

ABSTRACT

Software Support for E�cient Use

of Modern Computer Architectures

by

Milind Chabbi

Parallelism is ubiquitous in modern computer architectures. Heterogeneity of CPU cores

and deep memory hierarchies make modern architectures di�cult to program e�ciently.

Achieving top performance on supercomputers is di�cult due to complex hardware, software,

and their interactions.

Production software systems fail to achieve top performance on modern architectures

broadly due to three main causes: resource idleness, parallel overhead, and data movement

overhead. This dissertation presents novel and e↵ective performance analysis tools, adap-

tive runtime systems, and architecture-aware algorithms to understand and address these

problems.

Many future high performance systems will employ traditional multicore CPUs aug-

mented with accelerators such as GPUs. One of the biggest concerns for accelerated systems

is how to make best use of both CPU and GPU resources. Resource idleness arises in a

parallel program due to insu�cient parallelism and load imbalance, among other causes.

To assess systemic resource idleness arising in GPU-accelerated architectures, we developed

e�cient profiling and tracing capabilities. We introduce CPU-GPU blame shifting—a novel

technique to pinpoint and quantify the causes of resource idleness in GPU-accelerated archi-

tectures.

Parallel overheads arise due to synchronization constructs such as barriers and locks used

in parallel programs. We developed a new technique to identify and eliminate redundant

barriers at runtime in Partitioned Global Address Space programs. In addition, we developed

a set of novel mutual exclusion algorithms that exploit locality in the memory hierarchy to

improve performance on Non-Uniform Memory Access architectures.

In modern architectures, ine�cient or unnecessary memory accesses can severely degrade

program performance. To pinpoint and quantify wasteful memory operations, we developed a

fine-grain execution-monitoring framework. We extended this framework and demonstrated

the feasibility of attributing fine-grain execution metrics to source and data in their contexts

for long running programs—a task previously thought to be infeasible.

The solutions described in this dissertation were employed to gain insights into the per-

formance of a collection of important programs—both parallel and serial. The insights we

gained enabled us to improve the performance of several important programs by a signifi-

cant margin. Software for future systems will benefit from the techniques described in this

dissertation.

Acknowledgments

I wish to thank my thesis committee: Prof. John Mellor-Crummey, Prof. Vivek Sarkar, Prof.

Peter Varman, and Dr. Costin Iancu.

It is exceptionally di�cult to acknowledge the help of my advisor Prof. John Mellor-

Crummey, which has extended beyond the time I spent at Rice University and beyond

the academic realm. Prof. Mellor-Crummey’s paper about the MCS lock, which I read

in 2006 during a course under Prof. Greg Andrews at The University of Arizona, sparked

my interest in shared-memory synchronization. It was the same year the paper won the

prestigious Edsger W. Dijkstra Prize in Distributed Computing. I had my first interaction

with Prof. Mellor-Crummey in the Fall of 2008, when I emailed him with my interest in his

work. Prof. Mellor-Crummey’s prompt reply and the ongoing PACE project encouraged me

to consider Rice seriously. Although I was admitted to Rice in 2009, I could not join that

year due to immigration complications. Prof. Mellor-Crummey was patient to wait until I

joined Rice in the Fall of 2010. In the months and years that followed, I would only see Prof.

Mellor-Crummey’s abilities with awe: how he pulled a reference to a related work in matter

of seconds and how he remembered author’s names, paper titles, and processor architectures.

Early years of the graduate studies were filled with many “fake eureka” moments, which

I would share with Prof. Mellor-Crummey, he would patiently listen to my “ideas” of rein-

venting the wheel, and respectfully point me to a work in 1990’s that had already solved it,

in a better way on many occasions. As the time progressed, some seeds of ideas grew and

started showing promise. Over the years Prof. Mellor-Crummey has helped me set higher

standards in my research goals and impact. He helped me turn my half-baked ideas into

concrete solutions. He would ask me the right set of questions, in search of answers through

which I would learn a great deal about my own work, improve my ideas, and know more

about the state-of-the-art. In stark contrast with my experience in industry, where doing

anything outside the defined boundaries was a taboo, working under Prof. Mellor-Crummey,

v

there is no research question that is not worth pursuing. I am fortunate to have explored

compilers, heterogenous architectures, high performance computing, binary analysis, per-

formance analysis, data race detection, model checking, synchronization, computer security,

and several other aspects in my graduate career.

Having started my graduate career with inspiration from the MCS lock, it was my desire

to contribute in that direction. We came close to doing something related to locks multiple

times during the last three years: binary analysis for identifying mutual exclusion on one

occasion and building e�cient reader-writer locks on two occasions. However, we had to

give up both because it was too hard to do or already been done very recently. The insight

came when Prof. Mellor-Crummey and I were looking at lock contention in NWChem. Prof.

Mellor-Crummey came up with the idea of batching requests from the same node when there

were local contenders; I was already aware of lock cohorting. After that we both envisioned

an MCS lock with multiple levels of hierarchy to take advantage of NUMA machines. Subse-

quently, we devised the HMCS lock, showed its superiority both theoretically and empirically.

This work has only improved over time with new design for an adaptive HMCS lock and

more. I am indebted to Prof. Mellor-Crummey for always holding the bar higher for me to

reach newer heights.

Beyond research, Prof. Mellor-Crummey has helped me in my presentation skills, con-

nected me with several researchers, and helped plan my vacations too.

I would like to thank theHPCToolkit research sta↵: Laksono Adhianto, Mark Krentel,

and Mike Fagan. Without their constant support this work would not have been possible.

I would like to call out Mike Fagan for collaborating in many of my projects and being

extremely helpful in paper writing and solving both computer science and mathematical

problems.

I want to thank my collaborators Costin Iancu, Wim Lavrijsen, and Wibe de Jong from

Lawrence Berkeley National Laboratory. I am indebted to Costin for his warmth, connecting

me with people, and helping with my job search.

I would like to thank Dr. Tracy Volz at Rice University for training me on many occasions

for my presentations and providing me with the opportunity to train other students at Rice.

This acknowledgement will be incomplete without mentioning the great support form

vi

the administrative sta↵ of the department of computer science at Rice University. I would

like to particularly thank Belia Martinez for her warmth and friendliness, which make her

the friend of all graduate students. Belia also deserves accolades for helping me with my

immigration process.

This acknowledgement will be incomplete without mentioning the constant feedback that

fellow graduate students provided in my talks, research work, and publications, including

this dissertation.

Reshmy, Rajesh, Aarthi, Shruti, Priyanka, Deepak, Karthik, Rahul, Gaurav, and Rajoshi,

who became my Rice family had a positive role to play. They made my years in Houston at

Rice memorable and fun filled.

I would like to thank Girish for being a close friend in Houston. Few people would

shamelessly eat dinner at a friend’s place as many times as I have eaten in Girish’s house.

A large round of thanks to my father, mother, and brother. They have stood with me

through my good and bad times. They have encouraged me to accomplish my dreams,

shown confidence in my aspirations, and provided moral, spiritual, and financial support at

all times. I would like to thank my wife for her unconditional support in my endeavors.

I wish to thank the funding agencies that supported my work: Defense Advanced Research

Projects Agency (DARPA), U.S. Department of Energy (DOE), Texas Instruments, Ken

Kennedy Institute for Information Technology, and Lawrence Berkeley National Laboratory.

I am thankful to the world class computational facilities provided by XSEDE, U.S. DOE

laboratories, and Rice University’s Research Computing Support Group, which made this

research possible.

Specifically, this work is funded in part by the Defense Advanced Research Projects

Agency through AFRL Contract FA8650-09-C-7915, DOE O�ce of Science under Cooper-

ative Agreements DE-FC02-07ER25800, DE-FC02-13ER26144, DE-FC02-12ER26119, DE-

SC0008699, and DE-SC0010473, Sandia National Laboratory purchase order 1293383, and

Lawrence Berkeley National Laboratory subcontract 7106218.

This research used the resources provided by the National Center for Computational

Sciences (NCCS) at Oak Ridge National Laboratory supported by the DOE O�ce of Science

under Contract No. DE-AC05-00OR22725, Keeneland Computing Facility at the Georgia

vii

Institute of Technology supported by the National Science Foundation under Contract OCI-

0910735, Data Analysis and Visualization Cyberinfrastructure funded by NSF under grant

OCI-0959097, Blacklight system at the Pittsburgh Supercomputing Center (PSC) via the

Extreme Science and Engineering Discovery Environment (XSEDE) supported by National

Science Foundation grant number OCI-1053575, and IBM Shared University Research (SUR)

Award in partnership with CISCO, Qlogic and Adaptive Computing acquired with support

from NIH award NCRR S10RR02950.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations xiv

List of Tables xvii

1 Introduction 1

1.1 Performance challenges . 2

1.1.1 Insu�ciency of state-of-the-art performance analysis techniques . . . 3

1.1.2 Underutilization of resources in parallel programs 4

1.1.3 Synchronization overhead in parallel programs 6

1.1.4 Memory accesses overhead in a thread of execution 8

1.1.5 Performance variation of the same code in di↵erent contexts 8

1.2 Thesis statement . 10

1.3 Contributions . 10

1.4 Roadmap . 12

2 Assessing Idle Resources in Hybrid Program Executions 13

2.1 Motivation and overview . 13

2.2 Contributions . 17

2.3 Chapter roadmap . 18

2.4 Background . 18

2.4.1 Terminology . 18

2.4.2 Measurement challenges on heterogeneous platforms 18

2.4.3 CUDA and CUPTI overview . 19

2.4.4 HPCToolkit overview . 20

ix

2.5 New analysis techniques . 20

2.5.1 Idleness analysis via blame shifting 21

2.5.2 Stall analysis . 22

2.6 Implementation . 24

2.6.1 Basic CPU-GPU blame shifting . 24

2.6.2 Deferred blame shifting . 28

2.6.3 Blame shifting with multiple GPU streams 29

2.6.4 Blame shifting with multiple CPU threads 30

2.6.5 Blame attribution for shared GPUs 31

2.6.6 A limitation of current implementation 31

2.6.7 Lightweight traces for hybrid programs 32

2.7 Evaluation . 33

2.7.1 Case study: LULESH . 33

2.7.2 Case study: LAMMPS . 37

2.7.3 Stalls on Titan and KIDS . 39

2.7.4 Overhead evaluation . 42

2.8 Discussion . 43

3 Eliding Redundant Barriers 45

3.1 Motivation and overview . 46

3.2 Contributions . 48

3.3 Chapter roadmap . 49

3.4 The problem with synchronization . 49

3.5 Reasoning about barrier elision . 51

3.5.1 Ideal barrier elision . 53

3.5.2 Practical barrier elision . 55

3.6 Automatic barrier elision . 56

3.7 Guided barrier elision . 60

3.8 Barrier elision in NWChem . 63

3.8.1 NWChem scientific details . 64

x

3.8.2 NWChem code structure . 64

3.8.3 Instrumenting NWChem . 66

3.8.4 Managing execution contexts . 67

3.8.5 Portability to other applications . 68

3.9 NWChem application insights . 68

3.10 Performance evaluation . 72

3.10.1 Microbenchmarks . 72

3.10.2 NWChem production runs . 73

3.10.3 Memory overhead . 74

3.11 Discussion . 75

4 Tailoring Locks for NUMA Architectures 77

4.1 Motivation and overview . 77

4.2 Contributions . 81

4.3 Chapter roadmap . 81

4.4 Terminology and background . 82

4.5 HMCS lock algorithm . 83

4.5.1 Correctness . 89

4.5.2 Discussion . 93

4.6 Performance metrics . 94

4.6.1 Throughput . 95

4.6.2 (Un)Fairness . 101

4.7 HMCS properties . 108

4.7.1 Fairness assurance of HMCS over C-MCS
in

. 108

4.7.2 Throughput assurance of HMCS over C-MCS
out

. 111

4.8 Experimental evaluation of the HMCS lock 114

4.8.1 Evaluation on IBM Power 755 . 114

4.8.2 Evaluation on SGI UV 1000 . 121

4.9 Adaptive HMCS locks . 124

4.9.1 Making uncontended acquisitions fast with a fast-path 125

xi

4.9.2 Adapting to various contention levels using hysteresis 127

4.9.3 Overlaying fast-path atop hysteresis in AHMCS 139

4.10 Hardware transactional memory with AHMCS 141

4.10.1 AHMCS algorithm with HTM . 142

4.10.2 Correctness . 143

4.10.3 Performance . 143

4.11 Evaluation of adaptive locks . 144

4.11.1 Utility of a fast-path . 145

4.11.2 Benefits of hysteresis . 148

4.11.3 Value of hysteresis and a fast-path 152

4.11.4 Sensitivity to variable contention . 155

4.11.5 Evaluation of HTM on IBM POWER8 161

4.12 Discussion . 163

5 Identifying Unnecessary Memory Accesses 165

5.1 Motivation and overview . 165

5.2 Contributions . 166

5.3 Chapter roadmap . 167

5.4 Methodology . 167

5.5 Design and implementation . 168

5.5.1 Terminology . 169

5.5.2 Introduction to Pin . 170

5.5.3 Maintaining memory state information 170

5.5.4 Maintaining context information . 171

5.5.5 Recording dead writes . 172

5.5.6 Reporting dead and killing contexts 172

5.5.7 Attributing to source lines . 172

5.5.8 Accounting dead writes . 176

5.6 Experimental evaluation . 178

5.6.1 SPEC benchmarks . 178

xii

5.6.2 OpenMP NAS parallel benchmarks 181

5.7 Case studies . 182

5.7.1 Case study: 403.gcc . 182

5.7.2 Case study: 456.hmmer . 185

5.7.3 Case study: bzip2-1.0.6 . 187

5.7.4 Case study: Chombo’s amrGodunov3d 189

5.7.5 Case study: NWChem’s aug-cc-pvdz 190

5.8 Discussion . 194

6 Attributing Fine-grain Execution Characteristics

to Call-Paths 195

6.1 Motivation and overview . 196

6.2 Contributions . 198

6.3 Chapter roadmap . 199

6.4 Background . 199

6.4.1 Call-path collection techniques . 199

6.4.2 Pin and call-path collection . 200

6.5 CCTLib methodology . 200

6.5.1 Call-path accuracy . 200

6.5.2 Call-path e�ciency . 202

6.6 Design and implementation . 202

6.6.1 Collecting a CCT in Pin . 203

6.6.2 Data-centric attribution in CCTLib 213

6.7 Evaluation . 214

6.7.1 Runtime overhead on serial codes . 215

6.7.2 Memory overhead on serial codes . 217

6.7.3 Scalability on parallel applications . 219

6.8 Discussion . 220

7 Related Work 222

xiii

7.1 GPU performance analysis . 222

7.1.1 GPU-kernel performance analysis . 222

7.1.2 System-wide performance analysis . 223

7.1.3 Root-cause performance analysis . 223

7.2 Synchronization optimization . 225

7.2.1 Static analysis . 225

7.2.2 Dynamic analysis . 226

7.2.3 Lightweight call-path collection . 226

7.3 Shared-memory mutual exclusion algorithms 227

7.3.1 Queuing locks . 227

7.3.2 Hierarchical locks . 228

7.3.3 Combining locks . 229

7.3.4 Dedicated server threads for locks . 231

7.3.5 Fast-path techniques for mutual exclusion 231

7.3.6 Software-based contention management 233

7.3.7 Hardware transactional memory for mutual exclusion 234

7.3.8 Empirical evaluation of mutual exclusion techniques 235

7.3.9 Analytical study of lock characteristics 237

7.4 Redundancy elimination . 237

7.5 Call-path collection and data-centric attribution 238

7.5.1 Techniques for call-path collection . 238

7.5.2 Techniques for data-centric attribution 240

8 Conclusions and Future Work 241

A Implementation of FP-AHMCS locks 246

A.1 FP-EH-AHMCS lock . 246

A.2 FP-LH-AHMCS lock . 251

Illustrations

1.1 Idleness in CPU-GPU LAMMPS code . 6

1.2 Redundant barriers in NWChem . 7

1.3 Importance of context in performance attribution 9

2.1 CPU-GPU blame shifting example . 15

2.2 CPU-GPU blame shifting schematic diagram 25

2.3 Blame shifting data structures . 26

2.4 Proxy-based GPU sampling. 27

2.5 Deferred blame shifting . 29

2.6 Blame attribution with multiple streams . 30

2.7 Code-centric view of LULESH with hpcviewer 35

2.8 LULESH device-memory allocation graph 36

2.9 Slow GPUs delaying LAMMPS on KIDS . 38

2.10 cuInit delaying MPI Allreduce in LAMMPS 39

2.11 Blocking of CUDA synchronize operations on Titan in LAMMPS 40

3.1 Composition of synchronized API calls. 50

3.2 Data dependence and barrier redundancy . 52

3.3 Lattice of memory access types. 53

3.4 Workflow of guided barrier elision. 60

3.5 Common su�x of redundant barriers. 62

3.6 NWChem software stack . 65

3.7 Redundant barriers in NWChem . 69

3.8 Context- and flow- sensitive redundant barriers 71

xv

3.9 Context-insensitive redundant barriers in ComEx 71

3.10 Common subcontext of a top redundant barrier in NWChem 71

3.11 Impact of fraction of deletable barriers on barrier elision. 73

4.1 Shared-memory NUMA system. 79

4.2 MCS lock passing times on SGI UV 1000. 80

4.3 Hierarchical tree of NUMA domains . 82

4.4 Hierarchical MCS lock . 84

4.5 HMCS lock key data structures. 85

4.6 Lock passing in the C-MCS
in

lock. 97

4.7 Lock passing in the HMCSh3i lock. 100

4.8 Unfairness in the C-MCS
in

lock, when c
in

� n
1

. 103

4.9 Unfairness in the C-MCS
in

lock, when c
in

< n
1

. 103

4.10 Unfairness in the HMCSh3i lock, when h
1

� n
1

and h
2

� n
2

. 105

4.11 Unfairness in the HMCSh3i lock, when h
1

< n
1

and h
2

< n
2

. 105

4.12 Impact of threshold on unfairness. 107

4.13 Accuracy of analytical model for C-MCS locks 115

4.14 Accuracy of analytical model for the HMCSh3i lock 116

4.15 Lock scaling with an empty critical section on IBM Power 755. 117

4.16 Impact of data size on the e↵ectiveness of HMCSh3i 118

4.17 Lock scaling at lower contention on IBM Power 755. 118

4.18 Lock scaling with empty critical sections on SGI UV 1000. 123

4.19 Fast-path in HMCS lock . 126

4.20 A snapshot view of the Adaptive HMCS lock 129

4.21 Legend for adaptive HMCS locks . 134

4.22 Eager hysteresis adaptive HMCS lock scenario 1 134

4.23 Eager hysteresis adaptive HMCS lock scenario 2 134

4.24 Eager hysteresis adaptive HMCS lock scenario 3 135

4.25 Lazy hysteresis adaptive HMCS lock . 139

4.26 A fast-path and hysteresis in Adaptive HMCS lock 140

xvi

4.27 E↵ectiveness of fast-path on Power 755 . 147

4.28 E↵ectiveness of fast-path on SGI UV 1000 148

4.29 E↵ectiveness of hysteresis on Power 755 . 151

4.30 E↵ectiveness of hysteresis on SGI UV 1000 152

4.31 E↵ectiveness of hysteresis and fast-path on Power 755 154

4.32 AHMCS lock with contention chaning every 100µs 157

4.33 Fractional throughput of AHMCS with 2 cache line updates 158

4.34 Fractional throughput of AHMCS with 4 cache line updates 159

4.35 AHMCS and transactions on POWER8 . 162

5.1 Automaton to detect dead writes . 168

5.2 Shadow memory to maintain access history 171

5.3 Calling context tree for DeadSpy . 175

5.4 Dead writes in SPEC CPU2006 integer reference benchmarks 179

5.5 Dead writes in SPEC CPU2006 floating point reference benchmarks 179

5.6 DeadSpy overhead . 180

5.7 Call-paths leading to most frequent dead and killing writes in NWChem . . . 192

5.8 Call-paths leading to less frequent dead and killing writes in NWChem . . . 192

5.9 NWChem performance comparison . 193

6.1 CCTLib schematic diagram . 198

6.2 A CCTLib Calling Context Tree. 205

6.3 Mapping traces to constituent instructions 205

6.4 CCTLib’s TraceNode and IPNode. 206

6.5 CCTLib CCT for tail calls. 207

6.6 Code that needs line-level disambiguation. 210

6.7 Ambiguous DeadSpy CCT. 210

6.8 CCT with call site level attribution. 210

Tables

2.1 Blame shifting metrics . 22

2.2 Blame shifting vs. hot spot analysis for LULESH kernels. 36

2.3 Time wasted in OS stalls in LAMMPS on Titan supercomputer. 41

2.4 Measurement overhead . 43

3.1 Ideal barrier elision rules . 54

3.2 Application of ideal barrier elision rules . 54

3.3 Practical barrier elision rules . 56

3.4 Application of practical barrier elision rules 56

3.5 Barrier elision evaluation in NWChem . 74

4.1 Experimental setup. 114

4.2 Accuracy of analytical models . 116

4.3 Fairness of HMCSh3i on IBM Power 755 . 116

4.4 HMCS lock on the K-means application . 120

4.5 SGI UV 1000 NUMA hierarchy . 122

4.6 Throughput of HMCSh5i on SGI UV 1000 122

4.7 Throughput of HMCSh4i on SGI UV 1000 122

4.8 Comparison of the eager vs. lazy adaptive HMCS locks 139

4.9 Impact of a fast-path under no contention 146

4.10 Impact of a fast-path under full contention 146

4.11 EH-AHMCS: percentage of acquisitions at di↵erent levels 149

4.12 LH-AHMCS: percentage of acquisitions at di↵erent levels 149

4.13 Performance summary of various locks . 152

xviii

4.14 Average behavior of various locks with 2 cache line updates 158

4.15 Worst-case behavior of various locks with 2 cache line updates 158

4.16 Average behavior of various locks with 4 cache line updates 159

4.17 Worst-case behavior of various locks with 4 cache line updates 159

5.1 Deadness in SPEC CPU2006 integer reference benchmarks 181

5.2 Deadness in OpenMP NAS parallel benchmarks. 182

5.3 Dead write elimination statistics . 185

5.4 Impact of dead writes on NWChem’s execution time. 192

5.5 Last-level cache misses in NWChem with dead writes 193

6.1 Static disassembly errors in Pin . 201

6.2 APIs and data structures exposed by CCTLib. 203

6.3 Runtime overhead of CCTLib. 216

6.4 CCTLib overhead compared to a Pin tool’s overhead 217

6.5 Memory overhead of CCTLib. 218

6.6 Parallel e�ciency of CCTLib on LAMMPS. 220

6.7 Parallel e�ciency of CCTLib on LULESH. 220

7.1 Comparison of various NUMA-aware locks. 232

1

Chapter 1

Introduction

Don’t lower your expectations to meet your

performance. Raise your level of performance to meet

your expectations.

Ralph Marston

There is an ever-widening chasm between the peak performance of microprocessor-based

systems and the actual performance achieved by an application software. The peak perfor-

mance of a microprocessor, to this day, is governed by the Moore’s Law [160] (more properly

called Moore’s Conjecture). Moore’s Law predicts the number of transistors in an integrated

circuit to double every two years. The performance realized by typical scientific applications

on microprocessor-based systems is, however, abysmally low—only 5-15% of the peak [179].

Computer architectures are increasing in complexity. Modern microprocessor architec-

tures have evolved from single-threaded, single-core processors into multi-threaded, many-

core architectures. Furthermore, many modern computers are a heterogeneous combination

of a few latency-optimized heavyweight CPU cores, augmented with throughput-optimized

lightweight cores, a.k.a. accelerators [100, 101, 104, 113, 176]. Such designs are favored over

traditional homogeneous multicore designs since accelerators deliver high throughput at a

modest energy budget [1, 70, 92, 113, 174, 214]. In addition, modern computer architectures

are further complicated by deep memory hierarchies [16] comprised of multiple levels of cache

and memory, distributed over multiple sockets, and in some systems, multiple nodes [208].

These deep memory hierarchies lead to di↵erent memory access latencies for data residing in

di↵erent memory locations—commonly known as Non-Uniform Memory Access (NUMA).

Finally, the architectures change rapidly, making hardware obsolete often faster than an

automatic, compiler-driven optimization can hope to target particular hardware.

2

Large production software systems are complicated as well. To ease the understanding of

complicated systems, software developers traditionally employ layers of abstractions. Back in

the day, software was written for a single machine. Over the years, strong boundaries have

been drawn between hardware, operating system, and application software. Abstractions

such as routines and libraries of routines ensure separation of concerns and provide reuse of

components. Software abstractions, however, come at a cost—they may introduce overheads

by causing redundancies and hindering optimizations. Rapid hardware evolution makes it

harder for software to adapt or take advantage of modern architectural features. Legacy

layered software, often written to be architecture agnostic, fails to deliver top performance

on current hardware.

1.1 Performance challenges

Performance losses occur due to various causes at multiple layers of the software stack. There

is a litany of reasons for performance losses. Some of the most common ones are: insu�cient

parallelism, load imbalance, use of heavyweight abstractions, developers’ inattention to per-

formance, poor choice of algorithms and data structures, deleterious compiler optimizations,

layering of software stack leading to overheads unknown to an application developer, and

mismatch between hardware and software characteristics.

Until recently, ine�ciencies in software were mitigated by a rapid increase in CPU clock

rates along with hardware advancements such as speculation and instruction-level paral-

lelism. With the end of Dennard scaling [24], the increase in CPU clock rates has stalled.

Superscalar architectural innovations appear to have run their course [180]. Applications

have limited instruction-level parallelism. Speculation in hardware is useful but is not a

panacea. Current day hardware innovation is mostly coming from rising CPU core counts.

Since power consumption is a critical limiting factor in scaling hardware [214], modern

hardware often employs simpler cores. These simpler cores run at slower clock speeds. Sim-

ple cores also have less advanced features, e.g., no out-of-order execution and no hardware

speculation. In this era of exploding parallelism and less powerful individual cores, tun-

ing applications to take advantage of hardware features mandates tuning applications at all

levels—both single-threaded and multi-threaded, both inter-node and intra-node.

3

1.1.1 Insu�ciency of state-of-the-art performance analysis techniques

Performance analysis tools play a vital role in pinpointing and quantifying performance

bottlenecks in large software systems. E↵ective performance analysis tools deliver insights

that empower a developer to improve an application’s performance and take advantage of

modern architectures. Moreover, good performance analysis tools are crucial for tuning

systems where automatic optimizations are infeasible.

Hot spot analysis is a classical technique for identifying performance problems in an ex-

ecution. Hot spot analysis informs the developer about code regions that consume large

amounts of resources such as CPU cycles. Intel VTune [98], a well-known performance anal-

ysis tool, defines hot spot analysis as follows: “Hot spot analysis helps understand application

flow and identify sections of code that get a lot of execution time (hot spots). A large number

of samples collected at a specific process, thread, or module can imply high processor utiliza-

tion and potential performance bottlenecks. Some hot spots can be removed, while other hot

spots are fundamental to the application functionality and cannot be removed.”

Hot spot analysis focuses only on resources being used. In modern hardware with multiple

components, such as vector execution units, hardware multi-threading, multiple CPU cores,

and accelerator cores, some (in fact many) resources remain idle. Hot spot analysis cannot

quantify the losses arising from resources not being used. Furthermore, hot spot analysis

typically measures metrics such as floating-point operations per second (FLOPS) or cycles

per instruction (CPI). A low CPI (or high FLOPS) ensures the application is not stalled for

resources; however, it does not ensure the application is making good use of its resources.

Execution hot spots can only point to the “symptoms” of performance problems at best.

This dissertation approaches performance analysis of parallel programs in a top-down

manner in the order-of-magnitude of causes. First order performance losses happen in parallel

programs due to resource idleness caused by improper work partitioning and serialization,

among others. Second order performance losses happen in parallel programs due to parallel

overheads caused by synchronization constructs such as locks and barriers. Third order

performance losses happen due to memory access overheads within individual threads of

executions. This ordering provides a mental model to approach performance analysis and

4

tuning. In fact, the aforementioned factors can be interrelated. For example, synchronization

overheads can cause idleness; memory access behavior can depend on work decomposition.

Parallel overheads can be due to unnecessary or ine�cient synchronization—this dis-

sertation examines instances of both. Memory access overheads can also be unnecessary

or ine�cient. In fact, the performance impact of ine�cient memory accesses can be more

severe than that of parallel overheads. Ine�cient memory accesses have been extensively

studied elsewhere [118, 133, 134, 135, 136, 138, 156, 237]. This dissertation examines only

unnecessary memory accesses; and hence, we place it third in our list of tuning priorities.

E↵ective performance tools should not only measure performance e�ciently but also

attribute the metrics to source code and data objects in context, accurately. Contextual

performance attribution helps in better understanding of a program’s behavior. Contextual

attribution also enables specific optimizations possible only in certain execution contexts. As

the final aspect of performance analysis, this dissertation considers the contextual attribution

of performance.

In Section 1.1.2-1.1.5, we provide the background necessary to motivate the problem of

resource idleness, parallel overhead, memory access overhead, and the need for contextual

attribution. We develop solutions to address these problems in the subsequent chapters.

1.1.2 Underutilization of resources in parallel programs

The overall execution time of a parallel application is governed by its critical path length [239]—

the longest execution sequence without wait states. Clearly, short critical path is best. Load

imbalance causes many resources to idle waiting for a few (sometimes just one) working

processes to finish along the critical path. A key source of ine�ciency in parallel programs is

resource idleness. Shortening the parts of the critical path where several resources are idle

is key to better resource utilization. We mention in passing that emerging work schedul-

ing runtimes [37, 50, 73, 78] o↵er a rich set alternatives for better resources utilization for

program regions where the amount of parallelism exceeds the available resources (parallel

slackness). Current implementations of work scheduling schemes, however, typically have a

tight coupling with a language or a platform, which may incur higher overheads. Further-

more, legacy HPC applications, which typically employ multiple layers of libraries, program-

5

ming languages, and programming models, are harder to retarget to these work scheduling

runtimes.

Identifying the critical path in an execution is a key aspect in tuning parallel codes. There

are many prior e↵orts in tuning applications by identifying critical paths [23, 28, 51, 239], but

they rely on either heavyweight execution trace collection or simulation. Instrumentation

for execution trace collection can distort the true nature of the critical path. Another

common alternative, simulating a parallel execution, is fundamentally non-scalable. Rice

University’s HPCToolkit has already addressed idleness analysis with lightweight profiling

in homogeneous many-core CPU environments [137, 222, 223, 225].

Idleness is a major source of ine�ciencies in emerging heterogeneous architectures that

employ CPUs and GPUs. No prior e↵orts, however, have been made to assess idleness in

the heterogeneous CPU-GPU execution paradigm. Figure 1.1 is an execution trace of the

GPU accelerated version of LAMMPS [189]—a key molecular dynamics code. The x-axis

represents the time dimension. The y-axis represents activities on various compute resources.

The top row represents the CPU execution. The bottom two rows represent two concurrent

streams executing on a GPU. The gray color in the trace indicates idleness. Other colors

represent di↵erent functions being executed and imply useful work. The total utilization of

the GPU is the aggregated utilization of both streams.

In this code, the CPU and GPUs are used in a mutually exclusive fashion. As a result,

the execution exhibits a vast amount of resource idleness—both on the CPU and on the

GPU. Improper work partitioning, CPU throttling, operating system blocking, delays in

CPU-GPU communication, among others contribute to load imbalance and lead to idleness

in heterogeneous systems. All prior e↵orts in GPU performance analysis have focused solely

on identifying resources being excessively used, in line with the classical hot spot analysis

technique. To address this deficiency in state-of-the-art performance analysis, we need ef-

ficient profiling and tracing techniques that guide a developer to better understand hybrid

code executions and easily identify code regions best suited for tuning.

6

CPU

GPU STREAM

GPU STREAM

Time

Figure 1.1 : Execution trace of LAMMPS-CUDA code running on the Keeneland GPU compute
cluster [232]. Gray color in GPU stream indicates no work on the GPU streams. Gray color in
CPU indicates CPU idle waiting for GPU to finish. CPU and GPU executions are not overlapped
in time.

1.1.3 Synchronization overhead in parallel programs

Few real-world problems are embarrassingly parallel. Many real-world problems require

coordination and communication between parallel components. Synchronization by means

of barriers is essential to separate programs into di↵erent phases. Synchronization by means

of locks is equally necessary to ensure mutually exclusive access to a shared data.

Once serialization and load imbalance problems are identified and addressed in a parallel

program, the next cause of performance losses to consider is parallel overheads. Parallel

overheads are detrimental to the scalability of an application. Synchronization constructs

such as locks and barriers introduce parallel overheads. Parallel programs incur two kinds

of synchronization penalties that a↵ect parallel performance. They are:

Unnecessary synchronization: Large production software systems with several layers of

abstractions make conservative assumptions about lower layers of abstractions. In such

situations, synchronization in the form of fences and barriers are enforced on entry and

exit to each layer of the abstraction. Global barrier synchronization is expensive and

7

next = nxtask(-nproc,1)

// all local operations

call ga_copy(g_b, g_a)

call ga_destroy(g_b)

 

call ga_sync()

Chemistry Global Arrays ARMCITask mgmt

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

Comex

...

 Grp_Sync() // Entry
 Ops on local patch
 Grp_Sync() // Exit

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

MPI

Barrier()

...

...
Barrier()

Barrier()

Barrier()

...

...
Barrier()

Barrier()
...

...
Barrier()

...
Barrier()

...

...
Barrier()

...

Redundant

Redundant

Redundant

Figure 1.2 : An example of wasteful barrier synchronization in NWChem. Software layering and
API composition cause back-to-back barriers without intervening updates to shared data. Three
out of nine barriers are redundant.

scales poorly. Excessive synchronization, when it is not necessary, costs dearly to the

performance of a parallel program. Figure 1.2 shows an example of software layering

and API composition in NWChem [230]—a flagship computational quantum chemistry

code—where nine barriers are executed in four lines of the application code, of which

three barriers are redundant. To this day, few e↵orts have been made to pinpoint and

quantify the cost of unnecessary synchronization in production parallel programs.

Costly synchronization: The algorithm employed to implement a synchronization prim-

itive governs its runtime e�ciency. Wrong assumptions made by a synchronization

algorithm about the characteristics of an underlying hardware can cause performance

losses. For example, state-of-the-art locking mechanisms developed in the 1990s as-

sumed a flat memory hierarchy whereas modern multi-node multi-socket many-core

NUMA machines have a deep distributed memory hierarchy. Due to this mismatch

between algorithms and modern hardware characteristics, codes with highly contended

locks fail to deliver high throughput on NUMA machines.

8

We need a scalable and lightweight mechanism to pinpoint redundant barriers in pro-

duction parallel programs. In complex, layered software, one may not be able to eliminate

redundant synchronization by simple code refactoring; compiler-driven techniques also be-

come infeasible. For layered software systems, runtime introspection is often necessary to

eliminate redundant synchronization. In addition, the changing hardware landscape demands

revisiting locking algorithms designed for the previous generation of machines.

1.1.4 Memory accesses overhead in a thread of execution

For many programs, exposed memory latency accounts for a significant fraction of the

execution time. Memory access overhead can be classified into two categories 1) ine�-

cient memory accesses and 2) unnecessary memory accesses. A vast amount of literature

has already been dedicated to understanding and addressing ine�cient memory accesses,

e.g., [118, 133, 134, 135, 136, 138, 156, 237]. Unnecessary memory accesses cause waste-

ful resource consumption. In fact, unnecessary memory accesses, such as dead writes, are

a common source of performance problems. Causes for dead writes can be attributed to

the choice of algorithms and data structures, compiler optimizations, the overhead of ab-

stractions, and architectural characteristics, among others. The compiler literature is full of

optimizing computations and memory accesses. Procedure boundaries, compilation units,

aliasing, and aggregate variables, among others, hamper compiler optimizations. Similarly,

compilers may not eliminate context or flow-sensitive redundancies.

Developers need access to e�cient tools that can pinpoint and quantify wasteful resource

consumption at a fine-grained instruction-level. Few performance analysis tools have focused

on identifying wasteful resource consumption caused by unwanted computations or memory

accesses in an entire execution. Space and time overheads as well as imprecision in binary

analysis, pose formidable challenges to instruction-level profiling executions of long-running

production codes.

1.1.5 Performance variation of the same code in di↵erent contexts

The performance of a code fragment is often context dependent. Large software applica-

tions that employ several layers of libraries need performance attributed to their contexts to

9

main

land sea ice ocean atmosphere

MPI_Wait MPI_Wait MPI_Wait MPI_Wait

Figure 1.3 : A skeleton climate code. The wait routine can be called from various components
of the application. Performance attributed to the source along with its runtime calling context is
needed to pinpoint and understand problematic codes.

understand the code behaviors in di↵erent execution contexts. Furthermore, polymorphic

codes, such as C++ templates, demand contextual invocation information to decipher their

instantiation and runtime behavior. Figure 1.3 shows a skeleton climate code where di↵erent

components of the application call the MPI Wait routine. Precise calling context that leads

to a call to MPI Wait is needed to understand the context under which excessive idle waiting

is happening. Contextual attribution of performance metrics is critical both for providing

insightful feedback as well as for enabling valuable optimizations.

The performance of a code fragment not only depends on the context in which it executes

but also on the data objects referenced. The same code may exhibit di↵erent performance

traits based on the location and organization of the data objects that it accesses.

A recurring theme in this dissertation is attributing metrics to source contexts and data.

Prior work has successfully addressed the contextual attribution of performance to code

and data objects for sampling-based coarse-grained performance analysis tools [133, 224].

Performance attribution to code and data for instrumentation-based fine-grained performance

analysis tools, however, was left unaddressed. In fact, attributing performance to code

for every executed instruction was considered infeasible for long running programs due to

purported space and time overheads [69, 229].

Attributing metrics to code and data in context is useful not only in performance analysis

tools but also in tools for correctness and debugging. Software developers and researchers

need an open-source framework for attributing execution characteristics to calling context

and data in fine-grain monitoring tools.

10

1.2 Thesis statement

Production software systems su↵er from performance losses at multiple layers of the soft-

ware stack, primarily due to resource idleness, synchronization overhead, and memory ac-

cess overhead. As a result, software does not achieve top performance on modern hardware

architectures. Performance analysis tools that identify resource idleness, unnecessary syn-

chronization, and wasteful memory accesses, provide valuable insights for application tuning.

Performance-aware adaptive runtimes can eliminate unnecessary synchronization and en-

hance the e�ciency of necessary synchronization.

1.3 Contributions

It would be impossible in a single dissertation to o↵er a comprehensive treatment of all

aspects of performance analysis of software. Consequently, this dissertation o↵ers methods

to cover a significant aspect of each problem discussed in prior sections.

First, we develop e�cient performance analysis tools to diagnose systemic idleness in a

multi-component system such as CPU-GPU architectures. Second, we develop a technique

to alleviate the overhead of barrier synchronization in distributed parallel programs. Third,

we develop a novel architecture-aware mutual exclusion algorithm to make locks deliver high

throughput on modern many-core shared-memory NUMA machines. Fourth, we develop a

fine-grained profiler to pinpoint and quantify losses arising from redundant memory accesses.

Finally, we develop an open-source library for e�ciently attributing fine-grained execution

metrics to source and data in context.

More precisely, in this dissertation, we make the following contributions.

1. We present lightweight, scalable performance analysis techniques for GPU-accelerated

heterogeneous architectures. Tools that we developed using these methods have helped

identify bottlenecks in important applications as well as helped pinpoint hardware

anomalies on leadership-class supercomputers. The techniques developed are planned

to be included in the product roadmap of a leading accelerator manufacturer. Prior

to this work, “hot spot” analysis was the primary mode of performance analysis on

heterogeneous architectures [14, 81, 91, 148, 177, 213]; “idleness” analysis was limited

to homogeneous processor environments only [137, 222, 225].

11

2. We develop a lightweight technique to detect redundant barrier synchronization in

Partitioned Global Address Space (PGAS) programs. We demonstrate that redundant

synchronization is pervasive in a large modular scientific code base that employs PGAS-

style programming model. In addition, we develop an adaptive runtime system based

on a sound theory that can automatically elide barriers when possible. Prior to this

work, few, if any, e↵orts were made to elide redundant synchronization [3, 67, 105, 109,

192, 209, 210, 245, 246] in large production parallel programs.

3. We present a novel architecture-aware mutual exclusion algorithm (HMCS lock) that

makes better use of locality in multilevel NUMA architectures. The HMCS lock delivers

significantly higher lock throughput compared to state-of-the-art locking mechanisms

under high contention. We also build precise analytical modeling of various queuing

locks and provide proofs for throughput and fairness guarantees of the HMCS over prior

designs. An enhancement to the HMCS lock—the AHMCS lock—makes it dynamically

adapt to changing contention and deliver top performance under high, moderate, or

low contention. Our hierarchical and adaptive algorithm is an addition to the on-going

research on NUMA locks [62, 63, 72, 140, 143, 182, 191].

4. We show that wasteful memory accesses are is surprisingly common in complex software

systems. We present a novel, e�cient, and scalable, fine-grained analysis framework

that can pinpoint and quantify wasteful memory operations such as dead writes. In-

sights from this framework helped improve performance of various code bases by a

significant margin. The most relevant prior art in this area was a hardware-based

method [34]. Our software-based technique has inspired other researchers to explore

ine�ciencies caused by redundant computations and such [13, 236].

5. We present a novel approach for e�ciently maintaining fine-grained calling context, en-

abling analysis tools to attribute metrics to both calling context and data. We debunk

the myth that fine-grained attribution to calling contexts is infeasible. We developed

an open-source call-path collection library for Intel’s Pin [144] binary instrumenta-

tion framework. The library is an essential component for fine-grained monitoring

tools used for performance analysis and software correctness checking. Prior to this

12

work, attributing context to each executed machine instruction was considered infea-

sible [69, 229].

Some parts of this dissertation, such as idleness analysis and contextual attribution, de-

velop tools and techniques necessary to understand the performance of programs. Other

parts of this dissertation, such as redundant barrier elimination and hierarchical locks, de-

velop solutions that address performance problems.

Performance tools developed in this dissertation focus on resource idleness and wasteful

resource consumption. These tools address identifying performance losses arising from load

imbalance in parallel programs as well as wasteful memory operations. The adaptive runtimes

designed in this dissertation are useful for alleviating parallel overheads incurred due to 1)

unnecessary barrier synchronization on PGAS programs and 2) costly mutual exclusion on

NUMA machines.

The tools and techniques developed in this dissertation are not only useful but also

mandatory for bridging the performance chasm between the capabilities of the modern hard-

ware and the performance achieved by production software systems. Besides performance

analysis tools, the tools that help developers write correct parallel programs are of prime

importance. Infrastructure developed as part of this dissertation can serve as a foundation

for correctness tools [154] necessary for data race detection, memory leak detection, record

and replay of threaded programs, and vulnerability detection, among others.

1.4 Roadmap

The rest of this dissertation is organized as follows. Chapter 2 describes assessing the idle-

ness on heterogeneous architectures. Chapter 3 describes the barrier elision technique to

alleviate the overhead of redundant barrier synchronization. Chapter 4 describes the HMCS

and AHMCS locking protocols to alleviate the overhead of locks for NUMA architectures.

Chapter 5 describes a method to assess redundant memory accesses. Chapter 6 describes a

framework for fine-grain call-path collection—a recurring theme in this dissertation. Chap-

ter 7 discusses work related to our research. Finally, Chapter 8 summarizes our conclusions

along with some avenues for future work.

13

Chapter 2

Assessing Idle Resources in Hybrid Program
Executions

I never remember feeling tired by work, though

idleness exhausts me completely.

Sherlock Holmes

The most important aspect of performance tuning a parallel program is ensuring the work

is well partitioned to utilize all available resources. Load imbalance and program serialization

lead to poor resource utilization. Quantifying resource utilization in the homogeneous pro-

cessor environments has been extensively studied [22, 23, 28, 49, 51, 137, 222, 223, 225, 239].

Quantifying resource utilization in heterogeneous processor environments, however, had not

been well studied prior to this work. This chapter o↵ers a rich set of tools and techniques

for performance analysis of heterogeneous processor environments. We begin this chapter

with the motivation for GPU-accelerated architectures and the need for better performance

analysis techniques on such architectures. Subsequent sections, gradually develop our perfor-

mance analysis strategy for GPU-accelerated architectures and demonstrate the e↵ectiveness

of our methods.

2.1 Motivation and overview

GPUs have come of age for general-purpose computing. Emerging supercomputers are in-

creasingly employing GPU accelerators [176]. Not only do these GPU-accelerated systems

deliver higher performance than their counterparts built with conventional multicore pro-

cessors alone, but these accelerated systems also deliver improved power e�ciency [92]. The

increasing use of such GPU-accelerated systems has motivated researchers to develop new

14

techniques to analyze the performance of these systems.

To develop useful performance tools for GPU-accelerated systems, we needed to answer

two questions: 1) what data do we want to collect? and 2) how do we want to collect it?

To date, much of the work on performance analysis of heterogeneous architectures,

e.g., [91, 187, 213, 247], has focused on identifying performance problems in GPU kernels.

While identifying GPU kernel-level issues is important, this is only one aspect of the larger

problem. Whole application performance analysis is equally important for tuning large

GPU-accelerated applications. Such analysis requires a system-level view of performance

data. Hence, the data collection question reduces to deciding what kinds of system-level

analyses can best augment standard component-level profiling and tracing [17].

Studies by Luk et al. [145] and Song et al. [217] have demonstrated that dynamically

partitioning an application’s work between CPU and GPU is important for delivering high

e�ciency for a variety of applications. Similarly, Aji et al. [6] have demonstrated the sig-

nificance of application-wide tuning. By understanding the whole-application performance

behavior, Aji et al. enhance the overlap between CPU and GPU computations in large MPI

applications. These observations inspired us to develop an analysis technique to address the

work-partitioning issue. Evaluating the e↵ectiveness of an application’s work partitioning is

a systemic question. It is not easily addressed by focusing on individual components.

Most performance analysis tools that support GPU-accelerated architectures [81, 148]

have employed the classical hot spot analysis technique. As mentioned previously in Chap-

ter 1, the philosophy of hot spot analysis is to inform the user about code regions consuming

large amounts of resources such as CPU cycles. Any tool that focuses on hot spot analysis

can only quantify where a program spends its resources. Each component may have di↵erent

hot spots. In addition, in multi-component systems, identifying where resources are not used

is equally important for performance analysis. At best, hot spot analysis measures and re-

ports the symptoms of performance problems. Hot spot analysis does not necessarily guide

developers toward root causes of performance problems in GPU-accelerated applications.

The example shown in Figure 2.1 highlights this point in a heterogeneous environment. If

the CPU code executing during the interval labeled A cannot be tuned further, then im-

proving KernelM, a GPU kernel whose execution is overlapped with A, will not shorten the

15

A B

KernelM KernelN

w
a
it

wait

Hot spot analysis Blame shifting

40%5%

CPU

GPU

Timeline

Figure 2.1 : Here we consider a timeline for a hybrid program executing on both a CPU and a
GPU. While executing the code fragments A and B, the CPU spends a total of 45% of its time
waiting. Tuning the GPU KernelN has the potential for a larger reduction in execution time than
tuning the GPU KernelM. Hot spot analysis would identify KernelM, the longer of the two, as
the most promising candidate for tuning. Our CPU-GPU blame shifting approach would highlight
KernelN since it has a greater potential for reducing CPU idleness.

execution by more than 5%—the time the CPU sits idle awaiting the results of KernelM.

However, in the same application, the CPU sits idle for 40% of the execution awaiting the

completion of GPU KernelN; hence, tuning KernelN could reduce the execution time by up

to 40%. Hot spot analysis would point to KernelM as the most time-consuming GPU kernel

and thus fails to guide a programmer to KernelN. KernelN represents a better opportunity

for tuning. This problem is exacerbated in full applications with several kernels and more

complicated execution schedules.

To address the limitations of hot spot analysis, we supplement it with novel systemic idle-

ness analysis. Our idleness analysis identifies CPU code regions that cause GPU resources

to sit idle. Symmetrically, our approach also pinpoints GPU kernels that cause CPU cores

to sit idle. Moreover, our analysis quantifies the amount of idleness caused by each o↵ending

CPU code region or GPU kernel. Typically, this sort of systemic analysis would require

postmortem analysis of execution traces. Our analysis, however, requires only a profile. The

reason one can accomplish idleness analysis without traces is because of a technique that we

developed called CPU-GPU blame shifting. The key idea behind CPU-GPU blame shifting

is to transfer the blame for idleness in one part of the system to concurrent computation

elsewhere in the system to analyze how applications use the compute resources of heteroge-

16

neous architectures. In CPU-GPU blame shifting, we instantaneously blame code executing

on the non-idle resource (e.g., a kernel executing on a GPU) when a symptom of idleness is

detected (e.g., CPU waiting at a synchronization routine).

For the example shown in Figure 2.1, our blame-shifting strategy identifies GPU KernelN

as a promising target for tuning. Furthermore, our strategy quantifies that tuning KernelN

could improve performance by no more than 40%.

GPU-accelerated programs running on heterogeneous supercomputers face yet another

idleness problem. It is a common idiom in GPU programming to block a CPU until some

work o✏oaded to a GPU has finished. However, we noticed that such blocked system calls

do not often unblock long after the GPU has completed the work. On large clusters of

GPU-accelerated systems, such delays, introduced by stalls in blocked system calls, have

deleterious e↵ects on the overall performance of the system. In Single Program Multiple

Data (SPMD) programs, where all processes wait at a collective communication, a delay

introduced by one process because of a stall in its system call for its GPU work, delays

all processes participating in the collective communication. A stall is a special type of

idleness; unlike an idle resource, which has no work assigned to it, a stalled process causes a

resource to idle while waiting for the completion of an asynchronous task assigned to another

resource. Correctly identifying and quantifying this kind of performance problem required

us to determine when a given stall was caused by a blocking system call. Unlike the idleness

analysis previously described, our stall analysis requires traces. Lightweight traces collected

via sampling using HPCToolkit [2] enabled us to implement the stall analysis e�ciently.

CPU-GPU blame shifting and stall analysis complement each other and o↵er di↵erent

perspectives on idleness analysis. For large-scale applications, while CPU-GPU blame shift-

ing identifies idleness within a node1 (intra-node idleness analysis), our stall analysis identifies

idleness across nodes (inter-node idleness analysis).

Ideally, we would prefer a low-overhead sampling-based approach for data collection.

However, the sampling-based performance measurement on GPUs is either not supported

or unsatisfactory. As a result, we had to use instrumentation to allow sampling of GPU

performance data. What we developed is a sampling-driven approach. In our sampling-

1Section 2.6.5 details multiple processes sharing a node.

17

driven approach, CPU performance data is collected using asynchronous sampling, but the

sampling engine takes on the additional responsibility of inspecting GPU state information

maintained with instrumentation. We developed this more complex methodology primarily

to enable the blame-shifting idleness analysis described previously.

We note that both our analysis techniques and our sampling-driven measurement method-

ology are fully general. For the work described in this chapter, however, we implemented

our ideas to support analysis of CUDA [175] programs.

2.2 Contributions

This work on CPU-GPU blame shifting and the stall analysis, which appeared in the Proceed-

ings of the International Conference on High Performance Computing, Networking, Storage

and Analysis (SC’13) [43], makes the following contributions.

1. It proposes a sampling-driven CPU and GPU profiling as well as tracing of GPU-

accelerated systems,

2. It implements idleness analysis via CPU-GPU blame shifting as well as stall analysis

in HPCToolkit,

3. It demonstrates the utility of CPU-GPU blame shifting by identifying opportunities in

LULESH-1.0 [110, 111] code and improves its running time by 30%,

4. It demonstrates the utility of our monitoring approach by pinpointing an anomalous

GPU in a cluster of 100s of GPUs on the Keeneland supercomputing cluster) [232]—a

hybrid cluster with nodes that contain both multicore processors and GPU accelerators,

5. It demonstrates the utility of stall analysis by quantifying up to 18% performance loss

because of frequent stalls in large-scale executions of the LAMMPS code, and

6. It highlights the need for better performance analysis support from GPU vendors.

18

2.3 Chapter roadmap

The remainder of this chapter describes our analysis techniques and their sampling-driven

implementation in more detail. The chapter is organized as follows: Section 2.4 gives general

background plus a summary of specific work that forms the basis for our tool, Section 2.5

describes our general approach and further details our blame-shifting and stall analysis,

Section 2.6 sketches the details of our implementation, Section 2.7 describes case studies

that illustrate the e↵ectiveness of our techniques, and Section 2.8 ends with a discussion.

2.4 Background

In this section, we describe diverse areas that constitute the background needed for under-

standing this work. First, we introduce our terminology. Next, we present challenges for per-

formance measurement tools on heterogeneous systems. Then, we describe both NVIDIA’s

CUDA [175] programming model and NVIDIA’s CUPTI [173] performance tools interface.

Finally, we describe the open source HPCToolkit performance tools, which form the basis

of our work.

2.4.1 Terminology

We use the term heterogeneous to mean architectures that include both CPU and GPU com-

pute resources. We use the term hybrid to describe a code that executes in part on CPU(s)

and in part on GPU(s). A task is an asynchronous GPU activity, such as a kernel or a data

transfer. A task is outstanding when it has been enqueued for execution but not complete. A

task is active if it has begun execution but not complete. Profiling aggregates performance

metrics over time and attributes them to code regions. Tracing records execution events

in temporal order. For convenience, we refer to our GPU extensions to HPCToolkit as

G-HPCToolkit.

2.4.2 Measurement challenges on heterogeneous platforms

Heterogeneous systems today present several challenges for performance tools:

19

• Asynchrony: GPU activities run asynchronously with respect to the CPU and deliver

no notification when they start or end.

• Resource sharing: A GPU can execute tasks from multiple threads of a process, as

well as multiple MPI processes of an application simultaneously.

• Minimal infrastructure: Today’s GPUs lack hardware support for performance

monitoring using asynchronous sampling. Also, current APIs for GPU performance

measurement are missing several key capabilities needed to support whole program

analysis.

2.4.3 CUDA and CUPTI overview

NVIDIA’s CUDA programming model [175] enables programmers to express data parallel

computations and map them onto GPUs as tasks. On a heterogeneous architecture, after

launching an asynchronous task, a CPU thread can continue execution or immediately wait

for completion of the GPU task. CUDA applications manage concurrency through streams.

A stream is a sequence of tasks that execute in order on a GPU. Tasks from di↵erent streams

may interleave arbitrarily or run concurrently. CUDA events are lightweight markers in a

CUDA stream. Events can be queried to inquire about their completion. An event in a

stream may not complete until all tasks preceding it in the same stream complete.

NVIDIA’s CUPTI performance tools interface [173] is a framework that supports per-

formance analysis of CUDA codes. CUPTI provides the ability to collect GPU hardware

counter values. Unlike CPU hardware counters, GPU hardware counters do not deliver

an interrupt when they overflow. CUPTI supports attributing hardware counter measure-

ments to GPU activities by providing callbacks upon entry/exit of any CUDA API routine.

CUPTI’s Activity API can trace the execution of tasks. For each task that executes, it logs

a record that contains the task start and end times. Activity records can be examined only

at synchronization points. To this date, CUPTI has no means to instantaneously inform a

profiling tool when the following state changes occur:

1. When the GPU is busy executing an application task,

20

2. When the GPU is idle not working on any task,

3. When an outstanding task becomes active, and

4. When an active task finishes.

2.4.4 HPCToolkit overview

HPCToolkit [2] is an open source suite of tools that supports measurement, analysis, attri-

bution, and presentation of application performance for parallel programs. HPCToolkit

has three features that characterize its e�cacy for CPU programs. First, HPCToolkit

collects almost all performance data using asynchronous sampling of timer and hardware

counters, employing instrumentation only when unavoidable. HPCToolkit’s overhead

for performance data collection is typically less than 5% [224]. Second, HPCToolkit

attributes performance metrics to full calling contexts for CPU code. In addition, HPC-

Toolkit maintains these calling contexts in a compact Calling Context Tree (CCT) repre-

sentation [9], leading to compact profiles and small execution traces [221]. Third, by using

on-the-fly binary analysis, HPCToolkit works on multilingual, fully optimized, statically

or dynamically linked applications and supports a wide variety of programming models. This

on-the-fly binary analysis enables HPCToolkit to attribute costs to both an application

and its constituent runtime libraries without instrumenting either of them.

Prior to this work, HPCToolkit provided no support for analysis of hybrid codes. In

this chapter, we describe how we address that shortcoming via G-HPCToolkit.

2.5 New analysis techniques

To pinpoint bottlenecks in executions of hybrid programs, we augment HPCToolkit’s

standard profiles and traces with two new analysis techniques: idleness analysis and stall

analysis. Section 2.5.1 covers the idleness analysis. Section 2.5.2 covers analysis of stalls

caused by blocking calls to operating system services.

21

2.5.1 Idleness analysis via blame shifting

In hybrid codes, the execution schedule for CPU and GPU tasks governs tuning opportunities

and helps set performance expectations. When code regions are well overlapped, tuning just

one part provides little overall performance improvement if the other part is already well

tuned. For example, tuning a lengthy GPU kernel is unnecessary if the CPU only requires

its results long after completion of that kernel. Tuning code regions whose executions do

not overlap, however, can reduce the critical path and thereby improve the overall running

time. In hybrid codes, when a GPU is idle (symptom), CPU threads (cause) are responsible

for not keeping it busy with a su�cient number of asynchronous tasks. Similarly, when a

CPU thread is waiting (symptom) for GPU tasks to produce results, the active GPU tasks

(cause) are responsible for blocking the CPU thread from making progress.

Our approach for identifying causes of idleness in heterogeneous applications was inspired

by the blame shifting technique pioneered by Tallent et al. [225]. Tallent et al. were concerned

with lock contention. Their key insight was to attribute blame to lock holders for the idleness

of threads waiting for lock acquisition. We apply this idea of shifting blame for idleness

in one part of the system to concurrent computation elsewhere in the system to analyze

how applications use the compute resources of heterogeneous architectures. The result is

a strategy we call CPU-GPU blame shifting. In CPU-GPU blame shifting, we blame code

executing on the non-idle resource (e.g., a kernel executing on a GPU) when a symptom of

idleness is detected (e.g., CPU waiting for kernels to complete on an NVIDIA GPU using

cudaDeviceSynchronize). We quantify the causes of idleness as follows:

• CPU code regions that execute when a GPU is idle accumulate blame proportional to

the time the GPU was idle during their execution.

• GPU tasks that execute when a CPU thread is awaiting their completion accumulate

blame proportional to the time the CPU thread waited for their completion.

In practice, the wall clock time or cycles for which a resource is idle represents the source

of “blame”. Code region(s) that are frequently responsible for causing idleness accrue more

blame than other regions and thereby warrant the programmer’s attention. We characterize

hybrid codes with the metrics presented in Table 2.1.

22

Metric name Qualification
(when)

Context of attribution Quantification
(amount)

CPU IDLE (CI) CPU is waiting for
GPU

CPU code region e.g.
cudaDeviceSynchronize

Time spent waiting for
GPU

CPU IDLE CAUSE (CIC) CPU is waiting for
GPU

Launch contexts of active
GPU tasks (blame)

Time the task was active
when CPU was waiting

GPU IDLE CAUSE (GIC) GPU is idle CPU code regions (blame) Time when GPU was idle
GPU EXECUTION TIME (GET) Length of GPU task Launch context of the

GPU task
Time taken for the GPU
task

H TO D BYTES (H2D) Host to device data
xfer

Launch context of the
CPU-to-GPU data transfer

bytes transferred

D TO H BYTES (D2H) Device to host data
xfer

Launch context of the
GPU-to-CPU data transfer

bytes transferred

Table 2.1 : Metrics for performance analysis of hybrid codes. The Qualification column shows
when the attribution happens to a particular metric. The Context of attribution column shows
which code context accumulates the metric. The Quantification column shows how much

quantity is accumulated in the metric at a particular context. GPU IDLE CAUSE and CPU IDLE CAUSE

are the only two metrics that are computed using blame shifting.

CPU IDLE CAUSE (CIC) and GPU IDLE CAUSE (GIC) are the blame shifting (cause)

metrics. CPU IDLE (CI) is an idleness symptom metric. GPU EXECUTION TIME (GET),

H TO D BYTES (H2D), and D TO H BYTES (D2H) are useful hot spot metrics. Each metric

adds up to provide the total time spent in that state. We attribute each metric to a full

call-path; hence the programmer can easily identify inclusive and exclusive costs at each

level in the call-path. A key attraction of this technique is that the analysis and attribution

can be performed on the fly without having to record full execution traces.

Blame shifting precisely identifies the code that lies on the critical path in a two-

component system. In multi-component systems, however, blame shifting identifies a su-

perset of code on the critical path.

In this work, we focus only on CPU-GPU idleness. We do not consider the cases when a

CPU-thread is idle waiting for another CPU-thread or I/O activity. Also, in this dissertation

we do not explore gathering GPU hardware performance counter measurements of individual

kernels. HPCToolkit uses the CUPTI interface to gather GPU performance counter values

for individual kernels, which is not the key focus of our work.

2.5.2 Stall analysis

Our stall analysis technique detects when performance is degraded by undue delays in block-

ing system calls. Even if excessive blocking infrequently occurs in each process, it can

23

dramatically degrade the performance in parallel systems [188]. For example, suppose one

process is delayed because of a blocking system call. If the delay occurs before arrival at a

barrier, then the entire application must wait for the late arriver. We emphasize that we

are seeking sparse blocking phenomena. If most processes are delayed before arriving at a

barrier, this set of blocking events is not a candidate for stall analysis. Non-sparse blocking

phenomena are easily captured as part of blame shifting. Moreover, the sparse stall phe-

nomena may repeat many times while an application executes. Our stall analysis calculates

the cumulative e↵ect of such stalls. Unlike blame shifting, stall analysis is performed via

postmortem inspection of execution traces.

Detecting a sparse stall event consists of three parts listed below.

1. Detect that a stall has occurred in at least one process,

2. Confirm that the set of stalls for the given time interval is sparse, and

3. Confirm that the sparse set a↵ects the performance of the full application.

To detect that an undue delay in a blocking system call has occurred in a given trace,

we rely on a regularity property of time-based periodic sampling—samples should occur at

regular intervals. While small variations in the length of sampling intervals is normal, any

“significant” lengthening of the time intervals between samples indicates that the periodic

timer interrupts are not being reported by the OS, which means that blocking has occurred

in that interval.

To determine when a given interval in a trace is unusually long, we find the median

interval span in the given trace. We mark a span as unduly long if its length is more than 10

times the median. This technique is a heuristic that worked for us. Other heuristics, such

as Manhattan distance used by Google-wide profiling [196], would also yield useful results.

To determine if a given unduly long interval is part of a sparse set, we count the total

number of unusually long intervals in each trace that occur within the same time interval.

If less than 10% of the traces have unusually long intervals for the time period in question,

then we consider this set of unusually long intervals to be a sparse set.

Finally, to determine if a sparse set a↵ects overall system performance, we check the

calling context of each sample in the set of traces that are not in the sparse set. If each

24

sample has a barrier or collective operation in the calling context, then the sparse set meets

all the criteria to be deemed an unusually long stall. We acknowledge that the 10x median

rule for “unusually long” and the less than 10% rule for classifying a set as sparse are ad hoc.

These should be tunable parameters. In our prototype, however, we restricted ourselves to

the aforementioned thresholds.

To quantitatively assess the cumulative impact of all unusually long stalls, we merge

delays from two or more processes that have overlapping stalls and consider it as one larger

stall starting at the earliest start time and ending at the latest end time of the overlapping

stalls. It is easy to accomplish this by using interval trees to compute the union of the

overlapping time ranges. The aggregate value of non-overlapping time ranges accumulated

in the interval tree provides the total system-a↵ecting blocking time and its ratio with respect

to the total execution time of the program provides the percentage of time the execution

was impacted due to blocking system calls.

2.6 Implementation

We organize the implementation details of our idleness analysis as follows: Section 2.6.1

describes a basic mechanism for our implementation of CPU-GPU blame shifting. Sec-

tion 2.6.2 details a strategy to accommodate blame shifting inside a CUDA call. Sec-

tion 2.6.3–2.6.5 gradually develop CPU-GPU blame shifting for multi-stream, multi-thread,

and multi-process shared GPU configurations. Finally, Section 2.6.7 describes support for

GPU tracing in HPCToolkit. In the rest of this chapter, we use the terms “CPU-GPU

blame shifting” and “blame shifting” interchangeably.

2.6.1 Basic CPU-GPU blame shifting

G-HPCToolkit employs sampling-based performance measurement of code running on

each CPU core in combination with lightweight instrumentation of GPU operations imple-

mented using NVIDIA’s CUDA programming model [175]. In this subsection, we sketch

the details of sampling-driven blame shifting in the simplest setup, where the execution

involves only a single-threaded CPU process along with one GPU steam. Figure 2.2 pro-

25

Application

CUDA API Override

CUDA Runtime

GPU

H
P
C
T
o
o
l
k
i
t

CPU

Synchronous

Asynchronous

Callstack sampling

CUDA event sampling

Legend

interrupt

Figure 2.2 : Schematic diagram of G-HPCToolkit with asynchronous sampling of CPU and
instrumentation of CUDA APIs to support sampling of GPU activities. A CPU interrupt (sample)
causes the HPCToolkit to asynchronously query the status of outstanding GPU tasks. A few
GPU APIs called from a CPU thread also invoke the HPCToolkit to synchronously query the
status of outstanding GPU tasks.

vides a schematic view of G-HPCToolkit. To monitor asynchronous tasks on NVIDIA

GPUs, we use a two-part technique. First, we insert CUDA events before (“start”) and after

(“end”) all GPU task launches. This technique is similar to the “Event Queue Method”

independently developed by Malony et al. [148]. Inserting these events requires instrument-

ing CUDA task-launch functions. While CUPTI provides suitable instrumentation hooks,

our implementation wraps CUDA’s kernel launch API using library interposition [164]. In

addition, we wrap functions that manage streams, allocate memory, move data, or perform

synchronization. We chose this method to circumvent host-thread serialization that occurs

when using pre-5.0 versions of CUPTI.

The second part of our two-part technique involves querying the status of these events.

Querying takes place periodically when a CPU sample occurs. At any time, we infer that

a task is active if its “start” event is complete but its “end” event is incomplete. A task

is complete if its “end” event is complete. Querying can happen either during sampling or

inside one of the CUDA-functions we wrap. The time elapsed between the completion of

the “start” and “end” events surrounding a task, provides a close estimate of the execution

time of that task. It is worth mentioning that events, in addition to a complete/incomplete

26

...

Calling Context Tree

StreamQs data structure

Oldest outstanding
task in the stream

Chain of active streams

Newest outstanding
task in the stream

head

head

tail

tail

Figure 2.3 : Data structure used to maintain the association between GPU tasks and CPU
contexts.

boolean flag, carry a completion timestamp, which can be queried any time after event

completion. To confirm the accuracy of our technique, we compared the deviation in kernel

timings as measured by CUDA events vs. CUPTI’s Activity API, for 26 unique kernels in

the LULESH 1.0 [110] benchmark. At the sample rate of one per millisecond, the geometric

mean of percentage deviations from the precise data collected via CUPTI’s ActivityAPI [173]

over all the LULESH kernels was ⇠1%, which we deem acceptable.

We store the “start” and “end” events of each task, along with a pointer to the call-

path that launched the task, in an auxiliary data structure that we call StreamQs. G-

HPCToolkit’s StreamQs data structure, shown in Figure 2.3, is an array of queues, where

each queue represents the tasks issued on a GPU stream. The head and tail of each queue

in StreamQs represent the oldest and newest outstanding tasks issued on that stream re-

spectively. A new GPU task can be enqueued at the tail of a queue in constant time. On

each sampling event that happens on a CPU thread, the CPU queries the completion status

of the “end” event of the task at the head of each active stream, which can be accessed in

constant time. If the “end” event is complete, the query moves forward through the list

until it reaches an incomplete event in that stream. StreamQs may be accessed and up-

dated synchronously or asynchronously by all threads in a process. Synchronous accesses

happen during the execution of instrumentation inserted inside wrapped functions, whereas

asynchronous accesses happen during sampling interrupts.

27

s KL e

Ks e

Overlap
device
Sync

CPU
only

CPU idle

GPU idle

T1 T2 T3

query(e)

query(e)

query(e)

query(e)

no query

S1 S2 S3 S4 S5 S6

Blame

C
PU

G
PU

Stream

no query
Figure 2.4 : Proxy-based GPU sampling. Current generation GPUs do not deliver samples,
unlike CPUs. To sample GPU activities, G-HPCToolkit relies in the periodic samples taken
by CPU threads. On each CPU sample, G-HPCToolkit queries the GPU to infer the status of
outstanding tasks.

