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ABSTRACT 

This work describes experiences porting the UTCHEM chemical flood simulator from a 
serial environment to the nodal environment of distributed memory massively parallel 
computers. Two conversion strategies have been explored. The first approach required the 
least amount of effort. The serial version of the code was modified to execute independently 
on each processor. This version permits many different problems to be evaluated 
simultaneously but does not confer any computational advantage. In the second version, the 
program was altered, using domain decomposition, to distribute the data, and message passing 
communication, to couple the node computations. This allowed for execution of a single 
problem across all of the computing nodes. This investigation shows that the message passing 
version of the code speeds up well, as more computational nodes are employed, for problem 
sizes with a small smface to volume ratio. A more efficient linear solver is implemented in this 
work, which promises both good parallel efficiency and robustness for large-scale simulation 
problems. 

1.- INTRODUCTION 

Problems of current impo1tance in oil recovery and underground contaminant clean-up 
studies involve transport in heterogeneous porous media. The numerical modeling of these 
phenomena requires large scale simulation that may only be accomplished, at a reasonable cost, 
on distributed memory parallel computers. 

Improved oil recovery techniques target oil production from fields depleted by secondary 
recovery to nearly the residual oil saturation, leaving behind up to 70% of the total oil in place. 
The rather high cost of mobilizing the oil in place justifies its fine tuning for an acceptable 
profit. Consequently, a renewed interest has developed in improved-accuracy numerical 
schemes for reservoir simulation, i.e., fine-grid and locally-refined-grid methods, as well as 
more physically sound algorithms that minimize adverse effects of numerical dispersion. 

Data acquisition of porosity and pe1111eability from the underground is extremely costly 

and, as a result, only a very coarse reservoir description is possible by measurement alone. 



However, new techniques of geostastistics permit the generation of stochastic set of material 
and transport porous media properties to an arbitrary degree of refinement. The statistical 
parameters of the generated set are conditioned to agree with those of the originally measured 
set (refs). Clearly, the stochastic data set (or geostatistical realization) is not unique since one 
is only trying to match a finite number of statistical moments of the original sample. This 
feature is used in the field of conditional simulation, where a statistically significant number of 
simulations can be run, using different realizations. If one is trying to predict future recovery 
patterns for a field, these multiple simulations provide upper and lower bounds for the 
macroscopic performance parameters of the reservoir, such as injection/production pressure 
and flow rate requirements. If the simulation is used as a history-matching tool, then one can 
select, from the multiple runs, the realization of physical properties for which the production 
history for the given field best matches the actual recovery data. Once this is done, one can use 
the simulation with some confidence to predict future field performance. 

Technologies for underground contaminant clean-up are rapidly developing. Large 
plumes have been identified, for which the remediation process may require several decades, at 
a significant cost. Reduction of treatment time even by a few percent can represent huge 
savings and a shorter exposure to a contaminant threat. Accurate large-scale simulations, that 
can capture processes over a range of length scales, can greatly aid optimization of clean-up 
strategies. In this respect, simulation can also help the development and testing of new clean
up techniques. 

As a consequence of the above discussion, a fertile ground for attempting to run large
scale simulations is rapidly growing. However, improving the accuracy of the numerical 
schemes leads inevitably to an overall refinement of the discretization grids. Therefore, the 
computing times, as well as computing memory requirements to run such simulations are too 
large to be handled by conventional computers. High performance vector computers of Cray
type can sometimes handle these problems, though at a prohibitive cost. Over the last ten 
years, the rapid development of distributed memory parallel computers has appeared to offered 
the required high perfo11nance at a moderate cost for large-scale reservoir simulation 1. 

