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Abstract: A 3D printing technique for manufacturing air-clad coherent fiber optic faceplates 
is presented. The custom G-code programming is implemented on a fused deposition 
modeling (FDM) desktop printer to additively draw optical fibers using high-transparency 
thermoplastic filaments. The 3D printed faceplate consists of 20000 fibers and achieves 
spatial resolution 1.78 LP/mm. Transmission loss and crosstalk are characterized and 
compared among the faceplates printed from four kinds of transparent filaments as well as 
different faceplate thicknesses. The printing temperature is verified by testing the 
transmission of the faceplates printed under different temperatures. Compared with the 
conventional stack-and-draw fabrication, the FDM 3D printing technique simplifies the 
fabrication procedure. The ability to draw fibers with arbitrary organization, structure and 
overall shape provides additional degree of freedom to opto-mechanical design. Our results 
indicate a promising capability of 3D printing as the manufacturing technology for fiber 
optical devices. 
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1. Introduction 
Three-dimensional (3-D) printing, also referred to as additive manufacturing or rapid 
prototyping, is a technique used to fabricate 3-D objects from digital design files [1]. 
Compared with conventional manufacturing technologies, 3D printing enables rapid one-step 
fabrication while significantly lowering the cost and the material waste. 3D printing also 
offers unrestricted design freedom for manufacturers. Given these advantages, 3D printing 
has experienced tremendous growth in recent years and found applications in various domains 
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such as biomedical [2–4], automotive [5], food [6–8], construction [9], aerospace [10], 
education [11], and even cosmetic industry [12]. 

Stereolithography (SLA) was one of the first invented and commercialized 3D printing 
techniques [13]. In SLA, a beam of ultraviolet (UV) laser scans and polymerizes the photo-
curable resin layer by layer to build a 3-D object. A variation of SLA technique is the digital 
light processing (DLP) printing. In DLP, a whole layer of printed part is polymerized during a 
single exposure. SLA and DLP are both photo-polymerization-based printing techniques, 
which offer a high spatial resolution (< 1 µm with two-photon polymerization), but 
necessitate photo-polymerizable resin as the printing material. Another class of technique is 
jet-based printing, including 3-D inkjet [14], PolyJet [15], and selective laser sintering (SLS) 
[16]. In 3-D inkjet printing, each layer is finished by depositing droplets of binding liquid 
onto a layer of evenly distributed powder to bind the solid particles. Similarly, in SLS, each 
layer of powder is sintered by a high power laser. PolyJet distributes and instantly UV-cures 
droplets of liquid photopolymer. Jet-based printing offers a broader choice of material 
including polymers, metal, ceramic, and even biomaterials. Achievable resolution depends on 
the particle size of the fused material and the diameter of the laser spot. Fused deposition 
modeling (FDM) [17] is another widely used printing technique. In FDM, layers are 
fabricated by melting thermoplastic materials in a heated print head, followed by the filament 
extrusion and deposition layer by layer. Besides thermoplastic materials, such as 
polycarbonate (PC), acrylonitrile butadiene styrene (ABS) and nylon, FDM can print metals 
and ceramics with the usage of binders. The binders are usually mixed with ceramic or metal 
powders and convert the material into a filament form which is compatible with the FDM 
printers [2]. The typical resolution of FDM printer is above 100 µm, which is limited by the 
nozzle diameter. Multi-material printing can be easily realized using the multi-extruder FDM 
print head. Nowadays, compact-size FDM machines have become the most prevalent type of 
consumer-grade 3D printers [18]. 