Figure 2.4 sketches our approach for sampling-based performance analysis of GPUs, for

a single CPU-thread and a single GPU-stream case. We use the StreamQs data structure to

help transfer blame to the appropriate CPU and GPU contexts. Let the calling context at a

point P in CPU execution be represented as c(P). Let the calling context for the CPU-side

launch point of a GPU task K be represented as c(K
L

). At c(K
L

), in Figure 2.4, G-

HPCToolkit inserts the start event s and end event e surrounding the task K through the

wrapped cudaLaunch API. A new node < s, c(K
L

), e > is enqueued into a queue representing

the appropriate stream in the StreamQs data structure.

At time T
1

, the CPU starts to execute the code marked as overlap concurrently with

kernel K on a GPU stream. On interrupts S
1

and S
2

during this interval, G-HPCToolkit

queries the status of the end event e for the oldest outstanding task K and infers that K is

active in this interval. Therefore, no blaming occurs during this stage.

At time T
2

, CPU calls cudaDeviceSynchronize to wait for the completion of tasks.

G-HPCToolkit’s wrapped version of the function sets a thread-local flag (isAtSync) in-

dicating that the CPU thread is idle. The blame attribution in this region follows the

deferred blame-shifting strategy discussed in Section 2.6.2, which leads to blaming kernel K

with the amount (T
3

� T
2

) as the cause of CPU wait time. This attribution increments the

CPU IDLE CAUSE metric for c(K
L

) by (T
3

� T
2

).

28

At T
3

, the return from cudaDeviceSynchronize causes G-HPCToolkit to query e and

infer the completion of task K, thereby dequeueing it from StreamQs. Also, we unset the

isAtSync flag indicating that the CPU is active. Sampling at S
5

notices no outstanding

GPU-tasks and declares the GPU idle. Samples taken at S
5

and S
6

, blame their respec-

tive CPU contexts for keeping the GPU idle, which is accomplished by incrementing their

GPU IDLE CAUSE metric.

2.6.2 Deferred blame shifting

To sample GPU events, G-HPCToolkit needs to call cudaEventQuery from within a

signal handler. When an asynchronous sample occurs, if the CPU thread is inside a CUDA

API function such as cudaDeviceSynchronize that already holds a CUDA runtime lock,

then calling cudaEventQuery will cause it to attempt to acquire the same lock leading to a

deadlock. Nvidia foresees no remedy for the deadlock to support GPU sampling.

To avoid deadlock in the aforementioned circumstance, we devised a technique that we

call deferred blame shifting. In deferred blame shifting, when an asynchronous sample occurs,

if the thread is already inside a CUDA call, which can be inferred by inspecting isAtSync

flag, G-HPCToolkit’s timer interrupt handlers do not query whether any outstanding

tasks are complete and hence the profiler remains in a blind spot with respect to GPU

activities. In the example in Figure 2.4, the time interval between T
2

to T
3

is a blind spot.

On returning from a CUDA API call, the wrapped function examines outstanding GPU tasks

in each active stream of the StreamQs data structure looking for ones that are complete and

proportionately blames them for causing the CPU idleness. The ability of events to record

completion timestamps for a later query comes in handy here.

To illustrate the deferred blame shifting mechanism, consider Figure 2.5. From time

Sync
s

to Sync
e

, our tool cannot inquire about GPU activity. Just before returning from

the wrapper for cudaDeviceSynchronize, however, we query for the completion of K1 and

K2. We increment the CPU IDLE metric by (Sync
e

� Sync
s

), attributing the idleness to the

CPU context that called cudaDeviceSynchronize. Having obtained the start and end times

of K1 and K2, we now blame CPU idleness (by incrementing CPU IDLE CAUSE metric) at

c(K1
L

) for the amount (T
2

� Sync
s

) and c(K2
L

) for the amount (T
3

� T
2

). The blame for

29

cudaDeviceSynchronize

K2K1

SyncS Synce

Timeline

ActiveActive

T1 T2 T3

CPU

GPU

Figure 2.5 : Deferred blame attribution: A technique to attribute blame to GPU kernels when
CPU is inside a blind spot such as cudaDeviceSynchronize.

the (Sync
e

� T
3

) interval is still unattributed—both CPU and GPU are idle here. We note

that this part of the idleness is the delay between the end of GPU activity and the return

from the CUDA synchronization call waiting on it. In our blame-shifting methodology, we

consider this delay to be primarily GPU idleness, and we blame it on the CPU context calling

cudaDeviceSynchronize. A later case study in Section 2.7.1 with LULESH demonstrates

a scenario where such a situation arises with cudaFree.

2.6.3 Blame shifting with multiple GPU streams

When concurrent kernels are active on multiple streams, CPU idleness is apportioned across

all active kernels. Consider the situation shown in Figure 2.6, where the CPU thread is idle

from time Sync
s

to Sync
e

. Three kernels K1, K2, and K3 overlap with this region. Here, the

CPU launches K1 on stream 2, K2 on stream 1, and K3 on stream 2, in that order before going

into a wait via cudaDeviceSynchronize. Blame attribution for each kernel is as follows:

• Blame on K1 = (↵) + (�
2

). ↵ represents the part of K1 solely responsible for keeping

the CPU idle; � represents the part of K1 overlapped with K2, and hence both kernels

share the blame.

• Blame on K2 = (�
2

) + (�) + (�
2

). The first term represents the part of K1 overlapped

with K2, and hence the blame is shared. The second term represents the part of K2

solely responsible for keeping the CPU idle. The third term represents the part of K2

overlapped with K3, and hence the blame is shared again.

30

cudaDeviceSynchronize

K2

K1 K3

K1s K1e K3s K3eK2s K2e

SyncS Synce

Timeline

- ! - - " - - # - - $ -- % -

Stream 1

Stream 2

CPU ActiveActive

Figure 2.6 : Blame attribution with multiple streams.

• Blame on K3 = (�
2

) + (✓). The first term represents the part of K3 overlapped with

K2, and hence the blame is shared. The second term represents the part of K3 solely

responsible for keeping the CPU idle.

As before, the delay in return from synchronization (Sync
e

�K3
e

) is regarded as GPU

idleness and blamed on the CPU.

The technique can be implemented in O(n log n) time complexity by sorting the start

and end times of all tasks overlapped in a blind spot, where n is the number of active tasks

in the blind spot.

Di↵erent CUDA synchronization APIs have di↵erent properties. For example,

cudaDeviceSynchronize waits for all streams to finish; when this API is invoked, we blame

CPU idleness on kernels on all streams. On the other hand, cudaStreamSynchronize waits

for a particular stream to finish, in which case we blame tasks active only within the stream

being waited.

2.6.4 Blame shifting with multiple CPU threads

In multi-threaded processes, two cases need to be handled. First, each thread independently

blames its CPU context when it observes GPU inactivity. Second, if multiple threads are

waiting for one or more GPU kernels to finish, each thread independently blames each kernel

that caused its idleness by the amount proportional to that thread’s wait time. Multi-thread

31

and multi-stream are composable. The ability to share StreamQs helps us achieve blame

shifting easily in multi-threaded applications.

2.6.5 Blame attribution for shared GPUs

Software on supercomputers supports running multiple MPI ranks per node sharing a single

GPU. Processes do not have a global view of GPU utilization when the same GPU device

is shared by multiple MPI ranks, because of di↵erent address spaces. In such scenarios,

a GPU is idle if and only if none of the processes sharing the same GPU have any out-

standing kernels scheduled on the GPU. To correctly identify GPU idleness, we introduce

shared counters (numOutstandingTasks), one per physical GPU on a node. The shared

counters are allocated in a shared memory segment created using the shmem capability in

Linux. Each time a task is issued to a GPU, the numOutstandingTasks counter associated

with that physical GPU is atomically incremented; the counter is atomically decremented

when the task finishes. If the numOutstandingTasks is non-zero, then the GPU is busy

on behalf of some process. G-HPCToolkit will not blame the CPU code on any of the

processes sharing the same physical GPU if the associated numOutstandingTasks counter

is non-zero. Similarly, to blame CPU idleness on a GPU task issued by other processes

sharing the same physical GPU, we employ another shared counter (numIdleThreads). The

numIdleThreads counter is atomically incremented/decremented on entry/exit to/from an

idle region (e.g.,cudaDeviceSynchronize) by each CPU thread. During execution of a task

K, its launching process inspects the numIdleThreads counter associated with the physi-

cal GPU on which K is running and proportionally blames K for keeping other processes

(sharing the same physical GPU) idle.

2.6.6 A limitation of current implementation

A known limitation of using events for time measurement is the following: consider two

kernels, K1 and K2, along with their start and end events <s1, K1, e1> and <s2, K2, e2>

on two di↵erent streams. Let the kernels execute serially, and let the interleaving order be

s1, s2, K1, e1, K2, and e2. In such cases, G-HPCToolkit can be fooled into assuming

that K1 and K2 executed concurrently.

32

2.6.7 Lightweight traces for hybrid programs

Profiling collects aggregate metrics of execution. Profiling does not capture the time-varying

behavior of an execution. It is important to capture the temporal behavior of a program to

identify bottlenecks such as serialization.

Tracing involves recording events with timestamps to analyze how an execution unfolds

over time. G-HPCToolkit traces CPU-side execution by leveraging the existing infras-

tructure in HPCToolkit [221]. To monitor CPU activity, HPCToolkit logs a trace

record each time a thread receives an asynchronous sample. HPCToolkit’s traces consist

of a sequence of records, where each record contains a timestamp and the index of a node in

a CCT. The path from that node to the root of the CCT represents a full calling context.

Each call-path is stored only once in the CCT. Because of compact trace representation,

the size of HPCToolkit’s trace for a thread is proportional to the number of samples it

receives during execution.

In contrast to the sampling-based traces HPCToolkit logs for CPU activity, we trace

GPU activities by logging records (time and calling context pairs) at the beginning and end

of GPU tasks on each CUDA stream. At present, all tasks on a stream are logged into a trace

bu↵er when we notice their completion. Using this approach, the volume of GPU traces for

an application is proportional to the number of GPU tasks the application executes. When

GPU tasks complete at a rate higher than a chosen sampling rate, we could reduce trace

sizes by dropping information about some GPU activities and logging tasks only at a rate

proportional to the sampling frequency. A technique we envision is to record only the most

recently finished activity on each stream in StreamQs into our traces and drop others that

might have finished between the last sample and the current sample. This technique would

result in sampled traces analogous to those HPCToolkit records for CPU activity. It is

worth noting that blame shifting is agnostic to trace collection and hence it is una↵ected if

we drop trace records.

Compared to other tracing tools, our traces are both rich and lightweight. They are rich

in the sense that each trace record represents a full calling context. Our trace records enable

us to analyze and visualize an execution at multiple levels of abstraction, i.e., di↵erent call-

33

path depths. Our traces are lightweight in the sense that each trace record itself is compact

(only 12 bytes). Our approach of using the index of an out-of-band CCT node to represent

the calling context for a trace record enables us to avoid tracing procedure entry and exit

events to recover calling context. For GPU-accelerated program executions, HPCToolkit’s

hpctraceviewer graphical user interface presents a trace line for each CPU thread and each

GPU stream. For an MPI program, hpctraceviewer presents such a set of trace lines for

each MPI rank.

2.7 Evaluation

In this section, we apply G-HPCToolkit to several examples to evaluate its e�cacy and

runtime overhead. To test the e�cacy of our techniques, we followed an uniform analysis

methodology. For each test case, we profiled it using G-HPCToolkit with CPU-GPU

blame shifting activated. Also, we collected traces each time. If the insights gained from

these techniques pointed to an opportunity for improvement, we implemented it. If no

solution was apparent but the evidence suggested delays related to blocking system calls,

then we ran our stall analysis to confirm (and quantify) the e↵ect of these delays.

In Sections 2.7.1–2.7.3, we present case studies that demonstrate unique insights that

G-HPCToolkit provides. In Section 2.7.4, we give a preliminary (essentially anecdotal)

evaluation of the monitoring-time overhead of G-HPCToolkit. We performed most of our

experiments on Georgia Tech’s Keeneland Initial Delivery System (KIDS) [232], which is a

120-node HP SL-390 cluster with a Qlogic QDR InfiniBand interconnect. Each node has

two Intel Xeon X5660 hex-core CPUs, 24GB memory, and three NVIDIA M2090 GPUs. We

also performed some experiments on ORNL’s Titan—a Cray XK7 supercomputer. Titan

has 18,688 compute nodes linked by Cray’s Gemini interconnect. Each compute node has a

16-core AMD Interlagos processor and an NVIDIA Tesla K20X GPU.

2.7.1 Case study: LULESH

As part of DARPA’s UHPC program, Lawrence Livermore National Laboratory developed

the Livermore Unstructured Lagrange Explicit Shock Hydro dynamics (LULESH) mini-

34

application [110, 111]. LULESH is an Arbitrary Lagrangian Eulerian code that solves the

Sedov blast wave problem for one material in 3D. In this section, we study the CUDA-

accelerated version of LULESH 1.0. Analysis of executions of CUDA-accelerated version of

LULESH 1.0 with G-HPCToolkit provided us with the following insights:

• The CPU is idle 62% of the wall clock time, and 86% of that time is spent inside

cudaFree,

• The GPU is idle 35% of the wall clock time. cudaFree and cudaMalloc called from

various contexts account for 48% and 47% (a total of 95%) of GPU idleness respectively,

and

• There is negligible overlap between the CPU and GPU.

Examining the code regions causing CPU idleness (not shown) and GPU idleness (shown

in Figure 2.7) using HPCToolkit’s hpcviewer provides a clue that the developer used

cudaFree as a synchronization construct analogous to cudaDeviceSynchronize in addition

to using it to free the allocated device memory. The pattern of repeatedly allocating and

freeing device memory was pervasive in the code and was executed several times in each time

step. When sorted by the GPU IDLE CAUSE metric, hpcviewer pinpointed the call sites that

repeatedly invoked cudaFree and cudaMalloc as the root causes of GPU idleness.2 NVIDIA

engineers confirmed that cudaFree has undocumented dual functionality i.e., it performs

cudaDeviceSynchronize waiting for all tasks on the GPU to finish, followed by freeing

the memory [58]. The CPU-side wait during the synchronization point for the completion of

kernels is the primary cause of CPU idleness, however after synchronization, the CPU is busy

freeing the device memory during which the GPU is idle. Similarly, repeated cudaMallocs

are also a cause of GPU idleness. Small amounts of GPU idleness scattered across tens

of cudaFree/cudaMalloc calls in each iteration add up to contribute ⇠30% GPU resource

idleness. The blame shifting quantifies the expected speedup by eliminating this idleness to

be ⇠30%.

2In the figure, we show only the top most contributors, but there are other places where the pattern
repeats.

35

Figure 2.7 : Code-centric view of LULESH with hpcviewer. The blame shifting metric
GPU IDLE CAUSE pinpoints cudaMalloc and cudaFree called from various locations in the program
as responsible for vast amounts of GPU idleness.

Figure 2.8 shows LULESH’s pattern for allocating device memory as a function of time.

In each time step, at each allocation site, exactly the same amount of device memory is allo-

cated and freed. To eliminate GPU idleness caused by repeated device memory management

calls, we hoisted them all outside of the main time step loop. There, we allocated a su�cient

number of blocks of su�cient size to meet the peak memory demand. Finally, to replace

the synchronization that cudaFree provided, we explicitly called cudaStreamSynchronize.

This optimization—hoisting, pre-allocation, and explicit synchronization—reduced the run-

ning time for LULESH by 30%. We reiterate that G-HPCToolkit’s GPU IDLE CAUSE

metric identified calls to cudaFree in the application code. Besides the running-time benefit,

36

Time step 1 Time step 2 Time step 3 Time step 4

Figure 2.8 : LULESH device-memory allocation graph. Exactly the same amount of GPU memory
allocated and freed in a fix pattern in each time step.

Order by Kernel CPU IDLE TIME GPU EXEC TIME Rank if sorted by
CPU IDLE CAUSE µ sec µ sec (% of total) GPU EXEC TIME

1 CalcFBHourglassForceForElems 2.31e+06 2.31e+06 (23.9%) 1
2 CalcHourglassControlForElems 8.49e+05 1.10e+06 (11.4%) 4
3 IntegrateStressForElems 6.73e+05 6.76e+05 (7.0%) 5
4 AddNodeForcesFromElems2 4.16e+05 4.16e+05 (4.3%) 6
5 AddNodeForcesFromElems 3.88e+05 3.88e+05 (4.0%) 7
6 CalcKinematicsForElems 3.17e+05 1.74e+06 (18.0%) 2

Table 2.2 : Blame shifting vs. hot spot analysis for LULESH kernels.

the optimizations improved LULESH’s GPU utilization from 65% to 95%. LLNL researchers

had independently identified the same performance bottlenecks and admitted a large manual

e↵ort in doing so, whereas with CPU-GPU blame shifting, we systematically and automati-

cally identified performance issues in a fraction of time and e↵ort for an unfamiliar code.

Table 2.2 shows the top six kernels of LULESH ordered by their cause for CPU idleness

(CIC metric). The table also shows their GPU execution time (GET metric) and what would

have been their rank order (last column) had they been ordered by GET—a hot spot analysis

metric. It is worth observing that the two orderings are quite di↵erent. In particular,

note that the 2nd rank kernel (CalcHourglassControlForElems) in the blame-shift ordering

appears as the 4th rank in the hot spot ordering. This ranking discrepancy tells us that the

CalcHourglassControlForElems kernel (ranked 2nd by blame shifting) is a more promising

candidate for tuning than the CalcKinematicsForElems kernel (ranked 2nd by hot spot

analysis).

37

2.7.2 Case study: LAMMPS

LAMMPS [189] is a molecular dynamics code developed by Sandia National Laboratories

that simulates biomolecules, polymers, materials, and mesoscale systems. The principal

simulation computations in LAMMPS are neighbor calculation, force calculation, and time

integration. LAMMPS is parallelized using spatial-decomposition techniques. LAMMPS

employs MPI as the distributed computation infrastructure. LAMMPS-GPU [29] is an

accelerated version that o✏oads neighbor and force computations to GPUs while performing

time integration on CPUs.

In Section 2.7.2.1 we describe how G-HPCToolkit helped us identify a GPU hardware

problems on KIDS. Also, in Section 2.7.2.2 we demonstrate G-HPCToolkit’s capabilities

for pinpointing scalability losses.

2.7.2.1 Pinpointing hardware performance problems

Figure 2.9 shows G-HPCToolkit traces from a 64 MPI process execution of LAMMPS-

GPU for the Lennard Jones (LJ) benchmark. Each GPU is shared by two processes. Each

process has two GPU streams. We filtered the results to show only one GPU stream of

each process. A high-level view of the traces shows anomalous behavior on GPU streams

associated with two of 64 MPI ranks. Zooming in on these two processes (MPI processes 24

and 25), shows that their host-device data transfers were significantly slower than those of

their peers (MPI processes 23 and 26). However, their kernel executions were comparable.

Metrics for data copies between host and device (H2D and D2H) for these MPI ranks indi-

cated no di↵erence in the data transfer volume compared to other ranks. This investigation

indicated that there might be a hardware problem with the PCI-e bus linking the CPU

and GPU on that node hosting those ranks. The KIDS system administrators confirmed

that our job was scheduled on the node kid058 that was delivering low PCI-e bandwidth

because of an improperly seated GPU. These two slow processes were in turn slowing down

the entire execution since other processes needed to wait for their results at the end of each

time step. G-HPCToolkit’s lightweight traces in conjunction with the data copy (H2D

and D2H) metrics highlighted the anomalous behavior of the malfunctioning hardware.

38

cuMemcpyH2DAsync

kernel_pair_fast

cuMemcpyH2DAsync

MPI Rank 23

MPI Rank 24

MPI Rank 25

MPI Rank 26

Time

64
 M

PI
 R

an
ks

Figure 2.9 : Slow GPUs delaying LAMMPS on KIDS. MPI ranks 24 and 25 are assigned to a
GPU that is delivering low PCI-e bandwidth. Hence, the data transfers on ranks 24 and 25 are
significantly slower compared to their peer MPI ranks 23 and 24. Kernel executions, however, are
not very slow on the a↵ected GPU.

2.7.2.2 Pinpointing scalability limiting factors

Figure 2.10 represents the traces from a 64 MPI process execution of LAMMPS-GPU for the

LJ benchmark. In this figure, we filtered all GPU traces and retained only CPU timelines.

The left-side of the trace represents the initialization phase, and the right-side shows the time

step loop phase. The initialization phase shows that certain processes (e.g., processes on node

kid047) have a short (⇠600ms) cuInit phase and enter MPI Allreduce waiting for other

processes (e.g., processes on node kid043) that take much longer (⇠7s) to finish their cuInit

phase. Here, slow cuInit on some nodes is delaying all processes. When we compared

32 vs. 64 MPI-processes strong scaling LAMMPS-GPU executions in G-HPCToolkit,

we observed a 21% scalability loss attributed to MPI Allreduce waiting for cuInit, using

39

kid047
kid089
kid009
kid007
kid029
kid032
kid111
kid043
kid023
kid021
kid067
kid041
kid096
kid090
kid020
kid019
kid017
kid016
kid006
kid027
kid071
kid033

64
 M

PI
 R

an
ks

Time

Initialization Time step loop

MPI_Allreduce()

cuInit()

Legend:

Figure 2.10 : cuInit delaying MPI Allreduce in LAMMPS. Some nodes, such as kid043, are
several orders of magnitude slower in performing the initialization via cuInit API. MPI Allreduce

called soon after cuInit causes processes to stall for late arrivers.

HPCToolkit’s di↵erential profiling capabilities [53]. Repeated runs and microbenchmarks

confirmed a systematic problem in cuInit on the same set of nodes. KIDS administrators

reported that GPU power capping was enabled on some nodes. Subsequent system upgrades

resolved the issue.

2.7.3 Stalls on Titan and KIDS

For our Titan case study, we again chose LAMMPS-GPU as our sample program. We ran

LAMMPS-GPU on Titan using 1024 MPI ranks. Our blame-shifting idleness analysis showed

no glaring algorithmic problems, but it weakly hinted at a problem with MPI Allreduce. To

investigate that problem, we looked at the lightweight traces.

Figure 2.11 highlights a typical iteration (one of many) that su↵ered an unexpected

40

10
24

 M
PI

 R
an

ks
 (

no
t

al
l s

ho
w

n)

Time

Processes waiting at
MPI_AllReduce Process (uselessly)

blocked in
cudaThreadSynchronize

Typical
MPI_AllReduce

Typical length of
cudaThreadSynchronize

Figure 2.11 : Blocking of CUDA synchronize operations on Titan in LAMMPS. Sporadically,
some processes take unusually long time to return from a blocking CPU-GPU synchronization call.
An MPI Allreduce following the blocking synchronization call is delayed on all processes because
of a few late arrivers.

delay. Visual inspection of the problematic MPI Allreduce instances showed that one or

two of the preceding CUDA synchronize operations took a substantial time. Since a single

rank behaving poorly can sabotage an MPI collective operation, we focused on the suspicious

CUDA synchronize operations. At first, we suspected a hardware problem. This hypothesis,

however, was easily ruled out as it was never the same MPI rank behaving badly. Further

inspection of the trace data confirmed that the CPU samples were sparse during the o↵ending

stalls. The absence of samples typically indicates a system call that blocked. Our stall

analysis confirmed this. Furthermore, by inspecting the GPU traces, we noticed the GPU

activity to which the CPU was synchronizing, had already completed. Hence, the extended

waiting time was a waste. Our stall analysis also quantified the cumulative delay. While the

41

Num MPI ranks 128 256 512 1024
Time wasted in OS stalls 1.3% 1.9% 18.4% 17.4%

Table 2.3 : Time wasted in OS stalls in LAMMPS on Titan supercomputer.

delay was relatively minor for each instance of MPI Allreduce, the cumulative slowdown

was about 17%.

The next question we considered was the scaling consequences of the phenomenon. The

study shown in Table 2.3 indicates a scaling problem. There is a significant jump when

moving from 256 MPI ranks to 512 MPI ranks.

The next step in tracking down causes was to run LAMMPS-GPU on KIDS to see

if we could observe the phenomenon on a di↵erent platform. On KIDS, for a 128-rank

configuration, we observed the analogous stall again, but the cumulative time wasted showed

more variation — between 10% and 30%.

Since the blocking stalls occur on two separate platforms, we next questioned whether

this phenomenon was peculiar to LAMMPS-GPU. To answer this question, we constructed a

“proxy” app that just launched some GPU kernels, called CUDA synchronize, and then did

a reduction. The proxy app showed the same random blocking stalls exhibited by LAMMPS-

GPU.

Next, we measured the proxy app directly on KIDS, using Intel x86 rdtsc instructions.

For each iteration of the proxy test loop, we measured the time of CUDA synchronize

operation on each of the 128 nodes. The results of this test showed that many iterations

had one or two nodes with exceptionally long synchronization periods. In addition, when

comparing di↵erent iterations that had outliers, the MPI rank was not the same. This is

exactly the same pattern as revealed by G-HPCToolkit. Therefore, we concluded that

our tool was not the source of the anomaly.

Given the nature of the blocking stalls, our intuition was that the synchronization strategy

employed by the CUDA runtime/GPU driver combination might be suboptimal. Fortunately,

CUDA has an API call (cudaSetDeviceFlags) for configuring the waiting strategy employed

by a CUDA synchronization operation. A CPU can either yield-wait, spin-wait, or combined-

yield-spin-wait for a GPU activity. The default CUDA runtime synchronization strategy is

42

to spin-wait for a while and then yield-wait. On KIDS, we changed the default strategy to

use exclusively spin-wait. Unfortunately, this change did not address the sporadic blocking

phenomenon. Observing CUDA synchronization calls under strace revealed that the spin-

waiting did not eliminate ioctl system call. A side thread, launched by the CUDA runtime,

continues to make ioctl system calls, and these system calls can block. A collaborator

at Nvidia has filed a driver bug report based on our observations [58], but it was resolved

stating “the behavior is known and expected.”

At this point, we need more data. All we know is that something systemic is degrad-

ing the performance of applications that use CUDA synchronization operations prior to

MPI Allreduce. The problem does not appear to be endemic to Titan. Further investiga-

tion will be needed to determine the underlying cause.

2.7.4 Overhead evaluation

Here, we present a preliminary evaluation of the runtime overhead of G-HPCToolkit on

the KIDS and Titan supercomputers. The point of this preliminary evaluation was to confirm

that our hybrid sampling-plus-instrumentation technique did not introduce unacceptable

overhead. Our “at the terminal” intuition was favorable, but it was gratifying to see our

initial impressions confirmed by a little data.

For our overhead study, we compare the overhead introduced by G-HPCToolkit

with that of the original unmonitored execution. We also compare G-HPCToolkit’s

CPU+GPU monitoring overhead with that of HPCToolkit’s CPU-only monitoring to

quantify the additional overhead introduced by our GPU performance measurement strate-

gies. We used LAMMPS-GPU running on one CPU core utilizing one GPU for our empirical

experiments. We measure our overhead for both profiling and tracing. We used the default

provided in.gpu.rhodo LAMMPS input file, which is a rhodospin protein benchmark per-

forming 200 time step simulation on 256000 atoms, for our experiments. We used HPC-

Toolkit’s default sampling rate of 200 samples per second. Table 2.4 shows the observed

monitoring overhead. G-HPCToolkit’s CPU+GPU monitoring overhead is about 5%,

and it is in the ballpark of the original CPU-only monitoring overhead of HPCToolkit

for both profiling and tracing. The slightly higher overhead of G-HPCToolkit happens

43

System
Base running Profiling time in sec (overhead%) Tracing time in sec (overhead%)
time in sec HPCToolkit G-HPCToolkit HPCToolkit G-HPCToolkit

KIDS 92.948 98.116 (5.56%) 98.038 (5.48%) 97.802 (5.22%) 98.036 (5.47%)
Titan 130.352 137.193 (5.25%) 138.062 (5.91%) 137.907 (5.80%) 138.368 (6.15%)

Table 2.4 : Measurement overhead for LAMMPS-GPU on KIDS and Titan supercomputers.

because of the wrapping of CUDA API calls and insertion of events into GPU streams to

measure kernel timings.

While these results are promising, they are not definitive. A detailed study of the mon-

itoring overhead for a broad collection of applications and comparison with tools such as

TAU and Vampir are outside the scope of this dissertation.

2.8 Discussion

Prior studies [22, 137, 222, 225] analyzed idleness in homogeneous processor environments.

In this chapter, we showed that the blame-shifting strategy, pioneered by Tallent and Mellor-

Crummey [222] for identifying the causes of idleness via sampling techniques in homogeneous

architectures, is e↵ective for assessing idleness in heterogeneous architectures as well. Blame

shifting is an e↵ective, lightweight strategy in approximately identifying the critical path in

a parallel program.

While we expected to tune a few key GPU kernels using the insights gained from blame

shifting, in the limited set of case studies, the converse was true—we tuned the CPU code.

In addition to profiling using blame shifting, we found lightweight execution traces of CPU-

GPU executions to be of immense help. It came as a surprise that our execution traces could

also pinpoint malfunctioning hardware. The execution traces also enabled us to recognize

the operating system blocking phenomenon, which led us to develop the stall analysis.

We need better ways to extract performance data from the operating system, especially

about blocking system calls. For example, the Solaris operating system provides an account-

ing of time spent inside a blocked system call when profiling with ITIMER REALPROF [181].

Other approaches could involve tracing kernel calls or system-wide sampling, but these ca-

pabilities are not universally available.

Hardware and runtime support for analyzing the performance of GPUs is in its infancy.

44

We had to devise a gamut of workarounds to overcome the limitations of current GPU

hardware and software to implement the CPU-GPU blame shifting. On our behest, some

accelerator vendors are considering incorporating sampling-based performance analysis sup-

port in their specifications, hardware, and runtime libraries. A continuous engagement of

performance tools developers with accelerator manufacturers will be important for improving

the capabilities of performance tools for heterogeneous processor architectures.

45

Chapter 3

Eliding Redundant Barriers

There are no constraints on the human mind, no

walls around the human spirit, no barriers to our

progress except those we ourselves erect.

Ronald Reagan

Once a computation is well partitioned, the next step in tuning a parallel program is to

reduce the overheads of parallelism. Few real-world problems are embarrassingly parallel.

Hence, concurrent execution entities in a parallel program often need to communicate and

synchronization with one another. Some types of synchronization involve only a few partici-

pating processes—for example, exchange of messages between two processes. Other types of

synchronization involve all participating processes—for example, reduction of a partial sum

computed by all processes.

Unnecessary and costly synchronizations make parallel programs scale poorly. In this

chapter, we discuss alleviating the overheads introduced by unnecessary barrier synchroniza-

tion in Single Program Multiple Data (SPMD) style distributed-memory parallel programs.

Alleviating the overheads of barrier synchronization in shared-memory parallel programs is

outside the scope of this dissertation. In the next chapter, we discuss reducing the over-

head of costly synchronization via e�cient lock designs for achieving mutual exclusion in

shared-memory parallel programs.

In this and all subsequent chapters, we shift our focus on to homogeneous processor archi-

tectures instead of heterogeneous processor architectures that we discussed in the previous

chapter.

46

3.1 Motivation and overview

A barrier is a critical synchronization construct used in parallel programs to separate an

execution into di↵erent phases. Every process executing a barrier waits until all other pro-

cesses participating in the barrier arrive at the barrier. Mellor-Crummey and Scott [157] and

Hoefler [90] have performed an exhaustive analysis of barrier algorithms for shared-memory

and distributed-memory parallel programs, respectively. Algorithmic analysis of barriers is

not topical to our study. Barriers involve system-wide communication; hence, they incur

high latency and scale poorly [7, 50, 233]. Furthermore, a delay in one process to arrive at a

barrier, either due to load imbalance or due to operating system stalls [43, 188], causes delays

in all participating processes. Our focus in this chapter is to identify when a barrier could

have been avoided and if so how. In the ensuing text in this chapter, references to a “barrier”

mean such inter-process synchronization mechanism often used in SPMD programs. Other

intra-process synchronization mechanisms such as a barrier among CPU threads within a

same process, a memory barrier a.k.a a fence, and a barrier among multiple hardware threads

within a GPU, which are homonymous with the term barrier, are not pertinent to our dis-

cussion.

Large scientific programs often use Partitioned Global Address Space (PGAS) program-

ming paradigm. The data is distributed on participating processes in PGAS programs. Any

process may access the data residing on any other process through one-sided asynchronous

get and put primitives. PGAS programs use program-wide global barriers to ensure consis-

tency of data after asynchronous updates from the participating processes.

A barrier may be necessary only in some execution contexts but not all contexts. Prodigal

use of barriers in PGAS programs leads to poor scalability. Redundant barriers are surpris-

ingly frequent in large PGAS programs due to layers of software abstractions and composition

of conservatively implemented APIs. Redundant barriers in hot execution contexts o↵er an

excellent opportunity for optimizing communication-intensive scientific codes. In this chap-

ter, we discuss our experience building an application-specific dynamic optimization able to

detect and skip barriers that are redundant in their runtime calling contexts. The appli-

cation is the NWChem [230]—a computational chemistry code with more than six million

47

lines of C, Fortran77, and C++ code. NWChem is implemented atop multiple abstraction

layers for data and communication. NWChem includes software abstractions for its internal

tasking, load balancing, memory management, and checkpoint/restart mechanisms. The

abstractions used for software modularity hinder optimizations. Specifically, communication

libraries written for generic use, introduce context-sensitive redundant synchronization. Such

overheads limit the scalability of NWChem. Code size, multiple programming languages, and

multiple programming models, make compiler-based redundancy elimination impractical on

production software such as NWChem.

To alleviate the overheads introduced by unnecessary barrier synchronization, we have

designed a simple, yet e↵ective, runtime technique that pinpoints and automatically elides

context-sensitive redundant barriers. The crux of our automatic elision idea is to “learn

from history”. We identify barriers by their calling contexts (call-path) at runtime. We

determine if a barrier in its calling context is locally redundant within a process. We infer

that a barrier in its calling context is globally redundant if the barrier is redundant on all

participating processes. Global redundancy is easy to derive by replacing a barrier with a

reduction operation during a learning phase. Once learned, a process speculatively skips

future instances of barriers in the same calling contexts where they were previously deemed

globally redundant.

Since precise data dependence detection is not our objective, we can a↵ord to employ

a coarse-grained dependency detection mechanism that may report false positives.1 By

relaxing precision, we achieve low overhead in our analysis—an essential requirement for

dynamic optimizations. We call this mechanism as an automatic barrier elision technique.

The analysis incurs less than 1% runtime overhead. The method is guaranteed to catch bad

speculation at runtime. Misspeculation can be handled either by aborting the execution or

by restarting from a checkpoint. Bad speculation has not happened in our production runs.

Modern scientific programs utilizing the checkpoint-restart technique make our technique

even more attractive. Developer confidence in the applicability—whether for correctness or

performance—however, has to be gained through testing coverage.

Besides the automatic barrier elision technique, we also devised a guided barrier elision

1A false positive happens when the analysis suspects data dependence when there exists none.

48

approach. In the guided barrier elision approach, we execute the program on several training

inputs and collect a large set of calling contexts where the barriers may be redundant in an

execution. We do not elide barriers during this training phase. We classify contexts into

equivalence classes, where all contexts in an equivalence class share a common subcontext.

Subcontexts capture the intuition that the barrier redundancy inside a library module is de-

termined by prior barrier calls performed by its callers. Subcontexts provide useful insights

about how redundancies arise in the code. We then present these subcontexts as elision

candidates for the inspection by a developer. The set of subcontexts approved by the de-

veloper become inputs for production-time barrier elision. The guided approach does away

with speculation and builds developer confidence in the elision process.

Both automatic and guided techniques were able to elide up to 45% and 63%, respec-

tively, of all barriers encountered during NWChem science production runs. Eliding barriers

resulted in end-to-end application runtime improvements up to 14% when running on 2048

cores. In addition, our approaches provide valuable tools for program understanding. We

uncovered several context-insensitive redundant barriers, which we then removed from the

source of NWChem.

3.2 Contributions

This work, which appeared in the Proceedings of 20th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming [40], makes the following contributions.

1. It presents a context-sensitive, dynamic program analysis able to pinpoint, quantify,

and elide redundant barrier synchronization in PGAS programs,

2. It applies the barrier elision technique to the NWChem computational chemistry code

and demonstrates that redundant barriers are surprisingly frequent (63%) during its

science production runs,

3. It demonstrates end-to-end speedup as high as 14% at 2048 cores on production scien-

tific runs of NWChem, and

49

4. It provides valuable insights to application developers on context-sensitive as well as

context-insensitive redundant barriers in NWChem.

3.3 Chapter roadmap

The rest of the chapter is organized as follows. Section 3.4 describes the aspects of syn-

chronization in modern scientific codes and Section 3.5 provides the necessary properties

of safe barrier elision. Section 3.6 sketches the automatic barrier elision technique, while

Section 3.7 presents the guided barrier elision technique. Section 3.8 highlights the struc-

ture of NWChem together with implementation details of our infrastructure. Section 3.9

provides the insights we gained about NWChem via our techniques. Section 3.10 presents

an empirical evaluation with further discussion in Section 3.11.

3.4 The problem with synchronization

Large scientific applications [88, 211] employ a hierarchy of libraries to implement layered

abstractions. In the absence of contextual knowledge, libraries are designed for generality in

such a way that any parallelism is quiesced upon entry and exit from the respective mod-

ule. As tracking individual dependencies is challenging, the synchronization usually involves

heavyweight operations such as barriers and fences. For example, ScaLAPACK [20] API calls

use collective synchronization semantics, which may hinder the overall application scalabil-

ity. Application programmers may also add synchronization to ensure semantic guarantees

when employing libraries for asynchronous operations. In cases where a lower-level library

routine already provides stronger synchronization guarantees than advertised (sometimes

undocumented) in its interface specification, the ensuing communication redundancy causes

non-trivial performance overheads.

Figure 3.1 is an anecdotal code where transitions from higher-level abstractions to lower-

level abstractions can sometimes cause redundant barriers. In this figure and the fol-

lowing text, we symbolize a caller to a callee relationship as caller()!callee(). The

ClientA()!MatMul() transition has no redundancy since the ClientA() relies on the barri-

ers provided by the MatMul() function in the lower-level library. The ClientB()!MatMul()

50

def$MatMul(…)${$
$$$$if$(…)$
$$$$$$$$Barrier();$
$$$$/*$Library$implementa:on$*/$
$$$$if$(…)$
$$$$$$$$Barrier();$
}$

def$ClientB()${$
$$$$.$.$.$
$$$$Barrier();$
$$$$MatMul$(…);$
$$$$Barrier();$
$$$$$.$.$.$
}$
$

def$ClientA()${$
$$$$.$.$.$
$$$$MatMul(…);$
$$$$.$.$.$
}$
$
$
$

def$ClientC()${$
$$$$.$.$.$
$$$$if$(.$.$.){$
$$$$$$$$Barrier();$
$$$$}$
$$$$MatMul$(…);$
$$$$.$.$.$
}$

Simple$redundancy$No$redundancy$ Complex$redundancy$

Figure 3.1 : Composition of synchronized API calls.

and ClientC()!MatMul() transitions can make some barriers redundant, and it is pro-

gressively more complex to detect or eliminate such redundancies. Eliminating barriers in

the MatMul() function breaks the code in the ClientA(), whereas keeping barriers in the

MatMul() function causes redundancy in other clients. As shown later in Section 3.9 this is

a common occurrence in NWChem.

Static program analysis [65, 109, 149, 245] has been successfully used for synchronization

optimizations, and it may be able to handle our example. Static analysis, however, faces great

engineering challenges when dealing with the characteristics of existing full-fledged HPC

applications which: 1) use combinations of multiple languages, such as C/C++/Fortran; 2)

are written in a modular fashion with calls into manifold “libraries”; and 3) are built on layers

with di↵erent semantic abstractions. While language designers [38, 45, 48] and application

developers are striving to expose concurrency inside an application, software engineering

practices (modularity, composability) and development tools (multiple compilers) are busy

negating it.

Over-conservative synchronization already appears in the current generation of HPC

codes. This pattern is likely to be pervasive in the next generation of codes designed

for extreme scaling. As the scientific community is moving towards multiphysics multi-

scale simulations, HPC codes are universally refactored as compositions of parallel libraries,

solvers, and runtimes. The next generation of codes that employ Domain Specific Languages

51

(DSL) [123, 216] or high-productivity languages such as Chapel [45] will exhibit similar char-

acteristics, as their compilers use source-to-source translation with calls into libraries imple-

menting the language-level abstractions. In these cases, statements are compiled mostly

independently from one another into complicated hierarchies of parallel calls.

Reasoning about synchronization is challenging in codes that use Partitioned Global Ad-

dress Space (PGAS) abstractions and one-sided Remote Direct Memory Access (RDMA) [45,

48, 171, 172] based communication. Memory in the PGAS model is classified as either pri-

vate or shared. Private memory can be accessed only by a single task. Shared memory can

be accessed by any task using load/store instructions or RDMA operations. Unlike MPI,

where send and receive pairs couple data transfers and synchronization, in PGAS the two

are decoupled.

The optimizations hereinafter are designed to eliminate redundant barrier operations in

the NWChem computational chemistry code described in Section 3.8. NWChem combines

PGAS and RDMA concepts; the scientific community foresees that future codes will employ

at least one of these mechanisms.

3.5 Reasoning about barrier elision

A barrier may be redundant if there are no data dependence edges (read-write, write-read, or

write-write) originating from before the barrier on one task and terminating after the barrier

on another task. Figure 3.2(a) shows a barrier necessary to resolve a write-read conflict.

Figures 3.2(b)- 3.2(e) show several cases of redundant barriers with no data dependence

between processes across barriers. A data race detector finds dependencies by tracking indi-

vidual addresses accessed by the processing elements (PEs) before a barrier and comparing

these with the accesses after the barrier.

In practice, address tracking for data race detection may incur higher costs than barrier

elision could hope to gain. For example, Park et al. [185] describe a precise data race detector

using dynamic analysis for PGAS programs with one-sided communication, which incurs 50%

overhead at 2000 cores. Their technique is directly applicable here, but its runtime overhead

is higher than the total time spent by NWChem in barriers (up to 20%) in our experiments.

52

1

Proc 1 Proc 2
put(x)

put(b)

put(y)

put(a)

Barrier

Proc 1 Proc 2
put(x) put(y)

Barrier

Proc 1 Proc 2

put(y)put(x)

Barrier

Proc 1 Proc 2
put(x)

get(y)

put(y)

get(x)

Barrier

Proc 1 Proc 2

get(x)

put(x)

Barrier

(a) Data dependence  
across process boundaries (b) No data dependence

(c) Dependence within 
process boundaries

(d) No access 
after barrier

(e) No access 
before barrier

Figure 3.2 : Data dependence and barrier redundancy

Memory accesses in PGAS models can be distinguished as follows:

• N - access to memory that is private to a processing element (PE) and cannot be

accessed by any other PE. The term N stands for “No” shared memory access.

• L - access to shared memory that has an a�nity with one PE, which can perform

load/stores into it. Access from any other PE involves RDMA or other calls into the

runtime. The term L stands for “Local” shared memory access.

• R - access to shared memory that is remote and can be accessed only using RDMA.

The term R stands for “Remote” shared memory access.

To achieve lower overhead, we over-approximate the dependencies by assuming that any

access (L,R) of shared data before the barrier can alias with any (L,R) shared data access

after the barrier. Furthermore, we do not distinguish a write from a read, and treat any

access as a write operation. Because precise knowledge of individual addresses is no longer

needed, this assumption reduces the overhead of instrumenting each memory access and

simplifies analysis. We only need to intercept access to shared data.

53

T

NL R

L R

R
Figure 3.3 : Lattice of memory access types.

In the following text, the term “barrier”, denoted by B, refers to a dynamic instance of a

barrier operation, regardless of its source code location. We associate a memory access sum-

mary value (S
i

) with any portion of the program executed between two barrier operations.

This access summary has one of the (N,L,R) values, and it is computed as the transitive

closure of the types of all memory accesses in that particular code region on ith PE. The

access summary is computed using the meet operation described below.

Definition 3.1 (ACCESS:
V
) N , L, and R form a monotonically descending lattice

(Figure 3.3), where the meet operation (
V
) between two types of accesses is defined as follows:

N
^

N = N

N
^

L = L
^

N = L

N
^

R= R
^

N = R

L
^

L = L

L
^

R = R
^

L = R

R
^

R = R

Intuitively, this provides a hierarchy of observability for memory accesses. Remote operations

(R) take precedence over all other types. Operations on shared data with a local a�nity (L)

take precedence over access to private data (N).

3.5.1 Ideal barrier elision

Given any execution trace Sb

i

BSa

i

, where Sb

i

and Sa

i

are the memory access summaries of

task i before and after the barrier B, we compute a trace with global access summaries as

54

Rule Trace Transformation Memory access summary
1 NBN N⇢BN N

V
N = N

2 NBL N⇢BL N
V

L = L
3 NBR N⇢BR N

V
R = R

4 LBN L⇢BN L
V

N = L
5 LBL L⇢BL L

V
L = L

6 LBR LBR (none) R
7 RBN R⇢BN R

V
N = R

8 RBL RBL (none) L
9 RBR RBR (none) R

Table 3.1 : The rules that dictate allowable transformations, given an observed execution trace
SbBSa. The new memory access summary comes into e↵ect when the transformation is applied.

NB1L| {z }B2NB3R

Rule 2
N��B1 LB2N| {z }B3R

Rule 4
N��B1L��B2 LB3R| {z }

Rule 6
N��B1L��B2LB3R

Table 3.2 : Example application of rules from Table 3.1.

SbBSa, where Sb =
V

Procs

i=0

Sb

i

and Sa =
V

Procs

i=0

Sa

i

.

For any sequence SbBSa, there can be nine di↵erent orderings of global access

summaries—shown in column 2 of Table 3.1. For each combination, we can decide whether

the barrier is redundant based on the observability of the access summary. When a barrier

is deleted, the global access summaries before and after it need to be combined into a sin-

gle value, Sb

V
Sa. If the barrier is retained, the access summary before the barrier has no

relevance to what ensues after the barrier and hence remains Sa. As Table 3.1 shows, in six

of the nine variations, the barrier can be safely eliminated. Intuitively, any barrier preceded

by remote accesses R is retained; any barrier that neighbors purely local accesses N as well

as barriers surrounded by shared accesses with local a�nity L can be elided.

Given a trace, the rules can be applied in any order. Considering a sample trace

NB
1

LB
2

NB
3

R, Table 3.2 shows a sequence of valid barrier elision transformations.

While providing good opportunity for barrier elision, there are several challenges to im-

plementing this approach:

1. The transformations require inspecting the access summary both before and after the

barrier.

55

2. The transformation performed at one barrier a↵ects the resulting access summary

after the barrier, hence the transformation possible at the subsequent barrier. In the

previous example, applying Rule 4 at barrier B
2

changes the access summary after

B
2

from N to L; consequently, at B
3

, one can’t use Rule1 NB
3

R =) N⇢⇢B3

R. Thus,

an optimal barrier deletion algorithm requires processing the whole program execution

trace.

3. Knowing the system-wide access summary at a barrier requires a communication with

all processes, which defeats the purpose of deleting the barrier.

3.5.2 Practical barrier elision

For practical reasons, we adopt a simplified approach that uses only information about the

memory access summary before a barrier in a manner that is independent of the order of the

barrier elision. From Table 3.1 the following is apparent:

1. Any barrier preceded by purely local accesses (global access summary N) can be elided.

2. Elision of barriers preceded by purely local access does not a↵ect the “redundancy” of

any barriers that follow.

Indeed, consider the execution trace NB
1

XB
2

Y , where X, Y 2 {N,L,R}. After the

N⇢⇢B1

transformation, the access summary before B
2

is N
V

X = X. Hence, deleting B
1

has

no e↵ect on the access summary before B
2

. Consequently, the transformations possible at

B
2

are una↵ected by the transformation performed at B
1

.

We summarize our simplified transformation rules in Table 3.3. We apply the simplified

transformation to the earlier example in order in Table 3.4.

These rules capture three out of the previous six cases where elision is possible and

perform well in practice for NWChem. Some codes using PGAS paradigms but optimized

for locality may have barriers surrounded by L summaries, i.e. accesses in the global space

but with local a�nity. Our simplified approach will classify these barriers as necessary. Note

that NWChem developers optimized some of these cases explicitly.

The final issue is that of the necessity of performing communication to compute the

global access summary before a barrier. We identify a barrier by its call-path, a.k.a. calling

56

Rule Trace Transformation
1 NB N⇢B
2 RB RB (none)
3 LB LB (none)

Table 3.3 : Simplified rules used in our implementation.

NB1| {z }LB2NB3R

Rule 1
N��B1 LB2| {z }NB3R

Rule 3
N��B1LB2 NB3| {z }R

Rule 1
N��B1LB2N��B3R

Table 3.4 : Example application of rules from Table 3.3.

context. We assume that a barrier that is repeatedly redundant in a calling context is likely to

remain redundant for the rest of the execution under the same calling context. This behavior

forms the basis of our automatic elision technique described in detail in Section 3.6.

Alternatively, the program behavior can be observed for entire training executions at a

small scale; subsequently, barriers that are always redundant in some calling contexts can

be identified in a postmortem analysis. A production run can elide a barrier whenever its

calling context matches that of the designated preprocessed calling contexts. This approach

forms the basis of our guided analysis discussed in detail in Section 3.7.

Because of this speculative elision, our techniques work well for the repeatable behavior

present in indirect HPC solvers. For other programs, a future iteration or a production run

might behave di↵erently than what has been learned for a calling context. In these cases,

our approach is guaranteed to catch and report the misspeculation.

3.6 Automatic barrier elision

The automatic barrier elider works in two phases: it learns about barriers within their full

calling contexts and then speculatively elides those deemed redundant (see Algorithm 1).

57

Algorithm 1: Automatic barrier elision
Input: p = self /* implicit process identifier */
Result: SUCCESS for elided barrier or return value from a participated barrier

1 enum {PARTICIPATE=0, SKIP=1, LEARNING=THRESHOLD+SKIP, CB=LEARNING+1}
2 /* ctxtId is same as H(c) in the prose. */
3

4 ctxtId = Hash(GetCallingContex())
5 /* dict is a dictionary of <context hash, memorized transformation> */
6

7 if ctxtId /2 dict then
99 /* First visit to this barrier */

10 val = MinReduce(in Sb
p, out Sb, ...)

11 if Sb
== N then

12 dict[ctxtId] = LEARNING

13 else //Sb 6= N
14 dict[ctxtId] = PARTICIPATE
1616 /* reset local state */

17 Sb
p = N

18 return val

19 if Sb
p == N then

20 switch dict[ctxtId] do
21 case SKIP

22 return SUCCESS

23 case PARTICIPATE

24 return MinReduce(in N, ...)

25 otherwise
26 /* Learning */

27 val = MinReduce(in N, out Sb, ...)

28 if Sb
== N then

3030 /* When dict[ctxtId] reaches SKIP, we will start eliding */
31 dict[ctxtId] ��
32 else // Sb 6= N
33 dict[ctxtId] = PARTICIPATE

34 return val

35 else // Sb
p 6= N

36 switch dict[ctxtId] do
37 case PARTICIPATE

38 val = MinReduce(in Sb
p, ...)

39 case SKIP

4141 /* Breaking consensus, Optimistic */

42 val = MinReduce(in CB, out Sb,...)

43 if Sb 6= CB then
4545 /* Not all PEs broke consensus. */
46 Report misspeculation.

4848 /* else, All PEs broke the consensus, program is safe. */

49 otherwise
50 /* Veto in skipping */

51 val = MinReduce(in Sb
p, out Sb, ...)

52 dict[ctxtId] = PARTICIPATE

5454 /* reset local state Sb
p */

55 Sb
p = N

56 return val

58

We identify each barrier B by its calling context c, represented as B̂
c

. We encode the

calling context as a hash, H(c), formed from the call chain starting from main to the current

barrier inclusive of all functions2 along the path. The algorithm maintains a monotonically

increasing barrier sequence number, incrementing on encountering each barrier, to distin-

guish between di↵erent barrier episodes.

During the learning phase, we observe and remember if a barrier is redundant in its

calling context across all participating processes. Our algorithm replaces the barrier with a

reduction3 to compute the global access summary. The reduction performs a min operation

Sb =
V

Procs

p=0

Sb

p

on the local access summaries (Sb

p

) before the barrier. A global access

summary result can be either R or N .

• If R, then each PE memorizes B̂
c

as necessary, and learning stops for that barrier; any

barrier deemed necessary once will remain classified as necessary.

• If N , then each PE records B̂
c

as a candidate for elision, and learning continues. If

subsequent threshold number of visits to B̂
c

also result in the N state, then B̂
c

is

promoted to an elidible barrier; any barrier once classified as redundant will be skipped

for the rest of the execution.

Speculation can fail when one or more PEs violate their memory access behavior (i.e.,

performs an L or R local access) before arriving at a barrier promoted for elision. Our

implementation, however, detects any misspeculation and then either recovers (if possible)

or aborts the execution (otherwise). If checkpointing is enabled, instead of aborting, we

can restart all processes from the last checkpoint, this time not eliding the barrier in any

PE. The implementation continues to maintain up-to-date global access summaries between

barriers and piggybacks the summary for elided barriers onto the barriers still executed. If

a PE decides that a barrier previously elided became necessary, there are two options:

2Return address of the callee, to be specific.
3On current systems, the cost of a reduction is comparable to a barrier, if the message sent is small (eight

bytes in our case) and the reduction operation is short (less than 10 instructions in our case).

59

1. Pessimistic: Record misspeculation (and either abort or restart from last checkpoint).

2. Optimistic: Assume that all PEs detect the same broken consensus, allowing all to

participate in the barrier and maintain the integrity of the system.

We take the optimistic approach and replace the barrier with a min reduction with a

special status CB , representing the fact that the consensus is broken. The meet operation

is augmented such that CB
V

CB = CB ,CB
V

R = R,CB
V
N = N . If the resulting global

access summary after the reduction is also CB , it means that all PEs broke the consensus

and each one participated in the synchronization. If such is the case, we have two options:

1. Pessimistic: Locally downgrade the context B̂
t

as necessary in all PEs to avoid future

consensus breaks.

2. Optimistic: Assume the pattern will hold and expect future instances of B̂
t

to be

skippable or equally recoverable, and thus retain the barrier as redundant.

We again take the optimistic approach. Finally, a subtle case arises when some PEs

break consensus for a specific barrier and wait in a reduction operation with the CB state

whereas other PEs skip that barrier, advance, and break consensus in a future barrier. This

scenario leads to two mismatching reduction operations and possible incorrect behavior or

even deadlock. To handle this case, each PE passes the aforementioned unique barrier

sequence number in each reduction operation; if the sequence numbers do not match, we

record the misspeculation.

Training threshold: The duration of the learning phase is tunable. Shortening the learn-

ing phase might increase the number of barriers classified as redundant, but it might also

increase the chance of misspeculation. In the current implementation, we use a static thresh-

old determined through testing. The value can also be selected at runtime by developers.

We discuss more details about learning in the context of NWChem in Section 3.10.

For an arbitrary application, the suggested method to choose the right training threshold

is first to run the application on training inputs. During training runs, we log the decisions

for all the barriers in the program without performing the barrier elision. Then, we analyze

the logs o✏ine to determine the upper bound on repetitions before a barrier stabilizes. We

60

NWChem !
+!

Redundant !
Barrier Detector

Training
Inputs

Extract!
 shortest-
common
suffixes

Developer Inspection

Training

NWChem !
+!

Barrier Elider

Test!
Passed?

Yes
No Can’t !

Delete

Testing
Inputs

Testing and developer inspection (optional)

Elidible
Candidate !
Contexts

Elidible !
ContextsProduction

Inputs

Production Ready

NWChem !
+!

Barrier Elider

Figure 3.4 : Workflow of guided barrier elision.

can use this threshold for the actual production runs where the automatic barrier elision will

be performed.

We have not encountered misspeculation in our experiments. NWChem contains a

checkpoint-restart feature. We plan to blacklist misspeculated barriers and restart the exe-

cution from a checkpoint that was previously deemed safe.

3.7 Guided barrier elision

Figure 3.4 presents the workflow for a guided procedure that separates learning about barrier

redundancy into an o✏ine training. The training inputs are small-scale representatives of

various real inputs. After learning, the redundant contexts are classified, validated, and

approved for consumption by a barrier elider module for production runs. The guided

analysis has di↵erent characteristics from the automatic transformation in the following

ways.

1. It increases the chance of deleting the barriers missed during automatic learning.

2. It provides developers with an opportunity to inspect redundant contexts.

3. It increases developer confidence by inducing a validation step.

We start with a set of training inputs and run a Redundant Barrier Detector (RBD)

alongside the execution. Currently, we use the same detector from the automatic analysis,

but note that this can be replaced with any other race detector, even a more imprecise one.

The RBD observes each barrier in its full calling context, classifying it as either redundant (if

61

all operations preceding the barrier are always private) or necessary (if at least one operation

preceding the barrier was not private). RBD logs all barrier contexts for each test input.

We then perform an o✏ine analysis, where we merge all Redundant Barrier Contexts

from all training runs into a single set (RBC) and all Non-Redundant Barrier Contexts into

another set (NRBC). In this phase, we classify a barrier in a calling context as redundant if

it appears in the set of redundant barrier contexts but not in the set of non-redundant barrier

contexts (in any inputs). This classification forms the set of Elidible Candidate Contexts

(ECC). ECC = RBC � NRBC .

Subcontext classification: We classify the contexts in ECC based on the intuition that

in modular software paths through a certain library module are probably determined by

initial conditions set by the module’s callers. In this case, there may be paths local to the

module where a barrier is always redundant, and there may be callers that always exercise

these. This behavior is captured by the common parts of the calling context leading to

redundant barriers, referred to as subcontexts.

Consider the example in Figure 3.5, which shows a bottom-up view of various call-paths

that lead to the barrier B. We note that because of the bottom-up view, the direction of

arrows in the figure go from a callee to a caller. In the prose, however, we use the more

intuitive direction of arrows, i.e., from a caller to a callee. Module 1 always forces a barrier

before calling Module 4, which eventually calls a barrier—represented by the calling context

su�x N!B. Barriers called through myriad call-paths all sharing the su�x M!N!B

are redundant. However, the same is not true for Module 2 and Modules 3, which do not

enforce a barrier when calling a barrier through context su�x N!B. This observation pro-

vides the insight that the call-path su�x M!N!B causes a redundant barrier, whereas

the su�x N!B alone is not redundant. Inspecting myriad redundant full call-paths such as

{main! · · ·W!M!N!B},· · · , {main! · · ·Z!M!N!B} is tedious and cannot pro-

vide this type of insight.

Based on the aforementioned observation, our subcontext classification employs the Al-

gorithm 2 to find the shortest common su�x of a context inside all redundant barriers.

The algorithm groups redundant barrier contexts in equivalence classes such that each class

62

M

N

B

R
ed

un
da

nt
 b

ar
rie

rs

Module 1 forces
a barrier before

calling into Module 4

main

W X Y Z

Module 1

Module 4

P

Module 2

Q

Module 3

N
on

-r
ed

un
da

nt
 b

ar
rie

rs

Barrier

main main main main main

Module 2 and 3 don't call
barrier before

calling into Module 4

Shortest common suffixEquivalence class of contexts

Legend:

Figure 3.5 : A bottom-up view of call-paths leading to barriers. All call-paths that end with the
su�x M!N!B lead to redundant barriers.

can be represented by a shortest common su�x. The distinguishing shortest common su�x

meets the following two criteria:

1. It does not appear as a su�x of any contexts in the non-redundant barriers set (NRBC).

This criterion ensures that the barrier is redundant.

2. The su�x of length one less is present in the (NRBC) set. This criterion ensures that

the distinguishing su�x is the shortest to classify the subcontext as redundant.

The algorithm terminates since ECC monotonically decreases in size reaching ;, when

the length of su�x equals the maximum length context. In the aforementioned example,

the call-paths {main! · · ·W!M!N!B},· · · ,{main · · ·Z!M!N!B} will be classified

into one equivalence class represented by the common su�x M!N!B.

The output of this stage is the Elidible Candidate Su�x set (ECS), which contains

subcontexts necessary to designate a barrier as redundant.

Test validation: The test module orders the sets in ECS by their cardinality, i.e. the

number of redundant barriers that share a particular subcontext, picks the largest one, and

63

Algorithm 2: Barrier su�x context classifier
Input: NRBC/*Non-redundant Barrier Contexts*/
Input: RBC/*Redundant Barrier Contexts*/
Output: ECS/*Elidible Context Su�xes*/

1 ECC = RBC-NRBC /*Elision candidate contexts*/
2 ECS = ;
3 len = 1
4 while ECC 6= ; do
5 /*Find su�xes of length=len*/
6 A = {Su�x (C, len) 8 C 2 ECC}
7 B = {Su�x (C, len) 8 C 2 NRBC}
8 /*Find elidible su�xes of length=len*/
9 S = A-B

10 ECS = ECS
S

S
11 /*Remove classified contexts from ECC*/
12 ECC = ECC - {8 C 2 ECC s.t. Su�x (C, len) 2 S}
13 len++

14 return ECS

starts extending the set including one subcontext at a time to test. The testing employs a

barrier elider module that elides barriers whose runtime calling contexts match the subcon-

texts being tested. Test validation cross-checks against the expected results.

We also present the sorted ECS and the testing results to the developer for further

investigation. The developer then has the option to further filter the contexts based on

intuition.

Production-time barrier elision: The developer-approved contexts become inputs to

production runs. The production runs use a barrier elider module to skip barriers whose

contexts match the developer approved elidible contexts. We present the details of insights

gained from our technique in Section 3.9. These production runs have the same safety

guarantees of identifying misspeculation and the possibility of restarting as the automatic

algorithm already discussed in Section 3.6.

3.8 Barrier elision in NWChem

In this section, we provide the scientific details of NWChem, its code structure, and our

strategy for minimally instrumenting NWChem. We also discuss our technique of collecting

and maintaining calling contexts and portability of our techniques to other applications.

64

3.8.1 NWChem scientific details

NWChem [230] is a computational chemistry code widely used in the scientific community.

NWChem provides a portable and scalable implementation of several Quantum Mechanics

and Molecular Mechanics methods: Coupled-cluster (QM-CC), Hartree-Fock (HF), Density

functional theory (DFT), Ab initio molecular dynamics (AIMD) etc. The results in this

chapter are for high-accuracy QM-CC, where many of the NWChem computational cycles are

spent. QM-CC is by far the most computationally intensive, and therefore, the most scalable

method in NWChem. The other methods have increasing demand for global synchronization,

such as the HF method that generates starting vectors for QM-CC. As we move along to

the methods that demand more synchronization, we expect the optimizations developed in

this chapter to deliver even better performance gains. We used the following two important

science production runs to evaluate the benefits of barrier elision:

DCO: Accurate simulation of the photodissociation dynamics and thermochemistry of the

dichlorine oxide (Cl
2

O) molecule. This simulation is important for understanding the

catalytic destruction of ozone in the stratosphere, where this molecule plays the role

of reaction intermediate.

OCT: Simulation of the thermochemistry and radiation absorption of the oxidized cytosine

molecule (C
4

H
6

N
3

O
2

). This simulation is key to understanding the role of oxidative

stress and free radical-induced damage to DNA.

Both runs first perform a HF simulation to obtain starting vectors. Subsequently, each run

performs a di↵erent type, but algorithmically similar, QM-CC simulation.

3.8.2 NWChem code structure

NWChem contains more than six million lines of code written in C, C++, Fortran and

Python. Besides the chemistry solvers (written in Fortran, C++, and Python), it contains a

complicated runtime infrastructure (in C) that implements support for tasking, load balanc-

ing, memory management, resiliency, communication, and synchronization. Communication

and synchronization in NWChem are handled across multiple software modules. The Global

65

NWChem

MPI

Global Arrays

ARMCI
(Aggregate Remote

Memory Copy Interface)

DMAPP PAMI Portals

GASNet

OFAIB

ComEx

Figure 3.6 : Layers of abstractions in NWChem software stack.

Arrays [172] (GA) framework provides shared memory array abstractions for distributed

memory programming with primitives such as get and put on array sections (Figure 3.6).

GA is implemented atop other communication libraries such as Aggregate Remote Mem-

ory Copy Interface (ARMCI) [171] and Communication runtime for Exascale (ComEx) [54].

These libraries make the Global Arrays layer portable by hiding the low-level RDMA and

synchronization primitives. Any of these layers, however, may directly access lower-level

communication libraries such as MPI. ARMCI and ComEx are implemented atop native

communication APIs such as Cray DMAPP [57], InfiniBand Verbs [95], and IBM PAMI [121],

among others.

NWChem has some hand optimizations to elide unnecessary synchronizations. Such

cases are present in situations where all tasks perform local operations. Hand optimization

is, however, limited in its scope—typically scope of a routine. Hand optimization does not

address redundancies that happen across several layers of abstractions in modular software.

We believe these are all characteristics of future scientific codes for the Exascale era. Our

work makes the following useful observations related to this type of code architectures: 1) as

modular software implies “modular” contexts, flow-sensitive and context-sensitive analyses

yield good results; and 2) as runtimes are written with portability in mind, holistic, dynamic

analyses that examine applications and runtimes in conjunction yield good results.

66

3.8.3 Instrumenting NWChem

The important design concerns related to instrumenting the program execution for our anal-

yses are portability and overhead.

We aim to provide portability of NWChem together with the analysis to other hardware.

We also aim to provide a portable analysis that can be applied to other code infrastructures.

Consequently, our design choice was to intercept the lowest-level RDMA APIs to identify

all remote memory accesses. This design choice allowed our algorithm and workflow to

remain independent of the application, run-time environment, and the hardware. We inter-

cept RDMA calls by performing link-time wrapping [46] of the lowest-level communication

libraries. Link-time wrapping allows us to divert all the necessary RDMA calls through our

instrumentation layer reliably without having to make any changes to the large application

code base. Library interposing via LD PRELOAD [164] will work similarly for dynamically

loaded libraries. Note that when callers and callees are defined in the same file, link-time ap-

proaches need to be augmented with source modifications. Other portable runtimes such as

GASNet also present a single interface that resolves into system specific API calls. Note that

portability is enabled by the fact that we are interested in the presence of these operations

at runtime, rather than their exact semantics.

On the Cray hardware, the DMAPP layer provides a low-level system communication

API. In any scientific application running on Cray’s supercomputers, the higher-level com-

munication abstractions eventually resolve to some DMAPP calls for RDMA operations. By

link-time redefinition of DMAPP RDMA operations, we can intercept several configurations

of NWChem such as its Global Arrays abstraction running on ARMCI, ComEx, or MPI. We

have also audited the InfiniBand verbs API and believe our approach trivially ports to that

system API.

To correctly elide synchronization, the analysis needs to detect accesses to local memory

that bypass the standard RDMA calls for e�ciency sake. We provide a plugin functionality

that the developers can use to mark regions of code that perform such bypassing. As overhead

and precision are a concern, the art is to identify the right level of granularity. With the

cooperation of NWChem developers, we have audited the code, identified operations at

67

di↵erent levels of abstraction, and understood their side e↵ects. We then manually inserted

the instrumentation at only two places in the NWChem code to recognize all local accesses

that have global visibility. These are the comex get nbi and comex put nbi calls, which

resolve in either remote-access DMAPP calls or local memory accesses.

Another way by which local accesses can have global e↵ects is by applications gaining

a local pointer to the shared address space. Global Arrays have a well-defined interface

for gaining a pointer access (ga access) and releasing the access (ga release) to the local

shared regions. We intercept ga access and ga release with the same link-time wrapping.

We count the number of ga accesses without the matching ga releasees at runtime. This

accounting allows us to know if a code executed before a barrier might have updated the

local shared memory without explicitly going through an RDMA call. We conservatively

disable the automatic elision when there are outstanding ga accesses before a barrier.

Finally, for more flexibility, we expose APIs that an expert application developer can

directly insert in the code base to explicitly enable or disable the automatic barrier elisions

in the code regions of his choice. Several levels of global memory abstraction and the fact

that “casting” sometimes occurs in an unprincipled manner based on code knowledge have

complicated this process. Augmenting our guided analysis with a full-fledged data race

detector would simplify this process. A principled approach to creating aliases between

global and local pointers or using smart pointers can ease the task of a dynamic analysis

framework in Partitioned Global Address Space programs.

3.8.4 Managing execution contexts

In our implementation, we identify contexts by unwinding the stack and computing a hash

value based on the frame return address. We used libunwind [161] for unwinding and Google

dense hash tables [76] for fast searching of contexts. We compiled the application by enabling

frame pointers, and the overhead of unwinding was negligible in our experiments.

