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Abstract Understanding mechanisms of bacterial eradication is critically important for9

overcoming failures of antibiotic treatments. Current studies suggest that the clearance of large10

bacterial populations proceeds deterministically, while for smaller populations the stochastic11

effects become more relevant. Here we develop a theoretical approach to investigate the bacterial12

population dynamics under the effect of antibiotic drugs using a method of first-passage processes.13

It allows us to explicitly evaluate the most important characteristics of the bacterial clearance14

dynamics such as extinction probabilities and extinction times. The new meaning of minimal15

inhibitory concentrations for stochastic clearance of bacterial populations is also discussed. In16

addition, we investigate the effect of fluctuations in the population growth rates on dynamics of17

bacterial eradication. It is found that extinction probabilities and extinction times generally do not18

correlate with each other when random fluctuations in the growth rates are taking place.19

Unexpectedly, for a significant range of parameters the extinction times increase due to these20

fluctuations, indicating a slowing in the bacterial clearance dynamics. It is argued that this might be21

one of the initial steps in the pathway for the development of antibiotic resistance. Furthermore, it22

is suggested that extinction times is a convenient measure of bacterial tolerance.23

24

Introduction25

The rise of pathogenic bacteria that are resistant to antibiotics is one of the major global health26

threats of the 21st century. High mortality rates and increasing health care costs associated with27

fighting the bacterial infections call for designing new effective therapeutic strategies (O’Neill (2016);28

Brooks and Brooks (2014)). A major challenge in overcoming treatment failures is coming from29

ineffective eradication of antibiotic-susceptible bacteria (Weidner et al. (1999); Doern and Brecher30

(2011); Reller et al. (2009)). Despite the introduction and wide application of a very large range of31

antibiotics since the 1940s, important aspects of how antibiotics clear bacterial population at all32

levels (molecular, cellular and population) remain not well clarified. A deeper understanding of the33

underlying dynamics of bacterial clearance requires not only extensive laboratory studies, but also34

a development of new theoretical approaches to investigate the bacterial response to antibiotics35

(Allen and Waclaw (2016)).36

Majority of current experimental and theoretical studies focus on the eradication of initially37

large quantities of bacteria (Nielsen et al. (2011); Ferro et al. (2014); Regoes et al. (2004)), and it38

was shown that a deterministic picture describes well the decrease in these bacterial populations39

(Regoes et al. (2004); Czock et al. (2009)). In this deterministic framework, the dynamics of bacterial40
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population exposed to antibiotic is characterized by a minimum inhibitory concentration (MIC), the41

minimal drug concentration required to inhibit bacterial growth (Falagas et al. (2012); Regoes et al.42

(2004); Czock et al. (2009)). The MIC can be regarded as a threshold on the antibiotic concentration43

such that only above MIC a bacterial population can undergo full extinction, while for concentrations44

below MIC the infection will never disappear.45

However, it can be argued that it is also critically important to investigate the clearance dynamics46

for small bacterial populations. Failure to completely eradicate a population of bacteria can have47

two main consequences. First, even a small number of surviving bacteria can restore infections48

(Jones et al. (2006)). Second, certain strains of surviving cells may develop antibiotic resistance,49

which, in turn, can complicate subsequent therapies (Gullberg et al. (2011); Kohanski et al. (2010);50

Dagan et al. (2001)). Therefore, the effective treatment of infections requires not only reducing a51

large population number to a small number, but also the complete eradication of the bacterial52

population (Tomita et al. (2002);Wilson et al. (2013); Bayston et al. (2007)).53

Despite earlier technical problems (Nielsen et al. (2011); Ferro et al. (2014)), recent experiments54

were able to quantitatively investigate the antibiotic-induced clearance of small bacterial populations55

(Coates et al. (2018)). It was demonstrated that stochastic factors play much more important roles56

at these conditions. For example, Coates et al showed that even in sub-MIC antibiotic concentration,57

bacterial population decline with non-zero probability (Coates et al. (2018)). This means that under58

the same conditions some populations experience growth with cells continuously dividing, while59

other populations quickly extinct. A Markovian probabilistic birth-and-death model was introduced60

to uncover the relationship between the extinction probability and the antibiotic concentrations61

