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Abstract

It is widely believed that both the stress and the sstress criteria for metric multidimensional
scaling are plagued by the existence of nonglobal minimizers� At present� there is little theory
that enlightens this belief� Trosset and Mathar ������ established that nonglobal minimizers
of the stress criterion can exist� while Glunt� Hayden� and Liu ������ demonstrated that the
distance matrices of all con	gurations for which the gradient of the sstress criterion vanishes
lie on a certain sphere� This report extends existing theory in several directions� Emphasis is
placed on the more tractable case of the sstress criterion� Because the stress and sstress criteria
must be minimized by numerical optimization� one result that is of immediate practical value is
a simple device for improving the quality of the initial con	gurations from which optimization
commences�
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� Introduction

Multidimensional scaling �MDS� is a general term for techniques that construct con�gurations of
points in a target metric space from information about interpoint distances� In the case of two�way
MDS� the information is speci�ed in the form of a dissimilarity matrix� i�e� a matrix � � ��ij�
such that �ij � �� �ii � �� and �ij � �ji� Typically� the target metric space is p�dimensional
Euclidean space� In most applications� such as the reconstruction of molecular con�gurations from
information about interatomic distances �p � ��� the target dimension is small�
For a con�guration of points x�� � � � � xn � �p� the n � p con�guration matrix X is the matrix

whose rows are the x�i� From X it is easy to compute the Euclidean interpoint distance matrix
D�X� � �dij�� The goal of metric two�way MDS is to construct a con�guration matrix for which
the interpoint distances dij approximate the dissimilarities �ij �
Two popular ways of measuring the discrepancy between a distance matrix and a dissimilarity

matrix are the stress and sstress criteria� The former is based on the squared errors between the
distances and dissimilarities� the latter is based on the squared errors between the squared distances
and squared dissimilarities� Let


r�D��� �
X
ij

wij ��dij�
r � ��ij�r�� �

where the wij are nonnegative weights� Write D � D�X� and let �r�X� � 
r�D�X��� then �� is
the metric stress criterion and �� is the metric sstress critrion�
In practice� one often sets each wij � 	� This is the only case considered in this report� However�

one can use the weights either to accommodate missing data �by setting the appropriate wij � ��
or to weight more reliably measured dissimilarities more heavily�
The remaining sections of this report consider several issues related to the problem of minimizing

�r� with particular emphasis on the case of r � �� In Section � we reprise the example constructed by
Trosset and Mathar �	

�� to demonstrate that the stress criterion can have a nonglobal minimizer�
Somewhat to our surprise� this construction produces a saddle point of the sstress criterion� but
not a minimizer� In Section � we extend the critical point theorem of Glunt� Hayden� and Liu
�	

	� from the special case of �� to general �r� We also establish several new properties� In
particular� we derive an explicit formula for the optimal dilation of a �xed con�guration matrix�
In Section � we investigate the relation between classical MDS and the problem of minimizing the
sstress criterion� We focus on the use of the classical solution as an initial con�guration from which
to begin optimizing �� and consider the extent to which optimally dilating the classical solution
improves the initial con�guration� Section � concludes with some remarks on future research�

� The Search for Nonglobal Minimizers

Because most algorithms for minimizing �r are designed to �nd local minimizers� the existence
and prevalence of nonglobal minimizers is of considerable importance� Trosset and Mathar �	

��
demonstrated the existence of a nonglobal minimizer of stress� but we are not aware that anyone
has formally demonstrated the existence of nonglobal minimizers of sstress� In this section� we
show that the example constructed by Trosset and Mathar �	

�� for stress does not produce a
nonglobal minimizer of sstress� Indeed� we have been unable to construct a nonglobal minimizer of
sstress�

�



Following Trosset and Mathar �	

��� let

X� �

�
����

� �
x� � 	 �
x� � 	 x� � 	
x� � � x� � 	

�
���� �

The con�guration X� represents the unit square� with the vertices labeled counterclockwise from
the origin� The matrix of dissimilarities