The automatic algorithm requires the calling contexts to be contextually aligned, i.e. the

barriers do not need to be textually aligned [109] but their calling contexts always match

the same way. At a barrier’s calling context for a process, if the calling contexts of other

processes participating in the same barrier do not remain stable, it will hinder the learning

68

process. Conservatively, we do not elide any barriers with contextual misalignment. To

detect contextually misaligned barriers, we pass the context hash of each barrier in the

reduction operation during the learning process. We drop contexts from eliding if we detect

misalignment during learning. We note that the context hash can be di↵erent on di↵erent

processes for dynamically loaded binaries. By canonicalizing the instruction pointer as a

<load-module:instruction-o↵set> pair, we can obtain system-wide consistent context hashes.

One can also use program debugging information to construct canonical context hashes.

3.8.5 Portability to other applications

Our framework has a core analysis component and a data race detection component. The

analysis component consists of our stack unwinder, automatic and guided analyzers, and run-

time elider. The analysis component can be used out of the box by any other application.

The data race detection component has two subcomponents: a) application-agnostic RDMA

instrumentation and b) application-specific instrumentation. The RDMA instrumentation is

done once per specific system API (e.g., DMAPP). The RDMA instrumentation layer needs

to be linked with the application in the last stage of the build for statically linked applica-

tions or should be preloaded for dynamically linked applications. The application-specific

instrumentation needs to be neither too coarse-grained, nor too fine-grained and needs re-

targeting for each application. It took us about three months to get the application-specific

instrumentation working correctly in NWChem. In general, application-specific instrumen-

tation is needed when a pointer to a local shared datum escapes into a higher-level software

layer, and the data is accessed without going through well-known communication APIs.

3.9 NWChem application insights

By examining barriers in conjunction with their dynamic behavior, we uncovered context-

sensitive and context-insensitive redundant barriers. Most of the redundant barriers during

NWChem execution are context sensitive.

Figure 3.7, presents the call graph of a routine inside the Hartree-Fock solver. The

figure shows four lines of the application code written in Fortran (the leftmost box) along

69

next = nxtask(-nproc,1)

// all local operations

call ga_copy(g_b, g_a)

call ga_destroy(g_b)

 

call ga_sync()

Chemistry Global Arrays ARMCITask mgmt

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

Comex

...

 Grp_Sync() // Entry
 Ops on local patch
 Grp_Sync() // Exit

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

MPI

MPI_Barrier
...

...
MPI_Barrier

MPI_Barrier

MPI_Barrier

...

...
MPI_Barrier

...
MPI_Barrier

...

Redundant

Redundant

Redundant

MPI_Barrier

...

...
MPI_Barrier

...
MPI_Barrier

...

Figure 3.7 : Redundant barriers caused by software layering and API composition in NWChem.
Synchronization is enforced on entry and exit of many API calls. Just four lines of the application
code cause nine barriers at runtime. Three out of nine barriers (marked in red) are redundant since
there would be no updates to shared data between two consecutive barriers.

with its call graph obtained by exploring several layers of the software stack as shown. The

application code destroys an atomic task counter, copies the data from global memory to local

memory, destroys the global memory, and performs barrier synchronization as the last step

(unaware of the barriers enforced behind the scene). Synchronization is enforced on entry

and exit of many API calls (middle boxes under Global Arrays). There are nine MPI Barrier

calls at runtime for just four lines of the application code. Three of nine barriers (marked in

red) are redundant since there would be no updates to the shared data since the preceding

barriers. In this case, the redundancy is context sensitive. Redundant barriers cannot be

textually removed from the source code.

Figure 3.8 shows the call graph of the pnga add patch routine, where pnga destroy is

sometimes called in sequence based on the input arguments. Internally, pnga destroy calls

MPI Barrier at entry and exit. Notice that the barrier enforced on entry to the second

pnga destroy is redundant if the first condition, A created, is true. This is a flow-sensitive

redundant barrier. Moreover, the programmer adds a pnga sync call that causes another

70

redundant MPI Barrier.

We also uncovered context-insensitive barriers. Figure 3.9 shows how inside

comex malloc and comex free, a barrier operation is dominated by another collective oper-

ation, in this case, an MPI Allgather, which implicitly has a barrier.

Figure 3.10 shows one of the top subcontexts found by our guided analysis. The redun-

dant barrier is common to a group-operation function (do gop). 8% of redundant barriers

(11186 out of 138072) happen in this subcontext. 7% (553 out of the total 7959) of the unique

redundant barrier contexts have this su�x in their calling contexts. On investigation, we

found that in the do gop routine, redundant barriers are intentionally introduced for porta-

bility, but they are not needed in most production system software configurations. These

occur to quiesce the caller runtime upon any transition into a callee runtime, e.g., when

transitioning from ComEx into an explicit independent MPI call inside the application. Our

analysis can be configured to keep these barriers when needed.

The key insight is that redundancy is determined by clustering of calls at several levels

of abstraction removed from the actual operation. In the NWChem case, this spans di↵erent

programming languages and runtime implementations. Understanding the code by mere

visual inspection is probably beyond most humans, and our analysis techniques provide

useful insight to developers.

Most redundant barriers are context sensitive, but our subcontext-based classification

indicates that only a few contexts contribute to a large fraction of the redundancy. In these

cases, a synchronized/non-synchronized dual implementation is feasible at the application

level.

71

if (A_created)
pnga_destroy(g_a);

if (B_created)
pnga_destroy(g_b);

pnga_sync();

Global Arrays

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

ARMCI

...

MPI

MPI_Barrier
...

MPI_Barrier
...

MPI_Barrier

MPI_Barrier
...

MPI_Barrier
...

MPI_Barrier

MPI_Barrier

 Grp_Sync() // Entry
 Comex_free()
 Grp_Sync() // Exit

pnga_add_patch(),
pnga_destroy(),

pnga_destroy(),

pnga_sync(),

Redundant

Can be
Redundant

ComEx

Figure 3.8 : Context- and flow- sensitive redundant barriers. Each pnga destroy performs 3
barriers. If A created is true, the barrier on entry to the second pnga destroy is redundant. The
last barrier is always redundant.

int comex_malloc(){ !
 . . . !
 MPI_Allgather(…); !
 /*all private ops*/ !
 MPI_Barrier(comm);0
 . . . !
}0

Redundant0
barrier0

Implicit00
barrier0

int comex_free(){ !
 . . . !
 MPI_Allgather(…); !
 /*all private ops*/ !
 MPI_Barrier(comm);0
 . . . !
}0

Figure 3.9 : Context-insensitive MPI Barrier in ComEx. MPI Allreduce has an implicit barrier
and all subsequent operations are private.

gai_get_shmem(ga-5-2/global/src/base.c:2382)

 armci_msg_lgop(ga-5-2/comex/src-armci/message.c:462)

 do_gop(ga-5-2/comex/src-armci/message.c:193)

 comex_barrier(ga-5-2/comex/src-dmapp/comex.c:866)

 MPI_Barrier

533 different calling contexts

gai_get_shmem calls a barrier before calling armci_msg_lgop

Figure 3.10 : Common subcontext of a top redundant barrier in NWChem. MPI Barrier via the
call chain starting at armci msg lgop are always preceded by another MPI Barrier.

72

3.10 Performance evaluation

We evaluate performance on a Cray XC30 MPP installed at the National Energy Research

Scientific Computing Center (NERSC). Each of its 5200 nodes contains two 12-core Ivy

Bridge processors running at 2.4 GHz. Each processor has four DDR3-1866 memory con-

trollers, which can sustain a stream bandwidth in excess of 50 GB/s. Every four nodes are

connected to one Aries network interface chip. The Aries chips form a 3-rank dragonfly

network [71]. Note that depending on the placement within the system, tra�c can traverse

either electrical or optical links. First, we present some basic findings on a microbenchmark.

We then present our findings in NWChem production scientific runs. Finally, we present our

findings related to the memory overhead of our tool.

3.10.1 Microbenchmarks

In Figure 3.11, we present results from a microbenchmark written to assess the runtime

overhead of our implementation. The code performs 500,000 barrier operations. We vary

the degree of barrier redundancy from 0% to 100%. We spread the barriers across 1,000

di↵erent calling contexts. We make our calling contexts 16 call stacks deep. To indicate

that a barrier is necessary, the microbenchmark calls a dummy function before calling the

barrier; this dummy function sets a flag in our instrumentation library. The performance

is presented for a run using 9,600 MPI ranks. The figure indicates two things: first, the

analysis adds a negligible runtime overhead per barrier operation, and second the elision can

improve performance as the degree of barrier redundancy increases. At lower levels of barrier

redundancy (10% and 20%), there is some variation in the running time from run to run

leading to the zigzag pattern appearing in Figure 3.11. The pattern is not deterministic since

the execution time varies due to other applications injecting their messages into the same

shared network fabric. When the barrier redundancy increases, our algorithm performs fewer

barriers, the execution becomes less communication bound, and the variation diminishes.

Overall, the performance improvements are determined by the scalability of barrier op-

erations and the scalability of the analysis. Barrier latency grows with the number of cores.

For example, we observe 30µs and 130µs at 2400 and 19200 processors, respectively. Overall,

73

2.98E+06)

2.30E+07)

4.30E+07)

6.30E+07)

8.30E+07)

1.03E+08)

1.23E+08)

1.43E+08)

1.63E+08)

1.83E+08)

0) 10) 20) 30) 40) 50) 60) 70) 80) 90) 100)

Ex
ec
u&

on
)&
m
e)
in
)m

ic
ro
)se

co
nd

s)

Percent)redundant)barriers)

Original) Guided)elision) Automa?c)elision)

Figure 3.11 : Impact of fraction of redundant barriers on execution time for barrier elision
microbenchmark. As more barriers become redundant, execution time reduces because of barrier
elision.

the analysis overhead is independent of the number of cores but increases with the number of

barrier contexts during execution and with the depth of the program stack. The guided anal-

ysis has a slightly lower overhead than the automatic analysis. For example, the overhead

per barrier operation varies from 4.7µs to roughly 8µs when increasing stack depth from 4 to

64 and providing thousands of contexts. The maximum stack depth for any barrier during

the NWChem runs is 21.

3.10.2 NWChem production runs

Table 3.5 presents the end-to-end performance improvements observed for two aforemen-

tioned science production runs of NWChem. As shown, both methods can uncover many

redundant barriers, up to 45% and 63% for automatic and guided analyses, respectively.

Elimination of these redundant barriers translates into application speedup up to 13.3% and

13.9% on 2048 cores, with automatic analysis and guided analysis respectively. Note that

we report end-to-end speedup, which in NWChem includes a significant I/O portion.

Since the automatic algorithm learns behavior for a tunable number of repetitions of the

same context, it may miss barriers that are redundant in many independent contexts. The

algorithm learns only once, and it misses the cases where barriers become redundant later

in the execution. To assess optimality, we compare the decisions of our automatic algorithm

with the “true” barrier redundancy extracted using the coarse-grained data race information

74

Input Number Time(s) Total Speed-up / Barriers elided Unique
of cores Barriers guided automatic Contexts

DCO
512 731 138072 0.7% / 63% 0.3% / 41.7% 7959

1024 1084 138072 7.6% / 63% 0.2% / 41.4% 7959
2048 1362 138072 13.9% / 63% 13.3% / 41.4% 7959

OCT
512 570 72188 3.4% / 63% 1.7% / 44.5% 4702

1024 586 72188 6.6% / 63% 4.4% / 44.6% 4702
2048 624 72188 6.0% / 63% 6.5% / 44.6% 4702

Table 3.5 : End-to-end performance results for the dichlorine oxide (DCO) and oxidized cytosine
(OCT) simulations.

for an execution.

For the dichlorine oxide input, the code executes a total of 138,072 barriers in 7959

unique contexts. Only 45,614 barriers are required, according to our coarse-grained data

race detection. The automatic algorithm learns for 31,750 barriers and elides 57,238 barriers

in 2359 contexts, succeeding in deleting 41% of the redundant barriers. Remember that once

a barrier is deemed essential it is never considered again for elision. During the speculation

phase 5238 barriers episodes that were deemed essential become redundant during execution

but are not skipped by our implementation. Similar trends are observable for other inputs.

Overall, these results indicate that our techniques can skip a significant fraction of the

redundant barriers. Extending the algorithms to re-learn redundancy is easy and may further

improve performance.

Other performance improvements may be possible by specializing the learning process

to exploit module information and dynamically tailoring the stabilization threshold. For

example, for our inputs we set 10 as the learning threshold, whereas maximum threshold

required was seven, and most of contexts stabilized by their 3rd learning iteration.

3.10.3 Memory overhead

A key contributor to the memory overhead is the size of the hash table used to memorize

the contexts. In both DCO and OCT scientific runs, the sizes of the hash tables were only

456KB per process. This size is insignificant compared to tens of Giga bytes of scientific data

resident per process. Our instrumentation added 1MB binary code to an already 180MB

NWChem’s statically linked executable.

75

3.11 Discussion

Our online learning-based barrier elision approach is similar to common practices used in

operating system job scheduling [212], branch prediction [152, 183, 241], prefetching [129,

231], and caching [18, 47, 52, 128, 244], among others. Learning-based approaches work

well when applications have phases of behavior and are thus predictable. Of course, such

techniques can easily be rendered wrong and driven to make worse decisions than they would

have with no knowledge at all. One must use his or her judgment before employing such

techniques in production.

The analyses exploit some inherent characteristics of the NWChem code base, which com-

poses multiple iterative solvers written using SPMD parallelism. As the automatic method

learns behavior, iterative algorithms present more optimization opportunity. Fortunately,

this is the case with many scientific codes, which eschew direct solvers in favor of indirect

iterative solvers. To make the overhead of classification palatable for the guided approaches

it is desired that behavior learned at low concurrency applies to high concurrency. This is

the case for most existing SPMD codes. For the few scientific codes that have been tuned

to switch solvers based on concurrency, training at the appropriate concurrency or writing

synthetic tests for solvers is required. Overall, we believe that this type of context-sensitive,

dynamic analysis applies to many other scientific codes.

The combination of an ad-hoc, lightweight, data race detector with context-sensitive

voting in synchronization operations (barriers) enables even more powerful synchronization

optimizations. We are already considering extensions for reasoning about barriers in con-

junction with other collectives, for transforming blocking collective calls into non-blocking

calls, and for relaxing conservative communication synchronization operations such as fences.

We believe these optimizations are useful for the Molecular Mechanics solvers in NWChem,

whose scalability is limited by collective operations. Other code bases such as Cyclops Tensor

Framework [216] will directly benefit from similar optimizations.

Mining the context information generated by our analyses, already provided insight into

the code characteristics, which can be used for manual transformations. We believe there is

an opportunity to refine the notions of context (e.g., to clusters of variables) and to extend the

76

classification methods to develop useful program understanding tools for large-scale codes.

Our approaches are not sound and use dynamic program analysis and speculation. Our

technique is guaranteed to catch bad speculation at runtime. Due to the predictable behavior

of the NWChem code, we never encountered a bad speculation; consequently, we did not

employ checkpointing in our production runs. Like any other program transformation tool,

developer confidence has to be gained through testing coverage for an arbitrary application.

77

Chapter 4

Tailoring Locks for NUMA Architectures

It is the accuracy and detail inherent in crafted goods

that endows them with lasting value. It is the time

and attention paid by the carpenter, the seamstress

and the tailor that makes this detail possible.

Tim Jackson

Mutual exclusion is a technique for ensuring race freedom when accessing shared data in

parallel programs. Despite hardware support for transactional memory [82, 87, 194, 234],

locks remain as the most popular synchronization mechanism to achieve mutual exclusion.

While non-blocking algorithms [119, 120, 127, 158] ensure atomicity of operations, they are

di�cult to implement for anything other than simple data structures.

A common cause of synchronization overheads in parallel programs is the overhead of

ine�cient locks. Despite being extensively explored [157], locks remain an active research

area due to the changing architectural landscape. Many recent studies show that ine�cient

locks cause catastrophic performance losses under high contention [107, 125, 184]. In this

chapter, we discuss the state-of-the-art in locks and o↵er our novel solutions tailored for

the shared-memory NUMA architectures. The solutions o↵ered in this chapter can be nat-

urally extended to distributed-memory parallel architectures, although, we leave a concrete

implementation and evaluation on such architectures as future work.

4.1 Motivation and overview

Over the last decade, the number of hardware threads in shared-memory systems has grown

dramatically. Multiple hardware threads executing on a core share one or more levels of

78

private cache. Multiple cores share caches on the same die. Multi-socket systems share

memory on a node, and multi-node shared-memory systems (e.g., SGI UV 1000 [208]) share

memory across the entire system.

Modern architectures organize hardware threads into clusters known as NUMA (Non-

Uniform Memory Access) domains. Each NUMA domain of threads experiences a spectrum

of memory access latencies, depending upon the level of the memory hierarchy where the

most recent copy of the data is resident (same core, same socket, or same node where the

data is resident). Most importantly, in a cache coherent system, a datum gains proximity

to a thread when the datum is accessed by the thread itself or by other threads in the same

NUMA domain. Conversely, a datum loses proximity when a thread farther away in the

NUMA hierarchy modifies the datum. The latency incurred by a thread when accessing a

datum depends on the NUMA domain of the thread that accessed it last. Additional factors

such as the proximity of the directory servicing the location and cache coherence protocol

employed by the hardware for forwarding a cached copy of a location may also influence the

access latency of a datum. E�cient use of deep NUMA systems requires exploiting locality.

Once a memory location is cached in a NUMA domain, it is beneficial to reuse it multiple

times. Ideally, the same thread or its NUMA peers would reuse the data. The next best

alternative is access by threads in a NUMA domain nearby.

Figure 4.1 illustrates a typical 4-level NUMA system. Each pair of SMT threads

(Simultaneous Multi Threading [227]—the most common style of hardware multithread-

ing) sharing a core forms the first level of NUMA hierarchy. M di↵erent CPU cores sharing

the same socket form the second level of NUMA hierarchy. K sockets on the same node

form the third level of NUMA hierarchy. All nodes together form the fourth and last level

of NUMA hierarchy.

E�cient locking mechanisms are critically important for high performance computers.

Deep NUMA hierarchies pose a challenge for e�cient mutual exclusion in multi-threaded

programs. In the 1990s, Mellor-Crummey and Scott [157] designed a lock (MCS lock) imple-

mented as a linked list of waiting threads. A few years later, Magnusson et al. introduced

another lock design [146] for a queueing lock (often referred to as the CLH lock), where

threads also spin on a unique flag. An advantage of queueing locks is that after a thread

79

!

!

! !!

!!! ! ! !SMT SMT

Core 1

SMT SMT

Core M

Socket 1

SMT SMT

Core 1

SMT SMT

Core M

Socket K

Node 1

Shared-memory NUMA system

! ! ! !SMT SMT

Core 1

SMT SMT

Core M

Socket 1

SMT SMT

Core 1

SMT SMT

Core M

Socket K

Node N

….

NUMA level 1
NUMA level 2
NUMA level 3
NUMA level 4

Figure 4.1 : Shared-memory NUMA system. A pair of SMT threads sharing a core forms the
first level of NUMA hierarchy. M di↵erent CPU cores sharing the same socket form the second
level of NUMA hierarchy. K sockets on the same node form the third level of NUMA hierarchy.

enqueues itself for a lock, it busy waits locally on a unique memory location, which avoids

clogging the interconnect. For this reason, queuing locks scale well in the presence of con-

tention. Queue-based locks such as MCS lock and CLH lock, however, were designed for

a flat memory hierarchy; as a result, their throughput falls o↵ on machines with NUMA

architectures.

Lock-passing latency as the minimum time to hand over a lock from a thread holding the

lock to a thread waiting for the lock. On deep NUMA hierarchies, a lock and data accessed

in a critical section protected by the lock, ping-pong between NUMA domains, resulting in

lower lock throughput. Figure 4.2 shows how the lock-passing latency grows on an SGI UV

1000 as the data becomes farther away from the requesting processor core.

Dice et al. [63] partially address this problem with “lock cohorting”, which increases

lock throughput by passing the lock among threads within the same NUMA domain before

passing the lock to any thread in a remote NUMA domain. This design addresses only a two-

80

3.09E&08(

1.61E&07(

7.40E&07(

4.82E&06(
9.65E&06(

1.82E&05(2.51E&05(

8.07E&05(

1.00E%08'

1.00E%07'

1.00E%06'

1.00E%05'

1.00E%04' Same'core' Same'socket' Same'blade' Peer'blade' '2'hops'blade' 3'hops'blade' '4'hops'blade' '5'hops'blade'
Pa

ss
in
g'
Am

e'
in
'se

c'
(lo

g'
ba

se
'1
0)
'

Levels'of'passing'

6.5x'

2.0x'
1.9x' 1.4x'

3.2x'

4.6x'

5.2x'

Figure 4.2 : MCS lock passing times on SGI UV 1000.

level NUMA hierarchy arising from multiple sockets on a node. For the system in Figure 4.1,

cohort locks would only exploit locality among threads sharing the same socket, leaving

other levels of locality unexploited. Deep NUMA hierarchies o↵er additional opportunities

for exploiting locality among SMT threads sharing a cache, sockets within a node, among

others.

In this chapter, we present hierarchical MCS locks (HMCS)—a full generalization of

lock cohorting that takes advantage of each level of NUMA hierarchy. The HMCS lock is

designed to provide an e�cient mutual exclusion for highly contended critical sections in

NUMA architectures. The HMCS lock is modeled as a composition of classical MCS locks

at each level of NUMA hierarchy. By usually passing a lock to a waiting thread in the same

or a nearby NUMA domain, the HMCS lock fully exploits locality on multilevel NUMA

systems.

A limitation of multilevel locks such as the HMCS lock is their overhead under low

contention, especially for uncontended acquisitions. To alleviate the overhead of HMCS lock

under low contention, we design an adaptive variant of the HMCS lock that automatically

adjusts to the contention levels in the system. The adaptive design has the advantage of

high throughput under high contention, similar to the HMCS lock, and low latency under low

contention, similar to the MCS lock.

81

4.2 Contributions

This work, part of which appeared in the Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming [39], makes the following contributions.

1. It designs, implements, and evaluates a novel, fully-general, multilevel queuing lock

suitable for mutual exclusion in deep NUMA systems,

2. It designs, implements, and evaluates analytical performance models for throughput

and fairness of queuing locks on NUMA systems that eliminate empirical tuning,

3. It provides proofs for throughput and fairness superiority of multilevel queuing locks

over state-of-the-art two-level locks under high contention,

4. It demonstrates up to 7.6⇥ higher throughput over state-of-the-art two-level locks on

a 128-thread IBM Power 755 and up to 72⇥ higher throughput on a 4096-thread SGI

UV 1000; it demonstrates 9.2⇥ speedup compared to the original non-scaling K-means

clustering code (55% improvement compared to the state-of-the-art two-level locks) on

an IBM Power 755, and

5. It enhances the HMCS lock design to an adaptive lock that has desirable properties—

high throughput under high contention and low latency under low contention.

4.3 Chapter roadmap

The rest of this chapter is organized as follows. Section 4.4 introduces the terminology

and background necessary to understand the HMCS lock. Section 4.5 explains the HMCS

algorithm. Section 4.6 discusses analytical performance models. Section 4.7 proves properties

of HMCS locks. Section 4.8 presents an empirical evaluation of the HMCS locks. Section 4.9

enhances the HMCS lock to adapt dynamically to contention in a system. Section 4.10

augments the adaptive HMCS lock with the hardware transactional memory. Section 4.11

empirically evaluates the adaptive variants of the HMCS lock. Finally, Section 4.12 ends

with some discussion.

82

level 1

level 2

level 3domain 1

domain 1.1 domain 1.2

thread 1.1.1 1.1.2 1.2.1 1.2.2

domain 2

domain 2.1 domain 2.2

 2.1.1 2.1.2 2.2.1 2.2.2

domain K

domain K.1 domain K.2

 K.1.1 K.1.2 K.2.1 K.2.2

…

Figure 4.3 : Hierarchical tree of NUMA domains.

4.4 Terminology and background

Queuing lock algorithms form the basis for the current work. In this section, we define some

terminology used in this chapter, followed by details about the MCS queuing lock and a

two-level lock that is closest in its design to our lock.

Terminology: We refer to a system with N-levels of NUMA hierarchy as an N-level system.

We refer to a NUMA domain as simply a domain. When the domain is important, we will

refer to a level-k domain. Where necessary, we distinguish one thread (or domain) from

another with dot-separated hierarchical numbering (Figure 4.3). A level in a hierarchy is

counted starting from 1, from right to left in the dot-separated hierarchical numbering—

(level n)· · · (level 2).(level 1). Intuitively, levels are counted inside out starting from SMTs.

For example, in Figure 4.1, thread 1.2.8.3 means the 3rd SMT thread of the 8th core of the

2nd socket on the 1st node. Two threads (or domains) are peers at level h, if they share a

common prefix till level h + 1. In Figure 4.3, threads 1.1.1 and 1.1.2 are peers at level 1,

sharing the common prefix “1.1”. Similarly, domains 1.1 and 1.2 are peers at level 2, sharing

the common prefix “1”. Note, however, that domains 1.1 and 2.1 are not level-2 peers since

they do not share a common prefix at level 3. Two threads (or domains) that are peers at

level h, belong to the same domains at levels greater than or equal to h + 1. For example,

threads 1.2.1 and 1.2.2 belong to the same level-2 (prefix “1.2”) and level-3 (prefix “1”)

domains. Finally, we freely abbreviate “critical section” as CS.

MCS locks: The MCS [157] lock acquire protocol enqueues a record in the queue for a

lock by: 1) swapping the queue’s tail pointer with a pointer to its own record and 2) linking

behind a predecessor (if any). If a thread has a predecessor, it spins locally on a flag in its

record. Releasing an MCS lock involves setting a successor’s flag or resetting the queue’s

tail pointer to null if no successor is present.

83

Two-level Cohort MCS locks: The Cohort MCS (C-MCS) lock by Dice et al. [63] for

NUMA systems employs two levels of MCS locks, treating a system as a two-level NUMA

hierarchy. (Dice et al. refer to this lock as C-MCS-MCS; we use the shorter C-MCS for

convenience.) One MCS lock is local to each NUMA domain and another MCS lock is

global—shared by all NUMA domains. Each thread trying to enter a critical section acquires

the local lock first. The first thread to acquire the local lock in each domain proceeds to

compete for the global lock while other threads in each domain spin wait for their local lock.

A releasing thread grants the global lock to a local successor by releasing the local lock. A

lock passes within the same domain for a threshold number of times, at which point the

domain relinquishes the global lock to another domain. Dice et al. [63] also explore other

lock cohorting variants beyond C-MCS that employ various locking protocols at each of the

two levels, with the local and global locking protocols selected independently. We focus on

MCS lock at each level of the HMCS lock and leave exploring di↵erent locks at di↵erent

levels for future work.

4.5 HMCS lock algorithm

The HMCS lock extends the two-level cohorting strategy of Dice et al. [63] to a general

N-level NUMA hierarchy. We abbreviate an N-level HMCS lock as HMCShNi. The HMCS

lock employs MCS locks at multiple levels of the hierarchy to exploit locality at each level.

An HMCS lock is an n-ary tree of MCS locks, shown in Figure 4.4. A critical section can be

entered only when the acquiring thread holds all locks along a path from a leaf to the root

of the tree. Not all threads, however, explicitly acquire all locks along a path from leaf to root

to enter the critical section. A thread holding the lock, after finishing its critical section,

passes the lock to a successor in its NUMA domain. As a result of this local passing, usually,

threads can enter the critical section after only one MCS lock acquisition. After a threshold

number of lock transfers within a NUMA domain, a thread passes the lock at the lowest

enclosing ancestor NUMA domain where a thread from a peer domain is waiting. This chain

of passing to a successor thread in the current or peer domain continues throughout the

protocol. Under high contention, threads acquiring the lock via lock passing, incur the cost

of only a single leaf-level MCS lock acquisition. The HMCS lock, like the C-MCS and HCLH

84

SMT-level !
MCS locks

Core-level !
MCS locks

Socket-level!
MCS locks

Node-level MCS locks

Lock holder Spin waiting

Outer-most-level MCS lock

Lock passing ☞

Figure 4.4 : Hierarchical MCS lock (HMCS). HMCS is composed of an n-ary tree of MCS locks,
with one MCS lock at each level of the tree that mirrors the underlying structure of a NUMA
architecture. Not all levels of the underlying NUMA architecture, however, need be mirrored.
All hardware threads sharing the same CPU core use the leaf-level MCS lock designated for that
core. All cores sharing the same socket share the MCS lock designated for that socket, and so on.
The lock holder holds all locks from leaf a to the root. Not all threads explicitly acquire all

locks along the path from a leaf to the root but only a subset of locks starting from a

leaf—typically just the leaf lock. In steady state, the lock is passed from a predecessor to its
local successor at the same level to take advantage of locality. There is a bound on local passing
to ensure starvation freedom. When a successor is not present, or the threshold of local passing
has reached, the global lock is relinquished to a thread waiting for the lock in the nearest ancestor
NUMA domain.

locks, does not ensure system-wide FIFO ordering; however, it ensures FIFO ordering within

requesting threads at the same level of the NUMA hierarchy.

Initial setup: Initialization of an HMCS lock involves creating a tree of MCS locks, with

a lock for each domain at each level of the NUMA hierarchy. If exploiting locality at each

level of the hierarchy is not profitable, one may create a shallower tree. For every non-leaf

node of the tree, we allocate a lock record within the corresponding NUMA domain. These

allocated records remain for the lifetime of the lock.

Key data structures: The HMCS algorithm employs two key data structures: QNode

and HNode. The QNode is a modification of the original MCS lock’s QNode, with its boolean

status field replaced by a 64-bit integer. All HNodes representing a lock form a tree as shown

in Figure 4.4. As shown in Figure 4.5, each HNode has the following fields:

85

HNode

HNode * parent

QNode * tail

threshold (level N)

next
status

QNode

HNode

HNode * parent

QNode * tail

threshold (level N-1)

next
status

QNode

HNode

HNode * parent

QNode * tail

threshold (level N-1)

next
status

QNode

level N-1!
MCS lock !
tail QNode

level N-1!
MCS lock !
tail QNode

level N MCS lock !
tail QNode

level N+2 !
HNode

Level N+1!
MCS queue

Level N !
MCS queue

Static links

Dynamic links

Figure 4.5 : HMCS lock key data structures.

• lock: the tail pointer of the MCS lock at this level,

• parent: a pointer to the parent HNode (if any),

• QNode: a node to enqueue when acquiring the parent HNode’s MCS lock. This QNode is

shared by all threads in the subtree of the NUMA hierarchy represented by this HNode,

and

• threshold: a bound on the number of times a lock can be passed to a successor at

this level in the hierarchy. Based on the memory access latencies at di↵erent levels in

a NUMA hierarchy, di↵erent levels in an HMCS tree can be configured with di↵erent

passing thresholds to trade o↵ throughput vs. fairness.

Acquire protocol: The HMCS lock algorithm is shown in Listing 4.1. The acquire proto-

col begins at the leaf-level (level-1) of the tree. Each thread arrives with its own QNode and

a pointer to the lock—an HNode used by a group of peer threads at level-1 in the hierarchy.

Each thread attempts to acquire the local level-1 MCS lock. The first thread to enqueue at

each level-1 domain acquires the local MCS lock; other threads in the same domain spin-wait

on the status field of their QNode. The first thread to acquire the level-i MCS lock in its

NUMA domain proceed to compete with peers at the next level for the level-(i + 1) MCS

86

lock. This chain of acquisitions continues until a single thread acquires all MCS locks along

the path to the root (inclusive), at which point the acquisition is complete, and the thread

enters the critical section.

A thread (say T) that is not the first to arrive at a level (say K) spin waits on the

status field of the enqueued QNode at level K (line 13 in Listing 4.1). Eventually, one of

the following happens for a thread waiting at any level:

• (line 14 in Listing 4.1) T’s predecessor in the MCS lock at level K passes the lock to T,

which completes the acquire protocol. T immediately enters the critical section without

having to compete for the locks at levels greater than K.

• (line 14 in Listing 4.1) The quantum of lock passing exhausts at level K, in which case

T proceeds to compete for the level-(K+1) MCS lock (line 16, 17 Listing 4.1). Thread

T also prepares for a full quantum of passing for the next round within the domain by

resetting the status field of that domain’s QNode.

Release protocol: The release protocol begins at the leaf of the tree. Each level in the

tree is preconfigured with a bound on the number of times the lock can be passed in a domain

at that level. This passing limit is recorded in the threshold field of every HNode designated

for a domain at each level. When releasing the lock, if the number of local passes has not hit

the threshold at the current level and there exists a waiting successor within that domain,

then the releaser (R) passes the lock to its waiting peer within the domain. Otherwise, R

relinquishes the lock at the nearest ancestor node along the path to the root where 1) a peer

is waiting, and 2) the passing threshold has not been exceeded at that level.

While the classical MCS lock uses a boolean flag to pass a lock to its successor, the

HMCS lock uses a 64-bit integer (the status field in each QNode) to encode the current local

pass count. When passing the lock to a successor at the same level of the HMCS tree, the

releaser R 1) reads the 64-bit value V present in the status field of its QNode and 2) writes

V+1 into the status field of its successor if and only if V is less than the passing threshold

at that level. Writing V+1 into the successor’s status field serves both to pass the lock to

the successor as well as to convey the local pass count from R to its successor. This technique

eliminates the need for a shared counter for bookkeeping the pass counting within a domain.

87

1 enum {COHORT_START =0x1 , ACQUIRE_PARENT=UINT64_MAX -1, WAIT=UINT64_MAX };
2 enum {UNLOCKED =0x0 , LOCKED =0x1};
3
4 template <int depth > struct HMCSLock {
5 inline void AcquireReal(HNode *L, QNode *I) {
6 // Prepare the node for use.
7 I->status = WAIT; I->next = NULL;
8 release fence
9 QNode * pred = (QNode *) SWAP (&(L->lock), I);

10 if (pred) {
11 pred ->next = I;{
12 uint64_t curStatus;
13 I while((curStatus=I->status) == WAIT); // spin
14 I if(curStatus < ACQUIRE_PARENT) return; // Acquired , enter CS
15 }
16 I->status = COHORT_START;
17 HMCSLock <depth -1>:: AcquireReal(L->parent , &(L->node));
18 }
19
20 inline void Acquire(HNode *L, QNode *I) {
21 AcquireReal(L, I);
22 I acquire fence
23 }
24
25 inline void ReleaseReal(HNode *L, QNode *I) {
26 I uint64_t curCount = I->status;
27 // Lower level releases
28 I if (curCount == L->GetThreshold ()) {
29 // reached threshold , release to next level
30 I HMCSLock <depth -1>:: ReleaseReal(L->parent , &(L->node));
31 release fence
32 // Ask successor to acquire next level lock
33 ReleaseHelper(L, I, ACQUIRE_PARENT);
34 return; // Released
35 }
36 // Not reached threshold
37 I QNode * succ = I->next;
38 I if (succ) { // Pass within cohorts
39 I succ ->status = curCount + 1;
40 return;
41 }
42 // else: No known successor , release to parent
43 HMCSLock <depth -1>:: ReleaseReal(L->parent , &(L->node));
44 release fence
45 // Ask successor to acquire next level lock
46 ReleaseHelper(L,I, ACQUIRE_PARENT);
47 }
48
49 inline void Release(HNode *L, QNode *I) {
50 I release fence
51 ReleaseReal(L, I);
52 }
53 };
54
55 void ReleaseHelper(HNode *L, QNode *I, uint64_t val){
56 I QNode * succ = I->next;
57 I if (succ) {
58 I succ ->status = val; // pass lock
59 } else {
60 if (CAS(&(L->lock), I, NULL)) return;
61 while((succ=I->next) == NULL); // spin
62 succ ->status = val; // pass lock
63 }
64 }
65
66 template <> struct HMCSLock <1> {
67 inline void AcquireReal(HNode *L, QNode *I) {
68 // Prepare the node for use.
69 I->status = LOCKED; I->next = NULL;
70 QNode * pred = (QNode *) SWAP (&(L->lock), I);
71 if (!pred) {
72 I->status = UNLOCKED;
73 } else {
74 pred ->next = I;
75 I while(I->status == LOCKED); // spin
76 }
77 }
78
79 inline void Acquire(HNode *L, QNode *I) {
80 AcquireReal(L, I);
81 I acquire fence
82 }
83
84 inline void ReleaseReal(HNode *L, QNode *I) {
85 ReleaseHelper(L, I, UNLOCKED);
86 }
87
88 inline void Release(HNode *L, QNode *I) {
89 I release fence
90 ReleaseReal(L, I);
91 }
92 };

Listing 4.1: The Hierarchical MCS lock algorithm.

88

When releaser R encounters a pass count V that has exceeded the passing threshold inside

a domain (represented by an HNode L), other than the tree root, R recursively performs the

release protocol (line 30 in Listing 4.1) at L->parent before signaling its successor S. If S is

non-null, R signals S by setting S’s status to ACQUIRE PARENT, which indicates that S must

compete for the MCS lock at its parent level (L->parent). If R were to signal S before

releasing at L->parent, there would be a data race between R and S for the QNode they both

use (L->node) to interact with the MCS lock at the parent level.

Attempting to pass a lock to a thread in the same NUMA domain before relinquishing

the lock to the next level enhances reuse of shared data. Limiting the number of local passes

ensures starvation freedom. If the passing threshold is exceeded but there is a successor at

the current level, whereas no threads in other domains are waiting, then we retain the lock

within the domain for another round. This optimization is not shown in Listing 4.1.

Relaxed memory models: Listing 4.1 shows the fences necessary for the HMCS lock on

systems with processors that use weak ordering.

1. The release fence on line 8 ensures that the status and next fields of the QNode are

initialized and visible for the predecessor.

2. The acquire fence on line 22 ensures that the accesses inside the critical section are not

reordered with instructions in the acquire protocol.

3. The release fences on line 31 and line 44 ensure that the release of a parent lock and

updates to a shared QNode are visible to a successor sharing the same parent, before

the successor node is signaled.

4. The release fence on line 50 ensures that the accesses inside a critical section are not

reordered with respect to the writes after the critical section.

5. The acquire fence on line 81 ensures that the accesses inside the critical section are not

reordered with instructions in the acquire protocol.

6. The release fence on line 89 ensures that the accesses inside a critical section are not

reordered with respect to writes after the critical section.

89

4.5.1 Correctness

In this section, we provide correctness proof of the HMCS lock. An HMCS lock does not

ensure the FIFO property. We need to show the following two aspects for the correctness of

an HMCShNi lock, for any value of N :

1. An HMCShNi lock ensures mutual exclusion.

2. An HMCShNi lock ensures bounded waiting [212].

4.5.1.1 Proof for the mutual exclusion of HMCShNi

Axiom 4.1 MCS lock ensures mutual exclusion [108, 155].

Since HMCSh1i is same as MCS, it trivially follows from Axiom 4.1 that HMCSh1i ensures

mutual exclusion.

We follow an inductive argument to prove the mutual exclusion property of an HMCShNi

lock.

Base case (N = 2): First, we show that when N = 2, HMCSh2i ensures mutual exclusion.

Proof by contradiction: Assume HMCSh2i does not ensure mutual exclusion. Hence,

HMCSh2i must allow two threads to be simultaneously present in the CS. If so, these two

threads (say T
1

and T
2

), cannot be from two peer threads (di↵erent domains) at level 2. This

because, either T
1

itself acquired the level-2 MCS lock or some level-1 peer of T
1

acquired the

level-2 MCS lock prior to granting the level-1 MCS lock to T
1

. In either case, the level-2 lock

is held by T
1

’s innermost enclosing domain and is not released yet. If T
1

and T
2

are peers

at level 2, then they compete for the same level-2 MCS lock; and by the mutual exclusion

property of the level-2 MCS lock, no two threads can simultaneously acquire the same MCS

lock. Hence, no two level-2 peers can simultaneously be present in a CS. Note that the same

argument holds if T
2

was the level-2 lock holder.

In a 2-level system, two threads are either level-1 peers or level-2 peers. If T
1

and T
2

cannot be level-2 peers, they must be level-1 peers, belonging to the same inner domain.

Two level-1 peers compete for the same level-1 MCS lock. By the mutual exclusion property

of the level-1 MCS lock, T
1

and T
2

cannot acquire the same level-1 MCS lock simultaneously.

Hence, T
1

and T
2

cannot be level-1 peers either.

90

T
1

and T
2

cannot simultaneously be in the CS whether they are level-2 peers (belong

to di↵erent domains) or level-1 peers (belong to same domain), which contradicts of our

assumption. Hence, two threads cannot simultaneously be in a CS. Thus, HMCSh2i ensures

mutual exclusion. This proof resembles the one in [64].

Inductive step: Since HMCSh2i ensures mutual exclusion, assume that HMCShMi, where

M > 2, ensures mutual exclusion.

We now need to show that HMCShM + 1i ensures mutual exclusion. An HMCShM + 1i

lock is composed of several HMCShMi local locks and a root-level MCS lock.

Proof by contradiction: Assume an HMCShM + 1i allows two threads to be simultaneously

present in a CS. If so, these two threads, T
1

and T
2

, cannot be peers (belong to di↵erent

domains) at level M+1. This is because, if a thread T
1

is in the CS, then either T
1

itself

acquired the level-(M+1) MCS lock or another thread that is a peer of T
1

at level less than

or equal to M (and hence sharing the same HMCShMi lock as T
1

) released its HMCShMi

or a lower level lock allowing T
1

to enter the CS. In either case, the level-(M+1) MCS lock

is held by a thread sharing the same domain as T
1

at level M+1, and the level-(M+1) MCS

lock is not released yet. If T
1

and T
2

are peers at level M+1, then they compete for the same

level-(M+1) MCS lock; but by the mutual exclusion property of the level-(M+1) MCS lock,

no two threads can simultaneously acquire the same MCS lock. Hence, no two level-(M+1)

peers can simultaneously be present in a CS.

In an (M+1)-level system, two threads are peers at some level less than or equal to M+1.

If T
1

and T
2

cannot be level-(M+1) peers, then they must be peers at a level less than or

equal to level-M, sharing the same HMCShMi lock. By the mutual exclusion property of

the HMCShMi lock (inductive step), T
1

and T
2

cannot simultaneously acquire the same

HMCShMi lock. Hence, T
1

and T
2

cannot be peers at any level less than or equal to M

either.

T
1

and T
2

cannot simultaneously be in the CS whether they are peers at level M+1 (belong

to di↵erent domains) or peers at a level less than M+1 (belong to the same domains), which

contradicts of our assumption. Hence, two threads cannot simultaneously be in a CS in an

HMCShM + 1i lock. Hence, HMCShM + 1i ensures mutual exclusion.

By induction, HMCShNi ensures mutual exclusion.

91

4.5.1.2 Proof for the bounded waiting in HMCShNi

Axiom 4.2 MCS lock ensures FIFO ordering of threads requesting to enter a critical section

once they have swapped the tail pointer. This also means the MCS lock ensures a bounded

wait for the threads requesting to enter a CS [108, 155].

Since HMCSh1i is same as MCS, it trivially follows from Axiom 4.2 that HMCSh1i ensures

FIFO property, which is stronger guarantee than bounded waiting. It follows from the FIFO

property of the MCS lock that the bound on waiting of an MCS lock with n contenders is n.

Let n
i

be the number of contenders at level i. Let h
i

be the passing threshold at level i.

For HMCSh2i, when h
1

� n
1

, the longest waiting happens for the last thread (say t
l

)

enqueued in level-1 MCS lock of the last domain (say D
l

) enqueued at level-2 MCS lock.

The following three quantities play role in determining the bound on waiting:

1. If t
l

has enqueued in D
l

but the head of D
l

(possibly t
l

itself) is yet to enqueue at level-

2, there can be a small, finite, but non-deterministic number (say �) of lock acquisitions

elsewhere in the system during such interval.

2. Each domain hands out a maximum of h
1

locks in a FIFO order to its level-1 MCS

contenders before relinquishing the lock at level-2. Level-2 MCS lock also obeys the

FIFO property. By the time the lock is passed to domain D
l

, there could be as many

as (n
2

� 1)h
1

lock acquisitions in the entire system.

3. In the last domain, D
l

, there can a maximum of n
1

lock acquisitions before the longest

waiting thread t
l

can enter its critical section.

Summing up the three quantities, the upper bound B on waiting is:

B
hmcsh2i = (n

2

� 1)h
1

+ n
1

+ �

 (n
2

� 1)h
1

+ h
1

+ �

 n
2

h
1

+ � (4.1)

For HMCSh2i, when h
1

< n
1

, each domain gets lock acquisitions in h
1

quantum. The

longest waiting thread (t
l

) will be the last enqueued thread in the last domain D
l

enqueued

92

at level 2. Because of the FIFO property of the MCS lock used at level 1, all n
1

� 1 threads

that are ahead of t
l

in D
l

should be served before t
l

can enter the CS. This means, t
l

is

assured of the CS entry only after D
l

has obtained the level-2 MCS lock dn

1

h

1

e times. This

means, there will be dn

1

h

1

eh
1

lock acquisitions in D
l

before t
l

finishes. Each time D
l

wants

to acquire the level-2 lock, it may be the last one to do so at level-2, forcing it to wait

for n
2

� 1 level-2 lock acquisitions ahead of it—a total of dn

1

h

1

e(n
2

� 1) level-2 MCS lock

acquisition. Each of those dn

1

h

1

e(n
2

� 1) level-2 acquisitions will handout at most h
1

locks in

other domains for a total of dn

1

h

1

e(n
2

� 1)h
1

lock acquisitions. As before, let � be the total,

finite, but non-deterministic number of lock acquisitions elsewhere in the system between

the time threads at the head of D
l

on dn

1

h

1

e di↵erent occasions enqueue at the level-2 MCS

lock. Summing up the three quantities, the upper bound B on waiting is:

B
hmcsh2i =

ln
1

h
1

m
h
1

+
ln

1

h
1

m
(n

2

� 1)h
1

+ �

=
⇣ln

1

h
1

m
n

2

⌘
h
1

+ � (4.2)

When h
1

� n
1

,
l

n

1

h

1

m
becomes 1 in Eqn 4.2 and hence equals Eqn 4.1. Thus, we see that in

either case Eqn 4.2, which is a finite value, is the bound on waiting in HMCSh2i.
We can easily extend Eqn 4.2 to HMCSh3i. Each time a thread rises to acquire the level-3

lock, it might be at the end of the queue, waiting n
3

�1 level-3 acquisitions ahead of it. Each

time a level-3 lock is acquired by any domain, there can be h
1

h
2

additional lock acquisitions

within such domain. The parenthesized term in Eqn 4.2 will be served in quanta of h
2

in an

HMCSh3i lock. Hence, the bound on waiting in an HMCSh3i is:

B
hmcsh3i =

 ⇠ln
1

h
1

mn
2

h
2

⇡
n

3

!
h
1

h
2

+ �

93

It can be shown that the bound on waiting in an HMCShNi is:

B
hmcshNi =

⇣

N�1

n
N

⌘ N�1Y

i=1

h
i

+ � (4.3)

where,
i

=

&⇠ln
1

h
1

mn
2

h
2

⇡
...
n
i

h
i

'

Thus, we see that Eqn 4.3, which is a finite value, ensures bounded waiting in HMCShNi.

4.5.2 Discussion

Latency vs. throughput: Clearly, the cost of occasionally manipulating a sequence of

locks along a path in a tree is more expensive than working with a single lock. For highly

contended locks, however, this cost is outweighed by the benefits of increased locality that

result from sharing within a NUMA domain. The HMCS design improves throughput at

the expense of latency, and it is best suited for highly contended locks. To reduce latency, a

client can use a shallower HMCS tree though doing so would reduce the lock’s peak potential

throughput. With the template-based design, we can instantiate the HMCS lock as a classical

MCS lock (HMCSh1i), a 2-level cohort lock (HMCSh2i), or use a larger template constant

for a deeper hierarchy. Although, the code in Listing 4.1 uses compile-time instantiation, one

could implement HMCS lock using runtime recursion instead of template meta programming.

Memory management: The HMCS lock needs no explicit memory management after

initialization. In contrast, Dice et al.’s cohort MCS lock requires maintaining a pool of free

nodes. For that reason, HMCS lock’s memory management is superior.

Cache policy: Performance benefits of the HMCS lock can vary based on the caching

policies such as inclusive vs. exclusive. By passing the lock to a nearby thread more often,

the HMCS lock benefits from data locality irrespective of the caching policy.

Thread binding: The code in Listing 4.1 is agnostic to operating-system (OS) thread to

hardware (HW) thread bindings. The thread calling the HMCS lock’s Acquire and Release

routines is responsible for using the correct L—the pointer to its leaf-level HNode. If the OS

94

thread is bound to a HW thread belonging to the same innermost NUMA domain, then the

program can set the value of L once during lock initialization and use it for the duration of

the program.

To address thread migration across NUMA domains, we replace the L argument in the

Acquire and Release routines to point to an array of pointers to leaf-level HNodes. The

Acquire indexes into this array to obtain the pointer to its HNode. The Acquire will also

remember the inferred value of the index, which the matching Release will use. The index

itself will be a cached, thread-local value derived by querying the CPU that the thread is

currently running on. We register a signal handler with Linux perf events for task migration.

On task migration, the handler invalidates the migrating thread’s cached CPU index. The

first acquire following a migration, incurs an additional cost of updating the index inferred

either via an architecture-specific instructions such as RDTSCP or via the getcpu system call.

4.6 Performance metrics

Two key governing design criteria for any locks are their throughput and fairness. The HMCS

and C-MCS locks are designed to deliver high throughput under heavy contention. For this

reason, we evaluate throughput and fairness of these locks in the fully contended case. We

do not have access to the original implementation of the C-MCS lock. We use HMCSh2i as

a proxy for the C-MCS lock, albeit HMCSh2i is superior due to no memory management.

In the rest of this chapter, a reference to C-MCS simply means HMCSh2i.

One can evaluate locks under full contention in various ways. Mellor-Crummey and

Scott [157] suggest continuous lock acquisitions and releases with an empty critical section

to assess the pure overhead of locks. Dice et al. suggest adding a delay outside the critical

section and accessing a few cache lines of shared data inside the critical section. Each

evaluation method has its own advantages and disadvantages. Dice et al.’s technique of

accessing sharing data can give a false impression of reduced lock overhead since the shared

data is also passed between NUMA domains. The larger the shared data accessed in the

critical section, the lower the observed overhead of the lock. Further, there is never an

appropriate delay to choose for the time spent outside a critical section. On the other hand,

Mellor-Crummey and Scott’s tight loop ignores the actual gain possible on a real program,

95

which would certainly access some shared data inside critical section; passing shared data

within NUMA domains has nontrivial benefits. Finally, if the data accessed inside a critical

section is so large that it evicts critical lock data structures, both Dice and Mellor-Crummey’s

techniques are moot. Being aware of these di↵erences and deficiencies, we adopt Mellor-

Crummey and Scott’s tight loop technique to quantify the pure lock overhead without any

external interference from the program.

Let n
i

be the number of peers in domain i. The lowest possible domain is the L1 cache

of a core, so n
1

is the number of hardware threads per core. Analogously, n
2

is the number

of cores per chip, n
3

is the number of chips / socket, etc. Given this definition, it is clear

that the total number of threads in the system is
NQ
i=1

n
i

.

4.6.1 Throughput

Definition 4.1 (Lock throughput) Lock throughput, T
k

, of a lock k, is the average num-

ber of lock acquisitions by k per unit time.

Definition 4.2 (Critical path) The critical path is the longest path from beginning to end

that has no wait states, where the edge weights correspond to operation latencies.1

Naturally, in Mellor-Crummey and Scott’s experimental setup, all statements in the

critical section are on the critical path. The time to execute the statements in the critical

section is a property of the program. For assessing lock overhead, however, we assume an

empty critical section. All statements that are executed from the time the lock is granted to

the time the lock is passed to the next waiting thread contribute to the critical path. Not

all statements in the lock-acquire and lock-release protocols contribute to the critical path.

Under high contention, a large number of threads will be waiting to acquire the lock. The

thread releasing the lock will have a successor linked behind it at each level in the hierarchy.

Each waiting thread will be spin-waiting at line 13 in Listing 4.1 in the acquire protocol.

We have marked all statements that may appear on the critical path with a “I” symbol in

Listing 4.1.

1Spin waiting corresponds to the wait states.

96

The following statements in the acquire protocol appear on the critical path: 1) the last

trip through the spin-wait loop after the lock is granted, and 2) the check to ensure the

passing threshold was not exceeded.

The following statements in the release protocol appear on the critical path: 1) loading

of the status field, 2) checking if the passing threshold has reached, 3) relinquishing the

global lock to the parent level when the passing threshold is reached, and 4) checking for the

presence of successor and subsequent global lock passing to the successor when the passing

threshold has not reached.

If the lock is relinquished to the parent level, the sequence of statements executed until

the global lock is granted to another domain contributes to the critical path. Subsequent

signaling of successors at lower levels is not on the critical path. In a fully contended

system, there is always a successor waiting to acquire the lock; hence, the case of not having

a successor (line 57 in Listing 4.1) is not on the critical path.

Our implementation takes advantage of C++ template’s value specialization to unroll

recursion. Template specialization allows the deepest level of recursion, which manipulates

the root lock, to be implemented with lower overhead. When the acquisition involves several

layers of recursion, tail recursion reduces the critical path length since the lock acquiring

thread can enter the critical section with a single return statement from the last level of

recursion. Furthermore, we engineered the code to reduce branches on the critical path (not

shown in Listing 4.1.)

A variant of the C-MCS lock: While Dice et al.’s C-MCS lock formed cohorts within

threads on the same socket it ignored the other levels of NUMA hierarchy inside a socket.

We propose a variant of C-MCS lock where cohorts are formed only at the inner level (e.g.,

among SMT threads). All other levels of the NUMA hierarchy are ignored. We call Dice et

al.’s original C-MCS lock an outer cohorting lock (C-MCS
out

). We call the aforementioned

variant of the C-MCS lock as an inner cohorting lock (C-MCS
in

).

For simplicity, in Section 4.6.1.1- 4.6.1.3 we assume a 3-level system and build analytical

models of throughput for C-MCS
in

, C-MCS
out

and HMCSh3i locks. We provide throughput

models of the HMCS lock for any N-level system at the end of Section 4.6.1.3.

97

Re
l2⊕
3

Acq
2⊕3

Acq
1Re

l1

p1

Figure 4.6 : Lock passing in the C-MCS
in

lock.

4.6.1.1 Throughput of the C-MCS
in

lock

In a C-MCS
in

lock, threads at level-1 of the NUMA hierarchy (e.g., SMT threads) form

cohorts. On reaching the passing threshold, however, a C-MCS
in

lock may relinquish the

lock either to a level-2 NUMA peer (e.g., a thread on the same socket) or to a level-3 NUMA

peer (e.g., a thread on another socket). Consider a chain of successive lock passing as shown

in Figure 4.6. The first thread in the cohort acquires the lock either from a level-2 or level-3

peer in the NUMA hierarchy. Let Acq
2

and Acq
3

be the critical path lengths if the lock is

acquired from a level-2 or level-3 peer respectively. Since the level-3 memory access latency

is larger than level-2 memory access latency, Acq
3

> Acq
2

. The expected critical path length

to acquire the lock either from a level-2 or level-3 NUMA domain peer is given by:

Acq
2�3

=Pr [Acquisition from level 2] Acq
2

+ (1 � Pr [Acquisition from level 2]) Acq
3

(4.4)

There are (n
2

n
3

� 1) other domains in the system, of which (n
2

� 1) are peers at level 2.

Hence,

Pr [Acquisition from level 2] =
n
2

� 1

n
2

n
3

� 1
(4.5)

=) Acq
2�3

=
n
2

� 1

n
2

n
3

� 1
Acq

2

+
n
2

n
3

� n
2

n
2

n
3

� 1
Acq

3

(4.6)

Let Rel
1

and Acq
1

be the critical paths in the release and acquire protocols when releasing

and acquiring at level-1 respectively. We represent Rel
1

+ Acq
1

= p
1

as the lock passing time

at level 1. If c
in

is the passing threshold for the lock, there will be (c
in

� 1) locks passing

at level 1, each adding p
1

to the critical path length. At the end, the lock will be released

to a thread belonging to either level-2 or level-3 domains and the expected cost of releasing

(Rel
2�3

) is defined similar to Acq
2�3

. We represent Acq
2�3

+ Rel
2�3

as p
2�3

, where p
2

and

98

p
3

are the passing times at level 2 and 3 respectively. The expected passing time is:

p
2�3

=
n
2

� 1

n
2

n
3

� 1
p
2

+
n
2

n
3

� n
2

n
2

n
3

� 1
p
3

(4.7)

A remote acquisition, a few local passes, and a remote release sequence repeats in each

domain. The C-MCS
in

lock acquires c
in

number of locks in time p
2�3

+ (c
in

� 1)p
1

. Hence

the throughput of a C-MCS
in

lock, T
in

, in a 3-level system is given by:

T
in

(3) =
c
in

p
2�3

+ (c
in

� 1)p
1

(4.8)

As c
in

! 1, T
in

(3) ! 1/p
1

. Maximum throughput of the C-MCS
in

lock, T max

in

, in a 3-level

system is given by:

T max

in

(3) =
1

p
1

(4.9)

This bound holds for any N-level system.

4.6.1.2 Throughput of the C-MCS
out

lock

In this lock, cohorts are formed among threads belonging to level-1 and level-2 NUMA

domains aggregated, and no distinction is made between these two levels of hierarchy. Let

c
out

be the passing threshold. Let the cost of acquisition and release, from an outside domain

(at level-3), be Acq
3

and Rel
3

respectively. We represent Acq
3

+ Rel
3

as p
3

— the lock passing

time at level 3. The expected cohort passing time within level-1 and level-2 NUMA domains

is:

p
1�2

= Pr [passing within level 1] p
1

+ (1 � Pr [passing within level 1]) p
2

There are (n
1

n
2

� 1) other threads within level-2 of the NUMA hierarchy, of which (n
1

� 1)

are level-1 NUMA peers. Hence, the probability of cohort passing between level-1 NUMA

peers is (n
1

� 1)/(n
1

n
2

� 1).

=) p
1�2

=
n
1

� 1

n
1

n
2

� 1
p
1

+
n
1

n
2

� n
1

n
1

n
2

� 1
p
2

(4.10)

The C-MCS
out

lock passes the lock (c
out

� 1) times within its cohorts adding a to-

tal of (c
out

� 1)p
1�2

length to the critical path. c
out

lock acquisitions happen in time

p
3

+ (c
out

� 1)p
1�2

. The sequence—a remote acquisition at level-3, a few local passing within

99

either level-1 or level-2, and a remote release to level-3—repeats in each domain. Hence,

throughput of the C-MCS
out

lock, T
out

, in a 3-level system is given by:

T
out

(3) =
c
out

p
3

+ (c
out

� 1)p
1�2

(4.11)

As c
out

! 1, T
out

! 1/p
1�2

. Maximum throughput of a C-MCS
out

lock, T max

out

, in a 3-level

system is given by:

T max

out

(3) =
1

p
1�2

(4.12)

This bound holds for any N-level system.

In general, if the innermost cohort formation is at level k , the peak throughput is bounded

by 1/p
1�2�...�k

.

Since p
2

(the lock passing time at level 2) is higher than p
1

(the lock passing time at level

1), p
1�2

(the expected lock passing time between level-1 or level-2) is higher than p
1

. From

Eqn 4.9 and 4.12, it follows that T max

out

(3) < T max

in

(3). Hence, C-MCS
in

achieves higher peak

throughput than C-MCS
out

. Experiments on an IBM Power 755, a 3-level system, corroborate

this finding (Sec. 4.8).

4.6.1.3 Throughput of HMCS locks

The HMCSh3i lock forms cohorts at both level 1 and level 2 of the NUMA hierarchy in a

3-level system (Figure 4.7). Let h
1

and h
2

respectively be the passing thresholds at level

1 and level 2. In a 3-level lock, a full cycle begins by obtaining the lock at level-3 (Acq
3

).

Subsequently, the lock is passed (h
1

� 1) times within level-1, releasing the lock at level-

2 (Rel
2

), followed by an acquisition at level-2 (Acq
2

). The cycle of passing within level-2

happens for (h
2

� 1) times. On reaching the passing threshold at level 2, the HMCSh3i lock

relinquishes the global lock to a level-3 peer adding Rel
3

to the critical path. There will be a

total of (h
1

� 1)h
2

lock passes within level 1, each one adding p
1

length to the critical path.

There will be (h
2

� 1) lock passes at level 2, each one adding p̂
2

length to the critical path.

There will be one lock passing at level 3 adding p̂
3

length to the critical path. In the entire

cycle, h
1

h
2

locks will be acquired. Hence, throughput of the HMCSh3i lock, T
hmcsh3i, in a

3-level system is given by:

T
hmcsh3i(3) =

h
1

h
2

p̂
3

+ (h
2

� 1)p̂
2

+ h
2

(h
1

� 1)p
1

(4.13)

100

Re
l3

Acq
3 Re

l2
Acq

2
Re
l2

Acq
2

p2

Acq
1

Re
l1

p1
p2

Figure 4.7 : Lock passing in the HMCSh3i lock.

p̂
3

and p̂
2

are the lock passing times respectively at level-2 and level-3 in the HMCSh3i lock.

The level-2 lock passing in the HMCSh3i lock has an additional critical path component

that loads and compares the status flag (lines 26-28 in Listing 4.1) with the threshold,

which is not needed by optimal implementations of C-MCS locks. If this additional cost

is ✏
0

, then p̂
2

= p
2

+ ✏
0

. On reaching the passing threshold at level 2, the HMCSh3i lock

needs to traverse to the parent lock before releasing the global lock to a level-3 peer (line 30

in Listing 4.1)—a cost not incurred in C-MCS locks. Let ✏
1

be the cost of traversing from

level-2 lock to the level-3 parent lock (all necessary datum will be in the nearest level cache).

For that reason, p̂
3

= p
3

+ ✏
1

. Hence, the throughput of the HMCSh3i lock is:

T
hmcsh3i(3) =

h
1

h
2

p
3

+ (h
2

� 1)p
2

+ h
2

(h
1

� 1)p
1

+ ✏
(4.14)

where ✏ = ✏
1

+ (h
2

� 1)✏
0

.

As h
1

! 1, T
hmcsh3i ! 1/p

1

. Maximum throughput of the HMCSh3i lock, T max

hmcsh3i, in a

3-level system is given by:

T max

hmcsh3i(3) =
1

p
1

(4.15)

It is straightforward to infer from Eqn 4.9, 4.12 and 4.15 that:

T max

in

(3) = T max

hmcsh3i(3) > T max

out

(3) (4.16)

Hence, the C-MCS
in

lock—a C-MCS variant with inner cohorting and the HMCSh3i lock

have the same peak throughput and both of them can deliver higher throughput than Dice et

al.’s C-MCS lock with outer cohorting.

From Eqn 4.13, it is straightforward to generalize the throughput of an N-level HMCS

101

lock, T
hmcshNi, for an N-level NUMA system as:

T
hmcshN i(N) =

N�1Q
i=1

h
i

p
N

+
N�1P
i=1

⇣
p
i

(h
i

� 1)
N�1Q
j=i+1

h
j

⌘ (4.17)

Discussion: While our performance models assumed empty critical sections for assessing

lock overhead, we can model non-empty critical sections by including an additional cs term

to account for the cost of the critical section in each lock passing term (p
i

). While the C-

MCS
in

and HMCS locks can theoretically deliver top throughput, in practice, threads may

not be able to achieve the maximum possible throughput when the delay outside the critical

path is large. The average number of threads enqueuing for the same lock acquisition at

a level per unit time is defined as the arrival rate at that level. For a lock representing a

NUMA domain in the HMCS tree to be useful, the arrival rate for that domain must exceed

the rate at which the domain is selected for service. Furthermore, the reduction in access

latency realized by passing a lock and the data it protects within a domain should outweigh

the cost of adding an addition lock level.

4.6.2 (Un)Fairness

If a lock serves threads in the first-in first-out (FIFO) order, then the lock is considered

fully fair. The MCS lock ensures FIFO ordering once a requesting thread has swapped the

lock’s tail pointer. HMCS and C-MCS locks do not ensure FIFO ordering since they allow

multiple turns for threads within the same domain even when threads are already enqueued

elsewhere in the lock hierarchy.

For quantitative comparison of HMCS and C-MCS locks, we devise a metric of unfairness.

In this scheme, after a process has made a request to enter its critical section and before that

request is granted, each subdomain can acquire the lock as many times as the total number

of threads in its subdomain; every additional acquisition counts towards a unit of unfairness.

Under high contention, a thread that just released the lock must wait until all other threads

already waiting at that level are served, which is ensured by the FIFO property of MCS lock

at each level. Hence, from the viewpoint of a waiting thread, this scheme penalizes a thread

102

for multiple acquisitions, but it does not penalize for the non-FIFO order of servicing the

requests.

Definition 4.3 (Unfairness:) Unfairness is the maximum possible total number of addi-

tional rounds of lock acquisitions over the designated quota of one, by other threads in the

system when a thread is still waiting to acquire the lock. Formally, if T is the set of all

threads in the system, the unfairness, U , is given by:

U = Max
⇣
8j 2 T,

P
i2T�j

�
acquisitions by i | j is waiting�1

�⌘
.

The worst-case wait for a thread when using an MCS lock is (
NQ

i=1

n
i

� 1) lock acquisitions

and its unfairness is 0 . In fully contended cohort locks, if the threshold of each level h
i

equals to the number of contenders n
i

at level i , then the longest waiting thread waits for a

maximum of (
NQ

i=1

n
i

� 1) lock acquisition, which is same as the longest wait in the classical

MCS lock. However, if any h
i

> n
i

, threads will be served more than once causing unfairness

for some waiting threads in the system.

4.6.2.1 Unfairness of the C-MCS
in

lock

Consider the case when c
in

� n
1

. The maximum unfairness will be incurred by the last

thread— t
4 .2

shown in blue color in Figure 4.8, enqueued in the last domain enqueued

(domain 4) in the outer queue of the C-MCS
in

lock. Each of the first (n
2

n
3

� 1) NUMA

domains acquires c
in

locks, of which only n
1

are fair and the remaining (c
in

� n
1

) are unfair.

The acquisitions in the last enqueued domain do not contribute to the unfairness since by

the time repetitions happen, the longest waiting thread would have already been served.

Hence the unfairness of the C-MCS
in

lock in a 3-level system is:

U
in

(3) = (c
in

� n
1

)(n
2

n
3

� 1) (4.18)

In Figure 4.8, n
1

= 2 , n
2

= 2 , n
3

= 2 , and c
in

= 4 . Hence, the total unfairness is

(4 � 2)(2 ⇥ 2 � 1) = 6 .

When c
in

< n
1

, each domain goes through multiple rounds of service before the longest

waiting thread in the last domain can be served. We demonstrate this with the example

in Figure 4.9, where n
1

= 4 , n
2

= 2 , n
3

= 2 , and c
in

= 3 . Only 3 out of 4 threads will be

103

Fair Unfair Fair Unfair Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

(cin -n1) (cin -n1)

Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

Fair Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

x x x

Fair Unfair Fair Unfair Fair Unfair

R
ou

nd
 1

R
ou

nd
 2

t 1.
1

t 1.
2

t 1.
1

t 1.
2

t 2.
1

t 2.
2

t 2.
1

t 2.
2

Fair Unfair
(cin -n1)

t 3.
1

t 3.
2

t 3.
1

t 3.
2

t 4.
1

t 4.
2

t 1.
1

t 1.
2

t 1.
3

t 1.
4

t 2.
1

t 2.
2

t 2.
3

t 2.
4

t 3.
1

t 3.
2

t 3.
3

t 3.
4

t 4.
1

t 4.
2

t 4.
3

t 4.
4

Fair

t 1.
4

t 1.
1

t 1.
2

t 1.
3

t 2.
4

t 2.
1

t 2.
2

t 2.
3

t 3.
4

t 3.
1

t 3.
2

t 3.
3

t 4.
4

Figure 4.8 : Unfairness in the C-MCS
in

lock, when c
in

� n
1

.

Fair Unfair Fair Unfair Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

(cin -n1) (cin -n1)

Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

Fair Fair

longest
waiting
thread

domain 1 domain 2 domain 3 domain 4
(n2 * n3 -1)

x x x

Fair Unfair Fair Unfair Fair Unfair

R
ou

nd
 1

R
ou

nd
 2

t 1.
1

t 1.
2

t 1.
1

t 1.
2

t 2.
1

t 2.
2

t 2.
1

t 2.
2

Fair Unfair
(cin -n1)

t 3.
1

t 3.
2

t 3.
1

t 3.
2

t 4.
1

t 4.
2

t 1.
1

t 1.
2

t 1.
3

t 1.
4

t 2.
1

t 2.
2

t 2.
3

t 2.
4

t 3.
1

t 3.
2

t 3.
3

t 3.
4

t 4.
1

t 4.
2

t 4.
3

t 4.
4

Fair
t 1.

