Chapter 6

Design space exploration for stream processors

6.1 Motivation

Progress in processor technology and increasing consumer demand have brought in inter-

esting possibilities for embedded processors in a variety of platforms. Embedded proces-

sors are now being applied in real-time, high performance, digital signal processing appli-

cations such as video, image processing and wireless communications. The application of

programmable processors in high performance and real-timeembedded applications poses

new challenges for embedded system designers. Although programmable embedded pro-

cessors trade flexibility for power-efficiency with custom solutions, power awareness is an

important goal in embedded processor designs. Given a workload with a certain real-time

design constraint, there is no clear methodology on designing an embedded stream pro-

cessor that meets performance requirements and provides power efficiency. The number

of clusters in the stream processor, the number of arithmetic units and the clock frequency

– each can be varied to meet real-time constraints but can have a significant variation in

power consumption.

An exhaustive simulation for exploration is limited by the large architecture parameter

exploration space [98] and limitations of compilers for stream processors [99], necessi-

tating hand optimizations for performance. Efficient design exploration tools are needed

to restrict the range of detailed simulations to a finite and small subset, depending on the

available compute resources and the simulation time. Moreover, embedded systems such
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as wireless are evolving rapidly [10, 100]. The designer needs to evaluate a variety of can-

didate algorithms for future systems and would like to get a quick estimate of the lowest

power embedded processor that meets real-time for each of his candidate algorithms. This

thesis provides a tool to explore the choice of ALUs within each cluster, the number of

clusters and the clock frequency that will minimize the power consumption of a stream

processor. Our design methodology relates the instructionlevel parallelism, subword par-

allelism and data parallelism to the organization of the ALUs in an embedded stream pro-

cessor. The thesis exploits the relationship between thesethree parallelism levels and the

stream processor organization to decouple the joint exploration of the number of clusters

and the number of ALUs within each cluster, providing a drastic reduction in the design

space exploration and in programming effort. The design exploration methodology also

provides insights to the functional unit utilization of theprocessor. The design exploration

tool exploits the static nature of signal processing workloads to provide candidate config-

urations for low power along with an estimate of their real-time performance. Our design

exploration tool also automates machine description exploration and ALU efficiency calcu-

lation at compile time. A sensitivity analysis of the designto the technology and modeling

enables the designer to check the robustness of the design exploration. Once the design

exploration tool churns out candidate configurations, detailed simulations can then be per-

formed for those configurations to ensure that the design meets the specifications.

Similar challenges are faced by designers implementing algorithms on FPGAs [101].

Most FPGA tool vendors such as Xilinx, allow multiple levelsof design verification and

timing closure in their design tools. The aim is to allow a fast functional verification fol-

lowed by detailed timing analysis and using successive refinements to attain timing closure.
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6.1.1 Related work

The combination of completely programmable solutions along with the need for high per-

formance presents new challenges for the embedded system designers, who have tradition-

ally focused on exploring heterogeneous solutions to find the best flexibility, performance

and power trade-offs [50]. Design space exploration has been studied for VLIW-based em-

bedded processors [67, 102] for performance and power. These techniques directly relate to

a design exploration for a single cluster stream processor.However, exploring the number

of clusters in the design adds an additional dimension to thesearch space. It is not clear as

to how to partition the arithmetic units into clusters and the number of arithmetic units to be

put within each cluster. Design space exploration has also been studied for on-chip MIMD

multiprocessors based on linear programming methods [103]to find the right number of

processors (clusters) for performance and energy constraints, assuming a fixed configura-

tion for parameters within a cluster. The design space exploration using these techniques

for stream processors need a more exhaustive and complex search for simultaneous opti-

mization for the number of clusters and the number and type ofarithmetic units within a

cluster. The tradeoffs that exist between exploiting ILP within a cluster and across clusters

increases the complexity of the design exploration. The thesis shows that the explicit use of

data parallelism across clusters in a stream processor can be exploited to provide a simpler

method to find the right number of clusters and the number and types of arithmetic units

within a cluster.

6.2 Design exploration framework

This thesis presents a design space exploration tool heuristic based on two important ob-

servations.

Observation 6.1 Signal processing workloads are compute-bound and their performance
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can be predicted at compile-time.

The execution time of signal processing workloads is fairlypredictable at compile time

due to the static nature of signal processing workloads. Figure 6.1 shows the execution

time for a workload being composed of two parts: computations ����� � ��, and stalls���� ��.
The processor clock frequency needed to attain real-time isdirectly proportional to the ex-

ecution time and we will use frequency instead of time in the analysis in the rest of the

thesis. The memory stalls are difficult to predict at compiletime as the exact area of over-

lap between memory operations and computations is determined only at run-time. The

microcontroller stalls depend on the data bandwidth required by the arithmetic units in the

clusters and vary with the algorithms, the number of clusters and the availability of the data

in internal memory. Some parts of the memory and microcontroller stalls are constant due

to internal memory size limitations or bank conflicts and do not change with the compu-

tations. As the computation time decreases due to addition of arithmetic units (since we

are compute-bound), some of the memory stalls start gettingexposed and are thus, variable

with
����� � ��. The real-time frequency needed to account for constant memory stalls that

do not change with computations is denoted by
������. The worst-case memory stalls,

�� ��
occurs when the entire ILP, DP and SubP are exploited in the processor, which changes the

problem from compute bound to memory bound. Hence, the memory stall time is bounded

by
������ and

�� �� .

� � ����� � ��
� �

��� �� � ���� ���� �� �
�
��� �� �

�� �� (6.1)

It is interesting to note the increase in memory stalls with lower clock frequencies. In

a traditional microprocessor system with a constant configuration, the memory stalls tends

to decrease with lower clock frequencies of the processor since the caches have more time
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Figure 6.1 : Breakdown of the real-time frequency (execution time) of a workload

now to get data from external memory. However, in this case, the number of clusters in the

stream processor are increasing to decrease the clock frequency while keeping the memory

bandwidth the same. This implies that the memory now has to source more data to the

SRFs at the same bandwidth, thereby increasing the number ofstalls in the architecture.

Definition 6.1 Data Parallelism(DP) can be defined as the number of data elements that

require the exact same operations to be performed in an algorithm and is architecture-

independent. In this thesis, we define a new term,cluster data parallelism (CDP� DP),

as the parallelism available in the data after exploiting SubP and ILP. Thus, cluster data

parallelism is the maximum DP that can be exploited across clusters without significant

decrease in ILP or SubP.
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ILP exploitation within a cluster is limited due to finite resources within a cluster such

as finite register sizes, inter-cluster communication bottlenecks and finite number of input

read and output write ports. Increasing some of the resources such as register file sizes are

less expensive than adding an extra inter-cluster communication network [23], which can

cause a significant impact on the chip wiring layout and powerconsumption. Any one of

these bottlenecks is sufficient to restrict the ILP. Also, exploiting ILP across basic blocks

in applications with multiple loops is limited due to the compiler [99]. Signal processing

algorithms tend to have significant amounts of data parallelism [10, 22, 23, 104]. Hence,

DP is available even after exploiting ILP, and can be used to set the number of clusters as

CDP.

Observation 6.2 Due to limited resources within a cluster, not all DP can be exploited as

ILP in stream processors via loop unrolling. The unutilizedDP can be exploited across

clusters as CDP.

This observation allows us set the number of clusters according to the CDP and set

the ALUs within the clusters based on ILP and SubP, decoupling the problem of a joint

exploration of clusters and ALUs within a cluster into independent problems. This provides

a drastic reduction in the exploration space and in programming effort for various cluster

configurations. The observation is best demonstrated by an example of the Viterbi decoding

algorithm used in wireless communication systems.

Figure 6.2 shows the performance of Viterbi decoding with increasing clusters in the

processor for�� users done sequentially, assuming a constant cluster configuration of �
adders and� multipliers in a cluster. The data parallelism in Viterbi decoding is propor-

tional to the constraint length,� , which is related to the strength of the error control code.

A constraint length� Viterbi decoder has�

�� � ��	 states, and hence has DP of��	,
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Figure 6.2 : Viterbi decoding performance for varying constraint lengths and clusters

and can use 8-bit precision to pack 4 states in one cluster (SubP� 
), reducing the CDP

to �
 �� � 	
. Hence, increasing the number of clusters beyond	
 does not provide per-

formance benefits. However, as the clusters reduce from	
 to 
 for � � �, there is an

almost linear relationship between clusters and executiontime, showing that the ILP and

SubP being exploited can be approximated as being independent of the CDP. The deviation

of the performance curve with clusters from a slope of�

� represents the variation of ILP

with CDP.

This thesis bases the design exploration framework on the two assumptions that were

discussed in this section.

6.2.1 Mathematical modeling

Let the workload� , consist of� algorithm kernels executed sequentially on the data-

parallel stream processor; given by	 �, 	�, ... , 		 . Let the functional units in the embedded

processor be assumed to solely adders and multipliers, for the purpose of this analysis. Let
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the respective execution time of the kernels be� � �� � � � ��, �� �� � � � ��, ...,�	 �� � � � ��, where

(�,� ,�) be the number of adders per cluster, the number of multipliers per cluster and the

number of clusters respectively. Let the cluster data parallelism in each of these kernels be

defined as��� �, ��� �, 
 
 
,��� 	 .

Figure 6.3 explains the design framework proposed for data-parallel embedded stream

processors. The design phase consists of a worst-case workload that needs to be designed

to meet real-time constraints in a programmable architecture. The exploration tool then

searches for the best (� � � � � � � ) configuration that minimizes the power consumption of

the processor for that workload. Once the chip is designed, the architecture can run the

workload as well as other application workloads by dynamically adapting (� � � � � � � � � )

parameters to match that of the application. Thus, the solution provides possibilities for

using this designed architecture for investigating run-time variations in the workload and

adapting to the variations.

Our design goal is to find (�,� ,�) and the real-time frequency,
�
, such that the power

� �� �� ��� is minimized.

� ��� �� �� �� � � � ��� �� �� �� � �� � � � ��� �� �� � � � �� (6.2)

where
� �� � � � �� is the loading capacitance,

�
is the supply voltage and

� �� � � � �� is the

clock frequency need to meet real-time requirements. The model for the capacitance is

derived from the Imagine stream processor implementation and is presented in the next

section.

The power consumption of the DSP is also dependent on the average switching activity

in the DSP. However, the switching activity can be related tothe functional unit utilization,

which in turn can be related to the execution time. However, parts of the chip such as
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Figure 6.3 : Design exploration framework for embedded stream processors

the stream register file and the microcontroller can still beassumed to have a fairly con-

stant switching activity. Since the design exploration tries to provide solutions having high

functional utilization as well as low execution time, the switching activity variations are

assumed to not significantly affect the design decisions andare hence, currently assumed

to be constant in the design exploration.
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6.2.2 Capacitance model for stream processors

To estimate the capacitance, we use the derivation for energy of a stream processor from

[23], which is based on the capacitance values extracted from the Imagine stream proces-

sor fabrication. The equations in [23] have been modified to relate to the calculation of
� �� � � � �� in this thesis instead of energy in [23]. Also, the equationsnow consider adders

and multipliers as separate ALUs instead of a global ALU as considered in [23]. The model

does not consider the static power dissipation in the processor. The static power dissipa-

tion is directly proportional to the number of transistors and hence, the capacitance [105].