(Coates et al. (2018)). This stochastic approach predicted that antibiotics induce fluctuations in62

bacterial population numbers. These fluctuations, in turn, lead to stochastic nature of the clearance63

of small bacterial populations.64

Although the Markovian model developed by Coates et al successfully described the experimen-65

tal observations, it cannot predict an extinction time, i.e., the mean time at which the given number66

of bacterial cells will go to zero. This is a very important property of the bacterial population clear-67

ance dynamics because it gives a better measure of the efficiency of the antibiotic treatments than68

the extinction probability. One could use an analogy with thermodynamic and kinetic descriptions69

of chemical processes. Thermodynamics gives the probability for the process to happen, but if the70

process is actually taking place in real times is determined by kinetic rates. In our language, this71

means that the large extinction probability might not always correlate with fast removal of bacterial72

infection. While the extinction probability can give a qualitative measure of the bacterial population73

dynamics, the extinction time is much more useful in quantitative characterization of the bacterial74

resistance and tolerance. It seems that the development of new drugs and new therapies in fighting75

against bacteria should utilize this quantity as a measure of their success.76

In this study, we developed a discrete-state stochastic model of the antibiotic-induced clearance77

of bacteria that employs a method of first-passage probabilities. This method has been successfully78

utilized to analyze multiple processes in Chemistry, Physics and Biology (Van Kampen (1992); Redner79

(2001); Kolomeisky (2015)). It allows us to quantitatively describe the stochastic dynamics of bacte-80

rial eradication by explicitly calculating extinction probabilities and extinction times and clarifying81

the physical meaning of MIC. Our method is also applied to investigate the effect of fluctuations in82

the growth rates on the stochastic clearance of bacterial populations. These fluctuations can be83

attributed to various environmental factors such as availability of nutrients, changes in osmolarity84

and other factors (Rochman et al. (2016)). Our results suggest that these fluctuations influence85

the extinction probabilities and extinction times differently. There is a large range of antibiotic86

concentrations when the extinction times increase due to the fluctuations, and this corresponds to87

the slowdown of the dynamics of bacterial eradication. We speculate that this might be a first step88

in the developing of antibiotic resistance. It is also argued that extinction times is a convenient new89

measure of bacterial tolerance.90

2 of 18



Manuscript submitted to eLife

0
! 1 2 3 N-1 N

"

#! $!

#"

(N-1)"…

Figure 1. Schematic representation of the single growth-rate model for the clearance of bacteria. Each state n
(n = 0, 1, ..., N ) represents a bacterial population with n cells. The states 0 and N correspond to the bacterial
eradication (no cells in the system), and the fixation (death of the organism), respectively. From each state n, the
bacterial population can change to the state n + 1 (growth) with a total rate n�, or it can jump to the state n − 1
(shrinking) with a total rate n�.

Model91

Stochastic clearance with a constant growth rate92

We start our analysis by considering a simple stochastic model for the clearance of bacteria as93

shown in figure 1. Our goal is to obtain a minimal theoretical description of the bacterial clearance94

dynamics. For this reason, the model is characterized by only two parameters: the rate of cell95

growth � and the rate of cell death �: see figure 1. The bacterial growth rate is generally controlled96

by the environmental factors such as the availability of nutrients, temperature, osmotic pressure97

and other factors (Rochman et al. (2016)). When exposed to antibiotics, the cell growth rate can98

also depend on the antibiotic concentration (Greulich et al. (2015)). For the sake of simplicity, we99

assume that the cell growth rate is independent of antibiotic concentration and remains constant100

over different generations, while the cell death rate, �, is controlled by the antibiotic concentration.101

It is also assumed here that if the bacterial population reaches the size N the organism hosting the102

bacteria will die from the infection. This is known as a fixation.103

To describe dynamical transitions in the system, we define Fn(t) as a probability density function104

to clear the system from infection at time t if the initial population number (so-called inoculum size)105

is equal to n (1 ≤ n ≤ N − 1). The temporal evolution of this probability function is governed by the106

following backward master equation (Redner (2001); Kolomeisky (2015)):107

dFn(t)
dt

= n�Fn−1(t) + n�Fn+1(t) − n(� + �)Fn(t). (1)

Introducing the Laplace transform of this function, F̃n(s) = ∫ ∞
0 Fn(t)e−st, we transform the backward108

master equation into109

( s
n
+ � + �)F̃n(s) = �F̃n−1(s) + �F̃n+1(s). (2)

Because we are mostly interested in the stationary dynamic behavior at long times (s → 0), the110

following expansion can be written:111

F̃n(s) ≃ fn − sbn. (3)

