
Parallel Chemical Flood Simulation:

An Implementation of UTCHEM
on Distributed Memory Processors

M. Rame L. Pavarino A. Greenberg
K. Jordan M. Wheeler

May 1993

TR93-23

TR93-23

Parallel Chemical Flood Simulation:
An Implementation of UTCHEM

on Distributed Memory Processors
M. Ramet, L. Pavarinot, A. Greenberg*, K. Jordan* and M. Wheelert

toepartment of Computational and Applied Mathematics,
Rice University, P.O. Box 1852, Houston, TX 77251

*Thinking Machines Corporation, 245 First St.
Cambridge, Massachusetts 02142-1264

July 18, 1993

ABSTRACT

This work describes experiences porting the UTCHEM chemical flood simulator from a
serial environment to the nodal environment of distributed memory massively parallel
computers. Two conversion strategies have been explored. The first approach required the
least amount of effort. The serial version of the code was modified to execute independently
on each processor. This version permits many different problems to be evaluated
simultaneously but does not confer any computational advantage. In the second version, the
program was altered, using domain decomposition, to distribute the data, and message passing
communication, to couple the node computations. This allowed for execution of a single
problem across all of the computing nodes. This investigation shows that the message passing
version of the code speeds up well, as more computational nodes are employed, for problem
sizes with a small smface to volume ratio. A more efficient linear solver is implemented in this
work, which promises both good parallel efficiency and robustness for large-scale simulation
problems.

1.- INTRODUCTION

Problems of current impo1tance in oil recovery and underground contaminant clean-up
studies involve transport in heterogeneous porous media. The numerical modeling of these
phenomena requires large scale simulation that may only be accomplished, at a reasonable cost,
on distributed memory parallel computers.

Improved oil recovery techniques target oil production from fields depleted by secondary
recovery to nearly the residual oil saturation, leaving behind up to 70% of the total oil in place.
The rather high cost of mobilizing the oil in place justifies its fine tuning for an acceptable
profit. Consequently, a renewed interest has developed in improved-accuracy numerical
schemes for reservoir simulation, i.e., fine-grid and locally-refined-grid methods, as well as
more physically sound algorithms that minimize adverse effects of numerical dispersion.

Data acquisition of porosity and pe1111eability from the underground is extremely costly

and, as a result, only a very coarse reservoir description is possible by measurement alone.

However, new techniques of geostastistics permit the generation of stochastic set of material
and transport porous media properties to an arbitrary degree of refinement. The statistical
parameters of the generated set are conditioned to agree with those of the originally measured
set (refs). Clearly, the stochastic data set (or geostatistical realization) is not unique since one
is only trying to match a finite number of statistical moments of the original sample. This
feature is used in the field of conditional simulation, where a statistically significant number of
simulations can be run, using different realizations. If one is trying to predict future recovery
patterns for a field, these multiple simulations provide upper and lower bounds for the
macroscopic performance parameters of the reservoir, such as injection/production pressure
and flow rate requirements. If the simulation is used as a history-matching tool, then one can
select, from the multiple runs, the realization of physical properties for which the production
history for the given field best matches the actual recovery data. Once this is done, one can use
the simulation with some confidence to predict future field performance.

Technologies for underground contaminant clean-up are rapidly developing. Large
plumes have been identified, for which the remediation process may require several decades, at
a significant cost. Reduction of treatment time even by a few percent can represent huge
savings and a shorter exposure to a contaminant threat. Accurate large-scale simulations, that
can capture processes over a range of length scales, can greatly aid optimization of clean-up
strategies. In this respect, simulation can also help the development and testing of new clean
up techniques.

As a consequence of the above discussion, a fertile ground for attempting to run large
scale simulations is rapidly growing. However, improving the accuracy of the numerical
schemes leads inevitably to an overall refinement of the discretization grids. Therefore, the
computing times, as well as computing memory requirements to run such simulations are too
large to be handled by conventional computers. High performance vector computers of Cray
type can sometimes handle these problems, though at a prohibitive cost. Over the last ten
years, the rapid development of distributed memory parallel computers has appeared to offered
the required high perfo11nance at a moderate cost for large-scale reservoir simulation 1.

Finally, production policy constraints may sometimes demand that one run rather coarse
simulations to minimize the turn-around times. It has been shown2 that coarse discretization
schemes can approximate the solution to the original flow and transport problem only if
additional dispersion terms are added to the governing equations used for the coarse
discretization. This phenomenon can be explained by remembering that the equations that
describe the momentum, heat and mass transport in porous media are volume-averaged
versions of the corresponding continuum-mechanics governing equations3• This level of
averaging introduces dispersive terms into the porous media model equations. The numerical
discretization can be viewed as a second level of averaging, in that one has to assign physical
properties to each node in the discrete space, which must contain some information (weighted
average) about these properties in some neighborhood of the given grid node. The way this
weighted average should be canied out and the appropriate way to con-elate the new dispersion
coefficients to the parameters of the discrete-approximation space and of the physics of the
problem is a matter cmTent research. Therefore, fine grid simulations are the necessary tool to
test the different coefficient con-elation and weighting hypotheses.

