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The following invention is used for determining the relative 
permeability of a fluid in a rock for three different phases: 
water, oil, and gas, in both conventional and unconventional 
formations. The permeability of a phase describes how much 
it can flow in porous media given a pressure gradient and is 
useful in evaluating reservoir quality and productivity. The 
following invention is a method to determine the three-phase 
relative permeabilities in both conventional and unconven­
tional formations using NMR restricted diffusion measure­
ments on core with NMR-active nuclei, combined with 
centrifugation of the core. In addition, the tortuosity, pore 
size (surface-to-volume ratio), fluid-filled porosity, and per­
meability is determined for each of the three phases in a 
rock. 
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DETERMINATION OF 
FLUID-PHASE-SPECIFIC PETROPHYSICAL 
PROPERTIES OF GEOLOGICAL CORE FOR 

OIL, WATER AND GAS PHASES 

different phases occupy different locations in the pore space 
of the formation. The permeability of a phase describes the 
flow rate of that fluid in a porous media with an applied 
pressure gradient. It is useful in evaluating reservoir quality 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

5 and productivity during primary, secondary and tertiary 
production. The determination of permeability is useful in 
deciding on casing, perforating, and whether to deploy a 
pump in a well. It is difficult to effectively measure perme­
ability for each of three phases present in the formation This patent application claims the benefit of U.S. Provi­

sional Patent Application No. 63/005,482 filed on Apr. 6, 
2020, which is incorporated herein by reference in its 
entirety. 

BACKGROUND AND RELATED ART 

IO using current methods. The following invention is a method 
to determine fluid phase-specific petrophysical properties 
for each of three separate fluid phases (water, oil and gas) in 
both conventional and unconventional formations using 
NMR restricted diffusion measurements with multiple 

The present invention relates to petroleum reservoir fluid 
and petrophysical characterization. In particular, the present 
invention is useful for quantifying fluid phase-specific petro­
physical properties (FPS-PP) of three different phases (wa-

15 nuclei (i.e. 1H, 19F) and automated centrifugation with 
effluent volume measurements. The fluid phase-specific 
petrophysical properties include tortuosity, pore size, body­
to-throat ratio, porosity, permeability, and relative perme­
ability curves for two specific phases. 

ter, oil and gas) of a subsurface formation using multi- 20 

nuclear NMR restricted diffusion and automated centrifuge 
measurements of effluent volumes, those phase-specific 
petrophysical properties including tortuosity, pore size, 
body-to-throat ratio, porosity, permeability, and relative per­
meability curves for two specific phases. 

SUMMARY OF EMBODIMENTS 

The summary of the invention follows for evaluating the 
properties of the three fluid phases in a core sample in this 

The following invention is useful in the petroleum indus­
25 invention. The invention is a method of determining, for 

each of three different fluid phases (water, oil and gas), at 
least one fluid-phase-specific petrophysical property (FPS­
PP) of geological core where FPS-PPwATER is the FPS-PP 

try for determining several phase-specific petrophysical 
properties of a geological formation for three different 
phases: water, oil, and gas, in both conventional and uncon­
ventional formations. In petroleum reservoirs, there are 30 

either two or three phases present in the pore space, i.e. 
water and oil, water and gas, or water plus oil and gas. The 

for the water phase, FPS-PP OIL is the FPS-PP for the oil 
phase, FPS-PP cAs is the FPS-PP for the gas phase. 

The steps of this invention are summarized in the follow­
ing table. 

Step Action FPS-PP 

2 

3 

Clean and dry core: 
100% saturated with air 
Routine core analysis: 
Klinkenberg-corrected gas permeability (kmea,) 
Total porosity ( <Pr) 
Grain density (pg) 
Bulk density (pb) 
Saturate with brine to Sw 1 and measure 1H restricted diffusion NMR: d 
100% saturated with brine (Sw 1) 'Pr 
D/D0 versus L0 to get pore-body diameter (d) from S/V = 4/d and 
diffusive tortuosity '! using the Pade fit, where D is measured 
diffusion, D0 is bulk diffusion, and L0 = ✓D0tA 
is the bulk diffusion length at a diffusion evolution time of IA 
T2 distribution to get <Pr and surface relaxivity for water (P2w) 

P2w 

4 Electrical resistivity and absolute k at Sw 1 m 
Measure electrical resistivity R 0 '!e 
Measure or calculate Rw of the brine k 
Use R

0
/Rw = ll<llrm to obtain m d 

Calculate electrical tortuosity 'Ce= cllrl-m for water at swl BTR 
Use absolute permeability (k), d, <Pn ~ in the modified Carman-

Kozeny equation: k = A 'P
rd2 

2 
or other relation to determine BTR. 