The static power dissipation is also a function of leakage effects of transistors and varies

with technology. Static power dissipation does not affect the minimization and choice of

�� � � � �� , although it will affect the actual power number that is output from the model

for a given technology. The model can be improved by adding a static power consumption

factor based on [105] in the cost function for the optimization.

The thesis first describes the parameters used in the derivation, which is shown in Table

6.1. The following equations are then used to calculate the capacitance model for the

design exploration. For simplicity, we ignore the�� � � � �� subscripts in the capacitances
�

and areas
�

below, except for the final
� �� � � � �� in equation (6.3). The capacitance

� �� � � � �� is composed of the capacitance of the stream register file
�

�
��

(per cluster),

the capacitance of the inter-cluster communication network
� �

� ��
�

(per cluster), the cluster

capacitance
� ���� and the micro-controller capacitance

�
� �.
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Parameter Value Description�
�
��� 16.1 Area of 1 bit SRAM used for SRF or microcontroller (grids)�
�
�

230.3 Area per stream buffer (SB) width (grids)�� � ��
�
� �
��� 515 Datapath width of a multiplier (tracks)�

�
� �

92.1 Datapath width of 2 LRFs (tracks)�
�� 1551 Scratchpad datapath width�

640 Datapath height for all cluster components�� 1 Normalized wire propagation capacitance per wire track��� ��
�
� �
��� 6.3e+5 Cap. of ALU operation (normalized to

�� )�
�
��� 8.7 SRAM access cap. per bit (normalized to

�� )�
�
�

155 Cap. of 1 bit of Stream Buffer (SB) access (normalized to
�� )�

�
� �

7.9e+4 Local reg. file cap.(normalized to
�� )�

�� 1.6e+6 Scratchpad cap. (normalized to
�� )�

55 Memory latency (cycles)�
32 Data width of the architecture�

�
� �

0.5 Width of SRF bank per N (words)�
�
�

0.2 Average number of SB accesses per ALU operation in typical kernels� ���� 0.2 COMM units required per N�
�� 0.2 SP units required per N�
� 196 Initial width of VLIW instructions (bits)�
� 40 Additional width of VLIW instructions per� �

�	 � 6 Initial number of cluster SBs	
� 6 Required number of non-cluster SBs	
� 0.2 Additional SBs required per N
� 20 SRF capacity needed per ALU for each cycle of memory latency (words)

�� 2048 Number of VLIW instructions required in microcode storage

� �� 
� � a + m Number of ALUs per cluster� 0.1,0.01 ratio of adder to multiplier cap. (power)� ����� 155 datapath width of an adder (tracks)

Table 6.1 : Summary of parameters
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Thus, by varying� � � � �, the change in the capacitance
� �� � � � �� can be calculated

and used in the design exploration. The processor clock frequency is dependent on the

processor voltage as follows:

� 	 �� �

�

�
��

� (6.22)

where
�

� is the threshold voltage [106]. Now, to achieve a real-time frequency
�
, the
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processor voltage also needs to be set accordingly. Hence, from equations (6.2) and (6.22),

we get

���� �� �� � � ���� �� �� � �� � � � ��� ��� �� ��� (6.23)

The design space exploration tool shown in the next section optimizes equation (6.23) to

find the number and organization of the arithmetic units thatminimize the power consump-

tion.

6.2.3 Sensitivity analysis

As transistors have gone towards the deep-submicron regime, the transistors are getting

shorter and saturating at lower drain-to-source voltages [105]. The relationship between the

drain current and the gate-to-source voltage has gone down from quadratic to linear [107].

This has affected the delay variation in the transistor withvoltage from being quadratic as

shown in equation (6.23) to being linear with voltage.

Hence, the power equations are going down from being cubic toquadratic. Decreasing

the threshold voltage helps but the trends still continue asthe threshold voltage cannot

be decreased at the same rate as the drain-to-source voltage[105]. The actual number is

very much technology dependent. Hence, to analyze the sensitivity of the design to the

technology, we assume,

� 	 � �

� ��� � �� � � � �� (6.24)

� ��� �� �� � � ���� �� �� � �� � � � ��� ��� �� ��� (6.25)

� ���� �� � � � ��

This model can be thus generalized to allow the designer to set the number for� , plug it in

and minimize the equation to design the architecture.
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Similarly, functional units in an actual physical realization can have different power

consumption values than those used in a power model. If we assume 2 types of functional

units such as adders and multipliers in the design, we need tomodel the power consumption

of one relative to the other to make the values used independent of the technologies and

actual implementations. The power consumption of adders are linear with the bit-width�

and the multiplier power consumptions are quadratic with the bit-width [108]. Hence, in the

thesis, using equally aggressive 32-bit adders and multipliers, we will assume variations in

adder power to be between� 
� � and� 
� of the multiplier power. As will be seen later, this

variation is not important as the additional register files and the intra-cluster communication

network that gets added with the functional units dominate the power consumption instead

of the functional units by themselves.

������ � � �� � (6.26)

�� � ��
�
� �
��� � � ��� � (6.27)

������ � � � ��� ��
�
� �
��� (6.28)

� ���� �� 
� � � � � � 
��

The organization of the stream processor provides a bandwidth hierarchy, which al-

lows prefetching of data and mitigates memory stalls in the stream processor [104, 109].

Memory stalls have been shown to account for� � �	% of the total execution time in me-

dia processing workloads [109] and��% of the execution time in wireless communication

workloads [100]. Stalls are caused in stream processors dueto waits for memory transfers

(both external memory and microcontroller stalls), inefficiencies in software pipelining of

the code, and time taken to dispatch microcontroller code from the host processor to the

microcontroller [109]. In order to model memory stalls and observe the sensitivity of the
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design to the stalls, we model the worst-case stall
�� �� to be��% of the workload at the

minimum clock frequency that is needed for real-time
� � �� �� where the entire available

ILP, DP and SubP are exploited. This thesis model variationsin memory and microcon-

troller stalls using a parameter� between� and � to explore the sensitivity of the design

tools to the stalls. Hence, from equation (6.1),

�
��� �� � �� � � ��� �� � ���� �� � � � �� (6.29)

�
��� �� � � 
�� �� � � ��� �� (6.30)

� � � represents the no-stall case and� � � represents the worst-case memory stall
�� �� . The minimum real-time frequency,

�� �� , is computed during the design exploration.

There are other parameters in an embedded stream processor that can affect performance

and need exploration such as the number of registers and pipelining depth of ALUs [67,

98, 102]. These parameters affect the ILP for a cluster and hence, indirectly affect the

CDP. Although an exploration for these parameters will affect the actual choice for the

design, the design exploration methodology does not changeas we decouple ILP and DP

in our design exploration. In order to stress the design methodology and our contributions,

we focus on the exploration of�� � � � � � � � for power minimization and their sensitivity to

three parameters:�� � � � � �. Once�� � � � � � � � have been decided, other parameters can be

set based on this configuration.

6.3 Design space exploration

The thesis starts the design exploration with an over-provisioned hypothetical architecture,

having infinite clusters and infinite ALUs within each cluster. This point is then revised by

decreasing clusters and ALUs to find smaller configurations until the real-time frequency

begins to increase. This revised architecture configuration still exploits all the possible ILP,
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SubP and DP available in the algorithms and is given by (���� ,���� ,��� ���� �). From

this point on, we explore trade-offs between frequency and capacitance in equation (6.25)

to find the configuration that attains real-time at the lowestpower.

6.3.1 Setting the number of clusters

To find the number of clusters needed, we compile all kernels at their maximum CDP levels,

assuming a sufficiently large number of adders and multipliers per cluster. The thesis then

runs kernel	 with (���� � ���� � ��� �) where ���� � ���� are a sufficiently large enough

number of adders and multipliers per cluster to exploit the available ILP in all kernels. The

compile-time execution for kernel	 is given by�� ������ ����� ���� � �.
Hence, the real-time frequency

� �� � � � �� is given by

� �� �� ���(MHz) � Real-time target(Mbps) * Execution time per bit(a,m,c) (6.31)

�� �� � Real-time target * Execution time per bit(���� � ���� �max���� �)(6.32)

� ����� ����� ��� � �
��� �� � Real-time target�

	�
�� � ���� �� � �� ����� ����� ���� � � (6.33)

Equation (6.33) reduces the frequency by half with cluster doubling based on the obser-

vation of linear benefits of frequency with clusters within the CDP range. It also shows

that if the number of clusters chosen are greater than the available CDP, then there is no

reduction in execution time. The
�
��� �� term accounts for stalls in the execution time that

are not predicted at compile-time, and is computed using equations (6.32) and (6.1). The

number of clusters that minimizes the power consumption is given by

���� �� � ����� ����� �� �� � � � ��� �� � ��� �� � ���� � ��� �

����� ����� ��� (6.34)

Thus, by computing
� ����� ����� ���� � at compile time and plotting this function for the

desired range of clusters and for varying� , the number of clusters that will minimize the
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power consumption is determined. The choice of clusters is independent of� as it gets

factored out in the minimization of equation (6.34).

6.3.2 Setting the number of ALUs per cluster

Once the number of clusters� is set, the number of ALUs within each cluster needs to be

decided. The number of adders and multipliers are now variedfrom ��� �� to ����� � ���� �
to find the trade-off point that minimizes the power consumption of the processor. The

design tool can handle varying ALUs without any changes in the application code. Hence,

an exhaustive compile-time search can be now done within this constrained space to find

the right number of adders and multipliers that meets real-time with minimum power con-

sumption. The power minimization is now done using

���� �� �� � �� �� �� �� � � ���� �� �� � �� � � � ��� �

�� �� ��� (6.35)

The design tool also provides information about ALU efficiencies based on the schedule.

It can be shown that this power minimization is related to maximization of the ALU uti-

lization, providing us with insights about the relation between power minimization and the

ALU utilization. The choice of ALUs inside a cluster is dependent on�, � and� .

6.3.3 Relation between power minimization and functional unit efficiency

The power minimization methodology discussed above also provides us with insights into

the functional unit utilization of the embedded processor.In order to explore this, let us

consider the multiplier as a sample functional unit and let us assume the other parameters

(adders and clusters) as constant.
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���� � �� � � ����
� �� �� �

�� � (6.36)

���� � �� � � � ���
�

� �� �� �

�� � (6.37)

� � ���
� �

� �� �� �

�� � (6.38)

where
�

is the total number of multiplications occurring in the workload which is a con-

stant.

���� � �� � � � ���
� �

� �� �
� �

� � � �

�� � (6.39)

� � ���
� �

� �� �
� �

� � �� � ��

(6.40)

Since the frequency
�

needed to meet real-time is directly proportional to the execution

time, the number of multiplications divided by the total number of multipliers and the

frequency is directly proportional to the multiplier utilization,
�

� �
�
�.

� ��� � �� � � � ���
� �

� �� �� �

� �
�
� (6.41)

� � ���
�

� �� � �� � � �
�
� (6.42)

Thus, we can see that the power minimization is directly related to maximization of a

scaled version of the functional unit utilization. The relation derived here is based purely

on the power minimization model and is independent of the actual architecture. The exact

relation between
� �� � and� for the embedded stream processor can be obtained from the

equations in the appendix. To a first level approximation,
� �� � can be assumed to be linear

with � , although there are secondary terms present due to the intra-cluster communication

network. This is a useful result as we now know that in addition to power minimization,
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the exploration also maximizes functional unit efficiency in some manner, which should be

expected of any power minimization based design exploration.