4
t 1.

1
t 1.

2
t 1.

3

t 2.
4

t 2.
1

t 2.
2

t 2.
3

t 3.
4

t 3.
1

t 3.
2

t 3.
3

t 4.
4

Figure 4.9 : Unfairness in the C-MCS
in

lock, when c
in

< n
1

.

served in each domain in the first round through all domains. For example, in domain 1,

t
1 .1

, t
1 .2

, and t
1 .3

will be served and t
1 .4

will not be served. In the worst case, it takes a

total of two rounds through all domains before the longest waiting thread can be served. In

the second round through all the domains, the first thread in domains 1-3 (t
1 .4

, t
2 .4

, and

t
3 .4

, respectively) will be served for the first time. In this round, t
1 .1

and t
1 .2

, will be taking

their additional rounds, adding two units of unfairness in domain 1 . Similarly, domains 2

and 3 also contribute two units of unfairness each. As before, no repetitions happen in the

last domain. Each domain gets lock acquisitions in c
in

quantum; from the point of view of

longest waiting thread, each of the other (n
2

n
3

� 1) domains acquire d n

1

c

in

ec
in

locks, of which

n
1

are fair. Hence, the total unfairness is:

U
in

(3) =
⇣ln

1

c
in

m
c
in

� n
1

⌘
(n

2

n
3

� 1) (4.19)

When c
in

� n
1

, Eqn 4.19 simply reduces into Eqn 4.18. In Figure 4.9, the unfairness is

104

(d4/3 e3 � 4)(2 ⇥ 2 � 1) = 6 .

4.6.2.2 Unfairness of the C-MCS
out

lock

The C-MCS
out

lock collapses level-1 and level-2 of the NUMA hierarchy into a single domain

of n
1

n
2

threads and assumes that there are n
3

such domains. Following the same argument

as before, it is straightforward to show that the unfairness of the C-MCS
out

lock in a 3-level

system is:

U
out

(3) =
⇣ln

1

n
2

c
out

m
c
out

� n
1

n
2

⌘
(n

3

� 1) (4.20)

4.6.2.3 Unfairness of HMCS locks

First we compute the unfairness when, h
1

� n
1

and h
2

� n
2

.

Consider a system where n
1

= 2 , n
2

= 2 and let h
1

= 4 , h
2

= 4 as shown in Figure 4.10.

The maximum unfairness will be observed by thread t
M .2 .2

. There will be 4 ⇥ 4 lock acqui-

sitions inside each of the first (n
3

� 1) level-2 domains, of which (4 ⇥ 4 � 2 ⇥ 2) are unfair.

Inside the last domain (M), there will be (4 � 2) unfair acquisitions in the subdomain M .1 .

The subdomain M .2 adds no unfairness.

In general, maximum unfairness will be observed by the last enqueued thread in the last

level-1 domain (D
last

L1

) belonging to the last enqueued level-2 domain (D
last

L2

). There will be

h
1

h
2

lock acquisitions inside each of the first (n
3

� 1) level-2 domains of which (h
1

h
2

� n
1

n
2

)

are unfair. Inside the D
last

L2

domain, there will be (h
1

� n
1

) unfair acquisitions in each of the

first (n
2

� 1) level-1 domains. The D
last

L1

domain adds no unfairness since any repetitions

will happen only after the longest-waiting thread is already served.

Thus the total unfairness of the HMCSh3i lock in a 3-level system when h
1

� n
1

and

h
2

� n
2

is:

U
hmcsh3i(3) = (h

1

h
2

� n
1

n
2

)(n
3

� 1) + (h
1

� n
1

)(n
2

� 1) (4.21)

We use Figure 4.11 to provide intuition for deriving unfairness when h
1

< n
1

and h
2

< n
2

.

In Figure 4.11, n
1

= 3 , n
2

= 4 , n
3

= 2 , h
1

= 2 , and h
2

= 3 . In the first round, three

(domains 1 .1 , 1 .2 , and 1 .3) out of four level-1 domains will be served inside domains 1 and

2 . Within each level-1 domain that is served, two out of three threads will be served (e.g.,

t
1 .1 .1

and t
1 .1 .2

will be served in domain 1 .1 but not t
1 .1 .3

). Round 1 accrues no unfairness.

105

t M
.1

.1
t M

.1
.2

t M
.1

.1
t M

.1
.2

t 1.
1.

1
t 1.

1.
2

t 1.
1.

1
t 1.

1.
2

Fair

h2

Unfair Fair Unfair

domain 1.1 domain 1.2 domain 1.1 domain 1.2

Unfair Unfair Fair

 x x

Unfair Fair

domain M.1 domain M.2

longest
waiting
thread

…

(n3 - 1) domains

h1 h1

t 1.
2.

1
t 1.

2.
2

t 1.
2.

1
t 1.

2.
2

t 1.
1.

1
t 1.

1.
2

t 1.
1.

1
t 1.

1.
2

t 1.
2.

1
t 1.

2.
2

t 1.
2.

1
t 1.

2.
2

t M
.2

.1
t M

.2
.2

domain M

Figure 4.10 : Unfairness in the HMCSh3i lock, when h
1

� n
1

and h
2

� n
2

.

t 2.
1.

3

t 1.
2.

2

dom 2.1 dom 2.2 dom 2.3 dom 2.4
h2

dom 1.1 dom 1.2 dom 1.3 dom 1.4
h2

longest waiting thread

h2

Fair

dom 1.4

Fair

dom 1.1

Fair

dom 1.2 dom 1.3
h2

dom 2.4 dom 2.1 dom 2.2 dom 2.3

Not
 served

Not
served

Not
 served

Unfair Unfair

h2

dom 1.3 dom 1.4 dom 1.1 dom 1.2

Not
 served

Unfair Unfair
Fair

Unfair
Fair

h2

dom 2.3

x x

dom 2.4

Fair
Unfair

Fair

Unfairness = 0 Unfairness = 0

Unfairness = 2 Unfairness = 2

Unfairness = 4 Unfairness = 1

domain 1 domain 2

domain 1 domain 2

domain 1 domain 2

R
ou

nd
 1

R
ou

nd
 2

R
ou

nd
 3

longest waiting thread

longest waiting thread

Fair

t 1.
1.

1
t 1.

1.
2

t 1.
1.

3

Fair

t 1.
2.

1
t 1.

2.
2

t 1.
2.

3

Fair
t 1.

3.
1

t 1.
3.

2
t 1.

3.
3

t 1.
4.

1
t 1.

4.
2

t 1.
4.

3

Fair

t 2.
1.

1
t 2.

1.
2

t 2.
1.

3

Fair

t 2.
2.

1
t 2.

2.
2

t 2.
2.

3

Fair

t 2.
3.

1
t 2.

3.
2

t 2.
3.

3

t 2.
4.

1
t 2.

4.
2

t 2.
4.

3

t 1.
4.

1
t 1.

4.
2

t 1.
4.

3

t 1.
1.

1
t 1.

1.
2

t 1.
1.

3

t 1.
2.

1
t 1.

2.
3

t 1.
3.

3
t 1.

3.
1

t 1.
3.

2

t 2.
2.

2

Fair Fair Fair Not
 served

Unfair Unfair
t 2.

4.
1

t 2.
4.

2
t 2.

4.
3

t 2.
1.

1
t 2.

1.
2

t 2.
2.

1
t 2.

2.
3

t 2.
3.

3
t 2.

3.
1

t 2.
3.

2

t 1.
3.

3
t 1.

3.
1

t 1.
3.

2

t 1.
4.

3
t 1.

4.
1

t 1.
4.

2

t 1.
1.

2
t 1.

1.
3

t 1.
1.

1

t 1.
2.

2
t 1.

2.
3

t 1.
2.

1

t 2.
3.

3
t 2.

3.
1

t 2.
3.

2

t 2.
4.

3

Figure 4.11 : Unfairness in the HMCSh3i lock, when h
1

< n
1

and h
2

< n
2

.

In round 2, two threads (t
1 .4 .1

and t
1 .4 .2

) inside the domain 1 .4 will be served for the first

time. In domains 1 .1 and 1 .2 one thread (t
1 .1 .3

and t
1 .2 .3

, respectively) will be served

for the first time, whereas one thread (t
1 .1 .1

and t
1 .2 .1

, respectively) will be enjoying its

second round of service, while the longest waiting thread is still waiting. This accumulates

an unfairness of 2 units in domains 1. The same repeats in domain-2 also. In the third

106

round, one thread (t
1 .3 .3

and t
1 .4 .3

, respectively) in the domains 1 .3 and 1 .4 will be served

fairly, whereas one thread (t
1 .3 .1

and t
1 .4 .1

, respectively) will be served for the second time,

hence unfair. Furthermore, because of a remaining one round in the h
2

quantum, we serve

two threads (t
1 .1 .2

and t
1 .1 .3

) in the domain 1 .1 for the 3 rd time accruing a total of 4 units

of unfairness in domain 1 . In domain 2 .3 , one thread (t
2 .3 .3

) is served fairly, whereas one

thread (t
2 .3 .1

) will be served for the second time. Thus, total unfairness in round 3 is 5. The

total unfairness in all rounds taken together is 9.

Since each level-2 lock acquisition provides a chunk of h
1

locks at a time, each level-1

domains has to experience dn

1

h

1

e level-2 lock acquisitions before the longest-waiting thread is

served. Let us first focus on a level-2 domain to which the longest waiting thread does not

belong to arrive at the number of level-3 acquisitions that need to happen. Since there are

n
2

peers at level-2, a total of dn

1

h

1

en
2

level-2 lock acquisitions need to happen. Level-2 locks

are given in a chunk of h
2

, which means each level-2 domain needs to experience ddn

1

h

1

en

2

h

2

e

level-3 lock acquisitions. Each round of level-3 lock acquisition serves a total of h
1

h
2

locks

inside its subdomain. Hence, the total lock acquisitions will be ddn

1

h

1

en

2

h

2

eh
1

h
2

, of which only

n
1

n
2

are fair. Hence, the unfairness in each domain to which the longest waiting thread does

not belong is ddn

1

h

1

en

2

h

2

eh
1

h
2

� n
1

n
2

. There is a maximum of (n
3

� 1) such domains.

In the level-2 domain to which the longest-waiting thread belongs, each of the (n
2

� 1)

domains need to experience dn

1

h

1

eh
1

lock acquisitions, of which only n
1

will be fair. Thus,

the total unfairness in the last level-2 domain will be (dn

1

h

1

eh
1

� n
1

)(n
2

� 1). Combining the

unfairness from both cases, we arrive at the total unfairness of the HMCSh3i lock in a 3-level

system as:

U
hmcsh3i(3) =

✓⇠ln
1

h
1

mn
2

h
2

⇡
h
1

h
2

� n
1

n
2

◆
(n

3

� 1) +
⇣ln

1

h
1

m
h
1

� n
1

⌘
(n

2

� 1) (4.22)

For the example in Figure 4.11, the unfairness is:

(
⌃
d3/2e4/3

⌥
2⇥ 3� 3⇥ 4)(2� 1) + (d3/2e2� 3)(4� 1) = 9.

When h
1

� n
1

and h
2

� n
2

, Eqn 4.22 degenerates into Eqn 4.21. Eqn 4.21 also covers

the cases of h
1

� n
1

and h
2

< n
2

, as well as h
1

< n
1

and h
2

� n
2

. We omit the details for

brevity. We note that when h
1

< n
1

unfairness is 0 , if either h
1

divides n
1

and h
2

divides

n
2

or h
2

divides dn

1

h

1

en
2

.

107

�

��

���

��

�

��
��

��

�
����

����

����

����

����������

20 40 60 80
Threshold

200

400

600

800

1000

1200

Unfairness

a) C-MCSin b) HMCS<3>

cin

h1

h2

U
nf

ai
rn

es
s

Un
fa

irn
es

s

Figure 4.12 : Impact of threshold on unfairness.

Figure 4.12 provides visualization of unfairness in the C-MCS
in

and HMCSh3i locks

with varying values of thresholds. Both graphs assume a hypothetical machine where

n
1

= 40 , n
2

= 8 , and n
3

= 4 . For the C-MCS
in

lock, the unfairness is 0 , when the threshold

c
in

divides n
1

. For the HMCSh3i lock, the unfairness is 0, when the threshold h
1

divides n
1

and h
2

divides n
2

; otherwise, the unfairness grows linearly with both increase in h
1

and h
2

.

Finally, we extend the Eqn 4.22 to generalize the unfairness of an N-level HMCS lock,

U
hmcshNi, for any N-level NUMA system as:

U
hmcshN i(N) =

N�1X

i=1

⇣

i

iY

j=1

h
i

�
iY

j=1

n
i

⌘
(n

i+1

� 1) (4.23)

where
i

=

&⇠ln
1

h
1

mn
2

h
2

⇡
...
n
i

h
i

'

When h
i

� n
i

, 8i , the
i

term in Eqn 4.23 vanishes.

108

4.7 HMCS properties

In this section, we prove some of the important attributes of HMCS locks in comparison with

the C-MCS locks. From Eqn 4.16 the peak throughput of the HMCS lock is same as the peak

throughput of the C-MCS
in

lock. Hence, the competition between them is for fairness when

delivering the same throughput. We prove, in Section 4.7.1, that on a 3-level NUMA system,

when the di↵erence in latencies between two consecutive levels of the NUMA hierarchy is

su�ciently large, a 3-level HMCS lock delivers higher fairness than a C-MCS
in

lock for any

user-chosen throughput.

The competition between the C-MCS
out

and HMCSh3i locks is for the throughput at the

same level of fairness. In this regard, in Section 4.7.2, we prove that on a 3-level system, when

the di↵erence in latencies between two consecutive levels of NUMA hierarchy is su�ciently

large, a 3-level HMCS lock delivers higher throughput than the C-MCS
out

lock for any user-

chosen fairness level.

4.7.1 Fairness assurance of HMCS over C-MCS
in

Let ↵ 2 [0 � 1] be the user chosen level of throughput represented as a fraction of peak

throughput. If the value of c
in

in the C-MCS
in

lock needed to achieve this throughput is less

than n
1

, then, the HMCSh3i lock can set h
1

= n
1

and h
2

= n
2

, which not only achieves more

throughput but also delivers 0 unfairness, thus proving its superiority. Hence, the comparison

is needed only when c
in

� n
1

. The value of c
in

to achieve the expected throughput is derived

by solving Eqn 4.8:

c
in

p
2�3

+ (c
in

� 1)p
1

= ↵ T max

in

(3)

=) c
in

=
↵(p

2�3

� p
1

)

p
1

(1 � ↵)
(4.24)

In the HMCSh3i lock we set h
2

= n
2

. The value of h
1

to achieve the expected throughput ↵

109

is derived by solving Eqn 4.14.

h
1

n
2

p
3

+ (n
2

� 1)p
2

+ n
2

(h
1

� 1)p
1

+ ✏
= ↵ T max

hmcsh3i(3)

=) h
1

=
↵(p

3

+ p
2

(n
2

� 1)� p
1

n
2

+ ✏)

n
2

p
1

(1 � ↵)
(4.25)

Again, only values of h
1

� n
1

are of interests since smaller values can be replaced with

h
1

= n
1

to obtain 0 unfairness but superior throughput. We note in passing that practical

comparisons can only be made when the thresholds in both Eqn 4.24 and 4.25 take integer

values. Substituting c
in

from Eqn 4.24 in Eqn 4.18, we get:

U
in

(3) =
⇣↵(p

2�3

� p
1

)

p
1

(1 � ↵)
� n

1

⌘
(n

2

n
3

� 1) (4.26)

Substituting h
2

= n
2

and h
1

from Eqn 4.25 in Eqn 4.21, we get:

U
hmcsh3i(3) =

⇣↵(p
3

+ p
2

(n
2

� 1)� p
1

n
2

+ ✏)

n
2

p
1

(1 � ↵)
� n

1

⌘
(n

2

n
3

� 1) (4.27)

From Eqn 4.26 and 4.27, the necessary condition for the HMCSh3i lock to deliver higher

fairness than the C-MCS
in

lock is:

Eqn 4 .26 � Eqn 4 .27

=)
⇣↵(p

2�3

� p
1

)

p
1

(1 � ↵)
� n

1

⌘
(n

2

n
3

� 1) �
⇣↵(p

3

+ p
2

(n
2

� 1)� p
1

n
2

+ ✏)

n
2

p
1

(1 � ↵)
� n

1

⌘
(n

2

n
3

� 1)

=) p
2�3

� p
1

� p
3

+ p
2

(n
2

� 1)� p
1

n
2

+ ✏

n
2

=) n
2

p
2�3

� p
3

+ p
2

(n
2

� 1) + ✏ (4.28)

110

Substituting the value of p
2�3

from Eqn 4.7 in Eqn 4.28, we get:

n
2

⇣ n
2

� 1

n
2

n
3

� 1
p
2

+
n
2

n
3

� n
2

n
2

n
3

� 1
p
3

⌘
� p

3

+ p
2

(n
2

� 1) + ✏

=) p
3

⇣n2

2

n
3

� n2

2

� n
2

n
3

+ 1

n
2

n
3

� 1

⌘
+ p

2

(n
2

� 1)
⇣n

2

� n
2

n
3

+ 1

n
2

n
3

� 1

⌘
� ✏

=) p
3

⇣n
2

n
3

(n
2

� 1)� (n2

2

� 1)

n
2

n
3

� 1

⌘
+ p

2

(n
2

� 1)
⇣n

2

� n
2

n
3

+ 1

n
2

n
3

� 1

⌘
� ✏ (4.29)

Substituting n2

2

� 1 = (n
2

� 1)(n
2

+ 1) in the LHS of Eqn 4.29, we get:

p
3

(n
2

� 1)
⇣n

2

n
3

� n
2

� 1)

n
2

n
3

� 1

⌘
� p

2

(n
2

� 1)
⇣n

2

n
3

� n
2

� 1

n
2

n
3

� 1

⌘
� ✏

=) (p
3

� p
2

)(n
2

� 1)(n
2

n
3

� n
2

� 1)

n
2

n
3

� 1
� ✏ (4.30)

Since h
2

= n
2

, we can substitute ✏ = (n
2

� 1)✏
0

+ ✏
1

in the RHS of Eqn 4.30, and we

get:

(p
3

� p
2

)(n
2

� 1)(n
2

n
3

� n
2

� 1)

n
2

n
3

� 1
� (n

2

� 1)✏
0

+ ✏
1

=) (p
3

� p
2

)
⇣
1 � n

2

n
2

n
3

� 1

⌘
� ✏

0

+
✏
1

n
2

� 1
(4.31)

All terms on the LHS and RHS are positive in Eqn 4.31. On any NUMA system,

n
1

, n
2

, n
3

� 2 ; otherwise it does not form a new NUMA domain at a level. It can be

shown that the minimum value of the second term on LHS is 1/3. Hence, the su�ciency

condition for the HMCSh3i lock to deliver higher fairness than the C-MCS
in

lock at the same

throughput is:

(p
3

� p
2

)

3
� ✏

0

+
✏
1

n
2

� 1
(4.32)

From Eqn 4.31 and Eqn 4.32 we make the following observations:

1. As long as the cost of additional check of status flag and the amortized cost of traversing

to parent level lock once in h
2

= n
2

quantum is less than one third the di↵erence in

passing time between level-3 and level-2, it calls for having an additional level in the

111

HMCS lock hierarchy.

2. Larger di↵erence in passing time (also related to the access latency) between two

consecutive levels in the NUMA hierarchy (first term in LHS of Eqn 4.31) governs the

necessity for additional level in the HMCS lock hierarchy.

3. From the second term in LHS of Eqn 4.31, it follows that if a NUMA domain d has

many subdomains, then one can benefit from having an HMCS lock for each NUMA

subdomain of d.

4.7.2 Throughput assurance of HMCS over C-MCS
out

Let k be the threshold value of the C-MCS
out

lock that achieves the user chosen unfairness

value of �. Then from Eqn 4.20, we know that

U
out

(3) =
⇣ln

1

n
2

k

m
k � n

1

n
2

⌘
(n

3

� 1) (4.33)

We set h
1

= n
1

and h
2

= k/n
1

in the HMCSh3i lock. The concern here is whether a

fractional h
2

value is possible. The answer is yes. For example, assume n
1

= 4 , n
2

= 3 ,

and k = 13 . We want to set the following configuration: h
1

= n
1

= 4 , h
2

= 13/4 = 3 .25 .

The HMCSh3i lock can hand out 3 rounds of level-2 quanta each containing h
1

(= 4)

lock acquisitions, totaling 3 ⇥ 4 = 12 acquisitions. But in the 4 th round, the level-

2 lock should curtail level-1’s threshold from n
1

= 4 to 0 .25 ⇥ n
1

= 0 .25 ⇥ 4 = 1 . No-

tice that 0 .25 ⇥ 4 = 1 = 13 mod 4 = k mod n
1

. With this, we would have given out

12 + 1 = 13 = k acquisitions with exactly the same amount of unfairness as the C-MCS
out

lock. It is no accident that for the last round we chose k mod n
1

threshold; it simply follows

from algebra that b k

n

1

cn
1

+ k mod n
1

= k .

Intuitively, since level-1 locks go in a quantum of size n
1

, we want to curtail the last

quantum to a smaller value, i.e., k mod n
1

. With this knowledge, we can slightly alter the

acquire protocol. Instead of starting the count from 1 till n
1

to reach the threshold, we

start the counter (the status field of the QNode) from (k � k mod n
1

) for the last round of

level-1 acquisitions when there is need to achieve the fractional h
2

value. This modification

adds one extra compare on the critical path, but we note that this modification is only of

theoretical interest to demonstrate that the fractional h
2

value is achievable.

112

Substituting h
1

= n
1

and h
2

= k/n
1

in Eqn 4.22 yields:

U
hmcs

(3) =

✓⇠ln
1

n
1

mn
1

n
2

k

⇡
n
1

k

n
1

� n
1

n
2

◆
(n

3

� 1) +

✓ln
1

n
1

m
n
1

� n
1

◆
(n

2

� 1)

=
⇣ln

1

n
2

k

m
k � n

1

n
2

⌘
(n

3

� 1)

= Eqn 4 .33

Thus, when h
1

= n
1

and h
2

= k/n
1

, C-MCS
out

and HMCSh3i locks deliver the same fairness.

Now, we derive the conditions for T
hmcsh3i(3) to be greater than T

out

(3) in this configu-

ration. Substituting c
out

= k in the throughput equation for the C-MCS
out

lock (Eqn 4.11),

we get:

T
out

(3) =
k

p
3

+ (k � 1)p
1�2

(4.34)

Substituting h
1

= n
1

and h
2

= k/n
1

, in the throughput equation for the HMCSh3i lock

(Eqn 4.14), we get:

T
hmcsh3i(3) =

n
1

k

n

1

p
3

+ (k

n

1

� 1)p
2

+ k

n

1

(n
1

� 1)p
1

+ ✏
(4.35)

From Eqn 4.34 and 4.35, to show that T
hmcs

(3) � T
out

(3), we simply need to show that:

(k � 1)p
1�2

� (
k

n
1

� 1)p
2

+
k

n
1

(n
1

� 1)p
1

+ ✏ (4.36)

Substituting for p
1�2

from Eqn 4.10 in Eqn 4.36, we obtain:

(p
2

� p
1

)

✓
k(n

1

n
2

� n
1

� n
2

) + (n
1

� 1)

(n
1

n
2

� 1)(k

n

1

� 1)
+

k

n
1

(n
1

n
2

� 1)(k

n

1

� 1)

◆
� ✏

0

+
✏
1

k

n

1

� 1
(4.37)

Eqn 4.37 forms the basic constraint to ensure that the HMCSh3i lock has higher throughput

compared to the C-MCS
out

lock. Each term on the LHS and RHS of Eqn 4.37 is positive.

When k increases, the LHS increases and RHS decreases, ensuring that beyond a certain

value of k, the inequality is always true. Hence, we need to find the su�ciency condition

at the smallest value that k can assume. Any value of k < n
1

n
2

increases unfairness in

both locks and decreases the throughput. Hence, if the C-MCS
out

chooses k < n
1

n
2

, for

the HMCSh3i lock we simply choose h
1

= n
1

, h
2

= n
2

, which guarantees no unfairness and

113

yet delivers higher throughput than the C-MCS
out

lock. Hence, the smallest value that a

C-MCS
out

lock can choose for k is n
1

n
2

. Substituting k = n
1

n
2

in Eqn 4.37, we arrive at

(p
2

� p
1

)

✓
n
1

n
2

(n
1

n
2

� n
1

� n
2

) + (n
1

� 1) + n
2

(n
1

n
2

� 1)(n
2

� 1)

◆
� ✏

0

+
✏
1

n
2

� 1
(4.38)

On any system, n
1

, n
2

, n
3

� 2 , otherwise it does not form a new NUMA domain at that

level. It can be shown that the minimum value of the second term on LHS in Eqn 4.38 is 3.

Hence the su�ciency condition for the HMCSh3i lock to deliver higher throughput than the

C-MCS
out

lock at the same fairness level is:

(p
2

� p
1

)(3) � ✏
0

+
✏
1

n
2

� 1
(4.39)

From Eqn 4.37, 4.38, and 4.39 we make the following observations:

1. There is a passing threshold value in the C-MCS
out

lock beyond which the HMCSh3i

lock is always guaranteed to deliver higher throughput at the same fairness. This

property also follows from the fact that T max

out

(3) < T max

hmcsh3i(3).

2. When the first condition is not met, as long as the cost of additional check of the

status flag and amortized cost of traversing to the parent level lock once in h
1

= n
1

quantum is less than three times the di↵erence in passing time between level-1 and

level-2, it is beneficial to have additional level in the lock hierarchy. The RHS is,

typically, significantly less than the minimum possible LHS.

Discussion: It is straightforward to show that an N-level HMCS lock o↵ers the same

throughput and fairness superiority guarantees over an (N-1)-level HMCS lock. The argu-

ment follows similar to the aforementioned derivations; we omit the details for brevity.

114

IBM Power 755 SGU UV 1000
Processor POWER7 @ 3.86 GHz Intel Xeon X7560 @ 2.27 GHz

SMT 4-way 2-way
Cores/Socket 8 8
Sockets/node 4 2
L1-D-Cache 32KB private 32KB private
L2-Cache 256KB private (L1 inclusive) 256KB private (L1 inclusive)
L3-Cache 8 ⇥ 4MB victim 24MB shared (L2 inclusive)
Memory 2 on-chip, 2 on-chip,
controller 4-channel DDR3 2-channel DDR3
Compiler xlc++ v1.4.3 icc v.14.0.0

Table 4.1 : Experimental setup.

4.8 Experimental evaluation of the HMCS lock

We conducted our experimental evaluation on two platforms—an IBM Power 755 and an

SGI UV 1000. For all experiments in this section, we always bind the threads densely. Under

dense thread binding, all SMT threads of a core are populated before populating the other

cores; all cores of a socket are populated before populating another socket; all sockets of a

node are populated before populating another node; and so on.

4.8.1 Evaluation on IBM Power 755

The IBM Power 755, a 3-level system, used for our experiments has the specifications shown

in Table 4.1. This system provides a total of 128 hardware threads. SMTs sharing an L1 and

L2 cache form level-1 of the NUMA hierarchy. All cores on the same socket form level-2 of

the NUMA hierarchy. Four sockets sharing the primary memory form level-3 of the NUMA

hierarchy.

4.8.1.1 Accuracy of analytical models

We inspected the compiler-generated assembly instructions appearing on the critical path

and assigned costs (CPU cycles) to instructions. For memory access instructions, we as-

signed costs to instructions based on the access latency for di↵erent levels of the memory

hierarchy. We relied on the POWER7 manual [93] and empirical measurement, among other

resources [228] for determining the cost of instructions and access latencies.

For the HMCS lock, assigning costs is straightforward because of the deterministic be-

115

Threshold

Th
ro

ug
hp

ut
 (l

oc
ks

/s
ec

)

Figure 4.13 : Expected vs. observed throughput of the C-MCS
in

and C-MCS
out

locks on IBM
Power 755 with 128 threads.

havior of the lock—h
1

number of local passes followed by one next level passing and so

on, as discussed in the previous section. For the C-MCS locks, assigning costs follows the

probabilistic model discussed in the previous section.

With the costs assigned to each instruction on the critical path, we computed the lock

passing time for di↵erent levels—peer SMTs, peer cores, and peer sockets. By knowing the

passing time at each level of the hierarchy, we computed the expected throughput values at

various passing thresholds.

To assess the accuracy of our analytical models, we compared our model-derived through-

put with the empirically observed throughput at 128 threads. Figure 4.13 plots the graph of

expected vs. observed throughput of C-MCS locks. Figure 4.14(a) and 4.14(b) respectively

plot the expected vs. empirically observed throughput of the HMCSh3i lock. The di↵erence

in expected vs. observed throughput is small (see Table 4.2). Clearly, our analytical models

accurately predict the performance at each value of lock passing threshold. As expected, the

peak throughputs of the HMCSh3i and C-MCS
in

locks are same (4.58E+07 acquisitions /

second) and 4.8⇥ higher than the C-MCS
out

lock.

Beyond a certain point, further increases in threshold yield no significant increase in

the throughput of a lock. Significant performance gains happen in the HMCSh3i lock by

increasing the h
1

threshold. Table 4.3 shows the di↵erence in the unfairness of the C-MCS
in

lock and the HMCSh3i lock to reach a given target throughput. The HMCSh3i lock delivers

116

2" 16
"

12
8"

10
24
"

81
92
"

65
53
6"

7.00E+06"
1.20E+07"
1.70E+07"
2.20E+07"
2.70E+07"
3.20E+07"
3.70E+07"
4.20E+07"
4.70E+07"

2"

16
"

12
8"

10
24
"

81
92
"

65
53
6"

h1"

Th
ro
ug
hp

ut
"(l
oc
ks
/s
ec
)"

h2"

(a) Expected throughput

2" 16
"

12
8"

10
24
"

81
92
"

65
53
6"

7.00E+06"
1.20E+07"
1.70E+07"
2.20E+07"
2.70E+07"
3.20E+07"
3.70E+07"
4.20E+07"
4.70E+07"

2"

16
"

12
8"

10
24
"

81
92
"

65
53
6"

h1"

Th
ro
ug
hp

ut
"(l
oc
ks
/s
ec
)"

h2""

(b) Observed throughput

Figure 4.14 : Expected vs. observed throughput of HMCSh3i lock on IBM Power 755 with 128
threads.

Lock Median Di↵erence Maximum Di↵erence
C-MCSin 5.6% 10%
C-MCSout 4.7% 11%
HMCSh3i 6.3% 15%

Table 4.2 : Di↵erence in expected vs. observed throughput on IBM Power 755.

Percent peak Unfairness (HMCS improvement)
throughput HMCSh3i C-MCSin C-MCSin / HMCSh3i

50% 24 173 7.14⇥
70% 222 568 2.56⇥
90% 1209 2545 2.10⇥
99% 14543 29236 2.01⇥
99.9% 147880 296142 2.00⇥

Table 4.3 : Superior fairness of the HMCSh3i lock over the C-MCS
in

lock.

up to 7x higher fairness than the C-MCS
in

lock. At 99.9% of the peak throughput, the

HMCSh3i lock delivers 2⇥ higher fairness than the C-MCS
in

lock.

4.8.1.2 Empty critical section microbenchmark

Figure 4.15 demonstrates the scalability of various MCS lock variants with empty critical

sections. We chose the passing thresholds to deliver 99.9% of the peak throughput for C-MCS

and HMCSh3i locks. Under no contention, the HMCSh3i lock has 2.9⇥ lower throughput

than the MCS lock. Naturally, where there is no contention, the HMCSh3i lock has 3⇥

117

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

6.7E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

MCS C-MCSin C-MCSout HMCS<3>

Figure 4.15 : Lock scaling with an empty critical section on IBM Power 755.

additional locking overhead. Under high contention, however, the HMCSh3i lock has 11.7⇥

higher throughput. The throughput of the MCS lock drops each time a new NUMA level

is introduced. The C-MCS
in

lock follows a similar high-throughput trend as the HMCSh3i

lock. The throughput of the C-MCS
out

drops between 4-8 threads when the SMT-threads

diverged into multiple cores. The HMCSh3i lock delivers 5.22⇥ higher throughput than

the C-MCS
out

lock. At two processors, the MCS lock’s throughput drops. This anomaly is

explained in the original paper describing the MCS lock [157].

4.8.1.3 Non-empty critical section microbenchmark

We varied the data accessed in the critical section from 0 to 8MB while keeping the number

of threads fixed at 128. Using our analytical models, we chose the passing thresholds that

would deliver 99.9% of the peak throughput with empty critical sections. We compared the

throughput of the HMCSh3i lock to the C-MCS
out

lock (Figure 4.16). The throughput of

the HMCSh3i lock increases from 5.3⇥ at 0 bytes to 7.6⇥ at 32KB—the L1 cache size. The

increase in relative throughput is because of the locality benefits enjoyed by the data accessed

in the critical section. Beyond the L1-cache size, the ratio decreases, yet continues to be

significantly superior (more than 6⇥) until 256KB—the L2 cache size. Beyond the L2-cache

size, the benefits of the HMCSh3i lock steadily drop from 6.2⇥ to 1.5⇥ at 4MB—the L3

cache size.

118

5.3$ 5.2$ 4.9$ 5.0$ 5.2$
6.0$

6.8$
7.3$ 7.3$ 7.6$

6.8$ 6.8$
6.2$

3.5$
2.6$

3.1$

1.5$ 1.4$

0.0$
1.0$
2.0$
3.0$
4.0$
5.0$
6.0$
7.0$
8.0$

0B
$
12
8B
$
25
6B
$
51
2B
$
1K
B$

2K
B$

4K
B$

8K
B$
16
KB
$
32
KB
$
64
KB
$

12
8K
B$

25
6K
B$

51
2K
B$
1M
B$
2M
B$
4M
B$
8M
B$

Th
ro
ug
hp

ut
$$

HM
CS
<3
>$
/$
C>
M
CS

ou
t$

Data$accessed$inthecriGcal$secGon$

Figure 4.16 : Throughput improvement of HMCSh3i over C-MCS
out

with varying size of data
accessed in the critical section on IBM Power 755 with 128 threads.

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

MCS C-MCSin C-MCSout HMCS<3>

Figure 4.17 : Lock scaling at lower contention on IBM Power 755.

4.8.1.4 Non-empty critical section with lower contention

Figure 4.17 demonstrates the scalability of various MCS lock variants with non-empty critical

sections under lower contention. Our benchmark touches two cache lines inside the critical

section and spends a random 0-1.58 µs outside the critical section to mimic the test setup

by Dice et al. [63]. We chose the passing thresholds to deliver 99.9% of the peak throughput

for all cohort locks. In this case, the C-MCS
in

lock’s throughput starts to degrade once

the lock passing starts to go outside of the socket due to a lack of cohort formation. The

HMCSh3i lock maintains its high throughput and remains una↵ected by increased NUMA

119

levels, whereas throughput of all other locks degrades. At 128 threads, the HMCSh3i lock

delivers 1.46⇥, 2.13⇥, and 4.5⇥ higher throughput than C-MCS
in

, C-MCS
out

, and MCS

locks respectively.

4.8.1.5 MineBench K-means code

K-means is an OpenMP clustering code from the MineBench v.3.0.1 suite—a benchmark suite

with full-fledged implementations for data mining workloads [165]. “K-means represents a

cluster by the mean value of all objects contained in it. The initial, user provided, k cluster

centers are randomly chosen from the database. Then, each object is assigned a nearest

cluster center based on a similarity function. Once the new assignments are completed, new

centers are found by finding the mean of all the objects in each cluster. This process is

repeated until some convergence criteria is met [165].”

Our experiments used an input file with 65K objects and 32 attributes in each point.

We set the convergence threshold to 10�5; we set the minimum and maximum number of

initial clusters to 2 and 15, respectively. The K-means code uses OpenMP atomic directives

to update the new clusters centers as shown in Listing 4.2. Data migrates indiscriminately

among remote NUMA domains due to true sharing (threads in di↵erent NUMA domains

modify the same location) and false sharing (threads in di↵erent NUMA domains modify

di↵erent locations that share the same cache line). The result is poor scalability—increasing

the number of threads increases the running time—as shown in Table 4.4 column #2.

To address the indiscriminate data movement, we replaced the atomic directives with a

coarse-grained lock to protect the cluster centers (see Listing 4.3). While there exist other

parallelization techniques that can deliver higher scalability, our single-lock solution serves

to demonstrate the utility of the HMCS lock under high contention on a nontrivial use case.

We employed the MCS, C-MCS
in

, C-MCS
out

, and HMCSh3i locks as coarse-grained lock

implementations. Respective running times are shown in columns #3-#6 in Table 4.4. For

all cohort locks, we used a high passing threshold since fairness was immaterial. Columns

#7-#10 show the improvements of each of the locks, at the same thread settings, when

compared to the K-means that used atomic directives.

The NUMA-agnostic coarse-grained MCS lock improved K-means performance by up

120

1 /* update new cluster centers : sum of objects located within */
2 #pragma omp atomic
3 new_centers_len[index]++;
4 for (j=0; j<nfeatures; j++)
5 #pragma omp atomic
6 new_centers[index][j] += feature[i][j];

Listing 4.2: K-means atomic updates (poor performance).

1 /* update new cluster centers : sum of objects located within */
2 Acquire(lock , me);
3 new_centers_len[index]++;
4 for (j=0; j<nfeatures; j++)
5 new_centers[index][j] += feature[i][j];
6 Release(lock , me);

Listing 4.3: K-means coarse-grained locking (better performance).

col 1 col 2 col 3 col 4 col 5 col 6
Running time in microseconds

Num Atomic MCS C-MCSin C-MCSout HMCSh3i
Threads ops lock lock lock lock

1 1.61E+08 4.34E+07 4.77E+07 4.78E+07 5.23E+07
2 1.29E+08 3.83E+07 3.70E+07 3.79E+07 4.03E+07
4 9.09E+07 2.95E+07 3.03E+07 3.03E+07 3.22E+07
8 1.28E+08 1.92E+07 1.82E+07 2.08E+07 1.90E+07
16 2.75E+08 2.58E+07 1.97E+07 2.67E+07 1.92E+07
32 4.02E+08 2.70E+07 1.77E+07 2.72E+07 1.76E+07
64 4.82E+08 5.62E+07 3.24E+07 3.56E+07 2.43E+07
128 6.49E+08 7.81E+07 5.67E+07 5.45E+07 3.93E+07

col 7 col 8 col 9 col 10 col 11 col 12
Improvement over atomic ops HMCSh3i improvement over

Num MCS C-MCSin C-MCSout HMCSh3i C-MCSin C-MCSout
Threads (#2/#3) (#2/#4) (#2/#5) (#2/#6) (#4/#6) (#5/#6)

1 3.70⇥ 3.37⇥ 3.36⇥ 3.07⇥ 0.91⇥ 0.91⇥
2 3.37⇥ 3.49⇥ 3.41⇥ 3.21⇥ 0.92⇥ 0.94⇥
4 3.08⇥ 3.01⇥ 3.01⇥ 2.83⇥ 0.94⇥ 0.94⇥
8 6.69⇥ 7.06⇥ 6.17⇥ 6.75⇥ 0.96⇥ 1.09⇥
16 10.7⇥ 14.0⇥ 10.3⇥ 14.4⇥ 1.03⇥ 1.39⇥
32 14.9⇥ 22.7⇥ 14.8⇥ 22.9⇥ 1.01⇥ 1.55⇥
64 8.58⇥ 14.9⇥ 13.5⇥ 19.8⇥ 1.33⇥ 1.46⇥
128 8.31⇥ 11.4⇥ 11.9⇥ 16.5⇥ 1.44⇥ 1.39⇥

Table 4.4 : Comparison of di↵erent synchronization strategies for K-means on IBM Power 755.

to 14.9⇥ over the atomic operations (Table 4.4, column #7). Even when there is no false

sharing (1 thread), using a coarse-grained lock is superior to using multiple atomic add

instructions, since each atomic add on POWER7 turns into a sequence of instructions that

includes a load reserve and a store conditional resulting in higher instruction count. When

contention rises, many threads simultaneously attempt to perform the load reserve and store

conditional operations. One of them succeeds and many fail. The failed ones keep retrying

choking the communication network.

121

The HMCSh3i lock delivers 22.9⇥ higher performance at 32 threads compared to the

original execution that used atomic operations. This is 9.2⇥ speedup compared to the

original serial execution. Furthermore, beyond 16 threads, the HMCSh3i lock’s performance

is better than all other locks for the same thread settings.

We compare the performance of the HMCSh3i lock with the C-MCS
in

, C-MCS
out

locks

in columns #11-#12 respectively. The C-MCS
in

and HMCSh3i locks start to show their

superior performance at 8 threads since they have SMT-level lock passing. While the MCS

and C-MCS
out

locks degrade in performance beyond 8-threads, the C-MCS
in

and HMCSh3i

locks continue to improve until 32 threads. At 32 threads, the C-MCS
in

lock degrades steeply

since it does not pass locks among cores of the same socket. Due to lock passing at both

SMT and core levels, the HMCSh3i lock demonstrates superior performance over all other

locks as the contention rises between 16-128 threads. The performance of the HMCSh3i lock

degrades at 64 and 128 threads compared to its own performance at 32 threads, which is

due to the nature of the program itself. From column #12, we notice that the HMCSh3i

lock improves the performance by up to 1.55⇥ compared to the C-MCS
out

lock. At lower

contention, the HMCSh3i lock incurs up to 9% slowdown compared to the two-level locks.

This slowdown is expected due to the additional locking overhead of the third level.

4.8.2 Evaluation on SGI UV 1000

The SGI UV 1000 [208] used for our experiments consists of 256 blades. Each blade has

two Intel Xeon X7560 processors, with the specifications shown in Table 4.1. Pairs of blades

are connected with QuickPath interconnect. All nodes are connected via NUMAlink [208]

technology. We had access to 4096 hardware threads out of the total 8192 on the system.

We organized the SGI UV 1000 into a 5-level hierarchy as shown in Table 4.5.

For the C-MCS locks, we formed the cohorts at level-1 (C-MCS
in

), level-2 (C-MCS
mid

),

and level-4 (C-MCS
out

). We compared the C-MCS locks with a 5-level HMCS lock. In all

locks, we set infinite threshold at each level but fixed number of iteration for each thread, so

that the lock may not be needed again once relinquished to the parent. This configuration

provided the highest possible throughput for any lock. We tested these locks both with empty

and non-empty critical section. The non-empty critical section case touched two cache lines

122

Level Participants Total
1 SMTs 2
2 Cores 8
3 4 sockets (a pair of adjacent nodes) connected via QPI [97] 64
4 8-pairs of nodes on the same rack 512
5 8 racks 4096

Table 4.5 : NUMA hierarchy of SGI UV 1000 exploited by HMCS lock

Throughput mode
HMCSh5i C-MCSin C-MCSmid C-MCSout

Empty critical section 3.09E+07 1.26E+06 9.76E+06 4.32E+05
(HMCS improvement) - (24.6x) (3.17x) (71.5x)

Non-empty critical section 5.63E+06 5.27E+05 4.34E+06 2.61E+05
(HMCS improvement) - (10.7x) (1.3x) (21.5x)

Table 4.6 : Throughput (locks/sec) improvement of HMCS vs. C-MCS locks on a 4096-thread
SGI UV 1000.

Fairness mode
HMCSh4i C-MCSin C-MCSmid C-MCSout

Empty critical section 2.43E+06 5.02E+05 2.28E+06 4.11E+05
(HMCS improvement) - (4.84x) (1.07x) (5.92x)

Non-empty critical section 5.63E+06 3.78E+05 1.71E+06 3.96E+05
(HMCS improvement) - (14.9x) (3.29x) (14.2x)

Table 4.7 : Throughput (locks/sec) improvement of HMCS vs. C-MCS locks on a 4096-thread
SGI UV 1000.

inside the critical section and spent 0-2.5 microseconds outside the critical section to mimic

the test setup by Dice et al. [63]. Table 4.6 shows that the HMCS lock outperforms the

peak throughput of all other locks in both modes. The HMCS lock outperforms even the

C-MCS
in

because the threshold c
in

needed to amortize the latency of deep NUMA hierarchy

is larger than the number of lock acquisitions needed by each thread.

We also compared the C-MCS locks with a 4-level HMCS lock, where the level-1 and

level-2 were collapsed into a single domain. In this case, we set the threshold at each level to

the number of participants at that level. This configuration provided the highest fairness for

any lock. As before, we tested these locks with both empty critical sections and non-empty

critical sections. Table 4.7 shows that the HMCS lock outperforms the peak throughput of

all other locks in both modes.

Finally, we evaluated the scalability of the MCS, C-MCS
mid

, and HMCSh5i locks on SGI

123

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

6.7E+07

 1 2 4 8 16 32 64 128 256 512 1024 2048

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

MCS C-MCSmid HMCS<5>

Figure 4.18 : Lock scaling with empty critical sections on SGI UV 1000.

UV 1000. We restricted our scaling studies to just these three locks due to allocation time

limitations on the machine. We again used empty critical sections and no delay outside the

critical section. Figure 4.18 plots the scalability of the three locks. Clearly, the MCS lock has

low scalability. Remember, the threads are densely packed. Throughput drops particularly

when a new NUMA domain is introduced, for example at x=4 (passing to a di↵erent core),

x=32 (passing to a di↵erent sockets), x=64 (passing to a node 1 hop away), x=128 (passing

to a node 2 hops away), etc. The C-MCS
mid

, which is a 2-level lock with cohorts being

formed among the cores sharing the same socket, drops in performance when the passing is

not within the SMT threads. C-MCS
mid

, however, maintains a high throughput remaining

largely una↵ected by locality losses arising from o↵-socket passing. Finally, the HMCSh5i

lock has the highest scaling and maintains a steady throughput, which is much higher than

both MCS lock and C-MCS
mid

lock. The HMCSh5i lock is slightly a↵ected by locality losses

arising from o↵-socket and o↵-node passing.

124

4.9 Adaptive HMCS locks2

Applications may exhibit di↵erent levels of lock contentions during di↵erent phases execution.

Also, di↵erent parts of the same system may exhibit di↵erent contention levels at the same

time. A fixed-depth HMCS lock incurs the overhead of additional lock acquisitions that is

unnecessary under low contention. A hierarchical lock needs to address the following cases:

Zero contention: When there is no contention in the entire system, the latency should be

low. Ideally, the latency should match the uncontended acquisition in a flat queuing

lock, such as MCS lock (referred to as HMCSh1i hereafter).

Full contention: When the contention is very high in the entire system, the throughput

should be high. Ideally, the throughput should match the peak throughput of a fully

contended acquisition in an HMCS lock of the deepest depth appropriate for a given

system.

Moderate contention: When the contention in the system is neither too low to justify an

MCS lock nor too high to use a deep HMCS lock, the locking algorithm should balance

latency and throughput.

We begin with an HMCShni lock,3 so that the case of full contention is already addressed.

To reduce the latency of acquisitions under zero contention, we augment the HMCS lock

with a fast-path mechanism. The fast-path mechanism, discussed in Section 4.9.1, bypasses

a chain of lock acquisitions in an HMCS tree when a thread requests the lock without con-

tention from any other thread. We address moderate contention with a hysteresis approach.

The hysteresis approach for moderate contention is discussed in Section 4.9.2. Finally, com-

bining an HMCShni lock with the fast-path and hysteresis mechanisms addresses all levels

of contention.

2The adaptive HMCS locks were developed in response to a probing question about the cost of uncon-
tended lock acquisitions in HMCS by Prof. Michael Scott (University of Rochester) at PPoPP 2015.

3n will be chosen to be profitable on a target system’s NUMA hierarchy.

125

Terminology: We consider a leaf of the tree in an HMCS locking hierarchy to be at level

1 and the root to be at level n. Conversely, we consider a leaf to be at depth n and the root

to be at depth 1. We use the terms depth and level as appropriate in the rest of this chapter.

In the rest of this chapter, we represent an arbitrary level in an HMCS tree with the letter h,

which signifies the height starting from the leaves. Naturally, h� 1 will be closer to leaves,

and h+ 1 will be closer to the root.

4.9.1 Making uncontended acquisitions fast with a fast-path

When there is no contention in the system, a deep HMCShni lock incurs the cost of n

lock acquisitions (and releases). This overhead may be undesirable if the lock acquisition is

frequent but acquisitions are often uncontended.

To reduce the latency of uncontended acquisition, we enhance the HMCS lock with a

fast-path mechanism (FP-HMCS). Figure 4.19 depicts the FP-HMCS lock, and Algorithm 3

provides the pseudocode. FP-HMCS’s acquire protocol checks if the tail pointer of the root-

level MCS locks is null. If it is null, then the protocol infers the lock is uncontended and

directly enqueues the QNode at the root level (fast-path); otherwise, it follows the normal

HMCS protocol via leaf of the tree (slow-path). The fast-path allows the uncontended

acquisition to bypass acquiring several lower level locks. If a thread is the first one to

enqueue at the root level (common when uncontended), then it acquires the lock immediately;

otherwise, it waits (uncommon when uncontended) until its predecessor passes the lock to

it, possibly after passing within its subdomain. A thread that decides to enqueue directly

at the root level sets a thread-local flag tlTookFastPath to true. FP-HMCS’s release

protocol invokes the root-level release protocol if the tlTookFastPath flag is set, unsetting

it subsequently.

A key design point of the HMCS lock was to eliminate accessing shared lock data struc-

tures that may be present in remote caches on NUMA machines. The aforementioned query-

ing of the tail pointer of the root-level lock may seem to violate this principle. The following

three properties hold when the system is contended, ensuring that we do not violate the

locality principle.

1. The tail pointer of the root-level node will be non-null. This property deflects all new

126

Root-level lock

No

Fast-path

Yes

HMCS lock tree
Slow-path

Contention
at the leaf?

Contention
at the root?

No

Yes

Figure 4.19 : Fast-path decision in the FP-HMCS lock. If the root-level lock is not taken, the FP-
HMCS lock takes the fast-path and directly starts the root level (HMCSh1i) acquisition protocol;
otherwise it follows the slow-path through the HMCShni protocol.

Algorithm 3: Fast-Path HMCS (FP-HMCS) algorithm
1 ThreadLocal boolean tlTookFastPath /* Initially false */
2 void Acquire(...)
3 if IsLeafLevelLockFree() and IsRootLevelLockFree() then
4 tlTookFastPath � true
5 Perform HMCS root-level Acquire
6 else
7 Perform HMCS leaf-level Acquire

8 void Release(...)
9 if tlTookFastPath then

10 Perform HMCS root-level Release
11 tlTookFastPath � false
12 else
13 Perform HMCS leaf-level Release

acquisitions to their HMCS analogs, causing them to enqueue in their local domains

(at HMCS tree leaves).

2. The tail pointer of the root-level lock does not change rapidly. This sluggishness is

because new lock requests enqueue in their local domains when the lock is contended,

and each level performs local passing. A thread, wanting to acquire the lock, seldom

climbs to the root of the tree, especially when the passing threshold is high.

3. A recent value of the root-level tail pointer is usually present in the nearest cache

of each thread. This property holds true since 1) a peer thread would have recently

127

checked the root-level tail pointer, and 2) the root-level tail pointer does not change

frequently.

To avoid unnecessarily querying the root-level tail pointer on each acquisition, FP-HMCS

first checks if the tail pointer of the leaf-level4 lock is null. A non-null leaf-level tail pointer

indicates contention; consequently, FP-HMCS takes the slow-path through the HMCS tree

without checking the root-level lock. Once a local lock’s tail pointer is non-null, other threads

arriving in the same domain do not check the root-level lock. This small modification along

with the properties of the HMCS lock under contention ensures the e�ciency of the fast-

path scheme. The fast-path mechanism is beneficial when the system is uncontended and

inexpensive when the system is contended.

The empirical studies later in Section 4.11 show that under zero contention, an FP-

HMCSh3i remains within 8% of the performance of an MCS on a Power 755. In addition,

under full contention an FP-HMCSh3i remains within 8% of the performance of an HMCSh3i

on a Power 755.

We note that our fast-path mechanism is analogous to the one in Yang and Anderson’s

lock [240]. A key di↵erence from Yang and Anderson’s lock is that they introduce an addi-

tional 2-thread mutual exclusion atop their binary arbitration tree, both on slow- and fast-

paths. Contrary to Yang and Anderson’s fast-path mechanism, our technique does not re-

quire any additional lock levels to support the fast-path. The queuing property of the MCS

lock allows multiple threads to take the fast-path simultaneously and get enqueued at the

root level.

4.9.2 Adapting to various contention levels using hysteresis

The aforementioned fast-path technique can solve only the overhead of uncontended lock

acquisitions. If contention exists but it is not high enough to take advantage of local passing

at the leaf-level domains of an HMCS tree, the tree needs to “right-sized” such that it is

deep enough to exploit local passing but shallow enough to avoid any unnecessary locking

overhead.

4We later alter this to check the “current” level based on the hysteresis, instead of the leaf level alone.

128

To balance latency and throughput under a variety of contention levels, we modify the

HMCS lock into an Adaptive Hierarchical MCS (AHMCS) lock. Instead of modifying the

structure of the tree, which is complicated, we modify the protocol such that the threads may

begin their acquisition (and release) protocols at any interior node in the tree. The key idea

is to use the previously observed contention as a predictor to target a level in the HMCS

locking hierarchy to begin the next round of acquisition. This adaptation allows threads to

dynamically skip lower levels of the HMCS tree that may not be su�ciently contended.

An n-level AHMCS lock is a wrapper around an n-level HMCS lock. Recall that each

thread in an HMCS lock brings its QNode and enqueues it at the leaf of the HMCS tree.

Also recall that each thread uses a preallocated designated QNode when enqueueing at an

interior node. Further, recall that each acquisition begins at the leaf of the tree in the HMCS

protocol. The AHMCS lock deviates from this behavior in the following ways:

1. Each thread in an AHMCS may skip some lower h � 1 levels of the tree to begin the

acquire and release protocols directly at level h.

2. A thread that begins the acquisition protocol at level h, enqueues its QNode at level

h and does not use the QNode designated for its domain at that level. This protocol

ensures no race between a thread that would have progressed from a lower level m

(where m < h) to the level h and threads enqueuing directly at an interior level h. The

e↵ect is analogous to adding an additional peer domain in the HMCS tree, but such

“ghost” domains will have no subdomains.

3. The user code no longer provides a QNode. The user code maintains a handle to the

AHMCS lock. The AHMCS lock object pointed to by the handle wraps a QNode.

We discuss how each thread tracks contention in its domain and determines which level

to enqueue in the HMCS tree in the following subsections. Depending on the contention in

a domain, within a domain (say D), threads may skip the lower h levels of the HMCS tree,

whereas at the same time, within another domain (say E), the threads may skip only the

lower q (where q < h) levels of the HMCS tree. A thread that begins its acquire protocol at

a level h, also begins its release protocol at the same level.

129

Level 1

Level 2

Level 3

☞

1 2 3

1.1 1.2 2.1 2.2

1.1.21.1.1

2.1.1 2.2.2

3.2.2

Lock holder Spin waitingLock passing ☞

1.1.2
Thread #2 in subdomain 1 of outer domain 1

Legend:

1.2.1

Figure 4.20 : A snapshot view of the Adaptive HMCS (AHMCS) lock. Di↵erent threads enqueue
at di↵erent levels depending on the contention. For example, thread 1.1.1 and 1.1.2 create enough
contention and enqueue at the lowest level (leaf) to take advantage of locality. The thread 3.2.2
has no contention at level 1 and level 2, as a result, it directly enqueues at level 3 to reduce latency.

Initially, when no knowledge of contention is available, each thread begins its acquire

protocol by enqueuing at the leaf level of the HMCS tree. As contention levels change,

threads move up and down, enqueuing at di↵erent levels where the contention is appropriate

for exploiting locality with threads from peer domains.

Figure 4.20 shows an example snapshot of a 3-level AHMCS lock. In the figure, the

threads 1.1.1 and 1.1.2 create su�cient contention inside the subdomain 1.1; as a result,

these two threads enqueue at the leaf of the HMCS tree (level 1). The domain 1.2 has

only one participant, thread 1.2.1. Hence, it does not enqueue at level 1. The subdomains

1.1 and 1.2 have enough contention to take advantage of the locality; hence, the thread

1.2.1 enqueues at level 2. Similarly, threads 2.1.1 and 2.2.2 each have no peers at level 1

but together they create enough contention at level 2, and hence they enqueue at level 2.

Finally, the thread 3.2.2 observes no contention at level 1 and level 2 in its subdomains, as

a result, it directly enqueues at level 3.

130

Adjusting to changing contention with hysteresis: The AHMCS lock uses hysteresis

to predict the future contention based on the past and current contention. Initially, a thread

T begins its AHMCS lock acquire protocol at the leaf level. Eventually, by observing the

past contention, the AHMCS lock decides the appropriate level to start its enqueue process

in the HMCS tree. This adaptation involves either moving up in the tree closer to the root

when contention decreases or moving down closer to leaves in the tree when contention rises.

Each thread can infer if it is benefiting from local passing by identifying if the lock at

level h, where it started its acquisition process, was acquired from its predecessor or passed

to a successor. Similarly, a thread can infer low contention at a level based on the lack of a

predecessor or a successor.5

We o↵er two solutions to adjust to the changing contention. One approach is eager.

The eager approach is aggressive in changing its level on observing a change in contention.

Another approach is lazy. The lazy approach is conservative; hence, it observes contention

for several rounds of acquisition before deciding to change a level. We present the details of

both eager and lazy strategies in Section 4.9.2.1 and 4.9.2.2, respectively. When we want to

refer to an adaptive HMCS lock in a generic manner, without any distinction between an

eager or a lazy implementations, we use the term “AHMCS”.

4.9.2.1 Eager adaptive HMCS lock

The eager approach is aggressive in changing levels when it observes any change in contention.

It uses the contention observed only in the previous round of lock acquisition in conjunction

with the contention observable now to decide where to begin the current acquisition process.

The eager approach has an a�nity to begin acquisition at a level closer to leaves to exploit

locality.

Intuitively, if a thread observes no contention at its current level, it targets one level closer

to the root in the immediate next round of acquisition; if a thread observes contention at its

current level, it targets one level closer to its leaf in the immediate next round of acquisition.

5One can explore several combinations such as conjunction or disjunction on the presence of a predecessor
and a successor to infer contention. One can also choose an optimistic approach by considering only the
presence of a successor and neglect a predecessor to infer contention.

131

The eager AHMCS lock exhibits its eagerness in yet another way; if the target level becomes

contended just before starting the next round of acquisition, the protocol instantaneously

backs o↵ a level closer to its leaf and begins the acquisition process at that level. In fact, this

instantaneous back-o↵ is the premise of how the protocol understands the rise in contention

after a phase of ebb.

Two terms need to be distinguished: target-level is where the protocol intends to begin

the acquisition process, and start-level is where the protocol actually begins the acquisition

process after its instantaneous decisions. Target- and start- levels may di↵er by one level.

Rising towards root on contention reduction: If the target-level h in this round was

uncontended during acquire phase (had no predecessor node) and release phase (had no

successor), the thread chooses level h + 1, which is closer to the root, as its target-level for

the immediate next round.

Receding towards leaves on contention increase: It is non-trivial to recognize an

increase in contention arising from a thread T’s subdomain, after a phase of contention

reduction. The complication arises because the queue formed at a target level h will be

intermixed with nodes enqueued by threads from the same subdomain as T as well as peer

subdomains at level h.

The instantaneous decision to start a level lower than the target level, when the target

level lock is not held, serves to solve this problem. More formally, a thread T targeting a

level h makes the following instantaneous decisions:

1. If the lock at its target-level h is already held (the tail pointer of the lock at level h is

non-null), it begins its acquire protocol at level h� 1; that is, start-level will be h� 1.

2. If the lock at its target-level h is not held (the tail pointer of the lock at level h is null),

it begins its acquire protocol at level h; that is, start-level will be h.

When the lock at a target level h is already held, enqueuing at level h � 1, typically,

incurs no overhead even if there is no local passing possible at level h � 1. This property

is true because, the thread T would have, typically, waited at level h even if it had directly

begun its acquisition at that level. Eagerly enqueuing at level h� 1 has two advantages:

132

Algorithm 4: EH-AHMCS algorithm
1 ThreadLocal int tlTargetLevel /* Initially n */
2 ThreadLocal int tlStartLevel
3 ThreadLocal int tlLowestPredLevel
4 void Acquire(...)
5 if IsLockFree(tlTargetLevel) or
6 HaveNoChild(tlTargetLevel) or
7 IsLockHolderSameAsLastSuccessor(tlTargetLevel) then
8 tlStartLevel � tlTargetLevel
9 else

10 tlStartLevel � tlTargetLevel -1

11 tlLowestPredLevel � Perform HMCS Acquire at tlStartLevel /* returns the lowest level where
it found a predecessor */

12 void Release(...)
13 lowestSuccLevel � Perform HMCS Release at tlStartLevel /* returns the lowest level where

it found a successor */
14 if HaveChildLevel(tlTargetLevel) and
15 (tlLowestPredLevel < tlTargetLevel or lowestSuccLevel < tlTargetLevel) then
16 tlTargetLevel � tlTargetLevel -1
17 return

18 if HaveParentLevel() and
19 (tlLowestPredLevel > tlTargetLevel and lowestSuccLevel > tlTargetLevel) then
20 tlTargetLevel � tlTargetLevel + 1
21 return

1. It helps a thread to identify any rise in contention from its subdomain since a) the

other threads from its subdomain that target level h will also back o↵ by a level to

start at level h�1, and b) if some threads were already at a level lower than h, at least

one representative thread would rise till level h � 1 in its acquisition process making

contention at level h� 1 evident to other threads that start at that level,

2. If the contention within T’s subdomain increases (and hence the level h is incorrect),

starting at level h � 1 instantaneously exploits the benefits of local passing at level

h� 1, instead of having to wait for the next round.

If the contention remains high or increases, eventually each thread progressively recedes to

some level m closer to leaves (m < h), where local passing is beneficial. If the start-level h in

this round was contended during acquire phase (had a predecessor node) and release phase

(had a successor node), in the immediate next round, T chooses level h � 1, which is closer

to leaves, as its target-level.

Algorithm 4 presents the Eager Adaptive HMCS acquire and release protocols. Note

that this algorithm does not have the aforementioned fast-path. We call this lock variant

133

as EH-AHMCS (Eager Hysteresis Adaptive Hierarchical MCS) lock. Note also that this

algorithm assumes that the underlying HMCS returns the level where the waiting and passing

happened during the acquire and release phases respectively.

Protocol summary: Let, h be the level where a thread arrived based on the previous

acquisition. The thread will begin the acquisition process at a level p = [h, h � 1]. During

the acquire protocol, the thread observes the level l, where it first spin waited for a lock.

Similarly, in the release protocol, the thread observes the level m, where it passed a lock to

a peer. If l < h and m < h, the thread is benefiting from local passing at a level less than

h. Consequently, the thread T arrives closer to its leaves, at level h � 1, on the next round

of acquisition. If l > h and m > h, the thread is not benefiting from local passing at level

h. Consequently, the thread T arrives closer to the root, at level h + 1, on the next round

of acquisition. Otherwise, the thread T continues to arrive at level h on the next round of

acquisition.

Anecdotal examples: Figure 4.22 shows an example, where a thread T
1

targets level

h and notices no contention at level h. T
1

enqueues its node X at level h (start-level),

subsequently climbing to level h+ 1 to enqueue the node R—the representative node for its

domain. T
1

does not see any contention at level h on release either. In the next round of

acquisition, hysteresis suggests T
1

to target level h+1, avoiding the latency of acquiring the

level h lock.

Figure 4.23 shows an example, where a thread T
1

targets level h and notices the presence

of another node A at level h. T
1

enqueues its node X at level h�1 (start-level), subsequently

climbing to level h to enqueue the node D—the representative node for its domain. Level

h� 1 becomes contended (thread S enqueues after X). Eventually, T
1

passes the lock to its

successor S at level h� 1. In the next round of acquisition, hysteresis suggests T
1

to target

level h� 1 (target level), where it may benefit by local passing from a predecessor.

Figure 4.24 shows an example, where a thread T
1

targets level h and notices the presence

of another node A at level h. T
1

enqueues its node X at level h�1 (start-level), subsequently

climbing to level h to enqueue the node D—the representative node for its domain. During

134

MCS lock
tail pointer

MCS lock
null tail
pointer

Parent pointer
in the

HMCS tree

MCS lock
successor

Level chosen
by

hysteresis

Figure 4.21 : Legend for Figures 4.22-4.24.

null

R

X

R

X

Level h+1

Level h

Level h-1

P P

X

R

X

P

(a) Initial state

null

R

X

R

X

Level h+1

Level h

Level h-1

P P

X

R

X

P

(b) Acq. step 1

null

R

X

R

X

Level h+1

Level h

Level h-1

P P

X

R

X

P

(c) Acq. step 2

null

R

X

R

X

Level h+1

Level h

Level h-1

P P

X

R

X

P

(d) Release

null

R

X

R

X

Level h+1

Level h

Level h-1

P P

X

R

X

P

(e) Next round

Figure 4.22 : Figure 4.22(a) represents the initial state, where no thread is enqueued at level h
and level h + 1 has an already enqueued node P. A thread (say T

1

) brings a node X and wants
to begin its acquire protocol at level h. T

1

checks the tail pointer at level h and recognizes no
contention. The EH-AHMCS lock enqueues T

1

’s node X at level h, as shown in Figure 4.22(b). T
1

climbs to level h+1 and enqueues its representative node R at that level, as shown in Figure 4.22(c).
During T

1

’s release, level h remains uncontended, as shown in Figure 4.22(d). Hysteresis suggests
T
1

to target level h+ 1 during the next round of acquisition, as shown in Figure 4.22(e).

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(a) Initial state

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(b) Acq. step 1

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(c) Acq. step 2

A A

X X

Level h+1

Level h

Level h-1

D D

S

XA

X

D

(d) Release

A A

X X

Level h+1

Level h

Level h-1

D D

S

XA

X

D

(e) Next round

Figure 4.23 : Figure 4.23(a) represents the initial state, where a node A is already enqueued at
level h and a thread (say T

1

) brings a node X and wants to begin its acquire protocol at level h. T
1

checks the tail pointer at level h and recognizes contention. The EH-AHMCS lock enqueues T
1

’s
node X at level h� 1, which is uncontended, as shown in Figure 4.23(b). T

1

climbs to level h and
enqueues its representative node D at that level, as shown in Figure 4.23(c). During T

1

’s release,
level h� 1 becomes contended with a successor S, as shown in Figure 4.23(d). Hysteresis suggests
T
1

to target level h� 1 during the next round of acquisition, as shown in Figure 4.23(e).

its release, T
1

does not see any successor at level h� 1. In the next round of acquisition, the

hysteresis suggests T
1

to target level h (target level).

135

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(a) Initial state

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(b) Acq. step 1

A A

X X

Level h+1

Level h

Level h-1

D D XA

X

D

(c) Acq. step 2

A A

X

Level h+1

Level h

Level h-1

D D

X

X

(d) Release

A A

X

Level h+1

Level h

Level h-1

D D

X

X

(e) Next round

Figure 4.24 : Figure 4.24(a) represents the initial state, where a node A is already enqueued at
level h and a thread (say T

1

) brings a node X and wants to begin its acquire protocol at level h. T
1

checks the tail pointer at level h and recognizes contention. The EH-AHMCS lock enqueues T
1

’s
node X at level h� 1, which is uncontended, as shown in Figure 4.24(b). T

1

climbs to level h and
enqueues its representative node D at that level, as shown in Figure 4.24(c). During T

1

’s release,
level h� 1 remains uncontended, as shown in Figure 4.24(d). Hysteresis suggests T

1

to target level
h during the next round of acquisition, as shown in Figure 4.24(e).

Handling a special case: Since the EH-AHMCS lock aggressively decides to enqueue a

node at level h� 1 on observing a non-null tail pointer at level h, it may take a performance

penalty if there are not su�cient number of contenders at level h. A particular example

is where a level h has only two threads (T1 and T2) and the critical sections are short.

Assume a scenario where T1 is enqueued at level h and just about to enter its critical section.

If thread T2 had enqueued behind T1, then they could have taken the advantage of local

passing. However, since the thread T2 notices the tail pointer at level h to be non-null, it

first enqueues at level h � 1, where it finds no predecessor and then eventually enqueues

a node at level h. When the critical sections are short, in this small window, T1 might

relinquish the lock to level h+1, instead of passing to T2. Even when both T1 and T2 identify

level h to be the correct level for them to enqueue, the eagerness of enqueueing a node at

level h � 1 results in a missed opportunity for local passing. In fact, such pattern leads

to T1 and T2 incurring the lock passing latency at level h + 1. To address this one case,

we make a minor modification to the EH-AHMCS lock algorithm. A thread memorizes its

successor S when it passes the lock to a peer.6 If, on the immediate next arrival, the tail

pointer continues to point to S, it means the contention is insu�cient to justify a detour via

6No special memory is needed since QNode’s next field automatically contains a pointer to its successor.