�� � D� �X
�� �

�
����
� 	

p
� 	

	 � 	
p
�p

� 	 � 	

	
p
� 	 �

�
����

produces a global minimum of ���X
�� � ��

We now de�ne an initial con�guration

X� �

�
����
� �
	 �
� 	
	 	

�
����

by relabelling the upper two vertices of the unit square� Trosset and Mathar �	

�� reasoned that
the upper vertices would have to cross in order to converge to the global minimizer� but that crossing
would increase stress before decreasing it� Indeed� they demonstrated that the con�guration

"X �

�
����
� �
"b �
� "c
"b "c

�
���� �

where "b � �� �
p
��	� and "c � "b

p
�� is a nonglobal minimizer of ���

We attempted an analogous construction for sstress� The matrix of squared dissimilarities

�� � D� �X
�� �

�
����
� 	 � 	
	 � 	 �
� 	 � 	
	 � 	 �

�
����

produces a global minimum of ���X�� � �� We hypothesized the existence of a nonglobal minimizer
of the form of "X� hence� for b� c � �� let

X�b� c� �

�
����
� �
b �
� c
b c

�
���� �

Then

�� �X�b� c�� � kD� �X�b� c�����k�F
� kD� �X�b� c���D� �X

��k�F
� �

�
b� � 	

��
� �

�
c� � �

��
� �

�
c� � b� � 	

��
�

�



where k � kF denotes the Frobenius norm� A nontrivial solution of the stationary equation

r�� �X�b� c�� �
�
	�b

�
�b� � � � c�

�
	�c

�
�c� � � � b�

�
�
� �

is given by �b �
p
�	� and �c � ��b�

The Hessian matrix of ���X��b� �c�� is positive de�nite �its eigenvalues are approximately 
	��
��
and 	������� so �X � X��b� �c� is a local minimizer of ���X�b� c��� a function of two real variables�
We hoped to �nd that

�X �

�
����

� �

x� � �b �
x� � � x� � �c

x� � �b x� � �c

�
����

is also a local minimizer of ���X�x�� � � � � x���� a function of �ve real variables� In fact� �X is a
stationary con�guration �r��� �X� � ��� but it is not a local minimizer� the eigenvalues of the
Hessian matrix are approximately

��������� ������
� 	������� 	���������
��
���
Somewhat surprisingly� the construction of Trosset and Mathar �	

��� which produces a nonlo�

cal minimizer of the stress criterion� does not produce a nonlocal minimizer of the sstress criterion�
Nor have we discovered another construction that does�the existence of nonglobal minimizers of
the sstress criterion remains an open question� The relative ease with which Trosset and Mathar
�	

�� discovered a nonlocal minimizer of the stress criterion reinforces the popular belief that ��
tends to have more nonlocal minimizers than does ���

� Properties of Stationary Con�gurations

Glunt� Hayden� and Liu �	

	� established the remarkable result that� for any �xed dissimilarity
matrix� all of the interpoint distance matrices generated by stationary con�gurations of the sstress
criterion with unit weights lie on the surface of a sphere� We proceed to extend this result from
the special case of r � � to the general case of r 
 �� Throughout this section� h�� �i will denote the
Frobenius inner product and k � k will denote the Frobenius norm�
Let � � ��ij� denote a �xed dissimilarity matrix� Given a con�guration matrix X � let D�X� �

�dij� denote the corresponding matrix of interpoint Euclidean distances� For r 
 �� let �r � ��
r
ij�

and let Dr�X� � �drij�� We are interested in stationary con�gurations for the error criterion

�r�X� � kDr�X���rk� �
i�e� in con�guration matrices "X for which r�r� "X� � ��

Theorem � 	Generalized Critical Point Theorem
 If r�r� "X� � �� then
	i
 hDr� "X���ri � kDr� "X�k��
	ii
 kDr� "X�k� � kDr� "X���rk� � k�rk��
	iii
 If r�r� "Y � � �� then �r� "X� � �r� "Y � if and only if kDr� "Y �k � kDr� "X�k�
	iv
 kDr� "X���r	�k � k�r	�k�

