A Study of the Stationary Configurations of the SStress Criterion
for Metric Multidimensional Scaling

Samuel W. Malone* Michael W. Trosset!

January 30, 2000

Abstract

It is widely believed that both the stress and the sstress criteria for metric multidimensional
scaling are plagued by the existence of nonglobal minimizers. At present, there is little theory
that enlightens this belief. Trosset and Mathar (1997) established that nonglobal minimizers
of the stress criterion can exist, while Glunt, Hayden, and Liu (1991) demonstrated that the
distance matrices of all configurations for which the gradient of the sstress criterion vanishes
lie on a certain sphere. This report extends existing theory in several directions. Emphasis is
placed on the more tractable case of the sstress criterion. Because the stress and sstress criteria
must be minimized by numerical optimization, one result that is of immediate practical value is
a simple device for improving the quality of the initial configurations from which optimization

cominences.
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1 Introduction

Multidimensional scaling (MDS) is a general term for techniques that construct configurations of
points in a target metric space from information about interpoint distances. In the case of two-way
MDS, the information is specified in the form of a dissimilarity matriz, i.e. a matrix A = (§;5)
such that é;; > 0, é;; = 0, and 9;; = d;;. Typically, the target metric space is p-dimensional
Euclidean space. In most applications, such as the reconstruction of molecular configurations from
information about interatomic distances (p = 3), the target dimension is small.

For a configuration of points zy,..., 2, € RP, the n X p configuration matriz X is the matrix
whose rows are the ). From X it is easy to compute the Euclidean interpoint distance matrix
D(X) = (di;). The goal of metric two-way MDS is to construct a configuration matrix for which
the interpoint distances d;; approximate the dissimilarities &;;.

Two popular ways of measuring the discrepancy between a distance matrix and a dissimilarity
matrix are the stress and sstress criteria. The former is based on the squared errors between the
distances and dissimilarities; the latter is based on the squared errors between the squared distances
and squared dissimilarities. Let

pe(D, ) = Y wigl(dig)” = (5:))

where the w;; are nonnegative weights. Write D = D(X) and let 0,(X) = p,(D(X)); then oy is
the metric stress criterion and oy is the metric sstress critrion.

In practice, one often sets each w,; = 1. This is the only case considered in this report. However,
one can use the weights either to accommodate missing data (by setting the appropriate w;; = 0)
or to weight more reliably measured dissimilarities more heavily.

The remaining sections of this report consider several issues related to the problem of minimizing
oy, with particular emphasis on the case of r = 2. In Section 2 we reprise the example constructed by
Trosset and Mathar (1997) to demonstrate that the stress criterion can have a nonglobal minimizer.
Somewhat to our surprise, this construction produces a saddle point of the sstress criterion, but
not a minimizer. In Section 3 we extend the critical point theorem of Glunt, Hayden, and Liu
(1991) from the special case of oy to general o,. We also establish several new properties. In
particular, we derive an explicit formula for the optimal dilation of a fixed configuration matrix.
In Section 4 we investigate the relation between classical MDS and the problem of minimizing the
sstress criterion. We focus on the use of the classical solution as an initial configuration from which
to begin optimizing oy and consider the extent to which optimally dilating the classical solution
improves the initial configuration. Section 5 concludes with some remarks on future research.

2 The Search for Nonglobal Minimizers

Because most algorithms for minimizing o, are designed to find local minimizers, the existence
and prevalence of nonglobal minimizers is of considerable importance. Trosset and Mathar (1997)
demonstrated the existence of a nonglobal minimizer of stress, but we are not aware that anyone
has formally demonstrated the existence of nonglobal minimizers of sstress. In this section, we
show that the example constructed by Trosset and Mathar (1997) for stress does not produce a
nonglobal minimizer of sstress. Indeed, we have been unable to construct a nonglobal minimizer of
sstress.



Following Trosset and Mathar (1997), let
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The configuration X* represents the unit square, with the vertices labeled counterclockwise from
the origin. The matrix of dissimilarities
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produces a global minimum of o4 (X*) = 0.
We now define an initial configuration

X% =

= O = O
[l == e

by relabelling the upper two vertices of the unit square. Trosset and Mathar (1997) reasoned that
the upper vertices would have to cross in order to converge to the global minimizer, but that crossing
would increase stress before decreasing it. Indeed, they demonstrated that the configuration

0
X =

O O

o0 2D

where b = (3 ++/3)/6 and ¢ = b\/2, is a nonglobal minimizer of ;.