136

level h � 1. When a thread observes this situation, it continues to enqueue at level h and

avoids eagerly enqueuing at level h� 1. We have empirically noticed that this optimization

is valuable occasionally where there are only two contenders for an interior node.

Unit stride vs. leap jump: A thread that targets level h, but both acquires the lock

and passes the lock at a level l closer to the root (l > h), can easily recognize that level l is

appropriate to target on the next occasion. This indication can help us avoid the unit-step

progression from level h+1 to l. With this technique, adjusting to a reduction in contention

can happen in a single round of acquisition instead of d� 1 rounds of acquisitions for a tree

of depth d. Similarly, when a thread notices that level h is contended, instead of starting its

acquisition at level h� 1, it can look for the level m closest to its leaves (m < h), where the

tail pointer is non-null. Subsequently, if the thread passes the lock at level m, it can infer

that the level m is appropriate for it to arrive on the next occasion. With this technique,

if the contention suddenly rises, a thread T will be pushed down from the root to its leaf in

just d� 1 rounds of lock acquisitions. All d� 1 acquisitions need not come from the thread

T itself. Acquisitions originating from the threads sharing parts of the spine of the tree from

the root to the leaf contribute to the d � 1 acquisitions needed to push T down to its leaf

level. Our implementation of the EH-AHMCS lock does not capture this leap jumping of

levels. We leave this for our future work.

4.9.2.2 Lazy adaptive HMCS lock

The lazy approach is opposite to the eager approach; it resists changing levels as much as

possible unless it has gathered enough evidence to benefit by changing a level. To gather

su�cient evidence, the lazy approach observes contention for several rounds of acquisition

before recommending a change. The lazy approach is useful in suppressing sporadic changes

in contention. Note that this algorithm does not have the aforementioned fast-path. We call

this lock variant as LH-AHMCS (Lazy Hysteresis Adaptive Hierarchical MCS) lock.

Receding towards leaves on contention increase: The lazy approach uses the same

idea as the eager approach in deciding to rise up in the tree when it does not see contention

137

at a given target level. However, it does so cautiously. If a thread notices no contention for

N successive times at its target level h, where N is a tunable parameter, then on (N + 1)th

round of acquisition, the thread begins to target level h+ 1, which is closer to root.

Receding towards leaves on contention increase: Similar to an EH-AHMCS lock,

even in LH-AHMCS lock, it is non-trivial to recognize an increase in contention arising from

a thread T’s subdomain, after a phase of contention reduction. The complication arises

because the queue formed at a target level h will be intermixed with nodes enqueued by

threads from the same subdomain as T as well as peer subdomains at level h.

In the lazy approach, when a thread enqueues at a higher level in the hierarchy, it

advertises its presence the other threads from its lower subdomains. We use a shared counter

to achieve this. Since threads from the same domain share an HNode, they can express their

presence to one another by incrementing a counter placed in the designated HNode for each

domain as they perform an acquire and a release. We use a 64-bit contentionCounter

in each HNode in our implementation. A thread that enqueues at a level h, atomically

increments and remembers the value of the contentionCounter designated for its domain.7

During the lock release, if the value of the contentionCounter is di↵erent from the value

recorded at the beginning of the acquire protocol, then there is at least one more thread

from the same subdomain now present at level h. If a thread notices that its designated

contentionCounter at its target level is di↵erent from an acquire to the corresponding

release on N successive rounds of acquisition, it infers that there is enough contention to

take advantage of locality within its subdomains and starts to target closer to its leaves at

level (h� 1) on (N + 1)th round of acquisition.

Even after introducing the contention counter, the following two subtle cases arise:

1. Only one thread has progressed to level h + 1 but all other threads from the same

subdomain continue to target level h. In this case, the solo thread that has progressed

to level h + 1 will be blind to the contention at level h since the contentionCounter

will be same from acquisition to release.

7Obviously, two threads that belong to two peer domains at level h update two di↵erent
contentionCounters.

138

2. Only one thread has remained at level h and all other threads target level h + 1. In

this case, the solo thread that enqueues at level h will be blind to the presence of other

threads from the same domain since it would acquire without contention at level h.

To address the first case, the LH-AHMCS protocol makes use of both the tail-pointer

as well as the contentionCounter when inferring whether there is contention within a

subdomain. A thread from a subdomain D that enqueues at level h+ 1 infers contention if

either the designated contentionCounter at level h does not match between acquisition to

release or the tail pointer at level h is non-null (on entry on exist). This technique allows a

thread targeting level h+1 to recognize the presence of peers at an inner domain at level h.

One need not address the second case since a thread, T, that falsely assumes no contention

at level h, may proceed to level h + 1 but eventually notices its peers at level h either by

virtue of the contentionCounter (if a thread was enqueuing at level h+1) or by observing

a non-null the tail pointer at level h (if a thread had receded to level h in the mean time).

In either case, thread T would eventually recede to level h. To avoid ping-ponging between

two levels when only two threads are present and straddled across two levels, we impose

di↵erent thresholds for moving up in the tree versus moving down in the tree. The threshold

used to decide when to move to a higher level (MOVE UP) is set usually twice the value of the

threshold used to move down to a lower level (MOVE DOWN). Di↵erent thresholds ensure that

two threads do not keep circling between two consecutive levels. Figure 4.25 shows the use

of a counter to drive threads of the same domain to a lower level.

Threads straddle multiple non-adjacent levels: The situation where one thread (say

T1) enqueues at level h and another thread (say T2) from the same subdomain enqueues at

level h + x, where x > 1, is trivially handled. In this case, T1’s acquisition will progress

through the HMCS tree and eventually acquire the lock at level h+ x� 1. Consequently, T2

will notice the tail pointer being non-null at level h + x � 1, which makes T2 progressively

recede to lower levels in the tree. In the mean time, T1, might progress to higher levels

in the tree ranging from [h + 1, h + x � 1]. Once the two threads settle at a level, both

will eventually recede to the lowermost descendent level in the tree where they can take

advantage of locality.

139

A

Counter

Round 1 Round N+1

X

Counter

Round 2 … N

X X

Counter

Level h+1

Level h

Level h-1

(a) Initial state

A

Counter

Round 1 Round N+1

X

Counter

Round 2 … N

X X

Counter

(b) After acquire

A

Counter

Round 1 Round N+1

X

Counter

Round 2 … N

X X

Counter

(c) Round 2...N

A

Counter

Round 1 Round N+1

X

Counter

Round 2 … N

X X

Counter

(d) Round N+1

Figure 4.25 : Figure 4.25(a) represents the initial state, where threads from di↵erent domains are
intermixed at level h. A thread (say T

1

) brings a node X and wants to begin its acquire protocol at
level h. A node “A”enqueued at level h belongs to the same domain as T

1

. The LH-AHMCS lock
enqueues T

1

’s node X at level h, as shown in Figure 4.25(b). T
1

recognizes the contention arising
from the same subdomain at level h� 1 via the shared counter. In round 2 through N, hysteresis
still suggests h as the level for T

1

to begin its acquisition process, as shown in Figure 4.25(c). T
1

enqueues X at level h until round N , each time noticing contention from its subdomain at level
h� 1. In round N+1, hysteresis drives T

1

to target level h� 1, as shown in Figure 4.25(d).

Property EagerHysteresis-AHMCS LazyHysteresis-AHMCS

Length of Only the Previous
hysteresis previous acquisition N acquisitions

Reactivity to changing contention Fast Slow
Resistance to sporadic changes Low High

Table 4.8 : Comparison of the eager vs. lazy adaptive HMCS locks

Comparison of eager vs. lazy strategies: We compare various properties of the eager

and lazy algorithms in Table 4.8. The eager approach is more reactive to the changing

contention and hence best suited for the workloads where the contention changes rapidly.

The lazy approach is slow to respond to the changing contention but likely to o↵er higher

throughput for a given contention level if the rate of change of contention is low.

4.9.3 Overlaying fast-path atop hysteresis in AHMCS

The fast-path mechanism and hysteresis are complimentary. The hysteresis can bypass lower

levels of an N-level lock hierarchy. The fast-path mechanism can bypass upper levels of an

N-level lock hierarchy. In combination, they can bypass any N-1 levels in an N-level hierarchy.

We overlay the fast-path mechanism atop the hysteresis-based adaptation to yield our

Fast-Path augmented Adaptive HMCS (FP-AHMCS) lock. We use the general term FP-

140

Root-level lock

HMCS lock tree

Hysteresis

…
Fast-path

Slow-path

Slow-path

Slow-path

Slow-path
Leaf-level lock

Figure 4.26 : Fast-path augmented Adaptive HMCS lock. A hysteresis mechanism, based on
the previously observed contention, suggests the level h where the enqueuing process will begin. If
the root-level lock is uncontended, the protocol takes the fast-path and directly enqueues at the
root level; otherwise it follows the slow-path through the HMCShhi protocol. Based on the current
contention, hysteresis decides whether the next round of acquisition should suggest level h, h+ 1,
or h� 1.

AHMCS when the reference does not distinguish eager vs. lazy implementation choices of

AHMCS locks. We call the fast-path augmented EH-AHMCS lock as FP-EH-AHMCS lock.

We call the fast-path augmented LH-AHMCS lock as FP-LH-AHMCS lock. In this enhance-

ment, hysteresis guides the level where a thread initially arrives. If that level is uncontended

(the tail pointer of the MCS lock at that level is null), we check if the root-level is un-

contended. If both the current level and the root level are uncontended, then we directly

enqueue at the root level (fast-path), often immediately acquiring the lock. Subsequently,

we release from the root level. If the root level is contended, we follow either the eager or

the lazy strategy to enqueue at an appropriate level and use the feedback of the acquisition

to drive the next round of acquisition. Figure 4.26 shows the schematic diagram of an FP-

AHMCS lock. Each diamond shape represents the entire logic of the two diamonds of the

fast-path mechanism shown in Figure 4.19.

141

4.10 Hardware transactional memory with AHMCS

Emerging architectures such as IBM POWER8 [127], IBM Blue Gene/Q [234], and Intel’s

Haswell [195] o↵er hardware support for transactions, often referred to as Hardware Trans-

actional Memory (HTM). In this section, we explore using HTM to achieve the fast-path in

an AHMCS lock.

HTM o↵ers a set of primitives to achieve an optimistic concurrency. Each thread starts a

transaction assuming it will be able to update a shared data without concurrent accesses by

any other thread. When a thread updates a shared datum inside a transaction, all updates

are kept local so that other threads do not notice its changes. If a thread completes all

operations in its transaction without a conflicting access by any other thread, it commits

the transaction, and all updates become visible to the other threads atomically. However,

if an access conflicts with a concurrent access by another thread, the hardware aborts the

transaction discarding all changes made during the transaction. A programmer can manually

force a transaction to abort if desired. Any HTM support o↵ers at least the following three

primitives:

1. Begin transaction: starts a region of a transaction. This primitive o↵ers the function-

ality analogous to the setjmp routine in C.

2. Commit transaction: ends and attempts to commit a transaction previously started.

3. Abort transaction: discards all local changes. This primitive o↵ers the functionality

analogous to the longjmp routine in C. When a transaction fails or aborts, the processor

restores its architectural state that existed just before the beginning of the transac-

tion. Similar to the longjmp, a conditional code indicates the failure to complete a

transaction, which can be used to change the control flow.

Due to its optimistic concurrency feature, the HTM is an attractive alternative to replace

locks. Since transactions abort due to conflicts, naively retrying a transaction can cause

starvation. Furthermore, transactions do not ensure the locality of reference. One cannot,

however, do away with locks; HTM approaches use global locks as a fallback mechanism

when a transaction fails.

142

Algorithm 5: HTM-AHMCS protocol
1 ThreadLocal boolean tlTookFastPath /* Initially false */
2 void Acquire(...)
3 if IsLeafLevelLockFree() then
4 if BEGIN TRANSACTION() == SUCCESS then
5 if IsRootLevelLockFree() then
6 tlTookFastPath � true
7 return /* Fast-path */

8 else
9 ABORT TRANSACTION()

10 /* Abort and transaction failures land here */

11 Start AHMCS slow-path Acquire /* Fallback slow-path */

12 void Release(...)
13 if tlTookFastPath then
14 COMMIT TRANSACTION()
15 tlTookFastPath � false
16 return

17 Start AHMCS slow-path Release

We substitute our fast-path mechanism with an HTM analog to make use of optimistic

concurrency. In this design, a thread—wanting to acquire the lock—begins a transaction.

It then checks if the root-level lock is free (tail pointer is null); if so, it enters the critical

section, executing it as a transaction. If the root-level lock is not free or the transaction

performs conflicting memory accesses, then the transaction aborts, and the protocol falls

back to the slow-path route of the AHMCS lock (either eager or lazy protocols).

4.10.1 AHMCS algorithm with HTM

We present the AHMCS lock with the HTM in Algorithm 5. We refer to this lock as HTM-

AHMCS since it does not use the software solution for fast-path. If the underlying AHMCS

lock is EH-AHMCS, we call such lock as HTM-EH-AHMCS lock. If the underlying AHMCS

lock is LH-AHMCS, we call such lock as HTM-EH-AHMCS lock. Similar to the fast-path

mechanism, we set a thread-local flag tlTookFastPath if the fast-path is taken and unset

it if the transaction succeeds; if the transaction fails, the hardware reverts the value of

tlTookFastPath.

143

4.10.2 Correctness

If two threads are simultaneously inside a transaction, then the hardware aborts at least

one of them if they have a conflicting access; otherwise, both may succeed if they do not

perform conflicting accesses. If two threads take the slow-path through the AHMCS lock,

then the mutual exclusion between them is naturally enforced in software. If one thread

(T
htm

) takes the fast-path route via hardware transactions and another thread (T
ahmcs

) takes

the slow-path via the AHMCS lock, the following scenarios happen:

1. T
htm

checks the root-level tail pointer to be null, finishes its critical section, and suc-

cessfully commits its transactions before T
ahmcs

proceeds to acquire the root-level lock

(updates the tail pointer). This interleaving ensures mutual exclusion between T
htm

and T
ahmcs

.

2. T
ahmcs

updates the root-level tail pointer before T
htm

checks it. In this case, T
htm

aborts

the fast-path voluntarily. This interleaving ensures that only T
ahmcs

performs its critical

section.

3. T
ahmcs

updates the root-level tail pointer after T
htm

checks it. In this case, the hardware

recognizes the conflicting access to the same root-level tail pointer and aborts T
htm

immediately. This interleaving ensures that only T
ahmcs

performs its critical section.

4.10.3 Performance

As mentioned in Section 4.9.1, checking the root-level tail pointer does not create remote

tra�c when the lock is contended since 1) the root-level tail pointer is typically cached,

and 2) the root-level tail pointer changes less frequently. In addition, to avoid checking the

root-level tail pointer frequently, we first check the current-level tail pointer; if it is non-null,

we take the slow-path directly without starting a transaction. Finally, when the lock is not

contended, checking the root-level tail pointer allows the protocol to typically succeed in its

transaction, and hence proves beneficial.

144

4.11 Evaluation of adaptive locks

In this section, we evaluate several variants of adaptive HMCS locks presented in the previous

sections and compare them with HMCS locks. For most of our experiments, we use an IBM

Power 755. We use SGI UV 1000 on a few occasions. For a limited study of HTM, we

use an IBM POWER8 machine.8 This section is not concerned with assessing the correct

value of passing threshold; earlier sections have already evaluated the passing threshold.

Hence, all experiments in this section set the passing thresholds at all levels (if needed) to a

fixed value—64. In the context of this section, an “ideal’ or a “best” lock refers to the best

performing lock within a set of possible HMCS lock variants; it should not be confused with

a “universally” best lock.

Unlike the evaluation in Section 4.8, for all experiments in this section, we bind the

threads sparsely. With the sparse thread binding, when there are 4 threads in the experi-

ments, each thread binds to an independent socket of a Power 755; when there are 8 threads

in the experiments, 2 threads share a socket but each thread binds to a di↵erent core; when

there are 64 threads in the experiments, 16 threads share a socket, 2 threads each share a

core, but each thread binds to a di↵erent SMT thread. On a Power 755, the ideal lock for

the contention levels of 1, 2, and 4 threads is HMCSh1i; the ideal lock for the contention

levels of 8, 16, and 32 threads is HMCSh2i; and the ideal lock for the contention levels of 64

and 128 threads is HMCSh3i. In the context of this section, a shallower HMCS lock ignores

the nearer neighbors; that is an HMCSh2i is a lock formed by ignoring the possibility of

passing within the SMT threads.

On SGI UV 1000, we use only 256 threads (8 nodes) and form a 4-level hierarchy. With

the sparse thread binding, when there are 4 threads in the experiments, each thread binds to

an independent pair of nodes connected via NUMAlink [208] technology; when there are 8

threads in the experiments, each thread binds to a di↵erent blade with two of them per QPI-

connected [97] blade pair; when there are 32 threads in the experiment, each thread binds to

a di↵erent core with two threads per socket; when there are 256 threads, each thread binds

to a di↵erent hardware thread with two threads per core. The ideal lock for the contention

8We defer the details of the IBM POWER8 to Section 4.11.5.

145

levels of 1, 2, and 4 threads is HMCSh1i. The ideal lock for the contention levels of 8 and

16 threads is HMCSh2i. The ideal lock for the contention levels of 32, 64, and 128 threads

is HMCSh3i. The ideal lock for the contention level of 256 threads is HMCSh4i.

In Section 4.11.1 we evaluate the fast-path mechanism (FP-HMCS). In Section 4.11.2

we evaluate the hysteresis used in AHMCS locks (EH-AHMCS and LH-AHMCS). In Sec-

tion 4.11.3 we evaluate the combined e↵ect of the fast-path and hysteresis (FP-EH-AHMCS

and FP-LH-AHMCS). In Section 4.11.4 we evaluate the sensitivity of AHMCS for fast chang-

ing contention levels. In Section 4.11.5 we evaluate the HTM combined with the AHMCS

lock (HTM-AHMCS).

4.11.1 Utility of a fast-path

The following two aspects of the fast-path mechanism are of importance:

1. The throughput di↵erence between a fast-path augmented HMCSh3i (abbreviated as

FP-HMCSh3i) and an HMCSh1i under no contention, and

2. The throughput di↵erence between a FP-HMCSh3i and an HMCSh3i under full con-

tention.

We set up a controlled experiment, where we assess the above two factors. In our exper-

iments, we vary the critical section size from 0-64 cache lines updates. Each thread has no

delay outside the critical section. Note that in this setup hysteresis is not used.

Table 4.9 compares the throughput of FP-HMCSh3i and HMCSh1i at 1 thread (no con-

tention). Table 4.10 compares the throughput of FP-HMCSh3i and HMCSh3i at 128 threads

(full contention). In this setup, the lock throughput under no contention includes the round

trip time and hence captures the latency of lock acquisition. The lock throughput under full

contention hides the delay outside the critical path and hence captures the throughput of

lock acquisition. Clearly, the fast-path mechanism helps achieve close to peak performance

(92% or more) under no contention and maintains high throughput under full contention

(92% or more).

A few configurations of FP-HMCSh3i deliver more than 1⇥ of the peak performance.

This anomaly could be due to measurement errors, hardware prefetching e↵ects, and turbo

146

Cache lines written in Throughput (locks/sec) Fraction of peak throughput
the critical section HMCSh1i FP-HMCSh3i FP-HMCSh1i / HMCSh1i

0 2.18E+07 2.00E+07 0.92⇥
1 2.22E+07 2.08E+07 0.94⇥
2 2.16E+07 2.03E+07 0.94⇥
4 1.69E+07 1.57E+07 0.93⇥
8 1.02E+07 1.05E+07 1.03⇥
16 3.15E+06 3.75E+06 1.19⇥
32 8.02E+05 2.05E+06 2.56⇥
64 4.37E+05 6.98E+05 1.60⇥

Table 4.9 : A fast-path augmented HMCSh3i delivers more than 92% of HMCSh1i’s peak through-
put under no contention.

Cache lines written in Throughput (locks/sec) Fraction of peak throughput
the critical section HMCSh3i FP-HMCSh3i FP-HMCSh3i / HMCSh3i

0 2.65E+07 2.48E+07 0.93⇥
1 2.51E+07 2.43E+07 0.97⇥
2 2.40E+07 2.19E+07 0.92⇥
4 1.49E+07 1.66E+07 1.11⇥
8 9.24E+06 9.06E+06 0.98⇥
16 3.69E+06 3.40E+06 0.92⇥
32 9.02E+05 1.08E+06 1.19⇥
64 2.46E+05 2.55E+05 1.04⇥

Table 4.10 : A fast-path augmented HMCSh3i maintains more than 92% of HMCSh3i’s peak
throughput under full contention.

boost, among others. We do not investigate the root causes of such anomalous performance

benefits.

Figure 4.27 plots the throughput graphs of HMCSh1i, HMCSh2i, HMCSh3i, and FP-

HMCSh3i locks at various contention levels over a range of critical section sizes. Other than

the no contention cases (1 thread), the fixed-depth HMCSh3i lock delivers close to ideal

throughput on several occasions, especially once the size of the critical section increases.

This behavior is because the overhead of additional lock acquisition in HMCSh3i does not

appear on the critical path either when the contention is heavy or when the critical section is

large. Since the FP-HMCSh3i lock overcomes the overhead of HMCSh3i under no contention,

it is a valuable optimization to add to the HMCS lock. At larger critical section sizes, 128

threads (four SMTs per core) seem to do worse than 64 threads (two SMTs per core) for

all locks. This anomaly is likely because a core’s L1 cache bandwidth saturates with three

hardware threads polling three di↵erent memory locations plus the lock-holding SMT thread

streaming multiple cache lines.

147

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(a) 0 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(b) 1 cache line

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(c) 2 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128
Th

ro
ug

hp
ut

 (
lo

ck
s/

se
co

nd
)

Number of threads

(d) 4 cache lines

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(e) 8 cache lines

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(f) 16 cache lines

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(g) 32 cache lines

6.6E+04

1.3E+05

2.6E+05

5.2E+05

1.0E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(h) 64 cache lines

HMCS<1> HMCS<2> HMCS<3> FP-HMCS<3>

Figure 4.27 : Comparison of HMCSh1i, HMCSh2i, and HMCSh3i with FP-HMCSh3i on Power
755.

148

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

6.7E+07

 1 2 4 8 16 32 64 128 256

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)
Number of threads

HMCS<1>
HMCS<2>

HMCS<3>
HMCS<4>

FP-HMCS<4>

Figure 4.28 : Throughput comparison of HMCSh1i, HMCSh2i, HMCSh3i, and HMCSh4i locks
with FP-HMCSh4i on SGI UV 1000.

To understand the limitations of the fast-path mechanism, we highlight a particular case

where the fast-path mechanism fails to match the throughput of an ideal HMCS lock at

moderate contentions. At moderate contention, with eight threads and small critical section

sizes such as two or four cache line updates (Figure 4.27(b) and (c)), FP-HMCSh3i is unable

to match the throughput of HMCSh2i. In these configurations, HMCSh2i is the right choice

since it exploits the local passing within a socket but does not introduce the overhead of an

additional core-level lock used in an HMCSh3i.

As yet another data point, we evaluated an FP-HMCSh4i lock on SGI UV 1000 with

256 threads (8 nodes) and compared it with HMCSh1i, HMCSh2i, HMCSh3i, and HMCSh4i

locks. In this setup, the critical section performs four cache line updates. The FP-HMCSh4i

fails to match the throughput of an HMCSh3i at 32 threads (Figure 4.28). This di↵erence is

because the fast-path mechanism (without the hysteresis) can only expedite the path from

a leaf to the root of the tree. Clearly, the fast-path mechanism without the hysteresis is

handicapped in the cases where an intermediate level of the tree is appropriate for starting

the acquisition process. The same behavior is seen for two cache line updates as well (not

shown).

4.11.2 Benefits of hysteresis

In this section, we evaluate the hysteresis mechanism used in EH-AHMCS and LH-AHMCS

locks. Note that the fast-path mechanism is not present in these locks. We employ two

149

No. threads Percentage of acquisitions at Ideal level
level 1 (leaf) level 2 (middle) level 3 (root) of acquisition

1 0.00% 0.00% 100.00% 3 (root)
2 0.00% 0.00% 100.00% 3 (root)
4 0.00% 0.00% 100.00% 3 (root)
8 0.00% 99.96% 0.04% 2 (middle)
16 0.00% 99.99% 0.01% 2 (middle)
32 0.00% 100.00% 0.00% 2 (middle)
64 100.00% 0.00% 0.00% 1 (leaf)
128 100.00% 0.00% 0.00% 1 (leaf)

Table 4.11 : Percentage of lock acquisitions at di↵erent levels for the EH-AHMCS lock.

No. threads Percentage of acquisitions at Ideal level
level 1 (leaf) level 2 (middle) level 3 (root) of acquisition

1 0.00% 0.00% 100.00% 3 (root)
2 0.00% 0.00% 100.00% 3 (root)
4 0.00% 0.00% 100.00% 3 (root)
8 0.00% 99.97% 0.03% 2 (middle)
16 0.00% 100.00% 0.00% 2 (middle)
32 0.00% 100.00% 0.00% 2 (middle)
64 100.00% 0.00% 0.00% 1 (leaf)
128 100.00% 0.00% 0.00% 1 (leaf)

Table 4.12 : Percentage of lock acquisitions at di↵erent levels for the LH-AHMCS lock.

techniques for our evaluation, one for the precision of hysteresis to choose a level and another

for the performance impact of hysteresis.

First, to better understand the precision of hysteresis, we profile where the AHMCS

lock acquisition process begins at di↵erent contention levels in the 3-level locking hierarchy

on Power 755. We vary the contention by changing the number of participating threads.

We use eight di↵erent contention levels depending on the number of threads, i.e., 1, 2,

4, 8, 16, 32, 64, and 128. Once a contention level is chosen for an execution, we do not

change it again within the same run. We give 30 seconds for each experimental run, which

is a reasonably long period for an adaptive lock to identify the contention and deliver its

best possible performance. In our experiments, we fix the critical section to two cache line

updates. Each thread has no delay outside the critical section. Table 4.11 and Table 4.12

show the distribution of where the acquisition process begins in the hierarchy at di↵erent

contention levels for EH-AHMCS and LH-AHMCS locks, respectively. We infer that both

eager and lazy hysteresis approaches skip the unnecessary levels of the hierarchy under ideal

circumstances.

150

Second, to assess the performance impact of hysteresis, we measure the throughput of EH-

AHMCS and LH-AHMCS locks. We vary the critical section from 0-64 cache line updates.

As before, we give 30 seconds for each experimental run, which is a reasonably long period

for an adaptive lock to identify the contention and deliver its best possible performance.

Figure 4.29 compares the performance of HMCSh1i, HMCSh2i, HMCSh3i, EH-

AHMCSh3i, and LH-AHMCSh3i for di↵erent levels of contention and di↵erent lengths of

the critical sections. We observe that the throughput of both EH-AHMCSh3i and LH-

AHMCSh3i locks match that of the best HMCS lock at various levels of contention. An

only exception is for the case of 0 cache lines with two threads, where HMCSh3i has a supe-

rior performance. This behavior is, in fact, anomalous since HMCSh3i behaves better than

HMCSh1i and HMCSh2i at low contention. This anomaly happens because an HMCSh3i

does not encounter as much contention at this level as faced the by other locks. In this case,

HMCSh3i’s critical path is shorter and its delay outside the critical path is relatively larger.

A thread that acquires the root-level lock often finds no successor or a predecessor because

the other thread has a longer path, which involves: 1) releasing its lower two levels of locks,

2) reinitializing its QNodes, and 3) reacquiring the lower two levels, before arriving to acquire

the root level lock. Where there is no predecessor, the MCS lock acquire protocol does not

access its status and its predecessor’s next fields; as a result, the HMCSh3i lock avoids the

overhead of accessing a few remote cache lines. The EH-AHMCSh3i and LH-AHMCSh3i

locks behave as expected by eliminating the leaf-level lock and starting the acquisition pro-

tocol at level two. The adaptive lock is unable to match this one-o↵ anomalously superior

performance of the HMCSh3i.

This experiment confirms that given su�cient time, EH-AHMCS and LH-AHMCS locks

recognize the contention and adjusts appropriately, usually delivering the performance of

the best lock in a particular configuration. Furthermore, it shows that hysteresis can “right-

size” a lock for any contention level. We summarize the quantitative performance numbers

in Table 4.13. On average, EH-AHMCSh3i reaches 99% of the throughput of the “ideal”

lock over a range of critical section sizes and contention levels. On average, LH-AHMCSh3i

reaches 94% of the throughput of the “ideal” lock over a range of critical section sizes and

contention levels. Compared to an ideal lock, the worst-case throughputs of both eager and

151

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(a) 0 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(b) 1 cache line

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(c) 2 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(d) 4 cache lines

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(e) 8 cache lines

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(f) 16 cache lines

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(g) 32 cache lines

6.6E+04

1.3E+05

2.6E+05

5.2E+05

1.0E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(h) 64 cache lines

HMCS<1> HMCS<2> HMCS<3> EH-AHMCS<3> LH-AHMCS<3>

Figure 4.29 : Comparison of HMCSh1i, HMCSh2i, and HMCSh3i locks with EH-AHMCSh3i
and LH-AHMCSh3i locks on Power 755.

152

Fraction of peak performance compared to the best lock
Lock Average (geometric mean) Worst case

(higher is superior) (higher is superior)

Fixed depth HMCS
HMCSh1i 0.47⇥ 0.09⇥
HMCSh2i 0.68⇥ 0.21⇥
HMCSh3i 0.89⇥ 0.33⇥

Fast-path only FP-HMCSh3i 0.97⇥ 0.51⇥

Hysteresis only
EH-AHMCSh3i 0.99⇥ 0.77⇥
LH-AHMCSh3i 0.94⇥ 0.61⇥

Fast-path and Hysteresis
FP-EH-AHMCSh3i 1.00⇥ 0.78⇥
FP-LH-AHMCSh3i 0.99⇥ 0.77⇥

Table 4.13 : Performance comparison of HMCS, Fastpath-HMCS, Hysteresis-AHMCS and
Fastpath-Hysteresis-AHMCS locks. The summary is computed over the critical section length
ranging from 0 to 64 cache line updates and contention varying from 0 to 128 threads.

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

6.7E+07

 1 2 4 8 16 32 64 128 256

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

HMCS<1>
HMCS<2>

HMCS<3>
HMCS<4>

LH-HMCS<4>
EH-HMCS<4>

Figure 4.30 : Comparison of HMCSh1i, HMCSh2i, HMCSh3i, and HMCSh4i locks with EH-
AHMCSh4i and LH-AHMCSh4i on SGI UV 1000.

lazy hysteresis-based locks in any configuration (excluding the anomalous case of 2 threads

and zero critical section length) are much superior to the worst-case throughput of any

fixed-depth HMCS lock.

For completeness, we show that the hysteresis was able to address the previously men-

tioned performance gap on SGI UV 1000 also. Both EH-AHMCSh4i and LH-AHMCSh4i

locks match the performance of HMCSh3i at 32 threads (Figure 4.30).

4.11.3 Value of hysteresis and a fast-path

An obvious limitation of the hysteresis is its inability to adjust quickly from high contention

to low contention and vice-versa. An obvious limitation of the fast-path is its inability

to handle certain contention levels. The AHMC lock, which combines both fast-path and

153

hysteresis, ameliorates these limitations. We assess both eager and lazy hysteresis approaches

under ideal circumstances in this subsection.

Figure 4.31 compares the performance of HMCSh1i, HMCSh2i, HMCSh3i, FP-EH-

AHMCSh3i, and FP-LH-AHMCSh3i for di↵erent levels of contention and di↵erent critical

section sizes. As before, we give 30 seconds for each experimental run, which is a reasonably

long period for an adaptive lock to identify the contention and deliver its best possible per-

formance. FP-EH-AHMCSh3i and FP-LH-AHMCSh3i locks match the throughput of the

best HMCS lock at various levels of contention. An exception is the case of 0 cache lines

with two threads for the previously described reason. The performance of FP-AHMCS locks

closely follows the performance of their AHMCS counterparts without a fast-path. This

experiment confirms that overlaying the fast-path at each level in an AHMCS lock does not

add a significant overhead.

We summarize the quantitative performance numbers in Table 4.13. On average, FP-

EH-AHMCSh3i reaches the performance of an “ideal” lock over a range of critical section

sizes and contention levels; EH-AHMCSh3i reaches 99% of the peak. On average, FP-LH-

AHMCSh3i reaches 99% of the performance of an “ideal” lock over a range of critical section

sizes and contention levels; LH-AHMCSh3i reaches 94% of the peak. Compared to an ideal

lock, the worst-case throughputs of both FP-AHMCS locks in any configuration (excluding

the anomalous case of 2 threads and zero critical section length) are much superior to the

worst-case throughput of fixed-depth HMCS locks. Moreover, FP-AHMCS locks closely

follow their AHMCSh3i counterparts without a fast-path.

154

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(a) 0 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(b) 1 cache line

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(c) 2 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(d) 4 cache lines

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(e) 8 cache lines

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(f) 16 cache lines

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(g) 32 cache lines

6.6E+04

1.3E+05

2.6E+05

5.2E+05

1.0E+06

 1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (

lo
ck

s/
se

co
nd

)

Number of threads

(h) 64 cache lines

HMCS<1> HMCS<2> HMCS<3> FP-EH-AHMCS<3> FP-LH-AHMCS<3>

Figure 4.31 : Comparison of HMCSh1i, HMCSh2i, and HMCSh3i locks with FP-EH-AHMCSh3i
and FP-LH-AHMCSh3i locks on Power 755.

155

4.11.4 Sensitivity to variable contention

In this subsection, we evaluate the sensitivity of several (HMCS, FP-HMCS, and FP-

AHMCS) locks. We use eight di↵erent contention levels depending on the number of threads

(i.e., 1, 2, 4, 8, 16, 32, 64, and 128). We randomly exercise all possible transitions from

one contention level to another. To assess the sensitivity of our adaptive locks, we change

the contention from one level to another at six di↵erent frequencies: 1 microsecond, 10 mi-

croseconds, 100 microseconds, 1 millisecond, 10 milliseconds, and 100 milliseconds. In this

test setup, unlike the previous one, we vary the number of threads within the same exe-

cution. We do not vary the frequency with which the contention changes within the same

execution. We study the sensitivity with two di↵erent sizes of critical sections: two cache

line updates and four cache line updates. We define the following terminology with respect

to this experiment:

Definition 4.4 (Fractional throughput) Fractional throughput F
k

(c) of a lock k at a

contention level c is the ratio of its observed throughput T
k

(c) at contention level c and the

maximum throughput of any fixed-depth HMCS lock at the same contention level.

F
k

(c) =
T
k

(c)

max
1jn

⇣
T
hmcshji(c)

⌘ (4.40)

Definition 4.5 (Mean fractional throughput) Mean fractional throughput M
k

of a lock

k is the geometric mean of its fractional throughput F
k

(c) observed over various contention

levels. If an experiment exercises a sequence of N (not necessarily unique) contention levels,

then,

M
k

=
⇣ NY

i=1

F
k

(c
i

)
⌘

1/N

(4.41)

Definition 4.6 (Worst-case fractional throughput) Worst-case fractional throughput

W
k

of a lock k is the minimum of its fractional throughput F
k

(c) observed over various

contention levels. If an experiment exercises a sequence of N (not necessarily unique) con-

tention levels, then,

W
k

= min
1iN

F
k

(c
i

) (4.42)

156

Informally, M quantifies the overall behavior of a lock whereas W quantifies the worst-case

behavior of a lock over a range of contention levels. Higher values of M and W imply a

superior lock.

Figure 4.32(a) shows the throughput of various locks (HMCSh1i, HMCSh2i, HMCSh3i,

FP-HMCSh3i, FP-EH-AHMCSh3i, and FP-LH-AHMCSh3i) with two cache lines being up-

dated in the critical section, when we change the contention every 100 microseconds. Fig-

ure 4.32(b) shows the same with four cache lines being updated in the critical section.

Summary for two cache line updates: Table 4.14 shows the mean fractional throughput

M of various locks over a range of contention periods. The same information is graphically

presented in Figure 4.33(a). Table 4.15 shows the worst-case fractional throughput W of var-

ious locks over a range of contention periods. The same information is graphically presented

in Figure 4.33(b).

Summary for four cache line updates: Table 4.16 shows themean fractional throughput

M of various locks over a range of contention periods. The same information is graphically

presented in Figure 4.34(a). Table 4.17 shows the worst-case fractional throughput W of var-

ious locks over a range of contention periods. The same information is graphically presented

in Figure 4.34(b).

157

1.0E+03

2.0E+03

4.1E+03

8.2E+03

1.6E+04

3.3E+04

12
8

1 32 12
8

64 12
8

8 2 64 1 8 64 8 1 12
8

32 2 16 12
8

16 4 32 16 8 4 12
8

4 8 32 1 16 32 8 12
8

2 12
8

2 1 4 1 64 4 64 16 64 32 4 2 8 16 1 2 32 64 2 4 16 2 16

N
um

be
r

of
 lo

ck
 a

cq
ui

si
tio

ns

Number of threads

(a) Critical section with 2 cache line updates

5.1E+02

1.0E+03

2.0E+03

4.1E+03

8.2E+03

1.6E+04

12
8

1 32 12
8

64 12
8

8 2 64 1 8 64 8 1 12
8

32 2 16 12
8

16 4 32 16 8 4 12
8

4 8 32 1 16 32 8 12
8

2 12
8

2 1 4 1 64 4 64 16 64 32 4 2 8 16 1 2 32 64 2 4 16 2 16

N
um

be
r

of
 lo

ck
 a

cq
ui

si
tio

ns

Number of threads

(b) Critical section with 4 cache line updates

HMCS<1> HMCS<2> HMCS<3> FP-HMCS<3> FP-EH-AHMCS<3> FP-LH-AHMCS<3>

Figure 4.32 : Lock throughput with contention changing every 100µs period. The X axis repre-
sents the contention (number of threads) at each 100µs period. The Y axis represents the number
of locks acquired in each 100µs interval

158

Period of change Mean fractional throughput M (higher is superior)
of contention HMCSh1i HMCSh2i HMCSh3i FP-HMCSh3i FP-EH-AHMCSh3i FP-LH-AHMCSh3i
100 µ sec 0.69⇥ 0.80⇥ 0.75⇥ 0.81⇥ 0.85⇥ 0.76⇥
101 µ sec 0.52⇥ 0.78⇥ 0.80⇥ 0.87⇥ 0.94⇥ 0.87⇥
102 µ sec 0.51⇥ 0.78⇥ 0.79⇥ 0.87⇥ 0.94⇥ 0.92⇥
103 µ sec 0.51⇥ 0.77⇥ 0.79⇥ 0.88⇥ 0.94⇥ 0.93⇥
104 µ sec 0.51⇥ 0.77⇥ 0.79⇥ 0.89⇥ 0.96⇥ 0.94⇥
105 µ sec 0.51⇥ 0.74⇥ 0.79⇥ 0.87⇥ 0.95⇥ 0.93⇥

Table 4.14 : Mean fractional throughput of various locks (compared to the best performing lock
at the same contention level) over a range of contention levels varying for di↵erent periods. Critical
section size = 2 cache line updates.

Period of change Worst-case fractional throughput W (higher is superior)
of contention HMCSh1i HMCSh2i HMCSh3i FP-HMCSh3i FP-EH-AHMCSh3i FP-LH-AHMCSh3i
100 µ sec 0.39⇥ 0.40⇥ 0.30⇥ 0.22⇥ 0.45⇥ 0.23⇥
101 µ sec 0.11⇥ 0.35⇥ 0.41⇥ 0.50⇥ 0.80⇥ 0.51⇥
102 µ sec 0.11⇥ 0.33⇥ 0.41⇥ 0.51⇥ 0.86⇥ 0.75⇥
103 µ sec 0.11⇥ 0.32⇥ 0.41⇥ 0.52⇥ 0.86⇥ 0.74⇥
104 µ sec 0.12⇥ 0.29⇥ 0.41⇥ 0.52⇥ 0.87⇥ 0.77⇥
105 µ sec 0.12⇥ 0.28⇥ 0.41⇥ 0.48⇥ 0.87⇥ 0.77⇥

Table 4.15 : Worst-case fractional throughput of various locks (compared to the best performing
lock at the same contention level) over a range of contention levels varying for di↵erent periods.
Critical section size = 2 cache line updates.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000 10000 100000

M
ea

n
fr

ac
tio

na
l t

hr
ou

gh
pu

t
 c

om
pa

re
d

to
 id

ea
l (

1.
0)

Contention period in micro seconds

(a) Mean fractional throughput

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10 100 1000 10000 100000

W
or

st
 c

as
e

fr
ac

tio
na

l t
hr

ou
gh

pu
t

 c
om

pa
re

d
to

 id
ea

l (
1.

0)

Contention period in micro seconds

(b) Worst-case fractional throughput

HMCS<1> HMCS<2> HMCS<3> FP-HMCS<3> FP-EH-AHMCS<3> FP-LH-AHMCS<3>

Figure 4.33 : Relative throughput of various locks (compared to the best performing HMCS lock)
at di↵erent contention levels for di↵erent periods of contention. Critical section size = 2 cache line
updates.

159

Period of change Mean fractional throughput M (higher is superior)
of contention HMCSh1i HMCSh2i HMCSh3i FP-HMCSh3i FP-EH-AHMCSh3i FP-LH-AHMCSh3i
100 µ sec 0.70⇥ 0.83⇥ 0.80⇥ 0.81⇥ 0.78⇥ 0.77⇥
101 µ sec 0.51⇥ 0.79⇥ 0.89⇥ 0.93⇥ 0.91⇥ 0.92⇥
102 µ sec 0.48⇥ 0.77⇥ 0.90⇥ 0.98⇥ 0.92⇥ 0.96⇥
103 µ sec 0.47⇥ 0.77⇥ 0.90⇥ 0.98⇥ 0.93⇥ 0.95⇥
104 µ sec 0.52⇥ 0.73⇥ 0.85⇥ 0.94⇥ 0.89⇥ 0.91⇥
105 µ sec 0.47⇥ 0.75⇥ 0.90⇥ 0.98⇥ 0.94⇥ 0.95⇥

Table 4.16 : Mean fractional throughput of various locks (compared to the best performing lock
at the same contention level) over a range of contention levels varying for di↵erent periods. Critical
section size = 4 cache line updates.

Period of change Worst-case fractional throughput W (higher is superior)
of contention HMCSh1i HMCSh2i HMCSh3i FP-HMCSh3i FP-EH-AHMCSh3i FP-LH-AHMCSh3i
100 µ sec 0.34⇥ 0.34⇥ 0.34⇥ 0.32⇥ 0.34⇥ 0.37⇥
101 µ sec 0.14⇥ 0.37⇥ 0.47⇥ 0.68⇥ 0.73⇥ 0.68⇥
102 µ sec 0.10⇥ 0.34⇥ 0.47⇥ 0.77⇥ 0.70⇥ 0.71⇥
103 µ sec 0.12⇥ 0.31⇥ 0.47⇥ 0.78⇥ 0.74⇥ 0.70⇥
104 µ sec 0.14⇥ 0.32⇥ 0.42⇥ 0.78⇥ 0.73⇥ 0.69⇥
105 µ sec 0.12⇥ 0.28⇥ 0.47⇥ 0.77⇥ 0.72⇥ 0.68⇥

Table 4.17 : Worst-case fractional throughput of various locks (compared to the best performing
lock at the same contention level) over a range of contention levels varying for di↵erent periods.
Critical section size = 4 cache line updates.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

M
ea

n
fr

ac
tio

na
l t

hr
ou

gh
pu

t
 c

om
pa

re
d

to
 id

ea
l (

1.
0)

Contention period in micro seconds

(a) Mean fractional throughput

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000 10000 100000

W
or

st
 c

as
e

fr
ac

tio
na

l t
hr

ou
gh

pu
t

 c
om

pa
re

d
to

 id
ea

l (
1.

0)

Contention period in micro seconds

(b) Worst-case fractional throughput

HMCS<1> HMCS<2> HMCS<3> FP-HMCS<3> FP-EH-AHMCS<3> FP-LH-AHMCS<3>

Figure 4.34 : Relative throughput of various locks (compared to the best performing HMCS lock)
at di↵erent contention levels for di↵erent periods of contention. Critical section size = 4 cache line
updates.

160

From these statistics, we infer that one microsecond is the lower bound on how fast

an FP-AHMCS lock can react to the changing contention on Power 755. For cases where

the rate of change of contention is larger than one microsecond, we make the following key

observations from these statistics:

1. The mean fractional throughput M of FP-EH-AHMCSh3i and FP-LH-AHMCSh3i

locks for short critical sections (2 cache lines) typically reaches more than 94% and 87%,

respectively. This performance surpasses the mean fractional throughput of all static

HMCS locks by a significant margin. The mean fractional throughput of FP-HMCSh3i

lock for short critical sections is just below that of FP-AHMCS locks (87-89%).

2. Both FP-EH-AHMCSh3i and FP-LH-AHMCSh3i locks provide better protection

against the worst-case behavior (worst-case fractional throughput W) for short crit-

ical sections compared to the other locks (more than 51%). FP-EH-AHMCSh3i is

particularly robust (more than 80% W) since it quickly adapts to changing contention

when compared to FP-LH-AHMCSh3i.

3. HMCSh3i, HMCSh2i, and HMCSh1i, in that order, degrade in their mean fractional

throughput as well as worst-case fractional throughput.

4. As the size of the critical section increases (4 cache lines), the HMCSh3i catches up

with the adaptive locks in terms of its mean fractional throughput. This behavior is

natural since the cost of acquiring additional locks does not appear on the critical path.

For the same reason the FP-HMCSh3i starts to outperform the FP-AHMCSh3i locks,

in terms of both mean fractional throughput and worst-case fractional throughput. The

FP-AHMCS locks are, however, of significance when the memory hierarchy becomes

deeper than three levels.

Overall, the combination of hysteresis, fast-path, and HMCS lock shows superior perfor-

mance over a static-depth HMCS lock.

161

4.11.5 Evaluation of HTM on IBM POWER8

We evaluated the AHMCS lock with hardware transactional memory (HTM) on a machine

with two IBM POWER8 processors. Each processor has 12 8-way SMT cores clocked at 2

GHz. There is a total of 192 hardware threads on the machine. Each core has 32 KB 4-way

L1 cache, 512 KB 8-way L2 cache, and 8 MB L3 8-way cache. The total L3 cache on each

processor is 96 MB. The processor uses a Non-Uniform Cache Architecture (NUCA) cache

policy [115], where the hot lines migrate within the caches.

Figure 4.35 compares the performance of the following four di↵erent mutual exclusion

implementations:

1. HTM-HMCSh1i: HTM with an HMCSh1i lock as its fallback,

2. HMCSh1i,

3. HTM-EH-AHMCSh3i: HTM with an EH-AHMCSh3i lock as its fallback, and

4. FP-EH-AHMCSh3i.

HTM-HMCSh1i vs. HMCSh1i is a valuable comparison of hardware-based vs. software-

based synchronization, respectively. These two locks should perform well under low con-

tention; both should degrade in performance under high contention.

Similarly, HTM-EH-AHMCSh3i vs. FP-EH-AHMCSh3i is a valuable comparison of

hardware-based vs. software-based synchronization. These two locks should perform well

under a variety of contention levels.

We evaluate the implementations for di↵erent levels of contention and di↵erent critical

section sizes. We give 30 seconds for each experimental run. We have evaluated several

other HMCS variants presented in this chapter by augmenting them with HTM, however,

for brevity, we do not discuss details of each one of them.

162

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

3.4E+07

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(a) 0 cache lines

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(b) 1 cache line

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(c) 2 cache lines

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

1.7E+07

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(d) 4 cache lines

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

8.4E+06

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(e) 8 cache lines

2.6E+05

5.2E+05

1.0E+06

2.1E+06

4.2E+06

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(f) 16 cache lines

1.3E+05

2.6E+05

5.2E+05

1.0E+06

2.1E+06

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(g) 32 cache lines

6.6E+04

1.3E+05

2.6E+05

5.2E+05

1.0E+06

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

Th
ro

ug
hp

ut
(l

oc
ks

/s
ec

on
d)

Number of threads

(h) 64 cache lines

HMCS<1> HTM-HMCS<1> FP-EH-AHMCS<3> HTM-EH-AHMCS<3>

Figure 4.35 : Comparison of hardware-based locks (HTM-HMCSh1i and HTM-EH-AHMCSh3i
locks) and software-based locks (HMCSh1i and FP-EH-AHMCSh3i) on IBM POWER8.

163

From Figure 4.35, we make the following key observations:

1. For empty critical sections, the HTM implementations clearly win over all other locks.

However, this scenario has little if any practical application.

2. When contention is low and critical sections are short (1-4 cache lines), the use of HTM

improves the throughput compared to their counterparts that do not use HTM.

3. When critical section sizes are large, using HTM has detrimental e↵ects compared to

their non-HTM counterparts even when there is no contention. This e↵ect results from

more frequent transaction failures for large transactions due to the hardware imposed

transactional capacity.

4. Finally, HTM is not a panacea for synchronization. Sophisticated locks, such as FP-

AHMCS, are needed even if HTM becomes more pervasive. In general, hardware

transactions that fall back to an HMCSh1i lock yield much lower performance than

an FP-EH-AHMCSh3i. Furthermore, hardware transactions that fall back to an EH-

AHMCSh3i lock yield negligible overall performance improvement over an FP-EH-

AHMCSh3i, which shows the e�cacy of our software-based solutions.

4.12 Discussion

In this chapter, we demonstrated the need for better mutual exclusion techniques for emerg-

ing architectures that employ a Non-Uniform Memory Access (NUMA) design. The HMCS

lock design mirrored the underlying hardware’s NUMA hierarchy in software, which enabled

it to deliver a high throughput under high contention. Since C-MCS-MCS lock protocol typ-

ically passes a lock at the socket level, it incurs higher lock passing latency compared to an

HMCS protocol, which typically passes a lock at the core level. For that reason, the HMCS

lock has lower passing latency and superior throughput compared to a C-MCS-MCS lock.

By retrofitting the C-MCS-MCS lock, which formed cohorts among cores sharing a socket,

to instead form cohorts among threads sharing a core, we o↵ered an alternative cohort lock

that can match the throughput of an HMCS lock under extreme contention. This approach

di↵ers from the design point that Dice et al. intended for their C-MCS-MCS lock. While

164

the C-MCS-MCS lock with core-level cohorting matches the throughput of an HMCS lock,

it requires a passing threshold that yields much greater unfairness. Analytically modeling

these sophisticated locks’ throughput and fairness enabled us to compare and contrast their

properties.

While a fixed-depth HMCS lock showed high performance under high contention, it was

not ideal under low contention. The FP-AHMCS design enhanced the HMCS lock by adding

a software-based fast-path and hysteresis for dynamically adjusting to any contention level.

This adaptation made FP-AHMCS a set of versatile locks, which are superior to fixed-depth

hierarchical queuing locks.

Incorporating the speculative mutual exclusion feature o↵ered by Hardware Transac-

tional Memory (HTM) atop an AHMCS lock further enhanced our lock design. The HTM

augmented AHMCS ensures low latency under low contention by managing mutual exclu-

sion in hardware and falls back to software for managing high contention. The design not

only ensures correct interplay between hardware and software methods but also puts each of

their strengths to use—hardware for low latency under low contention and software for high

throughput under high contention. Our software-based contention management carefully

choreographs how locks are passed from one requester to the other by prioritizing local-

ity without completely sacrificing fairness. The guarantees provided by our software-based

fast-path mechanism are invaluable since they o↵er a low latency that even an HMT-based

synchronization fails to match in some situations. As systems with many cores and deep,

distributed NUMA hierarchies become more pervasive, our hardware-software cooperative

design with dynamic adaptation shows promise for e�cient synchronization over a broad

range of contention levels.

165

Chapter 5

Identifying Unnecessary Memory Accesses

Time moves in one direction, memory in another.

William Gibson

Once a parallel program is load balanced and its parallel overheads are eliminated, the

next step to improve its performance is to tune individual threads of sequential execution.

Exhaustive coverage of tuning a thread of sequential execution is outside the scope of this

dissertation. In this chapter, we address one particular, albeit important, aspect of tuning

individual threads of sequential execution—the overhead of unnecessary memory accesses.

5.1 Motivation and overview

On modern architectures, memory accesses are costly. For many programs, exposed memory

latency accounts for a significant fraction of execution time. Unnecessary memory accesses,

whether cache hits or misses, lead to poor resource utilization and have a high energy cost as

well [89]. In the era where available memory bandwidth per processor core is shrinking [102,

153], gratuitous memory accesses cause performance losses.

A dead write occurs when two successive writes happen to a memory location without

an intervening read of the same location. Dead writes are useless operations. Traditional

performance analysis tools lack the ability to detect ine�ciencies related to dead writes.

Compiler optimizations that reduce memory accesses by register allocation of scalars (e.g.,

[44]) or array elements (e.g., [35]) are critical to high performance. Other optimizations

that eliminate redundant computations [21, 55, 117] are similarly important. However, none

of these optimizations is e↵ective in the global elimination of dead writes. Compile-time

elimination of all dead writes is complicated by issues such as aliasing, aggregate types,

166

optimization scope, late binding, and path- and context- sensitivity.

Dead writes are surprisingly frequent in complex programs. To pinpoint dead writes,

we developed DeadSpy—a tool that monitors every memory access, identifies dead writes,

and provides actionable feedback to guide application tuning. Using DeadSpy to analyze

the reference executions of the SPEC CPU2006 benchmarks [85] showed that the integer

benchmarks had over 15% dead writes and the floating-point benchmarks had over 6% dead

writes. On some inputs, the SPEC CPU2006 403.gcc benchmark had as many as 76.2%

dead writes.

Besides providing a quantitative metric of dead writes, DeadSpy reports source lines

and complete calling contexts involved in high frequency dead writes. Such quantitative

attribution pinpoints opportunities where source code changes could significantly improve

program e�ciency. Various causes of ine�ciency manifest themselves as dead writes at

runtime. We show cases where lack of or ine�cient compiler optimizations cause dead

writes; we also highlight cases where the programmer did not design for performance. We

restructure codes that have significant fractions of dead writes and demonstrate performance

improvements. To the best of our knowledge, DeadSpy is the first dynamic dead write

detection tool. The proposed methodology of eliminating dead writes is a low-cost high-yield

strategy when looking for opportunities to improve application performance.

We restructure codes that have significant fractions of dead writes and demonstrate

performance improvements. Insights provided by DeadSpy helped significantly improve the

performance of several important code bases such as Chombo [11], NWChem [230], bzip2 [206],

gcc [85], and hmmer [85]

5.2 Contributions

This work, part of which appeared in the Proceedings of the 10th International Symposium

on Code Generation and Optimization [42], makes the following contributions.

1. It identifies dead writes as a symptom of ine�ciency arising from many causes,

2. It proposes elimination of dead writes as an opportunity for improving performance,

167

3. It presents a tool to count dead writes in an execution and precisely attributes these

counts to source lines along with calling contexts,

4. It analyzes a variety of benchmark programs and shows that the fraction of dead writes

is surprisingly high,

5. It identifies several cases where dead writes result from ine↵ective compiler optimiza-

tions, and

6. It demonstrates through several case studies, how eliminating causes of dead writes

significantly improves performance.

5.3 Chapter roadmap

The rest of this chapter is organized as follows. Section 5.4 presents a new methodology for

detecting program ine�ciencies via tracking dead writes. Section 5.5 sketches the design and

implementation of DeadSpy. Section 5.6 evaluates benchmark programs using DeadSpy.

Section 5.7 studies five codes to explore the causes of dead writes and the performance

benefits of dead write elimination. Finally, Section 5.8 ends with some discussion.

5.4 Methodology

In this section, we describe a dynamic dead write detection algorithm. The driving principle

behind our tool is the invariant that two writes to the same memory location without an

intervening read operation make the first write to that memory location dead.

To identify dead writes throughout an execution, DeadSpy monitors every memory read

and write operation issued during program execution. For each addressable unit of memory,

DeadSpy maintains the most recent access history. The access history takes one of the

following values:

Virgin (V): the memory address has never been accessed,

Read (R): the last access was a read operation, or

Written (W): the last access was a write operation.

168

���

���
�����������

��������������� ���

�����������

�����������

������������

�����������
�����������

�������������������

������������������

Figure 5.1 : State transition diagram.

The state transitions of each memory location obey the automaton shown in Figure 5.1,

where the transition edges are labeled with <instruction/action> pairs. Every memory

location M starts in the Virgin state. An instruction that reads M updates M’s state to R. An

instruction that writes M updates M’s state to W. A state transition from W to W corresponds to a

dead write. When a dead write is detected, some additional information is recorded for later

reporting. Similarly, a final write to M without a subsequent read qualifies as a dead write. All

other state transitions have no actions associated with them. A halt instruction transitions

the automaton to the terminating state. When the program terminates, DeadSpy also

terminates. Since the automaton considers the e↵ect of each memory operation executed

in the program from start to finish, there can be no false-positives or false-negatives. The

approach is sound even in the event of asynchronous control transfers.

For multi-threaded programs, if two consecutive writes to a location are from two di↵erent

threads, this may indicate a source of non-determinism or a data race, unless protected by a

common lock. In this work, our focus is to identify program ine�ciencies for a single thread

of execution; for multi-threaded executions, we treat such writes to a memory location simply

as dead writes.

5.5 Design and implementation

We implemented DeadSpy using Intel’s dynamic binary instrumentation tool Pin [144] to

monitor every read and write operation. We use shadow memory [167] to maintain the access

169

history of each memory location. We instrument each function’s CALL and RETURN instruc-

tions to build a dynamic calling context tree (CCT) [9]. A CCT enables us to compactly

store the program contexts necessary for reporting dead writes. Each interior node in our

CCT represents a function invocation, and each leaf node represents a write instruction. We

apportion each instance of redundancy to a pair of call paths involved in dead writes. At

program termination, we present the dead writes observed for the entire execution. In our

implementation, we decided not track the dead writes happening during the final W ! End

transitions. Typically, such dead writes have a negligible contribution to the overall dead

writes in a program. Furthermore, such dead writes may be infeasible to eliminate in prac-

tice.

In the following subsections, we first introduce the terminology used in the rest of this

chapter and briefly describe Pin. We then describe our implementation of DeadSpy, includ-

ing its use of shadow memory and CCT construction, along with its strategies for recording

and reporting dead writes. Next, we present the challenges involved in attributing dead

writes to source lines and then we sketch the details of our solution. We conclude this

section with the details of accounting and attributing dead writes.

5.5.1 Terminology

In the context of this chapter, we define the following terms:

• Read is an instruction that has the side e↵ect of loading a value from memory.

• Write is an instruction that has the side e↵ect of storing a value into memory.

• Operation represents a dynamic instance of an instruction.

For a W ! W state transition at location M, we define:

• Dead context as the program context in which the first write happened; this context

wrote an unread value and hence is a candidate for optimization.

• Killing context as the program context that overwrote the previously written location

without an intervening read of the location.

170

5.5.2 Introduction to Pin

Pin is a dynamic binary instrumentation tool. Pin provides a rich set of APIs to inject

instrument (analysis routines) into a program at di↵erent granularities such as module,

function, trace, basic block, and instruction. A trace, in the Pin jargon, is a single entry

multiple exit code sequence—for example, a branch starts a new trace at the target, and a

function call, return, or a jump ends the trace. Instrumentation occurs immediately before

a code sequence is executed for the first time. Using Pin, we instrument every read and

write instruction to update the state of each byte of memory a↵ected by the operation. Pin

also provides APIs to intercept system calls, which we use to update the shadow memory to

account for side e↵ects of system calls.

5.5.3 Maintaining memory state information

In our implementation, we maintain the current state of each memory location in a shadow

memory, analogous to Memcheck—a Valgrind tool [167]. Each memory byte M has a shadow

byte to hold its previous access history represented as STATE(M). The shadow byte of M can

be accessed by using M’s address to index a two-level page table. We create chunks of 64KB

shadow memory pages on demand. On 64-bit x86 64 machines, only the lower 48 bits are

used for the virtual address mapping [8]. With 64KB shadow pages, the lower 16 bits of

address provide an o↵set into a shadow page where the memory status is stored. The higher

20 bits of 48 bits, provide an o↵set into the first-level page table, which holds 220 entries—on

a 64-bit machine it occupies 8MB space. The middle 12 bits provide an o↵set into a second-

level page table. Each second-level page table has 212 entries and occupies 32KB on a 64-bit

machine. Each second-level page table is allocated on demand i↵ an address is accessed in

its range. We adopt a write-allocate semantics so that read-only pages do not get shadowed.

To maintain the context for a write operation, we store an additional pointer sized variable

CONTEXT(M) in the shadow memory for each memory byte M. Thus, we have one shadow byte

of state and an 8-byte context pointer for a total of nine bytes of metadata per data byte.

Figure 5.2 shows the organization of shadow memory; numbers in dark circles represent the

steps involved in address translation.

171

64*bit*memory*address*M*

.*.*.*

.*.*.*

.*.*.*

14*bits** 20*bits** 12*bits** 16*bits**

Always*zero*
STATE(M)*

Level*1*
page*table*

Level*2*
page*table*

Shadow*page*

64KB*state*
informaQon*

64KB***8*
context*
informaQon*

CONTEXT(M)*

M*

High* Low*

Original*byte*

1

2

3

Figure 5.2 : Shadow memory and address translation.

5.5.4 Maintaining context information

To accurately report the dead and killing contexts involved in every dead write, each instruc-

tion writing to location M also updates CONTEXT(M) and records a cursor to the call chain

needed to recover the calling context and the instruction pointer (IP) of the write. We ac-

complish this by maintaining a CCT. The CCT dynamically grows as the execution unfolds.

In this subsection, we provide the details of building a simple CCT; additional details of

including the IP information to map back to source lines are presented in Section 5.5.7.

To build a simple CCT, we insert instrumentation before each CALL and RETURN machine

instruction. DeadSpy maintains a cursor (curCtxtNodePtr) that points to a CCT node

representing the current function. The path from the curCtxtNodePtr to the CCT root

represents the current call stack. The analysis routine executed before each CALL instruc-

tion creates a new ContextNode for the callee under the curCtxtNodePtr if not already

present, and updates the curCtxtNodePtr to point to the callee ContextNode. The analysis

routine executed before each RETURN instruction updates the curCtxtNodePtr to its parent

172

ContextNode. The analysis routine executed just before each write instruction updates the

pointer-sized location CONTEXT(M) in the shadow memory with the location pointed to by

the curCtxtNodePtr. If the write operation is multi byte, we update CONTEXT(M) for each

of the data bytes written by the instruction with the value of the curCtxtNodePtr. For mul-

tithreaded codes, there will be one CCT per thread; we enforce atomicity of the execution

of an instruction and its analysis routine.

5.5.5 Recording dead writes

When a W ! W state transition is detected, we record a 3-tuple <dead context pointer,

killing context pointer, frequency> into a table—DeadTable. Each entry in the DeadTable

is uniquely identified by <dead context pointer, killing context pointer> ordered pair. For

example, <CONTEXT(M), curCtxtNodePtr,1> is the 3-tuple that DeadSpy might insert

into the DeadTable when a dead write is observed for a location M. If such a record is already

present, its frequency is incremented. The frequency accumulates the number of bytes dead

for a given pair of contexts. We discuss the details of accounting and attributing dead writes

in Section 5.5.8.

5.5.6 Reporting dead and killing contexts

At program termination, all 3-tuples are retrieved from the DeadTable and sorted by de-

creasing frequency of each record. For each tuple, the full call chain representing its dead

context is obtained by traversing parent links in the CCT starting from the dead context

pointer 1. Similarly, we can retrieve the killing context by traversing parent links in the CCT

starting from the killing context pointer.

5.5.7 Attributing to source lines

Sometimes having only a chain of function names as a context may not su�ce; source line

numbers involved in the dead and killing writes may be needed. In the following paragraphs,

we present challenges involved in making line-level attribution along with our solutions.

1For library calls where the target of a call is to a trampoline, we disassemble target address of the jump
to extract the correct function name.

173

5.5.7.1 Overhead of a naive approach

Attributing to source or instruction, in addition to the function, requires recording the in-

struction pointer (IP) in addition to the enclosing function for each write operation. Naively

recording additional pointer sized IP values bloats shadow memory and adds excessive over-

head. To avoid the space overhead, one could consider adding write IPs as leaf nodes in

the CCT; these nodes would represent writes within a parent function. However, every time

a write operation is executed, recording the context would involve looking up the corre-

sponding CCT node for the write IP; this would dramatically inflate the time overhead of

monitoring.

5.5.7.2 Strategy to capture the calling context with instruction pointer

Instead of recording each IP as a pointer in the shadow space, one could consider representing

the set of write instructions in a function as an array and assigning a slot index to each. Using

Pin, one can assign a unique slot index to each write instruction during JIT translation; with

this approach, the slot index for each write instruction is available to an analysis routine

during execution in constant time. This approach would address the aforementioned problem

of lookup overhead. Pin makes the information about function boundaries available to the

instrumentation at run time. This information, in theory, could be used to scan each function

and assign a slot index to each write instruction at the time of injecting the instrumentation

into an application’s binary code.

5.5.7.3 Challenges due to imprecise binary analysis

A problem with the aforementioned approach of scanning a function and associating store

instructions in a function with slot indices requires precise knowledge of function bound-

aries as well as precise disassembly of function. In practice, program disassembly is im-

precise [204] and discovering function boundaries relies upon compiler-generated symbol

information, which is often incomplete and sometimes incorrect [224]. The approach of asso-

ciating write instructions in a function with slots would fail when execution transfers to an

arbitrary code region where precise function bounds are unavailable. This behavior is not

174

uncommon; even the startup code executed before reaching the main() function exercises

such corner cases.

Providing a perfect solution to track IPs of write operations involves complex engineer-

ing of the CCT. To facilitate this, we developed a strategy that makes use of traces that

Pin generates at JIT time. While the function bounds can be incorrect, the instructions

identified in a trace are always correct since trace extraction happens at runtime. We mod-

ify the aforementioned simple CCT such that each ContextNode has several child traces

(ChildTraces), each one represented by a TraceNode. Each TraceNode has an array of

child IPs (ChildWriteIPs), where each array element corresponds to a write instruction

under that trace, as shown in Figure 5.3. The content of each slot of a ChildWriteIPs array

is simply a pointer to its parent TraceNode. This organization allows us to obtain a pointer

to a leaf-level ChildWriteIPs slot and traverse a chain of pointers from leaf to the root to

recover an entire call chain along with the encoded leaf-level instruction pointer.

5.5.7.4 Pin’s trace instrumentation to obtain precise disassembly

Since a leaf-level slot does not contain the actual IP, one has to decode it (typically, dur-

ing post processing to obtain the call-path in a human readable form). We maintain a

reverse map (RMap) from each Pin trace to its constituent write IPs. Specifically, the ith

slot in ChildWriteIPs of a trace T with unique identifier traceId, is the IP recorded at

RMap[traceId][i]. This reverse mapping allows us to recover the IP given the index of

a write instruction in a ChildWriteIPs. Note that we do not need to maintain a reverse

mapping from each ChildWriteIPs to the constituent write IPs since a pin trace may appear

as di↵erent ChildWriteIPs at di↵erent calling contexts.

We intercept each Pin trace creation assigning a unique identifier (traceId) for each

trace. On each trace creation, we also walk the instructions belonging to a trace and populate

the RMap with the key as the traceId and the value as an array of write instructions belonging

to the trace.

We instrument each trace entry. We also add instrumentation before each CALL instruc-

tion to set a flag. On entering a trace, if the flag is set, we know that we have just entered a

new function. If the flag is set when entering a trace, we inspect the children of the current

175

TraceNode

ChildWriteIPs

ContextNode

ChildTraces

ChildContexts

ContextNode

ChildTraces

ChildContexts

ContextNode

ChildTraces

ChildContexts

TraceNode

ChildWriteIPs

TraceId TraceId

CONTEXT(M)*

Shadow*memory* Deadtable:Dead*and*Killing*Contexts*

Dead*
context*

Killing*
context*

Frequency*

Figure 5.3 : Calling context tree.

CCT node curCtxtNodePtr looking for a child ContextNode representing the current IP; if

none exists, we create and insert one. We update the curCtxtNodePtr to the appropriate

child and reset the flag. Whether the flag was set or not, we next look up a child TraceNode

with the id of the current trace (traceId) under curCtxtNodePtr (creating and inserting

a new one if necessary), and set curTraceNodePtr to point to the current trace. Tail calls

to known functions are handled by having Pin instrument function prologues to adjust the

curCtxtNodePtr to point to a sibling node followed by adjusting the curTraceNodePtr. A

tail call to an instruction sequence not known to be a function ends up being associated

with a trace under the current function. Finally, we add instrumentation before each write

instruction to update a pointer (curChildIPIndex) to point to a slot of the ChildWriteIPs

that is currently being executed.