Finally, production policy constraints may sometimes demand that one run rather coarse 
simulations to minimize the turn-around times. It has been shown2 that coarse discretization 
schemes can approximate the solution to the original flow and transport problem only if 
additional dispersion terms are added to the governing equations used for the coarse 
discretization. This phenomenon can be explained by remembering that the equations that 
describe the momentum, heat and mass transport in porous media are volume-averaged 
versions of the corresponding continuum-mechanics governing equations3• This level of 
averaging introduces dispersive terms into the porous media model equations. The numerical 
discretization can be viewed as a second level of averaging, in that one has to assign physical 
properties to each node in the discrete space, which must contain some information (weighted 
average) about these properties in some neighborhood of the given grid node. The way this 
weighted average should be canied out and the appropriate way to con-elate the new dispersion 
coefficients to the parameters of the discrete-approximation space and of the physics of the 
problem is a matter cmTent research. Therefore, fine grid simulations are the necessary tool to 
test the different coefficient con-elation and weighting hypotheses. 

This work is concerned with flow situations where, because of the prevailing 
hydrodynamic regimes, the convection terms dominate in the model equations. Concentration 



or saturation shocks form and interact as the flow progresses. The miscible displacement of a 
fluid by another, is modeled by a species balance for the solute, given by 

(1) 

and the hydrodynamic pressure equation is given by 

(2) 

where y is the Darcy velocity, c is the solute concentration,µ is the mixture viscosity, D is the 

dispersivity tensor, K is the permeability tensor and <p is the porosity. The pressure equation 

represents an incompressible flow for which the Darcy velocity field is divergence free, i.e., 
v'·y_ = 0. These equations are coupled through the dependence of the mixture viscosity on the 

concentration and the dependence of the superficial velocity on the pressure given by Darcy's 
law. 

The solution of the elliptic problem (equation (2)) rapidly dominates the total CPU time 
as the grid is refined. Thus, a section of this work addresses the development of robust linear 
solvers to tackle the systems of equations that arise from the discretization of equation (2) over 
a three-dimensional space. The condition number K of the resulting linear system is poor 

owing to two competing reasons: Fourier analysis of the discrete equations shows that 1C 

grows as 1/h2, where h is the size of the spatial discretization; also, the entries of the 
permeability tensor are strongly dependent on position, sometimes exhibiting permeability 
contrasts of 3 to 5 orders of magnitude over short length scales. 

This paper is organized in the following form. Section 2 gives an overview of the two 
families of parallel computing hardware, i.e., distributed and shared memory, and a description 
of the particular systems tested in this work, i.e., the Intel iPSC/860 and Touchstone Delta, 
and the Thinking Machines Connection Machine 5. Section 3 describes UTCHEM, the 
chemical flood simulator used for this investigation, the physical phenomena modeled in it and 
the strategy used in converting the code for distiibuted memory parallel computers. In section 
4, a summary of parallel run performances is given for some sample cases, as well as a 
discussion on observed problems and possible solutions to them. Section 5 presents a domain
decomposition-type linear solver developed as a result of the experience from the parallel 
pe1fonnance runs, i.e., the poor conditioning of the existing solver in the original simulator for 
large problems. Section 6 shows parallel numerical experiments for this solver. Finally, 
section 7 gives some conclusions and expected future developments. 

2.- PARALLEL COMPUTING 

Parallel (or distributed) computing refers to the partition of a large problem into smaller 
pieces so that a number of processors can concmTently effect the computations. The concept 
behind this approach is that concmTent computing can substantially reduce the computing time 
as compared to the time necessary to run the same application on a single processor of similar 



capabilities to one of the members of the concmTent processor set. 

Two families of parallel computers exist presently. Those in which data are accessible to 
all processors directly are called shared memory parallel processors. These machines typically 
have a few (4 to 16) rather powerful processors on the network, which are directly connected 
to each one of several memory banks. Examples of this kind are the CRAY Y-M/P and the 
IBM 3090VF supercomputers. The cost of building these systems is understandably high, 
since they require a large number of interconnections between the various processors and all of 
the memory banks. 