While 3D printing has been a matured technology in a wide range of industries, the 3D 
printing of optical components has just emerged as a new area in recent years. Typical 
examples include optical lenses [19–22], glasses [22–24], optoelectronic sensors [25,26], 
waveguides [27,28], and optical fibers [29–33]. In various optical imaging applications, such 
as optical tapers, inverted image-guides and fiber-based imaging spectrometers [34–38], 
optical fibers with complex structure of routes play an important role in the image 
reformatting and transfer and thus enable number of new applications. Compared with the 
conventional fiber optic device manufacturing techniques, the 3D printing technique adds 
more freedom to fiber designs and shortens the development cycle. Previous attempts on 3D 
printing of optical fibers were for example presented in 2012, when a PolyJet printer and 
transparent resin were used to print 0.5mm diameter “light pipes” [29]. Multiple applications 
of printed light guiding components were proposed, including ones designed for display 
applications, illumination and some optimized for use as sensors [29]. A path-designing 
algorithm for arbitrary printing routes of optical fibers was developed subsequently [30]. In 
2015, a technique of printing air structured single optical fibers using FDM was explored by 
Cook et al [31]. His team printed the preforms of air structured optical fiber on an FDM 
printer and then drew them in an oven under a vacuum. The same technique was also used to 
fabricate step-index optical fibers [32]. In a recent study by Canning et al. [33], the extrusion 
nozzles of desktop FDM printers were characterized to have consistent temperature 
distribution profiles, indicating the printers to be suitable as micro-furnaces for drawing 
fibers. Optical fibers made from ABS and polyethylene terephthalate glycol (PETG) have 
been successfully drawn from these FDM printers, with comparable light losses to standard 
optical fibers, implying their potential application on short distance communications [33]. 

In this paper, we focus on the capability of FDM 3D printing technique to manufacture 
fiber optic devices. Specifically, we print fiber optic faceplates with parallel straight fibers for 
direct image transfer. Fiber optic faceplate is a simple demonstration of 3D printing capability 
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of coherent fibers, and an entry to more complex fiber devices. Typical applications of 
faceplates include CRT/LCD displays, CCD/CMOS sensor coupling, X-ray imaging/blocking 
and image intensifiers. Conventionally, fiber optic faceplates are fabricated by the “stack-and 
draw” process [39], in which optical fibers are assembled into a preform, then heated and 
drawn down to a desired diameter. Preforms are later arrayed together and drawn down again 
until requested design parameters are met, such as fibers core diameters, fibers density and 
faceplate dimensions. Compared with the conventional stack-and-draw fabrication, the FDM 
3D printing technique shortens build time, enables higher design flexibility, and thus opens 
the possibility of a paradigm shift in fiber optic device manufacturing and design. 

As a first attempt, an air-clad fiber optic faceplate (faceplates with air as the cladding 
between printed fiber cores) was fabricated using single material FDM printing. Custom G-
code was implemented to control a desktop FDM printer. Coherent fiber optic faceplate with 
20000 fibers and a resolution of 1.78 LP/mm was successfully printed. Four types of 
commercial transparent thermoplastic filament were tested: ColorFabb XT-clear, Taulman3D 
Tech-G, Taulman3D t-glase, and Ultimaker CPE + . The transmission efficiency and 
crosstalk were characterized and compared and one optimal filament was selected. The 
transmission efficiencies and crosstalk were also measured for different faceplate thicknesses. 
The transmission of 3D printed faceplates was compared to a commercial available polymer 
fiber optic faceplate. The impact of different printing temperatures on the faceplate 
transmission was also tested. 

2. Methods 
An Ultimaker 3 dual extrusion 3D printer with 0.4mm nozzle diameter was used for printing. 
The printer was chosen because of its fine nozzle size and convenient process-control 
software. The printer offers two different printing modes: the auto-slicing mode and the 
custom G-code mode, giving two different printing methods for the faceplate. The auto-
slicing method includes designing the 3-D model of the faceplate as a Standard Template 
Library (STL) file and then generating the printing procedures using the commercial slicing 
software (Cura 2.6.2). The custom G-code method allows designing custom G-code programs 
to directly control the printer’s extrusion process. The direct control over the parameters, such 
as the print head route, velocity, extrusion rate and temperature, enables optimizing the 3D 
print job for the specific faceplate structure. Preliminary experiments using auto-slicing 
software resulted in pathway artifacts and thus the printing results were not as satisfactory. 
The rest of the paper describes the printing procedure and results based on the custom G-code 
printing method. 