6.4 Results

For evaluation of the design exploration methodology, the design concept was applied

for designing a�� wireless base-station embedded processor that meets real-time re-

quirements. For the purposes of this thesis, we consider a��-user base-station with���
Kbps/user (coded), employing multiuser channel estimation, multiuser detection and Viterbi

decoding [10, 100]. This was considered to be the worst-caseworkload that the processor

needed to support in the design.

The design boundary conditions used for the workload are shown in Table 6.2. Ideally,

the CDP range should be decided by the exploration tool with the help of the compiler. The

compiler should automatically exploit all the available ILP (using loop unrolling) and SubP

and set the remaining DP as CDP. In the absence of the compiler’s ability to automate this

process, the CDP has been set manually after exploring different amounts of loop unrolling

and finding out the changes in ILP. The cluster configuration is varied up to��� clusters

as that is the maximum CDP available. Similarly, the adders and multipliers are varied up

to � and� respectively as we have seen ILP saturating above these configurations with no

benefits in performance. These ranges will be confirmed in thedesign exploration process.

Table 6.3 shows the break-up of the workload computations for attaining the lowest

real-time frequency that is obtained at compile-time usingequation (6.32). The CDP varies

in the algorithms between�� and ���, justifying the range for CDP exploration in Table

6.2. Also note that since� ��% of the real-time frequency is needed due to kernels that

require�� and	
 clusters, there is little advantage in exploring a higher number of clusters.

The minimum real-time frequency needed
�� �� is estimated to be��� MHz for the design
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Parameter Min Max

CDP range �� ���
� 
 ���
� � �
� � �

Table 6.2 : Design parameters for architecture explorationand wireless system workload
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Figure 6.4 : Variation of real-time frequency with increasing clusters

workload.

Figure 6.4 shows the real-time frequency of the workload with increasing clusters as

� is varied, using equations (6.33). Since the minimum CDP is��, the execution time

decreases linearly until�� and then no longer provides a linear decrease as seen from

equation (6.33). Further increasing the clusters above	
 clusters has almost no effect

on the execution time as the algorithms using the higher CDP take less than�% of the

workload time, as shown in Table 6.3.



116

Algorithm Kernel CDP Cycles MHz needed

Correlation update �� ��� �
Matrix mul �� ����� 
�

Estimation Iteration �� �	 � �
transpose ��� �� � �

Matrix mul L �� �

� ��

Matrix mul C �� ���� ��

Detection Matched filter �� ����� ��
Interference Cancellation �� ��	�� ��

Packing ��	 �� � �
Re-packing 	
 ��� � �

Decoding Initialization 	
 
 ��� ��
Add-Compare-Select 	
 	�
�� ��


Decoding output 	
 �	�� ��

Min real-time frequency
�� �� � � �� �� �� ��� ���

Mathematically required ALU op count �
 GOPs

Table 6.3 : Real-time frequency needed for a wireless base-station providing��� Kbps/user
for �� users
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Figure 6.5 shows the variation of the normalized power with increasing clusters as clock

frequency decreases to achieve real-time execution of the workload. This is obtained from

equation (6.34). The thick lines show the ideal, no stall case of � � � and the thin lines

show the variation as� decreases to�. Figure 6.5 uses (���� ,����) = (5,3) as the number

of adders and multipliers per cluster. The figure shows that the power consumption reduces

drastically up to a factor of���� as the number of clusters reaches	
 clusters from

clusters, since the reduction in clock frequency outweighsthe increase in capacitance due

to increased ALUs. After	
 clusters, the increase in capacitance outweighs the small

performance benefits, increasing the power consumption. Secondly, the figure shows that

the design choice for clusters is actually independent of the value of� and� as all variations

show the same design solution.

� Cluster choice :	
 clusters� (� , �, � )

Once the number of clusters are set, a similar exploration isdone within a cluster to

choose the number of adders and multipliers within a clusterand minimizing power using
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Figure 6.6 : Real-time frequency variation with varying adders and multipliers for� � 	
,
� � � 
� �, � = 1,� � �, refining on the�� � � � �� � �� � � � 	
� solution

equation (6.35). Figure 6.6 shows the variation of the real-time frequency with increasing

adders and multipliers. The utilization of the adders and multipliers are obtained from

a compile-time analysis using the design tool and are represented as�� � �� respectively.

The figure shows that after the (� adder,� multiplier) point there is very little benefit in

performance with more adders or multipliers. This is the point where the entire ILP is

exploited and adding more units does not produce any benefits. However, the (� adder,�
multiplier) point has a higher ALU utilization for the same amount of work. Hence, one

could expect one of these configurations to be a low power solution as well. The actual low

power point depends on the variation of� � � �� in the design. For the case of� � � 
� �, � =

1, � � �, the �� � � � �� � �� � �� 	
� obtains the minimum power as computed from equation

(6.35).
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Figure 6.7 shows the power minimization sensitivity of the ALUs within each cluster

with � , � and� . The columns in Figure 6.7 represent the variations in� . The first 3 rows

show the sensitivity of the design to variations in memory stalls� , while the last row shows

the sensitivity of the design to�. By looking at the array of subplots, the following obser-

vations can be made. First, there are two candidate configurations of �� � � � �� that emerge

after a sensitivity analysis:�� � � � 	
� and �� � �� 	
�. Second, the design is most sensitive

to variations in� . It can be seen that� � � always selects the�� � � � 	
� configuration and

� � � always selects the (3,1,64) configuration. This is expectedas variations in� affect the

power minimization in the exponent. Figure 6.6 shows that the �� � � � 	
� and�� � �� 	
� con-

figurations have among the highest ALU utilizations and thisshows the correlation between

power minimization in Figure 6.7 and ALU utilization in Figure 6.6. Third, the design is

also sensitive to memory stalls� . For � � � �� � � 
�, the design choice is�� � � � 	
� and it

changes to�� � �� 	
� as� increases. Finally, the last row shows that the design is relatively

insensitive to� variations. This is because, the register files and associated intra-cluster

communication network that get added with increase in ALUs dominate the power con-

sumption, taking�� � ��% of the cluster power for the configurations studied. The cluster

power, on the other hand, takes between�� � 	 �% of the total chip power.

Figure 6.5 shows the	
 cluster architecture to be lower power than the�� cluster case.

However, a	
 cluster configuration will never attain 100% cluster efficiency as clusters

��
�

	
 will remain unutilized when the CDP falls below	
. A 	
 cluster architecture

obtains only a�
% cluster utilization for the workload but is seen to have a lower power

consumption than a�� cluster architecture with a���% cluster utilization, merely due to

the ability to lower the clock frequency, which balances outthe increase in capacitance.

Figure 6.8 shows the cluster utilization for a 32 and 64 cluster architecture. When the

CDP during execution falls below 64 (which occurs for algorithms having CDP = 32 in the



120

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0, p = 2

Min = (2,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0.5, p = 2

Min = (2,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0, p = 2.5

Min = (2,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0.5, p = 2.5

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0, p = 3

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 0.5, p = 3

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 1, p = 2

Min = (2,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.1, β = 1, p = 2

Min = (2,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 1, p = 2.5

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.1, β = 1, p = 2.5

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.01, β = 1, p = 3

Min = (3,1,64)

1
2

3
4

5

1

2

3
0

0.5

1

α = 0.1, β = 1, p = 3

Min = (3,1,64)

X-axis : � � � adders, Y-axis :� � � multipliers, Z-axis :� � � normalized power

Figure 6.7 : Sensitivity of power minimization to� , � and� for 	
 clusters



121

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Cluster index number

C
lu

st
er

 u
til

iz
at

io
n 

(%
)

32 cluster architecture
64 cluster architecture

Figure 6.8 : Variation of cluster utilization with cluster index

workload), clusters 33-64 remain unused for 46% of the time as there is not enough CDP

in those algorithms to utilize those clusters.

It is clear from the plot that further power savings can be obtained by dynamically

turning off entire clusters when the CDP falls below 64 clusters during execution. Since

clusters in the 64 cluster architecture consume 58% of the total power consumption of

the chip, turning off the 32 unused clusters can reduce the power consumption by up to

28% during run-time. A multiplexer network between the internal memory and clusters

can be used to provide this dynamic adaptation for power savings by turning off unused

clusters [100] using power-gating. Further power can also be saved by turning off unused

functional units when workloads having different ALU utilizations are getting executed.

The benefits due to this adaptation are limited as the ALUs consume only 25% of the

power consumption in the 64 cluster architecture configuration.

.
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6.4.1 Verifications with detailed simulations

The design exploration tool gave two candidates as the output with variations in� , � and

� .

� Design I : �� � � � �� : �� �� �� �
�

� �� � � � � ��� �� �� � � � 	
� �� �� � �� 	
�

� Design II : �� � � � �� : �� �� �� �
�

� �� � � � � ��� �� �� � � � 	
� �� �� � �� 	
�

The design starts from a hypothetical infinite machine represented as�� �� �� � and

successively refines on the architecture to provide low power candidate architectures. Ta-

ble 6.4 provides the design verification of the tool (T) with acycle-accurate simulation (S)

using the Imagine stream processor simulator that can produce details on the execution

time, such as the computation time, memory stalls and microcontroller stalls. The design

tool models the compute part of the workload very realistically. The relatively small errors

are due to the assumption of ILP being independent of CDP and due to the prologue and

epilogue effects of loops in the code that were ignored. The thesis did not model� accu-

rately as it can be seen that the actual memory stalls were larger than the maximum range

used for
�
��� ��. This is because the maximum range for

�
��� �� was based on the assumption

that the stalls would never exceed 25% of the execution time.This thesis observes that this

does not hold true as the execution time started to decrease with increasing clusters and

the system changed from being compute bound to memory bound.However, even after

increasing
�
��� �� to a larger range, the design exploration tool still produces the same two

candidate choices for evaluation. Both the design candidates are also very close in their

power consumptions, with the�� � �� 	
� configuration being only� � ��% different than

the �� � � � 	
� configuration. An alternate graphical version of the table is shown in Figure

6.9.
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Choice � Compute Total Real-time
�

Relative Power
�� 
 � 
 �� time Stalls time frequency �� 
 � 
 �� Consumption

(cycles) (cycles) (cycles) (MHz) � � � � � � �� � � �
Design I T � ������ ����� ������ �	�
�� 
 � 
 �
 � T � �� ������ ��	�� �	�
�� ��	

T � ������ � ������ �� �
S ��� ��
 ���	� ������ 		� � � � �

Design II T � �
�
 �� ����� ����	� ���
�� 
 � 
 �
 � T � �� �
�
 �� ��	�� ������ ��


T � �
�
 �� � �
�
 �� ���
S �
��� � �� ��� � ��	� � 	
	 ��� � ���� ���� ����

Human T � � �
�
 � ����� �
	� �� �		
�� 
 � 
 ��� T � �� � �
�
 � ��	�� �� ���� ���

T � � �
�
 � � � �
�
 � 	��
S ���
�� ���� � ��	��� ���� ���	 ��� � ���
 ��	�

Table 6.4 : Verification of design tool output (T) with a detailed cycle-accurate simulation
(S)

We also compare the candidate configurations from our tool with a carefully chosen

configuration [10, 100]. The analysis was done for the workload kernels based on the data

parallelism and the operation mix. A�� � � � ��� configuration was chosen since the algo-

rithms show equal number of additions and multiplications and a minimum data parallelism

of �� [10]. Our design tool provides us with lower power configurations than the carefully

chosen human configuration and improves the power efficiencyof the design by a factor of

�
	 �
�

�
��� for the chosen workload.