As an alternative, the idea of distributed memory parallel processors started about ten 
years ago. These computers have an array of processors (typically less powerful than those in 
the above family), each of them with its own computing memory. One can imagine these 
systems as a cluster of computers linked by a local communication network. Data are therefore 
distributed across the processors and a particular section of the data is directly accessible to the 
processor on whose memory that section of data sits. If required by a given step of the 
computation, all other processors in the array have to issue a request for this data to be sent to 
them from the owner processor. This idea will be further explained in the next section, in 
connection with the actual parallelization of the simulator. For now, though, one can think of 
the parallel simulation as spending a fraction tcpu of the total elapsed time on actual 
computations and a fraction lmp on message-passing operations to share the necessary data. 
The computing tcpu time coJTesponds to the total execution time of the serial algorithm. In 
parallel the total execution time is given by 

tcpu 
tpar = -N + tmp, 

CPU 

where Ncpu is the number of processors in the array. In the above equation, it is assumed that 
the entire algorithm can be executed in parallel. The speed-up for the algorithm is therefore 

· b tcPU · given y -t-· 1.e., 
par 

NcPU Speed-up=--~~-
l + tmp Ncpu · 

lcPU 

The above equation is known as Amdhal's law and shows that the theoretical acceleration by 
parallel computing is limited by the message-passing overhead time, tmp· When this time 
approaches zero, the speed-up approaches Ncpu. 

The relative message-passing overhead of an algorithm is given by the ratio ~~~. which 

can be estimated from the parallel speed-ups and the number of processors. The maximum 
tcpu 

attainable speed-up tends to tmp for large NcnJ, irrespective of the actual value of Ncpu, 

which shows that it is crucial to minimize the message-passing overhead of a parallel algorithm 
if one is to obtain significant performance. 

The UTCHEM simulator was ported to three distributed memory parallel processors, 
i.e., the Intel iPSC/860 (hypercube) and Touchstone Delta and the Thinking Machines 
Connection Machine 5. 

Hypercube iPSC/860 Architecture 



An iPSC/860 hypercube is a parallel processor configurable up to 128 computing 
nodes. The compute processor is RISC-based Intel i860 chip with a peak computing rate of 20 
MFlops in double precision and with 8 to 16 MBytes of memory. Compiler limitations only 
allow the user to see about 2-4 Mtlops for common applications. A compute node can have up 
to 6 nearest neighbor direct connections . The system's name comes from the fact that these 
are cubes of dimension greater than 3. The hypercube connects with the outside world 
through a front end of PC-386 type. There are parallel storage devices on the hypercube, as 
well as serial storage devices on the front end. Node level languages are Fortran 77 and C. 
These languages include NX message-passing library extensions. 

Touchstone Delta Architecture 

The Touchstone Delta computer is a prototype (one of a kind) massively parallel 
processor that can be configured up to 516 computing nodes. The compute nodes are 
improved i860 chips, with a peak rating of 60 MFlops in double precision. Compiler 
peculiarities limit the expected perfonnance to around 5-7 Mtlops. Each compute node has 16 
Mbytes of memory, and is connected to a message routing chip (MRC). The MRC's are 
components of a two-dimensional mesh-type communication network, so that each CPU on the 
Delta has only four nearest neighbors. The system supports node level code in Fortran 77 and 
C, with the message-passing extensions, using the NX library as for the hypercube. The 
communication software makes no attempt of optimizing the routing and messages proceed 
always in one direction of the mesh first and, then, in the perpendicular direction. 