Then F̃n(s = 0) = fn yields the first-passage probability of the bacterial clearance or simply the112

extinction probability for the bacterial population with the inoculum size n. It can be shown that the113

extinction probability is given by (see appendix I for details)114

fn =
xN − xn
xN − 1

. (4)

where a parameter x = �∕� can be viewed as an effective death rate for the bacterial population115

normalized over the growth rate. Since in our model it is assumed that the growth rate does not116

depend on the death rate, the extinction probability is determined only by the ratio of � and �.117
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Figure 2. Analytical calculations of extinction probabilities: (a) as a function of the inoculum size for three
different values of x and N = 50; (b) for a specific mid-size inoculum (n = N∕2) as a function of the parameter x
(x = �∕�) for three different values of N ; and (c) as a function of the parameter x for three different values of
the inoculum size with N = 50.

Our analytical results for the extinction probability are presented in figure 2. The dependence of118

the bacterial clearance probability [from equation (4)] on the initial size of the bacterial population119

is given in figure 2(a) for three different values of x. For x = 1, which in the deterministic picture120

of bacterial clearance is described as MIC, the extinction probability linearly decreases with the121

inoculum size, fn =
N−n
N
. In this case, the growth and the death rates are the same, and the122

probability of bacterial clearance is proportional to the relative distance from the initial state n123

to the fixation state N . The smaller the inoculum size, the larger the probability to eradicate the124

infection. But even for n = 1, the extinction probability is not equal to one [f1(x = 1) =
N−1
N

< 1]. For125

x < 1 (sub-MIC conditions), the extinction probability is a decaying function of the inoculum size126

n. In this case, the growth rate is faster than the death rate, and the larger the inoculum size, the127

harder for the system to reach the total eradication of the infection (n = 0 state). One could also see128

this more clearly in the limit of x→ 0 and N → ∞ when we have fn ≃ xn. This implies that even for129

sub-MIC conditions (low antibiotic concentrations) the extinction probability is never equal to zero,130

which is a clear signature of the stochastic effects in the bacterial clearance dynamics. The situation131

is different for x > 1 (large antibiotic concentrations), when the extinction probability is always close132

to one except in the region near the death state N . This can be also seen from the case of x ≫ 1133

and N → ∞ when we obtain fn ≃ 1 − xn−N . This result suggests that even for concentrations above134

MIC the extinction probability is never equal to one, which is again due to the stochastic fluctuations135

in the system. Our analytical calculations were verified with Monte Carlo computer simulations, in136

which we utilized typical growth rates associated with bacteria E. coli, in range from 1∕300 min−1 to137
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1∕20 min−1 (Rochman et al. (2016)).138
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Figure 3. Analytical calculations for the extinction times (in minutes): (a) as a function of the inoculum size for
three different values of x; and (b) as a function of the parameter x for different inoculum sizes (n = 10,25, and
40). In all calculations N = 50 and � = 1∕60 min−1 were utilized.

The stochastic effects of the bacterial clearance can be understood better if we consider the139

extinction probability of a specific inoculum size (n = N∕2), equally distant from the state n = 0140

(eradication) and n = N (death), which is plotted in figure 2(b). One can see that the dependence141

of the extinction probability on x follows a logistic sigmoid curve. The steepness of the curve at142

midpoint (x = 1) is controlled by the values of n and N . In other words, for x < 1 the extinction143

probability is still non-zero while for x > 1 it is still less than one. Therefore x = 1 does not satisfy the144

classical definition of MIC as the minimum inhibitory concentration required for clearance. Thus,145

we need to calculate the effective saturation value for which the extinction probability becomes146

very high and realistically not much different from one. This might be viewed as an effective MIC for147

stochastic bacterial clearance. This saturation point is given by (see appendix II)148

xsat = 1 +
N

n(N − n)
(5)

For the special case n = N
2
, this equation yields xsat = 1+

4
N
. Therefore, asN increases the steepness149

of curve becomes sharper, such that the extinction probability becomes insensitive to population150

number while it is ULTRASENSITIVE with respect to x. In this case, large population alleviates the151

stochastic effects in the bacterial clearance, and x = 1 yields the minimum inhibitory concentration,152

as expected.153

Theoretical calculations also predict that the extinction probability strongly depends on the154

inoculum size and on its relative distance to the death state N , as illustrated in figure 2c. For155

n = 1 the dependence on x is linear for small antibiotic concentrations (x < 1), while n = N − 1 is156

almost zero for x < 1 and it is slowly approaching to one for larger antibiotic concentrations. These157

different behaviors are again a consequence of the stochastic nature of the bacterial population158

clearance.159

A critically important property of the bacterial eradication is how long does it take to clear160

the host from the infection, which is known as the extinction time. This time scale is crucial for161

development of new therapies and it can be also useful in quantifying the bacterial tolerance, which162

is the ability of a bacterial population to survive at longer periods of time exposed to antibiotics163