6.4.2 2G-3G-4G exploration

Figure 6.10 shows the real-time clock frequency for a 2G-3G-4G design exploration. The

use of the design exploration tool allows the designer to geta feel of the performance

of the system within minutes of writing the code instead of spending a lot of effort on

simulation time and deciding processor parameters, allowing the designer to quickly check
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Figure 6.9 : Verification of design tool output (T) with a detailed cycle-accurate simulation
(S)

the utility of the candidate algorithms in the design. The 4Gnumbers are approximate and

are based on a kernelC implementation of the code without writing the streamC code to

run the kernels. This was done since the kernels for LDPC decoding could be written and

can thus, provide performance estimates, even without the use of the streamC code, which

models the memory latency issues.

The figure shows the impact of the data rates on the real-time clock frequency require-

ments. The target data rates are used to demonstrate how an increase in data rates would

affect the real-time clock frequency without any change thealgorithms. The linear scaling

is an extrapolation since the data rates also depend on otherfactors such as bandwidth. The

reason for the extrapolation is because current systems allow support for multiple data rates

and the figure normalizes the data rates while comparing different algorithm standards. In

2G and 3G systems, Viterbi decoding had a CDP of 64 and dominated the computations.

In the 4G system, the channel estimation dominates the computation time and has a paral-
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Figure 6.10 : Real-time clock frequency for 2G-3G-4G systems with data rates

lelism of 32. Hence, the number of clusters fell from 64 to 32 for the 4G system.

6.5 Summary

This thesis develops a design exploration tool that explores trade-offs between the orga-

nization and number of ALUs and the clock frequency in embedded stream processors.

The design methodology relates the instruction level parallelism, subword parallelism and

data parallelism to the organization of the ALUs in an embedded stream processor. The

thesis decouple the exploration phase of clusters and ALUs per cluster into independent

explorations, providing a drastic reduction in the search space. The design exploration tool

outputs candidate configurations that attain low power along with an estimate of their real-

time performance. With improvements in compilers for embedded stream processors, the

design exploration tool heuristic can also be improved by incorporating techniques such

as integer linear programming for jointly exploring�� � � � � � � � as well as exploring other
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processor parameters such as register file sizes and pipeline depths of ALUs. Also, once

the design is done for the worst case, a multiplexer network between the internal memory

and the clusters [100] can be used to adapt the clusters in embedded stream processors

with run-time variations in the workload to further improvethe power efficiency. The next

chapter 7 shows how power efficiency in stream processors canbe improved by adapting

the compute resources to workload variations.
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Chapter 7

Improving power efficiency in stream processors

Techniques used for high performance design and low power design are the same

– Mark Horowitz [110]

7.1 Need for reconfiguration

The design exploration scheme proposed in chapter 6 designsthe stream processor for the

worst case workload in order to ensure real-time constraints are met in the worst case.

Since real-time design constraints have to be met for the worst case, design applications

such as full capacity base-station must employ enough resources to meet those constraints

at a reasonable frequency and voltage. However, base-stations rarely operate at full ca-

pacity [111]. At lower capacity workloads, far fewer resources are required to meet the

real-time constraints, so many of the resources will be usedinefficiently.

This thesis proposes to dynamically adapt the resources of astream processor to match

the workload, improving the efficiency of stream processors. Such a adaptive stream pro-

cessor can adjust the frequency, voltage, and arithmetic resources, significantly reducing

power dissipation under lightly loaded conditions.

Stream processors exploit data parallelism available in applications and all clusters ex-

ecute the same instruction on different data sets in a SIMD manner. In order to use the

lowest voltage and frequency (power efficiency),the numberof clusters used in a stream

processor should be designed depending on the data parallelism available in the applica-
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tion. Table 7.1 shows the available data parallelism� for the base-station with variation in

the number of users (U) and the decoding constraint length (K). While it is possible to vary

other system parameters such as the coding rate (R) and the spreading gain (N) in the table,

we decided to keep them constant in order to fix the target datarate to 128 Kbps/user as

changing these two parameters affects the target data rate as well in wireless standards [14].

From the table, we can observe that the available data parallelism reduces as we go from

the full capacity base-station case of 32 users, constraintlength 9 (32,9) to lower capacity

systems. Based on the data parallelism, if we choose a 32-cluster architecture as the worst

case architecture for evaluation, we see that as we go down from case (32,9) to other cases,

none of the other workloads meet the minimum data parallelism required to keep all the

clusters busy. Hence, there needs to be reconfiguration support provided in stream proces-

sors to turn off unused clusters and allow clusters to dynamically match the available data

parallelism in the workload.

7.2 Methods of reconfiguration

Three different mechanisms could be used to reroute the stream data appropriately: by

using the memory system, by using conditional streams, and by using adaptive stream

buffers.

7.2.1 Reconfiguration in memory

A data stream can be realigned to match the number of active clusters by first transferring

the stream from the SRF to external memory, and then reloading the stream so that it only is

placed in SRF banks that correspond to active clusters. Figure 7.1 shows how this would be

�
The data parallelism in this context is defined as the data parallelism available after packing and loop

unrolling
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Workload Estimation Detection Decoding

(U,K)
�
(U,N)

�
(U,N)

�
(U,K,R)

(4,7) 32 4 16

(4,9) 32 4 64

(8,7) 32 8 16

(8,9) 32 8 64

(16,7) 32 16 16

(16,9) 32 16 64

(32,7) 32 32 16

(32,9) 32 32 64

Table 7.1 : Available Data Parallelism in Wireless Communication Workloads ( U = Users,
K = constraint length, N = spreading gain (fixed at 32), R = coding rate(fixed at rate 1/2)).
The numbers in columns 2-4 represent the amount of data parallelism

accomplished on an eight cluster stream processor. In the figure, a 16 element data stream,

labeled Stream A in the figure, is produced by a kernel runningon all eight clusters. For

clarity, the banks within the SRF are shown explicitly and the stream buffers are omitted.

Therefore, the stream is striped across all eight banks of the SRF. If the machine is then

reconfigured to only have four active clusters, the stream needs to be striped across only the

first four banks of the SRF. By first performing a stream store instruction, the stream can

be stored contiguously in memory, as shown in the figure. Then, a stream load instruction

can be used to transfer the stream back into the SRF, only using the first four banks. The

figure shows Stream A


as the result of this load. As can be seen in the figure, the second

set of four banks of the SRF would not contain any valid data for Stream A


.

This mechanism for reconfiguration suffers from several limitations. First, the memory
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Figure 7.1 : Reorganizing Streams in Memory

access stride needed to transfer the data from 8 clusters to 4clusters is not regular. The

non-uniform access stride makes the data reorganization anextremely difficult task and in-

creases memory stalls. Next, the reconfiguration causes memory bank conflicts during the

transfer as multiple reads (during reconfiguration to higher number of clusters) or writes

(during reconfiguration to lower number of clusters) are needed from the same bank. Also,

one of the motivations for stream processor design is to keepthe arithmetic units busy so

that data transfer between memory and the processor core is minimized. Forcing all data

to go through memory whenever the number of active clusters is changed directly violates

this premise. In Chapter 5, we show that using external memory to reorganize data streams

for Viterbi decoding results in a larger execution time thanif the reorganization were done

within the clusters. Finally, memory operations are expensive in terms of power consump-
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Figure 7.2 : Reorganizing Streams with Conditional Streams

tion. The increase in power consumption combined with the increase in execution time due

to stalls makes reconfiguration using memory an undesirablesolution for reconfiguration.

7.2.2 Reconfiguration using conditional streams

Stream processors already contain a mechanism for reorganizing data streams using condi-

tional streams [112]. Conditional streams allow data streams to be compressed or expanded

in the clusters so that the direct mapping between SRF banks and clusters can be violated.

When using conditional streams, stream input and output operations are predicated in each

cluster. If the predicate is true (1) in a particular clusterthen it will receive the next stream

element, and if the predicate is false (0), it will receive garbage. As an example, consider

an eight cluster stream processor executing a kernel that isreading a stream conditionally.

If clusters 1, 5, and 7 have a true predicate and the other clusters have a false predicate,

then cluster 1 will receive the first stream element, cluster5 will receive the second stream

element, and cluster 7 will receive the third stream element. The first cluster to have a
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true predicate on the next read operation will receive the fourth stream element. In this

way, conditional input streams are delivered to the clusters in a sparse manner. Similarly,

conditional output streams compress data from disjoint clusters into a contiguous stream.

In order to use conditional streams to deactivate clusters,the active clusters would al-

ways use a true predicate on conditional input or output stream operations and inactive

clusters would always use a false predicate. This has the effect of sending consecutive

stream elements only to the active clusters. As explained in[112], conditional streams are

used for three main purposes: switching, combining, and load balancing. Using condi-

tional streams to completely deactivate a set of clusters isreally a fourth use of conditional

streams.

In a stream processor, conditional input streams are implemented by having each cluster

read data from the stream buffer as normal, but instead of directly using that data, it is first

buffered. Then, based upon the predicates, the buffered data is sent to the appropriate

clusters using an intercluster switch [112]. Conditional output streams are implemented

similarly: data is buffered, compressed, and then transferred to the SRF. Therefore, when

using conditional streams, inactive clusters are not trulyinactive. They must still buffer and

communicate data. Furthermore, if conditional streams arealready being used to switch,

combine, or load balance data, then the predicates must be modified to also account for

active and inactive clusters, which complicates programming.

7.2.3 Reconfiguration using adaptive stream buffers

From Figure 4.2, we can observe that the input to the clustersarrive directly from the stream

buffers, which are banked to match the number of clusters. Thus, if the data parallelism

decreases below the number of clusters, the data for the stream will lie in the wrong bank

and hence, cannot be accessed directly by the correspondingcluster.
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Therefore, to successful deactivate clusters in a stream processor, stream data must be

rerouted so that active clusters receive the appropriate data from other SRF banks as well.

Hence, an interconnection network between the stream buffers and the clusters is needed

in order to adapt the clusters to the data parallelism. A fully connected network allowing

data to go to any cluster would be extremely expensive in terms of area, power and latency.

In fact, stream processors already have a inter-cluster communication network that can be

used to route data to any cluster. The intercluster communication network is not only a

significant part of cluster power dissipation, but have large latency and area requirements

as well.

To investigate better networks, we make use of the fact that it is not necessary to ar-

bitrarily turn off any cluster since all clusters are identical. Hence, we only turn off only

those clusters whose cluster identification number is greater than the data parallelism in

the algorithms. We further simplify the interconnection network by making the clusters

turn off only in powers of two, since most parallel algorithmworkloads generally work on

datasets in powers of two.

The reconfigurable stream processor is shown in Figure 7.3. The reconfigurable stream

processor allows the ability to turn the clusters on and off,depending on the available data

parallelism using an interconnection network within the stream buffers. This interconnec-

tion network allows the stream buffers to become adaptive tothe workload. In the absence

of any reconfiguration needed such as in case (32,9) of Table 7.1, the interconnection net-

work acts as an extended stream buffer, providing the ability to prefetch more data while

behaving as a reconfiguration support when the data parallelism reduces below the number

of clusters.