�

-



Proof� We introduce an arc in the space of con�guration matrices�

��t� � �r
�
t "X

�
�
��Dr

�
t "X

���r

��� � ��trDr
�
"X
���r

���
� t�r

��Dr
�
"X
���� � �tr 
Dr

�
"X
�
��r

�
� k�rk� �

Di!erentiating� we obtain

���t� � �rt�r��
��Dr

�
"X
���� � �rtr�� 
Dr

�
"X
�
��r

�
�

Because r�r� "X� � �� we have ���	� � � and therefore

Dr

�
"X
�
��r

�
�
��Dr

�
"X
���� �

which is �i��
Next� applying �i�� we observe that��Dr

�
"X
� ��r

��� � ��Dr

�
"X
���� � � 
Dr

�
"X
�
��r

�
� k�rk� � k�rk� �

��Dr

�
"X
���� �

Rearranging terms produces �ii��
Now suppose that r�r� "X� � r�r� "Y � � �� Applying �ii�� we obtain

�r
� "X�� �r

� "Y � �
��Dr

� "X���r

��� � ��Dr

� "Y ���r

���
�

h
k�rk� �

��Dr
� "X����i� h

k�rk� �
��Dr

� "Y ����i
�

��Dr

� "Y ���� � ��Dr

� "X���� �
from which �iii� follows immediately�
Finally� ��Dr

� "X���r	�
��� � ��Dr

� "X���� � 

Dr

� "X�
��r

�
� k�r	�k� � k�r	�k� �

which is �iv�� �

Part �iv� of Theorem 	 states that� for any �xed dissimilarity matrix �� the interpoint distance
matrices of all stationary con�gurations lie on the same sphere of radius k�	�k� centered at �	��
Theorem 	 does not address the existence of nonglobal minimizers� but part �iii� states that global
minimizers are those stationary con�gurations of maximal norm� This is a quite remarkable fact�
one that would seem to have profound implications for global optimization of �r�
Our next result was motivated by Theorem 	� Suppose that a con�guration matrix X has been

proposed as a possible minimizer of �r� �For example� suppose that X has been proposed as the
initial con�guration from which an iterative optimization method will start�� If �i� in Theorem 	 is
not satis�ed� then X cannot be a minimizer of �r� The following theorem states that� by dilating
X so that �i� is satis�ed� we necessarily decrease �r�

Theorem � 	Dilation Theorem
 Let � be a �xed dissimilarity matrix� let X be a �xed con�gura�
tion matrix for which kD�X�k 
 �� and consider the function � � � � � de�ned by ��t� � �r�tX��
Let

t� �

�
hDr�x���ri
kDr�X�k�


��r

�

Then

	i
 Dr�t�X� lies on the sphere described by 	iv
 in Theorem �� and

	ii
 t� is a global mimimizer of ��

�



Proof� To establish �i�� we compute

kDr �t
�X���r	�k� � kDr �t

�X�k� � hDr �t
�X� ��ri� k�r	�k�

� �t���r kDr�X�k� � �t��r hDr�X���ri� k�r	�k�

�
hDr�X���ri�
kDr�X�k�

� hDr�X���ri�
kDr�X�k�

� k�r	�k�

� k�r	�k� �
which is �iv� in Theorem 	�
To minimize

��t� � �r�tX� � kDr�tX���rk� � ktrDr�X���rk�
� t�r kDr�X�k� � �tr hDr�X���ri� k�r	�k� �

we �rst note that ��t�� 	 as t � 
	� Hence� it su ces to consider the stationary points of ��
i�e� the values of t at which

���t� � �rt�r�� kDr�X�k� � �rtr�� hDr�X���ri
vanishes� By inspection ���t� � � if and only if either t � � or

tr �
hDr�x���ri
kDr�X�k�

� �t��r �

and

� �t�� �
hDr�X���ri�
kDr�X�k�

� �hDr�X���ri�
kDr�X�k�

� k�rk� � k�rk� � �����

Noting that ��t� depends on t only through tr� we conclude that t� is a global minimizer of �� �

Now we specialize to r � �� The remainder of this section develops some additional theory
that we hope will lead to a better understanding of the stationary con�gurations of ��� the sstress
criterion� We require the following lemma�

Lemma � Suppose that p�t� � t� � bt� � ct� � dt� e� a quartic polynomial in t � �� Then
	i
 If p���� � �� then d � ��

	ii
 If p���� � p��	� � � and p��� � p�	�� then b � �� and c � 	�

Proof� Di!erentiating� we obtain

p��t� � �t� � �bt� � �ct� d

and p���� � d� hence �i�� If� in addition�

� � p��	� � � � �b� �c� d � � � �b� �c �	�

and p��� � p�	�� hence�

e � p��� � p�	� � 	 � b� c� d� e � 	 � b� c� e

and therefore
� � 	 � b� c� ���

then the linear system de�ned by �	� and ��� has the unique solution b � �� and c � 	� which is
�ii�� �

�



Using Lemma 	� we proceed to investigate the behavior of �� along the line segment that
connects two stationary con�guration matrices�

Theorem � Let � be a �xed dissimilarity matrix and suppose that r���X� � r���Y � � �� Then
hD��X�� Hi� hD��Y �� Hi � h��� Hi � ���

where

H �
	

�
�D��X � Y ��D��X��D��Y �� � ���

Furthermore� if ���X� � ���Y �� then

hD��X��D��Y �� D� �tX � �	� t�Y �i � ��t� 	�
h
kD��X�k� � hD��X�� D��Y �i

i
� ���

for every t � ��� 	�� and�
D��X�� D�

�
X � Y

�

�	
�

�
D��Y �� D�

�
X � Y

�

�	
� ���

Proof� First� de�ne H � �hij� by

hij �
pX

k��

�xik � xjk� �yik � yjk� �

Then
D� �tX � �	� t�Y � � t�D��X� � �t�	� t�H � �	� t��D��Y �

and therefore

H �
	

�t�	� t�

h
D� �tX � �	� t�Y �� t�D��X�� �	� t��D��Y �

i
� ���

Choosing t � 		�� we obtain ����
Now we study the quartic polynomial

p�t� � �� �tX � �	� t�Y �

� kD� �tX � �	� t�Y ����k�

�
���t�D��X� � �t�	� t�H � �	� t��D��Y ����

����
� t� kD��X�k� � �t��	� t��kHk� � �	� t�� kD��Y �k� �

�t��	� t� hD��X�� Hi� �t��	� t�� hD��X�� D��Y �i�
�t�	� t�� hD��Y �� Hi � �t� hD��X���i�
�t�	� t� hH���i � ��	� t�� hD��Y ����i� k��k�

� At� �Bt� � Ct� �Dt� E�

where

A � � hD��X�� D��Y �i � � hD��Y �� Hi� kD��X�k� � kD��Y �k� � � hD��X�� Hi� �kHk��
B � �� hD��X�� D��Y �i� 	� hD��Y �� Hi � � kD��Y �k� � �kHk�� � hD��X�� Hi �
C � �	� hD��Y �� Hi� � hH���i� � hD��X�� D��Y �i � � hD��Y ����i� � kD��Y �k� �

�kHk�� � hD��X����i �
D � � hD��Y �� Hi � � hH���i � � kD��Y �k� � � hD��Y ����i �
E � kD��Y �k� � � hD��Y ����i� k��k� �

�



Because
A � kD��X�� �Hk� � kD��X�� �Hk� � � hD��X�� D��Y �i 
 �

and p���� � � because r���Y � � �� we can apply Lemma 	 to conclude that D � �� i�e� that
hD��Y �� Hi� hD��Y ����i � hH���i� kD��Y �k� � ���

Part �i� of Theorem 	 states that hD��Y ���ri � kD��Y �k�� hence� equation ��� simpli�es to
hD��Y �� Hi � h��� Hi � �
�

Because X and Y are interchangeable� we also have

hD��X�� Hi� h��� Hi � �	��

Combining equations �	�� and �
� gives ����
Next� applying ��� with H represented as in ���� we see that