Matlab R2017a was used to generate G-code files where the coordinates of the print head 
were calculated based on the analytical model of a faceplate. Fig. illustrates custom designed 
printing procedure. Each individual fiber was printed in a single pass of the extruder’s 
rectilinear motion parallel to the x-axis. In order to keep fibers dimension constant across the 
faceplate, the print head speed and extrusion rate were kept constant. Every layer consisted of 
fibers with a fixed core-to-core distance, and was printed by the back-and-forth path within 
the x-y plane as indicated in Fig. 1(a) (the red solid line arrows represents the extruder’s 
movement with constant extrusion and the red dashed line arrows represents the extruder’s 
movement without extrusion). A y-axis shift with half of the fiber core-to-core distance was 
introduced between even and odd number layer fibers (see Fig. 1(b), the red solid line arrows 
represents the fibers printed in odd layers and the green dashed line arrows represents the 
even layers). This shift results in a square fiber alignment which is rotated 45° in the y-z plane 
(see Fig. 1(c)). Figure 2 shows the optical micrograph (obtained by Olympus SZ61) of the 
faceplate end surface (y-z plane). Due to the plasticity of the material (under high 
temperature), the fiber’s cross-section was deformed into flat upper and bottom surfaces by 
the force of gravity and the pressure between adjacent fiber layers. Therefore, introducing the 
y-axis shift helps minimize the contact between neighboring fibers. Along the z-axis, the 
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layer-to-layer distance (layer height) was set to be the same as the shift distance. Figure 1(d) 
shows the 3-D view of the printed fibers’ structure in the faceplate. 

 

Fig. 1. Printing procedure of the fiber optic faceplate. (a) x-y plane top view of one single layer 
printing path; red solid line arrows: extruder’s movement with constant extrusion; red dashed 
line arrows: extruder’s movement with no extrusion (b) x-y plane top view of the extrusion 
path including multiple layers to illustrate the 0.2mm shift; solid line arrows: odd number 
layers extrusion; dashed line arrows: even number layers extrusion (c) y-z plane side view of 
the faceplate’s fiber structure, with the red color representing odd number layers and green 
color representing even number layers (d) 3-D view of the designed fiber structure model 

In this paper, the length of the printed fibers was first set as 10mm, giving a 10mm 
faceplate thickness. The faceplate was designed to have 200 layers with 100 parallel fibers in 
each layer, resulting in 20,000 fibers faceplate. The core-to-core distance of fibers within a 
layer was designed to be 0.4mm, which was driven by the extruder’s diameter. The layer 
height and the odd-even layer shift were both 0.2mm (see Fig. (c)). Therefore, in the fibers’ 
cross section plane (y-z plane), the faceplate had a dimension of 40mm x 40mm. Note that in 
this plane, the core-to-core distance of fibers along z-axis and y-axis was 0.4mm. However, 
each fiber was 0.28 mm from its nearest neighbor along the two directions which are 45 
degree rotated from y-axis (see Fig. 1(c)). Therefore, the spatial resolution along these two 45 
degree directions are both 0.28mm (1.78 lp/mm). By setting the extruder’s moving speed to 
2100 mm/min and the filament extrusion rate of 20.27 mm/min (filament diameter 2.85 mm), 
the diameter of the printed fiber was also controlled as 0.28 mm, to ensure a stable structure 
as well as minimize the contact-induced crosstalk. 

To find an optimal printing material, faceplates were printed using four off-the-shelf 
commercial transparent filaments, including ColorFabb XT-clear, Taulman3D Tech-G, 
Taulman3D t-glase, and Ultimaker CPE + . All of the materials were printed with the 
temperature recommended by the manufacturer. Apart from the 10mm thick faceplate, 
faceplates with longer fiber lengths (30mm, 50mm, 70mm, and 90mm) were also printed for 
characterization purposes (see Results section). 