Figure 7.3 shows how the adaptive stream buffers would operate if reconfiguration is

needed. The switches in the mux/demux network are set to control the flow of the data to
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the clusters. There are
���

� �� � stages required in the stream buffer if complete reconfigu-

ration to a single cluster is desired, where
�

is the number of clusters. The reconfiguration

network allows the stream processor to stripe and access data across all the SRF banks and

provides high memory efficiency as well instead of limiting the data storage to that of the

parallelism present in the data stream and zero-padding unused SRF banks. The adaptive

stream buffers also provide higher SRF bandwidth to applications with insufficient data par-

allelism since all the SRF banks can be accessed and utilizedeven in cases with insufficient

data parallelism.

The example in Table 7.2 shows a 4-cluster stream processor reconfiguring to 1 cluster.

We can see that each stage of the multiplexer network holds the data until it is completely

read into the clusters. This is done using counters for each stream buffer stage (not shown

for clarity). Also, stalls need to be handled by the multiplexer network. The adaptive

stream buffer network adds a latency of
���

� �� � to the data entering the clusters. However,

the adaptive stream buffers can prefetch data even if the clusters are stalled, allowing it to

have the potential to hide latencies or even improve performance if clusters have significant

stalls.

The multiplexer/demultiplexer network shown in Figure 7.3is per data stream. Each

input stream is configured as a multiplexer and each output stream is configured as a de-

multiplexer during execution of a kernel. The cluster reconfiguration is done dynamically

by providing support in the instruction set of the host processor for setting the number of

active clusters during the execution of a kernel. By default, all the clusters are turned off

when kernels are inactive, thereby providing power savingsduring memory stalls and sys-

tem initialization. Another advantage of providing reconfiguration using the multiplexer

network is that users do not have to modify their kernel code to account for this reconfigu-

ration support.
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Figure 7.3 : Reorganizing streams with an adaptive stream buffer

The current implementation of the multiplexer network addsa latency of
���

� �� � � �

cycle for the data to flow through the multiplexer network. Hence, all the data entering the

clusters are delayed by 7 cycles for a 32-cluster stream processor. However, the multiplexer

network behaves as an extended stream buffer and allows dataprefetching to occur in the

multiplexer network, allowing the ability to absorb the latency. Also, it is possible that the

kernel does not read the data during the first 7 cycles (or the kernel can be re-scheduled by

the compiler such that the first read occurs after 7 cycles). However, the current implemen-

tation stalls the clusters for 7 cycles for all kernels. In spite of this, we can see a reduction

in the micro-controller stalls for some of the kernels. Table 7.3 compares the reconfig-

urable stream processor with the base stream processor for the full capacity base-station

case (32,9) that does not require any reconfiguration, thereby allowing us to evaluate the

worst case performance of the dynamically reconfigurable processor. From the table, we

can observe that for kernels such as ’matrix multiplicationfor L’, there was a reduction in
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Input Data from SB :ABCDEFGH

Time Stage 1 Stage 2 Cluster

1 ABCD - -

2 ABCD AB -

3 ABCD AB A

4 ABCD CD B

5 EFGH CD C

6 EFGH EF D

7 EFGH EF E

: : : :

Table 7.2 : Example for 4:1 reconfiguration case (c) of Figure7.3. Y-axis represents time.
Data enters cluster 1 sequentially after an additional latency of 2 cycles

the stall time due to the adaptive stream buffers, although the net result was a slight degra-

dation in performance. The current implementation for the reconfigurable stream processor

needs to run at 1.12 GHz to meet real-time constraints as opposed to 1.03 GHz for a tra-

ditional stream processor when no reconfiguration is required. However, by turning off

the clusters when memory stalls are present, the reconfigurable stream processors can still

more power-efficient even in the no reconfiguration case, andthis is is shown in the next

section.

7.3 Imagine simulator modifications

A ’setClusters(int clusters)’ is added in the stream code to set the number of clusters re-

quired for the kernel execution. This instruction is scheduled to execute just before the
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Kernel Calls Base New

busy stalls busy stalls

Update channel matrix 1 223 544 223 533

Matrix multiplication 1 12104 4934 11464 5324

Iterate for new estimates 1 272 996 206 1057

Matrix mult. for L 1 6537 67 6218 22

Matrix mult. for C 1 6826 2075 6506 2052

Matrix transpose 5 1075 1425 1070 1380

Matched Filter 67 18492 2479 18492 3752

Interference Cancellation 197 35854 13396 35854 17139

Pack data 1 289 0 289 7

Repack data 6 444 24 444 54

Viterbi Init. 32 4736 0 4736 224

Add Compare Select 1024 114688 0 114688 7168

Extract Decoded bits 32 5952 0 5792 224

Kernel Time 223432 25940 224918 38936

Memory Time - 25261 - 34645

Total Time 258693 298499

Real-time frequency 1.03 GHz 1.2 GHz

Table 7.3 : Worst case reconfigurable stream processor performance
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kernel executes and gets reset at the end of the kernel to zeroso that the clusters can be

turned off for the maximum time period possible. The streamCcode now looks as follows:

:

setClusters(16); //use 16 clusters only for the next kernel

kernel1(input1,input2,input3,.. , output1);

setClusters(8);

kernel2(input1,....,output1, output2,...);

:

7.3.1 Impact of power gating and voltage scaling

Power gating and voltage scaling are recent innovations in providing power-efficiency in

microprocessors. Their impact on reconfiguration is presented in this thesis.

Power gating [105, 113, 114] gates the supply voltage to the functional units. The main

advantage of power gating is to save leakage power, which is becoming increasingly impor-

tant in processor design due to technology scaling. The gated circuitry does not dissipate

any power when turned off. However, there is power dissipation by the gating circuitry

and the power switching device itself. Figure 7.4 shows an example of the power gating

functionality. The power switching device needs to be largeenough in width to handle

the average supply current during operation. Note that for turning off clusters using power

gating, the width required would exceed maximum transistorwidths. This is because, the

clusters consume�80% of the chip power. Hence, in this case, multiple power gating

devices need to be used to turn off a single cluster.

The addition of a gating device can result in reduced performance and decreased noise

margins due to the drop across the gating device and the parasitic capacitances added.
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Figure 7.4 : Power gating

Also, there is a latency between the arrival of the signal to turn on the functional unit and

the operation of the functional unit. Due to huge capacitances on the power supply nodes,

several clock cycles will be needed to allow the power supplyto reach its operating level.

Dynamic voltage scaling (DVS) allows the scaling of the processor voltage and clock

frequency, depending on the application’s requirements. Processors generally operate at a

fixed voltage and require a regulator to control the voltage supply variation. The voltage

regulator for DVS is different from a standard voltage regulator [115]. This is because

in addition to regulating voltage for a given frequency, it must also change the operating

voltage, when a new frequency is requested. Since the hardware has no knowledge of the

time for voltage and frequency switching, the operating system software controls the clock

frequency by writing to a register in the system control state.

7.4 Power model

Don’t believe the 33rd order consequences of a first order model

– Golomb’s Don’ts of mathematical modeling

The power model for stream processors is based on [23] with additions to account for

the adaptive stream buffers. The parameters used in power analysis in this thesis are as

shown in Table 7.4 and Table 7.5. All energy values shown are with respect to�� . Based
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Description Value

ALU operation energy 632578

LRF access energy 79365

Energy of SB access/bit 155

SRAM access energy/bit 8.7

SP access energy 1603319

Norm. wire energy/track(�� ) 1

Table 7.4 : Power consumption table (normalized to�� units)

on the models in [23], with modifications to account for fixed point ALUs, the length of

a wire track is� 

�� micron, a cluster is 1400 wire tracks wide and it takes� 

� pJ to

propagate a signal across a single wire track. The modifications are based on a low power

version of stream processors for embedded systems (See (LP)in Chapter 6 in [116]). The

power consumption of the mux network is wire length capacitance dominant to a first order

approximation [23]. Assuming a linear layout of the clusters (worst case), the total wire

length of the mux network for� bit is �
 � units, where the unit is the distance between

� clusters. For 8 streams with 32 bits of wire each, the mux network uses a total wire of

length approximately�
 � � �
�� � � � �� � � 

�� � �� meters with a power consumption of

5 �J [23]. An on-off latency of 7 cycles is based on clocking the multiplexer network. The

pipelining depth of the multiplexer network
���

� �� ������ ��. For a 32-cluster architecture,

this evaluates to 5 cycles. In addition, 2 cycles are added during interfacing the network to

the SRF and the clusters.
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Parameter Value

No. of clusters 32

Adders/cluster 3

Multipliers/cluster 3

Stream block size 32 words

Stream Buffer size 256 KB

DRAM frequency
�� 	
 /8

Adder latency 2 cycles

Multiplier latency 4 cycles

Off-On latency � 7 cycles

Table 7.5 : Key simulation parameters

7.4.1 Cluster arrangement for low power

The clusters can be re-ordered according to bit-reversal oftheir locations and this can be

shown to minimize the wire length from�
 � units per bit to�� units per bit, (from O(��)
to O(� � ��� �� ��), where� is the number of clusters. The power consumption of this

network is less than 1% of a single multiplier and this has a negligible effect on the power

consumption of the stream processor design. Figure 7.5 shows the effect of layout of wire

length.
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Figure 7.5 : Effect of layout on wire length

7.5 Results

7.5.1 Comparisons between reconfiguration methods

There have been three different methods of reconfiguration proposed in this chapter, namely

(a) Reconfiguration in memory, (b) Reconfiguration using conditional streams and (c) Re-

configuration using a multiplexer network.

Out of the three, only (a) and (c) allow the processor to completely turn off the unused

clusters. This is because (b) requires the use of the scratchpad and the inter-cluster com-
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munication network in order to support conditional streams. The ALUs in (b) can still be

turned off to save power. However, the scratchpad and the inter-cluster network are two of

the most expensive parts in the clusters in terms of power consumption [23], and hence, the

ability for power savings using (b) for reconfiguration is limited.

Reconfiguration in memory suffers from numerous disadvantages. First, it requires a

special stride pattern that is not native to the stream processor. For example, when a 4-

cluster processor reconfigures to 2-clusters using memory,the stride pattern is [1 2 5 6 ....],

which is a specialized stride access pattern and would require explicit hardware and soft-

ware support to maintain for reconfiguration. Secondly, moving data via memory adds a

significant latency to the reconfiguration. For example, chapter 5 shows that moving data

via clusters is more than a order-of-magnitude faster than moving data via memory for op-

erations such as a matrix transpose which has a strided memory access pattern. Finally, it

increases the memory requirements of the processor. For example, while reconfiguration

to half the number of clusters, a matrix of size� �� requiring� rows in a� -cluster ma-

chine, will require�� rows after reconfiguration to�
�� clusters. Hence, reconfiguration

in memory is not considered as a viable solution for adaptingthe data parallelism.

Hence, it can be seen that reconfiguring using the multiplexer network is the only so-

lution that allows power savings with a minimum impact on theexecution time. Figure

7.6 quantifies the amount of execution time increase due to the introduction of the multi-

plexer network. In order to compare the increase in execution time, a 32-user system with

constraint length 9 Viterbi decoding is considered. This system does not require any re-

configuration. Hence, Figure 7.6 allows us to see the overhead of providing the ability to

reconfigure using conditional streams (CS) and the overheadof providing reconfiguration

using a multiplexer network (MUX) between the SRF and the clusters. It can be seen that

the multiplexer network has a lower latency than conditional streams but is more expensive
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architecture

if there is no reconfiguration in the system (Base).