Connection Machine Architecture 

A Connection Machine CMS is a massively parallel, distiibuted memory computer. It 
may be configured with tens to thousands of processing nodes. Each node consists of a 
SPARC scalar chip set, four vector pipelines, 32 MBytes of memory, and a network interface. 
Nodes communicate with each other and with a variety of 1/0 devices via a point to point data 
routing network (DR) and a multifunction broadcast, combining, reduction network (CN). 
The CMS may be programmed in the message passing style using the CMMD message passing 
library. This supports node level code written in Fortran 77 or C. A CMS may also be 
programmed in the data parallel style using either CM Fortran, a Fortran 90 variant, or C*, a 
parallel extension of the C language. The data parallel languages may be used to construct 
programs that are global in extent (they manage the resources of all processors in the system) 
or they may be used to create node level programs which communicate using the message 
passing library. Currently, the vector pipelines may be accessed either by writing data parallel 
code or by writing assembly level routines embedded in message passing programs. Node 
level programs written in Fortran 77 will not be able to take advantage of the vector 
performance of the CMS without the addition of such assembly level routines. A well 
structured Fortran 77 program may be converted to CM Fortran, however by using the CMax 
conversion tool. This is provided as a standard component of the CMS software suite. 

3.- THE CHEMICAL FLOOD SIMULATOR: UTCHEM 

The serial simulator 

UTCHEM is a Fortran 77 chemical flood simulation program developed by the 
Petroleum Engineering Department at the University of Texas at Austin4. The simulator 
computes the transport of several petroleum related chemical species in a three-dimensional 



multiphase flow through permeable media. Typical flow constituents are: surfactants, 
polymers, electrolytes, water and oil. These interact in brine oil, and microemulsion phases 
which are subject to gravity, viscosity, capillary and dispersive forces. Various physical 
phenomena are modeled by the program. These include dispersion, adsorption, interfacial 
tension, relative permeability, capillary trapping of residual phase constituents, phase behavior, 
viscosity, capillary pressure, inaccessible pore volume, and permeability reduction by the 
polymers. 

Mathematically, the simulation is comprised of n differential equations; one for 
pressure and (n -1) mass balance equations (where n is the number of components in the 
system, which can be as high as 11). Each equation is discretely represented using a second 
order finite difference approximation for the spatial derivatives, and a forward difference 
approximation for the time derivatives. See reference 3 for a detailed description of the 
equations and the discrete approximations. Boundary conditions for the model specify a 'no 
flow' condition imposed by the nonpermeable physical boundary of the reservoir, inflow and 
outflow conditions provided by a distribution of injection and production wells, respectively. 

The Caitesian numerical discretization is of mixed-finite-element type (block centered 
finite differences)4 . Solution of the system is performed in the IMPES style. First the 
pressure equation is solved implicitly in terms of saturation dependent terms. The system of 
linear equations arising from the discretization of the pressure equation is solved by the Jacobi
preconditioned conjugate gradient method. Then the mass conservation equations are solved 
explicitly for the total concentrations. 

The code is optimized for vector computers so that arrays that refer to the three
dimensional space are declared as linear arrays. By this scheme, one can operate on 'long 
vectors' over the entire reservoir in a single loop construct. The special treatment of boundary 
grid blocks is achieved by pcrfonning additional specific computations on these grid blocks. 
An earlier version of UTCHEM performed at over 1 Gflop on a single processor of a CRAY 
Y-M/P (1 Gflop = 1 billion of floating-point operations per second). 

The parallel simulator 

Systems with as flexible a computing model as those described above offer several 
different strategies for porting the UTCHEM code. We have identified two options that do not 
require completely rewriting the code. In the first, an independent program is executed on each 
node. In the second, a problem is distributed across all the nodes of the machine in a message 
passing model. 

Our first approach required modest modification to the serial version of the code to 
allow it to execute independently on each node of the CMS. In this instance, the code required 
only a few small changes to ensure that VO was handled properly within the parallel message 
passing environment. No message passing calls or data mapping changes were introduced. 
When executed, this code model runs a copy of the program with each node computing a 
different problem. This port required only a few hours to complete. We note that while the 
port was quickly done, there was no computational speed up introduced. The ability to run 
many simulations in parallel can find use in conditional simulation, where many simulations 
can be run conctmently with different geostatistical realizations of the properties as input. This 

use of the parallel port has not been pursued at this point. 
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Figure 1: Local and global numbering schemes for the parallel code. (a) Mapping of a 
two-dimensional problem onto an array of nine processors (numbered 0 
through 8). Thick lines indicate interprocessor boundaries. (b) Local and 
global grid block numbers appear on upper right corner and lower left corner of 
each grid block, respectively, for the process loaded on processor 4. 