We attempted an analogous construction for sstress. The matrix of squared dissimilarities
0 2

Ay =Dy (X*) =
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produces a global minimum of o3 (X™) = 0. We hypothesized the existence of a nonglobal minimizer
of the form of X; hence, for b,c € R, let

00
b 0
X(b,e)= 0 e
b ¢
Then
o3 (X (b)) = ||D2(X(b,c)) — Aol

= ||D2 (X (b,¢)) = Dy (X7
_ 4(()2—1)2—|—4(02—2)2—|—4(02—|—b2— 1)27



where || - ||z denotes the Frobenius norm. A nontrivial solution of the stationary equation

16D (202 — 2+ ¢2)

VUZ (X(b7 C)) = 16¢ (262 -3+ bz)

=0
is given by b =+/3/3 and ¢ = 28;
The Hessian matrix of o5(X (b, ¢)) is positive definite (its eigenvalues are approximately 91.7925

and 14.874), so X = X (b, ¢) is a local minimizer of oy(X (b, ¢)), a function of two real variables.

We hoped to find that

0 0
X _ Ty = b 0 )
x9=0 z3=2¢
T4 = b Ty = ¢
is also a local minimizer of oy(X (21,...,25)), a function of five real variables. In fact, X is a
stationary configuration (Voy(X) = 0), but it is not a local minimizer: the eigenvalues of the

Hessian matrix are approximately
(48.4053, 37.3879, 10.2383, 1.6043, —6.9689)".

Somewhat surprisingly, the construction of Trosset and Mathar (1997), which produces a nonlo-
cal minimizer of the stress criterion, does not produce a nonlocal minimizer of the sstress criterion.
Nor have we discovered another construction that does—the existence of nonglobal minimizers of
the sstress criterion remains an open question. The relative ease with which Trosset and Mathar
(1997) discovered a nonlocal minimizer of the stress criterion reinforces the popular belief that oy
tends to have more nonlocal minimizers than does o5.

3 Properties of Stationary Configurations

Glunt, Hayden, and Liu (1991) established the remarkable result that, for any fixed dissimilarity
matrix, all of the interpoint distance matrices generated by stationary configurations of the sstress
criterion with unit weights lie on the surface of a sphere. We proceed to extend this result from
the special case of r = 2 to the general case of r > 0. Throughout this section, (-, -) will denote the
Frobenius inner product and || - || will denote the Frobenius norm.

Let A = (4;;) denote a fixed dissimilarity matrix. Given a configuration matrix X, let D(X) =
(dij) denote the corresponding matrix of interpoint Euclidean distances. For r > 0, let A, = (4;)
and let D, (X) = (d};). We are interested in stationary configurations for the error criterion

0, (X) = [|D, (X) = A,
i.e. in configuration matrices X for which Vo, (X) = 0.
Theorem 1 (Generalized Critical Point Theorem) If Vo,(X) =0, then
(i) (Dr(X), Ar) = | D(X)1%
(i1) 1D (X)1* + 1o (X) = Ar[|* = [[A]J;
(i) If Vo, (Y) =0, then 0,.(X) < 0,.(Y) if and only if | D, (Y)|| < || D-(X)]|;

(
() |ID(X) = A, /2] = [|Ar/2]].



Proof: We introduce an arc in the space of configuration matrices,
alt) = o, (tX) = | D, (¢X) = A, = ¢ D, (X) - A
(| Dy (X)[* =267 (D, (X), A) + A
Differentiating, we obtain
o (t) = 20t 1| D, (X)|* = 20t~ (D, (X) , A, .
Because Vo, (X) = 0, we have /(1) = 0 and therefore
¥)|*

(D; (X),A;) =Dy (X)

which is (i).
Next, applying (1) we observe that
122 (X) = A" = 1D (D) = 2.(Dy (X), &) 1A = 1A = 2, (X
Rearranging terms produces (ii).
Now suppose that Vo,(X) = Vo,(Y) = 0. Applying (ii), we obtain
0 (X) =0, (¥) = D, (X) = A = D () = A
= [||Ar|| — D ()] - [||Ar|| — |, ()]
= [D- )" = D (X)),

from which (iii) follows immediately.
Finally,

1D, (X) = A2 = [ Dy (X)) = (Ds (X) , A + 1A, /2] = [|A, /2],

which is (iv). O

Part (iv) of Theorem 1 states that, for any fixed dissimilarity matrix A, the interpoint distance
matrices of all stationary configurations lie on the same sphere of radius ||A/2||, centered at A/2.
Theorem 1 does not address the existence of nonglobal minimizers, but part (iii) states that global
minimizers are those stationary configurations of maximal norm. This is a quite remarkable fact—
one that would seem to have profound implications for global optimization of o,.