� � �t�	� t� hD��X�� Hi� hD��Y �� Hi
�

D
D��X��D��Y �� D� �tX � �	� t�Y �� t�D��X�� �	� t��D��Y �

E
� hD��X��D��Y �� D� �tX � �	� t�Y �i �

t� hD��X��D��Y �� D��X�i � �	� t�� hD��X��D��Y �� D��X�i
Because ���X� � ���Y �� we conclude from part �iii� of Theorem 	 that kD��X�k � kD��Y �k�
hence� that

hD��X��D��Y �� D� �tX � �	� t�Y �i � t� kD��X�k� � t� hD��X�� D��Y �i�
�	� t�� hD��X�� D��Y �i � �	� t�� kD��Y �k�

� ��t� 	� kD��X�k� � ��t� 	� hD��X�� D��Y �i �
which is ����
Finally� if t � 		� in ���� then�

D��X��D��Y �� D�

�
X � Y

�

�	
� ��

from which ��� follows immediately� �

� Approximate Solutions

The problem of minimizing ��� the metric sstress problem� must be solved by numerical optimiza�
tion� In contrast� the classical approach to MDS proposed by Torgerson �	
���� leads to an explicit
formula for an optimal con�guration� For this reason� as discussed by Kearsley� Tapia� and Trosset
�	

��� the classical solution is often used as an initial con�guration from which to begin minimizing
the sstress criterion� In this section� we explore the quality of the classical solution as measured by
���
Given n� let e denote the n�vector �	� � � � � 	��� Given an n�n matrix B� let b denote the n�vector

diag�B�� Let � denote the linear transformation de�ned by

��B� � be� � eb� � �B�
Given p � n� let Dn�p� denote the set of matrices that can be realized as the interpoint distances of
some x�� � � � � xn � �p and let �n�p� denote the set of symmetric positive semide�nite n�n matrices
of rank no greater than p� Then the following result is well�known�

�



Theorem � D � Dn�p� if and only if there exists B � �n�p� such that ��B� � D�

The linear transformation � does not have a unique inverse� In fact� for any s � �p such that
s�e � 	� the linear transformation �s de�ned by

�s�D� � �	
�

�
I � es�

�
D
�
I � es�

�
is an inverse of �� where I denotes the n � n identity matrix� We are interested in the inverse ��
obtained by setting s � e	n� See Critchley �	
��� for a detailed study of the properties of � and
���
Classical MDS can be de�ned by the optimization problem

minimize kB � ������k�
subject to B � �n�p��

�		�

which is implicit in Torgerson �	
���� The objective function was subsequently dubbed the strain
criterion�
The following explicit solution to Problem 		 is also well�known�

Theorem � Given �� let �� � � � � � �n denote the eigenvalues of B � ������ and let v�� � � � � vn
denote the corresponding eigenvectors� Given p � n� let ��i � max��i� �� for i � 	� � � � � p� Then

�B �
pX

i��

��i viv
�
i

is a global minimizer of Problem ��� Furthermore� if �X is the n� p con�guration matrix whose ith
column is ���i �

���vi� then

�
�
�B
�
� D�

�
�X
�
�

Because the classical solution� �X� can be computed explicitly� it is often used as the initial
con�guration from which optimization of the sstress criterion commences� This practice begs the
question of how close �X comes to solving the metric sstress problem�
Let us write

��
�
�X
�
�
���� � �B����

���� �
�����

pX
i��

��i �
�
viv

�
i

� ���

�����
�

�

Tarazaga and Trosset �	

�� observed that a con�guration matrix with a smaller sstress value than
��� �X� can be obtained by replacing the �

�

i with free variables � � �p� resulting in the objective
function

f��� �

�����
pX

i��

�i�
�
viv

�
i

����

�����
�

�

and solving the p�variate optimization problem�

minimize f���

subject to � � �� �	��

This is a fairly easy problem to solve numerically� but it does require an iterative algorithm for
bound�constrained optimization�




-



We can obtain a con�guration matrix of intermediate quality by allowing fewer degrees of
freedom� Instead of replacing each ��i with a freely varying �i� we write �i � t��i and allow t � �
to vary� This results in the objective function

g�t� �

�����
pX

i��

t�i�
�
viv

�
i

����

�����
�

�
���� �t �B����

���� � ���D�

�
t �X

�
���

����

and the optimization problem
minimize g�t�

subject to t � �� �	��

Recognizing that Problem �	�� is the problem of optimally dilating the classical solution� we can
apply Theorem � to compute its solution explicitly� without recourse to numerical optimization� We
leave the problem of quantifying how much solving either Problem �	�� or Problem �	�� improves
on �X to be determined by future computational experiments�
Now suppose that � � ��ij� is actually a distance matrix� i�e� that � � Dn�n� 	�� and write