Figure 7.7 shows the impact of the conditional stream reconfiguration (CS) and the

multiplexer network reconfiguration (MUX) as the constraint length in the system changes

from constraint length 9 to constraint length 7 on 32-clusters. Thus, it can be seen that

reconfiguration using the multiplexer network not only permits the ability to turn off clus-

ters for power savings but also provides a faster execution time than reconfiguration using

conditional streams.

7.5.2 Voltage-Frequency Scaling

Figure 7.8 shows the clock frequency needed by the reconfigurable stream processor to

meet real-time requirements of 128 Kbps/user. We can see that as the workload decreases,

the percentage of cluster busy time and microcontroller stalls decrease. However, the mem-
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ory stall time does not decrease with the workload. This is because as the workload de-

creases from (32,9) to the (4,7) case, some of the memory stalls that were hidden during

kernel execution suddenly became visible due to the corresponding decrease in the kernel

execution time. The reconfigurable stream processor needs to run at 1.12 GHz to meet real-

time for the full capacity workload and can run at 345.1 MHz when the workload decreases

to the (4,7) case.

Figure 7.9 shows the corresponding cluster utilization variation with the workload and

the cluster index. We can see that in the full capacity case (32,9), all clusters are equally

utilized at 87%. The clusters are idle and are turned off 13% of the time due to memory

stalls. However, as the workload decreases, the reconfigurable stream processor turns off

unutilized clusters to lower their utilization factor and save power. For example, we can

see in case (4,9) that only the first 4 clusters are being used at 63% utilization, while the re-
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maining 28 clusters are being used at 20% utilization. The adaptive stream buffer provides

the needed data alignment to collect the data from all the 32 SRF banks and stream buffers

into only those clusters that are active. Thus, by turning off unused clusters during peri-

ods of memory stalls and insufficient data parallelism, reconfigurable stream processors are

able to provide power-efficient wireless base-stations.

However, it is not practical to run the clock of the reconfigurable stream processor at

just the right frequency to meet real-time. There are only a few possible frequency levels in

programmable processors and these are standardized due to interface with external DRAM

clock frequencies. Hence, the reconfigurable stream processor needs to be over-clocked to

work at these fixed frequencies. However, the clusters can beturned off during spare cycles

now available as well. In this thesis, we assume frequenciesand voltages used in the latest

TM5800 Transmeta Crusoe chip [93], with an extension to 1.2 GHz case at 1.4 V.

Power saving is achieved in the reconfigurable stream processor due to turning off clus-



147

0
 5
 10
 15
 20
 25
 30

0


50


100


(4,9)


(4,7)


0
 5
 10
 15
 20
 25
 30

0


50


100

(8,9)


(8,7)


0
 5
 10
 15
 20
 25
 30

0


50


100


(16,9)


(16,7)


0
 5
 10
 15
 20
 25
 30

0


50


100


(32,9)


(32,7)


Cluster index


C

l
u


s

t
e


r
 

U


t
i

l
i

z

a


t
i

o


n

 
(


%

)


Figure 7.9 : Cluster utilization variation with cluster index and with workload

ters during over-clocking (the idle time due to mismatch between the frequency needed and

the actual frequency used), during memory stalls and duringkernels having clusters with

insufficient data parallelism. This is shown in Table 7.6. Inorder to evaluate the benefits

of the adaptive stream buffers, the base case comparison is assumed to be a stream pro-

cessor that already supports dynamic voltage and frequencyscaling. We can see from the

table that the adaptive stream buffers yields savings in power even in the no reconfigura-

tion case (32,9) of a full capacity base-station due to turning off clusters during memory

stalls and over-clocking. We can see that the adaptive stream buffers yield an additional

15-85% power savings over that provided by simple frequencyand voltage scaling in the

architecture.
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Workload Freq (MHz) Voltage Power Savings (W) Power (W) Savings

needed used (V) clocking Memory Clusters New Base

(4,7) 345.09 433 0.875 0.325 1.05 0.366 0.30 2.05 85.14 %

(4,9) 380.69 433 0.875 0.193 0.56 0.604 0.69 2.05 66.41 %

(8,7) 408.89 433 0.875 0.089 0.54 0.649 0.77 2.05 62.44 %

(8,9) 463.29 533 0.950 0.304 0.71 0.643 1.33 2.98 55.46 %

(16,7) 528.41 533 0.950 0.020 0.44 0.808 1.71 2.98 42.54 %

(16,9) 637.21 667 1.050 0.156 0.58 0.603 3.21 4.55 29.46 %

(32,7) 902.89 1000 1.300 0.792 1.18 1.375 7.11 10.46 32.03 %

(32,9) 1118.25 1200 1.400 0.774 1.41 0.000 12.38 14.56 14.98 %

Estimated Cluster Power Consumption 78 %

Estimated SRF Power Consumption 11.5 %

Estimated Microcontroller Power Consumption 10.5 %

Estimated Chip Area 45.7�� �

Table 7.6 : Power Savings
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7.5.3 Comparing DSP power numbers

A 3G base-station built in software requires� 24 GOPs (theoretical arithmetic operations).

This exceeds the current capabilities of single processor DSP systems. It becomes very

difficult to compare multi-processor DSP systems due to variations in processor technol-

ogy, area, target performance, clock frequency, memory andfunctional units. This thesis

makes an attempt to provide estimates of how a stream processor benefits over a system

design where multiple DSPs are connected together. Typicalnumbers quoted for DSPs

requiring the implementation of sophisticated algorithmshave been 1 DSP per user [117].

A 3G base-station design in software may require 32 DSPs at 600 MHz to meet perfor-

mance requirements, when including memory stalls, compiler efficiencies and algorithmic

dependencies. Hence, a 32 DSP architecture at 600 MHz may be useful to compare and

contrast power consumptions for the physical layer processing in wireless base-stations. [A

600 MHz TI VLIW DSP was chosen as the reference DSP as comparison numbers were

available for the DSP for that frequency [118] and for the same process technology as the

Imagine stream processor implementation].

Table 7.5.3 shows the power consumption of 32 C64x DSPs, withpower numbers for

a 600 MHz C64x DSP at 1.2 V, implemented in a 0.13�m process technology taken

from [118]. It can be seen that 32 C64x DSPs consume 35.2 W of power when includ-

ing I/O and EMIF peripherals. However, if the peripherals are excluded, 32 DSP cores

consume 10.22 W of power. In contrast, a 32-cluster stream processor with 4 16x16 mul-

tipliers in each DSP (to make a fair comparison with the TI DSP) consumes 9.6 W of

power at 600 MHz. This is because there is only a single micro-controller in the stream

processor that issues instructions to all units compared to32 micro-controllers in the 64x

DSP cores. However, note that these numbers are to be taken only as a rough estimate of

power consumption due to variations in process technology and design parameters such as
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Processor Power

1 C64x DSP core (CPU + L1) 0.31 W

1 C64x DSP core (CPU + L1 + L2 + EMIF) 0.72 W

1 C64x DSP chip (total) 1.1 W

32 C64x DSP chips � 35.2 W

32 C64x DSP cores (CPU + L1) � 10.22 W

32 cluster stream processor 9.6 W

Table 7.7 : Comparing DSP power numbers. The table shows the power reduction as
the extraneous parts in a multi-processor DSP are eliminated to form a single chip stream
processor

the number of registers and as the actual power consumption can be determined only by an

implementation. The inter-cluster communication networkbetween the DSPs is accounted

for in the stream processor while an ideal inter-cluster communication network is assumed

for the TI DSPs. Hence, the power consumption of 32 C64x DSP cores will actually be

greater than 10.22 W.

7.5.4 Comparisons with ASIC based solutions

Figure 7.10 shows the performance comparisons between DSPs, stream processors and

ASICs for Viterbi decoding. The reason for using Viterbi decoding as a comparison point is

that Viterbi decoding being a well-known and implemented algorithm can be used for pre-

dicting the performance of stream processors against ASIC implementations. The Viterbi

decoding algorithm can be easily implemented on ASICs and FPGAs to meet 1 bit per

clock cycle, requiring 128 KHz to provide 128 Kbps data rate,assuming a fully unrolled

system [119]. The DSP and the stream processor numbers have been obtained from a
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software implementation.

It is interesting to see from the figure that both stream processors and ASICs show the

same characteristics while exploiting data-parallelism in the ACS computations. The figure

assumes that the ASIC is able to decode� � ��
 �� bits every clock cycle. The effective DP

for a constraint length K decoder is�

��

. However, the stream processor implementation

exploits subword parallelism and does 4 ACS operations in 1 cluster. Hence, to make the

plot scale the same, 4 ACS units in the ASIC are grouped together as a single ACS unit,

giving rise to a net maximum DP on the graph as�
 ��. Typical Viterbi decoders [119, 120]

are able to decode a bit every clock cycle. Hence, it is assumed that with lower number

of ACS units, they would scale linearly in frequency, especially since the clock frequency

range is in KHz. There is a 2 orders-of-magnitude performance difference between the

stream processor implementation and an ASIC/FPGA implementation while there is a 1-2

order-of-magnitude difference between the stream processor implementation and a single

processor C6416 DSP implementation. The single dot in the figure refers to a software

DSP implementation of Viterbi decoding for constraint length 9. This difference translates

to power as well. For example, if an ASIC were to run at 128 KHz,it’s power consumption

would translate roughly to around 100�W extrapolating from numbers in [119, 120] com-

pared to a 100 mW stream processor implementation at around 10 MHz. In contrast, the

C64x DSP would take around 250 mW for a full software implementation at around 400

MHz. A C64x DSP with a co-processor solution would perform similar to the ASIC solu-

tion with an additional overhead of the data transfer between the DSP and the co-processor.

However, the overhead of such data transfer is typically less than 5% and does not impact

the order-of-magnitude differences in comparisons. The ASIC and stream processor num-

bers for power should only be taken as rough estimates as hardware implementations are

needed for accurate comparisons.
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Figure 7.10 : Performance comparisons of Viterbi decoding on DSPs, stream processors
and ASICs

7.6 Summary

This chapter shows how power efficiency in stream processorsdesigned for the worst case

in chapter 6 can be improved by using an adaptive multiplexernetwork that adapts the

compute resources in the design to the workload variations.There are different ways of

reconfiguring the data to use the right number of clusters. However, only the multiplexer

network allows the stream processor to turn off unused clusters thereby adapting the clus-

ters to the data parallelism of the application. Dynamic voltage and frequency scaling adapt

the voltage and frequency to match the real-time requirements. Thus, by adapting clusters

and the frequency in the stream processor, power efficiency of the DSP is improved, pro-

viding significant savings in power while maintaining real-time performance.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Traditional DSP architectures have explored (ILP, SubP) parallelism space for providing

high performance DSP architectures. Data-parallel DSPs have taken the traditional DSP

architecture space a step further to (ILP, SubP, DP) by exploiting the explicit data paral-

lelism in signal processing applications. This thesis usesstream processors as reference

data-parallel DSP for evaluating the contributions of thisthesis. This thesis explores the

processor architecture space and provides power efficiencyand efficient algorithm mapping

for stream processors.