(Brauner et al. (2016)). Our first-passage probabilities method is a powerful tool to evaluate this164

quantity. We define Tn as a mean first-passage time to reach the extinction state (n = 0) from the165

inoculum of size n, and this is exactly the extinction time. Using the probability density function166

Fn(t), it can be written as167

Tn =
∫ ∞
t=0 tFn(t)dt

∫ ∞
t=0 Fn(t)dt

. (6)
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Using the Laplace transform and equation (3), we obtain168

Tn =
− )F̃n

)s
|s=0

F̃n(s = 0)
=
bn
fn
. (7)

As explained in the appendix I, the extinction time is explicitly given by:169

Tn =
1

�(xN − xn)(x − 1)

[

1 − xn
1 − xN

N−1
∑

k=1

(xN − xk)(xN−k − 1)
k

−
n−1
∑

k=1

(xN − xk)(xn−k − 1)
k

]

. (8)

It can be shown that for x = 1 the expression for the extinction time takes the form:170

Tn =
1

�(N − n)

[

n
N

N−1
∑

k=1

(N − k)2

k
−

n−1
∑

k=1

(N − k)(n − k)
k

]

. (9)

For x > 1 and N → ∞ the extinction times are given by (see the appendix I),171

Tn =
1
�

[

xn − 1
x − 1

ln
( x
x − 1

)

−
n−1
∑

k=1

(

1
k

n−k−1
∑

j=0
xj
)]

, (10)

while for x→ 0 we have172

Tn ≃
1
�

[1
n
+ x
n + 1

+ ...
]

. (11)

The results of our calculations for the extinction times are presented in figure 3. As expected,173

it takes longer to clear the infection for larger inoculum sizes (figure 3a). For large antibiotic174

concentrations (x > 1), the extinction time is shorter and it depends weaker on the inoculum size175

n. For small antibiotic concentrations (x < 1), the time to eradicate the infection is larger and it is176

more sensitive to the inoculum size. More interesting behavior is observed when we analyze the177

extinction time for different antibiotic concentrations: see figure 3b. A non-monotonic behavior as178

a function of x is predicted, and the largest extinction time is observed for MIC conditions (x = 1).179

Increasing the antibiotic concentrations (x > 1) shortens the time for bacterial clearance because180

the drive to infection eradication becomes stronger. However, the surprising observation is that181

lowering the antibiotic concentrations below MIC (x < 1) can also accelerate the bacterial clearance182

despite the fact that the probability of clearance decreases. This can be explained by the following183

arguments. In these conditions, only those bacterial populations lead to the full eradication that184

shrink fast. If it is not fast, the bacterial population shrinking will be reversed and the infection will185

spread more. This is another signature of the stochastic effects in the bacterial clearance dynamics.186

Our analysis of extinction times allows us to reinterpret the meaning of MIC. For N → ∞187

from (10) we conclude that the extinction time diverges logarithmically for x → 1, and it becomes188

infinite for x < 1. This suggests a new more practical definition of MIC (x = 1). It is the antibiotic189

concentration at which the extinction time is maximal (for finite bacterial populations), or it is the190

antibiotic concentration below which the extinction times diverges (for N → ∞). This analysis also191

suggests that, from the practical point of view, to eliminate the infection it is important to apply the192

antibiotic concentrations that significantly differ from MIC to avoid the slowdown in the dynamics.193

It is interesting to compare our theoretical predictions with experimental measurements of194

stochastic bacterial clearance (Coates et al. (2018)). In these experiments, the stochastic population195

dynamics of bacterial exposed to bactericidal drugs have been monitored starting from single E.coli196

bacteria for sub-MIC conditions (x = 0.8) and for concentrations above MIC (x = 1.2). It was also197

estimated that the growth rate is � ≃ 1∕100min−1. Then using (10) and (11) we predict that for both198

cases, x = 0.8 and x = 1.2, the extinction times are close to 200 minutes, which agrees well with199

these experimental observations.200

6 of 18



Manuscript submitted to eLife

! 1 2 3 N-1

N

"! #!

"$%
…

0

! 1 2 3 N-1
$"

"! #!