This work is concerned with flow situations where, because of the prevailing
hydrodynamic regimes, the convection terms dominate in the model equations. Concentration

or saturation shocks form and interact as the flow progresses. The miscible displacement of a
fluid by another, is modeled by a species balance for the solute, given by

(1)

and the hydrodynamic pressure equation is given by

(2)

where y is the Darcy velocity, c is the solute concentration,µ is the mixture viscosity, D is the

dispersivity tensor, K is the permeability tensor and <p is the porosity. The pressure equation

represents an incompressible flow for which the Darcy velocity field is divergence free, i.e.,
v'·y_ = 0. These equations are coupled through the dependence of the mixture viscosity on the

concentration and the dependence of the superficial velocity on the pressure given by Darcy's
law.

The solution of the elliptic problem (equation (2)) rapidly dominates the total CPU time
as the grid is refined. Thus, a section of this work addresses the development of robust linear
solvers to tackle the systems of equations that arise from the discretization of equation (2) over
a three-dimensional space. The condition number K of the resulting linear system is poor

owing to two competing reasons: Fourier analysis of the discrete equations shows that 1C

grows as 1/h2, where h is the size of the spatial discretization; also, the entries of the
permeability tensor are strongly dependent on position, sometimes exhibiting permeability
contrasts of 3 to 5 orders of magnitude over short length scales.

This paper is organized in the following form. Section 2 gives an overview of the two
families of parallel computing hardware, i.e., distributed and shared memory, and a description
of the particular systems tested in this work, i.e., the Intel iPSC/860 and Touchstone Delta,
and the Thinking Machines Connection Machine 5. Section 3 describes UTCHEM, the
chemical flood simulator used for this investigation, the physical phenomena modeled in it and
the strategy used in converting the code for distiibuted memory parallel computers. In section
4, a summary of parallel run performances is given for some sample cases, as well as a
discussion on observed problems and possible solutions to them. Section 5 presents a domain
decomposition-type linear solver developed as a result of the experience from the parallel
pe1fonnance runs, i.e., the poor conditioning of the existing solver in the original simulator for
large problems. Section 6 shows parallel numerical experiments for this solver. Finally,
section 7 gives some conclusions and expected future developments.

2.- PARALLEL COMPUTING

Parallel (or distributed) computing refers to the partition of a large problem into smaller
pieces so that a number of processors can concmTently effect the computations. The concept
behind this approach is that concmTent computing can substantially reduce the computing time
as compared to the time necessary to run the same application on a single processor of similar

capabilities to one of the members of the concmTent processor set.

Two families of parallel computers exist presently. Those in which data are accessible to
all processors directly are called shared memory parallel processors. These machines typically
have a few (4 to 16) rather powerful processors on the network, which are directly connected
to each one of several memory banks. Examples of this kind are the CRAY Y-M/P and the
IBM 3090VF supercomputers. The cost of building these systems is understandably high,
since they require a large number of interconnections between the various processors and all of
the memory banks.

As an alternative, the idea of distributed memory parallel processors started about ten
years ago. These computers have an array of processors (typically less powerful than those in
the above family), each of them with its own computing memory. One can imagine these
systems as a cluster of computers linked by a local communication network. Data are therefore
distributed across the processors and a particular section of the data is directly accessible to the
processor on whose memory that section of data sits. If required by a given step of the
computation, all other processors in the array have to issue a request for this data to be sent to
them from the owner processor. This idea will be further explained in the next section, in
connection with the actual parallelization of the simulator. For now, though, one can think of
the parallel simulation as spending a fraction tcpu of the total elapsed time on actual
computations and a fraction lmp on message-passing operations to share the necessary data.
The computing tcpu time coJTesponds to the total execution time of the serial algorithm. In
parallel the total execution time is given by

tcpu
tpar = -N + tmp,

CPU

where Ncpu is the number of processors in the array. In the above equation, it is assumed that
the entire algorithm can be executed in parallel. The speed-up for the algorithm is therefore

· b tcPU · given y -t-· 1.e.,
par

NcPU Speed-up=--~~-
l + tmp Ncpu ·

lcPU

The above equation is known as Amdhal's law and shows that the theoretical acceleration by
parallel computing is limited by the message-passing overhead time, tmp· When this time
approaches zero, the speed-up approaches Ncpu.

The relative message-passing overhead of an algorithm is given by the ratio ~~~. which

can be estimated from the parallel speed-ups and the number of processors. The maximum
tcpu

attainable speed-up tends to tmp for large NcnJ, irrespective of the actual value of Ncpu,

which shows that it is crucial to minimize the message-passing overhead of a parallel algorithm
if one is to obtain significant performance.