32rBTR 

5 Centrifuge core (drainage cycle) to Sw;,, for k,w 
Measure relative permeability of water (krw) with decreasing water 
saturation (SW) from swl to irreducible water swirr by history 
matching water production 

6 Electrical resistivity and tortuosity at Swirr 

Measure resistivity Rt at Swirr 

Use R,IR
0 

= 1/Sw;,,n to obtain n 
Calculate electric tortuosity '!e = cp7

1
-msw

1
-n for water as a function 

of Sw 

7 Measure 1H NMR at swirr 

T2 to get pore-body diameter (dw;,,) at Sw;,, from S/V = 4/dw;,, 
using p2 w 

Measure 
k,w VS Sw, 
swl ➔ Sw;,, 

n 
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-continued 

Step Action 

8 Predict k,w vs SW 
Calibrate k,w (=kJk) relation using dw;m <!l,Sw, ~w, k based on 

¢rSwi;irr 
Carrnan-Kozeny kw = Aw ----

2 
or other relation, by comparing 

32rwBTR 

to centrifuge data in step 5 
9 Centrifuge core ( drainage cycle) to Swirr for krw using D2O 

Dry sample 
Saturate with D2O 
Centrifuge to air down to Swirr 

Measure krw with decreasing SW from swl ➔ swirr by history 
matching fluid production 
Verify step 5 

10 Saturate with Cl and measure 1H NMR: 
D/D0 versus L 0 to get ~he for C 1 (D2O) at Sw;,, using the Pade fit 

11 Saturate with ClO and measure 1H NMR: 
D/D0 versus L 0 to get pore-body diameter (dhe) from S/V = 4/dhe 
for ClO(D2O) at Sw;,, using the Pade fit 
T2 to get 'Phe and surface relaxivity for ClO (p2 he) 

12 Centrifuge core (drainage cycle) to S 0 , for kco 
Centrifuge with air or nitrogen (drainage cycle) down to S

0
r at Swirr 

Measure relative permeability of oil kco (=kjk) with decreasing oil 
saturation (S0) at Sw;,, down to S 0 , by history matching C 10 
production. This simulates gas injection to displace oil or gravity 
drainage in a gas cap. 

13 Predict kco vs S
0 

Calibrate kro at swirr down to Sor using dhc• cllhc• '!he• k based on 

'Ph,dt 
Carrnan-Kozeny k0 = A0 2 

or other relation, by comparing 
32rh,BTR 

to centrifuge data in step 12 
14 Estimate the relative permeability ratio for oil and water 

Estimate relative permeability ratio K = krJkrw 
15 Saturate with ClO. Centrifuge with D2O in an imbibition cycle: 

kro vs S
0 

in the imbibition cycle. This simulates a waterflood. 

16 Clean core using Soxhlet extraction with chloroform-methanol 
azeotrope to remove residual C 10 and D2O. Fully saturate with 
D2O. Centrifuge with C 10 In drainage cycle to Sw;,,• Centrifuge 
with air or nitrogen in drainage cycle to S 0 r and Swirr-

17 Saturate with pressurized fluorocarbon gas and measure 19F 
NMR: 
D/D0 versus L 0 to get '!g for fluorocarbon gas at Swirr and S 0 r using 
the Pade fit 

18 Release gas pressure. Saturate with fluorocarbon oil and 
measure 19F NMR: 
DID 0 versus L 0 to get pore-body diameter (dg) from S/V = 4/dg 
for fluorocarbon oil at Swirr & S 0 r using the Pade fit 
T 2 to get 'Pg and surface relaxivity for fluorocarbon oil (p2g) 

19 Centrifuge core in water (imbibition cycle) to Sg, for k,g 
Centrifuge with water or D2O (imbibition cycle) down to Sg, at S 0 , 

and Sw;cc 

Measure relative permeability of a fluorocarbon oil phase simulating 
gas k,g (=k/k) with decreasing gas saturation (Sg) at S0 , down to 
Sg, by history matching the fluorocarbon production. 

20 Predict k,g at S0 , 

Calibrate the relative permeability of gas (k,g) at S 0 , using d,, cp,, 

c/Jgd; 
r g, k based on Carrnan-Kozeny kg= Ag----

2 
or other relation. 

32rgBTR 

21 Clean and dry core: 
100% saturated with air 

22 MICP and BTR 

FPS-PP 

Predict 
k,w vs Sw, swl ➔ Sw;c, 

Verify 
k,w VS Sw, 

swl ➔ Sw;c, 

~he 

at Sw;cc 

dhe 

'Phe 

P2hc 

Measure 
drainage 
cycle 
kco VS S0 , 

at Sw;cc 

down to S0 r 

Predict 
kr0 vs S 0 r at Swirr down to S 0 r 

K 

Measure 
imbibition 
cycle kco vs S0 

Measure 
imbibition 
cycle to 
increasing 
water 

krg VS Sg, at Sor 

Predict 
k,g at S0 , 

Measure MICP (mercury injection capillary pressure) to obtain pore- BTR 

throat diameter (dM,cP) 
Determine BTR = d/dM,cP (body-throat ratio) 

4 
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-continued 

Step Action FPS-PP 

k,x 23 Develop relation for relative permeability k,x of each phase 
Develop relation for permeability k,x (=kxlk) of each of the three 
phases (X = w, o, g) as a function of the tortuosity (~x), porosity 
(<llx), pore-body diameter (dx) from S/V = 4/dx, and BTR based 

(X = w, o, g) 

c/Jxd'x 
on Carman-Kozeny kx = Ax 

2 
or other relation. 