Our second port, using message passing, was designed to use all of the computing 
nodes in the simulation of a single problem by the single-program-multiple-data (SPMD) 
programming model. Upon execution, this version of the code distributes the spatial grid 
blocks across all of the processors. Each processor will generally receive many blocks. Array 
declarations were changed to allocate only the required memory to work on the subdomain of 
the reservoir contained in each processor. However, since some arrays are involved in a 
stencil calculation (aiising from the discretization of the model equations) all of the arrays were 
declared to allocate enough memory for a subdomain plus a three-dimensional padding 
envelope around the subdomain so that data from neighb01ing processors can easily be brought 
into a given processor. By this strategy, the long-vector style of the original serial code can be 
easily preserved and, therefore, the parallel code can take advantage of machines with a node
level vect01izing Fortran 77 compiler. 

The grid block distiibution scheme assigns consecutively numbered blocks (for some 
numbering of the blocks in the system) to the nodes of the machine. This results in reasonable 
locality of computation (nearest neighbors are frequently located on the same computing node), 
and reasonable load balance is achieved (blocks are assigned so that nodes receive either 
Naqx y z} Nnqx y z} . . . 

Ncpu { x Y 
2

} or Ncru { x Y 
2

} + 1 gnd blocks, where NnL{ x y zJ 1s the global number of gnd 

blocks in the x-, y- or z-directions, respectively, and NcPLJ[x y zJ is the number of processors 
into which the problem is decomposed in the x-, y- or z-dircction, respectively). Figure la 

shows a two-dimensional example of the grid block distribution strategy for nine processors. 
Figure lb shows the size of the array declared on processor 4 (processors are numbered 
sequentially from O through 8), where both global and local numbering schemes can be easily 



identified. Computations on the blocks are then perfo1med in parallel, where each processor 
performs the same computations on a subset of the global problem (SPMD model) in 
approximate synchronization. Data between neighboring processors are communicated at 
specified synchronization points by explicit message passing calls. 

In this port, the J/O was handled serially through a designated node in the processor 
an-ay. This amounts to all processors sending their partial output set to the collecting processor 
and, subsequently, the collecting processor writing to disk. In principle this could be handled 
by declaring one global array (big enough to hold one entry per grid block of the global 
problem). However, because of the way the J/O was handled in the original serial code and 
since the aim of this work was to not change any features of the simulator from the users 
standpoint (e.g., the structure of the output files), a global array big enough to hold 25 times 
the global number of grid blocks had to be declared. Since the memory per processor of 
distributed memory machines is relatively small and the SPMD programming model is used, 
i.e., each processor loads the same code on its memory, this imposes severe limitations on the 
maximum size of the problem that could be run. This poor 1/0 handling can be easily 
improved and work is being done to minimize or hopefully eliminate this adverse effect. 

The message passing was first implemented for the Intel systems using the NX library 
environment. Ten routines were added to the original 30 in the process of parallelizing the 

code. The communication is done synchronously in this implementation, meaning that no 
computation is being performed while the processors exchange data. General code 
modification were also necessary since not all g1id blocks on the boundary of a subproblem is a 
boundary grid block for the global problem. 
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Figure 2: Sample parallel speed-ups for UTCHEM on the Touchstone 
Delta system. Plotted tasks are: 1. density evaluation at each 
grid block, 2. the explicit time stepping of the concentration 

equations and 3. the assembly of the pressure mat1ix coefficient 
and right hand side vector and the system's solution by JCG. 



Since CMMD, the CMS message passing environment, is a superset of the functions 
found in the Intel NX environment, converting the code to run on the CMS required only that 
we provide emulation functions for the Intel p1imitives and small modifications to account for 
differences in I/0 behavior. This version of UTCHEM used only 18 communications related 
functions. Creating emulations for these NX calls required little effort. 