The UTCHEM simulator was ported to three distributed memory parallel processors,
i.e., the Intel iPSC/860 (hypercube) and Touchstone Delta and the Thinking Machines
Connection Machine 5.

Hypercube iPSC/860 Architecture

An iPSC/860 hypercube is a parallel processor configurable up to 128 computing
nodes. The compute processor is RISC-based Intel i860 chip with a peak computing rate of 20
MFlops in double precision and with 8 to 16 MBytes of memory. Compiler limitations only
allow the user to see about 2-4 Mtlops for common applications. A compute node can have up
to 6 nearest neighbor direct connections . The system's name comes from the fact that these
are cubes of dimension greater than 3. The hypercube connects with the outside world
through a front end of PC-386 type. There are parallel storage devices on the hypercube, as
well as serial storage devices on the front end. Node level languages are Fortran 77 and C.
These languages include NX message-passing library extensions.

Touchstone Delta Architecture

The Touchstone Delta computer is a prototype (one of a kind) massively parallel
processor that can be configured up to 516 computing nodes. The compute nodes are
improved i860 chips, with a peak rating of 60 MFlops in double precision. Compiler
peculiarities limit the expected perfonnance to around 5-7 Mtlops. Each compute node has 16
Mbytes of memory, and is connected to a message routing chip (MRC). The MRC's are
components of a two-dimensional mesh-type communication network, so that each CPU on the
Delta has only four nearest neighbors. The system supports node level code in Fortran 77 and
C, with the message-passing extensions, using the NX library as for the hypercube. The
communication software makes no attempt of optimizing the routing and messages proceed
always in one direction of the mesh first and, then, in the perpendicular direction.

Connection Machine Architecture

A Connection Machine CMS is a massively parallel, distiibuted memory computer. It
may be configured with tens to thousands of processing nodes. Each node consists of a
SPARC scalar chip set, four vector pipelines, 32 MBytes of memory, and a network interface.
Nodes communicate with each other and with a variety of 1/0 devices via a point to point data
routing network (DR) and a multifunction broadcast, combining, reduction network (CN).
The CMS may be programmed in the message passing style using the CMMD message passing
library. This supports node level code written in Fortran 77 or C. A CMS may also be
programmed in the data parallel style using either CM Fortran, a Fortran 90 variant, or C*, a
parallel extension of the C language. The data parallel languages may be used to construct
programs that are global in extent (they manage the resources of all processors in the system)
or they may be used to create node level programs which communicate using the message
passing library. Currently, the vector pipelines may be accessed either by writing data parallel
code or by writing assembly level routines embedded in message passing programs. Node
level programs written in Fortran 77 will not be able to take advantage of the vector
performance of the CMS without the addition of such assembly level routines. A well
structured Fortran 77 program may be converted to CM Fortran, however by using the CMax
conversion tool. This is provided as a standard component of the CMS software suite.

3.- THE CHEMICAL FLOOD SIMULATOR: UTCHEM

The serial simulator

UTCHEM is a Fortran 77 chemical flood simulation program developed by the
Petroleum Engineering Department at the University of Texas at Austin4. The simulator
computes the transport of several petroleum related chemical species in a three-dimensional

multiphase flow through permeable media. Typical flow constituents are: surfactants,
polymers, electrolytes, water and oil. These interact in brine oil, and microemulsion phases
which are subject to gravity, viscosity, capillary and dispersive forces. Various physical
phenomena are modeled by the program. These include dispersion, adsorption, interfacial
tension, relative permeability, capillary trapping of residual phase constituents, phase behavior,
viscosity, capillary pressure, inaccessible pore volume, and permeability reduction by the
polymers.

Mathematically, the simulation is comprised of n differential equations; one for
pressure and (n -1) mass balance equations (where n is the number of components in the
system, which can be as high as 11). Each equation is discretely represented using a second
order finite difference approximation for the spatial derivatives, and a forward difference
approximation for the time derivatives. See reference 3 for a detailed description of the
equations and the discrete approximations. Boundary conditions for the model specify a 'no
flow' condition imposed by the nonpermeable physical boundary of the reservoir, inflow and
outflow conditions provided by a distribution of injection and production wells, respectively.

The Caitesian numerical discretization is of mixed-finite-element type (block centered
finite differences)4 . Solution of the system is performed in the IMPES style. First the
pressure equation is solved implicitly in terms of saturation dependent terms. The system of
linear equations arising from the discretization of the pressure equation is solved by the Jacobi
preconditioned conjugate gradient method. Then the mass conservation equations are solved
explicitly for the total concentrations.