To improve the light coupling efficiency, both ends of the faceplate (y-z plane) were 
sanded and polished using sand papers (3M P240 for 10 min, P400 for 10 min and P800 for 
10 min) followed by the polishing on an automatic polisher (Ultra-Tec NanoPol Fiber 
Polishing system, 12 μm silicon carbide pads for 10 min and 1 μm silicon carbide pads for 10 
min). Figure 2 shows the optical micrograph (obtained by Olympus SZ61) of the faceplate 
end surface (y-z plane). Due to the extruder pressure, the plasticity of the material (under high 
temperature) and the printing layer thickness, the cross section of individual fibers was 
rectangular. 
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Fig. 2. Microscope (Olympus SZ61) image of the end surface (y-z plane) of the printed 
faceplate 

3. Results 
3.1 Off-the-shelf filament materials 

To choose the optimal printing material for the faceplate, four commercially available 
transparent 2.85mm filaments which are compatible with the Ultimaker 3 printer were 
identified as candidate fiber optics materials: ColorFabb XT-clear, Taulman3D Tech-G, 
Taulman3D t-glase, and Ultimaker CPE + . For each material, a 10-mm thick faceplate was 
printed with the structure and procedure described in the Methods section. Optical 
transmission and contact-induced crosstalk of the four faceplates were characterized for 
performance comparison. 

The optical transmission of the faceplates was characterized using the experimental 
system schematically presented in Fig. 3(a). A He-Ne laser (632.8 nm) served as a light 
source. An ND absorptive filter (Thorlabs NE30A, 25 mm, Optical Density 3.0) was placed 
directly after He-Ne laser to bring the beam intensity within the measurement range of the 
optical power meter. After passing through 10x achromatic expander (BE10M, Thorlabs), a 
20 mm diameter laser beam was focused by a 10x/0.3 microscope objective (Olympus 
UPlanFL). The spot diameter in the image plane of the Olympus objective was measured to 
be 4.6 µm. The power of the spot was recorded by an optical power meter (Thorlabs S120C 
Standard Photodiode Power Sensor) and reported as the source power sourceP . Then the spot 
was focused on the faceplate’s input end plane (y-z plane) and coupled into one arbitrarily-
selected fiber. The output power was measured at the output plane of the faceplate by the 
power meter, which was in direct contact with a tested faceplate as shown in Fig. 3(b). The 
measured output power was reported as out P . 
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Fig. 3. Setup layout of transmission and crosstalk measurements. (a) Direct measurement of 
the input beam Power. (b) Transmission measurement of the 3D printed faceplate. (c) 
Crosstalk measurement by capturing the image of the output plane 

The output power out P  for the four faceplates was measured under a same input power 

sourceP . Due to the faceplate’s air-clad structure in our design, contact-induced crosstalk 
between the adjacent fibers is inevitable. Therefore, out P  includes the output power from both 
the illuminated fiber and the crosstalk from adjacent fibers. Moreover, the crosstalk for 
different materials may differ because of their characteristics such as porosity and viscosity. 
To quantify the crosstalk and obtain the single fiber transmission, the image of the faceplate’s 
output end was obtained by a collimating lens (Hasselblad 80 mm f/2.8, HC, Sweden, 
Gothenburg), a focusing lens (Sigma 85mm f/1.4 EX DG HSM) and a camera (Canon EOS 
5D Mark II), as illustrated in Fig. 3(c). The pixel intensities recorded in the illuminated fiber’s 
image was summed and denoted as Si. The pixel intensities recorded within 4.75 mm radius 
of the illuminated fiber’s center (the area of the power meter photodiode sensor used in Fig. 
3(a)) were summed and denoted as Sn. The system crosstalk was defined in the equation 
below: 

 n i

n

S  –  SCrosstalk  100%,
S

= ×  (1) 

which represents the percentage of the light coupled into a certain fiber that scattered into the 
neighboring fibers at the output end while transmitting through the faceplate. For each of the 
five randomly-selected fibers, the transmission was calculated using following equation: 

 out i

source n

P STransmission  100%,
P S

= × ×  (2) 

which represents the percentage of the light coupled into a certain fiber at the input end that 
transmitted at the output end of the same fiber. 