4.- PARALLEL CODE PERFORMANCE 

The performance of the code ports is evaluated by running the serial code and each of 
the code pmts against the same test input. The input describes a small test case that contains a 
reservoir of 33x33x2 grid blocks, where each cell is 22.7x22.7x0.S feet. Our test case 
executes a two well simulation comp1ised of 11 components and three tracers. There is one 
injection well and one production well. They are located at opposing x-y vertices. Each run 
represents a 40 day simulation with 20 times steps per day. 

A serial version of the code, which was run on a Sparcstation 10, took 24.75 minutes 
to execute. The first parallel port, where each node runs a copy of the program, took 57.7 
minutes to execute on the CMS. This difference in performance can be accounted for by noting 
that the Sparcstation 10 uses a supcrscalar version of the SPARC chip (launches more 
instructions per cycle), has memory subsystem which is faster than the system on the CM5 
node (each load and store is faster), executes a different cache memory policy (more efficient 
use of cache and faster cache response on loads), and runs at a higher clock frequency. The 
various processor differences can easily account for the factor of two difference in speed 
between a serial workstation and a CM5 node. 

Performance of the message-passing port was evaluated on configurations of 1, 2, 4, 
8, 16, 32 and 64 processors for both Intel systems and of 1, 2, 4, 8, 16, 32, 64 and 128 
processors for the CMS. Figures 2 and 3 show sample speed-up results for some of the major 
tasks, on both the Delta and CMS systems. The parallel perfo1mances are similar on both 
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Figure 3: Sample parallel speed-ups for UTCHEM on the CM5 
system. Plotted tasks arc same as on figure 2. 



systems and they are not great on either on beyond about 32 processors. Similar behavior was 
found on the iPSC/860 (not shown here). In particular, even the density calculation routine, 
which does not involve any movement of data, shows an overhead of 100% at 64 processors. 
The reason for this lies in the long vector style of the code: every do loop construct operates 
not only in the interior of the local problems but also on the surrounding padded region. Also, 
as the number of nodes increases, the ratio of grid cells to boundary cells decreases until the 
communication cost begins to dominate the computation cost. This is evidenced by the 
flattening of the speed up curve in Figures 2 and 3. Increasing the problem size should 
decrease this adverse effect and restricting all computations to the interior of the local arrays 

should eliminate this source of overhead completely. 

The explicit time stepping of the mass conservation equations, involves some message
passing from the stencil computations and shows a more severe degradation that the density 
routine, because of the combined effect of communication and padding-computation overhead. 
This latter can be eliminated as explained above and the former could be minimized by 
implementing asynchronous communications, i.e., message-passing and computations are 

overlapped in time. 

5.- DOMAIN DECOMPOSITION LINEAR SOLVER 

As noted in the previous section, the parallel performance of the existing solver in the 
original UTCHEM is less than acceptable. Moreover, once the code is well tuned to handle 
larger simulations, the anticipated performance of such solver will even be worse. The range 
of the pressure matrix coefficients, for realistic problems, runs from 3 to 6 orders of 
magnitude. In such a case, a Jacobi conjugate gradient solver like that currently used in the 
code will either take many iterations to converge or will not converge at all. 

This section introduces a domain decomposition solver based on additive Schwarz 
preconditioning 7,8 of the conjugate gradient alg01ithm. The additive Schwarz preconditioner is 

formed by projecting the global equations onto subspaces represented by the local linear 
systems to be solved on overlapping subdomains. A subdomain is the collection of grid cells 
resident on a given computing node. Since the parallel port of UTCHEM already declared 
extended arrays, this appears to be a natural choice of preconditioner for this problem. 