The code is optimized for vector computers so that arrays that refer to the three
dimensional space are declared as linear arrays. By this scheme, one can operate on 'long
vectors' over the entire reservoir in a single loop construct. The special treatment of boundary
grid blocks is achieved by pcrfonning additional specific computations on these grid blocks.
An earlier version of UTCHEM performed at over 1 Gflop on a single processor of a CRAY
Y-M/P (1 Gflop = 1 billion of floating-point operations per second).

The parallel simulator

Systems with as flexible a computing model as those described above offer several
different strategies for porting the UTCHEM code. We have identified two options that do not
require completely rewriting the code. In the first, an independent program is executed on each
node. In the second, a problem is distributed across all the nodes of the machine in a message
passing model.

Our first approach required modest modification to the serial version of the code to
allow it to execute independently on each node of the CMS. In this instance, the code required
only a few small changes to ensure that VO was handled properly within the parallel message
passing environment. No message passing calls or data mapping changes were introduced.
When executed, this code model runs a copy of the program with each node computing a
different problem. This port required only a few hours to complete. We note that while the
port was quickly done, there was no computational speed up introduced. The ability to run
many simulations in parallel can find use in conditional simulation, where many simulations
can be run conctmently with different geostatistical realizations of the properties as input. This

use of the parallel port has not been pursued at this point.

I
, 1 2 3 4 5 6

40 41 42 43 44 45
7 8 9 10 11 12

52 53 54 55 56 57
13 14 15 16 17 18

r ,~
I ~ 64 65 66 67 68 69

~ 19 20 21 22 23 24
76 77 78 79 80 8 1

25 26 27 28 29 30

' r'

1m 101 102 1m 104 1os

(a) (b)

Figure 1: Local and global numbering schemes for the parallel code. (a) Mapping of a
two-dimensional problem onto an array of nine processors (numbered 0
through 8). Thick lines indicate interprocessor boundaries. (b) Local and
global grid block numbers appear on upper right corner and lower left corner of
each grid block, respectively, for the process loaded on processor 4.

Our second port, using message passing, was designed to use all of the computing
nodes in the simulation of a single problem by the single-program-multiple-data (SPMD)
programming model. Upon execution, this version of the code distributes the spatial grid
blocks across all of the processors. Each processor will generally receive many blocks. Array
declarations were changed to allocate only the required memory to work on the subdomain of
the reservoir contained in each processor. However, since some arrays are involved in a
stencil calculation (aiising from the discretization of the model equations) all of the arrays were
declared to allocate enough memory for a subdomain plus a three-dimensional padding
envelope around the subdomain so that data from neighb01ing processors can easily be brought
into a given processor. By this strategy, the long-vector style of the original serial code can be
easily preserved and, therefore, the parallel code can take advantage of machines with a node
level vect01izing Fortran 77 compiler.

The grid block distiibution scheme assigns consecutively numbered blocks (for some
numbering of the blocks in the system) to the nodes of the machine. This results in reasonable
locality of computation (nearest neighbors are frequently located on the same computing node),
and reasonable load balance is achieved (blocks are assigned so that nodes receive either
Naqx y z} Nnqx y z} . . .

Ncpu { x Y
2

} or Ncru { x Y
2

} + 1 gnd blocks, where NnL{ x y zJ 1s the global number of gnd

blocks in the x-, y- or z-directions, respectively, and NcPLJ[x y zJ is the number of processors
into which the problem is decomposed in the x-, y- or z-dircction, respectively). Figure la

shows a two-dimensional example of the grid block distribution strategy for nine processors.
Figure lb shows the size of the array declared on processor 4 (processors are numbered
sequentially from O through 8), where both global and local numbering schemes can be easily

identified. Computations on the blocks are then perfo1med in parallel, where each processor
performs the same computations on a subset of the global problem (SPMD model) in
approximate synchronization. Data between neighboring processors are communicated at
specified synchronization points by explicit message passing calls.

In this port, the J/O was handled serially through a designated node in the processor
an-ay. This amounts to all processors sending their partial output set to the collecting processor
and, subsequently, the collecting processor writing to disk. In principle this could be handled
by declaring one global array (big enough to hold one entry per grid block of the global
problem). However, because of the way the J/O was handled in the original serial code and
since the aim of this work was to not change any features of the simulator from the users
standpoint (e.g., the structure of the output files), a global array big enough to hold 25 times
the global number of grid blocks had to be declared. Since the memory per processor of
distributed memory machines is relatively small and the SPMD programming model is used,
i.e., each processor loads the same code on its memory, this imposes severe limitations on the
maximum size of the problem that could be run. This poor 1/0 handling can be easily
improved and work is being done to minimize or hopefully eliminate this adverse effect.

The message passing was first implemented for the Intel systems using the NX library
environment. Ten routines were added to the original 30 in the process of parallelizing the

code. The communication is done synchronously in this implementation, meaning that no
computation is being performed while the processors exchange data. General code
modification were also necessary since not all g1id blocks on the boundary of a subproblem is a
boundary grid block for the global problem.