176

Encoding and decoding the call-path: Using the aforementioned CCT structure, let’s

consider how we maintain the shadow information for a write operation. If a write instruc-

tion W
i

is numbered as the 42nd write while JIT-ing a trace T; then executing W
i

, which

writes to location M, would update CONTEXT(M) with &(T->ChildWriteIPs[42]). Note

that at the time of recording this information, curTraceNodePtr would be pointing to T

and curChildIPIndex would be 42. If an instance of W
i

is a killing write, before updat-

ing CONTEXT(M), we record or update the 3-tuple <CONTEXT(M), &T->ChildWriteIPs[42],

frequency> in the DeadTable.

During the post processing, when we want to recover the full call-path, we will only have

a pointer, say p, to ChildWriteIPs[42]. Dereferencing the pointer p provides us a pointer

to the TraceNode T encapsulating the ChildWriteIPs[42]. The pointer arithmetic, (p -

T->ChildWriteIPs), yields the index of the slot that p points to; in this case 42. Now,

we can recover the real IP by indexing RMap[T->traceId][42]. To recover the rest of the

call-path, we can follow the parent links starting at T->parent till the root of the tree.

We note that the method developed for attributing to the calling context reports the

source line for the leaf level of the dead and killing writes but does not provide the source

level information for interior nodes of the call-path. The interior node will contain only

function names. Chapter 6, which focuses on call-path attribution, not only eliminates this

deficiency but also reduces the overhead of call-path attribution.

5.5.8 Accounting dead writes

Read and write operations happen at di↵erent byte-level granularities, for example 1, 2, 4,

8, 16, etc.. We define AverageWriteSize in an execution as the ratio of the total number

of bytes written to the total number of write operations performed.

AverageWriteSize =
NumBytesWritten

NumWriteOps

177

We approximate the number of dead write operations in an execution as the ratio of the

total number of bytes dead to its AverageWriteSize.

\NumDeadOps =
NumBytesDead

AverageWriteSize

We define Deadness in an execution as the percentage of the total dead write operations

out of the total write operations performed, which is same as the percentage of the total

number of bytes dead out of the total number of bytes written.

Deadness =
\NumDeadOps

NumWriteOps
⇥ 100

=
NumBytesDead

NumBytesWritten
⇥ 100

DeadSpy accumulates the total bytes written and the total operations performed in an

execution. As stated in Section 5.5.5, each record C
ij

in a DeadTable is associated with

a frequency F (C
ij

), representing the total bytes dead in a dead context i due to a killing

context j. We compute total Deadness as:

Deadness =

P
i

P
j

F (C
ij

)

NumBytesWritten
⇥ 100

We apportion Deadness among contributing pair of contexts C
pq

as:

Deadness(C
pq

) =
F (C

pq

)P
i

P
j

F (C
ij

)
⇥ 100

An alternative metric to Deadness is Killness — the ratio of the total write operations

killing previously written values to the total write operations in an execution. In practice,

we found that both Deadness and Killness values for programs are almost the same.

Deadness is insensitive to the locality of reference. Successive dead writes to di↵erent

memory locations that share a cache line (spatial locality) may not incur a significant memory

access latency. Furthermore, write bu↵ering can alleviate the latency of dead writes. One

may devise a metric of dead writes that simulates the e↵ects of caches and write bu↵ers

178

analogous to [135]. Dead writes are wasteful operations in any case that consume hardware

resources. Dead writes can aggravate capacity misses and also cause frequent flushing of the

write bu↵er. We found the deadness metric to be quite reliable in pinpointing higher-level

problems such as poor data structure choice that are not tightly coupled to an underlying

hardware design.

5.6 Experimental evaluation

Experimental setup. For most of our experiments, we used a quad-socket system with four

AMD Opteron 6168 processors clocked at 1.9 GHz with 128GB of 1333MHz DDR3 running

CentOS 5.5. We used the GNU 4.1.2 [74] compiler tool chain with -O2 optimization. For

the NWChem case study, we used a di↵erent machine, and we provide its details later.

5.6.1 SPEC benchmarks

5.6.1.1 Deadness in SPEC CPU2006

We measured the deadness of each of the SPEC CPU2006 integer and floating-point reference

benchmarks, and the results are shown in Figures 5.4 and 5.5 respectively. Several bench-

marks execute multiple times, each time with a di↵erent input; each column in Figures 5.4

and 5.5 shows the measurements averaged over di↵erent inputs for the same benchmark. For

a benchmark with multiple inputs, error bars represent the lowest and the highest deadness

observed on its di↵erent inputs. The average deadness for integer benchmarks is 15.1% with

the highest of 76.2% for gcc on the input c-typeck.i, and the lowest of 3.2% for astar

on the input rivers.cfg. The average deadness for floating-point benchmarks is 6.5% with

the highest of 33.9% for soplex on the input pds-50.mps, and the lowest of 0.3% for lbm.

The average di↵erence between Killness and Deadness is 1% for integer benchmarks and

0.07% for floating-point benchmarks.

These measurements indicate that for several of these codes, a large fraction of memory

access operations is dead. Often, just a few pairs of contexts account for most of dead writes.

For example, in the SPEC CPU2006 integer reference benchmarks, for the benchmark/input

pair with the median deadness, its top five context pairs account for 90% of deadness, and

179

3.3#
9.8#

60.5#

19.2#
27.6#

14.0# 19.1#
6.0#

39.3#

19.7# 16.3#
6.6#

15.1#

0#

10#

20#

30#

40#

50#

60#

70#

80#

ast
ar#

bz
ip2
#

gcc
#

go
bm
k#

h2
64
ref
#

hm
me
r#

pe
rlb
en
ch
#

lib
qu
an
tum

#
mc
f#

om
ne
tpp
#

sje
ng
#

xa
lan
#

Ge
oM
ea
n#

%
"d
ea
d"
w
rit
es
"

Benchmarks"

Figure 5.4 : Dead writes in SPEC CPU2006 integer reference benchmarks.

5.8$

12.1$
7.8$

24.4$

6.8$ 6.7$ 4.9$
0.3$

6.4$ 8.2$

0.9$

9.5$

19.9$

12.7$
7.5$

15.5$

7.2$ 6.5$

0$

5$

10$

15$

20$

25$

30$

35$

bw
av
es$

ca
ctu
sA
DM

$

ca
lcu
lix$

de
alI
I$

ga
me
ss$

ge
ms
FD
TD
$

gro
ma
cs$ lbm

$

les
lie
3d
$

mi
lc$

na
md
$

po
vra
y$

so
ple
x$

sp
hin
x$

ton
to$ wr

f$

zeu
sm
p$

Ge
oM
ea
n$

%
"d
ea
d"
w
rit
es
"

Benchmarks"

Figure 5.5 : Dead writes in SPEC CPU2006 floating-point reference benchmarks.

its top 15 context pairs account for 95% of deadness. This phenomenon indicates that a

domain expert could optimize a handful of context pairs presented by DeadSpy and expect

to eliminate most dead writes in a program.

5.6.1.2 Overhead of instrumentation

As a tool that monitors every read and write operation in a program, quite naturally, Dead-

Spy significantly increases execution time. Figure 5.6 shows the overhead of each of SPEC

180

12# 17#

39# 44#

22#

7# 7#
17#

36#

20# 24#
18.8#23#

33#

59#
72#

36#
26#

9#

31#

66#

45#
56#

36.0#

0#

10#

20#

30#

40#

50#

60#

70#

80#

90#

astar# bzip2# gcc# h264ref# hmmer# libquantum# mcf# omnetpp# perlbench# sjeng# xalan# GeoMean#

Sl
ow

do
w
n'
()
m
es
)'

Benchmarks'CCT#only# CCT#+#IP#

Figure 5.6 : DeadSpy overhead for SPEC CPU2006-INT.

CPU2006 integer reference benchmarks. The overhead to obtain dead and killing contexts

without line numbers is much less than when line number information is tracked as well.

To track line numbers, we need to instrument each trace entry. The average slowdowns

due to instrumentation without and with line information are 18.8x and 36x, respectively.

We ignored the 445.gobmk benchmark for computing the average due to its large memory

footprint created by deep recursion. The maximum slowdown is seen for the h264ref bench-

mark on the input foreman ref encoder baseline.cfg, which is 41.3x without line-level

attribution and 83.6x with line-level attribution. High deadness typically comes with high

overhead due to the cost of recording participant contexts on each instance of a dead write.

5.6.1.3 Deadness across compilers and optimization levels

We used -O2 optimization as the basis for our experiments since it is often used in prac-

tice. However, our findings are not limited to a specific optimization level or a specific

compiler. We found high deadness across di↵erent optimization levels and di↵erent compil-

ers. For completeness, we present the deadness in SPEC CPU2006 integer reference bench-

marks when compiled without optimization (-O0), with default optimization (-O2), and with

highest level of optimization on three di↵erent compiler chains viz., Intel 11.1 [96], PGI

10.5 [226], and GNU 4.1.2 [74]. By reading the accompanying compiler manual pages, we

concluded that the highest optimization level for Intel 11.1 is -fast, for PGI 10.5 is

181

Program
Deadness in %

Intel 11.1 PGI 10.5 GNU 4.1.2
-O0 -O2 max -O0 -O2 max -O0 -O2 max

astar 2.3 8.4 5.0 5.2 1.1 5.7 2.5 3.3 7.7
bzip2 4.7 8.6 8.9 4.9 9.9 12.8 5.1 9.8 11.9
gcc 39.3 67.8 67.2 40.8 53.3 51.9 39.7 60.5 64.5
gobmk 15.7 21.3 22.7 17.4 19.1 20.7 16.0 19.2 20.1
h264ref 14.4 28.4 38.3 15.1 24.5 26.2 15.3 27.6 27.9
hmmer 31.3 68.7 68.8 31.5 67.6 67.9 0.3 14.0 29.4
perlbench 15.3 18.0 20.0 16.7 16.5 16.8 13.2 19.1 n/a
libquantum 1.7 6.0 0.3 2.8 7.1 7.5 2.3 6.0 6.1
mcf 16.6 49.4 49.5 17.2 27.6 47.2 17.3 39.3 47.3
omnetpp 4.8 19.4 22.1 11.8 11.2 27.7 4.7 19.7 21.4
sjeng 9.6 20.4 17.8 10.3 11.4 13.9 10.0 16.3 19.7
xalan 1.5 6.6 6.7 5.1 4.7 9.4 1.7 6.6 8.4
GeoMean 8.2 19.4 15.3 11.3 13.4 19.5 5.9 15.1 18.7

Table 5.1 : Deadness in SPEC CPU2006-INT with di↵erent compilers and optimization levels.

-fastsse, -Mipa=fast,inline, and for GNU 4.1.2 is -O3 -mtune=opteron. We did not

conduct profile-guided optimizations in our experiments. The deadness found across these

compilers is shown in Table 5.1. The perlbench benchmark did not finish execution when

compiled with GNU 4.1.2 at the highest optimization, even without DeadSpy attached;

hence, we do not have the results for the same. It is evident that high deadness is perva-

sive across compilers and across optimization levels. Intuitively, higher optimization levels,

except inter-procedural analysis, o↵er no advantage in eliminating dead writes. Meticulous

readers may observe that typically, deadness increases with increase in optimization levels on

all compilers; this can be attributed to the fact that with higher optimizations, the absolute

number of memory operations often reduces, but the absolute number of dead writes does

not reduce proportionally.

5.6.2 OpenMP NAS parallel benchmarks

To assess the deadness in multithreaded applications, we ran DeadSpy on the OpenMP

suite of NAS parallel benchmarks version 3.3 [106] with four worker threads. Table 5.2

shows the deadness found in these benchmarks. The average deadness for these applications

was 3.96%, which is less than those observed for the SPEC CPU2006 serial codes. Moreover,

the inter-thread deadness, which happens when a previous write by one thread is overwritten

by a di↵erent thread, is negligible. For multithreaded applications tuned to maintain a�nity

between data and threads, there is little inter-thread deadness.

182

Program
Deadness in %

Inter-thread (A) Intra-thread (B) Total (A+B)
bt.S 5.28E-02 1.13E+01 1.14E+01
cg.S 6.83E-03 2.86E+00 2.87E+00
dc.S 2.26E-03 1.78E+01 1.78E+01
ep.S 9.84E-02 1.68E-01 2.66E-01
ft.S 3.35E-01 4.17E+00 4.50E+00
is.S 1.08E+00 1.06E+00 2.13E+00
lu.S 1.89E-02 6.01E+00 6.03E+00
mg.S 4.44E-01 6.10E+00 6.55E+00
sp.S 2.68E-01 3.32E+00 3.59E+00
ua.S 1.04E-01 4.43E+00 4.54E+00
GeoMean 7.64E-02 3.44E+00 3.96E+00

Table 5.2 : Deadness in OpenMP NAS parallel benchmarks.

5.7 Case studies

In this section, we evaluate the utility of DeadSpy for pinpointing ine�ciencies in execu-

tions of four codes: the 403.gcc and 456.hmmer programs from SPEC CPU2006 bench-

marks, the bzip2 file compression tool [206], and two scientific applications Chombo [11] and

NWChem [230]. We investigate dead writes in executions of these applications. We apply op-

timizations to eliminate some of the most frequent dead writes. We present the performance

gains achieved after code restructuring.

5.7.1 Case study: 403.gcc

403.gcc was our top target for investigation since it showed a significant percentage of dead

writes. For the c-typeck.i input, which yielded 76.2% deadness, the top most pair of dead

contexts accounted for 29% of the deadness. The o↵ending code is shown in Listing 5.1. In

this frequently called function, gcc does the following:

1. (line 3) allocates last set as an array of 16937 elements, 8 bytes each, amounting

to a total of 132KB.

2. (lines 5-12) iterates through each instruction belonging to the incoming argument

loop.

3. (lines 7-8) if insn matches a pattern, calls count one set() which updates

last set with the last instruction that set a virtual register.

4. (lines 10-11) if the basic block ends, calls memset() to reset the entire 132KB of the

183

1 void loop_regs_scan(struct loop *loop , ...){
2 ...
3 last_set = (rtx *) xcalloc(regs ->num , sizeof (rtx));
4 /* Scan the loop , recording register usage */
5 for (each instruction in loop){
6 ...
7 if(GET_CODE (PATTERN (insn)) == SET || ...)
8 count_one_set (..., last_set ,...);
9 ...

10 if (end of basic block)
11 memset(last_set ,0,regs ->num*sizeof(rtx));
12 }
13 ...
14 }

Listing 5.1: Dead writes in gcc because of an inappropriate data structure.

last set array for reuse in the next basic block of the loop.

The program spends a lot of time zero initializing the array last set, most of which is al-

ready zero. DeadSpy detected dead writes in memset() with its caller as loop regs scan().

The root cause for the high amount of deadness is that the basic blocks are typically short,

and the number of registers used in a block is small; gcc allocated a maximum size array

without considering this common case. Clearly, a dense array is a poor data structure choice

to represent this sparse register set. We gathered some statistics on the usage pattern of

last set using the c-typeck.i input and found that the median use was only 2 unique

slots with a maximum of 34 slots set between episodes of memset()s. Furthermore, the me-

dian of total number of writes to non-unique slots of last set was 2 with a maximum of 63

between two episodes of memset()s. We found that just 22 non-unique slots were accessed

on 99.6% of occasions. As a quick fix, we maintained a side array that recorded the first 22

non-unique indices accessed. If the side array does not overflow, we can simply zero at most

those 22 indices of last set instead of calling memset() on the entire 132KB array. Rarely,

when the side array overflows, we can fall back to resetting the entire last set array.

A poor choice of data-structures has manifested itself as dead writes. Better permanent

fixes for the aforementioned problem include

• using a sparse representation for the register set, such as splay trees, or

• using a composite representation for the register set that switches among a short sparse

vector, a scalable sparse set representation such as a splay tree, and the full dense set

representation.

184

1 void cselib_init (){
2 ...
3 cselib_nregs = max_reg_num ();
4 // initializes reg_values with zeros
5 VARRAY_ELT_LIST_INIT(reg_values , cselib_nregs , ...);
6 ...
7 clear_table (1);
8 }
9

10 void clear_table (int clear_all){
11 // sets all reg_values to zeros
12 for (i = 0; i < cselib_nregs; i++)
13 REG_VALUES (i) = 0;
14 ...
15 }

Listing 5.2: Dead reinitialization in gcc.

In the latter case, a competitive algorithm could switch among representations based on

the number of elements in the set and the pattern of accesses.

Another dead write context was found in the cselib init() function shown in List-

ing 5.2. Looking at the macro VARRAY ELT LIST INIT revealed that it was allocating and

zero initializing the array reg values. Then, without any further reads from the array, the

call to clear table(1) was again resetting all elements of reg values to zeros. The dead

write symptom highlights losses caused by using generic, heavyweight APIs, where slim APIs

are needed. We fixed this by simply calling a specialized version of clear table() that did

not initialize reg values.

We identified and fixed two more top dead contexts in 403.gcc, both related to repeated

zero initialization of a dense data structure where the usage pattern was sparse. In general,

finding the root causes of performance issues was straightforward once the dead and killing

contexts were presented. Optimizing the top four pairs of dead contexts resulted in improving

gcc’s running time by 28% for the c-typeck.i input. The average speedup across all inputs

was 14.3%. Table 5.3 shows the performance improvements as percentage speedup (%Fast

column), reduction in L1 data-cache misses (L1 column), L2 data-cache misses (L2 column),

operations completed (Ops column), and processor cycle counts (Cyc column) for each of

the input files of gcc compared to the baseline. The performance improvements come from

both reduced cache miss rates and reduced operation counts. Occasionally, there are slightly

more L2 misses (represented by negative numbers) which are o↵set by improvements in other

areas. We ran the modified gcc on a version of the SPEC’89 fpppp code, which we converted

185

Program Workload %Fast
%Reduction in resource
L1 L2 Ops Cyc

403.gcc

166.i 8.5 10.8 -7.4 14.4 8.7
200.i 3.5 6.2 -0.3 3.3 3.1

c-typeck.i 28.1 29.0 31.2 29.9 24.7
cp-decl.i 15.6 14.9 -2.3 24.0 16.8
expr.i 18.4 14.3 12.7 23.5 18.0
expr2.i 18.7 10.6 11.8 24.3 17.4
g23.i 10.9 9.0 10.7 15.9 10.4
s04.i 22.8 19.2 24.1 23.2 22.2

scilab.i 1.9 3.6 0.0 0.7 1.4
average 14.3 13.1 8.9 17.7 13.7

456.hmmer
retro.hmm 15.1 2.3 1.2 0.5 15.5
nph3.hmm 16.2 -4.1 -2.3 0.7 16.4
average 15.7 -0.9 -0.6 0.6 15.9

bzip2-1.0.6

chicken.jpg 0.8 0.0 0.0 1.0 0.2
liberty.jpg 0.7 0.0 0.0 0.7 0.5

input.program 14.2 0.5 0.0 10.3 13.9
text.html 3.5 0.0 0.0 2.1 4.7

input.source 10.5 0.0 -0.8 7.9 9.7
input.combined 13.2 0.0 -0.7 9.5 12.5

average 7.2 0.1 -0.3 5.2 6.9

Chombo (1 proc) common.input 6.6 8.2 20.3 2.4 6.0

NWChem (32 procs) aug-cc-pvdz 67.2 - - 13.2 63.5

Table 5.3 : Performance statistics for various codes after eliminating dead writes.

from Fortran to C code for our experiments. This benchmark has very long basic blocks that

stress the register usage. The fpppp code stresses the code segments we modified. Despite

being a pathological case, our modified gcc showed a 2% speedup when compiling fpppp.

5.7.2 Case study: 456.hmmer

456.hmmer benchmark is a computationally intensive program. It uses profile hidden markov

models of multiple sequence alignments, which are used in computational biology to search

for patterns in DNA sequences.

It was surprising to see that 456.hmmer had only 0.3% deadness in the unoptimized case,

whereas it had 30% deadness in the optimized case for the GNU compiler (see Table 5.1). In

fact, the absolute number of dead writes increased by 54 times from the unoptimized to the

highest optimized code for the nph3.hmm workload. Intel and PGI compilers also showed

disproportionate rises in deadness for optimized cases.

Listing 5.3 shows the code snippet where DeadSpy identified high-frequency dead writes

for the -O2 optimized code. This code appears in a two-level nested loop, and DeadSpy

reported that the write in line 3 overwrote the write in line 1. In the unoptimized code,

186

1 ic[k] = mpp[k] + tpmi[k];
2 if ((sc = ip[k] + tpii[k]) > ic[k])
3 ic[k] = sc;

Listing 5.3: Dead writes in 403.hmmer.

1 int icTmp = mpp[k] + tpmi[k];
2 if ((sc = ip[k] + tpii[k]) > icTmp)
3 ic[k] = sc;
4 else
5 ic[k] = icTmp;

Listing 5.4: Avoiding dead writes in 403.hmmer.

the two writes to ic[k] one each on line 1 and line 3 are separated by a read in the

conditional expression on line 2, thus making them non dead. In the optimized code,

the value of ic[k] computed on line 1 is held in a register, which is reused during the

comparison on line 2; however, the write to memory on line 1 is not eliminated, since the

compiler cannot guarantee that the arrays ip, tpii and ic do not alias each other. Thus

in the optimized code, if line 3 executes, it kills the previous write to ic[k] on line 1.

On inspecting the surrounding code, we inferred that the three pointers always point to

di↵erent regions of memory and never alias each other, thus making them valid candidates

for declaring as restrict pointers in C language. However, we found that the gcc 4.1.2

compiler does not fully respect the restrict keyword. Hence, we hand optimized the code

as shown in Listing 5.4. The optimization improved the running time by more than 15% on

average. Table 5.3 shows the reduction in other resources.

This pattern of deadness repeated several times in the same function. Intel 11.1 com-

piler at its default optimization level honors the restrict keyword; hence, we used it for

comparison. We observed that the enclosing function had 13 non-aliased pointers. Declaring

these 13 pointers as restrict improved the running time by more than 40% on average (L1

misses, L2 misses, instructions executed, and cycle count reduced respectively by 34%, 47%,

45%, and 40%). The Intel compiler performed dramatically better because of e�cient SIMD

vectorization via SSE instructions once the pointers were guaranteed to not alias each other.

On disabling vectorization, we observed 16% speedup; nevertheless, DeadSpy pinpointed

optimization limiting code regions, indicating opportunities for performance improvement.

187

1 Bool mainGtU (UInt32 i1, UInt32 i2 , UChar* block , ...) {
2 Int32 k; UChar c1, c2; UInt16 s1, s2;
3 /* 1 */
4 c1 = block[i1]; c2 = block[i2];
5 if (c1 != c2) return (c1 > c2);
6 /* 2 */
7 i1++; i2++; c1 = block[i1]; c2 = block[i2];
8 if (c1 != c2) return (c1 > c2);
9 /* 3 */

10 i1++; i2++; c1 = block[i1]; c2 = block[i2];
11 if (c1 != c2) return (c1 > c2);
12 ... 12 such checks ...
13 ... rest of the function ...
14 }

Listing 5.5: Dead writes in bzip2 at mainGtU().

1 leal (%r11 ,%rcx), %r8d #%r8d contains i1
2 leal 1(%r8), %ebx #compute (i1+1) in %ebx
3 leal 2(%r8), %r9d #compute (i1+2) in %r9d
4 movq %rbx , 360(% rsp) #spill (i1+1) to stack
5 movq %r9, 352(% rsp) #spill (i1+2) to stack
6 #... (i1+3) to (i1+11) are computed and spilled ...
7 #... first check of if(c1 != c2)
8 cmpb %al, (%r15 ,%rdx) #if (c1 != c2)
9 ...

10 #... second check of if(c1 != c2)
11 cmpb %al, (%r15 ,%rdx) #if (c1 != c2)
12 ...

Listing 5.6: Hoisting and spilling in bzip2.

5.7.3 Case study: bzip2-1.0.6

bzip2 is a widely used compression tool. For our experiments on bzip2, we used the most

recent publicly available version 1.0.6 with the same workload files as SPEC CPU2006.

We did not use 401.bzip2 from SPEC CPU2006 since inlining is disabled in that version,

presumably for code portability reasons. Enabling inlining on 401.bzip2 produces the same

issue as discussed here.

DeadSpy reported frequent dead writes in the inlined function mainGtU() shown in

Listing 5.5. In this function, 12 conditions are successively checked, each of which accesses the

array elements block[i1]· · · block[i1+11] and block[i2]· · · block[i2+11]. The function

returns if any one of the check fails. The corresponding x86 assembly in Listing 5.6 shows that

gcc 4.1.2 hoists the computation of indices (i1+1)· · · (i1+11) ahead of the first conditional

on line 8. Lines 2 and 3 in Listing 5.6 show sample instructions computing (i1+1) and

(i1+2). On the register starved x86 architecture, the precomputed values could not be

kept in registers and hence they are all spilled. Lines 4 and 5 in Listing 5.6 show sample

spill code for (i1+1) and (i1+2). The compute and spill pattern repeats unconditionally

188

1 /* value unknown at compile time */
2 extern int gDisableAggressiveSched;
3 Bool mainGtU (...) {
4 ...
5 switch(gDisableAggressiveSched){
6 case 1: // always taken
7 c1 = block[i1]; c2 = block[i2];
8 if (c1 != c2) return (c1 > c2);
9 case 2: // Fall through

10 i1++; i2++; c1 = block[i1]; c2 = block[i2];
11 if (c1 != c2) return (c1 > c2);
12 case 3: // Fall through
13 i1++; i2++; c1 = block[i1]; c2 = block[i2];
14 if (c1 != c2) return (c1 > c2);
15 ... 12 such checks ...
16 } // end switch
17 ... rest of the function ...
18 }

Listing 5.7: bzip2 modified to eliminate dead writes arising from hoisting and spilling.

12 times before the first conditional test. During the execution of the mainGtU() function,

based on the data present in block, often the code fails one of the early conditional tests.

In this case, all the pre-computed values are unused; and the spilled values are an additional

overhead. DeadSpy detects that these spill slots are written repeatedly and unread. Since

mainGtU() happens to be at the heart of bzip2’s compute kernel, the e↵ect of hoisting index

computations into the hot code region has a negative impact on performance. This behavior

exposes the lack of cooperation between the instruction scheduling and register allocation

phases of gcc, which results in poor generated code.

To suppress gcc’s over-aggressive scheduling and register spilling, we overlaid a switch

statement over the control flow—a technique analogous to Du↵’s device [68]. Listing 5.7

shows restructured code where the value of gDisableAggressiveSched is always 1 at run-

time making the case 1 arm of the switch statement to be the always taken branch.

Table 5.3 shows the improvements obtained using our workaround. bzip2 shows an

average speedup of 7.2% with the maximum of 14.2% for the input.program workload.

While the cache misses remained almost the same before and after the fix, the operations

performed and the cycle counts reduced by a proportion commensurate with the observed

performance gains. This statistics is justifiable since the code changes eliminated dead

writes to on-stack temporaries, which are typically cached. Avoiding the unnecessary index

computation and spilling reduced the execution time.

189

1 Wgdnv(i,j,k,0) = a1
2 Wgdnv(i,j,k,inorm) = b1
3 Wgdnv(i,j,k,4) = c1
4 if (spout.le .(0.0 d0)) then
5 Wgdnv(i,j,k,0) = a2
6 Wgdnv(i,j,k,inorm) = b2
7 Wgdnv(i,j,k,4) = c2
8 endif
9 if (spin.gt.(0.0d0)) then

10 Wgdnv(i,j,k,0) = a3
11 Wgdnv(i,j,k,inorm) = b3
12 Wgdnv(i,j,k,4) = c3
13 endif

Listing 5.8: Dead writes in a Chombo Riemann solver.

1 if (spin.gt.(0.0d0)) then
2 Wgdnv(i,j,k,0) = a3
3 Wgdnv(i,j,k,inorm) = b3
4 Wgdnv(i,j,k,4) = c3
5 else if (spout.le .(0.0 d0)) then
6 Wgdnv(i,j,k,0) = a2
7 Wgdnv(i,j,k,inorm) = b2
8 Wgdnv(i,j,k,4) = c2
9 else

10 Wgdnv(i,j,k,0) = a1
11 Wgdnv(i,j,k,inorm) = b1
12 Wgdnv(i,j,k,4) = c1
13 endif

Listing 5.9: Avoiding dead writes in Riemann solver.

5.7.4 Case study: Chombo’s amrGodunov3d

We ran DeadSpy on amrGodunov3d, a standard benchmark program that uses Chombo [11],

which is a framework for solving partial di↵erential equations in parallel using block-

structured, adaptively refined grids. For detecting node-level ine�ciency, we ran

amrGodunov3d on a single node2 and detected 34% deadness.

The Chombo framework lacks design for performance; it is a hybrid code which has a C++

driver with computational kernels written in Fortran. We discuss two frequent dead write

scenarios, where the developer did not pay enough attention to performance while designing

the framework.

First, the code snippet shown in Listing 5.8 appears in a 3-level nested loop of the

computationally intensive Riemann solver kernel, which works on a 4D array of 8-byte

real numbers. DeadSpy reported that the writes in lines 1, 2, and 3 were killed by the

writes in lines 5, 6 and 7, respectively. In addition, the same writes in lines 1, 2, and

3 were killed by the writes in lines 10, 11 and 12, respectively. Furthermore, the writes

2We used Intel Xeon E5530 processor and Intel compiler tools version 12.0.0.

190

1 // Temporary primitive variables
2 FArrayBox WTempMinus(WMinus[dir1].box() ,...);
3 FArrayBox WTempPlus(WPlus [dir1].box() ,...);
4 FArrayBox AdWdx(WPlus[dir1].box() ,...);
5 // Copy data for in place modification
6 WTempMinus.copy(WMinus[dir1]);
7 WTempPlus.copy(WPlus [dir1]);
8 m_gdnvPhysics ->quasilinearUpdate(AdWdx ,...);

Listing 5.10: Chombo dead writes in C++ constructors.

in lines 5, 6 and 7 were killed by the writes in lines 10, 11 and 12, respectively. To fix

the problem, we applied a trivial code restructuring by using else if nesting as shown in

Listing 5.9.

Second, the code snippet shown in Listing 5.10 appears on a hot path with 2-level nested

loop. The call to construct FArrayBox objects — WTempMinus and WTempPlus, on lines 2,

3 respectively, zero initialize a 4D-box data structure member in FArrayBox. The calls to

the copy() member function on lines 6,7 fully overwrite the previously initialized 4D-box

data structures with new values. Similarly, 4D-box AdWdx constructed and zero initialized in

line 4 is fully overwritten inside the function quasilinearUpdate() called from line 8.

These dead writes together contribute to a deadness of 20% in the program. The dead writes

result from using a non-specialized constructor. We remedied the problem by overloading

the constructor with a specialized leaner version which did not initialize the 4D box inside

FArrayBox.

In Chombo, the patten of dead writes caused by initializations followed by overwrites was

pervasive. In fact, we observed this pattern in SPEC CPU2006 benchmarks also, we omit the

details for brevity. By using slimmer versions of constructors in five more similar contexts,

we improved Chombo’s running time by 6.6%. Table 5.3 shows reductions in cache misses

and total instructions as well.

5.7.5 Case study: NWChem’s aug-cc-pvdz

In this subsection, we study the impact of dead writes on the scalability and performance of

NWChem [230]—a computational chemistry code widely used in the scientific community.

NWChem provides a portable implementation of several Quantum Mechanics and Molecular

Mechanics methods: Coupled-cluster (QM-CC), Hartree-Fock (HF), Density functional the-

191

237 c getting piece of atomic 2-e integrals (mu nu | lambda sigma)
238 c zeroing ---
239 call dfill(work1 , 0.0d0 , dbl_mb(k_work1), 1)
240 call dfill(work2 , 0.0d0 , dbl_mb(k_work2), 1)

Listing 5.11: Largest contribution to dead writes in a NWChem in tce mo2e trans routine.

ory (DFT), Ab initio molecular dynamics (AIMD) etc. We executed high-accuracy QM-CC,

where many of the NWChem computational cycles are spent in scientific runs. We conducted

our experiments on a 2-socket 8-core 2-way SMT Intel Xeon E5-2650 CPU clocked at 2.0

GHz attached to a 48 GB DDR3 memory. We used the QM-CC aug-cc-pvdz input for our

studies. This is a relatively smaller input that is representative of actual scientific execu-

tions of NWChem. We compiled NWChem to use MPI using MPICH version 3.04 [15]. We

launched NWChem by spreading MPI processes maximally on the node to reduce memory

congestion.

DeadSpy quantified about 50% memory writes in this configuration of NWChem as

dead. 88% of the dead writes (44% of total writes) were happening in the function dfill ,

that zero initializes two arrays—work1 and work2. Most of the dead writes were in ini-

tializing the work2 array. Most of the dead and the killing writes happened in the same

location. The source snippet for the function tce mo2e trans , which calls dfill is shown

in Listing 5.11. A pair of call chains leading to the most frequent dead and killing writes is

shown in Figure 5.7. Fewer dead writes happened to small parts of the same bu↵er at other

places, one of which is shown in Figure 5.8.3 DeadSpy identified a total of 1.5TB of dead

writes to the bu↵er, aggregated across all processes during the entire execution.

Table 5.4 shows the strong scaling execution time of NWChem for 2, 4, 8, 16, and 32

processes. Row #2 shows the running time for the original program that had dead writes.

Row #3 shows the running time for the optimized program after the dead writes are removed.

Figure 5.9 plots the performance of NWChem for 2, 4, 8, 16, and 32 processes with dead

writes and after eliminating the dead writes.

Table 5.5 shows the last-level (L3) cache misses in the original program with dead writes.

Row #2 shows the cache misses for the entire program. Row #3 shows the rise in last level

3Note that the call chains shown were obtained after we enhanced DeadSpy with call-site level attribution
discussed in Chapter 6.

192

--
dfill_:src/util/dfill.f:12
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:240
tce_energy_:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:88
task_energy_doit_:src/task/task_energy.F:275
task_energy_:src/task/task_energy.F:111
task_:src/task/task.F:356
MAIN__:src/nwchem.F:263

*********************************Killed By*********************************
dfill_:src/util/dfill.f:12
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:240
tce_energy_:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:88
task_energy_doit_:src/task/task_energy.F:275
task_energy_:src/task/task_energy.F:111
task_:src/task/task.F:356
MAIN__:src/nwchem.F:263

--

Figure 5.7 : Bottom-up view of the call-paths leading to the most frequent dead and killing writes
in NWChem.

--
dfill_:src/util/dfill.f:12
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:240
tce_energy_:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:88
task_energy_doit_:src/task/task_energy.F:275
task_energy_:src/task/task_energy.F:111
task_:src/task/task.F:356
MAIN__:src/nwchem.F:263

*********************************Killed By*********************************
hf2mkr_:src/NWints/int/hf2mkr.F:155
hf2_:src/NWints/int/hf2.F:324
int_2e4c_:src/NWints/api/int_2e4c.F:358
tce_mo2e_trans_:src/tce/tce_mo2e_trans.F:243
tce_energy_:src/tce/tce_energy.F:1326
tce_energy_fragment_:src/tce/tce_energy_fragment.F:88
task_energy_doit_:src/task/task_energy.F:275
task_energy_:src/task/task_energy.F:111
task_:src/task/task.F:356
MAIN__:src/nwchem.F:263

--

Figure 5.8 : Bottom-up view of the call-paths leading to a less frequent dead and killing writes
in NWChem.

No. Processes 2 4 8 16 32

Execution time with dead writes (seconds) 236 139 97.9 83.4 97.3
Execution time without dead writes (seconds) 200 120 78.1 50.4 58.2

Speed-up 1.18⇥ 1.16⇥ 1.25⇥ 1.66⇥ 1.67⇥

Table 5.4 : Impact of dead writes on NWChem’s execution time.

193

236$

139$

97.9$

83.4$

97.3$

200$

120$

78.1$

50.4$
58.2$

32$

82$

132$

182$

232$

282$

2$ 4$ 8$ 16$ 32$

Ex
ec
u&

on
)&
m
e)
in
)se

co
nd

s)

Number)of)MPI)processes)

Original$program$with$dead$writes$ Op=mized$program$a?er$removing$dead$writes$

Figure 5.9 : NWChem performance before and after removing dead writes.

No. Processes 2 4 8 16 32

Program-wide L3 cache misses 1.42E+08 5.52E+08 1.73E+09 4.69E+09 6.09E+09
Rise in L3 cache misses

1⇥ 3.89⇥ 12.2⇥ 33.0⇥ 42.9⇥
wrt 2 processes

L3 cache misses in dfill 1.68E+07 3.07E+07 1.00E+09 3.53E+09 4.09E+09
(% total L3 misses) (12%) (5.6%) (58%) (75%) (67%)

Rise in L3 cache misses in dfill
1⇥ 1.83⇥ 59.5⇥ 210⇥ 244⇥

wrt 2 processes

Table 5.5 : Last-level cache misses in NWChem with dead writes

cache misses for the entire program with respect to the cache misses in the program with

only 2 processes. Row #4 shows the cache misses for the dfill routine in the context

where maximum dead writes occurred, along with the percentage contribution to the L3

cache misses in the entire program. Row #5 shows the rise in last level cache misses for

the dfill routine with respect to the cache misses in the dfill routine with only 2

processes. Clearly, the L3 cache misses grow as the number of processes increases, leading to

catastrophic performance loss. Most of the L3 cache misses come from the dfill routine

where the dead writes occurred. The rise in L3 misses in the dfill routine is meteoric with

the rise in the number of processes. This observation shows that the dead writes caused by

the dfill routine are a major source of performance loss.

The performance loss increases with increasing processor count. The performance loss

is significant beyond 8 processors; this is because, each Intel Xeon E5-2650 has 4 memory

194

channels (total of 8 in a 2-socket system) and once the number of processes crosses 8, the

memory bandwidth saturates since all cores simultaneously try to zero initialize a large

bu↵er. This phenomenon can be indirectly inferred via the observed rise in L3 cache misses.

By consulting NWChem experts, we identified that the bu↵er size was larger than nec-

essary and the zero initialization was unnecessary, which were causing the dead writes.

Subsequently, NWChem developers eliminated the unnecessary initialization from the code

base. Eliminating the dead writes speed-up NWChem by up to 1.67⇥ for the aug-cc-pvdz

input.

5.8 Discussion

In this chapter, we demonstrated the value of identifying dead writes in an execution. Dead

writes are a common symptom of ine�ciency. Performance losses due to dead writes arise

from developers’ inattention to performance, poor choice of algorithms and data structures,

and ine↵ective compiler optimizations, among others.

Compiler developers need to choose compiler internal data structures and algorithms

prudently. Compiler developers need better profitability analysis to understand when opti-

mizations may do more harm than good.

Profiling dead writes is only one form of many other possibilities of fine-grained execution

profiling. Profiling for wasteful resource consumption opens a new avenue for application

tuning. In follow-on work, we successfully identified additional performance tuning oppor-

tunities by using fine-grained profiling of redundant writes (writing an unmodified value to

the same location) and redundant computations [236].

Finally, our experience with DeadSpy highlighted the need for associating calling con-

text to execution monitoring. Attributing metrics to their execution contexts is important

in providing insightful feedback in fine-grained monitoring tools. In the next chapter, we

improve upon the contextual attribution strategy used by DeadSpy to create a general

framework for fine-grained contextual attribution for use by other monitoring tools.

195

Chapter 6

Attributing Fine-grain
Execution Characteristics to Call-Paths

Knowledge of the self is the mother of all knowledge.

So it is incumbent on me to know my self, to know it

completely, to know its minutiae, its characteristics,

its subtleties, and its very atoms.

Kahlil Gibran

Large software systems leverage application frameworks, multiple layers of libraries, or

both. A library is often used in multiple di↵erent contexts by a program. It is essential,

hence, to attribute execution characteristics in full calling context to distinguish the behavior

of a code from one context to another. Context is particularly important in the presence of

language features such as C++ templates that invoke the same source code with di↵erent

instantiations. A recurring theme in this dissertation is attributing the runtime execution

characteristics to source code and data in context.

Contextual attribution of the causes of idleness, discussed in Chapter 2, enhanced the

call-path collection in HPCToolkit [2] for GPU tasks. Contextual attribution of redun-

dant barriers, discussed in Chapter 3, relied largely an on o↵-the-shelf unwinder such as

libunwind [161]. Both these approaches collect call-paths relatively infrequently. Our work

on fine-grained execution monitoring in the context of the DeadSpy tool, discussed in Chap-

ter 5, highlights the need for collecting calling contexts at a very high frequency, e.g., every

memory access instruction. We claim that high-frequency call-path collection is a necessary

component in various other fine-grain execution monitoring tools. In this chapter, we build a

library module that provides a space and time e�cient implementation of ubiquitous source

and data context collection needed by fine-grain execution profiling tools.

196

6.1 Motivation and overview

Tracking program execution at every machine instruction is a popular technique for identify-

ing several classes of software issues. Two of the most common applications of such fine-grain

execution monitoring (FEM) are execution characterization and correctness checking. For

execution characterization, FEM is employed for reuse-distance analysis [135], cache simu-

lation [103], computational and memory redundancy detection [42], as well as power and

energy analysis [131, 238], to name just a few applications. For correctness checking, FEM

is employed for taint analysis [31], concurrency bug detection [80, 130, 141], and malware

analysis [162], among other applications. FEM is also employed in hardware simulation [36],

reverse engineering [132], software resiliency, testing, tracing, debugging [235], and execution

replay [166, 186].

Two approaches for FEM are static and dynamic binary instrumentation. Several frame-

works [32, 144, 168] support static and/or dynamic binary rewriting. By their very nature,

techniques for FEM add non-trivial overhead. FEM overhead is often higher using dynamic

rewriting. Tool-specific code invoked for instrumented instruction(s) is often called an analy-

sis routine. Since each instruction in the original program can potentially invoke an analysis

routine during monitoring, tool writers strive to limit the overhead of their analysis routines.

Naturally, performing less work per analysis routine lowers a tool’s runtime overhead. The

less measurement data a tool gathers, however, the less insightful its analysis and feedback

are likely to be.

Intel’s Pin [144] is a leading dynamic binary instrumentation framework for developing

FEM tools. A key feature missing in Pin is the ability to provide the call-path at any point

inside an analysis routine. Naively, an FEM tool can log each instruction executed to a trace

file and reconstruct full call-paths with post-mortem analysis. This approach, however, would

generate huge logs with high runtime overhead, making it infeasible to use on executions of

any significant length. Profiling to collect aggregate metrics is preferred over tracing for

long running executions. Determining the calling context using stack unwinding on each

instruction introduces excessive overhead and is unsuitable for FEM tools. Maintaining a

shadow stack throughout the execution is a superior approach since it accelerates the common

197

case—frequent call-path collection. There have been a few earlier e↵orts to collect call-path

information at instruction-level granularity; however, they su↵er from various limitations

such as call-path inaccuracy and runtime overhead, making them less useful in practice.

To support fine-grained attribution of metrics to calling contexts and data objects, we

developed CCTLib. CCTLib is a call-path collection library for Pin that employs a shadow

stack to support on-demand use of call-paths instead of logging or call stack unwinding.

CCTLib maintains information about call-paths e�ciently and compactly in a calling context

tree (CCT) [9]. CCTLib is modest in overhead and usable in practice for reasonably long-

running programs. CCTLib collects accurate call-paths even through dynamically loaded

libraries, stripped libraries, and executable code for which the compiler recorded incorrect or

incomplete information about function bounds. CCTLib’s operation is largely transparent;

it requires only initialization at the start-up and calling an interface procedure at any point

in a Pin analysis routine to inspect the call-path. CCTLib can be used by any Pin-based

FEM tool. CCTLib is for FEM tools only, and it should not be confused with call stack

tracking or unwinding capabilities used by performance tools that attribute execution costs

using timers and hardware performance counters.

Attributing metrics to source in context is only one facet of program monitoring. While

attributing metrics to source in context identifies problematic code, the same code and

context might be accessing di↵erent data objects. Di↵erent data objects can make the same

code exhibit di↵erent performance characteristics [133, 134, 135, 136, 138]. Fine-grained

data-centric attribution is a technique that associates memory location(s) involved in each

instruction with their corresponding data objects (e.g., static, stack, and heap variables).

Pinpointing problematic data objects is an important aspect of execution analysis. Moreover,

data-centric information is necessary for optimizing memory reuse distance and eliminating

false sharing in multi-threaded programs. CCTLib supports both context- and data-centric

attributions. CCTLib’s data-centric attribution leverages the calling context information as

well. Figure 6.1 provides a schematic view of CCTLib.

With CCTLib, we demonstrate that collecting call-paths on each executed instruction is

possible, even for reasonably long-running programs. Compared to other open-source Pin

tools for call-path collection, CCTLib provides richer information that is accurate even for

198

Hardware

Pin

Pin tool

Application

Call-path
collection

Data-centric
Attribution

Figure 6.1 : CCTLib schematic diagram. A fine-grained analysis tool built on Pin can trans-
parently use CCTLib to attribute metrics to call-paths and data objects. CCTLib is composed of
the call-path collection component and the data-centric attribution component. The data-centric
attribution component uses the call-path collection component.

programs with complex control flow and does so with about 30% less overhead—a di↵erence

of 14⇥ on average. CCTLib enables the attribution of metrics in Pin tools to both code and

data.

6.2 Contributions

This work, which appeared in the Proceedings of Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization, 2014 [41], makes the following contributions.

1. It describes the design and implementation of CCTLib—an open-source framework for

accurate and e�cient collection and attribution of context- and data- centric informa-

tion in Pin tools,

2. It enables more accurate and informative FEM tools than prior work,

3. It improves upon our prior call-path collection technique described in chapter 5 by

about 30%, and

4. It demonstrates the utility of CCTLib’s context- and data-centric capabilities by col-

lecting such information on each executed instruction for a suite of long-running pro-

grams.

199

6.3 Chapter roadmap

The rest of the chapter is organized as follows. Section 6.4 provides the necessary background

for our work. Section 6.5 describes our methodology for call-path collection. Section 6.6

describes the implementation of CCTLib. Section 6.7 evaluates our approach. We end this

chapter with a discussion in Section 6.8.

6.4 Background

In this section, we discuss the state-of-the-art in call-path collection, data- centric attribution,

and outline challenges maintaining calling context information in Pin.

6.4.1 Call-path collection techniques

There are two principal techniques used to collect call-paths in an execution: unwinding the

call stack and maintaining a shadow call stack.

Call stack unwinding, on x86 architectures, walks procedure frames on the call stack

using either compiler-recorded information (e.g., libunwind [161]) or results from binary

analysis (e.g., HPCToolkit [2]). Stack unwinding does not require instrumentation and

it does not maintain state information at each call and return. As a result, it adds no

execution overhead, except when a stack trace is requested. This technique is well suited

for coarse-grained execution monitoring, e.g., sampling-based performance tools and debug-

gers. However, applying call stack unwinding to gather calling context information for each

machine instruction executed would frequently gather slowly changing calling context at

unacceptably high overhead.

Stack shadowing involves maintaining calling context as the execution unfolds; this can

be accomplished by either instrumenting every function entry and exit either at compile

time or using binary rewriting. Stack shadowing is used by tools including Scalasca [75]

and TAU [147]. The advantage of stack shadowing is that at every instant, the stack trace

is ready, and hence it can be collected in a constant time. Stack shadowing is well suited

for FEM tools. A disadvantage of stack shadowing is that instrumentation adds overhead.

Furthermore, it is not stateless, and it requires extra space to maintain the shadow stack.

200

6.4.2 Pin and call-path collection

Intel’s Pin [144], a leading binary rewriting framework for FEM tools, does not provide any

API for collecting call-paths. The work presented in this chapter overcomes this limitation

of Pin. Tools that use Pin are called Pin tools.

Providing access to an application’s call-path, while executing analysis routines in a Pin

tool, poses several challenges. First, unwind libraries can’t be employed out of the box since

Pin Just-In-Time (JIT) compiles code from the original binary and executes the JIT-compiled

code from its code cache. Second, employing call-path unwinding for FEM is prohibitively

expensive. Finally, even if unwinding were possible in the JITed code, transitions between the

Pin framework and application code would clutter the call stack with unwanted information.

6.5 CCTLib methodology

CCTLib primarily employs stack shadowing for collecting call-paths. We recognize two key

aspects in collecting call-paths: accuracy and e�ciency.

6.5.1 Call-path accuracy

Stack shadowing is typically performed by inserting instrumentation at function entries and

exits. For binary instrumentation, function entries are typically discovered via symbol infor-

mation and function exits are discovered via static instruction disassembly. Instrumenting

function entries and exits can be inaccurate when function symbols are missing or wrong [224]

and when machine code disassembly is incorrect because of incorrect assumptions about

instruction boundaries. Despite significant e↵orts to perform accurate static x86 disassem-

bly [83], the technique is not foolproof.

Due to the stateful nature of stack shadowing, instrumentation of function entries and

exits must match accurately. A single mismatched entry or exit can corrupt the shadow stack

leading to incorrect call-paths for rest of the execution. We conducted an experiment using

Pin to identify the potential impact of imprecision in binary analysis on call-path collection.

Our experiment did the following:

1. It computed the fraction of instructions executed at runtime that did not fall under

201

Application
Instructions not Stack-size a↵ecting instructions Total error
detected as part belonging to a range but missed in call-path
of any range(col2) due to incorrect disassembly (col3) collection

(col2 + col3)
LULESH-OpenMP1 93% 5.6e-02% 93%
LULESH-CUDA2 17.3% 2.04e-01% 17.5%

LLVM-OPT compiling bzip22 4.17e-07% 8.28% 8.28%
tar (Linux command-line utility) 22.0% 4.1e-1% 22.3%
ls (Linux command-line utility) 11.7% 5.0e-1% 12.2%
Xalan (SPEC CPU2006 [85])2 2.78e-05 4.26% 4.27%
omnetpp(SPEC CPU2006 [85])2 7.08e-04% 3.49% 3.49%

1 Compiled with Intel icpc v13.0.0, -O2. 2 Compiled with gcc 4.1.2, -Os.

Table 6.1 : Impact of incorrect/incomplete static disassembly on call-path collection in Pin.

any function range discovered via Pin’s static disassembly, and

2. It computed the fraction of stack-size-a↵ecting instructions that are executed at run-

time for which the disassembly was incorrect (i.e., start address of the instruction fell

in the middle of another instruction during static disassembly).

Table 6.1 shows some applications with a non-trivial amount of imprecision in disassem-

bly.1 We did not intentionally strip any symbol from an executable. However, we are aware

that Nvidia’s CUDA libraries used by LULESH-CUDA [112] have symbols stripped. If we

stripped executables, incorrect disassembly would be more frequent. For example, for a

stripped version of the SPEC CPU2006 omnetpp reference benchmark [85], the incorrect dis-

assembly was about 60%. Working with stripped applications (just not stripped libraries) is

a valuable use case for software security. High disassembly errors for LULESH-OpenMP [112]

are likely due to the following reason: in optimized code generated by recent Intel’s icpc

compiler version 13.0.0, machine code for outlined functions associated with OpenMP par-

allel regions and loops appears in the executable amidst machine code for the function in

which the regions or loops originated. As a result, the machine code for the enclosing func-

tion is split into discontinuous pieces by the embedded outlined code. Furthermore, code for

embedded outlined functions is not labeled with function symbols.

An alternate method for building shadow stack uses instrumentation of call and return

instructions instead of function entries and exits. If we track every instruction, we can’t

possibly miss any call or return instruction, and this ensures accurate shadow stacks. One

1The tests were conducted on a variety of modern 64-bit x86 Linux machines.

202

can instrument and monitor every instruction in Pin via trace instrumentation. A trace, in

Pin jargon, is a single entry multiple exit code sequence—for example, a branch starts a

new trace at the target, and a call, return, or jump ends the trace. Trace instrumentation

happens immediately before a code sequence is first executed. Trace instrumentation has

the advantage of not missing the instrumentation of any executed instruction. In the rest

of the paper, we use the term Pin-trace to refer to Pin’s traces to distinguish it from our

internal representation of traces in CCTLib. By leveraging Pin traces, CCTLib avoids re-

lying on the compiler-based information for function boundaries or for machine instruction

disassembly. This design eliminates the possibility of missing any call and return. Con-

sequently, CCTLib’s call-path collection is resilient to symbol stripping. CCTLib uses the

compiler-based information only to map machine instructions back to source lines. CCTLib

relies on symbol information for a limited set of functions such as pthread create; however,

such symbols are available in any dynamically linked application. Data-centric attribution

with CCTLib, however, relies on symbol information to attribute memory addresses back to

static variables.

6.5.2 Call-path e�ciency

Since our goal is to support call-path collection on every monitored instruction in an FEM

tool, our techniques need to be e�cient in both space and time. CCTLib employs CCTs

to store call-path information. Common prefixes are shared across all call-paths, which

reduces space overhead dramatically. CCTLib pays particular attention to use constant-

time operations within its analysis routines to keep overhead low. By employing e�cient

data structures, e.g., splay trees [215] for maps, our implementation achieves acceptable

overhead.

6.6 Design and implementation

In this section, we describe the implementation of CCTLib. Section 6.6.1 describes how we

collect a CCT for context-centric attribution. Section 6.6.2 describes the support for data-

centric attribution within CCTLib. Table 6.2 lists the key APIs that CCTLib exposes to its

203

No. Signature Description
1 typedef bool (*TrackInsCallback)(INS ins) Client Pin tool callback to determine if the

given instruction is to be instrumented.
2 typedef void (*ClientInstrumentationCallback) Callback to allow the client Pin tools to add

(INS ins, VOID *v, OpaqueHandle t handle) their own instruction-level instrumentation.
3 bool Initialize(TrackInsCallback cb=TRACK ALL INS,

ClientInstrumentationCallback clientInsCB=0, CCTLib initialization.
void * clientCallbackArg=0)

4 ContextHandle t Returns a handle that represents
GetContextHandle(OpaqueHandle t handle=0) the calling context of the current thread.

5 DatatHandle t Returns a handle that represents
GetDataObjectHandle(void * address) the data object accessed by address.

Table 6.2 : APIs and data structures exposed by CCTLib.

client Pin tools. GetContextHandle obtains the current call-path. GetDataObjectHandle

obtains the data object accessed at an address.

6.6.1 Collecting a CCT in Pin

CCTLib builds its shadow stack by instrumenting each call and return machine instruction

and stores each call-path in a CCT. The CCT at a given instant has all call-paths seen in

the execution up to that point. The path implied by the current node in the CCT to its

root represents the calling context at that point. We identify each call-path with a unique

32-bit handle (ContextHandle t) that enables us to reconstruct any call-path during or after

program execution.

A particularly challenging part of call-path collection is source-level attribution. At

each instruction, Pin provides its instruction pointer (IP), which can be mapped back to

source line(s); hypothetically, one can look for this IP in the already recorded IPs under

the current node of the CCT. However, such lookup on each instruction is prohibitively

expensive. Variable length x86 instructions, unknown or incorrect function bounds, and

tail calls compound the problem. Trace instrumentation, along with a shadow mapping

from Pin-traces to their constituent instructions, enables us to solve this problem with a

constant-time algorithm.

We describe the necessary instrumentation, key internal data structures, and basic run-

time actions performed by CCTLib’s analysis routines in Sections 6.6.1.1–6.6.1.3. In Sec-

tion 6.6.1.4, we contrast CCTLib’s internals with DeadSpy’s internals. Sections 6.6.1.5–

6.6.1.8 describe the details of handling complex control flows. Finally, Section 6.6.1.9 de-

204

scribes CCTLib’s current limitations.

6.6.1.1 Instrumentation

We intercept Pin-trace creation and instrument the following places:

• entry to a Pin-trace.

• each call and return instruction in the trace, and

• any other instruction(s) the client Pin tool decides to track.

On each Pin-trace creation, we assign a unique identifier (traceId) to the trace. Further,

we memorize the association between the traceId and all instruction addresses in that

trace in a map (ShadowTraceMap). However, we need not maintain all instructions in the

trace in the ShadowTraceMap; instead, our map contains only those instructions that are

designated as “to be tracked” by the client Pin tool (Table 6.2, row 1) and all call and

return instructions in the trace. The traceId is made known to the analysis routine added

to each trace entry. Finally, we add instrumentation before each call and return instruction

in the trace. We also instrument setjmp, longjmp, pthread create, and Unwind SetIP

functions; details about this are described in sections that follow.

6.6.1.2 Supporting data structures

CCTLib’s CCT is composed of TraceNodes as shown in Figure 6.2. A CCTLib TraceNode

logically represents a Pin-trace. There is a many-to-one relationship between TraceNodes

and Pin-traces since the same Pin-trace can be executed from multiple calling contexts.

Each TraceNode has three fields — 1) an array of IPNodes, which we refer to as IPNodeVec,

2) traceId, and 3) a parent pointer to an IPNode. Each element of IPNodeVec logically

represents an instruction in the corresponding Pin-trace. By default, the size of IPNodeVec

equals the number of instructions in the corresponding Pin-trace. This mapping enables us

to associate every instruction with full calling context whenever the CCTLib client desires;

supporting calling context for each instruction forms the highest overhead case. A client Pin

tool may tailor CCTLib’s tracking of calling contexts for a particular task. For example,

205

TraceNode

IPNodeVec

TraceNode

IPNodeVec

TraceNode

IPNodeVec

Figure 6.2 : A CCTLib Calling Context Tree.

ShadowTraceMap

traceId Instruction
Pointers

0

1

...

0x1000 0x1002 0x1005

0x4100 0x4105 0x4110 0x4118

Instruction addresses

Figure 6.3 : ShadowTraceMap: CCTLib’s mapping from traces to constituent instructions.

a data race detection tool, which needs to track only memory access instructions, does

not require call-paths for non-memory related instructions; in such cases CCTLib can be

initialized to track only a client-specified “class” of instructions. CCTLib provides a callback

that enables its client Pin tools to specify what instructions need CCT information at trace

instrumentation time. No matter what the client Pin tool specifies, CCTLib will always

include all call and return instructions in its IPNodeVec. In the best case, the number of

entries in an IPNodeVec for a Pin trace equals the number of call and return instructions

the trace; this is the lowest overhead case.

There is 1-1 relationship between the N th slot in IPNodeVec in a TraceNode with traceId

I and the instruction recorded in the shadow trace map at ShadowTraceMap[I][N]. This

association enables us to recover the instruction pointer associated with each instruction

represented in a TraceNode without having to maintain instruction addresses themselves in

each IPNode. The association is both shared by di↵erent TraceNodes within a CCT as well

as CCTs of di↵erent threads. Figure 6.3 shows the ShadowTraceMap data structure.

206

TraceNode

uint64_t traceId

IPNode * parent

IPNode * IPNodeVec

parent parent parent

Child Traces Child Traces Child Traces

TraceNodeTraceNode

TraceNode

TraceNode

TraceNode

Splay tree

IPNode IPNode IPNode

Figure 6.4 : CCTLib’s TraceNode and IPNode.

The details of TraceNode and IPNode are shown in Figure 6.4. Each element of IPNode

has two fields. First, a parent field which is a pointer to the parent TraceNode. Second,

a pointer to the root of a splay tree, possibly null. The splay tree represents all traces

that executed as callees originating from the given instruction pointer of the given calling

context. We allow any instruction to have callees because an exception may happen on any

instruction; we represent signal handlers as callees of the instruction where the signal was

delivered. Consequently, a data field in every node of the splay tree points to a TraceNode.

Instructions belonging to a function may be split into several Pin-traces. In our scheme, all

Pin-traces belonging to the same function called from the same calling context will appear as

di↵erent nodes of the splay tree rooted at the same IPNode. An intentional consequence of

this design choice is that, when an instruction in function B, called from function A performs

a tail call to function C, the traces in function C will become children traces under function

A. Figure 6.5 depicts a tail calling example along with the corresponding CCT.

6.6.1.3 Actions at run time

CCTLib maintains two thread-local variables curTraceNode and curIPNode. The

curTraceNode points to the current TraceNode. Logically, curTraceNode acts as a cursor

207

#1 void A() {
#2 B(); }
#3 int B() {
#4 // tail call to C
#5 return C(); }
#6 int C(){
#7 return 1; }

B():
line ...

C():
line ...

A():
line 2

Figure 6.5 : CCTLib CCT for tail calls.

to the currently executing Pin-trace. The curIPNode points to a slot in the curTraceNode’s

IPNodeVec that logically represents the current instruction under execution. Logically,

curIPNode acts as a cursor to the currently executing instruction. If the client Pin tool

decides to track only a subset of instructions, curIPNode points to the most recently exe-

cuted instruction in the trace that was chosen for tracking. At runtime, the following five

cases arise:

1. Each time a call instruction is executed, the analysis routine sets a thread-local flag

(isCall).

2. When a new Pin-trace with id traceId is entered immediately following a call in-

struction (inferred by inspecting the isCall flag), it represents a transition from a

caller to a callee. In this case, an analysis routine at the trace entry executes the

following steps:

(a) Search for the callee TraceNode with key traceId in the splay tree rooted at

curIPNode. If none is found, a new TraceNode with traceId as the key is created

and inserted into the splay tree.

(b) Set the curTraceNode to the callee TraceNode.

(c) Reset the isCall flag.

3. When a new Pin-trace with id traceId is entered without a call instruction being

executed, it represents a transition from one trace to the other within the same callee,

or possibly a tail call. In this case, the analysis routine at the trace entry executes the

following steps:

208

(a) Search for the target TraceNode with the key traceId in the splay tree rooted

at curTraceNode->parent to find peer traces. If none is found, create and insert

into the splay tree a TraceNode with traceId as key.

(b) Set curTraceNode to the target TraceNode.

4. When a return instruction executes, set curTraceNode to its parent TraceNode, sim-

ulating the return from a function in the shadow call stack.

5. When any instruction in a trace executes, the analysis routine inserted before that

instruction sets curIPNode to the corresponding slot of IPNodeVec. At trace instru-

mentation time, the index of the instruction in the Pin-trace is known (which will be

its o↵set in IPNodeVec) and hence updating the curIPNode to the correct slot within

IPNodeVec can be done in a constant time even if the execution does not follow a

straight line path within a trace.

It is worth mentioning that all cases except 2a and 3a are constant time operations. Our

choice of data structures is driven by their amenability to such constant time operations.

Cases 2a and 3a are tree lookup operations and can incur a logarithmic complexity. The

choice of splay trees ensures that recently accessed TraceNodes are near the root of the tree,

which makes lookup fast in practice.

As an optimization, the client Pin tool may register a callback that CCTLib calls dur-

ing trace instrumentation on each instruction designated as “to be tracked” by the client

(Table 6.2, row 2). CCTLib passes the index number in IPNodeVec that corresponds to

the instruction to the client-instrumentation callback (as opaqueHandle argument), which

the client’s analysis routine can pass back to CCTLib’s GetContextHandle() function when

querying the calling context for that instruction. With this technique, CCTLib eliminates the

runtime overhead of updating curIPNode on each instruction execution; instead, curIPNode

is derived on demand when the client Pin tool queries the context. The value of curIPNode

is derived via a constant time indexing operation — IPNodeVec[opaqueHandle]; this elim-

inates the updating of curIPNode described in case 5.

At any instruction, its calling context identifier is simply the address of IPNode at

curTraceNode->IPNodeVec[opaqueHandle]. We allocate all IPNodes from a fixed memory

209

pool, hence, instead of pointer-sized (8 bytes on 64-bit machines) handles, we can manage

with just 32-bit handles. The handle uniquely represents a call-path in the CCT; by travers-

ing the parents pointers, the entire call-path can be constructed. We allow for a maximum

of 232 unique call-paths in a program. CCTLib provides the option to serialize the entire

CCT during program termination; the serialized call-path identifiers can be used to extract

the corresponding call-paths in a postmortem fashion. CCTLib also provides the option to

serialize CCTs as a DOT file for visualization.

6.6.1.4 Contrast with DeadSpy’s CCT

Our technique of building CCTs extends our prior work on CCT construction in DeadSpy,

discussed in Chapter 5. The CCTs in DeadSpy can only provide source line mapping infor-

mation for the leaf node of a path; for interior frames DeadSpy can recover only function

names. As a consequence, the code in Figure 6.6, which has multiple call sites to the same

callee, leads to the ambiguous CCT shown in Figure 6.7. It is unclear from the call-path in

Figure 6.7 whether A was called from line 2 or line 3 of main. CCTLib, in contrast, builds

CCT as shown in Figure 6.8. CCTLib has call site level attribution, which disambiguates

two calls to A from two di↵erent call sites in the same caller. The Maid [99] stack trace tool

does not have call site level attribution and hence su↵ers from the same problem.

Another di↵erence between DeadSpy’s and CCTLib’s CCT construction is the elimination

of DeadSpy’s notion of ContextNode in CCTLib. DeadSpy represents function calls in

a CCT using ContextNode, which serves as an umbrella for—all callees (ContextNode)

and traces (TraceNode) belonging to a function. On a function call, DeadSpy’s scheme

employs a two-level search. First, DeadSpy searches the target function under all callees of

the current ContextNode represented by childContexts field, then DeadSpy searches the

traces pointed to by childTraces in the callee ContextNode. DeadSpy uses hash tables

as maps for these lookup operations. In contrast, CCTLib consolidates both ContextNodes

and TraceNodes into one TraceNode. CCTLib eliminates the two-level lookup with a single-

level lookup during a call instruction as mentioned before in step 2a. Replacing two-

levels of lookup with one-level lookup and employing splay trees, which are better suited for

the lookup of frequently accessed items, improves performance as we show in Section 6.7.

210

#1 void main() {
#2 A(0);
#3 A(1); }
#4 void A(int i) {
#5 StackTraceHere(); }

Figure 6.6 : Code that needs line-level dis-
ambiguation.

START

main()

A():
line 5

Figure 6.7 : Ambiguous DeadSpy CCT.

main():
line 2

A():
line 5

START

main():
line 3

A():
line 5

Figure 6.8 : CCT with call site level attribution.

Experiments with the bzip2 SPEC CPU2006 reference benchmark showed that execution

time of monitored programs using splay trees in CCTLib was 50% faster than using google’s

sparsehash tables [76] and 24% faster than GNU C++’s std::hash map.

6.6.1.5 Signal handling

When a signal is delivered, control asynchronously transfers to a registered signal handler.

With CCTLib, the signal handler appears as a callee under the instruction where the signal

was delivered. This feature is accomplished by simply setting the isCall flag in the analysis

routine added using PIN AddContextChangeFunction for signals. All callees of the signal

handler will be treated as normal callees. The return from signal handler executes a return

instruction enabling CCTLib to resume from the position in the CCT where the signal was

delivered. If the client tool opts to not track all instructions, the signal handler appears as

211

if it was called from the last tracked instruction that executed.

6.6.1.6 Handling Setjmp/Longjmp

The setjmp and longjmp APIs allow programs to bypass the normal call/return flow of

control. With setjmp, the program memorizes the current architectural state of the program

in a user-provided bu↵er jmp buf and with longjmp it restores the state stored in the given

bu↵er. A longjmp may unwind multiple frames of the stack without executing a return.

To ensure CCTLib produces correct call-paths even after longjmp calls, CCTLib memorizes

the association between the jmp buf and the calling context where setjmp was called, and

restores the same calling context after a longjmp, thus simulating the e↵ect of longjmp in

its shadow stack.

6.6.1.7 Shadow stack during C++ exceptions

When a C++ program throws an exception, the runtime performs stack unwinding to look

for an exception handler. Once a handler is found, execution resumes at the handler, having

unwound zero or more stack frames. The C++ unwinder calls Unwind SetIP as the last step

of jumping to the handler function. The Unwind SetIP has the following signature: void

Unwind SetIP(struct Unwind Context * context, uint value). The first argument

(context), among other things, contains information about the stack frame that can handle

the current exception. It also includes information such as the instruction pointer in the

handler’s frame that called a chain of functions which eventually led to the exception. The

Unwind SetIP function overwrites its return address with the second argument value, which

contains the address of the exception handler. Upon return from Unwind SetIP, control

resumes in the exception handler instead of the original caller.

For maintaining a correct shadow stack during an exception, CCTLib instruments the

Unwind SetIP function and uses the information present in the context argument to set

curTraceNode appropriately. On entering Unwind SetIP, CCTLib captures the first argu-

ment, i.e., context. CCTLib calls the Unwind GetIP(context) to obtain the instruction

pointer of the call site, exceptionCallerIP, in the ancestor frame where the exception han-

dler is present. Now, CCTLib walks up the call chain, starting at curTraceNode, looking

212

for the first TraceNode that contains exceptionCallerIP. CCTLib stops on the first found

TraceNode t and records a pointer to it. On the return path from Unwind SetIP, CCTLib

sets its curTraceNode to t resulting in the shadow call stack unwinding exactly the same

number of frames as the original stack. Subsequent entry to the handler Pin-trace will follow

the earlier described strategy under case 3.