The transmission measurement of each faceplate was repeated for five arbitrary selected 
fibers. The mean value and standard deviation were calculated, as shown in Fig. 4(a). The 
XT-clear has the highest transmission of 50.08%, indicating the lowest loss among the four 
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candidate materials. The transmission for Tech-G, t-glase, and CPE + are comparable and all 
below 30% shown in Fig. 4(a). 

Similar to the transmission characterization, the crosstalk measurement for each faceplate 
was repeated for five random-selected fibers, and the mean value among the five results was 
reported as the faceplate’s crosstalk, together with the standard deviation shown in Fig. 4(b). 
According to the results, the XT-clear had the lowest crosstalk among the four tested 
materials (19.81%). The crosstalk for the t-glase and CPE + were comparable and around 
30%. The Tech-G has the highest crosstalk among the four materials (42.53%). 

 

Fig. 4. Measured (a) transmission and (b) crosstalk of the faceplates printed in four materials 
including ColorFabb XT-clear, Taulman3D Tech-G, Taulman3D t-glase, and Ultimaker CPE + 
, with fiber length 10mm. 

Combining the optical transmission and crosstalk characterization results, the ColorFabb 
XT-clear was found with the most satisfactory performance among the four candidate 
materials. Therefore, the XT-clear was chosen to print the faceplates as well as used in the 
further characterizations in the rest of the paper. 

3.2 Faceplate performance in function of thickness 

The fiber length in our 3D printed faceplates was designed as 10mm. However, faceplates 
with longer fiber lengths were printed to characterize their influence on the performance. 
Faceplates were printed with four longer arbitrary-selected fiber lengths: 30mm, 50mm, 
70mm and 90mm. Their transmissions as well as crosstalk were characterized. 

3.2.1 Transmission 

We assume the transmission decays exponentially with the increased faceplate thickness, as 
described by Eq. (3), where outP  is the measured output power; L is the faceplate thickness 
and α  indicates the attenuation coefficient. The inP  represents the actual input power 
coupled into the fiber. Due to the coupling loss on the air-fiber interface, inP  should be the 
measured source power sourceP  reduced by an unknown light coupling efficiency C, as 
described by Eq. (4). 

 ( )L
out inP P e α−=  (3) 

 in sourceP CP=  (4) 
To quantify the transmission loss with the increased thickness, faceplates with five chosen 

thicknesses were tested: 10 mm, 30mm, 50mm, 70mm and 90mm. Similar to the material 
transmission characterization in Section 3.1, for each thickness of faceplate, one fiber was 
illuminated at the faceplate input end as described in Fig. 3(b). Then, transmission was 
measured and averaged among fiber random chosen fibers for each thickness respectively 
(asterisks in Fig. 5). The exponential decaying model described in Eqs. (2) and (4) was used 
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to interpolate the measured output powers (solid line in Fig. 5). According to the 
interpolation, the inferred light coupling efficiency C was 62.87%. The attenuation coefficient 
α  was found to be 1.56 dB/cm, which is 3-5 times higher than the attenuation coefficient of 
the 3D printed single optical fibers reported in literature [33,34].This may be because of the 
contact-induced crosstalk between neighboring fibers, which causes additional loss. 

 

Fig. 5. Measured exponential decay of transmission with increased faceplate thickness. 
Material: ColorFabb XT-clear. 

We also tested the transmission of a 5mm-thick commercial fiber optic faceplate 
(Paradigm Optics PA0370), and compared it with the faceplate printed with XT-clear. Under 
the same illumination, the transmission of the Paradigm Optics faceplate was measured as 
75.98%. Based on the exponential decay model for the 3D printed faceplate, the interpolated 
output power shown in Fig. 5 at the length of 5mm was 52.51% as shown in Fig. 6. This 
result implied a comparable transmission between the 3D printed faceplate and commercial 
available fiber optic faceplates at short lengths. 