64

0..
;:j

I

"O 32 V
V
0..

Cl)

16

8

0
0

--0-- Density (densty)
• Explicit time step (coneq)
O Linear solver (solmat - jcg)

. ' ' ' ' . ' ' ' ' ' ' ' ' '

,) ... ; ... u .. L.i ... i : : __ ; __ j 1 .1 .. 1 . .l_i i . [[i i i i
8 16 32 64

Number of Processors

Figure 2: Sample parallel speed-ups for UTCHEM on the Touchstone
Delta system. Plotted tasks are: 1. density evaluation at each
grid block, 2. the explicit time stepping of the concentration

equations and 3. the assembly of the pressure mat1ix coefficient
and right hand side vector and the system's solution by JCG.

Since CMMD, the CMS message passing environment, is a superset of the functions
found in the Intel NX environment, converting the code to run on the CMS required only that
we provide emulation functions for the Intel p1imitives and small modifications to account for
differences in I/0 behavior. This version of UTCHEM used only 18 communications related
functions. Creating emulations for these NX calls required little effort.

4.- PARALLEL CODE PERFORMANCE

The performance of the code ports is evaluated by running the serial code and each of
the code pmts against the same test input. The input describes a small test case that contains a
reservoir of 33x33x2 grid blocks, where each cell is 22.7x22.7x0.S feet. Our test case
executes a two well simulation comp1ised of 11 components and three tracers. There is one
injection well and one production well. They are located at opposing x-y vertices. Each run
represents a 40 day simulation with 20 times steps per day.

A serial version of the code, which was run on a Sparcstation 10, took 24.75 minutes
to execute. The first parallel port, where each node runs a copy of the program, took 57.7
minutes to execute on the CMS. This difference in performance can be accounted for by noting
that the Sparcstation 10 uses a supcrscalar version of the SPARC chip (launches more
instructions per cycle), has memory subsystem which is faster than the system on the CM5
node (each load and store is faster), executes a different cache memory policy (more efficient
use of cache and faster cache response on loads), and runs at a higher clock frequency. The
various processor differences can easily account for the factor of two difference in speed
between a serial workstation and a CM5 node.

Performance of the message-passing port was evaluated on configurations of 1, 2, 4,
8, 16, 32 and 64 processors for both Intel systems and of 1, 2, 4, 8, 16, 32, 64 and 128
processors for the CMS. Figures 2 and 3 show sample speed-up results for some of the major
tasks, on both the Delta and CMS systems. The parallel perfo1mances are similar on both

128
--o-- Density calculation

• Pressure mat1ix and solver

96 0 Concentration equations

; ; ... : ; j_. :

···--+----- .. '·
...... = : : .. .

32

.. : : : : : : : : : : :
0

' : : : ' : : : . : : :

0 32 64 96 128
Number of Processors

Figure 3: Sample parallel speed-ups for UTCHEM on the CM5
system. Plotted tasks arc same as on figure 2.

systems and they are not great on either on beyond about 32 processors. Similar behavior was
found on the iPSC/860 (not shown here). In particular, even the density calculation routine,
which does not involve any movement of data, shows an overhead of 100% at 64 processors.
The reason for this lies in the long vector style of the code: every do loop construct operates
not only in the interior of the local problems but also on the surrounding padded region. Also,
as the number of nodes increases, the ratio of grid cells to boundary cells decreases until the
communication cost begins to dominate the computation cost. This is evidenced by the
flattening of the speed up curve in Figures 2 and 3. Increasing the problem size should
decrease this adverse effect and restricting all computations to the interior of the local arrays

should eliminate this source of overhead completely.

The explicit time stepping of the mass conservation equations, involves some message
passing from the stencil computations and shows a more severe degradation that the density
routine, because of the combined effect of communication and padding-computation overhead.
This latter can be eliminated as explained above and the former could be minimized by
implementing asynchronous communications, i.e., message-passing and computations are

overlapped in time.

5.- DOMAIN DECOMPOSITION LINEAR SOLVER

As noted in the previous section, the parallel performance of the existing solver in the
original UTCHEM is less than acceptable. Moreover, once the code is well tuned to handle
larger simulations, the anticipated performance of such solver will even be worse. The range
of the pressure matrix coefficients, for realistic problems, runs from 3 to 6 orders of
magnitude. In such a case, a Jacobi conjugate gradient solver like that currently used in the
code will either take many iterations to converge or will not converge at all.

This section introduces a domain decomposition solver based on additive Schwarz
preconditioning 7,8 of the conjugate gradient alg01ithm. The additive Schwarz preconditioner is

formed by projecting the global equations onto subspaces represented by the local linear
systems to be solved on overlapping subdomains. A subdomain is the collection of grid cells
resident on a given computing node. Since the parallel port of UTCHEM already declared
extended arrays, this appears to be a natural choice of preconditioner for this problem.