D
�
�X
�
� �D �

�
�dij
�
�

Then it is well�known�see Meulman �	

�� for discussion� that

�d�ij � ��ij �

Because

gr�t� �
���t �Dr ��r

���� �X
ij

�
t �drij � �rij

��
�

we have the following result�

Theorem � Let � be a �xed dissimilarity matrix� Given p� let �X denote the con�guration matrix
de�ned in Theorem �� Given r� let t� denote the optimal dilation of �X� If � � Dn�n � 	�� then
t� � 	� with equality if and only if � � Dn�p��

� Discussion

This study is a work in progress and our results raise as many questions as they answer� We
conclude by cataloguing some of the concerns that we plan to address in future work�

	� Do nonglobal minimizers of the sstress criterion exist


In Section �� we demonstrated that the example used by Trosset and Mathar �	

�� to
construct a nonglobal minimizer of the stress criterion does not lead to a local minimizer of
the sstress criterion� This surprised us� Our inability to easily discover nonglobal minimizers
underscores the question of whether or not they exist� While we continue to search for an
example of a nonglobal minimizer� we will also attempt to exploit the quartic structure of
�� to characterize its stationary con�gurations� Although we have not yet fully explored its
consequences� Theorem � is a �rst step in that direction�

�� How much does optimal dilation improve on the classical solution


Theorem � is a powerful result� Through an explicit formula� it provides a simple way of
improving most suboptimal con�gurations with respect to any �r� We would like to know

	�



how much optimal dilation improves on the classical solution�the canonical con�guration
from which numerical optimization of �r is commenced�with respect to �i� the value of �r
and �ii� the probability of converging to a global minimizer of �r� We expect to address these
issues empirically� by extensive computational experimentation� but we have some hope of a
theoretical analysis in the comparatively tractable case of ���

�� How can Theorem 	 be exploited for global optimization


It is apparent from Theorem 	 that the stationary con�gurations of �r have considerable
structure� Furthermore� part �iii� of Theorem 	 suggests a strategy for globally optimizing
�r� Because we now understand that these observations apply to any �r� not just the case of
r � � addressed by Glunt� Hayden� and Liu �	

	�� the potential gains from exploiting them
are greatly increased�

Acknowledgements

This research was conducted during the summer of 	


 as part of the Research Experiences for
Undergraduates program in the Department of Mathematics at the College of William � Mary�
The �rst author was supported by NSF Grant DMS�
��	
���� the second author was supported by
NSF Grants DMS�
�����
 and DMS�
��	
����

References

Critchley� F� �	
���� On certain linear mappings between inner�product and squared�distance
matrices� Linear Algebra and Its Applications� 	���
	�	���

Glunt� W�� Hayden� T� L�� and Liu� W��M� �	

	�� The embedding problem for predistance matrices�
Bulletin of Mathematical Biology� �����
��
��

Kearsley� A� J�� Tapia� R� A�� and Trosset� M� W� �	

��� The solution of the metric STRESS
and STRESS problems in multidimensional scaling using Newton�s method� Computational
Statistics� 	�������
��
��

Meulman� J� J� �	

��� The integration of multidimensional scaling and multivariate analysis with
optimal transformations� Psychometrika� �����
�����

Tarazaga� P� and Trosset� M� W� �	

��� An approximate solution to the metric SSTRESS problem
in multidimensional scaling� Computing Science and Statistics� ���	��

Torgerson� W� S� �	
���� Multidimensional scaling� I� Theory and method� Psychometrika� 	����	�
�	
�

Trosset� M� W� and Mathar� R� �	

��� On the existence of nonglobal minimizers of the STRESS
criterion for metric multidimensional scaling� In ���� Proceedings of the Statistical Computing
Section� pages 	���	��� American Statistical Association�

		