This thesis addresses the design of stream processors for high performance real-time

embedded applications. This thesis first shows the design ofalgorithms for efficient map-

ping on stream processors such that they provide execution time benefits while simultane-

ously simplifying the DSP architecture by demonstrating patterns in the inter-cluster com-

munication network. The thesis then takes the next step of designing the stream processor

and setting the number of arithmetic units, clusters and theclock frequency such that the

stream processor meets real-time requirements with the minimum power consumption. Fi-

nally, the thesis improves power efficiency in stream processors designed using the above

exploration by adapting the compute resources to run-time variations in the workload.

The increase in the parallelism space for stream processorscomes at an associated cost

of increase in complexity of the tools that are needed to utilize the architecture efficiently.
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At the time of this thesis, there are still no compilers that can take code written in standard

programming languages such as C and run them efficiently on the stream processors dis-

cussed in this thesis. Although the availability of highly data parallel applications allows

significant performance benefits for stream processors, there are performance limits in this

(ILP, SubP, DP) space as well. If the applications need for performance is greater than

the available (ILP, SubP, DP), other parallelism levels such as thread-level parallelism or

pipelining multiple DSPs can be considered. This, of course, comes at a cost of increased

complexity of the design tools.

8.2 Future work

8.2.1 MAC layer integration on the host processor

This thesis focuses on the compute parts of the algorithms indata-parallel high perfor-

mance DSP applications. In most cases, these applications interface with other layers in

the system. For example, a wireless system after processingthe data in the physical layer,

needs to interface the data output with other layers such as the MAC layer. The control

aspects of the MAC and higher layers could create potential bottlenecks in the system.

8.2.2 Power analysis

Don’t believe that the model is the reality

– Golomb’s Don’ts of mathematical modeling

The power model used in this thesis is an extrapolated model based on the base stream

processor implementation for the Imagine architecture at Stanford. Although the thesis has

done a sensitivity analysis of the design to the power model,the use of voltage-frequency

scaling, power gating and cluster variations can cause errors in the design and power esti-
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mates, especially when mapped to newer technology processes such as 90 nm technology

processes. A hardware implementation is needed in order to verify the performance and

power benefits that are shown to be achievable in this thesis.

8.2.3 Pipelined, Multi-threaded and reconfigurable processors

Pipelining and multi-threading are ways to increase the performance beyond that obtained

by data parallelism. However, tools need to be designed thatautomate partitioning of

data on multiple pipelined resources and provide dynamic load balancing. Multi-threading

designs need to ensure that real-time constraints are not violated due to multi-threading

as the threading analysis is usually dynamic. Reconfigurable computing are new concepts

for designing DSP applications. The architectures and tools were not stabilized during this

thesis investigation. Reconfigurable computing shows considerable promise for the DSP

domain, if tools can be designed for efficient mapping algorithms written in high level

languages on such processors.

8.2.4 LDPC and Turbo decoding

As explained in Chapter 5, the data access pattern for LDPC decoding requires the use of

an indexed SRF [92]. Implementing LDPC decoding would require considerable change in

the simulator tools and changes in the thesis made using the tools would have to be ported

to the new simulator tools. Hence, it has been left as future work at this point in time.

However, the use of the indexed SRF makes the LDPC decoding implementation similar to

Viterbi decoding and this has been studied in depth in Chapter 5. The use of indexed SRF

would also assist in building random interleavers needed for Turbo decoding, as discussed

in Chapter 5.
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8.3 Need for new definitions, workloads and architectures

We are at a point where there has been an explosion in the development and use of technol-

ogy in embedded systems. While embedded systems have traditionally been in an ASIC or

DSP design flow, there is now a range of proposed architectures such as DSPs, ASICs, FP-

GAs, co-processors, reconfigurable processors, ASSPs, ASIPs, microcontrollers and any of

their combinations. Each of these designs have different trade-offs in terms of area-time-

power utilization, varying levels of programmability and different tools for utilization. With

the integration and combination of several of these devices, it has become increasingly

complicated to categorize and define these technologies, and more importantly, compare

them. We need a new taxonomy to classify these systems and define the meaning of the

terms such asprogrammable, flexible, reconfigurable, ASIP, DSPandASSPsuch that it

allows us to compare and contrast an implementation againstalternatives.

Secondly, with the moving trends towards programmable solutions for embedded sys-

tems, there is a growing need for new standardized workloadsfor wireless applications.

This saves design time for hardware designers by allowing them to use the standardized

workloads as performance benchmarks also also allows hardware designers to compare and

contrast different architectures. However, this also means that the compilation tools should

have sufficiently developed in order to use a standardized language to map the workload on

the architecture.

Finally, computer architects have predicted the end of the road even for conventional

microprocessor design [94]. Even in conventional architectures, the terminology and ar-

chitecture designs no longer fall under the classical Flynntaxonomy [56]. Computer archi-

tectures are exploring trade-offs between simultaneous multi-threading and chip multipro-

cessors and also merging of these solutions [63]. It has become increasingly important to

continuously iterate in determining the limits of programmable architecture designs, find-
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ing solutions to alleviate those limits providing new classifications for solutions.

This thesis lays the foundation work for building high-performance, power-efficient

DSPs that target real-time constraints in embedded systems. This thesis improves power-

efficiency at two levels. First, this thesis improves power efficiency in the design space

exploration, by searching for lowest power candidate architectures that meet real-time con-

straints. Second, the thesis improves power efficiency in the hardware level by dynamically

adapting the number of clusters to the data parallelism and turning off unused clusters for

power savings and by proposing a new inter-cluster communication network with a reduced

interconnect complexity.
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Appendix A

Tools and Applications for distribution

The appendix details the software modifications and additions to the Imagine stream pro-

cessor simulator

A.1 Design exploration support

The design exploration tool implements the design space exploration methodology ex-

plained in Chapter 6. Tools have been built to automate the design space exploration by

giving the exploration parameter range. The tools evaluatethe compute requirements of

the workload at compile time and predict the configuration that will minimize power con-

sumption while still meeting real-time requirements. The tools also provide insights into

the expected functional unit utilization of the stream processor. The compiler uses a perl

script that auto-generates the machine description file forthe parameters under exploration

but requires no change in the base stream processor simulator code.

A.2 Reconfiguration support for power efficiency

The support for power efficiency incorporates significant changes into the stream proces-

sor simulator code. The code now incorporates a new stream instruction called ’setClus-

ters(int)’ that is used before each kernel to set the number of active clusters and power-gate

the unused clusters during run-time. The compiling and profiling tools have been modified

to become aware of this new instruction. A ’sleep’ instruction has also been added inside
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the kernel compiler code, that allows the compiler to turn off unused arithmetic units during

compile time analysis.

A.3 Applications

A range of algorithms explained in Chapter 2 have been implemented in Matlab, C, and in

the Imagine stream processor language for analysis. Fixed point analysis and modifications

have been performed on the algorithms in order to design a parallel and fixed-point archi-

tecture. The Matlab code is also used as a data-generation code for the stream processor

code and is used for verification of results from the output ofthe stream processor.

All the designed software tools and applications are available for download in the public

domain. For details, please contact the author.
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[40] S. Verdú.Multiuser Detection. Cambridge University Press, 1998.

[41] M. K. Varanasi and B. Aazhang. Multistage detection in asynchronous code-

division multiple-access communications.IEEE Transactions on Communications,

38(4):509–519, April 1990.

[42] G. Xu and J. R. Cavallaro. Real-time implementation of multistage algorithm for

next generation wideband CDMA systems. InAdvanced Signal Processing Algo-

rithms, Architectures, and Implementations IX, SPIE, volume 3807, pages 62–73,

Denver, CO, July 1999.

[43] S. Rajagopal and J. R. Cavallaro. A bit-streaming pipelined multiuser detector for

wireless communications. InIEEE International Symposium on Circuits and Sys-

tems (ISCAS), volume 4, pages 128–131, Sydney, Australia, May 2001.

[44] M. J. Juntti and B. Aazhang. Finite memory-length multiuser detection for

asynchronous CDMA communications.IEEE Transactions on Communications,

45(5):611–622, May 1997.

[45] R. Berezdivin, R. Breinig, and R. Topp. Next-generation wireless communica-

tions concepts and technologies.IEEE Communications Magazine, 40(3):108–117,

March 2002.



165

[46] S. D. Blostein and H. Leib. Multiple Antenna Systems: Their Role and Impact

in Future Wireless Access.IEEE Communications Magazine, pages 94–101, July

2003.

[47] P. B. Radosalvjevic. Programmable architectures for MIMO wireless handsets (in

progress). Master’s thesis, Rice University, 2004.

[48] T. Richardson and R. Urbanke. The renaissance of Gallager’s Low-Density Parity-

Check codes.IEEE Communications Magazine, pages 126–131, August 2003.

[49] M. Karkooti. VLSI architectures for real-time LDPC decoding (in progress). Mas-

ter’s thesis, Rice University, 2004.

[50] H. Blume, H. Hubert, H. T. Feldkamper, and T. G. Noll. Model-based exploration of

the design space for heterogeneous systems on chip. InIEEE International Confer-

ence on Application-specific Systems, Architectures and Processors, pages 29–40,

San Jose, CA, July 2002.

[51] P. Lieverse, P. Van Der Wolf, K. Vissers, and E. Deprettere. A methodology for ar-

chitecture exploration of heterogeneous signal processing systems.Journal of VLSI

Signal Processing, 29(3):197–207, November 2001.

[52] H. Lou and J. M . Cioffi. An instruction set for a programmable signal processor ded-

icated to viterbi detection. InIEEE International Conference on VLSI Technology,

Systems and Applications, pages 247–251, Taipei, Taiwan, May 1991.

[53] D. E. Hocevar and A. Gatherer. Achieving flexibility in aViterbi decoder DSP

coprocessor. InIEEE Vehicular Technology Conference, volume 5, pages 2257–

2264, Boston, MA, September 2000.



166

[54] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi,and J. Owens. Regis-

ter organization for media processing. In6th International Symposium on High-

Performance Computer Architecture, pages 375–386, Toulouse, France, January

2000.

[55] D. W. Wall. Limits of Instruction-Level Parallelism. In 4th international con-

ference on Architectural support for programming languages and operating sys-

tems(ASPLOS), pages 176–188, Santa Clara, CA, April 1991.

[56] M. J. Flynn. Some computer organizations and their effectiveness.IEEE Transac-

tions on Computing, C-21(948-960), September 1972.

[57] H. C. Hunter and J. H. Moreno. A new look at exploiting data parallelism in embed-

ded systems. InProceedings of the International Conference on Compilers,Archi-

tectures and Synthesis for Embedded Systems (CASES), pages 159–169. ACM Press,

2003.

[58] K. Hwang and F. A. Briggs.Computer Architecture and Parallel Processing. Mc-

Graw Hill, 1984.

[59] Texas Instruments.TMS320C4x User’s Guide (Rev. C):SPRU063c. TI, April 1998.

[60] R. Baines. The DSP Bottleneck.IEEE Communications Magazine, pages 46–54,

May 1995.

[61] Sundance Multi-DSP Systems. http://www. sundance.com.

[62] S. Rajagopal, B. A. Jones, and J. R. Cavallaro. Task partitioning base-station receiver

algorithms on multiple DSPs and FPGAs. InInternational Conference on Signal

Processing, Applications and Technology, Dallas, TX, August 2000.