The necessary steps to form the preconditioner are as follows. The basic conjugate
gradient method iteratively solves the linear system Ap = b where A is the pressure matrix, p
is the unknown (pressure) vector, and b is the right hand side boundary value vector. At each
iteration n, the preconditioned residual vector is computed from the solution to Mzn = rn ,
where rn is the cmTent residual, i.e., rn = b - Apn, zn is the preconditioned residual and Mis
the preconditioning matrix. In the framework of additive Schwarz methods, the matrix Mis
never assembled since one can compute the action of M- 1 on rn by the following steps:

1. Project the residual and the coefficient matrix of the global (entire domain) problem
onto the extended subdomain (includes overlapping boundary grid blocks) on each
subdomain. Solve Aizni = rni on each extended subdomain (i.e., for i ranging

from 1 to the numher of suhdomains or processors) using homogeneous Dirichlet

boundary conditions. Where the extended subdomain boundary matches the global

domain boundary, the original boundary conditions are used.

2. After all subdomains solutions have been computed, add the partial results to
assemble the global preconditioned residual.

3. If there are large numbers of subdomains, use an additional coarse grid solver to
allow for information on the global residual zn to spread globally across
subdomains. Here, the coarse problem is a finite-element discretization of the
global domain where each suhdomain is a single element. Boundary conditions
for the coarse problem are the same as those for the original problem, i.e., no-flow
Neumann conditions. The coarse solution is then added to the subdomain
solutions by interpolation of the result.

~ -

1

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

Figure 4: Location of the tine and coarse degrees of
freedom for the additive Schwarz
preconditioncr. Squares denote coarse
grid unknowns and circles denote fine
grid unknowns.

H -... -

__ JL
~ -

Figure 5: Length scales of interest in the convergence analysis of domain
decomposition solvers. Global domain is 0(1), subdomain sizes are
O(H) and discretization elements (or g1id blocks) are O(h).

The coarse giid problem is formulated based on a piecewise linear approximation to the
discrete problem where each element in three dimensions has eight degrees of freedom, i.e.,
one at each of the vertices of the normalized cube. Figure 4 shows the location of the coarse
and fine grid unknowns (squares and circles, respectively) for a two-dimensional problem with
nine subdomains. Notice that the Galerkin type degrees of freedom of the coarse-grid problem
are shifted by h/2 with respect to the nearest degrees of freedom of the mixed-finite-element
fine discretization.

Consider a global domain of characteristic dimension 0(1), where subdomains are
O(H) and the underlying discretization is O(h) (see figure 5). It has been shown8, for a
parabolic or an elliptic problem with constant coefficients that the condition number of the
additive-Schwarz-preconditioned system is bounded by

K~C[l+~J

where K is the condition number of the additive-Schwarz-preconditioned system, 8 is the extent

of overlap and C is a constant, independent of H, h and 8. This expression suggests that, for

constant subdomain size, the condition number should reach a constant value. Numerical
experiments were conducted solving elliptic pressure problems (equation 2) for subdomains of

constant size (5x5x5 grid blocks), 8 = h and increasing numbers of subdomains. The overlap

for these experiments was a single layer of grid blocks, thus giving H/h = 7. Figure 6 shows
that, when the coarse grid algorithm is turned on, the condition number appears to reach a
constant level for large numbers of suhdomains. The straight line on the same plot shows the
growth of the condition number when the coarse space is eliminated. This linear growth with

200
' . ' . . '

'-' 160
(l)

..0 s
::i 120 z
C
0 ·.o 80

"'O
C
0 u 40

·1·····-r·····;······r·····r·····i··---~ ·
.. ---o-- without coarse space r··-r···-r-····r····-r-····1····-r··

• with coarse space ·i······i·····i····· · ··(···i·····(

t!I ! I l Il ! ! I1!!i!!l!
: : : I:.:::!:::.: t.::: · j::::: :! : ... : 1::::: : I:::::!::::: I:::::!::::: I:::::!:::.: I:::::!::::::!::::: l::: :::t: :: :: l: :::

__ j. _____ j _____ J _____ J_ .'. l. J J l t ; 1 1l 1 J ii 1. ..

····/······!·····:. ·r··---r---··1······f ·····1'·····i·····i······f······i······l······~·-···~·····-f·····i······f ·····i···· ···r······ -~-----~·-·· , ..

0
0 20 40 60 80 100

Number of Subdomains

Figure 6: Asymptotic hchavior of the condition number for the additive
Schwarz preconditioned system, hoth with and without the action
of a coarse space, for increasing numbers of subdomains. The
suhdomain problem size is 5x5x5 in all cases.

32

Cl) 28
i::
0

::: ·--o- w~th~)U~ coarse ·sp~ce T::::\:::):::::t:::+::::l:::: .. ::::.