Our next result was motivated by Theorem 1. Suppose that a configuration matrix X has been
proposed as a possible minimizer of o,. (For example, suppose that X has been proposed as the
initial configuration from which an iterative optimization method will start.) If (i) in Theorem 1 is
not satisfied, then X cannot be a minimizer of o,. The following theorem states that, by dilating
X so that (i) is satisfied, we necessarily decrease o,.

Theorem 2 (Dilation Theorem) Let A be a fized dissimilarity matriz, let X be a fized configura-
tion matriz for which ||[D(X)|| > 0, and consider the function oo : ® — R defined by a(t) = o, (tX).

Let Y
. (<Dr<x>7Ar>) g
1D (X))
Then

(i) D,(t*X) lies on the sphere described by (i) in Theorem 1; and

(1) t* is a global mimimizer of «.



Proof: To establish (i), we compute
1D (£°X) = A /2| 1D, (£ X)|I* = (Dy (" X), A +[1A,/2]?
= ()" IDAX)IF = (#) {Dr(X), Ar) + 1A, /2]
(Dr(X), A" (DX, A" o2
.o poop
= lav/2”,

which is (iv) in Theorem 1.
To minimize
a(t) = o,(tX) = ||D; (tX) = A ||* = ||t D, (X) = A, ||
27D, (X — 2t (D,(X), A} + A /2]

we first note that a(t) — oo as t — +oo. Hence, it suffices to consider the stationary points of «,
i.e. the values of t at which

o/ (1) = 2rt* 71 || D (X)) = 27t~ H(DL(X), A,

vanishes. By inspection o/(t) = 0 if and only if either ¢ = 0 or
r_ <‘DT($)7AT> — (t*)r
1D (X))
and ) )
o _ De(X), A7 (Dr(X), A)
a(t’) = 7~ — 2 7= 1A < A" = a(0).

1D (X)] 1D (X)]

Noting that «(t) depends on ¢ only through ¢", we conclude that ¢* is a global minimizer of a. O

Now we specialize to r = 2. The remainder of this section develops some additional theory
that we hope will lead to a better understanding of the stationary configurations of o5, the sstress
criterion. We require the following lemma.

Lemma 1 Suppose that p(t) = t* + bt> + ct? + dt + e, a quartic polynomial in t € R. Then
(1) If p'(0) = 0, then d = 0;
(1) If p'(0) = p/(1) = 0 and p(0) = p(1), then b= —2 and c = 1.

Proof: Differentiating, we obtain
P (t) = 4t> 4+ 3bt* + 2ct 4+ d
and p'(0) = d, hence (i). If, in addition,
0=p'(1)=4+43b4+2c+d=4+3b+2c (1)
and p(0) = p(1), hence,
e=p(0)=p(l)=14+b+c+d+e=14+b+c+e

and therefore

0=1+4+b+c, (2)
then the linear system defined by (1) and (2) has the unique solution b = —2 and ¢ = 1, which is
(i) O



Using Lemma 1, we proceed to investigate the behavior of o9 along the line segment that

connects two stationary configuration matrices.

Theorem 3 Let A be a fized dissimilarity matriz and suppose that Voy(X) = Voo (Y) = 0. Then

(Dy(X), H) = (D2(Y), H) = (Az, H),

where

H= %[DZ(X FY) = Dy(X) - Dy(V)].

Furthermore, if 02(X) = 03(Y), then

(Dy(X) = Dy(Y), Da (X + (1= 1)) = (2t — 1) [ Do(X)| = (D2(X), Da(Y))] ,

for every t € [0,1], and

(0101, (537)) = 1, (X3)).