This unwinding technique needs tailoring for platforms that employ other strategies for

exception handling.

6.6.1.8 CCT in multithreaded codes

CCTLib produces independent CCTs for each thread in a program execution. Most of

CCTLib’s data structures are thread local except IPNodes, which are allocated from a shared

memory pool. The allocation of IPNodes is non-blocking since it uses atomic fetch-and-add

operations. Consequently, multiple threads can build/manage their own CCTs concurrently.

Since threads can have parent-child relationships, we associate the root of the child thread’s

CCT to the creation point of its parent’s CCT.

Since Pin does not provide information about parent-child relationships among threads,

CCTLib performs extra work to establish this relationship. We override pthread create to

accomplish this. Immediately after a parent thread returns from pthread create, CCTLib

publishes its call-path and waits for the analysis routine added as part of a new thread

creation to execute. During this interval, all threads attempting to spawn children thread(s)

are paused from making progress. The analysis routine executed as part of the newly spawned

thread attaches the published call-path as its parent, after which all threads resume.

6.6.1.9 Current limitations

Our current implementation does not support attaching to a running process. While we can

determine partial call-paths seen after attaching to a running process, obtaining parent-child

thread relationships and handling exceptional flows of control, are problematic. We wish to

address this in future work.

213

6.6.2 Data-centric attribution in CCTLib

CCTLib supports attribution of memory addresses to heap and static data objects. For stack

data objects, CCTLib marks them as on stack but does not associate them with individual

stack variables. It is straightforward to capture the memory range for each thread’s stack

and eliminate addresses falling in that range from further analysis.

6.6.2.1 Instrumentation for heap data objects

CCTLib instruments memory management functions such as malloc, calloc, realloc, and

free. CCTLib uses the calling context of the dynamic memory allocation site such as malloc

to uniquely identify a heap data object. The memory range and its associated allocation

call-path identifier are maintained in a map for future attribution of metrics to data objects.

6.6.2.2 Instrumentation for static data objects

CCTLib uses symbol names to uniquely identify static data objects. CCTLib reads the

symbol table from each loaded module and extracts the name and memory range allocated

for each static data object. It records this information in a map for each load module.

6.6.2.3 Associating address to data object at runtime

A CCTLib client Pin tool queries GetDataObjectHandle, passing it an e↵ective address. The

GetDataObjectHandle API returns a DataHandle t, which is a 40-bit handle that uniquely

represents the data object. Eight bits are reserved to distinguish variable types—stack, heap,

and static. The remaining 32 bits represent the object. For heap objects, the 32-bit handle is

a CCT handle (ContextHandle t). For static variables, the handle is an index into a string

pool of symbol names.

Aforementioned maps for associating addresses to objects should allow concurrent queries

by multiple threads to ensure scalability. We provide two implementations, one is parsimo-

nious in memory but less e�cient in performance, and another one requires large memory

but delivers e�cient, constant-time lookup.

214

The first approach uses a novel balanced-tree-based map data structure that allows con-

current reads while the map is being updated. There is one map per load module and one

map for heap addresses. <Address range, object handle> pairs are recorded in sorted order

in these maps. Lookup in the tree has logarithmic cost. While map lookup operations are

frequent, insertion and deletion are not. We devised a data structure where insertion and

deletion are serialized but address lookup operations are fully concurrent. We accomplish

this by maintaining a replicated tree data structure, where all readers are in one tree and

writes update the other tree. The trees are swapped after a phase of updating by the writers.

The result delivers scalable high performance for threaded programs.

The second approach employs a page-table based shadow memory analogous to [42]. For

every allocated byte in the program, the shadow memory holds its 40-bit data handle. On

each dynamic allocation, the corresponding range of shadow memory is populated with the

call-path handle. For each symbol for static variables, the corresponding range of shadow

memory is initialized with the string pool handle for the symbol. At runtime, for every

accessed memory address, CCTLib maps the address to its shadow location and fetches

the corresponding data handle in constant time. The shadow memory lookup and update

operations need no locking; hence the approach scales well. Naturally, shadow memory

introduces at least 5⇥ memory bloat.

CCTLib provides both balanced-tree-based and shadow-memory-based methods for its

client tools to trade o↵ memory consumption vs. runtime overhead. In the next section, we

will compare the performance of these di↵erent approaches.

6.7 Evaluation

In this section, we evaluate CCTLib’s runtime and memory overhead on serial applica-

tions, as well as its scalability on parallel programs. We conducted our single-threaded

experiments on 16-core Intel Sandy Bridge machines clocked at 2.2GHz, with 128GB of

1333MHz DDR3 running Red Hat Enterprise Linux Server v6.2 and GNU 4.4.6 tool

chain. We conducted our parallel scaling experiments on a quad-socket 48-core system

with four AMD Opteron 6168 processors clocked at 1.9 GHz with 128GB of 1333MHz DDR3

running CentOS 5.5 and GNU 4.4.5 tool chain. All applications were compiled with -O2

215

optimization. We chose a subset of the SPEC CPU2006 integer reference benchmarks [85]

along with three other applications for evaluation. Each application was chosen to represent

a variety.

• ROSE compiler [190] : ROSE source-to-source compiler has close to 3 million lines

of C++ code. We applied CCTLib when ROSE was compiling 80K lines of its own

header files. The code does not show any spatial or temporal data locality. It has a

large code footprint and deep call chains.

• LAMMPS [189]: LAMMPS is a molecular dynamics code with 500K lines of C++

code. We applied CCTLib on the in.rhodo input, which simulates Rhodo spin model.

The code is compute intensive and has deep call chains.

• LULESH [112]: is a shock hydrodynamics mini-app; it solves the Sedov Blast Wave

problem, which is one of the five challenge problems in the DARPA UHPC program.

The code is memory intensive and does not have good parallel e�ciency. It has frequent

memory allocations and deallocations, which makes it an interesting use case for data-

centric analysis.

6.7.1 Runtime overhead on serial codes

Table 6.3 shows runtime overhead for executions of the benchmark codes compared to an

unmonitored program. For SPEC CPU2006 benchmarks that have multiple inputs, we show

the mean values (arithmetic mean for raw values and geometric mean for relative quantities)

across all inputs. Column 2 shows the running time for each program in seconds. h264ref

program for the input sss encoder main.cfg (not shown) with 618 seconds of original

execution time was the longest running program.

Columns 3–6 focus on CCTLib’s call-path collection overhead. Since FEMs that track

each memory access instruction are very common, we provide CCTLib’s overhead for call-

path collection on each memory access instruction in column 3, which has a modest average

overhead of 19⇥. Column 4 shows CCTLib’s overhead for collecting the call-path on each

machine instruction, which has average overhead of 30⇥. Column 5 shows DeadSpy’s over-

head for collecting call-path on each machine instruction. For comparison purposes, we

216

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
Context-centric analysis

Original CCTLib CCTLib DeadSpy CCTLib
run time overhead overhead overhead CCTLib data-centric

Program in sec tracking memory tracking each tracking each improvement analysis
access instructions instruction instruction over DeadSpy overhead

astar 276.26 14⇥ 22⇥ 32⇥ 32% 28⇥
bzip2 111.71 19⇥ 32⇥ 45⇥ 28% 42⇥
gcc 44.61 23⇥ 35⇥ 54⇥ 35% 44⇥

h264ref 260.12 31⇥ 48⇥ 72⇥ 33% 67⇥
hmmer 326.32 21⇥ 30⇥ 42⇥ 28% 47⇥

libquantum 462.38 22⇥ 39⇥ 73⇥ 47% 46⇥
mcf 319.97 6⇥ 10⇥ 14⇥ 28% 15⇥

omnetpp 352.30 14⇥ 23⇥ 35⇥ 35% 34⇥
Xalan 294.80 32⇥ 50⇥ 78⇥ 36% 65⇥
ROSE 23.64 30⇥ 41⇥ 53⇥ 23% 49⇥

LAMMPS 99.28 17⇥ 29⇥ 39⇥ 27% 40⇥
LULESH 67.29 20⇥ 36⇥ 46⇥ 22% 48⇥
GeoMean - 19⇥ 30⇥ 45⇥ 31% 41⇥

Table 6.3 : Runtime overhead of CCTLib.

extracted DeadSpy’s CCT construction and adapted it to gather the call-path on each in-

struction without performing dead write detection. Column 6 shows CCTLib’s improvement

over DeadSpy; CCTLib is about 30% faster than DeadSpy on average. The average di↵er-

ence in overhead is about 14⇥ between CCTLib and DeadSpy. As stated before, CCTLib

produces call site level attribution at all levels of call-path, which DeadSpy cannot.

Finally, column 7 shows CCTLib’s overhead for performing data-centric analysis on each

memory access besides performing call-path collection on each instruction. The values in

column 7 subsume the overhead in column 4. We employed the shadow memory technique

for data-centric analysis in these experiments. The average overhead for data-centric and

context-centric attribution together is 41⇥.

The intended use of CCTLib is in conjunction with a Pin tool. Hence, the slowdown

introduced by CCTLib atop a baseline Pin tool is of more interest to a tool writer. Table 6.4

shows the runtime overhead for executions of our benchmark codes compared to a simple

Pin tool that counts the number of instructions executed. While one can write a smarter in-

struction counting tool, we chose a simple implementation that increments a counter before

executing every instruction. Such instrumentation is representative of sophisticated tools

that perform analysis at instruction-level granularity (e.g., dynamic data race detection and

runtime computational redundancy detection). Column #2 shows that on average CCTLib

217

Column 1 Column 2 Column 3 Column 4
Overhead of CCTLib wrt an instruction counting Pin tool

Calling context on Data-centric analysis on each instruction
Benchmark each instruction Tree-based Shadow memory

astar 1.59⇥ 4.01⇥ 2.09⇥
bzip2 1.89⇥ 4.04⇥ 2.45⇥
gcc 2.07⇥ 4.86⇥ 3.01⇥

h264ref 1.35⇥ 4.01⇥ 1.87⇥
hmmer 0.87⇥ 2.97⇥ 1.33⇥

libquantum 2.79⇥ 4.49⇥ 3.15⇥
mcf 1.77⇥ 4.91⇥ 2.57⇥

omnetpp 1.76⇥ 7.71⇥ 2.54⇥
Xalan 2.37⇥ 6.77⇥ 3.07⇥
ROSE 1.43⇥ 3.59⇥ 1.75⇥

LAMMPS 1.79⇥ 4.84⇥ 2.47⇥
LULESH 1.77⇥ 3.57⇥ 2.49⇥
GeoMean 1.72⇥ 4.49⇥ 2.33⇥

Table 6.4 : CCTLib overhead compared to a Pin tool’s overhead

introduces only 1.72⇥ overhead atop a tool that counts every instruction. Column #3 shows

that on average CCTLib introduces 4.45⇥ overhead for performing data-centric attribution

via the balanced-tree-based technique. Column #4 shows that on average CCTLib intro-

duces 2.33⇥ overhead for performing data-centric attribution via the shadow-memory-based

technique. The relative overheads of CCTLib shown in Table 6.4 are near its worst-case per-

formance since the work performed in the analysis routine of a simple instruction counting

Pin tool is negligible (one addition operation). The overhead of CCTLib is independent of

the overhead of a Pin tool’s analysis function. Hence, for Pin tools that perform progres-

sively more amount of work in their analysis routines (e.g., a data-race detector) the relative

overhead of CCTLib progressively diminishes.

6.7.2 Memory overhead on serial codes

Table 6.5 shows the results of memory overhead introduced by CCTLib. Column 3 shows

the maximum number of call-paths collected in each application. CCTLib collected ⇠1.49

billion call-paths during an execution of the ROSE compiler. When tracking memory access

instructions, CCTLib requires 3.49⇥ extra memory on average for storing the CCTs. When

tracking all instructions, CCTLib requires 4⇥ extra memory on average. When performing

data-centric analysis via balanced-tree-based technique, CCTLib requires 4.38⇥ extra mem-

ory on average. When performing data-centric analysis via shadow-memory-based technique,

218

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
Original Max Contex-centric analysis Data-centric analysis
resident call-paths Overhead Overhead Overhead Overhead

Program memory tracking memory tracking each (tree-based) (shadow memory)
in MB access instructions instruction

astar 230 3.04E+05 1.16⇥ 1.17⇥ 1.34⇥ 8.65⇥
bzip2 561 8.12E+04 1.11⇥ 1.12⇥ 1.12⇥ 8.03⇥
gcc 453 8.16E+08 15.6⇥ 26.0⇥ 26.0⇥ 36.4⇥

h264ref 37 1.46E+06 2.49⇥ 2.69⇥ 2.91⇥ 11.5⇥
hmmer 15 2.50E+05 4.38⇥ 4.36⇥ 5.13⇥ 29.4⇥

libquantum 96 1.42E+05 1.28⇥ 1.30⇥ 1.32⇥ 11.9⇥
mcf 1677 7.99E+05 1.02⇥ 1.03⇥ 1.03⇥ 6.53⇥

omnetpp 170 8.67E+06 1.87⇥ 2.35⇥ 3.76⇥ 10.5⇥
Xalan 419 6.58E+08 25.9⇥ 38.6⇥ 39.1⇥ 46.6⇥
ROSE 380 1.49E+09 64.9⇥ 98.2⇥ 100⇥ 105⇥

LAMMPS 110 1.23E+06 1.58⇥ 1.57⇥ 1.70⇥ 16.9⇥
LULESH 26 2.84E+05 2.28⇥ 2.27⇥ 2.51⇥ 9.11⇥
GeoMean - - 3.49⇥ 4.00⇥ 4.38⇥ 16.9⇥

Table 6.5 : Memory overhead of CCTLib.

CCTLib requires 16.9⇥ extra memory on average. Column 6 and column 7 subsume the

overhead in column 5 since they include the overhead of CCT construction for each instruc-

tion.

There is a correlation between the number of call-paths collected and the memory over-

head of call-path collection. Applications such as gcc, Xalan, and ROSE have deep recursion

leading to same instructions being repeated in multiple calling contexts, consequently they

have a higher memory overhead. If we ignore gcc, Xalan, and ROSE, the geometric mean for

columns 4, 5, 6, and 7 are 1.71⇥, 1.77⇥, 1.99⇥, and 11.4⇥, respectively.

Our 40-bit DataHandle t structures are word aligned to 64 bits, causing about 8⇥ mem-

ory overhead for shadow-memory-based data-centric analysis. One can use packed structures

and trade o↵ memory for runtime overhead. We did not explore that option in our evalua-

tion. For the hmmer benchmark, the memory overhead is higher for shadow-memory-based

data-centric analysis; this is because the application has a relatively smaller memory foot-

print (15MB), whereas CCTLib preallocates a page directory of 8MB for its two-level page

tables to maintain the shadow memory. This 8MB of CCTLib’s memory, in comparison with

15MB of the application’s working set, skews the numbers.

219

6.7.3 Scalability on parallel applications

To evaluate CCTLib’s scalability, we perform strong scaling experiments with the OpenMP

versions of LAMMPS and LULESH. We varied the number of threads from 1 to 32 and

evaluated the slowdown caused by CCTLib when compared to the same configuration with-

out monitoring. We performed our experiments with call-path collection as well as with

data-centric attribution. For data-centric attribution, we tried both balanced-tree-based

implementation and shadow-memory-based implementation.

We define H(n)—the overhead in an n-thread execution, as the ratio of R
c

(n)—the

running time of CCTLib in an n-thread execution, to R
o

(n)—the running time of the original

n-thread execution. We define S(n)—the percent parallel scalability of n-thread execution

of CCTLib, as a scaled ratio of the overhead of a 1-thread execution to the overhead of an

n-thread execution.

H(n) =
R

c

(n)

R
o

(n)

S(n) =
H(1)

H(n)
⇥ 100

High scalability is best. The results are tabulated in Table 6.6 and Table 6.7 for LAMMPS

and LULESH, respectively.

We make the following observation about CCTLib:

• For call-path collection, the overhead remains fairly stable (22⇥–27⇥) for LAMMPS

and achieves 96% scalability. For LULESH, the overhead decreases dramatically with

increased parallelism. This behavior is because of the Amdahl’s law, since LULESH

has poor parallel e�ciency, injecting the scalable CCTLib component into it causes

CCTLib’s overhead to scale super-linearly (586%).

• Data-centric attribution using our concurrent balanced-tree-based technique has higher

overhead for LAMMPS (about 80⇥); however, the overhead remains stable and

achieves perfect scaling (96%). For LULESH, the overhead steadily reduces with in-

crease in the number of threads, reaching 607% scalability at 32 threads. Since the

balanced-tree-based technique has a lower memory footprint, it might be preferred

220

LAMMPS
no. threads

1 2 4 8 16 32
Original running time in seconds 173.73 95.32 53.43 30.81 21.35 17.85
Original prog. parallel e�ciency 100% 91% 81% 70% 51% 30%

Call-path Overhead 22⇥ 22⇥ 23⇥ 27⇥ 24⇥ 23⇥
analysis Scalability 100% 99% 96% 82% 93% 96%

balanced-tree-based Overhead 80⇥ 78⇥ 79⇥ 83⇥ 85⇥ 80⇥
data-centric analysis Scalability 100% 102% 100% 96% 94% 100%

Shadow-memory-based Overhead 32⇥ 31⇥ 32⇥ 36⇥ 38⇥ 34⇥
data-centric analysis Scalability 100% 102% 100% 90% 84% 95%

Table 6.6 : Parallel e�ciency of CCTLib on LAMMPS.
LULESH

no. threads
1 2 4 8 16 32

Original running time in seconds 137.29 86.30 47.82 28.75 29.99 61.37
Original prog. parallel e�ciency 100% 80% 72% 60% 29% 7%

Call-path Overhead 21⇥ 18⇥ 18⇥ 17⇥ 9⇥ 4⇥
analysis Scalability 100% 120% 116% 125% 229% 586%

balanced-tree-based Overhead 49⇥ 45⇥ 44⇥ 39⇥ 22⇥ 7⇥
data-centric analysis Scalability 100% 109% 111% 124% 228% 670%

Shadow-memory-based Overhead 33⇥ 28⇥ 32⇥ 33⇥ 23⇥ 8⇥
data-centric analysis Scalability 100% 115% 101% 100% 143% 408%

Table 6.7 : Parallel e�ciency of CCTLib on LULESH.

over our shadow-memory-based technique when the concurrency level is higher and

the application has poor scalability.

• Data-centric attribution using our shadow-memory-based technique is significantly

faster than our balanced-tree-based technique and it scales well. On LAMMPS, the

technique introduces 31⇥–38⇥ slowdown and shows 95% scalability. For LULESH the

trend is similar to that of the call-path collection, lowering overhead to 8⇥ with the

increase in the number of threads causing it to attain 408% scalability.

6.8 Discussion

Attributing metrics to code for every executed instruction was considered infeasible for long

running programs due to the purported space and time overheads [69, 229]. In this chapter,

we debunked this myth. We demonstrated that, with CCTLib, one can collect call-paths

and attribute memory accesses to data objects on every executed machine instruction, even

for reasonably long running programs. CCTLib has modest runtime overhead and scales

221

well when used on multithreaded codes. Our choice of algorithms and data structures within

CCTLib makes such a heavyweight task a↵ordable, e�cient, and scalable.

Fine-grained execution monitoring tools are of critical importance in performance analysis

and correctness tools, among others. An average overhead of 1.72⇥ compared to a simple

Pin tool to associate every instruction to its calling context is quite a↵ordable. Since the

overhead of CCTLib is constant, the relative overhead of CCTLib will be minuscule when

used in conjunction with heavyweight analysis tools such as a data race detector that incur

several orders of magnitude overhead. We believe CCTLib provides a framework that will

allow many Pin tools to provide rich, diagnostic, contextual information along with their

analyses.

The CCTLib framework has attracted interest. Intel’s PinPlay [186] and DrDebug [235]

are some of the candidate Pin tools interested in employing CCTLib. Other researchers have

started building tools that use CCTLib for dynamic detection of computational redundan-

cies [236], associating memory footprint to calling contexts, among others.

222

Chapter 7

Related Work

Art is essentially communication. It doesn’t exist in a

vacuum. That’s why people make art, so other people

can relate to it.

Conor Oberst

We present the related work pertaining to the areas of GPU performance analysis, syn-

chronization optimization, shared-memory mutual exclusion, redundancy elimination, call-

path collection, and data-centric attribution in Sections 7.1-7.5 respectively.

7.1 GPU performance analysis

Several strategies have been proposed [187, 213] that assess the performance of GPU kernels

alone. Less, however, has been done to provide holistic performance analysis of hybrid

parallel applications on heterogeneous supercomputers. In Section 7.1.1-7.1.3 we discuss the

related work in GPU-kernel performance analysis, system-wide performance analysis, and

root-cause performance analysis, respectively.

7.1.1 GPU-kernel performance analysis

With regard to performance tools focused exclusively on GPU kernels, NVIDIA provides a

state-of-the-art measurement-based tool—Nvidia Visual Profiler (NVP) [177]. NVP traces

the execution of each GPU task, recording method name, start and end times, launch pa-

rameters, and GPU hardware counter values, among other information. NVP provides an

extension called NVTX that allows programmers to manually instrument CPU-side events.

Other tools, e.g., [14, 91, 213], employ modeling and/or simulation to provide insight into

223

the performance of individual kernels.

Although these kernel-focused tools are aware of calls to CUDA host APIs on the CPU,

none of these tools provides significant insight into CPU activity of heterogeneous applica-

tions. Furthermore, most of these tools cannot gather performance of concurrent executions

of multiple GPU kernels; instead, they serialize GPU kernels as well as CPU threads. Such

intrusive analysis, while useful in characterizing the behavior of a stand-alone kernel, is often

undesirable in large CPU-GPU applications that employ a high amount of asynchrony.

7.1.2 System-wide performance analysis

With regard to performance tools focused on both GPU and CPU activities, two leading

tools are TAU [148] and VampirTrace [81]. Both of these tools o↵er an array of techniques

for performance analysis of hybrid architectures.

While TAU has some support for sampling, it principally employs instrumentation for

measuring performance. Consequently, TAU has a natural integration path to absorb GPU

instrumentation. On Nvidia devices, TAU uses the CUPTI interface [173] to both monitor

execution of GPU tasks and capture GPU hardware counter values. TAU considers code

performance from multiple perspectives, including inter-node communication, intra-node

execution, CPU-GPU interactions, and GPU kernel executions.

The Vampir performance analysis toolset [81] traces program executions on heterogeneous

clusters. VampirTrace monitors GPU tasks using CUPTI, logging information including

kernel launch parameters, hardware counter values, and details about memory allocations.

For monitoring the CPU activity, the Vampir toolset collects a trace of function entry/exit

like TAU. Vampir toolset performance analysis of hybrid codes is based on post-mortem

analysis of traces.

TAU and Vampir toolsets do not o↵er any automatic techniques for idleness analysis,

although one may indirectly infer idleness via manual inspection of their profiles or traces.

7.1.3 Root-cause performance analysis

Curtsinger and Berger [49] have proposed “causal profiling” as a technique for programmers

on where to focus their optimization e↵orts. Causal profiling measures the impact of speeding

224

up a code on the overall execution time. One cannot speed-up a code automatically without

optimizing it. One can, however, slow a code down by artificially injecting pauses. If slowing

down a code slows down the entire execution, then such code is on the critical path and

deserves programmer’s attention. With the guidance from causal profiling, they improve the

performance of Memcached [66] by 9%, SQLite [197] by 25%, and accelerate six PARSEC [19]

applications by up to 68%.

Tallent et al. [225] developed directed blame shifting in the context of lock waiting, where

lock-waiting threads blame a single lock holder. Tallent and Mellor-Crummey [222] developed

undirected blame shifting in the context of work stealing runtime such as Cilk, where some

threads may be working while others may be idle. The undirected blame shifting apportions

the blame among multiple working threads, unlike the directed blaming, which targets one

thread. Liu et al. [137] have developed a blame shifting mechanism for attributing idleness

and lock waiting to identify in OpenMP codes. They classify execution of OpenMP programs

into work, idleness, overhead, and lock waiting. Since the number of threads in OpenMP

can dynamically change, they e↵ectively integrate the directed blame shifting with undirected

blame shifting. CPU-GPU blame shifting with multiple GPU streams and CPU threads,

presented in Chapter 2, bears an analogy with Liu et al.’s blame apportioning techniques.

With the insights gained from blame shifting, they tune several OpenMP applications and

accelerate them by up to 82%.

The CPU-GPU stall analysis, presented in Chapter 2, resembles the root-cause analysis

capability in Scalasca [22]. Scalasca employs source instrumentation to trace communication

events and performs forward and backward replay of traces to associate the cost of wait states

to their causes. Our technique di↵ers from Scalasca by using sampling-based measurement.

Our technique identifies one specific case of waiting that is caused by blocking system calls.

Our technique identifies the impact of late arrivers in only collective communications whereas

Scalasca is more generic and identifies causes of delays in both point-to-point and collective

operations.

Recently, Schmitt et al. [203] developed a tool for identifying critical optimization targets

in heterogeneous applications. They extend Bohme et al.’s [22] work on identifying the root

cause of wait states in MPI programs and our work on CPU-GPU blame shifting. They

225

develop critical blame scheme, a combination of critical-path and root-cause analysis, which

is aware of three important programming models OpenMP, CUDA, and MPI. During a

postmortem analysis pass of the execution traces, the critical blame scheme considers both

the critical path as well as the assigned blame to rank order a code region as a potential

target for optimization. They employ program instrumentation to gather traces.

7.2 Synchronization optimization

In Section 7.2.1 and 7.2.2, we discuss the related work in static and dynamic analysis for

synchronization optimization, respectively. In Section 7.2.3, we discuss the related work in

lightweight call-path collection to draw an analogy with our work in context collection used

for the barrier elision work.

7.2.1 Static analysis

Static program analysis that examines the synchronization in parallel programs has been

applied for performance optimizations. Concurrency analysis can be traced back to the

work of Shasha and Snir [210]; they build a set of models that determines when consec-

utive operations in a program segment of a parallel program may execute concurrently,

without violating the programmer’s view. Jeremiassen and Eggers [105] present a static

barrier analysis for SPMD codes (Stanford SPLASH) used to eliminate false sharing on

shared memory machines. Zhang et al. [245, 246] present concurrency analyses for shared

(OpenMP) and distributed (MPI) programming models with textually unaligned barriers.

Kamil and Yelick [109] describe a static data race detection in the Titanium programming

language that employs textually aligned barriers. Dotsenko [67] developed an algorithm for

synchronization strength reduction (SSR), which replaces textual barriers with non-blocking

point-to-point synchronization. Agarwal et al. [3] present a may-happen-in-parallel analysis

for X10 programs with unstructured parallelism.

226

7.2.2 Dynamic analysis

Runtime elision of synchronization operations has received a fair share of attention in both

software and hardware. Many techniques have been developed for lock elision in Java, glibc,

or the Linux kernel. At the hardware level, speculative lock elision described by Rajwar and

Goodman [192] is available now in hardware implementations such as Intel TSX. We discuss

mechanisms for eliding mutual exclusion more in detail in Section 7.3.7. None of these

mechanisms, however, elide collective communication such as barriers.

Sharma et al. [209] describe a dynamic program analysis to detect functionally irrelevant

barriers in MPI programs. In their definition, a barrier is irrelevant if its removal does not

alter the overall MPI communication structure of the program. They use a model checker

to try program interleavings. Their technique uncovers irrelevant barriers in many small

benchmarks containing a few hundred lines of code.

An orthogonal approach to our automatic elision is profiling for redundant barriers fol-

lowed by code modification to insert additional arguments (similar to C++ default argu-

ments) at call sites leading to redundant barriers. The call-sites can use the runtime call-

path prefix to recognize barrier redundancy. The guards would take the form of a boolean

flag indicating the necessity or redundancy of a barrier for the downstream APIs. We are

unaware of any prior work analogous to this idea.

7.2.3 Lightweight call-path collection

Lightweight instrumentation of parallel programs is a well-explored area. Library interposing

and link-time function wrapping are standard techniques to intercept function calls. These

techniques are extensively used in performance analysis tools such as HPCToolkit [224].

Our on-demand call-stack-unwinding technique on each barrier bears similarity with HPC-

Toolkit’s call stack sampling. HPCToolkit maintains an unwind recipe for each range of

instructions by analyzing the binary code at runtime. Our barrier elision technique deviates

from this since we compile the code with frame pointers to ensure perfect stack unwinds.

The binary analysis is directly applicable to improve our technique. An alternative context-

collection technique is instrumenting every call and return instruction, and eagerly com-

227

puting the call-path [41] in a “shadow” stack. Eager call-path collection techniques, while

suitable for frequent unwinds, are unsuitable when the call-path is infrequently needed.

Context-sensitive, dynamic analyses have been explored in computer security also. Most

of the approaches use stack walking for context identification. Recent work by Bond and

McKinley [25, 26] refines the notion of a context to avoid stack-unwinding overhead. Their

probabilistic calling contexts are directly usable in the calling context used by our barrier

elision scheme.

7.3 Shared-memory mutual exclusion algorithms

Algorithms for shared-memory mutual exclusion have been extensively studied. Mellor-

Crummey and Scott [157] provide an extensive empirical and theoretical analysis of shared

memory synchronization mechanisms available in the early 1990s. We discuss various kinds

of locks relevant to our work in Section 7.3.1-7.3.4. We discuss the related work in the

area of the fast-path in Section 7.3.5. We discuss the related work in the area of software-

based contention management in Section 7.3.6. We discuss the related work in the area of

hardware transactional memory Section 7.3.7. We discuss the related work in the empirical

and analytical analysis of locks in Section 7.3.8 and 7.3.9, respectively.

7.3.1 Queuing locks

Queuing locks enqueue lock requests in a FIFO queue, and the waiting threads spin on

unique locations until their predecessors signal them. MCS lock [157] and CLH lock [146]

are two prominent state-of-the-art queuing locks.

The MCS lock acquire protocol enqueues a record in the queue for a lock by 1) swapping

the queue’s tail pointer with a pointer to its record and 2) linking behind a predecessor (if

any). If a thread has a predecessor, it spins locally on a flag in its record. Releasing an

MCS lock involves setting a successor’s flag or resetting the queue’s tail pointer to null if no

successor is present.

The CLH lock [146] is analogous to the MCS lock, with the following two di↵erences: 1)

each thread enqueues its record into a queue when acquiring a lock but does not reclaim its

228

record on release; instead, its successor is responsible for its record, and 2) a thread waiting

to acquire a lock waits on a flag in its predecessor’s record rather than its own.

Our work is focused on mutual exclusion algorithms for NUMA architectures, which is

a more recent architectural advancement, and hence, we cover only the related work in the

area of locks for NUMA architectures.

7.3.2 Hierarchical locks

Radovic and Hagersten [191] designed a hierarchical back-o↵ (HBO) lock. The idea of the

HBO lock is simple: when the lock is acquired, the domain id of the acquiring thread is

CASed into the lock variable. Other threads from the same domain, waiting to acquire the

lock, spin with a smaller back-o↵ value, whereas threads from a di↵erent domain spin with

a larger back-o↵ value. A thread sharing the same domain as the lock holder is more likely

to subsequently acquire the lock when it is freed, compared to contending threads in other

domains.

The HCLH lock [143] is a variant of the CLH lock that is tailored for 2-level NUMA

systems. Threads on cores of the same chip form a local CLH queue. The thread at the

head of the queue splices the local queue into the global queue. The splicing thread may

have to wait for a long time or splice a very short queue of local threads, both of which

lengthen the critical path. The HCLH lock can pass the lock within a domain only once

before relinquishing the lock to another domain. Furthermore, the HCLH lock does not

exploit the locality beyond two levels of a NUMA hierarchy.

The Cohort MCS (C-MCS1) lock by Dice et al. [63] for NUMA systems employs two

levels of MCS locks, treating a system as a two-level NUMA hierarchy. One MCS lock is

local to each NUMA domain and another MCS lock (global) is shared by domains, which

protects the critical section. Each thread trying to enter a critical section acquires the local

lock first. The first thread to acquire the local lock in each domain proceeds to compete

for the global lock while other threads in each domain spin wait for their local lock. A

releasing thread grants the global lock to a local successor by releasing the local lock. A

1Dice et al. refer to thier lock as C-MCS-MCS, we call it as C-MCS for brevity.

229

lock passes within the same domain for a threshold number of times at which point the

domain relinquishes the global lock to another domain. Dice et al. also explore other lock

cohorting variants beyond C-MCS that employ various locking protocols at each of the two

levels, with the local and global locking protocols selected independently. We focused on

the MCS lock at each level of the HMCS lock leaving exploring di↵erent locks at di↵erent

levels for the future work. Moreover, even Dice et al.’s best-performing back-o↵ and MCS

lock combination (C-BO-MCS) is only marginally better than the second best C-MCS lock.

Furthermore, the C-BO-MCS lock has unbounded unfairness, whereas the C-MCS lock has

bounded unfairness. Cohort locks do not exploit the locality beyond two levels of the NUMA

hierarchy.

7.3.3 Combining locks

The “combining” conceptually batches tasks from multiple threads into one thread.

Oyama et al. [182] devised a “combining” lock that delegates the critical section of all

waiting threads to a lock holder. In their design, the lock variable assumes three values—

locked, free, and conflict. When the lock is free, a thread—wanting to acquire the

lock—CASes it to locked; if the CAS succeeds, then the thread becomes the lock holder and

enters the critical section. All threads that fail to CAS the lock variable, prepare a record

containing the continuation context needed to execute their critical sections and atomically

push a pointer to their record on to a stack of such records. In fact, the top of the stack is

the same lock variable, if its value is neither locked nor free (i.e., conflict). If there is

a set of stacked contexts when a lock holder is about to release the lock (the lock points

to conflict), then the lock holder detaches the contexts and executes each thread’s critical

section in the detached context. Eventually, the lock holder either releases the lock (CASes

it to free) or begins working on the new set of accumulated contexts (if any). By delegating

the critical section of many threads to a lock holder, this lock design exploits the locality of

data accessed in the critical section. Since the waiting threads are arranged in a LIFO data

structure, this lock is particularly unfair. In addition, this lock design can cause starvation

for the lock holder thread by not allowing it to finish its release protocol.

Fatourou and Kallimanis [72] revised the combining lock of Oyama et al. They propose

230

two locks: CC-Synch for cache-coherent machines and DSM-Synch for machines without

caches. Conceptually, CC-Synch implements a “combining-friendly” CLH lock so that the

combiner thread can traverse the queue. Each record in the queue contains the context

necessary for a combiner thread to execute another thread’s critical section. The thread

that is assigned the head of the list plays the role of the combiner. The combiner begins

by serving its request first. Other threads that have announced their requests, spin on a

unique field of in their predecessor’s record. The combiner does not release the lock after

the completion of its critical section; instead, it continues serving the requests announced by

the other threads, followed by indicating the completion of requests to the waiting threads.

The CC-Synch protocol places a bound on the number of critical sections a combiner thread

services. Having a bound ensures starvation freedom. Since CC-Synch is modeled after the

CLH lock, a waiting thread spins on a field in its predecessor record, which generates an

unbounded number of remote memory requests on machines that do not have caches. DSM-

Synch lock is modeled after the MCS lock, where each thread spins on a node that is locally

allocated; this design eliminates the unbounded remote memory references.

Dice et al. devised the flat-combining MCS lock [62] (FC-MCS), which combines the flat-

combining synchronization paradigm [84] and the MCS lock algorithm [157]. The key idea of

flat combining (FC) is to implement a concurrent data structure given its sequential counter-

part. The FC technique employs mutual exclusion to pick repeatedly a unique “combiner”

thread that will apply all other threads’ operations to the structure. The key advantage is

that when one thread applies n operations consecutively on a shared data structure instead

of n threads applying one operation each, data locality is maintained and synchronization

overhead is reduced. The FC-MCS builds local queues of waiting threads and employs a

designated “combiner” thread to join local queues into a global MCS queue. The FC-MCS

lock can pass the lock within a domain only once before relinquishing the lock to another

domain (if present). Furthermore, the FC-MCS lock does not guarantee the locality beyond

two levels of the NUMA hierarchy.

Lublinerman et al. [142] developed “delegated isolation” in the context of the Habanero

Java parallel programming language [37]. Delegated isolation, conceptually, allows threads

to launch their mutually exclusive regions of arbitrary granularity as separate tasks. Each

231

task owns a region of data. When a task T
1

needs to own a datum owned by another task

T
2

, T
1

delegates its work, giving the ownership of its data to T
2

. T
2

takes the responsibility

of “re-executing” the tasks of T
1

. By delegating the work of accessing the shared data

to a thread already owning such data, the approach can reduce contention. In addition,

delegated isolations provide dynamism, safety and liveness guarantees, and programmability

when handling mutual exclusion.

7.3.4 Dedicated server threads for locks

Lozi et al. [140] have devised an e↵ective mechanism to address NUMA e↵ects via the Remote

Core Locking (RCL) technique. The RCL locking adopts a client-server model for executing

critical sections. RCL dedicates one or more “server” threads that execute the critical

sections. Several server threads, typically, share a single hardware thread. By creating more

than one server thread, on demand, the RCL lock provides the liveness and responsiveness,

which are needed when a server thread blocks inside a critical section, encounters an O/S

preemption, or busy waits on a flag. Typically, a single hardware thread accesses the data

inside any critical section, which ensures the locality of data on NUMA machines. The

lock data structures used in delegating the work from a client thread to a dedicated thread,

however, do not have locality, which is one of the limitations of the RCL lock compared to

the HMCS lock. Furthermore, RCL lock dedicates at least one hardware thread (and several

logical threads). An RCL lock may introduce artificial serialization of a parallel program

since an RCL server thread executes all critical sections serially even if they are protected

by di↵erent locks. Nevertheless, using RCL locks, the authors demonstrate performance

improvements of up to 2.6⇥ with respect to POSIX locks on Memcached, and up to 14⇥

with respect to Berkeley DB.

Table 7.1 summarizes various features of the HCLH, C-MCS, FC-MCS, RCL, and FP-

AHMCS locks.

7.3.5 Fast-path techniques for mutual exclusion

Yang and Anderson [240] have devised an N-process software-based lock mechanism that

only requires read and write operations. The key idea in this lock design is to use a binary

232

Feature H-CLH C-MCS FC-MCS RCL FP-AHMCS

Has all levels of locality of lock data structures? No No No No Yes
Has all levels of locality of the critical section data? No No No Yes Yes

Can be tuned for throughput? No Yes No N/A Yes
Can be tuned for fairness? No Yes No N/A Yes

Has freedom from additional memory management? No No No Yes Yes
Has freedom from dedicated resources (thread)? Yes Yes Yes No Yes

Suitable under low contention? No No No No Yes

Table 7.1 : Comparison of various NUMA-aware locks.

arbitration tree. The lock acquisition begins at the leaf of the tree for each thread and

proceeds through the spine of the tree to the tree root. Only two threads contend at each

tree node. One thread gets blocked and busy waits while the other thread proceeds to the

parent node in the tree. The thread reaching the root of the tree can enter its critical section.

After executing it critical section, the lock holder traverses the spine of the tree from the root

to its leaf, each time unblocking a busy-waiting thread at each level. The HMCS lock also

employs an arbitration tree, but the HMCS tree is an n-ary tree, and the arity of any tree

node can be arbitrary. The HMCS lock di↵ers from the Yang and Anderson’s lock in two key

ways: 1) each thread need not acquire all the locks from leaf to the root each time to enter

the critical section 2) the lock releasing thread does not traverse the tree from root to leaf,

instead, it passes the lock to a waiting thread sharing the lowest common ancestor. Because

of these di↵erences, while the HMCS lock enhances locality, the Yang and Anderson’s lock

negates locality. Yang and Anderson’s lock’s time complexity is O(log
2

N), where N is the

number of participating threads.

The FP-HMCS lock, presented in Chapter 4, is inspired by the fast-path slow-path

technique devised by Lamport [124] and adapted by Yang and Anderson in their binary-

arbitration-tree-based lock. Yang and Anderson’s initial version of the fast-path to their

binary-arbitration-tree-based lock [240] overlays a 2-process mutual exclusion on top of the

tree-based algorithm. When a process detects no contention, it directly contends for the top-

level 2-process mutual exclusion, which is the fast-path. When a process detects contention,

it follows the slow-path through each level of the tree. With this technique, the fast-path

technique allows a process to enter its critical section in O(1) time when there is no con-

tention, and the slow-path allows a process to enter its critical section in O(log
2

N) time.

233

Once the fast-path has been acquired, it is “closed” so that other processes do not simul-

taneously acquire it. Once a period of contention ends, the fast-path must be “reopened”

for subsequent fast-path acquisitions. To reopen the fast-path, a process checks a flag in

each process, to identify whether a process is still contending. This polling causes additional

overhead in the release protocol making the algorithm’s worst-case time complexity ✓(N).

In their improved fast-path mechanism for mutual exclusion [10] Anderson and Kim address

the ✓(N) time complexity by bounding it to O(1) under no contention and O(log
2

N) under

contention. Anderson and Kim’s algorithm uses a tuple of boolean along with a process

identifiers to indicate other processes, which process obtained the fast-path. In addition,

they use an array of N auxiliary variables to rename process identifiers to distinguish a

previously accessed fast-path from a new one. To bound the renaming to within N auxiliary

variables, they recycle the identifiers using the modulo operation. When recycling is not

safe, they deflect the process asking for the fast-path to take the slow-path, which happens

only during contention, and yet maintains the O(log
2

N) time complexity invariant.

Kogan and Petrank [120] employ a slow-path fast-path technique to create fast wait-free

data structures. In their approach, first they execute an e�cient lock-free version of the

algorithm for a bounded number of times, which is considered the fast-path. On failure

to apply the operation via the lock-free version, the algorithm switches to the wait-free

version, which guarantees completion in a bounded number of steps, which is considered

the slow-path. They demonstrate the e↵ectiveness of their approach by accelerating wait-

free implementations of the concurrent queue and linked list implementations to match the

performance with lock-free counterparts.

7.3.6 Software-based contention management

Reacting to contention in a system via software technique has been widely studied. Dice et

al. [61] explore the e↵ect of wrapping a CAS operation with software-based techniques such

as constant back-o↵, exponential back-o↵, time slicing, MCS lock, and array-based lock to

address high contention situations. They demonstrate that the software-based contention

management improves the performance of common concurrent data structures such as queues

and stacks. In the context of Software Transactional Memory (SMT), an array of contention

234

management techniques [77, 86, 94, 201, 218, 243] has been studied. A key distinguishing

feature of adapting to contention described in this dissertation is that instead of consciously

attempting to reduce the contention, our methods consider contention as an opportunity to

exploit locality.

7.3.7 Hardware transactional memory for mutual exclusion

Hardware transactional memory (HTM) is an active research area for accomplishing syn-

chronization with low overheads.

Rajwar and Goodman’s “Speculative Lock Elision” [192] (marketed under the name

“Hardware Lock Elision” (HLE) by Intel) is a technique to elide a write associated with

a locking operation. The HLE introduces two special instruction prefixes xacquire and

xrelease. Programmers can use the xacquire prefix before the lock acquiring instruction

such as xchg and xrelease prefix before the matching lock release instruction. The hardware

begins a transaction when it executes an xacquire instruction but hides the side e↵ect of

the memory update associated with the lock acquisition. Instead, the address of the lock

is added to the read-set. Similarly, the hardware elides the memory update associated

with the xrelease prefixed instruction if it were reverting the value of the location to the

value seen before the start of the transaction. All instructions appearing between a pair

of xacquire and xrelease prefixed instructions are executed as a transaction. If the lock

was free before the xacquire prefixed instruction, all other processors continue to see it as

available immediately after one or more processes execute an xacquire prefixed instruction.

The hardware detects the conflicting accesses that occur during the transactional execution

and aborts the transaction, if necessary. The processor attempts to commit the transactional

execution on reaching the xrelease prefixed instruction. If multiple threads execute critical

sections protected by the same lock without any conflicting data accesses, the threads can

execute concurrently. If a transaction fails, the hardware executes the same region once

again, this time non-transactionally and without eliding the xacquire and xrelease prefixed

instructions.

Odaira et al. [178] eliminate the global interpreter locks in Ruby via hardware transac-

tional memory. They dynamically adjust the transaction lengths on a per byte code basis

235

to reduce the chances of transaction aborts. They dynamically choose the best transaction

granularity for any number of threads and applications that run for su�ciently long times.

This technique of online learning about locks is similar to our adaptive HMCS scheme.

Rossbach et al. [199] explore the cooperation between locks and transactions in their

TxLinux operating system. They introduce cooperative transactional spinlocks (cxspin-

locks), which allow transactions and locks to protect the same data while maintaining the

advantages of both synchronization primitives. Cxspinlocks allow TxLinux to attempt the

execution of critical regions via transactions and abort the transaction if the region performs

an I/O. If a transaction is aborted, the fallback mechanism uses the traditional spin locks.

GNU pthreads library has a prototype support for lock elision via HTM [116]. It in-

troduces wrappers around the traditional pthread mutex lock and pthread mutex unlock

routines. The acquire wrapper first starts a transaction and checks the lock variable adding

it to its read set. If the lock is free, then the protocol returns, allowing the user code to

execute the critical section as a transaction; otherwise, the protocol aborts the transactions

and waits to acquire the lock by calling pthread mutex lock. Since the lock is added the

transaction’s read set, any change to the lock by another thread causes the transaction

to abort. Similarly, conflicting accesses between two threads performing their transactions

causes them to abort. If a transaction frequently runs for a long time before aborting, it

can hurt the overall application performance. The elision wrapper uses an adaptive solution

to handle frequent aborts. The algorithm remembers the code regions that frequently abort

and temporarily disables such regions from taking the transactional path. Kleen [116] has

identified that the behavior of the pthread mutex trylock API is di↵erent when it is nested

inside a transaction vs. when it is nested inside a pthread mutex lock. Since a transac-

tion does not take a lock, a pthread mutex trylock call succeeds when called from inside a

transaction, whereas it fails when called from inside a pthread mutex lock.

7.3.8 Empirical evaluation of mutual exclusion techniques

Most recently, Tudor et al. [59] performed a detailed empirical evaluation of atomic operations

(swap, compare-and-swap, fetch-and-add, test-and-set) and locks (test-and-set, test-and-

test-and-set, ticket, CLH, and MCS) on a variety of hardware such as AMD Opteron, Intel

236

Xeon, Sun Niagara 2, and Tilera TILE-Gx36. Not surprisingly, they infer that crossing a

socket is expensive. They do not perform any additional study to identify the cost of crossing

a node. Our studies with SGI UV 1000 show that the locality is important not only within a

socket but also at every level of the NUMA hierarchy—from within a core to within a rack of

many nodes. They also notice that in directory-based architectures such as Opteron, sharing

within the socket is necessary but not su�cient due to the broadcast messages that need to

be issued when a cache line is shared. They notice that no single lock wins on all platforms.

They make claims without a strong justification that 1) ticket locks are good enough, 2)

simple locks are powerful under low contention, and 3) the scalability of synchronization is

mainly a property of hardware. We claim that maintaining the locality of reference is not

a property of hardware but that of the software running on it. We also claim that one can

design a sophisticated lock with low overhead by ensuring that the complexity is not added

to the critical path.

In the context of HTM, Yoo et al. [242] performed an empirical evaluation of Transac-

tional Synchronization Extensions (TSX) on Intel architectures. They demonstrate the ap-

plicability (low overhead) of the Intel TSX on a CLOMP-TM [202], STAMP [159], and RMS-

TM [114] benchmarks, a few real-world HPC programs, and a parallel user-level TCP/IP

stack. They elide the locks with HTM inside the synchronization libraries used by the

aforementioned codes. If the transactional execution fails repeatedly, then they fall back

to explicitly acquiring the locks to ensure forward progress. They used a retry count of

five before falling back to a lock-based mutual exclusion for their workloads. They hand

optimize certain workloads by using lockset elision and transactional coarsening to achieve

better performance. They observed a significant implementation challenge in porting codes

with condition variables to work with HTM. From our experience porting a few applications

to use the HMCS lock, we concur with the findings of Yoo et al. that the condition variables

make the porting harder.

Nakaike et al. [163] compare the HTM implementation available in four hardware archi-

tectures: Blue Gene/Q, zEnterprise EC12, Intel Haswell, and POWER8 via the STAMP [159]

benchmark. Nakaike et al. employ a more sophisticated strategy of retrying a transaction

several times based on the failure code before falling back to taking a global lock; our

237

HTM-based locks can adopt their retry strategies. They demonstrate that no single HTM

implementation is more scalable than the other in all of the benchmarks.

7.3.9 Analytical study of lock characteristics

There is limited prior work in analytical modeling of lock throughput. Boyd-Wickizer et

al. [27] use Markov models for ticket-based spin locks to reason about an observed collapse in

the performance of several threaded applications on Linux. We are unaware of any analytical

modeling of lock fairness. Buhr et al. [33] conduct an empirical study of the fairness of

various locks. To the best of our knowledge, this dissertation is the first to provide combined

throughput-fairness analytical models for locks.

7.4 Redundancy elimination

Several compiler optimizations focus on reducing avoidable operations. Every execution

speed related optimization tries to reduce operation count and/or memory accesses. An ex-

haustive review of compiler optimizations is beyond the scope of this proposal. We highlight

some prior art related to our work.

Butts and Sohi [34] propose a hardware-based approach to detect useless operations

and speculatively eliminate instructions from future executions by maintaining a history

of instructions’ uselessness. In SPEC CPU2000 integer benchmarks, they found on average

8.85% useless operations, and their technique shows an average speedup of 3.6%. Their work

focuses on identifying and eliminating useless computations only; useless memory operations

are never eliminated since mis-prediction can lead to the violation of memory consistency.

Our approach is orthogonal to this; we do not track CPU-bound computations; instead, we

track reads and writes only. The authors do not mention if they can provide any actionable

feedback on the locations of useless computations whereas DeadSpy provides full context

to take informed action.

Archambault [12] discusses an inter-procedural data-flow analysis technique to eliminate

dead writes. In their patent, they suggest merging liveness information for global variables

from basic blocks to create a set of live on exit (LOE) data structure for procedures. They

238

traverse the program call graph in depth-first order, propagating LOE through function

calls and returns. However, they do not discuss the e↵ectiveness of their technique. Being a

static analysis technique, we suspect it has limitations when dealing with aggregate types,

dynamic loading, and aliasing. In contrast, DeadSpy, which uses a dynamic technique,

cannot distinguish between dead for this program input and live for some other input.

Gupta et al. [79] have proposed “predication-based sinking”—a cost-benefit based algo-

rithm to move partially dead code from hot paths to infrequently executed regions. With

profiling information, this technique can eliminate the intra-procedural dead writes.

The shadow memory technique, presented in our implementation, is used in several well-

known tools such as Eraser [200] for data race detection, TaintCheck [170] for taint analysis,

and Memcheck [207] for dangerous memory use detection. Nethercote et al. [167] present

techniques for e�ciently shadowing every byte of memory. Like their implementation, our

shadow memory implementation also optimizes for common cases.

7.5 Call-path collection and data-centric attribution

We discuss related work in call-path collection in Section 7.5.1 and related work in data-

centric attribution in Section 7.5.2.

7.5.1 Techniques for call-path collection

There are two principal techniques used to collect call-paths in an execution: unwinding the

call stack and maintaining a shadow call stack.

Call stack unwinding on x86 architectures walks procedure frames on the call stack using

either compiler-recorded information (e.g., libunwind [161]) or results from binary analysis

(e.g., HPCToolkit [2]). Stack unwinding does not require instrumentation and it does

not maintain state information at each call and return. As a result, it adds no execution

overhead, except when a stack trace is requested. This technique is well suited for coarse-

grain execution monitoring, e.g., sampling-based performance tools and debuggers. Stack

unwinding on each executed instruction, however, would frequently gather a slowly changing

calling-context prefix at unacceptably high overhead.

239

Stack shadowing involves maintaining calling context as the execution unfolds. Instru-

menting every function entry and exit, either at compile time or using binary rewriting,

enables maintaining a shadow stack. Scalasca [75] and TAU [147], among other tools, em-

ploy a shadow stack. The advantage of stack shadowing is that the call-path is ready at

every instant; and hence the call-path can be collected in a constant time. Stack shadowing

is well suited for FEM tools. A disadvantage of stack shadowing is that the instrumentation

of calls and returns adds overhead. Furthermore, it is not stateless, and it requires extra

space to maintain the shadow stack.

Combining call stack unwinding and stack shadowing yields hybrid call-path collection

techniques explored by Liu et al. [135] and Szebenyi et al. [220].

Dyninst [32] provides a stack walker API that can be queried on any instruction. Since

DynInst uses unwinding for call-path collection, the overhead of doing so on each instruction

makes it infeasible for FEM tools.

Valgrind [168] also provides a stack-unwinding framework for use by client tools that

is unsuitable for fine-grained call-path collection. Callgrind, a Valgrind tool, maintains a

shadow stack, which makes it possible to recover call-paths at a finer grain. However, instead

of maintaining a CCT, Callgrind maintains a directory of call-paths at greater expense.

Furthermore, the shadow stack maintained by Callgrind is not exported for use by other

Valgrind tools.

Although at one time DynamoRio maintained a “software return stack” for improving

branch prediction [30], it was judged unsuccessful; and a call-path abstraction was never

made available as part of the tool’s interface.

Whole Program Path (WPP) [126] is a technique to capture a program’s inter-procedural

control flow for the entire execution. Unlike call-path collection, which is a profiling mecha-

nism, WPP is a trace collection mechanism. Since traces are more exhaustive than profiles,

one can reconstruct call-paths from traces. Since traces can grow large, WPP performs an

online compression of traces using the SEQUITUR hierarchical compression algorithm [169],

which builds a context-free grammar for a string. WPP is useful for post-mortem analysis of

execution for hot-path detection. WPP is not suitable for collecting contextual information

for each interesting event such as a dead write collected throughout the execution since one

240

needs to maintain a prohibitively large number of unique markers that point into a WPP.

E�cient and compact calling context collection has attracted research interest in the

recent times. Bond and McKinley [25] proposed an approach to maintain the calling context

probabilistically. Instrumenting each call site and using a non-commutative hash function,

allows them to maintain an integer value (32-bit or 64-bit) that uniquely represents the

current calling context with minimum hash collisions Their overhead of instrumentation

is under 3% on average for Java programs. D’Elia et al. [60] have developed an e�cient

algorithms for pruning large CCT’s on the fly and maintaining a “Hot Calling Context

Tree” (HCCT)—a subtree of the CCT that includes only hot nodes and their ancestors.

They apply Cormode and Hadjieleftheriou’s algorithm of finding frequent items in a data

stream [56] to identify hot call-paths. HCCT technique is valuable for performance analysis

tools; however, it may be limited in its use in correctness tools (e.g., data race detection),

where call-paths leading to a bug may not appear on the hot paths.

7.5.2 Techniques for data-centric attribution

Performance tools such as MemProf [122], Memphis [151], and HPCToolkit [134] employ

data-centric attribution to diagnose memory-related bottlenecks. Memspy [150] monitors

memory accesses using a cache simulator. Memspy attributes accesses to only heap variables.

In many programs, static variables are also of interest. MACPO [193] uses LLVM [139] to

instrument memory accesses and attribute accesses to variables. Though MACPO-generated

code has comparatively low overhead (under 6⇥), it requires compilation with LLVM, and it

is problematic to attribute costs in dynamically loaded libraries that are not compiled with

LLVM. Unlike MACPO, CCTLib works with any x86 compiler. Finally, ThreadSpotter [198]

employs a “last write” method for data-centric attribution. It tracks store operations and

uses them to identify variables at the source code level. This technique, which has an

overhead of under 20%, leverages the fact that usually there is only one store (LHS value)

in a source line.

241

Chapter 8

Conclusions and Future Work

I think and think for months and years. Ninety-nine

times, the conclusion is false. The hundredth time I

am right.

Albert Einstein

In this dissertation, we explored the implications of modern computer architectures on the

application software performance. Rapid hardware advancements, explosion of parallelism,

heterogeneity of processing cores, and deep memory hierarchies, make obtaining performance

with modern architectures a daunting challenge. Partitioning of work, overheads of paral-

lelism, choice of algorithms and data structures, design of abstractions, and characteristics

of an underlying architecture have profound influence on the performance of an application.

We took a top-down approach to analyzing and improving the performance of an applica-

tion in this dissertation. First, we explored the problem of systemic idleness arising primar-

ily from improper work partitioning. Second, we explored the problem of synchronization

overheads arising from barriers and locks. Third, we explored the problem of performance

overheads arising from wasteful memory accesses. Throughout this dissertation, we followed

the philosophy of attributing performance to its source code along with its calling context.

In the context of idleness analysis, this thesis demonstrated that the well-known blame

shifting paradigm is an e↵ective way to diagnose performance problems on accelerated archi-

tectures. Lightweight sampling-driven approach for profiling and tracing is useful for diag-

nosing not only software problems but also hardware problems. While we developed several

strategies to work around limitations of accelerator hardware and software, we strongly be-

lieve that the accelerator vendors must provide better capabilities that a performance tool

can leverage. The success of future accelerated software applications relies on the success of

242

performance tools for accelerated architectures.

Our blame-shifting technique identifies a “first-order” suspect. The true culprit, however,

may be further removed. Blaming kernels instantaneously proved useful in our experience.

However, future exascale applications might employ more asynchrony and need more sophis-

ticated analysis to identify predecessors that delayed a GPU kernel charged using instanta-

neous blaming. Unifying our CPU-GPU blame shifting with the blame-shifting techniques

for work-stealing and lock contention is yet another avenue for our future work.

In the context of the overhead of barrier synchronization, we developed a context-

sensitive, dynamic program analyses and transformation schemes to elide unnecessary bar-

riers in Partitioned Global Address Space programs. While we expected some redundant

barriers in NWChem, the magnitude (60% redundant barriers) was surprising to everybody,

including NWChem experts. Our runtime technique for barrier elision saves about 14%

execution time, which is a respectable performance gain for large scientific executions that

consume millions of machine hours. Since scientific codes are evolving towards multi-physics

multi-scale simulations and increasingly using PGAS or one-sided communication, it is likely

that redundant synchronization will become more prevalent.

While this dissertation explored redundant barriers in distributed memory parallel pro-

grams, other venues of redundancy include barriers in shared-memory programs. We also

foresee eliminating redundant memory fences and converting blocking communication into

non-blocking communication as other extensions to our barrier elision work.

In the context of locks, we developed a NUMA-aware lock that delivers top performance on

machines with deep and distributed memory hierarchies. Our work is the first one to develop

analytical models for throughput and fairness for queuing locks. Analytically modeling

hierarchical queuing locks was particularly challenging. Our analytical models provide insight

into properties of hierarchical lock designs. Experiments confirm the accuracy of our models.

On systems with more than two levels of NUMA hierarchy, hierarchical MCS (HMCS) locks

deliver high throughput with significantly less unfairness than the previously designed two-

level locks. Di↵erences in access latencies between NUMA domains at di↵erent levels of a

hierarchy determine what levels of the hierarchy are worth exploiting. Given a measure of the

passing time at each level of a hierarchy, our models show how to pick cohorting thresholds

243

that deliver a desired fraction of the maximum throughput.

We realized that a fixed-depth HMCS lock could hurt the performance of uncontended

lock acquisition, especially when the hierarchy is deep. We addressed this problem with a

combination of a fast-path and hysteresis techniques that make our hierarchical lock usually

match the performance of an ideal hierarchical queuing lock for any contention level—low,

medium, or high. We also explored the hardware transactional memory facility available in

IBM POWER8 architecture and demonstrated the necessity of sophisticated locality-aware

software mutual-exclusion schemes.

Our current implementation of the adaptive HMCS lock (AHMCS) uses hysteresis to

move one level at a time in the locking hierarchy. We already have su�cient information to

skip multiple levels of a hierarchy to improve our design. The AHMCS lock is a competitive

algorithm that switches between various algorithms. We believe exploring the complexity

bounds of the AHMCS lock, analogous to proving the bounds of an adaptive scheduling

algorithm [4, 5, 219], will strengthen our design.

The NUMA-aware HMCS lock discussed in this dissertation does not allow a thread to

abort an acquisition if the wait is too long. It is desirable to add timeout capability to locks

analogous to [63, 205]. One can enhance the HMCS lock with the timeout capability. Besides

providing the timeout capability, proving the correctness of such protocols is an important

challenge.

While our experiments for locks to date were conducted on shared memory platforms,

our work was motivated by distributed-memory systems that use Remote Direct Memory

Access (RDMA) primitives to implement system-wide queueing locks. The latency of RDMA

operations between nodes is much higher than the latency of loads and stores within nodes.

We believe that HMCS locks are the best way to achieve high throughput on such systems.

Implementing HMCS locks for such systems remains future work.

In the context of wasteful memory accesses, we developed a tool to pinpoint and quantify

dead writes in an execution. We showed that several commonly used programs have surpris-

ingly large fractions of dead writes. Significant amount of dead writes in flagship codes such

as gcc and NWChem was surprising even for their expert developers.

The pervasiveness of dead writes suggests a new opportunity for performance tuning. We

244

recommend investigating and eliminating avoidable memory operations as an important step

in performance tuning to identify opportunities for code restructuring. While fine-grained

performance monitoring may introduce a high runtime overhead, executing programs with

small representative workloads will help uncover regions of ine�ciencies quickly.

One can develop several other fine-grained monitoring tools that can identify wasteful

resource consumption. It is also conceivable to reduce a fine-grain monitoring tool’s overhead

by employing a combination of sampling and static binary analysis.

Finally, recognizing the importance of contextual performance attribution, this disser-

tation attributed performance metrics to source code and data objects, in context. We

enhanced HPCToolkit’s calling context performance attribution to GPU tasks. We de-

veloped a mechanism to pinpoint redundant barriers in their context, which also provided

an avenue to optimize redundant barriers in their calling context. We developed DeadSpy

to pinpoint dead writes in their calling contexts.

Fine-grained execution profiling and attributing such profiles to calling contexts was

perceived to be infeasible prior to our work in this dissertation. In this dissertation, we

developed an open-source library for fine-grained performance attribution to calling context

and data objects in the Pin binary analysis framework. This work enables several fine-

grained instruction-level execution-monitoring tools used in performance analysis, software

correctness, security, and other domains, to deliver detailed diagnostic feedback. Compared

to state-of-the-art open-source Pin tools for call-path collection, our library is richer in infor-

mation, more accurate even for programs with complex control flow and does so with lower

overhead. With our library, one can collect call-paths and attribute memory accesses to data

objects on every executed machine instruction even for reasonably long-running programs.

Our library has modest runtime overhead and scales well when used on multithreaded codes.

Throughout this dissertation, we followed the philosophy of building sound principles of

performance measurement and attribution. Once the causes of performance problems were

identified, in each application we investigated, we addressed the performance problems on a

case-by-case basis. Some solutions were tailored for an application (e.g., LULESH), whereas

some others were generic algorithms (e.g., the HMCS lock).

The success of software applications depends on their performance. It would not be an

245

understatement to say that for computationally intensive applications on modern parallel

systems, performance is as important as correctness.

246

Appendix A

Implementation of FP-AHMCS locks

In this appendix, we provide the implementation details of the adaptive HMCS locks. Sec-

tion A.1 and Section A.2 describe the implementation details of the FP-EH-AHMCS (fast-

path augmented eager hysteresis HMCS) and FP-LH-AHMCS (fast-path augmented lazy

hysteresis HMCS) locks, respectively.

A.1 FP-EH-AHMCS lock

As discussed previously in Section 4.9, an AHMCS lock is a wrapper around the HMCS lock.

The AHMCS, however, modifies the HMCS lock to return a value indicating the tree depth

where the lock passing happened. The acquire protocol returns the depth where the thread

noticed a predecessor. The release protocol returns the depth where the thread noticed a

successor. Listing A.1 shows this modification. Lines marked with the “⌅” symbol indicate

the deviations from the HMCS lock previously shown in Listing 4.1.

The core FP-EH-AHMCS algorithm that monitors and adapts to contention is shown

in Listing A.2. During lock initialization, each thread obtains an FP-EH-AHMCSLock object.

Each FP-EH-AHMCSLock object has the following thread-local fields:

1. I: is a QNode used to enqueue with the HMCS protocol.

2. leafNode: is the lowest-level HNode in the HMCS tree where the thread begins its

enqueue process. This value will be di↵erent for threads of di↵erent domains.

3. curNode: is the current HNode in the HMCS tree, where the thread will be targeting

its enqueue process, initially leafNode.

4. childNode: is the HNode immediately below the curNode in the path from curNode to

leafNode in the HMCS tree, initially NULL.

247

5. rootNodeNode: is the root-level HNode.

6. tookFastPath: is a boolean indicating if the protocol took the fast-path.

7. realStartDepth: is the depth where the enqueue process actually started for the

current round.

8. realHNodeAtEnqueue: is the HNode where the enqueue process actually started for the

current round.

9. curDepth: is the current depth that the thread targets its acquisition protocol to start

in the HMCS tree, initially equal to the MaxDepth.

10. depthWaited: is an integer that records the depth where the acquisition protocol found

a predecessor.

11. depthPassed: is an integer that records the depth where the release protocol found a

successor.

The FP-EH-AHMCSLock class has the following static fields:

1. AHMCSAcquireFnTable: A table of function pointers to each level of the HMCS lock

acquire functions.

2. AHMCSReleaseFnTable: A table of function pointers to each level of the HMCS lock

release functions.

These pointers are needed so that the Acquire and Release functions of a FP-EH-AHMCSLock

object can dynamically switch from one level of acquisition to the other. We explain the key

details of the algorithm shown in Listing A.2 below.

In the acquire protocol, if both the current level lock (line 34) and the root level lock

(line 36) are uncontended, then the fast-path is taken. The fast-path invokes the the

HMCSh1i’s acquire routine (line 39). If there is child level and the current level has su�cient

contention (line 45), we eagerly decide to enqueue at the child level. An exception to this

norm is if the current tail pointer of the lock is same as the successor of the current thread

248

in the previous iteration; in such cases, the contention may not be high enough to justify

the detour through the child level.

In the default case, we enqueue at the current level (lines 53-54). We memorize the

“real” depth where we started the acquisition (realStartDepth) and the HNode at the point

of acquisition (realHNodeAtEnqueue). We invoke the base HMCS acquire protocol via a

pre-populated function pointer table and record the depth where the acquisition found a

predecessor in the variable depthWaited (line 58).

In the release protocol, if the tookFastPath flag is set (line 62) we invoke the HMCSh1i’s

release protocol and unset tookFastPath. Otherwise, we invoke the base HMCS release

protocol via a pre-populated function pointer table indexed at realStartDepth and use the

HNode as realHNodeAtEnqueue (line 71). This call allows us to obtain the depth where the

release protocol first found a successor, which we record in the variable depthPassed.

The key logic to adjust to contention appears in lines 76-96. If either the acquire phase

found a predecessor or the release phase found a successor closer to leaves (line 76), we

increment the depth by one and adjust the curNode and childNode accordingly. Otherwise,

if the acquire phase found a predecessor and the release phase found a successor closer to

the root (line 91), we decrement the depth (curDepth) by one and adjust the curNode and

childNode accordingly.