32rxBTR 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1: 1 Hand 19F NMR spectrometer and fluid saturation 
equipment used in this invention. 

RF pulse. More details can be found in the attached refer­
ences (Chen et al 2017, Chen et al 2019a, Chen et al 2019 

15 b, Wang et al 2020. 

FIG. 2: NMR pulse sequence used in this invention. 
FIG. 3: Pade fits to DID

0 
vs LE for two chalk cores from 

a well at depths of 913 m and 920 m. 
FIG. 4: Permeabilities computed from this invention and 

using prior art compared with measured permeabilities for 
four chalk samples. 

FIG. 5: Centrifuge sample cells used in drainage and 
imbibition experiments. 

FIG. 3 shows diffusion length (L0 ) against normalized 
restricted diffusivity (D/D0 ). The dots are the points from the 
2D peak of the D-T2 maps in the region C. Top: C4(D20) 
and Cl(D20) are shown for 913 m (sample contains less 

20 bitumen). Bottom: ClO and Cl(D20) are shown for 920 m 
(sample contains more bitumen). The solid black line is the 
best fit using the Pade equation. The dashed horizontal line 
shows the tortuosity limit. To do the parameter estimation, 

25 non-linear curve-fitting (Isqcurvefit) in MATLAB is applied. 
FIG. 6: Centrifuge relative permeability to oil (kro) vs oil 

saturation (S0) data for a Berea sandstone (first drainage 
with decane/nitrogen). 

FIG. 7: Fluorine index FI vs pressure for some fluorinated 
hydrocarbons. 

FIG. 8: Bulk diffusion D
0 

versus pressure for some 
fluorinated hydrocarbons. 

FIG. 9: Maximum diffusion length Lu versus pressure for 
some fluorinated hydrocarbons. 

30 

The loss function is the minimum square error on a log scale. 
From these measurements, we can determine the total 

porosity (q,T) from T2, and the pore-body diameter (d) from 
the relation for cylindrical pores: 

S 4 
V-d 

35 using the Pade fit on the D/D0 versus L0 data, where Dis 
measured diffusion, D0 is bulk diffusion, and L0=✓D0t,.._ is DETAILED DESCRIPTION OF EMBODIMENTS 

Step 1: We begin with a core sample that is cleaned and 
dried. Soxhlet extraction with chloroform-methanol azeo­
trope may be used to clean out the hydrocarbons. At this 
stage, the core sample is fully saturated with air in the pore 
space. Soxhlet extraction with chloroform-methanol azeo­
trope is well known to one skilled in the art. 

the bulk diffusion length at a diffusion evolution time oft,.._. 
Note that while the above relation for cylindrical pores is not 
required in the permeability relations, it is used throughout 

40 for convenience. It is on the other hand required when 
computing the BTR (body-throat ratio) from MICP data (see 
below) which assumes cylindrical pores. 

Step 4: The electrical resistivity (R0) is measured on the 
Step 2: A routine core analysis is performed for Klinken­

berg-corrected gas permeability (kmeas), total porosity (q,7), 
grain density (pq), and bulk density (pb)- Routine core 
analysis is well known to one skilled in the art. 

45 fully brine-saturated core. The electrical resistivity of the 
brine is also measured (~) or calculated from the NaCl 
concentration. The cementation exponent, m, can be mea­
sured using the formation factor from Archie's law: 

Step 3: The core sample is then 100% saturated with NaCl 
brine (Sw1 ). 

1 H NMR measurements of D/D0 versus L0 and 50 
T2 are made at Swi· FIG. 1 shows a schematic of the NMR 
spectrometer with laboratory apparatus for fluid saturation 
used in this invention. The NMR spectrometer may have a 
probe that can be tuned to different NMR active nuclei, such 
as 1 H and 19F. The NMR spectrometer may have replaceable 55 

magnets for applying different magnetic field strengths. 
Typical NMR spectrometers are available from Oxford 
Instruments Ltd for 2 MHz, 20 MHz, 40 MHz, and 60 MHz. 