Proof: First, define H = (h;;) by

i M@

Tik — 25k) (Yik — Yjk) -

Then
Dy (tX + (1 =8)Y) =t*Dy(X) +2t(1 — t)H + (1 — t)*Dy(Y)
and therefore
_ 1
S 2t(1—t)
Choosing t = 1/2, we obtain (4).
Now we study the quartic polynomial
Pt) = o2 (X +(1-DY)
= D2 (tX + (1= 1)Y) = Aof*
= [Da(X)+ 2t - H + (1 - )*Dy(Y) -
= [ Da(X)|F + 421 - | H|P + (1 - 1)
4t%(1 = 1) (Da(X), H) + 267 (1 = 1) (Do (X
4t(1 — t)> (Dy(Y), H) — 2t* (Dy(X), A) —
4t(1 — 1) (H, Ag) = 2(1 = 1)*(Da(Y), Ao) + || As®
= At* 4+ Bt*+Ct* + Dt + F,

D2 (EX + (1= 1)) = 2Dy(X) — (1 - £)2Da(Y)] .

()||+

1D
)s DoY) +

where

A = 2(Dy(X), DoY) = 4(Da(Y), H) + [|D2(X) | + | D2(Y)||* — 4(Da(X), H) + 4] H|?,

B = —4(D:(X),Da(Y)) +12(D(Y), H) — 4[| D2(Y)|* = 8| H|* + 4 (D2(X), H),
C = —12(Dy(Y), H)+ 4(H, Az) +2(Ds(X), Do(Y)) = 2(Da(Y), Az) + 6 || Do(Y)||* +
4| H|I* = 2(Da(X), Ao),

D = 4(Da(Y), H) —4(H,Az) — 4| Da(Y)[|* + 4(D2(Y), As),
E = |ID:(Y)[* = 2(Da(Y), Az) + | Ao

(3)

(4)



Because

A=||D2(X) = 2H|[" + || D2(X) — 2H|[* 4+ 2(D2(X), Dy(Y)) > 0
and p'(0) = 0 because Voa(Y) = 0, we can apply Lemma 1 to conclude that D = 0, i.e. that

(DoY), H) +(D2(Y), Ag) = (H, Ag) + | D2(Y)]* - (8)
Part (i) of Theorem 1 states that (Dy(Y), A,) = |[|[D2(Y)]|*; hence, equation (8) simplifies to
(DoY), H) = (Ao, H).. (9)

Because X and Y are interchangeable, we also have
(D2(X), H) = (Ag, H). (10)
Combining equations (10) and (9) gives (3).
Next, applying (3) with H represented as in (7), we see that
0 = 2t(1—t)(D2(X),H)—(Dy(Y), H)
= (Da(X) = DoY), Da (EX + (1= )Y) — 2D3(X) — (1 - 1)2Dy(Y))
= (Da(X) = Da(Y), Dy (X + (1 - 1)Y)) —
t*(Da(X) = Da(Y), Da(X)) = (1 = 1)*(D2(X) — D2(Y), Dy(X))

Because 03(X) = 02(Y), we conclude from part (iii) of Theorem 1 that ||[D(X)|| = [|D2(Y)|};
hence, that

(Da(X) = Dy(Y), Dy (X + (1 - 1)Y))

t2 | Da(X)|* — 2 (D2(X), Da(Y)) +
(1= )*(D2(X), Dao(Y)) = (1 = )* | Da(Y)|*
(2t = 1) [[D2(X)|I* = (2t — 1) (D2(X), Da(Y)),

which is (5).
Finally, if t = 1/2in (5), then

<D2(X) — Dy(Y), Dy <XJ2FY>> 0,

from which (6) follows immediately. O

4 Approximate Solutions

The problem of minimizing oo, the metric sstress problem, must be solved by numerical optimiza-
tion. In contrast, the classical approach to MDS proposed by Torgerson (1952), leads to an explicit
formula for an optimal configuration. For this reason, as discussed by Kearsley, Tapia, and Trosset
(1998), the classical solution is often used as an initial configuration from which to begin minimizing
the sstress criterion. In this section, we explore the quality of the classical solution as measured by
g9.

Given n, let e denote the n-vector (1,...,1)". Given an nXn matrix B, let b denote the n-vector
diag(B). Let x denote the linear transformation defined by

k(B) = be’' + eb’ — 2B.

Given p < n, let D,,(p) denote the set of matrices that can be realized as the interpoint distances of
some 21, ...,¢, € R and let Q,,(p) denote the set of symmetric positive semidefinite n x n matrices
of rank no greater than p. Then the following result is well-known:



Theorem 4 D € D, (p) if and only if there exists B € Q,(p) such that k(B) = D.

The linear transformation £ does not have a unique inverse. In fact, for any s € RP such that
s'e = 1, the linear transformation 7, defined by

Ts(D) = —% (I —es')D (I —es')

is an inverse of x, where I denotes the n X n identity matrix. We are interested in the inverse 7y
obtained by setting s = e/n. See Critchley (1988) for a detailed study of the properties of x and
1.