 

Fig. 6. Transmission comparison for the 3D printed ColorFabb XT-clear faceplate 
(interpolated at 5mm length) and the commercially available plastic faceplate (Paradigm 
Optics PA0370). 

3.2.2 Crosstalk 

We expect the contact-induced crosstalk increases with the increased fiber length. Using the 
optical system described in Section 3.1 and Fig. 3(c), output images as shown in Fig. 7 were 
obtained for the faceplate with three lengths: 10mm (a), 30mm (b), and 50mm (c). The white 
dashed circle on each image in Fig. 7 indicates the illuminated fiber. The crosstalk was 
calculated and averaged by 5 random-selected fibers in the same way described in Section 
3.1, together with their standard deviations, as shown in Table 1 and Fig. 8. The crosstalk 
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increases significantly with increased fiber length. When the length reached 50mm, 80% of 
the light from the illuminated fiber scattered to the neighboring fibers. Therefore, for current 
air-clad printing technique, faceplates with short fiber lengths would be functional. 

 

Fig. 7. The output end images for the 3D printed faceplate with three different lengths: (a) 
10mm, (b) 30mm, and (c) 50mm. For each length, one fiber was illuminated at the input end, 
and the white dashed circles indicates the illuminated fiber at the output end. Material: 
ColorFabb XT-clear 

Table 1. Crosstalk measurement for different faceplate thicknesses. Material: ColorFabb 
XT-clear 

Length 10 mm 30 mm 50 mm 

Crosstalk 19.81% 56.79% 80.74% 

Standard deviation 7.46% 11.00% 4.10% 

 

Fig. 8. Measured crosstalk of the faceplates for fiber lengths 10mm, 30mm and 50mm. 
Material: ColorFabb XT-clear 

To potentially reduce the contact-induced crosstalk, an alternative printing pattern was 
designed by modifying the fiber alignment. As shown in Fig. 9(a), instead of printing the 
fibers all parallel in the original pattern (parallel pattern), we printed the even number layers 
along the direction perpendicular to the odd layers (perpendicular pattern). In this way, the 
even layers served as the interlayers to minimize the crosstalk, leaving the odd layers serving 
as the functional fibers. 

Since the crosstalk becomes more evident for fiber lengths longer than 10mm, a 30mm-
thick XT-clear faceplate in the perpendicular pattern was printed to better quantify the 
crosstalk reduction. The y-direction core-to-core distance between the fibers within one layer 
was kept the same as the parallel pattern (0.4mm) to guarantee sufficient separations. The 
layer height was also kept as 0.2mm. Therefore, each fiber in the perpendicular pattern was 
0.4 mm from its nearest neighbors. The printing speed, temperature and extrusion rate were 
kept as the same as parallel pattern. The crosstalk of the perpendicular pattern faceplate was 
measured and compared to the 30mm-thick parallel pattern faceplate. As shown in Fig. 9(b), 
the crosstalk in the perpendicular pattern was 13.85%, which was around 25% of that 
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measured in the parallel pattern faceplate. Therefore, the perpendicular pattern reduced the 
contact-induced crosstalk. 

 

Fig. 9. Perpendicular printing pattern for crosstalk reduction. (a) 3-D view comparison of the 
parallel printing pattern and the perpendicular printing pattern. (b) Crosstalk comparison of the 
parallel and perpendicular printed faceplates. Thickness: 30mm; Material: ColorFabb XT-
clear. (c) Measured transmission for the parallel and perpendicular printed faceplates. 
Thickness: 10mm; Material: ColorFabb XT-clear. 

However, due to the absorption of the interlayers, the perpendicular pattern suffers from 
more transmission loss. A 10mm-thick perpendicular pattern faceplate was printed, whose 
transmission was measured in the same procedure as described in Section 3.1. The 10mm-
chick parallel pattern faceplate was also measured under the same system. Figure 9(c) shows 
the measured transmission for both patterns. The perpendicular faceplate’s output power was 
around 22% of the parallel faceplate. Moreover, in the perpendicular pattern, the distance 
between the nearest neighboring fibers are 0.4mm, which indicates a lower spatial resolution. 
Therefore, there’s a trade-off between lower crosstalk and higher transmission as well as 
higher resolution when choosing between the two printing patterns. 