FIG. 2 shows a Diffusion-T 2 ( a.k.a. D-T 2 ) unipolar stimu­
lated-echo pulse sequence (Tanner, 1970; Mitchell et al., 60 

2014) used to measure restricted diffusion as a function of 
diffusion time t,.._. Trapezoidal gradient encoding pulses G 
are shown with duration to (time from half-height to half­
height) and ramp-time E, along with 90° (thin) and 180° 
(thick) RF pulses of phase <p 1 2 3 4 a, and CPMG echo trains 65 

with echo-spacing tE" Not sho"in" i's a set of 6 "woodpecker" 
gradient pulses to stabilize the eddy currents before the first 

r/J, 

where <pT is the porosity measured in the previous steps 
(using either routine core analysis or NMR measurements at 
Sw1). The cementation exponent indicates how well-con­
nected the pore geometry is. It is about m=2 for many rocks 
but can be higher for vuggy carbonates. This is well known 
to one skilled in the art. 

The tortuosity (t) of the water phase at Sw1 can also be 
determined from the electrical resistivity measurements as is 
well known to one skilled in the art: 

The permeability is now obtained using an equation 
modified from the Carman-Kozeny equation, which assumes 
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parallel capillary tubes. The modified Carman-Kozeny equa­
tion for permeability (k) from d (where S/V=4/d), <pT, t, 

BTR: 

,,, d2 
k=A_n __ 

32rBTR2 

5 

8 
Step 7: 1 H NMR T 2 measurements are made at Swirr to get 

pore-body diameter (dwirr) from SIV=
4

ldwirr using the pre­
viously determined P2w at swl as such: 

S 4 
"r;, = P2w V = P2w dwirr 

This equation assumes the fast-diffusion regime, which is 
IO 

typically the case. 
Step 8: The relative permeability of water krw is predicted 

using dwirr' <pTSw, 'tw, k based on Carman-Kozeny relation: 

where A is a free parameter to be calibrated by comparing 
to kmeas· FIG. 4 shows a core sample's estimated perme­
ability versus its measured permeability using this invention 
versus using three older methods. This is explained in more 
detail in the attached references (Chen et al. 2020, Chen et 
al. 2019b, Chen et al. 2019a, Chen et al. 2017, Wang et al. 15 

2020). 

Another equation besides Carman-Kozeny can also be 
used. Other equations are listed in the attached references. 
Note that all the quantities in this equation are measured by 20 
1H NMR or centrifuge, except BTR. Hence BTR may be 
determined from this data set. 

where Aw is a free parameter to be calibrated by compar­
ing to centrifuge data in step 5. Another relation besides 
Carman-Kozeny can also be used. 

Step 9: The core sample is cleaned and dried and then 
saturated with heavy water brine (e.g. D20 with NaCl 
matching in situ brine concentration). The reason D2 0 is 

Step 5: Next, the relative permeability of water krw 

(=~/k) is determined with decreasing water saturation (Sw) 
from swl to irreducible water swirr using a centrifuge drain­
age measurement. FIG. 5 shows centrifuge sample holders 
for drainage experiments and imbibition experiments [Hira­
saki 1992}. Examples of a commercial automated centrifuge 
that can be used in this invention are available from Vinci 
Technologies (RC4500). The core sample is placed in a 
centrifuge core holder and centrifuged to air ( drainage cycle) 
at a high speed down to Swirr· The water in the core sample 
is replaced with gas (e.g. air, nitrogen) during centrifugation. 
As the core is centrifuged, the automated centrifuge mea­
sures the time dependence of the flow rate of effluent from 
the core. The fluid production versus time are monitored and 
then history-matched to determine the curve of~ versus Sw, 

as outlined in [Hirasaki 1992] and [Hirasaki 1995]. One 
advantage of the centrifuge measurement is that it is gravity­
stable; that is, no viscous fingering occurs. Another advan­
tage is that extremely small values of krw can be measured. 
This is useful for determining krw at endpoint saturations, i.e. 
at residual oil saturation (S 0 r) or at Swirr· 

Step 6: At irreducible water saturation, the electrical 
resistivity of the core sample is measured (R,). The satura­
tion exponent, n, is measured using the resistivity index 
from Archie's law: 

25 used is that there is no 1H NMR signal from D20, therefore 
the only 1 H NMR signal that will later be detected is from 
the hydrocarbons. The core is centrifuged to air down to 
Swirr using the apparatus in FIG. 5. The fluid production and 

30 
saturation are monitored and then history matched (Hirasaki 
et al 1992 and 1995) to determine the krw. The krw using D2 0 
brine can be checked against krw estimated from the cen­
trifugation of the H2 0 brine-saturated core in step 5. 