Classical MDS can be defined by the optimization problem

minimize || B — 7 (Ag)]]?

subject to B € Q,(p),

(11)

which is implicit in Torgerson (1952). The objective function was subsequently dubbed the strain
criterion.
The following explicit solution to Problem 11 is also well-known:

Theorem 5 Given A, let Ay > --- > X, denote the eigenvalues of B = 11(A3) and let vy, ..., v,
denote the corresponding eigenvectors. Given p < n, let /\;»" = max(A;,0) fori=1,...,p. Then

P
B = Z /\l‘»"vivl’»
=1

is a global minimizer of Problem 11. Furthermore, if X is the n X p configuration matriz whose tth

column is (A1) ?v;, then
«(8) = D, ().

Because the classical solution, X, can be computed explicitly, it is often used as the initial
configuration from which optimization of the sstress criterion commences. This practice begs the
question of how close X comes to solving the metric sstress problem.

Let us write
s ()= o (8) -] -

Tarazaga and Trosset (1998) observed that a Conﬁguratlon matrix with a smaller sstress value than
o9 (X) can be obtained by replacing the AT with free variables u € ®P, resulting in the objective
function

2
— A

2

l

and solving the p-variate optimization problem:

minimize  f(u) 12)
subject to > 0,

This is a fairly easy problem to solve numerically, but it does require an iterative algorithm for
bound-constrained optimization.



We can obtain a configuration matrix of intermediate quality by allowing fewer degrees of
freedom. Instead of replacing each A\ with a freely varying p;, we write y; = tA} and allow ¢t € R
to vary. This results in the objective function

0= R X

P
Z tAK (v,'vl’») — Ay
=1

and the optimization problem
minimize  ¢(t)

: (13)
subject to t > 0.

Recognizing that Problem (13) is the problem of optimally dilating the classical solution, we can
apply Theorem 2 to compute its solution explicitly, without recourse to numerical optimization. We
leave the problem of quantifying how much solving either Problem (13) or Problem (12) improves
on X to be determined by future computational experiments.

Now suppose that A = (§;5) is actually a distance matrix, i.e. that A € Dy, (n — 1), and write

D (X)=D=(dy).
Then it is well-known—see Meulman (1992) for discussion— that
72 2
di; < 65

Because

0:(0) = 1D - A" = 3 (v, - 7).

3

we have the following result:

Theorem 6 Let A be a fized dissimilarity matriz. Given p, let X denote the configuration matriz
defined in Theorem 5. Given r, let t* denote the optimal dilation of X. If A € D,(n — 1), then
t* > 1, with equality if and only if A € D,(p).

5 Discussion

This study is a work in progress and our results raise as many questions as they answer. We
conclude by cataloguing some of the concerns that we plan to address in future work.

1. Do nonglobal minimizers of the sstress criterion exist?

In Section 2, we demonstrated that the example used by Trosset and Mathar (1997) to
construct a nonglobal minimizer of the stress criterion does not lead to a local minimizer of
the sstress criterion. This surprised us. Our inability to easily discover nonglobal minimizers
underscores the question of whether or not they exist. While we continue to search for an
example of a nonglobal minimizer, we will also attempt to exploit the quartic structure of
0y to characterize its stationary configurations. Although we have not yet fully explored its
consequences, Theorem 3 is a first step in that direction.

2. How much does optimal dilation improve on the classical solution?

Theorem 2 is a powerful result. Through an explicit formula, it provides a simple way of
improving most suboptimal configurations with respect to any o,. We would like to know

10



how much optimal dilation improves on the classical solution—the canonical configuration
from which numerical optimization of o, is commenced—with respect to (i) the value of o,
and (ii) the probability of converging to a global minimizer of o,. We expect to address these
issues empirically, by extensive computational experimentation, but we have some hope of a
theoretical analysis in the comparatively tractable case of 5.

3. How can Theorem 1 be exploited for global optimization?

It is apparent from Theorem 1 that the stationary configurations of ¢, have considerable
structure. Furthermore, part (iii) of Theorem 1 suggests a strategy for globally optimizing
o,. Because we now understand that these observations apply to any o,, not just the case of
r = 2 addressed by Glunt, Hayden, and Liu (1991), the potential gains from exploiting them
are greatly increased.
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