167

[63] T. Ungerer, B. Robic, and J. Silc. Multi-threaded processors.The Computer Journal,

45(3):320–348, 2002.

[64] Texas Instruments.TMS320C80 (MVP) Transfer Controller User’s Guide (Rev.

B):SPRU105B. TI, March 1998.

[65] Cradle Technologies. The software scalable system on achip (3SoC) architecture

. White paper at http://www.cradle.com/products/MDSP/MDSP-whitepapers.shtm,

2000.

[66] J. P. Wittenburg adn P. Pirsch and G. Meyer. A multi-threaded architecture approach

to parallel DSPs for high performance image processing applications. InSignal

Processing Systems (SiPS), pages 241–250, Taipei, Taiwan, October 1999.

[67] V. S. Lapinskii, M. F. Jacome, and G. A. de Veciana. Application-specific clustered

VLIW datapaths: Early exploration on a parameterized design space.IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 21(8):889–903,

August 2002.

[68] R. Leupers. Instruction Scheduling for clustered VLIWDSPs. InInternational Con-

ference on Parallel Architectures and Compilation Techniques (PACT’00), pages

291–300, Philadelphia, PA, October 2000.

[69] Texas Instruments.TMS320C62x/C67x CPU and Instruction Set : Reference Guide.

TI, March 1998.

[70] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, J. S. O’Donnell,

and J. Ruttenberg. The multiflow trace scheduling compiler.The Journal of Su-

percomputing : Special issue on instruction level parallelism, 7(1-2):51–142, May

1993.



168

[71] ClearSpeed. An advanced multi-threaded array processor for high performance com-

pute. CS301 processor document at www.clearspeed.com.

[72] C. Kozyrakis and D. Patterson. Overcoming the Limitations of Conventional Vector

Processors. In30th International Symposium on Computer Architecture, Atlanta,

GA, June 2003.

[73] S. Ciricescu et al. The Reconfigurable Streaming VectorProcessor (RSVP). In36th

Annual International Symposium on Microarchitecture (Micro-36), San Diego, CA,

December 2003.

[74] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,

B. Towles, A. Chang, and S. Rixner. Imagine: media processing with streams.IEEE

Micro, 21(2):35–46, March-April 2001.

[75] A. Agarwal. RAW computation.Scientific American, 281(2):60–63, August 1999.

[76] B. Salefski and L. Caglar. Re-configurable computing inwireless. InDesign Au-

tomation Conference, pages 178–183, Las Vegas, NV, June 2001.

[77] D. Murotake, J. Oates, and A. Fuchs. Real-time implementation of a reconfigurable

IMT-2000 Base Station Channel Modem.IEEE Communications Magazine, pages

148–152, February 2000.

[78] C. Fisher, K. Rennie, G. Xing, S. G. Berg, K. Bolding, J. Naegle, D. Par-

shall, D. Portnov, A. Sulejmanpasic, and C. Ebeling. An emulator for exploring

RaPiD configurable computing architectures. InInternational Conference on Field-

Programmable Logic and Applications, pages 17–26, Belfast, Ireland, August 2001.



169

[79] T. C. Callahan, J. R. Hauser, and J. Wawrzynek. The GARP Architecture and C

Compiler. IEEE Computer, pages 62–69, April 2000.

[80] R. Tessier and W. Burleson. Reconfigurable computing for digital signal processing:

A survey.Journal of VLSI Signal Processing, 28(1):7–27, May/June 2001.

[81] S. Srikanteswara, J. H. Reed, P. Anthanas, and R. Boyle.A software radio architec-

ture for reconfigurable platforms.IEEE Communications Magazine, 38(2):140–147,

February 2000.

[82] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,and R.R. Taylor.

PipeRench: a reconfigurable architecture and compiler.IEEE Computer, 33(4):70–

77, April 2000.

[83] S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas. An overview of con-

figurable computing machines for software radio handsets.IEEE Communications

Magazine, pages 134–141, July 2003.

[84] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture.

IEEE Micro, pages 42–50, August 1996.

[85] M. Trembley, J. M. O’Connor, V. Narayan, and L. He. VIS Speeds New Media

Processing.IEEE Micro, pages 10–20, August 1996.

[86] P. Mattson, U. Kapasi, J. Owens, and S. Rixner. Imagine Programming System

User’s Guide. Technical Report, Stanford University, July2002.

[87] R. Manniesing, I. Karkowski, and H. Corporaal. Automatic SIMD parallelization of

embedded applications based on pattern recognition. In6th International Euro-Par

Conference, pages 349–356, Munich, Germany, August 2000.



170

[88] S. Rajagopal, G. Xu, and J. R. Cavallaro. Implementation of Channel Estimation

and Multiuser Detection Algorithms for W-CDMA on DSPs. InTexas Instruments

DSPSFEST, Houston,TX, August 1999.

[89] Texas Instruments.TMS320C6000 Programmer’s Guide (SPRU198G). August

2002.

[90] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access

scheduling. In27th Annual International Symposium on Computer Architecture,

pages 128–138, Vancouver, Canada, June 2000.

[91] Matrix transpose using Altivec instructions. http://developer.apple.com/ hard-

ware/ve/algorithms.html#transpose.

[92] N. Jayasena, M. Erez, J. H. Ahn, and W. J. Dally. Stream register files with in-

dexed access. InTenth International Symposium on High Performance Computer

Architecture (HPCA-2004), Madrid, Spain, February 2004.

[93] Transmeta. Crusoe Processor Product Brief: Model TM5800.

http://www.transmeta.com/pdf/specifications/TM5800productbrief030206.pdf.

[94] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock Rate Versus IPC:

The End of the Road for Conventional Microarchitectures. In30th International

Symposium on Computer Architecture, pages 248 –259, Vancouver, Canada, June

2000.

[95] Y. Massoud and Y. Ismail. Grasping the impact of on-chipinductance.IEEE Circuits

and Devices Magazine, 17(4):14–21, July 2001.



171

[96] J. M. Rabaey, A. Chandrakasan, and B. Nikolic’.Digital Integrated Circuits - A

Design Perspective. Prentice-Hall, 2 edition, 2003.

[97] B. Ackland, , et al. A single-chip, 1.6 Billion, 16-b MAC/s Multiprocessor DSP.

IEEE Journal of Solid-State Circuits, 35(3):412–425, March 2000.

[98] D. Marculescu and A. Iyer. Application-driven processor design exploration

for power-performance trade-off analysis. InIEEE International Conference on

Computer-Aided Design (ICCAD), pages 306–313, San Jose, CA, November 2001.

[99] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D.Owens. Communication

Scheduling. In9th international conference on Architectural support forprogram-

ming languages and operating systems(ASPLOS), volume 35, pages 82–92, Cam-

bridge, MA, November 2000.

[100] S. Rajagopal, S. Rixner, and J. R. Cavallaro. Reconfigurable stream processors for

wireless base-stations. Rice University Technical ReportTREE0305, October 2003.

[101] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-grained and coarse-grained

behavioral partitioning with effective utilization of memory and design space ex-

ploration for multi-FPGA architectures.IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 9(1):140–158, February 2001.

[102] J. Kin, C. Lee, W. H. Mangione-Smith, and M. Potkonjak.Power efficient mediapro-

cessors: Design space exploration. InACM/IEEE Design Automation Conference,

pages 321–326, New Orleans, LA, June 1999.

[103] I. Kadayif, M. Kandemir, and U. Sezer. An integer linear programming based ap-

proach for parallelizing applications in on-chip multiprocessors. InACM/IEEE De-

sign Automation Conference, pages 703–708, New Orleans, LA, June 2002.



172

[104] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and

J. Owens. A bandwidth-efficient architecture for media processing. In31st Annual

International Symposium on Microarchitecture, pages 3–13, Dallas, TX, November

1998.

[105] J. A. Butts and G. S. Sohi. A static power model for architects. In33rd Annual In-

ternational Symposium on Microarchitecture (Micro-33), pages 191–201, Monterey,

CA, December 2000.

[106] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low Power CMOS Digital

Design.IEEE Journal of Solid-State Circuits, 27(4):119–123, 1992.

[107] M. M. Khellah and M. I. Elmasry. Power minimization of high-performance submi-

cron CMOS circuits using a dual-
��� dual-

�

�� (DVDV)approach. InIEEE Interna-

tional Symposium on Low Power Electronic Design (ISLPED’99), pages 106–108,

San Diego, CA, 1999.

[108] A. Bogliolo, R. Corgnati, E. Macii, and M. Poncino. Parameterized RTL power mod-

els for combinational soft macros. InIEEE International Conference on Computer-

Aided Design (ICCAD), pages 284–288, San Jose, CA, November 1999.

[109] J. D. Owens, S. Rixner, U. J. Kapasi, P. Mattson, B. Towles, B. Serebrin, and W. J.

Dally. Media processing applications on the Imagine streamprocessor. InIEEE

International Conference on Computer Design (ICCD), pages 295–302, Freiburg,

Germany, September 2002.

[110] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-PowerDigital Design. InIEEE

Symposium on Low Power Electronics, pages 8–11, San Diego, CA, October 1994.



173

[111] M. Grollo, W. A. Cornelius, M. J Bangay, and E. E. Essex.Radiofrequency radia-

tion emissions from mobile telephone base station communication towers. InIEEE

Engineering in Medicine and Biology Society: Biomedicial Research in the 3rd Mil-

lennium, Victoria,Australia, February 1999.

[112] U. Kapasi, W. Dally, S. Rixner, P. Mattson, J. Owens, and B. Khailany. Efficient

conditional operations for data-parallel architectures.In 33rd Annual International

Symposium on Microarchitecture, pages 159–170, Monterey, CA, December 2000.

[113] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman. Man-

aging static energy leakage in microprocessor functional units. In IEEE/ACM Inter-

national Symposium on Micro-architecture (MICRO-35), pages 321–332, Istanbul,

Turkey, November 2002.

[114] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-
���: A Circuit

Technique to reduce Leakage in Deep-Submicron Cache memories. InIEEE Inter-

national Symposium on Low Power Electronic Design (ISLPED’00), pages 90–95,

Rapallo, Italy, July 2000.

[115] T. D. Burd and R. W. Brodersen. Design Issues for Dynamic Voltage Scaling.

In IEEE International Symposium on Low Power Electronic Design (ISLPED’00),

pages 9–14, Rapallo, Italy, July 2000.

[116] B. Khailany.The VLSI implementation and evaluation of area- and energy-efficient

streaming media processors. PhD thesis, Stanford University, Palo Alto, CA, June

2003.

[117] Implementation of a WCDMA Rake receiver on a TMS320C62x DSP device. Tech-

nical Report SPRA680, Texas Instruments, July 2000.



174

[118] S. Agarwala et al. A 600 MHz VLIW DSP.IEEE Journal on Solid-State Circuits,

37(11):1532–1544, November 2002.

[119] J. R. Cavallaro and M. Vaya. VITURBO: A Reconfigurable architecture for Viterbi

and Turbo decoding. In2003 IEEE International Symposium on Circuits and Sys-

tems (ISCAS), volume 2, pages 497–500, HongKong, China, April 2003.

[120] T. Gemmeke, M. Gansen, and T. G. Noll. Implementation of Scalable and Area

Efficient High-Throughput Viterbi decoders.IEEE Journal on Solid-State Circuits,

37(7):941–948, July 2002.