35 

Step 10: The core sample is saturated with high-pressure 
methane (Cl), and 1H NMR measurements are made using 
the sample, where only the hydrocarbon phase is detectable. 
Restricted diffusivity D/D0 versus L0 measurements are 
made to get the for Cl(D20) at Swirr using the Pade fit. Cl 
has a large diffusion coefficient D0 , therefore a large L0 . If 

40 
L0 >>d then the can be determined from the Pade fit. 

Step 11: The C 1 is allowed to evaporate, and the resulting 
air-filled porosity is then replaced by with decane (ClO). 1H 
NMR D/D0 versus L0 measurements are made to get pore­
body diameter (dhJ from SIV=4ldhe for ClO(D20) saturated 

45 
cores at Swirr using the Pade fit. ClO has a small diffusion 
coefficient D0 , therefore a small L0 . If L0 <<d then the dhe 

can be determined from the Pade fit. T2 measurements are 
also made to get the ClO-filled porosity (<phJ and surface 
relaxivity (p2hJ for ClO. 

50 
Step 12: The core is centrifuged in drainage cycle using 

air or nitrogen down to S 0 r at Swirr· The relative permeability 
of oil kro (=kjk) is measured with decreasing oil saturation 
(S) at Swirr down to S 0 r by history matching ClO production. 
An example is shown in FIG. 6 for a Berea sandstone with 

55 
n-decane being displaced by nitrogen (first drainage), where 
kro (=kjk) is measured versus So down to kro=l0-7

. where Sw is the water saturation (this should be irreduc­
ible water saturation Swirr). The value for n indicates how the 
fluids affect the resistivity of the rock. In water-wet conven­
tional rocks, it is common for n to be around n"'2. In 
mixed-wet and oil-wet rocks, n is much higher n>2 at lower 60 
Sw. In shaly-sands, n may be lower n<2 as Sw decreases. 

Step 13: The relative permeability to oil kro at Swirr down 
to S 0 r is predicted using dhe, <!Jhe, 'the, k based on the modified 
Carman-Kozeny relation: 

The tortuosity of the water phase at irreducible saturation 
can be determined using: 

assuming that Archie's Law is valid. 

65 where A0 is a free parameter calibrated by comparing to 
the centrifuge data in step 12. Another relation besides 
Carman-Kozeny can also be used. 
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Step 14: The relative permeability ratio (K) between oil 
and water can be estimated by taking the ratio of the oil 
relative permeability (kro) to the water relative permeability 
(krw): 

Step 15: The core is saturated with decane (ClO) and then 
centrifuged with D20 in an imbibition cycle to measure kro 
vs S0• This simulates a waterflood. 

Step 16: The core is cleaned using Soxhlet extraction with 
chloroform-methanol azeotrope to remove the residual ClO 
and D20. The core is dried and then fully saturated with 
D20. The core is centrifuged with decane in a drainage cycle 
to Swirr· The core is then centrifuged with air or nitrogen in 

5 

IO 

10 
Step 22: A MICP (mercury injection capillary pressure) 

measurement is made to obtain pore-throat diameter 
(dMicp), as well as BTR (body-throat ratio): 

d 
BTR=-­

dM1cP 

where d is the pore-body diameter from Step 3. 
Step 23: Using the data collected from the laboratory 

analysis above, we then calculate a relationship between the 
relation for permeability krx (=kx/k) of each of the three 
phases (X=w, o, g) as a function of the tortuosity (tx), 

15 
porosity (<!Jx), pore-body diameter (dx) from SIV=4ldx, and 
BT R based on the modified Carman-Kozeny: 

c/Jxifc 

a drainage cycle to S0r and Swirr· The core sample at this 20 

stage should resemble the core sample at the end of step 12. 

kx = Ax---
2 

whereX = w, o, g 
32rxBTR 

It is within the scope of this invention to use another 
relationship besides the modified Carman-Kozeny equation 
to determine the permeability. 

Step 17: In order to simulate a third phase (gas), the core 
at S0r is then saturated with high-pressure fluorinated gas 
that is insoluble in water. This fluorinated gas is the analog 
of methane (CH4) used for measuring hydrocarbon-filled 25 

tortuosity. The fluorocarbon gas will be selected based on 
large D0 and therefore large L0 , as well as large FI (fluorine 
index) for high SNR (signal-to-noise ratio); see below. 

One skilled in the art can construct a three-phase relative 
permeability model from the oil/water relative permeability 
curve and the oil/gas relative permeability curve using linear 
interpolation. 

Alternative to D20 for 1H Free Aqueous Phase 
At this stage, the core has three phases in the pore space: 30 

D2 0 brine at Swirr (most likely in the smallest pores if the 
sample is water wet), residual ClO at S0r, and fluorocarbon 
gas. 19F NMR D/D0 versus L0 measurements are made to 
probe the large L0 region of the D/D0 versus L0 curve in 
order to measure the tortuosity of the gas phase (tg), using 35 

the Pade fit. 

The above methodology uses D20 brine to produce a 1H 
free aqueous phase, thereby leaving only the hydrocarbon 
phase detectable by 1H NMR. However, D20 is costly, and 
it can take a long time to exchange H20 for D20 in tight 
low-porosity rocks. 