The necessary steps to form the preconditioner are as follows. The basic conjugate 
gradient method iteratively solves the linear system Ap = b where A is the pressure matrix, p 
is the unknown (pressure) vector, and b is the right hand side boundary value vector. At each 
iteration n, the preconditioned residual vector is computed from the solution to Mzn = rn , 
where rn is the cmTent residual, i.e., rn = b - Apn, zn is the preconditioned residual and Mis 
the preconditioning matrix. In the framework of additive Schwarz methods, the matrix Mis 
never assembled since one can compute the action of M- 1 on rn by the following steps: 

1. Project the residual and the coefficient matrix of the global (entire domain) problem 
onto the extended subdomain (includes overlapping boundary grid blocks) on each 
subdomain. Solve Aizni = rni on each extended subdomain (i.e., for i ranging 

from 1 to the numher of suhdomains or processors) using homogeneous Dirichlet 

boundary conditions. Where the extended subdomain boundary matches the global 

domain boundary, the original boundary conditions are used. 



2. After all subdomains solutions have been computed, add the partial results to 
assemble the global preconditioned residual. 

3. If there are large numbers of subdomains, use an additional coarse grid solver to 
allow for information on the global residual zn to spread globally across 
subdomains. Here, the coarse problem is a finite-element discretization of the 
global domain where each suhdomain is a single element. Boundary conditions 
for the coarse problem are the same as those for the original problem, i.e., no-flow 
Neumann conditions. The coarse solution is then added to the subdomain 
solutions by interpolation of the result. 
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The coarse giid problem is formulated based on a piecewise linear approximation to the 
discrete problem where each element in three dimensions has eight degrees of freedom, i.e., 
one at each of the vertices of the normalized cube. Figure 4 shows the location of the coarse 
and fine grid unknowns (squares and circles, respectively) for a two-dimensional problem with 
nine subdomains. Notice that the Galerkin type degrees of freedom of the coarse-grid problem 
are shifted by h/2 with respect to the nearest degrees of freedom of the mixed-finite-element 
fine discretization. 

Consider a global domain of characteristic dimension 0(1), where subdomains are 
O(H) and the underlying discretization is O(h) (see figure 5). It has been shown8, for a 
parabolic or an elliptic problem with constant coefficients that the condition number of the 
additive-Schwarz-preconditioned system is bounded by 

K~C[l+~J 

where K is the condition number of the additive-Schwarz-preconditioned system, 8 is the extent 

of overlap and C is a constant, independent of H, h and 8. This expression suggests that, for 

constant subdomain size, the condition number should reach a constant value. Numerical 
experiments were conducted solving elliptic pressure problems (equation 2) for subdomains of 

constant size (5x5x5 grid blocks), 8 = h and increasing numbers of subdomains. The overlap 

for these experiments was a single layer of grid blocks, thus giving H/h = 7. Figure 6 shows 
that, when the coarse grid algorithm is turned on, the condition number appears to reach a 
constant level for large numbers of suhdomains. The straight line on the same plot shows the 
growth of the condition number when the coarse space is eliminated. This linear growth with 
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Figure 6: Asymptotic hchavior of the condition number for the additive 
Schwarz preconditioned system, hoth with and without the action 
of a coarse space, for increasing numbers of subdomains. The 
suhdomain problem size is 5x5x5 in all cases. 
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Figure 7: Required number of iterations for convergence of the cases in figure 6. 

the number of subdomains has been proven9 and is due to the fact that information must travel 
across the subdomain (processor) mesh which becomes linearly harder as the number of 
subdomains grows. 

Figure 7 shows the equivalent plot for the number of iterations taken with and without a 
coarse-space preconditioncr. The number or iterations of one and the other do not differ as 
much as suggested by the difference in condition numbers of the systems. This is probably 
due to the fact that the problem of constant coefficients is inherently simple. For parallel 
experiments with Galerkin problems, sec reference 10. 

6.- PARALLEL SOLVER PERFORMANCE 

From the algorithm description in the previous section, one can see the following 
parallel features of the prcconditioner construction. The projections necessary to set up the 
local subdomain problems and their solution arc totally independent and can therefore be run in 
parallel with minimal overhead. 