3.3 Printing temperature and speed 

The printing temperature for XT-clear was chosen to be 250 °C based on the manufacturer’s 
recommendation. The printing speed was set to the default speed of commercial slicing 
software (Cura 2.6.2): 2100 mm/min. To investigate the impact of the printing temperature on 
the faceplate transmission, a series of 10 × 10 × 10mm faceplates were printed under five 
evenly spaced temperatures within the ± 20 °C interval around the manufacturer suggested 
temperature (220-270 °C). Note that for each printing temperature, the printing speed need to 
be optimized for a best transmission. Specifically, lower printing temperatures usually 
requires lower printing speeds. Therefore, for each temperature, we chose 5 different printing 
speeds which are within 10% - 200% interval around the original 2100 mm/min printing 
speed (210 – 4200 mm/min). Then the transmission of the faceplates were measured using the 
optical system described in section 3.1 and Fig. 3. 
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Fig. 10. (a) Measured transmission for the faceplates printed under different temperatures and 
different percentage of the original speed (2100mm/min). Cells with percentage value 
displayed are measured transmissions. Cells without displayed values are interpolated 
transmissions Material: ColorFabb XT-clear 

 

Fig. 11. (a) Image of the 1951 USAF resolution target in direct contact with the tested face 
plate. The faceplate was rotated 45 degrees. USAF target was illuminated from behind using 
white LED (Thorlabs Mounted High Power LED MCWHL2). (b) Zoom-in area of (a) with the 
group 0, element 4, 5 and 6 under the microscope (Olympus SZ61). (c) The same area in (b) 
without rotating the faceplate 45 degrees, showing the y-axis and z-axis spatial resolution 
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Figure 10 shows a heat map of the measured transmission with both printing temperatures 
and speeds as variables. To better visualize the trend, for each temperature we interpolated 
four transmission values between the five measured transmission values. In Fig. 10, the cells 
with displayed percentage value are the measured transmissions, and cells without displayed 
values are interpolated transmissions. At the original printing speed (2100 mm/min), the XT-
clear reached its maximum transmission at the temperature of 250 °C, which matches the 
temperature we chose for the faceplate printing. At lower printing temperature, the printing 
speed needs to be decreased for a relatively high transmission. For example, at 220 °C, the 
optimal printing speed needs to be around 50% of the original speed to reach a transmission 
comparable to 250 °C. Similarly, temperatures higher than 250 °C requires higher printing 
speed, but still suffer from significantly increased transmission loss. The average standard 
deviation of the transmission measurements in Fig. 10 is 6.8%. 

3.4 Spatial resolution and imaging results 

The spatial resolution of the fiber optic faceplate is limited by the fibers’ core-to-core distance 
and core diameter. Note that both dimensions were kept 0.28mm along the 45 degrees rotated 
axis in the y-z plane as shown in Fig. 1(c). Therefore, the theoretical resolution of 
manufactured faceplate along this axis was 1.78 LP/mm, which corresponds to group 0, 
element 6 of the 1951 USAF resolution target. Figure 10(a) depicts one of the printed 
faceplates (material: XT-clear; thickness: 10mm) in direct contact with the 1951 USAF 
resolution target. Illumination was provided by a white LED (Thorlabs Mounted High Power 
LED MCWHL2) placed behind the resolution target. Note that when the faceplate was rotated 
45 degrees, the components of group 0, element 6 are clearly distinguishable, which confirms 
that the face plate reached the theoretically predicted resolution. Figure 11(b) shows the 
zoom-in area with the group 0, element 4, 5 and 6 under the microscope (Olympus SZ61). 
Figure 11(c) shows the same area without rotating the faceplate 45 degrees, implying a lower 
spatial resolution along the y-axis and z-axis as shown in Fig. 1(c) corresponding to 1.25 
LP/mm. 