"$"
(N-1)$"…

&' "&"' #&3' (N-1)&(N-1)'

$%
(N-1)$%

Figure 4. Schematic representation of the model for the clearance of bacteria with fluctuating growth rates.
The model comprises two coupled lattices. At each state n on lattice 1 (lattice 2), population can jump to state
n + 1 with growth rate n�1 (n�2). Death rates are equal along the lattices. Also, � and 
 are rates to transition
between lattices.

Stochastic clearance in fluctuating environments201

Although the mechanisms of the development of antibiotic resistance remain not fully understood,202

recent studies suggest that random fluctuations of various parameters can stimulate the bacterial203

tolerance to antibiotic drugs (Allen and Waclaw (2016); Fridman et al. (2014). In bacterial pop-204

ulation dynamics, one main source of stochasticity is due to the environmental variations. For205

example, single cell experiments have shown that the cell cycle duration is subject to random fluctu-206

ations. (Rochman et al. (2016); Stukalin et al. (2013)). We can investigate the effect of growth rate207

fluctuations on the bacterial clearance dynamics using our theoretical first-passage probabilities208

method. To do so, we introduce a simplest model as shown in figure 4. It is assumed that the209

infection can spread with two growth rates, �1 and �2, while the death rate � is assumed to be the210

same in both populations. The system can stochastically transition between two different growth211

regimes with rates � and 
: see figure 4. For the sake of simplicity, in calculations we assume that212

� = 
 . Similar deterministic models for population dynamics in fluctuating environments have been213

already discussed (Balaban et al. (2004); Acar et al. (2008); Kussell et al. (2005)).214

In this model, we define F (i)
n (t) and F

(2)
n (t) as the probability density functions to clear the system215

from infection if the bacterial population starts with n cells while growing with the rate �1 or �2,216

respectively. The temporal evolution of these probability functions is governed by the following217

backward master equations:218

dF (1)
n (t)
dt

= n�F (1)
n−1(t) + n�1F

(1)
n+1(t) + n
F

(2)
n (t) − (n� + n� + n�1)F (1)

n (t); (12)

dF (2)
n (t)
dt

= n�F (2)
n−1(t) + n�2F

(2)
n+1(t) + n�F

(1)
n (t) − (n
 + n� + n�2)F (2)

n (t). (13)

In general, it is difficult to obtain full analytical solution for this problem for arbitrary N . However,219

exact solutions for simple cases with N = 2 and N = 3 can be derived (see appendix III for details).220

To better understand the effects of fluctuation on the dynamics of clearance, it is convenient221

to compare the fluctuating growth model (rates �1 and �2) presented in figure 4 with a single222

growth-rate model with � = �1+�2
2
presented in figure 1. Since the average growth rates in both223

cases are the same, the possible differences in the dynamics properties for bacterial clearance are224

coming from the fluctuations. To quantify this effect, we define a function r(f )n as the ratio of the225

extinction probabilities predicted by the fluctuating-growth model and by the single growth-rate226

model:227

r(f )n =
f (avg)n

fn
=
f (1)n + f (2)n

2fn
. (14)

Similarly, one can define a function r(T )n for the ratio of extinction times:228

r(T )n =
T (avg)n

Tn
=
T (1)n + T (2)n

2Tn
. (15)

If r(f )n > 1 then it means that fluctuations increase the extinction probability, while r(T )n > 1 indicates229

that fluctuations increase the extinction times.230
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As shown in appendix III, the fluctuating growth-rate model has been solved exactly to evaluate231

extinction probabilities and extinction times for N = 3, and the results are presented in figure 5.232

It is found that r(f )n is always larger than one (see figure 5a), which indicates that in the bacterial233

population with fluctuations in the growth rate the probability of eradication of infection is always234

larger than in the single-growth population. The effect is stronger for not very large antibiotic235

concentrations and for slow transitions between two growth regimes. It can be argued that236

switching transitions open new pathways for eradication of the bacteria, and this should increase237

the extinction probability. At the same time, increasing the amplitude of the switching transition238

rates leads to an effective equilibrium single growth rate regime with the growth rate given by the239

average between two dynamic regimes, and this clearly does not increase the extinction probability.240

The figure 5b presents the ratio of extinction times, and our theory predicts that r(T )n > 1, i.e.,241

fluctuations in the growth rates unexpectedly slow down the bacterial clearance dynamics, in242

contrast to expectations from the extinction probabilities. The effect is stronger for not very large243

antibiotic concentrations and it disappears for x → ∞. It is also strong for weak fluctuation rates244

between two growth regimes. This surprising result can be explained by noting that due to weak245

transition rates the system can be effectively trapped in the regime with smaller death rates, and246

this should slow down the bacterial clearance dynamics.247
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Figure 5. Analytical calculations of dynamic properties for N = 3model. (a) The ratio of the extinction
probabilities as a function of x for three different values of the transition rates 
 . (b) The ratio of the extinction
times as a function of x for three different values of transition rates 
 . In all calculations, n = 2, �1 =

3
60 min

−1,

�2 =
0.3
60 min

−1 and � = �1+�2
2 were utilized.