.... , ... '~\- -,~
1
itl~,-~~:~,:~c ~pace: : i ! ! : i i i, 24 co

I--<
(l) ...,

····1·····-r·-·--1······r·····1······i·····1·····-;·····r·····1·····r····-;······:··· : ·····r·····r·····f·····r·····¼···

::::1:::::1:::::1:::::1:::::r:::::r:::::r:::::1:::::f ::::r:::::::::;:: .. :.1:::::1::::::::::::::::::i::::J::::::i::::
.... l. -. ---~ ... -. i. -.... t j_ -~ j_ i....,. : -~ i j J ••••• .; 1. l

<.+.... 20 0
I--<
(l)

..0 16 s
;:::i z 12

8
0

IT! t i Li i illllllllil
... , · · ': · · · ·: l::::: :t::::: 1::::: t::::: 1:::::: i · · · · · '!' · ·::: J::::: I::::: l::: :: :t::::: l::::: :t::::: t::::: t:: :: :1: :: : : : 1::::

20 40 60 80 100
Number of Subdomains

Figure 7: Required number of iterations for convergence of the cases in figure 6.

the number of subdomains has been proven9 and is due to the fact that information must travel
across the subdomain (processor) mesh which becomes linearly harder as the number of
subdomains grows.

Figure 7 shows the equivalent plot for the number of iterations taken with and without a
coarse-space preconditioncr. The number or iterations of one and the other do not differ as
much as suggested by the difference in condition numbers of the systems. This is probably
due to the fact that the problem of constant coefficients is inherently simple. For parallel
experiments with Galerkin problems, sec reference 10.

6.- PARALLEL SOLVER PERFORMANCE

From the algorithm description in the previous section, one can see the following
parallel features of the prcconditioner construction. The projections necessary to set up the
local subdomain problems and their solution arc totally independent and can therefore be run in
parallel with minimal overhead.

The construction or the coarse grid matrix is also a parallel operation to a large extent.
The local stiffness matrix and local vector of right hand sides are set up independently by each
processor and the local contributions are then accumulated at once to form the global stiffness
matrix and the global vector of right hand sides. In the present work, all processors solve the
entire coarse grid problem simultaneously (only serial step) and, subsequently, each processor
adds its own conuihution to the total preconditioncr by interpolation within each subdomain.

The parallel solver can he directly hooked up to the parallel UTCHEM simulator.
However, for flexibility purposes, the tests shown here run the solver detached from the

simulator. The local problems as well as the (serial) coarse-grid problem were solved by an
orthomin(K) method with an incomplete LU factorization (iLU(O), i.e., zero degree of

additional infill is generated hy the focto1ization) as its preconditioner11 ,12. This method is of
conjugate residual type, i.e., based on the Gram-Schmidt normalization. The number K of
previous search directions (eigenvectors) of the orthomin iteration was fixed to five to decrease
the required storage of this method. This number of search directions has been reported to
maintain the robustness of the method 11.

Figure 8 shows the parallel timings for the problems used in figure 6. The runs shown
were made on the Delta system. For an algorithm with no overhead, one should expect an
execution time independent of the number or processors, since the subdomain problems have a
constant size as the number of processors increases. However, the timings increase with the
number of subdomains. This is due to the effect of the coarse problem being solved serially
and also to the (relatively smaller) communication overhead of the outer conjugate gradient
iteration. One could discriminate between these to sources of overhead by performing a more
detailed timing study, which was not pursued at this point.

u

~ 40-····················'·········

, ·····i·······l······l······[....... i ·1·······1····

(I)

a
~ 30 1-····················i·······'·······'·

"O
(I)

~ 20 -····>·······>·······<········<·······<···/· , J L ...) I,. f j j
co
@

lO l-·················.>"':'·····5·····;·····•:•••···; ... 1····~·11••••••r11r ··p· 1.:· · · · ' ···(···i·····\··· .. 1.·······;·······1.·······:---····i . .-····· --T······r······-r·····-·i··
0_..__...___.____.__.____,___._.__..__...___.____.__.____.___.___,

0 8 16 24 32 40 48 56 64
Number of Processors

Figure 8: Timings for the parallel additive Schwarz method. Subdomain sizes
are constant at 5x5x5 grid hlocks. The global problem size is given
by 125 multiplied hy the numhcr of subdomains.

More importantly, the plot shows the advantage of running in parallel. The straight line
indicates the time the algorithm would take if it was proportional to the size of the global
problem. Since all the algo1ithm components have an operation count which is proportional to
the number of unknowns, the latter is the approximate timing plot one would get when running
serially for the same range of problem sizes. The savings from running in parallel are about
60%. This is not outstanding but acceptable, nevertheless, considering that the subdomain
sizes are rather small. Increasing the size of the subdomain problems, thus increasing the
global problem size or refining the overall discretization, will show a gain with respect to serial
computing time in the neighborhood of one order of magnitude. More detailed experiments
with this domain dccompostion solver will be made avialable in a separate technical report in
the near future.