An alternative is to exchange the H20 brine with H20 
brine doped with paramagnetic ions, thereby separating the 
1H signal in the aqueous phase from the 1H signal in the 
hydrocarbon phase. Some common paramagnetic ions used 
in NMR include Mn-EDTA, Gd-EDTA, MnC12 , or GdCt, 

Step 18: The fluorocarbon gas is evacuated from the core 
by releasing the gas pressure and the core is then saturated 
with a fluorocarbon liquid that is insoluble in both oil and 
water. 19F NMR measurements of D/D0 versus L0 are made 
for the short L0 region of the D/D0 versus L0 curve to 
measure the pore-body diameter of the gas phase (dg) from 
S/V=4/dg at Swirr & S0r, using the Pade fit. T2 measurements 
will also be made to get the porosity (q) of the gas phase, as 
well as the surface relaxivity (p2g). 

40 which are all readily available. In sufficient concentrations, 
the paramagnetic ions shorten the bulk relaxation times of 
the aqueous phase to T1,,,T2 "'1 ms, thereby distinguishing it 
from the hydrocarbon phase. At even higher paramagnetic 
ion concentrations, the 1H signal can be made shorter than 

45 the echo spacing of tE"'O. 1 ms, thereby making the aqueous 
phase undetectable. 

Yet another alternative to diffusing in the D20 brine or 
Mn-EDTA brine, a faster route is to do a gravity-stable fluid 
displacement through the core. 

Step 19: The core is centrifuged with water in an imbi­
bition cycle down to Sgr at Sor· The relative permeability of 
gas is measured (krg=kJk) with decreasing gas saturation 

50 
(Sg) at S0r down to Sgr by history matching the fluorocarbon 

Other NMR active nuclei may also be used in the practice 
of this invention, including 23Na in the NaCl brine, and 2H 
(deuterium NMR) in the D20 and 13C in the hydrocarbons. 
Also, per-deuterated versions of the hydrocarbons may also 
be used. However, these other NMR active nuclei have 

production. 

Step 20: The relative permeability to gas (krg) at S0r is 
predicted using dg, <pg, tg, k based on the modified Carman­
Kozeny relation: 

'P d2 k -A __ g_g_ 
g- g32rgBTR2 

where Ag is a free parameter to be calibrated from the data 
set. Another relation besides Carman-Kozeny can also be 
used. 

Step 21: The core sample is then evacuated, cleaned by 
Soxhlet extraction, and dried. 

55 lower signal-to-noise ratio either because of lower gyromag­
netic ratios or lower isotopic abundance, or both. 1 H and 19F 
have the highest signal-to-noise ratio and it is easy to retune 
the NMR probe between 1H and 19F. Higher magnetic fields 
would improve the signal-to-noise ratio of these lower 

60 sensitivity nuclei for the practice of this invention. 
19F may also be used in the brine phase by adding NaF or 

CaF2 salt or another fluorinated salt dissolved in the brine. 
Another embodiment is to use the fluorocarbon oil instead 

of the hydrocarbon oil (decane), and in this case, use H20 
65 instead of D20. In this embodiment, 1H NMR provides the 

information about the water phase, and 1 9F provides the 
information on the non-wetting "oil" phase. 
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Choice of Fluorocarbon Gas for 19F NMR 
The choice of fluorocarbon gas is selected based on large 

D0 , and therefore large L0 , as well as large FI (fluorine 
index) for high SNR (signal-to-noise ratio). Another opti­
mization is the pressure and temperature of the experiment. 5 

Higher pressure increases FI but decreases D0 , while higher 
temperature decreases FI but increases D0 . Increasing tem­
perature from 30 C to 100 C reduces the SNR by"'½ due to 
lower FI and the Boltzmann factor, with only a mild increase 
in L). 10 

The FI are determined by first computing the number 
density of 19F nuclei (N 19) as such: 

12 
ms surface relaxation for the wetting hydrocarbon gas [Chen 
2019]. As such, the maximum is L0 ,,,160 µm for CH4 at 1200 
psia. 

On the other hand, it is expected the fluorocarbon gas is 
non-wetting and therefore has no surface relaxation, i.e. it 
exhibits only bulk relaxation. A bulk relaxation time of 
T 1"'1000 ms is loosely expected for the fluorocarbon gases, 
which is based on spin-rotation relaxation for bulk CH4 and 
the presence of dissolved oxygen. As such, one can expect 
a maximum t,,._,,,550 ms for the fluorocarbon gases, which 
increases the maximum L0 . At the largest vapor pressure of 
700 psia, CHF3 has a maximum L0 300 µm. At the largest 
vapor pressure of 400 psia, SF6 has a maximum L0 ,,,250 µm. 