249

1 enum {COHORT_START =0x1 , ACQUIRE_PARENT=UINT64_MAX -1, WAIT=UINT64_MAX };
2 enum {UNLOCKED =0x0 , LOCKED =0x1};
3
4 template <int depth > struct HMCSLock {
5 inline int AcquireReal(HNode *L, QNode *I) {
6 // Prepare the node for use.
7 I->status = WAIT; I->next = NULL;
8 release fence
9 QNode * pred = (QNode *) SWAP (&(L->lock), I);

10 if (pred) {
11 pred ->next = I;
12 uint64_t curStatus;
13 while((curStatus=I->status) == WAIT); // spin
14 if(curStatus < ACQUIRE_PARENT)
15 ⌅ // Acquired lock from a predecessor at this depth
16 ⌅ return depth;
17 }
18 I->status = COHORT_START;
19 ⌅ // This level was acquired without contention , return the level where we first found a predecessor
20 ⌅ return HMCSLock <depth -1>:: AcquireReal(L->parent , &(L->node));
21 }
22
23 inline int Acquire(HNode *L, QNode *I) {
24 ⌅ int whereAcquired = AcquireReal(L, I);
25 acquire fence
26 ⌅ return whereAcquired;
27 }
28
29 inline int ReleaseReal(HNode *L, QNode *I) {
30 uint64_t curCount = I->status;
31 // Lower level releases
32 if (curCount == L->GetThreshold ()) {
33 // reached threshold , release to next level
34 HMCSLock <depth -1>:: ReleaseReal(L->parent , &(L->node));
35 release fence
36 // Ask successor to acquire next level lock
37 ReleaseHelper(L, I, ACQUIRE_PARENT);
38 ⌅ // if we passed many times , we can simply assume this one would have found a successor as well
39 ⌅ return depth;
40 }
41 // Not reached threshold
42 QNode * succ = I->next;
43 if (succ) { // Pass within cohorts
44 succ ->status = curCount + 1;
45 ⌅ // We passed to a successor at this depth
46 ⌅ return depth;
47 }
48 // else: No known successor , release to parent
49 ⌅ int whereReleased = HMCSLock <depth -1>:: ReleaseReal(L->parent , &(L->node));
50 release fence
51 // Ask successor to acquire next level lock , we can not make use of passing
52 ReleaseHelper(L,I, ACQUIRE_PARENT);
53 ⌅ // Did not observe the possibility of passing at this depth
54 ⌅ return whereReleased;
55 }
56
57 inline int Release(HNode *L, QNode *I) {
58 release fence
59 ⌅ return ReleaseReal(L, I);
60 }
61 };
62
63 inline void ReleaseHelper(HNode *L, QNode *I, uint64_t val){
64 QNode * succ = I->next;
65 if (succ) {
66 succ ->status = val; // pass lock
67 return;
68 } else {
69 if (CAS(&(L->lock), I, NULL))
70 return;
71 while((succ=I->next) == NULL); // spin
72 succ ->status = val; // pass lock
73 return;
74 }
75 }
76
77 template <> struct HMCSLock <1> {
78 inline int AcquireReal(HNode *L, QNode *I) {
79 // Prepare the node for use.
80 I->status = LOCKED; I->next = NULL;
81 QNode * pred = (QNode *) SWAP (&(L->lock), I);
82 if (!pred) {
83 I->status = UNLOCKED;
84 ⌅ // Acquired at depth 1
85 ⌅ return 1;
86 } else {
87 pred ->next = I;
88 while(I->status == LOCKED); // spin
89 ⌅ // Acquired at depth 1
90 ⌅ return 1;
91 }
92 }
93
94 inline int Acquire(HNode *L, QNode *I) {
95 ⌅ int whereAcquired = = AcquireReal(L, I);
96 acquire fence
97 ⌅ return whereAcquired;
98 }
99

100 inline int ReleaseReal(HNode *L, QNode *I) {
101 ⌅ return ReleaseHelper(L, I, UNLOCKED);
102 }
103
104 inline int Release(HNode *L, QNode *I) {
105 release fence
106 ⌅ return ReleaseReal(L, I);
107 }
108 };

Listing A.1: HMCS lock adapted to return the depth at which the lock was passed.

250

1 template <int MaxDepth >
2 struct FP -EH -AHMCSLock{
3 QNode I; // The node this thread will use for enqueueing
4 // Needed for taking the fast -path
5 HNode * rootNode; // Root lock of the HMCS tree
6 bool tookFastPath; // Did we take fast -path?
7 // Needed for adaption
8 HNode * leafNode; // The leaf HNode in the HMCS tree
9 HNode * curNode; // The current HNode in the HMCS tree , where the enqueue begins

10 HNode * childNode; // The HNode just one below the curNode (for checking the tail pointer and contentionCounter)
11 HNode * realHNodeAtEnqueue; // The real HNode where we enqueued ultimately (either curNode or childNode)
12 uint8_t curDepth; // Current depth where the enqueue beings
13 uint8_t realStartDepth; // // The real depth where we actually begun acquisition
14 uint8_t depthWaited; // depth where the acquisition protocol found a predecessor
15 uint8_t depthPassed; // depth where the release protocol found a successor
16 typedef int (* HMCSFnPtr)(HNode *, QNode *);
17 // A function pointer table to different levels of the HMCS acquire protocols
18 // Initialized with template metaprogramming in the actual code.
19 static HMCSFnPtr AHMCSAcquireFnTable[MaxDepth]={0, HMCSLock <1>::Acquire , ..., HMCSLock <MaxDepth >:: Acquire };
20 // A function pointer table to different levels of the HMCS release protocols
21 // Initialized with template metaprogramming in the actual code.
22 static HMCSFnPtr AHMCSReleaseFnTable[MaxDepth]={0, HMCSLock <1>::Release , ..., HMCSLock <MaxDepth >:: Release };
23
24 // Constructor
25 FP -EH -AHMCSLock(HNode * leaf) :
26 curNode(leaf), leafNode(leaf), childNode(NULL),
27 curDepth(MaxDepth),
28 tookFastPath(false){
29 // Initialize the root node
30 }
31 inline void Acquire (){
32 QNode * curTail;
33 // Is current level contended?
34 if((curTail=curNode ->lock) == NULL){
35 // Is root level contended?
36 if(rootNode ->lock == NULL){Slow -path
37 // Root is uncontended , take fast -path
38 tookFastPath = true;
39 HMCSLock <1>:: Acquire(rootNode , &I);
40 return;
41 }
42 // Root is contended , take slow -path
43 realStartDepth = curDepth;
44 realHNodeAtEnqueue = curNode;
45 } else if(childNode && (I->next && I->next != curTail)){
46 // current level is sufficiently contended
47 // Eagerly enqueue at a level below
48 realStartDepth = curDepth + 1;
49 realHNodeAtEnqueue = childNode;
50 } else {
51 // Either no child level or
52 // the current level is not sufficiently contended
53 realStartDepth = curDepth;
54 realHNodeAtEnqueue = curNode;
55 }
56 // Slow -path
57 // Call the HMCS lock acquire through the function pointer for the current depth of acquire (curDepth)
58 depthWaited = FP -EH-AHMCSLock :: AHMCSAcquireFnTable[realStartDepth](realHNodeAtEnqueue , &I);
59 }
60
61 inline void Release (){
62 if(tookFastPath) {
63 // Fast -path
64 HMCSLock <1>:: Release(rootNode , &I);
65 // Unset the fast -path for next round
66 tookFastPath = false;
67 return;
68 }
69 // Fast -path
70 // Call the HMCS lock release through the function pointer for the current depth of acquire (curDepth)
71 depthPassed = FP -EH-AHMCSLock :: AHMCSReleaseFnTable[curDepth](curNode , &I) ;
72
73 //Key logic to adjust to contention
74 // If we acquired and released closer to the leaf in the tree , compare to
75 // the currently noted depth , we recede a level closer to the leaf
76 if(childNode && ((depthWaited > curDepth) || (depthlFirstPassed > curDepth))){
77 curDepth ++;
78 curNode = childNode;
79 if(curDepth == maxLevels) {
80 childNode = NULL;
81 return;
82 }
83 // Find the new childNode
84 HNode * temp;
85 for(temp = leafNode; temp ->parent != childNode; temp = temp ->parent);
86 childNode = temp;
87 return;
88 }
89 // If we acquired and released closer to the root in the tree , compare to
90 // the currently noted depth , we rise a level closer to the root
91 if ((curDepth != 1) && ((depthWaited < curDepth) && (depthlFirstPassed < curDepth))){
92 curDepth --;
93 childNode = curNode;
94 curNode = curNode ->parent;
95 return;
96 }
97 }
98 };

Listing A.2: Eager Adaptive HMCS lock algorithm for adjusting to contention.

251

A.2 FP-LH-AHMCS lock

The FP-LH-AHMCS lock also uses the same modified HMCS lock shown in Listing A.1.

The FP-LH-AHMCS algorithm introduces a contentionCounter field in each HNode. The

core algorithm that monitors and adapts to contention is shown in Listing A.3. During

lock initialization, each thread obtains a FP-LH-AHMCSLock object. Each FP-LH-AHMCSLock

object has the same fields as the FP-EH-AHMCSLock. In addition, the FP-LH-AHMCSLock has

the following fields.

1. childContentionOnAcquire and childContentionOnRelease: are booleans that

record if there was contention within the subdomain before starting acquisition and

after ending the release, respectively.

2. lastSeenCounter: is an integer that remembers the value of the contentionCounter

seen at the childNode just before the acquisition process.

3. hysteresis: is an integer between MOVE UP and MOVE DOWN. Each time an uncon-

tended acquisition and release is performed, the hysteresis is decremented. Each

time a contended acquisition and release is performed, the hysteresis is incremented.

Otherwise, hysteresis is reset to STAY PUT, a value s.t., MOVE UP < STAY PUT <

MOVE DOWN.

We explain the key details of the algorithm shown in Listing A.3 below. The fast-path

mechanism is exactly same as previously shown in the FP-EH-AHMCS lock, hence we do

not show its details here (the fast-path logic would appear before lines 58 and 65). The

Acquire routine calls OnAcquire on line 58, which records whether there was contention in

the subdomain of the thread on entry. Then, the routine calls the base HMCS lock’s acquire

through the function pointer for the appropriate depth where the acquisition is supposed to

begin.

The Release routine calls the base HMCS lock’s release through the function pointer for

the appropriate depth where the release is supposed to begin. Then, the routine calls the

function OnRelease on line 58, which records whether there was contention in the subdomain

of the thread on exit.

252

Lines 68-101 contain the key logic to adjust to contention. If childContentionOnAcquire

and childContentionOnRelease are set, it means, there is enough contention in the sub-

domain that it may be possible to exploit locality by enqueuing at a level closer to leaves in

the HMCS tree (line 68). If the situation has been observed for MOVE DOWN number of times,

then the algorithm adjusts its fields so that next acquisition begins one level below (line 70).

Since the new childNode is not directly available, the algorithm climbs the tree from a leaf

to the current node looking for the new child node (lines 76-80). Once the level is changed,

the hysteresis is reset (line 81). If the hysteresis has not reached the threshold, then

it is decremented (line 83). Observe that, if on one round the indication is low contention

and the next round the indication is high contention, then the hysteresis resists spontaneous

changes.

A low contention is recognized via the same strategy as in the FP-EH-AHMCSLock lock

(line 87). If the low contention is observed for MOVE UP number of times, then the algorithm

adjusts its fields so that the next acquisition begins one level closer to the root (line 89).

Once the level is changed, the hysteresis is reset. If the hysteresis has not reached the

threshold, then it is incremented (line 95).

If the contention neither increases not decreases, we reset the hysterisis (line 100).

253

1 template <int MaxDepth >
2 struct FP -LH -AHMCSLock{
3 QNode I; // The node this thread will use for enqueueing
4 // Needed for taking the fast -path
5 HNode * rootNode; // Root lock of the HMCS tree
6 bool tookFastPath; // Did we take fast -path?
7 HNode * leafNode; // The leaf HNode in the HMCS tree
8 HNode * curNode; // The current HNode in the HMCS tree , where the enqueue begins
9 HNode * childNode; // The HNode just one below the curNode (for checking the tail pointer and contentionCounter)

10 uint8_t curDepth; // Current depth where the enqueue beings
11 bool childContentionOnAcquire; // Was there contention in the subdomain during entry (acquire)
12 bool childContentionOnRelease; // Was there contention in the subdomain during exit (release)
13 uint8_t depthWaited; // depth where the acquisition protocol found a predecessor
14 uint8_t depthPassed; // depth where the release protocol found a successor
15 bool hasCounterChanged; // has the counter value changed from acquire to release
16 int8_t hysteresis; // How many times a contention information is observed
17 uint64_t lastSeenCounter; // The contentionCounter at childNode on entry
18 typedef int (* HMCSFnPtr)(HNode *, QNode *);
19 // A function pointer table to different levels of the HMCS acquire protocols
20 // Initialized with template metaprogramming in the actual code.
21 static HMCSFnPtr AHMCSAcquireFnTable[MaxDepth]={0, HMCSLock <1>::Acquire , ..., HMCSLock <MaxDepth >:: Acquire };
22 // A function pointer table to different levels of the HMCS release protocols
23 // Initialized with template metaprogramming in the actual code.
24 static HMCSFnPtr AHMCSReleaseFnTable[MaxDepth]={0, HMCSLock <1>::Release , ..., HMCSLock <MaxDepth >:: Release };
25
26 // Constructor
27 FP -LH -AHMCSLock(HNode * leaf) :
28 hysteresis(STAY_PUT), curDepth(MaxDepth),
29 curNode(leaf), leafNode(leaf), childNode(NULL),
30 childContentionOnAcquire(false), childContentionOnRelease(false) {
31 // Setup
32 }
33
34 inline void OnAcquire (){
35 if (childNode) {
36 // Remember the contentionCounter seen at the entry
37 lastSeenCounter = ADD_AND_FETCH (&childNode ->contentionCounter , 1);
38 // If the tail pointer of the childNode is non -null , then there was contention during entry
39 childContentionOnAcquire = childNode ->lock != NULL;
40 } else {
41 childContentionOnAcquire = false;
42 }
43 }
44
45 inline void OnRelease (){
46 if (childNode) {
47 // Is the tail pointer of the childNode is non -null?
48 childContentionOnRelease = childNode ->lock != NULL;
49 // Has the contentionCounter changed?
50 hasCounterChanged = lastSeenCounter != childNode ->contentionCounter;
51 } else {
52 childContentionOnRelease = false;
53 hasCounterChanged = false;
54 }
55 }
56
57 inline void Acquire (){
58 OnAcquire (); // Record contention seen on acquire
59 // Call the HMCS lock acquire through the function pointer for the current depth of acquire (curDepth)
60 depthFirstAcquired = FP-LH -AHMCSLock :: AHMCSAcquireFnTable[curDepth](curNode , &I);
61 }
62
63 inline void Release (){
64 // Call the HMCS lock release through the function pointer for the current depth of acquire (curDepth)
65 depthFirstReleased = FP-LH -AHMCSLock :: AHMCSReleaseFnTable[curDepth](curNode , &I);
66 OnRelease (); // Record contention seen on release
67 //Key logic to adjust to contention
68 if(childNode && ((childContentionOnAcquire && childContentionOnRelease) || hasCounterChanged)){
69 // Have contention in my subdomain
70 if(hysteresis == MOVE_DOWN) { // Reached the threshold of contention
71 curDepth ++; // Move one level down
72 curNode = childNode;
73 if(curDepth == MaxDepth) {
74 childNode = NULL;
75 } else {
76 // Find the new childNode by walking up from the leafNode.
77 HNode * temp;
78 for(temp = leafNode; temp ->parent != childNode; temp = temp ->parent);
79 childNode = temp;
80 }
81 hysteresis = STAY_PUT; // Reset the hysteresis
82 } else { // Not reached the threshold
83 hysteresis --; // Decrement the hysteresis
84 }
85 return;
86 }
87 if ((curDepth != 1) && ((depthWaited < curDepth) && (depthPassed < curDepth)){
88 // No contention in my subdomain
89 if(hysteresis == MOVE_UP) { // Reached the threshold of no contention in my subdomain
90 curDepth --; // Move one level up in the HMCS tree
91 childNode = curNode;
92 curNode = curNode ->parent;
93 hysteresis = STAY_PUT;
94 } else { // Not reached the threshold
95 hysteresis ++; // Increment the hysteresis
96 }
97 return;
98 }
99 // Contention is just right enough to stay at the same level , hence reset the hysteresis

100 hysteresis = STAY_PUT;
101 }
102 };

Listing A.3: Lazy adaptive HMCS lock algorithm for adjusting to contention.

254

Bibliography

[1] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato. Power and Perfor-

mance Analysis of GPU-accelerated Systems. In Proceedings of the 2012 USENIX Con-

ference on Power-Aware Computing and Systems, HotPower’12, pages 10–10, Berkeley,

CA, USA, 2012. USENIX Association.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. HPCToolkit: Tools for Performance Analysis of Optimized Parallel

Programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,

April 2010.

[3] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel

Analysis of X10 Programs. In Proceedings of the 12th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’07, pages 183–193, New

York, NY, USA, 2007. ACM.

[4] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive Scheduling with Par-

allelism Feedback. In Proceedings of the Eleventh ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’06, pages 100–109, New

York, NY, USA, 2006. ACM.

[5] K. Agrawal, Y. He, and C. E. Leiserson. Adaptive Work Stealing with Parallelism

Feedback. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’07, pages 112–120, New York, NY, USA,

2007. ACM.

[6] A. M. Aji, L. S. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K. R. Bisset, J. Di-

nan, W.-c. Feng, J. Mellor-Crummey, X. Ma, and R. Thakur. On the E�cacy of

GPU-integrated MPI for Scientific Applications. In Proceedings of the 22nd Interna-

tional Symposium on High-performance Parallel and Distributed Computing, HPDC

’13, pages 191–202, New York, NY, USA, 2013. ACM.

[7] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E. Moreira,

B. Steinmacher-Burow, and Y. Zheng. Optimization of MPI Collective Communication

255

on BlueGene/L Systems. In Proceedings of the 19th Annual International Conference

on Supercomputing, ICS ’05, pages 253–262, New York, NY, USA, 2005. ACM.

[8] AMD Corp. AMD64 Architecture Programmer’s Manual, Volume 2: System Pro-

gramming. http://developer.amd.com/wordpress/media/2012/10/24593_APM_

v21.pdf, 2012.

[9] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance Counters

with Flow and Context Sensitive Profiling. In Proceedings of the ACM SIGPLAN 1997

Conference on Programming Language Design and Implementation, PLDI ’97, pages

85–96, New York, NY, USA, May 1997. ACM.

[10] J. H. Anderson and Y.-J. Kim. A New Fast-path Mechanism for Mutual Exclusion.

Distributed Computing, 14(1):17–29, Jan. 2001.

[11] Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory.

Chombo Website. https://seesar.lbl.gov/anag/chombo.

[12] R. G. Archambault. Interprocedural dead store elimination. http://www.patentlens.

net/patentlens/patent/US_7100156/en/, 08 2006. US 7100156.

[13] E. M. Asimakopoulou. cptnHook. https://github.com/emyrto/cptnHook, 2015.

[14] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-m. W. Hwu. E�cient Performance

Evaluation of Memory Hierarchy for Highly Multithreaded Graphics Processors. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’12, pages 23–34, New York, NY, USA, 2012. ACM.

[15] P. Balaji. MPICH 3.0.4 Released. https://www.mpich.org/2013/04/25/

mpich-3-0-4-released/.

[16] R. Balasubramonian, N. Jouppi, and N. Muralimanohar. Multi-Core Cache Hierar-

chies: Recent Advances. Synthesis Lectures on Computer Architecture. Morgan and

Claypool Publishers, 2011.

[17] T. Ball and J. R. Larus. Optimally Profiling and Tracing Programs. ACM Transactions

on Programming Languages and Systems (TOPLAS), 16(4):1319–1360, July 1994.

[18] L. A. Belady. A Study of Replacement Algorithms for a Virtual-storage Computer.

IBM Systems Journal, 5(2):78–101, June 1966.

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://seesar.lbl.gov/anag/chombo
http://www.patentlens.net/patentlens/patent/US_7100156/en/
http://www.patentlens.net/patentlens/patent/US_7100156/en/
https://github.com/emyrto/cptnHook
https://www.mpich.org/2013/04/25/mpich-3-0-4-released/
https://www.mpich.org/2013/04/25/mpich-3-0-4-released/

256

[19] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages

72–81, New York, NY, USA, 2008. ACM.

[20] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammar-

ling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK

User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

1997.

[21] R. Bod́ık and R. Gupta. Partial Dead Code Elimination Using Slicing Transformations.

In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language

Design and Implementation, PLDI ’97, pages 159–170, New York, NY, USA, 1997.

ACM.

[22] D. Bohme, M. Geimer, F. Wolf, and L. Arnold. Identifying the Root Causes of Wait

States in Large-Scale Parallel Applications. In Proceedings of the 2010 39th Interna-

tional Conference on Parallel Processing, ICPP ’10, pages 90–100, Washington, DC,

USA, 2010. IEEE Computer Society.

[23] D. Bohme, F. Wolf, B. de Supinski, M. Schulz, and M. Geimer. Scalable Critical-Path

Based Performance Analysis. In Parallel Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, pages 1330–1340, May 2012.

[24] M. Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. Solid-State

Circuits Society Newsletter, IEEE, 12(1):11–13, Winter 2007.

[25] M. D. Bond and K. S. McKinley. Probabilistic Calling Context. In Proceedings of the

22nd Annual ACM SIGPLAN Conference on Object-oriented Programming Systems

and Applications, OOPSLA ’07, pages 97–112, New York, NY, USA, 2007. ACM.

[26] M. D. Bond, V. Srivastava, K. S. McKinley, and V. Shmatikov. E�cient, Context-

sensitive Detection of Real-world Semantic Attacks. In Proceedings of the 5th ACM

SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS ’10,

pages 1:1–1:10, New York, NY, USA, 2010. ACM.

[27] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable Locks

are Dangerous. In Proceedings of Linux Symposium, 2012.

257

[28] M. Broberg, L. Lundberg, and H. Grahn. Performance Optimization Using Extended

Critical Path Analysis in Multithreaded Programs on Multiprocessors. Journal of

Parallel and Distributed Computing, 61(1):115–136, Jan. 2001.

[29] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Implementing molec-

ular dynamics on hybrid high performance computers - short range forces. Computer

Physics Communications, 182(4):898–911, 2011.

[30] D. Bruening. E�cient, Transparent, and Comprehensive Runtime Code Manipulation.

PhD thesis, Dept. of EECS, MIT, September 2004.

[31] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards Automatic Gener-

ation of Vulnerability-Based Signatures. In Proceedings of the 2006 IEEE Symposium

on Security and Privacy, SP ’06, pages 2–16, Washington, DC, USA, 2006. IEEE

Computer Society.

[32] B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. International

Journal of High Performance Computing Applications, 14(4):317–329, 2000.

[33] P. A. Buhr, D. Dice, and W. H. Hesselink. High-performance N-thread software solu-

tions for mutual exclusion. Concurrency and Computation: Practice and Experience,

27(3):651–701, 2015.

[34] J. A. Butts and G. Sohi. Dynamic dead-instruction detection and elimination. In

Proceedings of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS-X, pages 199–210, New York,

NY, USA, 2002. ACM.

[35] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for Subscripted

Variables. In Proceedings of the ACM SIGPLAN 1990 Conference on Programming

Language Design and Implementation, PLDI ’90, pages 53–65, New York, NY, USA,

1990. ACM.

[36] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the Level of Abstrac-

tion for Scalable and Accurate Parallel Multi-core Simulation. In Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, pages 52:1–52:12, New York, NY, USA, 2011. ACM.

[37] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The New Adventures of

Old X10. In Proceedings of the 9th International Conference on Principles and Practice

of Programming in Java, PPPJ ’11, pages 51–61, New York, NY, USA, 2011. ACM.

258

[38] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The New Adventures of

Old X10. In Proceedings of the 9th International Conference on Principles and Practice

of Programming in Java, PPPJ ’11, pages 51–61, New York, NY, USA, 2011. ACM.

[39] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance Locks for Multi-level

NUMA Systems. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP 2015, pages 215–226, New York, NY,

USA, 2015. ACM.

[40] M. Chabbi, W. Lavrijsen, W. de Jong, K. Sen, J. Mellor-Crummey, and C. Iancu.

Barrier Elision for Production Parallel Programs. In Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

2015, pages 109–119, New York, NY, USA, 2015. ACM.

[41] M. Chabbi, X. Liu, and J. Mellor-Crummey. Call Paths for Pin Tools. In Proceedings of

Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, pages 76:76–76:86, New York, NY, USA, 2014. ACM.

[42] M. Chabbi and J. Mellor-Crummey. DeadSpy: A Tool to Pinpoint Program Ine�cien-

cies. In Proceedings of the Tenth International Symposium on Code Generation and

Optimization, CGO ’12, pages 124–134, New York, NY, USA, 2012. ACM.

[43] M. Chabbi, K. Murthy, M. Fagan, and J. Mellor-Crummey. E↵ective Sampling-driven

Performance Tools for GPU-accelerated Supercomputers. In Proceedings of the In-

ternational Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’13, pages 43:1–43:12, New York, NY, USA, 2013. ACM.

[44] G. J. Chaitin. Register Allocation & Spilling via Graph Coloring. In Proceedings of the

1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’82, pages 98–105,

New York, NY, USA, 1982. ACM.

[45] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and the

Chapel Language. International Journal of High Performance Computing Applica-

tions, 21(3):291–312, Aug. 2007.

[46] S. Chamberlain. Using ld, The GNU linker. ftp://ftp.gnu.org/old-gnu/Manuals/

ld-2.9.1/html_mono/ld.html, 1994.

[47] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In Proceedings

of the 33rd Annual International Symposium on Computer Architecture, ISCA ’06,

pages 264–276, Washington, DC, USA, 2006. IEEE Computer Society.

ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html

259

[48] P. Charles, C. Grotho↵, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: An Object-oriented Approach to Non-uniform Cluster

Computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages

519–538, New York, NY, USA, 2005. ACM.

[49] C. Charlie and B. Emery. Coz: Finding Code that Counts with Causal Pro-

filing. https://web.cs.umass.edu/publication/docs/2015/UM-CS-2015-008.pdf,

March 2015.

[50] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman, V. Sarkar,

and Y. Yan. Integrating Asynchronous Task Parallelism with MPI. In Parallel Dis-

tributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages 712–

725, May 2013.

[51] G. Chen and P. Stenstrom. Critical Lock Analysis: Diagnosing Critical Section Bottle-

necks in Multithreaded Applications. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages

71:1–71:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[52] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing Replication, Communi-

cation, and Capacity Allocation in CMPs. In Proceedings of the 32Nd Annual Interna-

tional Symposium on Computer Architecture, ISCA ’05, pages 357–368, Washington,

DC, USA, 2005. IEEE Computer Society.

[53] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability Analysis of

SPMD Codes Using Expectations. In Proceedings of the 21st Annual International

Conference on Supercomputing, ICS ’07, pages 13–22, New York, NY, USA, 2007.

ACM.

[54] ComEx: Communications Runtime for Exascale. http://hpc.pnl.gov/comex/.

[55] K. Cooper, J. Eckhardt, and K. Kennedy. Redundancy Elimination Revisited. In

Proceedings of the 17th International Conference on Parallel Architectures and Com-

pilation Techniques, PACT ’08, pages 12–21, New York, NY, USA, 2008. ACM.

[56] G. Cormode and M. Hadjieleftheriou. Finding Frequent Items in Data Streams. Pro-

ceedings of the VLDB Endowment, 1(2):1530–1541, Aug. 2008.

[57] Cray. Using the GNI and DMAPP APIs, version S-2446-3103. http://docs.cray.

com/books/S-2446-3103/S-2446-3103.pdf, 2011.

https://web.cs.umass.edu/publication/docs/2015/UM-CS-2015-008.pdf
http://hpc.pnl.gov/comex/
http://docs.cray.com/books/S-2446-3103/S-2446-3103.pdf
http://docs.cray.com/books/S-2446-3103/S-2446-3103.pdf

260

[58] Dave Goodwin, Nvidia Corp. Personal communication.

[59] T. David, R. Guerraoui, and V. Trigonakis. Everything You Always Wanted to Know

About Synchronization but Were Afraid to Ask. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 33–48, New York,

NY, USA, 2013. ACM.

[60] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining Hot Calling Contexts in Small

Space. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’11, pages 516–527, New York, NY, USA,

2011. ACM.

[61] D. Dice, D. Hendler, and I. Mirsky. Lightweight Contention Management for E�cient

Compare-and-swap Operations. In Proceedings of the 19th International Conference on

Parallel Processing, Euro-Par’13, pages 595–606, Berlin, Heidelberg, 2013. Springer-

Verlag.

[62] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA Locks. In Proceed-

ings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’11, pages 65–74, New York, NY, USA, 2011. ACM.

[63] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General Technique for

Designing NUMA Locks. In Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’12, pages 247–256, New

York, NY, USA, 2012. ACM.

[64] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General Technique for

Designing NUMA Locks. ACM Trans. Parallel Comput., 1(2):13:1–13:42, Feb. 2015.

[65] P. C. Diniz and M. C. Rinard. Lock Coarsening: Eliminating Lock Overhead in

Automatically Parallelized Object-based Programs. Journal of Parallel and Distributed

Computing, 49(2):218–244, Mar. 1998.

[66] Dormando et al. Memcached. http://memcached.org/, 2015.

[67] Y. Dotsenko. Expressiveness, Programmability and Portable High Performance of

Global Address Space Languages. PhD thesis, Dept. of CS, Rice University, January

2007.

[68] T. Du↵. Tom Du↵ on Du↵’s Device. http://www.lysator.liu.se/c/duffs-device.

html.

http://memcached.org/
http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html

261

[69] DynInst API Developers. DynInst API Mailing List Archives. https://www-auth.

cs.wisc.edu/lists/dyninst-api/2013/msg00135.shtml, 2013.

[70] J. Enos, C. Ste↵en, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko,

J. Stone, and J. Phillips. Quantifying the impact of GPUs on performance and energy

e�ciency in HPC clusters. In Green Computing Conference, 2010 International, pages

317–324, Aug 2010.

[71] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson,

J. Kopnick, M. Higgins, and J. Reinhard. Cray Cascade: A Scalable HPC System

Based on a Dragonfly Network. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages 103:1–103:9,

Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[72] P. Fatourou and N. D. Kallimanis. Revisiting the Combining Synchronization Tech-

nique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, PPoPP ’12, pages 257–266, New York, NY, USA, 2012.

ACM.

[73] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5

Multithreaded Language. In Proceedings of the ACM SIGPLAN 1998 Conference on

Programming Language Design and Implementation, PLDI ’98, pages 212–223, New

York, NY, USA, 1998. ACM.

[74] GCC Team. The GNU Compiler Collection. http://gcc.gnu.org/.

[75] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The

Scalasca Performance Toolset Architecture. Concurrency Computation: Practice and

Experience, 22(6):702–719, Apr. 2010.

[76] Google Inc. Sparsehash, version 2.0.2. https://code.google.com/p/sparsehash/,

February 2012.

[77] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transactional Con-

tention Managers. In Proceedings of the Twenty-fourth Annual ACM Symposium on

Principles of Distributed Computing, PODC ’05, pages 258–264, New York, NY, USA,

2005. ACM.

[78] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling

policies for async-finish task parallelism. In Parallel Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on, pages 1–12, May 2009.

https://www-auth.cs.wisc.edu/lists/dyninst-api/2013/msg00135.shtml
https://www-auth.cs.wisc.edu/lists/dyninst-api/2013/msg00135.shtml
http://gcc.gnu.org/
https://code.google.com/p/sparsehash/

262

[79] R. Gupta, D. A. Berson, and J. Z. Fang. Path Profile Guided Partial Dead Code

Elimination Using Predication. In Proceedings of the 1997 International Conference

on Parallel Architectures and Compilation Techniques, PACT ’97, pages 102–, Wash-

ington, DC, USA, 1997. IEEE Computer Society.

[80] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun. On-the-fly Detection of Data

Races in OpenMP Programs. In Proceedings of the 2012 Workshop on Parallel and

Distributed Systems: Testing, Analysis, and Debugging, PADTAD 2012, pages 1–10,

New York, NY, USA, 2012. ACM.

[81] D. Hackenberg, G. Juckeland, and H. Brunst. Performance analysis of multi-level

parallelism: inter-node, intra-node and hardware accelerators. Concurrency and Com-

putation: Practice and Experience, 24(1):62–72, 2012.

[82] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Co-

teus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle,

N. Chist, and C. Kim. The IBM Blue Gene/Q Compute Chip. Micro, IEEE, 32(2):48–

60, March 2012.

[83] L. C. Harris and B. P. Miller. Practical Analysis of Stripped Binary Code. ACM

SIGARCH Computer Architecture News — Special issue on the 2005 workshop on

binary instrumentation and application, 33(5):63–68, Dec. 2005.

[84] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat Combining and the

Synchronization-parallelism Tradeo↵. In Proceedings of the Twenty-second Annual

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages

355–364, New York, NY, USA, 2010. ACM.

[85] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Computer Ar-

chitecture Newss, 34(4):1–17, Sept. 2006.

[86] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software Transactional

Memory for Dynamic-sized Data Structures. In Proceedings of the Twenty-second

Annual Symposium on Principles of Distributed Computing, PODC ’03, pages 92–101,

New York, NY, USA, 2003. ACM.

[87] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-

free Data Structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

263

[88] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.

Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,

R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An Overview of the

Trilinos Project. ACM Transactions on Mathematical Software (TOMS) - Special issue

on the Advanced Computational Software (ACTS) Collection, 31(3):397–423, Sept.

2005.

[89] P. Hicks, M. Walnock, and R. M. Owens. Analysis of Power Consumption in Mem-

ory Hierarchies. In Proceedings of the 1997 International Symposium on Low Power

Electronics and Design, ISLPED ’97, pages 239–242, New York, NY, USA, 1997. ACM.

[90] T. Hoefler. Evaluation of Publicly Available Barrier-Algorithms and Improvement of

the Barrier-Operation for large-scale Cluster-Systems with special Attention on Infini-

Band Networks, Apr. 2005.

[91] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-level

and Thread-level Parallelism Awareness. In Proceedings of the 36th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’09, pages 152–163, New York, NY,

USA, 2009. ACM.

[92] S. Huang, S. Xiao, and W. Feng. On the Energy E�ciency of Graphics Processing Units

for Scientific Computing. In Proceedings of the 2009 IEEE International Symposium on

Parallel&Distributed Processing, IPDPS ’09, pages 1–8, Washington, DC, USA, 2009.

IEEE Computer Society.

[93] IBM. Power ISA Version 2.06 Revision B. https://www.power.org/wp-content/

uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf, 2010.

[94] W. N. S. III and M. L. Scott. Contention Management in Dynamic Software Transac-

tional Memory, 2004.

[95] InfiniBand Trade Association. InfiniBand® Architecture Volume 1 and Volume

2. http://www.infinibandta.org/content/pages.php?pg=technology_public_

specification, 2013.

[96] Intel Corp. Intel Compilers. http://software.intel.com/en-us/articles/

intel-compilers/.

[97] Intel Corp. An Introduction to the Intel® QuickPath Interconnect.

http://www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html, 2009.

https://www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf
https://www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

264

[98] Intel Corp. Hotspots Analysis. https://software.intel.com/sites/

products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/

GUID-4D83FDF6-AD8C-478C-BE00-B7527EA3A897.htm, 2013.

[99] Intel Corp. Intel Pin. http://software.intel.com/en-us/articles/

pintool-downloads, 2013.

[100] Intel Corp. Intel® Xeon Phi Coprocessor–the Archi-

tecture. https://software.intel.com/en-us/articles/

intel-xeon-phi-coprocessor-codename-knights-corner, 2013.

[101] Intel Corp. 4th Generation Intel® Core Processor. https://software.intel.com/

en-us/haswell, 2015.

[102] B. L. Jacob. The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t

Fake It. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,

2009.

[103] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer. Adaptive

Insertion Policies for Managing Shared Caches. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages

208–219, New York, NY, USA, 2008. ACM.

[104] J. Je↵ers and J. Reinders. Intel Xeon Phi Coprocessor High Performance Programming.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[105] T. E. Jeremiassen and S. J. Eggers. Static Analysis of Barrier Synchronization in

Explicitly Parallel Programs. In Proceedings of the IFIP WG10.3 Working Confer-

ence on Parallel Architectures and Compilation Techniques, PACT ’94, pages 171–180,

Amsterdam, The Netherlands, 1994. North-Holland Publishing Co.

[106] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel Bench-

marks and its Performance. NAS Technical Report NAS-99-011, NASA Advanced

Supercomputing Division, 1999.

[107] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP Scalability Using Speculative

Lock Inheritance. Proceedings of the VLDB Endowment, 2(1):479–489, Aug. 2009.

[108] T. Johnson and K. Harathi. A Simple Correctness Proof of the MCS Contention-free

Lock. Information Processing Letters, 48(5):215–220, Dec. 1993.

https://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/GUID-4D83FDF6-AD8C-478C-BE00-B7527EA3A897.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/GUID-4D83FDF6-AD8C-478C-BE00-B7527EA3A897.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/amplifier/lin/ug_docs/GUID-4D83FDF6-AD8C-478C-BE00-B7527EA3A897.htm
http://software.intel.com/en-us/articles/pintool-downloads
http://software.intel.com/en-us/articles/pintool-downloads
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/haswell
https://software.intel.com/en-us/haswell

265

[109] A. Kamil and K. Yelick. Concurrency Analysis for Parallel Programs with Textually

Aligned Barriers. In Proceedings of the 18th International Conference on Languages

and Compilers for Parallel Computing, LCPC’05, pages 185–199, Berlin, Heidelberg,

2006. Springer-Verlag.

[110] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito, M. Gokhale, R. Haque,

R. Hornung, J. Keasler, D. Laney, E. Luke, S. Lloyd, J. McGraw, R. Neely, D. Richards,

M. Schulz, C. H. Still, F. Wang, and D. Wong. LULESH Programming Model and Per-

formance Ports Overview. Technical Report LLNL-TR-608824, Lawrence Livermore

National Laboratory, December 2012.

[111] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito, R. Haque,

D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still. Exploring Tra-

ditional and Emerging Parallel Programming Models using a Proxy Application. In

27th IEEE International Parallel & Distributed Processing Symposium (IEEE IPDPS

2013), Boston, USA, May 2013.

[112] I. Karlin, J. Keasler, and R. Neely. LULESH 2.0 Updates and Changes. Technical

Report LLNL-TR-641973, Lawrence Livermore National Laboratory, August 2013.

[113] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the Future

of Parallel Computing. Micro, IEEE, 31(5):7–17, Sept 2011.

[114] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I. Hur, and M. Valero. RMS-TM: A

Comprehensive Benchmark Suite for Transactional Memory Systems. In Proceedings

of the 2nd ACM/SPEC International Conference on Performance Engineering, ICPE

’11, pages 335–346, New York, NY, USA, 2011. ACM.

[115] C. Kim, D. Burger, and S. Keckler. Nonuniform cache architectures for wire-delay

dominated on-chip caches. Micro, IEEE, 23(6):99–107, Nov 2003.

[116] A. Kleen. Lock elision in the GNU C library. https://lwn.net/Articles/534758/,

2013.

[117] J. Knoop, O. Rüthing, and B. Ste↵en. Partial Dead Code Elimination. In Proceed-

ings of the ACM SIGPLAN 1994 Conference on Programming Language Design and

Implementation, PLDI ’94, pages 147–158, New York, NY, USA, 1994. ACM.

[118] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric Multi-level Blocking. In Pro-

ceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design

and Implementation, PLDI ’97, pages 346–357, New York, NY, USA, 1997. ACM.

https://lwn.net/Articles/534758/

266

[119] A. Kogan and E. Petrank. Wait-free Queues with Multiple Enqueuers and Dequeuers.

In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel

Programming, PPoPP ’11, pages 223–234, New York, NY, USA, 2011. ACM.

[120] A. Kogan and E. Petrank. A Methodology for Creating Fast Wait-free Data Structures.

In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’12, pages 141–150, New York, NY, USA, 2012. ACM.

[121] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cernohous, D. Miller,

J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and B. Steinmacher-Burrow. PAMI:

A Parallel Active Message Interface for the Blue Gene/Q Supercomputer. In Parallel

Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 763–

773, May 2012.

[122] R. Lachaize, B. Lepers, and V. Quéma. MemProf: A Memory Profiler for NUMA

Multicore Systems. In Proceedings of the 2012 USENIX Conference on Annual Tech-

nical Conference, USENIX ATC’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX

Association.

[123] P.-W. Lai, K. Stock, S. Rajbhandari, S. Krishnamoorthy, and P. Sadayappan. A

Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task

Partitioning. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’13, pages 13:1–13:10, New York,

NY, USA, 2013. ACM.

[124] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer

Systems (TOCS), 5(1):1–11, Jan. 1987.

[125] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling. High-

performance Concurrency Control Mechanisms for Main-memory Databases. Proc.

VLDB Endow., 5(4):298–309, Dec. 2011.

[126] J. R. Larus. Whole Program Paths. In Proceedings of the ACM SIGPLAN 1999

Conference on Programming Language Design and Implementation, PLDI ’99, pages

259–269, New York, NY, USA, 1999. ACM.

[127] H. Le, G. Guthrie, D. Williams, M. Michael, B. Frey, W. Starke, C. May, R. Odaira,

and T. Nakaike. Transactional memory support in the IBM POWER8 processor. IBM

Journal of Research and Development, 59(1):8:1–8:14, Jan 2015.

267

[128] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A

Spectrum of Policies That Subsumes the Least Recently Used and Least Frequently

Used Policies. IEEE Trans. Comput., 50(12):1352–1361, Dec. 2001.

[129] J. Lee, H. Kim, and R. Vuduc. When Prefetching Works, When It Doesn’T, and Why.

ACM Transactions on Architecture and Code Optimization, 9(1):2:1–2:29, Mar. 2012.

[130] C. E. Leiserson. The Cilk++ Concurrency Platform. In Proceedings of the 46th Annual

Design Automation Conference, DAC ’09, pages 522–527, New York, NY, USA, 2009.

ACM.

[131] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mc-

PAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and

Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 42, pages 469–480, New York, NY, USA,

2009. ACM.

[132] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format Reverse Engi-

neering Through Context-aware Monitored Execution. In Proceedings of Network and

Distributed System Security Symposium, 2008.

[133] X. Liu and J. Mellor-Crummey. Pinpointing data locality problems using data-centric

analysis. In Proceedings of the 9th Annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’11, pages 171–180, Washington, DC, USA,

2011. IEEE Computer Society.

[134] X. Liu and J. Mellor-Crummey. A Data-centric Profiler for Parallel Programs. In

Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’13, pages 28:1–28:12, New York, NY, USA, 2013.

ACM.

[135] X. Liu and J. Mellor-Crummey. Pinpointing data locality bottlenecks with low over-

head. In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE Inter-

national Symposium on, pages 183–193, April 2013.

[136] X. Liu and J. Mellor-Crummey. A Tool to Analyze the Performance of Multithreaded

Programs on NUMA Architectures. In Proceedings of the 19th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, PPoPP ’14, pages 259–272,

New York, NY, USA, 2014. ACM.

268

[137] X. Liu, J. Mellor-Crummey, and M. Fagan. A New Approach for Performance Analysis

of OpenMP Programs. In Proceedings of the 27th International ACM Conference on

International Conference on Supercomputing, ICS ’13, pages 69–80, New York, NY,

USA, 2013. ACM.

[138] X. Liu, K. Sharma, and J. Mellor-Crummey. ArrayTool: A Lightweight Profiler to

Guide Array Regrouping. In Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation, PACT ’14, pages 405–416, New York, NY,

USA, 2014. ACM.

[139] LLVM Compiler. http://www.llvm.org, 2013.

[140] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote Core Locking:

Migrating Critical-section Execution to Improve the Performance of Multithreaded

Applications. In Proceedings of the 2012 USENIX Conference on Annual Technical

Conference, USENIX ATC’12, pages 6–6, Berkeley, CA, USA, 2012. USENIX Associ-

ation.

[141] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via

Access Interleaving Invariants. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating Systems, pages

37–48, 2006.

[142] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri, and V. Sarkar. Delegated Iso-

lation. In Proceedings of the 2011 ACM International Conference on Object Oriented

Programming Systems Languages and Applications, OOPSLA ’11, pages 885–902, New

York, NY, USA, 2011. ACM.

[143] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH Queue Lock. In

Proceedings of the 12th International Conference on Parallel Processing, Euro-Par’06,

pages 801–810, Berlin, Heidelberg, 2006. Springer-Verlag.

[144] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’05, pages 190–200, New

York, NY, USA, June 2005. ACM.

[145] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on Heterogeneous Mul-

tiprocessors with Adaptive Mapping. In Proceedings of the 42nd Annual IEEE/ACM

http://www.llvm.org

269

International Symposium on Microarchitecture, MICRO 42, pages 45–55, New York,

NY, USA, 2009. ACM.

[146] P. S. Magnusson, A. Landin, and E. Hagersten. Queue Locks on Cache Coherent Mul-

tiprocessors. In Proceedings of the 8th International Symposium on Parallel Processing,

pages 165–171, Washington, DC, USA, 1994. IEEE Computer Society.

[147] A. Malony, S. Shende, W. Spear, C. Lee, and S. Biersdor↵. Advances in the TAU

Performance System. In Tools for High Performance Computing 2011, pages 119–130.

Springer Berlin Heidelberg, 2012.

[148] A. D. Malony, S. Biersdor↵, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich,

D. Poole, and C. Lamb. Parallel Performance Measurement of Heterogeneous Parallel

Systems with GPUs. In Proceedings of the 2011 International Conference on Parallel

Processing, ICPP ’11, pages 176–185, Washington, DC, USA, 2011. IEEE Computer

Society.

[149] J. F. Mart́ınez and J. Torrellas. Speculative Synchronization: Applying Thread-level

Speculation to Explicitly Parallel Applications. In Proceedings of the 10th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS X, pages 18–29, New York, NY, USA, 2002. ACM.

[150] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory System Bot-

tlenecks in Programs. In Proceedings of the 1992 ACM SIGMETRICS Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems, SIGMETRICS

’92/PERFORMANCE ’92, pages 1–12, New York, NY, USA, 1992. ACM.

[151] C. McCurdy and J. Vetter. Memphis: Finding and fixing NUMA-related performance

problems on multi-core platforms. In Proceedings of the Performance Analysis of Sys-

tems Software (ISPASS), 2010 IEEE International Symposium on, pages 87–96, March

2010.

[152] S. McFarling. Combining branch predictors. Technical report, Technical Report TN-36,

Digital Western Research Laboratory, 1993.

[153] S. A. McKee. Reflections on the Memory Wall. In Proceedings of the 1st Conference on

Computing Frontiers, CF ’04, pages 162–167, New York, NY, USA, 2004. Computer

Systems Laboratory, Cornell University.

[154] J. Mellor-Crummey. Final Report: Correctness Tools for Petascale Computing. Octo-

ber 2014.

270

[155] J. Mellor-Crummey and M. Scott. Algorithms for Scalable Synchronization on Shared-

Memory Multiprocessors. Technical Report UR CSD / TR342, University of Rochester.

Computer Science Department, 1990.

[156] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving Memory Hierarchy Per-

formance for Irregular Applications Using Data and Computation Reorderings. Inter-

national Journal of Parallel Programming, 29(3):217–247, June 2001.

[157] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on

Shared-memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–

65, February 1991.

[158] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-blocking and Blocking

Concurrent Queue Algorithms. In Proceedings of the Fifteenth Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC ’96, pages 267–275, New York,

NY, USA, 1996. ACM.

[159] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford Trans-

actional Applications for Multi-Processing. In Proceedings of the Workload Charac-

terization, 2008. IISWC 2008. IEEE International Symposium on, pages 35–46, Sept

2008.

[160] G. Moore. Progress In Digital Integrated Electronics. In Electron Devices Meeting,

1975 International, volume 21, pages 11–13, 1975.

[161] D. Mosberger et al. libunwind Project. http://www.nongnu.org/libunwind, 2013.

[162] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution Paths for Malware

Analysis. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP

’07, pages 231–245, 2007.

[163] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari. Quantitative

Comparison of Hardware Transactional Memory for Blue Gene/Q, zEnterprise EC12,

Intel Core, and POWER8. In Proceedings of the 42Nd Annual International Symposium

on Computer Architecture, ISCA ’15, pages 144–157, New York, NY, USA, 2015. ACM.

[164] G. Nakhimovsky. Debugging and Performance Tuning with Library Interposers. http:

//dsc.sun.com/solaris/articles/lib_interposers.html, July 2001.

[165] R. Narayanan, B. Azisikyilmaz, J. Zambreno, G. Memik, and A. N. Choudhary.

MineBench: A Benchmark Suite for Data Mining Workloads. In Proceedings of the

IEEE International Symposium on Workload Characterization, pages 182–188, 2006.

http://www.nongnu.org/libunwind
http://dsc.sun.com/solaris/articles/lib_interposers.html
http://dsc.sun.com/solaris/articles/lib_interposers.html

271

[166] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously Recording Pro-

gram Execution for Deterministic Replay Debugging. In Proceedings of the 32nd An-

nual International Symposium on Computer Architecture, ISCA ’05, pages 284–295,

Washington, DC, USA, 2005. IEEE Computer Society.

[167] N. Nethercote and J. Seward. How to Shadow Every Byte of Memory Used by a

Program. In Proceedings of the 3rd International Conference on Virtual Execution

Environments, VEE ’07, pages 65–74, New York, NY, USA, 2007. ACM.

[168] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic

Binary Instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’07, pages 89–100, June

2007.

[169] C. G. Nevill-Manning and I. H. Witten. Linear-Time, Incremental Hierarchy Inference

for Compression. In Proceedings of the Conference on Data Compression, DCC ’97,

pages 3–, Washington, DC, USA, 1997. IEEE Computer Society.

[170] J. Newsome and D. X. Song. Dynamic Taint Analysis for Automatic Detection, Anal-

ysis, and Signature Generation of Exploits on Commodity Software. In Proceedings of

the Network and Distributed System Security Symposium, San Diego, CA, USA, 2005.

The Internet Society.

[171] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy library

for distributed array libraries and compiler run-time systems. In Parallel and Dis-

tributed Processing, volume 1586 of Lecture Notes in Computer Science, pages 533–546.

Springer Berlin Heidelberg, 1999.

[172] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà. Ad-

vances, Applications and Performance of the Global Arrays Shared Memory Program-

ming Toolkit. International Journal of High Performance Computing Applications,

20(2):203–231, May 2006.

[173] Nvidia Corp. CUDA Tools SDK CUPTI User’s Guide DA-05679-001 v01, October

2011.

[174] Nvidia Corp. NVIDIA 2011 Global Citizenship Report. http://www.nvidia.com/

object/gcr-energy-efficiency.html, 2011.

[175] Nvidia Corp. NVIDIA CUDA C Programming Guide Version 4.1, October 2011.

http://www.nvidia.com/object/gcr-energy-efficiency.html
http://www.nvidia.com/object/gcr-energy-efficiency.html

272

[176] Nvidia Corp. Introduction to GPU Computing. https://www.olcf.ornl.gov/

wp-content/uploads/2013/02/Intro_to_GPU_Comp-JL.pdf, 2013.

[177] Nvidia Corp. Nvidia Visual Profiler. https://developer.nvidia.com/

nvidia-visual-profiler, January 2013.

[178] R. Odaira, J. G. Castanos, and H. Tomari. Eliminating Global Interpreter Locks in

Ruby Through Hardware Transactional Memory. In Proceedings of the 19th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’14, pages 131–142, New York, NY, USA, 2014. ACM.

[179] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific Application Perfor-

mance on Leading Scalar and Vector Supercomputing Platforms. International Journal

of High Performance Computing Applications, 2006.

[180] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a

Single-chip Multiprocessor. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

VII, pages 2–11, New York, NY, USA, 1996. ACM.

[181] Open Solaris Forum. Man solaris - getitimer (2). http://www.opensolarisforum.

org/man/man2/getitimer.html, June 2001.

[182] Y. Oyama, K. Taura, and A. Yonezawa. Executing Parallel Programs with Synchro-

nization Bottlenecks E�ciently. In Proceedings of the International Workshop on Par-

allel and Distributed Computing for Symbolic and Irregular Applications (PDSIA ’99).

Word Scientific, 1999.

[183] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the Accuracy of Dynamic Branch

Prediction Using Branch Correlation. In Proceedings of the Fifth International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS V, pages 76–84, New York, NY, USA, 1992. ACM.

[184] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented transaction

execution. Proc. VLDB Endow., 3(1-2):928–939, Sept. 2010.

[185] C. S. Park, K. Sen, and C. Iancu. Scaling Data Race Detection for Partitioned Global

Address Space Programs. In Proceedings of the 27th International ACM Conference

on International Conference on Supercomputing, ICS ’13, pages 47–58, New York, NY,

USA, 2013. ACM.

https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Intro_to_GPU_Comp-JL.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Intro_to_GPU_Comp-JL.pdf
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://www.opensolarisforum.org/man/man2/getitimer.html
http://www.opensolarisforum.org/man/man2/getitimer.html

273

[186] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: A Framework

for Deterministic Replay and Reproducible Analysis of Parallel Programs. In Proceed-

ings of the 8th Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO ’10, pages 2–11, New York, NY, USA, 2010. ACM.

[187] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige. Performance

Analysis of a Hybrid MPI/CUDA Implementation of the NAS-LU Benchmark. SIG-

METRICS Performance Evaluation Rev., 38(4):23–29, March 2011.

[188] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In

Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC ’03, pages 55–,

New York, NY, USA, 2003. ACM.

[189] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of

Computational Physics, 117(1):1–19, March 1995.

[190] D. J. Quinlan. ROSE: compiler support for object-oriented frameworks. Parallel

Processing Letters, 10(2/3):215–226, 2000.

[191] Z. Radovic and E. Hagersten. Hierarchical Backo↵ Locks for Nonuniform Commu-

nication Architectures. In Proceedings of the 9th International Symposium on High-

Performance Computer Architecture, HPCA ’03, pages 241–, Washington, DC, USA,

2003. IEEE Computer Society.

[192] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent

Multithreaded Execution. In Proceedings of the 34th Annual ACM/IEEE International

Symposium on Microarchitecture, MICRO 34, pages 294–305, Washington, DC, USA,

2001. IEEE Computer Society.

[193] A. Rane and J. Browne. Enhancing Performance Optimization of Multicore Chips and

Multichip Nodes with Data Structure Metrics. In Proceedings of the 21st International

Conference on Parallel Architectures and Compilation Techniques, PACT ’12, pages

147–156, 2012.

[194] J. Reinders. Intel® Architecture Instruction Set Extensions Programming Reference.

https://software.intel.com/sites/default/files/m/9/2/3/41604, 2012.

[195] J. Reinders. Transactional Synchronization in Haswell. https://software.intel.

com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell,

2012.

https://software.intel.com/sites/default/files/m/9/2/3/41604
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

274

[196] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-Wide Profiling: A

Continuous Profiling Infrastructure for Data Centers. IEEE Micro, pages 65–79, 2010.

[197] H. Richard. SQLite. http://www.sqlite.org/, 2015.

[198] Rogue Wave Software. ThreadSpotter, Manual, Version 2012.1. http://www.

roguewave.com/documents.aspx?Command=Core_Download&EntryId=1492, August

2012.

[199] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya, and

E. Witchel. TxLinux: Using and Managing Hardware Transactional Memory in an

Operating System. In Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-

ating Systems Principles, SOSP ’07, pages 87–102, New York, NY, USA, 2007. ACM.

[200] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs. ACM Transactions on Computer

Systems, 15:391–411, November 1997.

[201] W. N. Scherer, III and M. L. Scott. Advanced Contention Management for Dynamic

Software Transactional Memory. In Proceedings of the Twenty-fourth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248, New

York, NY, USA, 2005. ACM.

[202] M. Schindewolf, B. Bihari, J. Gyllenhaal, M. Schulz, A. Wang, and W. Karl. What

Scientific Applications Can Benefit from Hardware Transactional Memory? In Pro-

ceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis, SC ’12, pages 90:1–90:11, Los Alamitos, CA, USA, 2012. IEEE

Computer Society Press.

[203] F. Schmitt, J. Stolle, and R. Dietrich. CASITA: A Tool for Identifying Critical Op-

timization Targets in Distributed Heterogeneous Applications. In Parallel Processing

Workshops (ICCPW), 2014 43rd International Conference on, pages 186–195, Sept

2014.

[204] B. Schwarz, S. Debray, and G. Andrews. Disassembly of Executable Code Revisited.

In Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),

WCRE ’02, pages 45–, Washington, DC, USA, 2002. IEEE Computer Society.

[205] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks with Timeout. In

Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of

Parallel Programming, PPoPP ’01, pages 44–52, New York, NY, USA, 2001. ACM.

http://www.sqlite.org/
http://www.roguewave.com/documents.aspx?Command=Core_Download&EntryId=1492
http://www.roguewave.com/documents.aspx?Command=Core_Download&EntryId=1492

275

[206] J. Seward. bzip2. http://www.bzip.org.

[207] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined Value Errors with

Bit-precision. In Proceedings of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’05, pages 2–2, Berkeley, CA, USA, 2005. USENIX Association.

[208] SGI. SGI Altix UV 1000 System User’s Guide. http://techpubs.sgi.com/library/

manuals/5000/007-5663-003/pdf/007-5663-003.pdf.

[209] S. Sharma, S. Vakkalanka, G. Gopalakrishnan, R. Kirby, R. Thakur, and W. Gropp.

A Formal Approach to Detect Functionally Irrelevant Barriers in MPI Programs. In

Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume

5205 of Lecture Notes in Computer Science, pages 265–273. Springer Berlin Heidelberg,

2008.

[210] D. Shasha and M. Snir. E�cient and Correct Execution of Parallel Programs

That Share Memory. ACM Transactions on Programming Languages and Systems,

10(2):282–312, Apr. 1988.

[211] J. G. Siek et al. Boost Graph Library: User Guide and Reference Manual, The. Pearson

Education, 2001.

[212] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. Wiley

Publishing, 7th edition, 2005.

[213] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A Performance Analysis Framework for

Identifying Potential Benefits in GPGPU Applications. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’12, pages 11–22, New York, NY, USA, 2012. ACM.

[214] M. Sjalander, M. Martonosi, and S. Kaxiras. Power-E�cient Computer Architectures:

Recent Advances. Synthesis Lectures on Computer Architecture. Morgan and Claypool

Publishers, 2014.

[215] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of the ACM,

32(3):652–686, July 1985.

[216] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel. Cyclops Tensor Framework:

Reducing Communication and Eliminating Load Imbalance in Massively Parallel Con-

tractions. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on, pages 813–824, May 2013.

http://www.bzip.org
http://techpubs.sgi.com/library/manuals/5000/007-5663-003/pdf/007-5663-003.pdf
http://techpubs.sgi.com/library/manuals/5000/007-5663-003/pdf/007-5663-003.pdf

276

[217] F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix Computations on

Heterogeneous Multi-core and multi-GPU Systems. In Proceedings of the 26th ACM

International Conference on Supercomputing, ICS ’12, pages 365–376, New York, NY,

USA, 2012. ACM.

[218] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A Comprehensive

Strategy for Contention Management in Software Transactional Memory. In Proceed-

ings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’09, pages 141–150, New York, NY, USA, 2009. ACM.

[219] H. Sun, W.-J. Hsu, and Y. Cao. Competitive online adaptive scheduling for sets of par-

allel jobs with fairness and e�ciency. Journal of Parallel and Distributed Computing,

74(3):2180 – 2192, 2014.

[220] Z. Szebenyi, T. Gamblin, M. Schulz, B. De Supinski, F. Wolf, and B. Wylie. Rec-

onciling Sampling and Direct Instrumentation for Unintrusive Call-Path Profiling of

MPI Programs. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE

International, pages 640–651, May 2011.

[221] N. R. Tallent, J. Mellor-Crummey, M. Franco, R. Landrum, and L. Adhianto. Scalable

Fine-grained Call Path Tracing. In Proceedings of the International Conference on

Supercomputing, ICS ’11, pages 63–74, New York, NY, USA, 2011. ACM.

[222] N. R. Tallent and J. M. Mellor-Crummey. E↵ective Performance Measurement and

Analysis of Multithreaded Applications. In Proceedings of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’09, pages

229–240, New York, NY, USA, 2009. ACM.

[223] N. R. Tallent and J. M. Mellor-Crummey. Identifying Performance Bottlenecks in

Work-Stealing Computations. Computer, 42(12):44–50, Dec. 2009.

[224] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan. Binary Analysis for Mea-

surement and Attribution of Program Performance. In Proceedings of the 2009 ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’09, pages 441–452, New York, NY, USA, 2009. ACM.

[225] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing Lock Contention

in Multithreaded Applications. In Proceedings of the 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’10, pages 269–280, New

York, NY, USA, 2010. ACM.

277

[226] The Portland Group. PGI Optimizing Fortran, C and C++ Compilers and Tools.

http://www.pgroup.com/.

[227] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maxi-

mizing On-chip Parallelism. In 25 Years of the International Symposia on Computer

Architecture (Selected Papers), ISCA ’98, pages 533–544, New York, NY, USA, 1998.

ACM.

[228] Unknown. IBM POWER7. http://www.7-cpu.com/cpu/Power7.html, 2014.

[229] Valgrind Developers. Valgrind Mailing List. http://sourceforge.net/p/valgrind/

mailman/valgrind-developers/thread/1376648907.3420.16.camel@soleil/,

2013.

[230] M. Valiev et al. NWChem: A Comprehensive and Scalable Open-source Solution for

Large-scale Molecular Simulations. Computer Physics Communications, 181(9):1477–

1489, 2010.

[231] S. P. Vanderwiel and D. J. Lilja. Data Prefetch Mechanisms. ACM Computing Surveys

(CSUR), 32(2):174–199, June 2000.

[232] J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. McNally, J. Meredith,

J. Rogers, P. Roth, K. Spa↵ord, and S. Yalamanchili. Keeneland: Bringing Hetero-

geneous GPU Computing to the Computational Science Community. Computing in

Science Engineering, 13(5):90–95, Sept 2011.

[233] J. Vetter and A. Yoo. An Empirical Performance Evaluation of Scalable Scientific

Applications. In Supercomputing, ACM/IEEE 2002 Conference, pages 16–16, Nov

2002.

[234] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,

and M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional

Memories. In Proceedings of the 21st International Conference on Parallel Architectures

and Compilation Techniques, PACT ’12, pages 127–136, New York, NY, USA, 2012.

ACM.

[235] Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, and I. Neamtiu. DrDebug: De-

terministic Replay Based Cyclic Debugging with Dynamic Slicing. In Proceedings of

Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, pages 98:98–98:108, New York, NY, USA, 2014. ACM.

http://www.pgroup.com/
http://www.7-cpu.com/cpu/Power7.html
http://sourceforge.net/p/valgrind/mailman/valgrind-developers/thread/1376648907.3420.16.camel@soleil/
http://sourceforge.net/p/valgrind/mailman/valgrind-developers/thread/1376648907.3420.16.camel@soleil/

278

[236] S. Wen, X. Liu, and M. Chabbi. Runtime Value Numbering: A Profiling Technique to

Pinpoint Redundant Computations. In Proceedings of the 24th International Confer-

ence on Parallel Architectures and Compilation Techniques, 2015 (to appear), PACT

’15, 2015.

[237] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In Proceed-

ings of the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, PLDI ’91, pages 30–44, New York, NY, USA, 1991. ACM.

[238] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and

D. Brooks. A Dynamic Compilation Framework for Controlling Microprocessor En-

ergy and Performance. In Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 38, pages 271–282, Washington, DC, USA,

2005. IEEE Computer Society.

[239] C.-Q. Yang and B. Miller. Critical path analysis for the execution of parallel and

distributed programs. In Distributed Computing Systems, 1988., 8th International

Conference on, pages 366–373, Jun 1988.

[240] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed

Computing, 9(1):51–60, 1995.

[241] T.-Y. Yeh and Y. N. Patt. Alternative Implementations of Two-level Adaptive Branch

Prediction. In Proceedings of the 19th Annual International Symposium on Computer

Architecture, ISCA ’92, pages 124–134, New York, NY, USA, 1992. ACM.

[242] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of Intel®

Transactional Synchronization Extensions for High-performance Computing. In Pro-

ceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis, SC ’13, pages 19:1–19:11, New York, NY, USA, 2013. ACM.

[243] X. Yu, Z. He, and B. Hong. On adaptive contention management strategies for software

transactional memory. In 2012 IEEE 10th International Symposium on Parallel and

Distributed Processing with Applications (ISPA), pages 24–31, July 2012.

[244] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity While Hiding

Wire Delay in Tiled Chip Multiprocessors. In Proceedings of the 32Nd Annual Interna-

tional Symposium on Computer Architecture, ISCA ’05, pages 336–345, Washington,

DC, USA, 2005. IEEE Computer Society.

279

[245] Y. Zhang and E. Duesterwald. Barrier Matching for Programs with Textually Un-

aligned Barriers. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’07, pages 194–204, New York, NY,

USA, 2007. ACM.

[246] Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency Analysis for Shared Memory

Programs with Textually Unaligned Barriers. In Languages and Compilers for Parallel

Computing, pages 95–109. Springer-Verlag, Berlin, Heidelberg, 2008.

[247] Y. Zhang and J. D. Owens. A Quantitative Performance Analysis Model for GPU

Architectures. In Proceedings of the 2011 IEEE 17th International Symposium on

High Performance Computer Architecture, HPCA ’11, pages 382–393, Washington,

DC, USA, 2011. IEEE Computer Society.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Performance challenges
	Insufficiency of state-of-the-art performance analysis techniques
	Underutilization of resources in parallel programs
	Synchronization overhead in parallel programs
	Memory accesses overhead in a thread of execution
	Performance variation of the same code in different contexts

	Thesis statement
	Contributions
	Roadmap

	Assessing Idle Resources in Hybrid Program Executions
	Motivation and overview
	Contributions
	Chapter roadmap
	Background
	Terminology
	Measurement challenges on heterogeneous platforms
	CUDA and CUPTI overview
	HPCToolkit overview

	New analysis techniques
	Idleness analysis via blame shifting
	Stall analysis

	Implementation
	Basic CPU-GPU blame shifting
	Deferred blame shifting
	Blame shifting with multiple GPU streams
	Blame shifting with multiple CPU threads
	Blame attribution for shared GPUs
	A limitation of current implementation
	Lightweight traces for hybrid programs

	Evaluation
	Case study: LULESH
	Case study: LAMMPS
	Stalls on Titan and KIDS
	Overhead evaluation

	Discussion

	Eliding Redundant Barriers
	Motivation and overview
	Contributions
	Chapter roadmap
	The problem with synchronization
	Reasoning about barrier elision
	Ideal barrier elision
	Practical barrier elision

	Automatic barrier elision
	Guided barrier elision
	Barrier elision in NWChem
	NWChem scientific details
	NWChem code structure
	Instrumenting NWChem
	Managing execution contexts
	Portability to other applications

	NWChem application insights
	Performance evaluation
	Microbenchmarks
	NWChem production runs
	Memory overhead

	Discussion

	Tailoring Locks for NUMA Architectures
	Motivation and overview
	Contributions
	Chapter roadmap
	Terminology and background
	HMCS lock algorithm
	Correctness
	Discussion

	Performance metrics
	Throughput
	(Un)Fairness

	HMCS properties
	Fairness assurance of HMCS over C-MCSin
	Throughput assurance of HMCS over C-MCSout

	Experimental evaluation of the HMCS lock
	Evaluation on IBM Power 755
	Evaluation on SGI UV 1000

	Adaptive HMCS locks
	Making uncontended acquisitions fast with a fast-path
	Adapting to various contention levels using hysteresis
	Overlaying fast-path atop hysteresis in AHMCS

	Hardware transactional memory with AHMCS
	AHMCS algorithm with HTM
	Correctness
	Performance

	Evaluation of adaptive locks
	Utility of a fast-path
	Benefits of hysteresis
	Value of hysteresis and a fast-path
	Sensitivity to variable contention
	Evaluation of HTM on IBM POWER8

	Discussion

	Identifying Unnecessary Memory Accesses
	Motivation and overview
	Contributions
	Chapter roadmap
	Methodology
	Design and implementation
	Terminology
	Introduction to Pin
	Maintaining memory state information
	Maintaining context information
	Recording dead writes
	Reporting dead and killing contexts
	Attributing to source lines
	Accounting dead writes

	Experimental evaluation
	SPEC benchmarks
	OpenMP NAS parallel benchmarks

	Case studies
	Case study: 403.gcc
	Case study: 456.hmmer
	Case study: bzip2-1.0.6
	Case study: Chombo's amrGodunov3d
	Case study: NWChem's aug-cc-pvdz

	Discussion

	Attributing Fine-grain Execution Characteristics to Call-Paths
	Motivation and overview
	Contributions
	Chapter roadmap
	Background
	Call-path collection techniques
	Pin and call-path collection

	CCTLib methodology
	Call-path accuracy
	Call-path efficiency

	Design and implementation
	Collecting a CCT in Pin
	Data-centric attribution in CCTLib

	Evaluation
	Runtime overhead on serial codes
	Memory overhead on serial codes
	Scalability on parallel applications

	Discussion

	Related Work
	GPU performance analysis
	GPU-kernel performance analysis
	System-wide performance analysis
	Root-cause performance analysis

	Synchronization optimization
	Static analysis
	Dynamic analysis
	Lightweight call-path collection

	Shared-memory mutual exclusion algorithms
	Queuing locks
	Hierarchical locks
	Combining locks
	Dedicated server threads for locks
	Fast-path techniques for mutual exclusion
	Software-based contention management
	Hardware transactional memory for mutual exclusion
	Empirical evaluation of mutual exclusion techniques
	Analytical study of lock characteristics

	Redundancy elimination
	Call-path collection and data-centric attribution
	Techniques for call-path collection
	Techniques for data-centric attribution

	Conclusions and Future Work
	Implementation of FP-AHMCS locks
	FP-EH-AHMCS lock
	FP-LH-AHMCS lock