The construction or the coarse grid matrix is also a parallel operation to a large extent. 
The local stiffness matrix and local vector of right hand sides are set up independently by each 
processor and the local contributions are then accumulated at once to form the global stiffness 
matrix and the global vector of right hand sides. In the present work, all processors solve the 
entire coarse grid problem simultaneously (only serial step) and, subsequently, each processor 
adds its own conuihution to the total preconditioncr by interpolation within each subdomain. 

The parallel solver can he directly hooked up to the parallel UTCHEM simulator. 
However, for flexibility purposes, the tests shown here run the solver detached from the 

simulator. The local problems as well as the (serial) coarse-grid problem were solved by an 
orthomin(K) method with an incomplete LU factorization (iLU(O), i.e., zero degree of 



additional infill is generated hy the focto1ization) as its preconditioner11 ,12. This method is of 
conjugate residual type, i.e., based on the Gram-Schmidt normalization. The number K of 
previous search directions (eigenvectors) of the orthomin iteration was fixed to five to decrease 
the required storage of this method. This number of search directions has been reported to 
maintain the robustness of the method 11. 

Figure 8 shows the parallel timings for the problems used in figure 6. The runs shown 
were made on the Delta system. For an algorithm with no overhead, one should expect an 
execution time independent of the number or processors, since the subdomain problems have a 
constant size as the number of processors increases. However, the timings increase with the 
number of subdomains. This is due to the effect of the coarse problem being solved serially 
and also to the (relatively smaller) communication overhead of the outer conjugate gradient 
iteration. One could discriminate between these to sources of overhead by performing a more 
detailed timing study, which was not pursued at this point. 
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Figure 8: Timings for the parallel additive Schwarz method. Subdomain sizes 
are constant at 5x5x5 grid hlocks. The global problem size is given 
by 125 multiplied hy the numhcr of subdomains. 

More importantly, the plot shows the advantage of running in parallel. The straight line 
indicates the time the algorithm would take if it was proportional to the size of the global 
problem. Since all the algo1ithm components have an operation count which is proportional to 
the number of unknowns, the latter is the approximate timing plot one would get when running 
serially for the same range of problem sizes. The savings from running in parallel are about 
60%. This is not outstanding but acceptable, nevertheless, considering that the subdomain 
sizes are rather small. Increasing the size of the subdomain problems, thus increasing the 
global problem size or refining the overall discretization, will show a gain with respect to serial 
computing time in the neighborhood of one order of magnitude. More detailed experiments 
with this domain dccompostion solver will be made avialable in a separate technical report in 
the near future. 



7.- CONCLUSIONS 

Our experience with the UTCHEM code and the distributed memory parallel 
environments suggests that the conversion from a st1ictly se1ial implementation to one which 
uses the full resources of the machine is an achievable, although nontrivial, task. A degree of 
speedup can be attained by distributing a single problem across all of the nodes of the machine. 
For computationally intensive codes, however, we believe that performance gains will 
generally be realized by using the vector units (like those available on the CMS) to solve large 
subdomains on each node (thus proportionally reducing the communications burden). Use of 
the CMS vector facilities virtually demands that the code be written in or translated to CM 
Fortran (or C*). The availability of a tool like the CMax Converter makes the translation of 
large existing codes possible but still not straightforward. It is nonetheless an easier task than 
rewriting a large code fonn scratch. 

More parallel efficiency can still be extracted from the code by restricting computations 
to the subdomain interiors, and, whenever possible, by use of asynchronous communications. 
By this approach, communications and computations can be partially overlapped in real time. 
Both these improvements involve considerable rewriting of the code. 

Domain decomposition methods appear as a very efficient parallel approach to the 
solution of large linear systems. The results of the parallel additive Schwarz method show that 
one can tackle large problems with a conceptually simple solver. More tests are still needed to 
check the robustness of the method in the presence of physical property heterogeneities and/or 
anisotropies. 
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