15 Meanwhile, CF 4 has a maximum of L0 220 µmat 1200 psia. 

where p is the gas density, Mw is the molecular weight, 
NA is Avogadro's number, and n19 is the number of 19F 20 

nuclei per formula-unit. The FI is then divided by the 
number density of 1H nuclei for water N 1=66.7 1H/nm3 as 
such: 

All three fluorocarbon gases have larger maximum L0 than 
CH4 due to larger accessible tA-

The results are listed as such: 

Fluoro-

TABLE 1 

Summary of results for the three most 
promising fluorocarbon gases, and CH4 for comparison. 

T p Do IA (ms) L0 (m) 

25 carbon (' C.) (psia) FI (µm2/ms) maximum maximum 

where '("1!'-f =0.94 is the ratio of gyromagnetic ratios for 
30 19F compared to 1 H. 

CHF3 

SF5 
CF4 
CH4 

30 
30 
30 
30 

700* 
400* 

1200 
1200 

0.11 
0.09 
0.15 
0.14** 

*maximum pressure of vapor phase. 

**HI. 

160 550 300 
110 550 250 
90 550 220 

250 110 160 

Due to the lack of published measurements, the molecular 
diffusion for the gases is predicted using kinetic theory of 
gases: 

µ RT 
Do"'-­

PMw 

The optimal fluorocarbon gas at operating pressures 
above P>500 psia is CF4 since FI is the largest, and D/or 

35 
L0 ) are comparable to the other fluorocarbon gases. CF 4 also 
has the potential to go to higher pressures, which increases 
FI without significantly decreasing D0 (or L0 ). 

where µ is the dynamic viscosity of the gas, P is pressure, 
R is the ideal gas constant, and T is absolute temperature. 
The measured value D0,,,250 µm2/ms for CH4 at 30° C. and 
1200 psia is close to kinetic theory D0,,,245 µm2/ms, which 
justifies the above expression in the low-density regime. 

The optimal fluorocarbon gas at operating pressures 
below P<SOO psia is SF6 since FI and D0 (or L0 ) at p,,,400 

40 
psia are comparable to CF4 at p,,,1000 psia. 

Choice of Fluorocarbon Liquids for 19F NMR 

FIG. 6 shows the FI for the fluorocarbon gases as a 45 

function of P for the accessible laboratory pressure, all at 30° 
C. Only data in the vapor phase or supercritical phase are 
shown, i.e. not in the liquid phase, since the vapor phase is 
of interest for large D0 . The CHF3 has a maximum FI"'0.11 
in the vapor phase at 700 psia, while SF6 has a maximum 50 

FI"'0.09 in the vapor phase at 400 psia, which are lower than 
HI"'0.14 for CH4 at 1200 psia in [Chen 2019]. CF4 has a 
larger FI"'0.15 at 1200 psia, which increases with increasing 
P in the vapor phase. 

FIG. 7 shows D0 for the fluorocarbon gases as a function 55 

of P for the typically accessible laboratory pressure, all at 
30° C. At the largest vapor pressure of 700 psia, CHF3 has 
a D0,,,160 µm2/ms. At the largest vapor pressure of 400 psia, 
SF6 has a D0,,,110 µm2/ms. Meanwhile, CF4 has a D0,,,90 
µm2/ms at 1200 psia, which is lower than for CH4 where 60 

D0 ,,,250 µm 2/ms at 1200 psia. 
Of more interest than D0 is the maximum diffusion length 

L0 possible for each gas. FIG. 9 shows the dependence of 
maximum L0 versus P for the fluorocarbon gases. Also 
shown for comparison is L0=✓D0t,,._ for CH4 , where the 65 

maximum diffusion-evolution time is taken to be t,,._=110 ms. 
The maximum t,,._ is a consequence of decay due to T1,,,150 

The optimal fluorocarbon liquid is 3M Fluorinert Elec­
tronic Liquid FC-770. A list of relevant properties for 
FC-770 at 25° C. are given in 2. 

TABLE 2 

List of selected properties of 3M Fluorinert FC-770 at 25° C. 

Properties at 25° C. 

Average molecular weight 
Boiling point(@ I atm) 
Liquid density 
Vapor pressure 
Dynamic viscosity 
Water solubility 
Solubility in water 
Interfacial tension with air 
Interfacial tension with brine 
Interfacial tension with n-decane 

Fluorinert FC-770 

399 (g/mol) 
95 (0 C.) 