Figure 11 shows the faceplate’s image guiding capability of macro features. Figure 11(a) 
displays the faceplates with fiber length 10mm guiding the image of a Rice University student 
identification card. In Fig. 12(b), a 30mm faceplate was used to image a laser-cut Rice mascot 
owl logo which was illuminated by a white-light LED (Thorlabs Mounted High Power LED 
MCWHL2). Figure 12(c) shows a 10mm thick faceplate placed at the image plane of a 
photographic objective (Sigma 85mm f/1.4 EX DG HSM) and capturing a Rice University 
campus view out of the window. In Fig. 12(d), three faceplates printed in XT-clear with 
various thickness: 10mm, 30mm and 50mm (from left to right) were placed on a paragraph of 
text to show the image guiding capability change with the increased fiber length. 
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Fig. 12. The image guiding capability of 3D printed faceplates for various macro features: (a) 
A Rice student identification card. (b) A laser-cut image mask of a Rice mascot owl logo at the 
input surface which is illuminated by a white-light LED. (c) A university campus view 
captured at the image plane of a photographic objective (Sigma 85mm f/1.4 EX DG HSM). (d) 
Image guiding capability comparison for various fiber lengths (from left to right: 10mm, 
30mm, and 50mm) 

4. Conclusions and discussions 
In conclusion, the first high spatial density air-clad fiber optic faceplate fabricated by the 
FDM 3D printing technology has been demonstrated. The 3D printed faceplate consists of 
20000 fibers and has a maximum spatial resolution of 1.78 LP/mm. The uniformity of the 
fiber’s alignment and its consistency with the designed pattern has been presented. The 
optical transmission of the faceplates have been characterized and compared for various 
lengths, printing speed and for four different transparent 3D printing filaments. The 
ColorFabb XT-clear was measured to have the highest transmission as well as the lowest 
contact-induced crosstalk. Longer fiber lengths in the faceplate results in decreased 
transmission and increased crosstalk. The transmission of the 3D printed faceplate is 
comparable to the commercially available faceplates at short length. An alternative printing 
pattern was proposed with lower crosstalk but higher transmission loss and lower spatial 
resolution. The printing temperature was verified and the material’s transparency was proved 
to be the maximal at the temperature chosen in our printing. Although the resolution is limited 
by the low-cost desktop FDM printer, this result demonstrates the capability of the 3D 
printing technique to manufacture fiber optical devices. 

In the future, smaller fiber diameters and higher spatial resolution of the 3D printed 
faceplate will be realized by using FDM printers with smaller nozzles and higher control 
accuracy. Nowadays, the achievable resolution of the state-of-art FDM printers has reached 
below 100 um [40], indicating the possibility of significant improvements. We will also 
introduce cladding to the faceplates to modify the numerical aperture of faceplates. This can 
be readily achieved by the FDM printer’s ability to print with multiple materials. 

Although limited by the nozzle size and accuracy of the low-cost desktop FDM printer, 
this work revealed the capability of 3D printing as a revolutionary fiber optic device 
manufacturing technique. Other than fiber optic faceplate, this technique can also be applied 
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to the fabrication of other fiber optic devices such as optical tapers, image-guides, etc. 
Compared with the traditional stack-and-draw fabrication technique, 3D printing enables an 
unlimited design freedom as well as shorter lead time. Therefore, an immediate advantage 
would be in the prototyping, where the test model of the design can be rapidly fabricated to 
examine the functionality and quality before putting into mass production. The fabrication of 
arbitrarily complex geometrical paths of fibers, such as inverted image guides or arbitrary 
surface shape displays, will no longer be as difficult and time-consuming as in traditional 
fabrication techniques. Fabrication of integrated functional modules can also be readily 
achieved by designing and printing multiple optical elements as one 3-D part. We envision a 
future world where more and more commercially available fiber optic devices are 3D printed. 
Moreover, a growing number of novel fiber optic devices will be inspired by the 
manufacturing revolution of 3D printing. 
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