7.- CONCLUSIONS

Our experience with the UTCHEM code and the distributed memory parallel
environments suggests that the conversion from a st1ictly se1ial implementation to one which
uses the full resources of the machine is an achievable, although nontrivial, task. A degree of
speedup can be attained by distributing a single problem across all of the nodes of the machine.
For computationally intensive codes, however, we believe that performance gains will
generally be realized by using the vector units (like those available on the CMS) to solve large
subdomains on each node (thus proportionally reducing the communications burden). Use of
the CMS vector facilities virtually demands that the code be written in or translated to CM
Fortran (or C*). The availability of a tool like the CMax Converter makes the translation of
large existing codes possible but still not straightforward. It is nonetheless an easier task than
rewriting a large code fonn scratch.

More parallel efficiency can still be extracted from the code by restricting computations
to the subdomain interiors, and, whenever possible, by use of asynchronous communications.
By this approach, communications and computations can be partially overlapped in real time.
Both these improvements involve considerable rewriting of the code.

Domain decomposition methods appear as a very efficient parallel approach to the
solution of large linear systems. The results of the parallel additive Schwarz method show that
one can tackle large problems with a conceptually simple solver. More tests are still needed to
check the robustness of the method in the presence of physical property heterogeneities and/or
anisotropies.

ACKNOWLEDGMENTS

The financial support from the State of Texas, the U.S. Department of Energy and
participating companies of the Flow in Porous Media Parallel Computation Project at Rice
University is acknowledged. Special appreciation goes to Adam Greenberg from Thinking
Machines Corp. and Kirk Jordan from Kendall Square for unlimited help and guidance in this
research. We also like to thank Thinking Machines Corp. for providing the computing
resources for this work.

References

lJ. Killough and R. Bhogheswara, Simulation of Compositional Reservoir Phenomena on a
Distributed Memory Parallel Computer, Jour. Pet. Tech., Nov. 1991, pp. 1368-1374.

2M. Espedal, P Langlo, 0. Seavareid, E. Gislefoss and R. Hansen, Heterogeneous Reservoir
Models: Local Refinement and Effective Parameters, in Proceedings of Eleventh Symposium
on Reservoir Simulation, Anaheim, CA, Feb 17-20, 1991.

3J. Slattery, Flow or Viscoelastic Fluids through Porous Media, AIChE Journal, v.13, n.6,
November 1967, pp. 1066-1071.

4N. Saad, Field Scale Simulation of Chemical Flooding, PhD Dissertation, Department of
Petroleum Enginee1ing, The University of Texas at Austin, 1989.

so. Pope, L. Lake, K. Sepehrnoori, Modeling and Scale-up of Chemical Flooding-Third
Annual and Final Report for the Pe1iod Oct 1987 - Sept 1988, Prepared for the US Department
of Energy under Contract no. DE-ACl9-85BC 10846, Bartlesville, OK, March 1990.

6A. Datta-Gupta, G. Pope, K. Sepehrnoori, and R. Thrasher, A Symmetric, Positive Definite
Formulation of a Three-Dimensional Micellar/Polymer Simulator, SPE Reservoir Engineering,
November 1986, pp. 622-632.

7M. Dryja and 0. Widlund, Additive Schwarz Methods for Elliptic Finite Element Problems in
Three Dimensions, in Proceedings of Fifth Conference on Domain Decomposition Methods for
Partial Differential Equations, Edited by T. Chan, D. Keyes, G. Meurant, J. Scroggs and R.
Voigt, SIAM, Philadelphia, 1992.

8M. Dryja and 0. Widlund, Domain Decomposition Alg01ithms with Small Overlap, Technical
Report 606, Department of Computer Science, Courant Institute, May 1992. (To appear:
SIAM J. Sci. Stat. Comput.)

90. Widlund, Iterative Substructuring Methods: Algorithms and Theory for Elliptic Problems
in the Plane, in proceedings of First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, Philadelphia, 1988.

10w. Gropp and B. Smith, Experiences with Domain Decomposition in Three Dimensions:
Overlapping Schwarz Methods, Technical Report, Mathematics and Computer Science
Division, Argonne National Laboratory, 1992. (To appear in proceedings of Sixth
International Symposium on Domain Decomposition Methods)

11 J. Wallis, Vectorization of Preconditioned Generalized Conjugate Residual Methods,
Mathematical and Computational Methods in Seismic, Exploration and Reservoir Modeling,
SIAM, Philadelphia, 1987, pp. 250-251.

12P. Vinsome, Orthomin, An Iterative Method for Solving Sparse Banded Sets of
Simultaneous Linear Equations, in Fourth Symposium on Numerical Simulation of Reservoir
Performance, Los Angeles, 1976 (SPE paper 5729).