1.793 (g/cm3
) 

0.953 (psi) 
1.359 (cP) 

14 (ppmw) 
1.3 (ppmw) 

14.8 (dyne/cm) 
31.6 (dyne/cm) 

6.2 (dyne/cm) 

The present invention has been described using detailed 
descriptions of embodiments thereof that are provided by 
way of example and are not intended to limit the scope of the 
invention. The described embodiments comprise different 
features, not all of which are required in all embodiments of 
the invention. Some embodiments of the present invention 
utilize only some of the features or possible combinations of 
the features. Variations of embodiments of the present 
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invention that are described and embodiments of the present 
invention comprising different combinations of features 
noted in the described embodiments will occur to persons 
skilled in the art. 
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What is claimed is: 
1. A method of determining, for each of three different 

fluid phases (water, oil and gas), a set of one or more 
fluid-phase-specific petrophysical properties (FPS-PP) of 
geological core where FPS-PPwArER is the FPS-PP for the 
water phase, FPS-PP OIL is the FPS-PP for the oil phase, 
FPS-PP GAs is the FPS-PP for the gas phase, where the 
FPS-PP is selected from a FPS-PP group which is defined 
below, the method comprising: 

a. subjecting the geological core to NMR restricted dif­
fusion measurements for multiple NMR active nuclei 
with at least two different hydrocarbons for at least the 
oil and gas phases, and 

b. centrifuging the geological core over multiple drainage 
or imbibition cycles so as to produce effluent from the 
geological core; 

c. as the geological core is centrifuged, measuring a time 
dependence of a flow rate of effluent from the geologi­
cal core; 

d. computing, from results of the NMR restricted diffu­
sion measurements and from the time dependence of 
the flow rate of effluent, all of (i) FPS-PPwArER, (ii) 
FPS-PP OIL and (iii) FPS-PP GAs, wherein the FPS-PP 
group is defined as the group consisting of: (A) a 
fluid-phase-specific tortuosity value; (B) a fluid-phase­
specific porosity value, the fluid-phase-specific poros­
ity being defined as a fraction of a total pore volume 
which is occupied by a specific phase (oil, water or 
gas); (C) a fluid-specific-phase pore diameter, the fluid­
specific-phase pore diameter being defined as a pore 
diameter which is occupied by the specific phase ( oil, 
water, or gas); (D) a fluid-phase-specific body-to-throat 
ratio, the fluid-phase-specific body-to-throat ratio being 
defined as a body-to-throat ratio of respective throat 
and pore volumes which are occupied by the specific 
phase (oil, water or gas); (E) a fluid-phase-specific 
permeability, the fluid-phase-specific permeability 
being defined as the permeability of a specific phase 

16 
( oil, water, or gas); (F) a fluid-phase-specific relative 
permeability curve for two specific phases. 

2. The method of claim 1 wherein the set of one or more 
petrophysical properties comprises; (A) 3 phase-specific 

s tortu_osity values, one each of the 3 fluid-phases; (B) phase 
specific pore diameter values, one for each of the 3 fluid­
phases where a pore diameter value for a given fluid-phase 
1s defin_ed as t~e pore diameter occupied by that fluid-phase; 
CC?) flmd-spec1fic-phase body-to-throat ratio, the fluid-spe-

10 
c1fic-phase body-to-throat ratio, one for each of the 3 fluid­
phases; (D) fluid-phase-specific porosity values, the fluid­
phase-specific porosity being defined as the fraction of total 
pore volum~ occupied by the specific phase ( oil, water or 
gas); (E) flmd-phase-specific permeabilities, one for each of 
the 3 _fl_uid-phases; and (F) fluid-phase-specific relative per-

15 meab1hty curves for two specific phases. 
3. The method of claim 1 where the NMR restricted 

diffusion measurements utilize a D-T 2 method. 
4. The method of claim 3 wherein a Pade fit is used with 

restricted diffusion data of the NMR restricted diffusion 
20 measurements for any fluid phase to determine both a 

fluid-phase-specific surface-to-volume ratio and the fluid­
phase-specific tortuosity value for that fluid phase. 

5. The method of claim 1 wherein the multiple NMR 
active nuclei comprise 1 H and 19F. 

25 6. The method of claim 1 wherein the water phase 
comprises D20. 

7. The method of claim 1 wherein the gas phase 1s 
simulated using at least one fluorinated hydrocarbon. 

8. The method of claim 7 wherein the gas phase 1s 
30 simulated using Fluorinert FC-770. 

9. The method of claim 7 wherein the gas phase 1s 
simulated using SF 6 . 

10. The method of claim 7 wherein at least one of the 
fluorinated hydrocarbons comprises CF H Cl where x and 

35 X y z 
y and z are integers between 0 and 3. 

11. The method of claim 1 wherein the multiple NMR­
active nuclei comprise 23Na and 2H. 

12. The method of claim 1, further comprising determin­
ing one or more locations in accordance with all of FPS-

40 PP WATER, FPS-PP DID and FPS-PP GAs, and drilling one or 
more horizontal or vertical wells in accordance with one or 
more of the determined locations. 

13. The method of claim 1, further comprising determin­
ing one or more locations in accordance with all of FPS-

45 
PPwArER, FPS-PP oIL, and FPS-PP GAs, and performing at 
least one additional operation in accordance with one or 
more of the determined locations, wherein the at least one 
additional operation includes at least one of: (i) caping and 
perforating; and (ii) deploying a pump. 

* * * * * 