More realistic situations of bacterial population dynamics require to consider systems with248

large N . Because analytical calculations cannot be done for these cases, we explored Monte Carlo249

computer simulations to evaluate the dynamic properties of stochastic bacterial clearance. The250

results are presented in figure 6. One can see that for relatively small antibiotic concentrations251

(x < 1) the fluctuations in the growth rate increase the extinction probability (figure 6a). In this case,252

which is generally unfavorable for eradication of infection, opening new pathways should help to253

clear the infection. This is because the system can spend half of the time in the dynamic regimes254

with smaller death rates, which helps to fight the infection better. However, the situation changes255

for large antibiotic concentrations (x > 1), when the fluctuations decrease the extinction probability.256

In this case, due to switching transitions the system spends half of the time in the dynamic regime257

where it is more difficult to eradicate the infection.258

More complex picture is observed when we analyze the ratio of extinction times: see figure 6b.259

It is found that for small antibiotic concentrations and for very large antibiotic concentrations the260

fluctuations in the growth rates lead to slower bacterial clearance dynamics. Only for intermediate261

antibiotic concentrations around MIC (x ∼ 1) fluctuations might accelerate the removal of infection.262

Apparently, opening new pathways for x < 1 and x ≫ 1 regions lowers the drive to eradicate the263
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infection because the system spends more time in switchings between different dynamic regimes264

and not in shrinking of the bacterial populations.265

Analyzing the dynamic properties of the fluctuating growth-rate model, two important observa-266

tions can be made. First, the extinction probability and extinction time generally do not correlate267

with each other when the system experience fluctuations between different growth regimes. Sec-268

ond, turning on the fluctuations in the growth rates of bacteria can significantly increase the269

tolerance to antibiotic drugs for large range of parameters. It seems reasonable to speculate that270

bacteria might explore this option in fighting against antibiotics.271

Discussion272

We theoretically investigated the clearance of bacterial population under the effect of antibiotic273

drugs by concentrating on stochastic aspects of this process. To understand better the mechanisms274

of eradication of infection, a method of first-passage probabilities is introduced. This allows us275

to obtain a comprehensive description of bacterial clearance dynamics. Two important dynamic276

features, extinction probabilities and extinction times, are explicitly calculated. We also clarified277

the physical meaning of MIC in the systems where the stochasticity is more relevant. Furthermore,278

using our method we investigated the effect of fluctuations in the growth rates on the bacterial279

populations dynamics, and we find that these random fluctuations affect differently extinction280

probabilities and extinction times.281

For the single growth-rate model, our analysis show that extinction probabilities strongly depend282

on the antibiotic concentration, the inoculum size and the distance to the death state N . But the283

stochastic effects show up in observations that even for concentrations above MIC the extinction284

probabilities are not equal to one, while for concentrations below MIC the extinction probabilities285

are not equal to zero. More complex behavior is observed for extinction times. For finite-size286

bacterial populations, the extinction times show non-monotonic dependence on the antibiotic287

concentrations with the maximum at MIC. The unexpected acceleration in the eradication of288

infection for concentrations below MIC is explained by the fact that the successful events, which289

are rare at these conditions, must proceed very fast. For infinitely large bacterial populations,290

our calculations show that the extinction times increase with lowering of antibiotic concentration291

and diverge for MIC and sub-MIC concentrations. These properties of extinction times provide an292

additional way of defining the conditions corresponding to MIC.293

By introducing a stochastic model in which bacteria can randomly switch between two growth294

rates we investigated the effect of environment fluctuations in the bacterial clearance dynamics.295

Our analytical and computer simulations results predict that these switchings increase the extinction296

probabilities for low antibiotic concentrations, and decrease them for high antibiotic concentrations.297

However, the effect of fluctuations in the growth rates on extinction times is more complex. With298

the exception of the intermediate concentrations around MIC, random switchings slow down the299

bacterial clearance dynamics.300

Our calculations lead to several important conclusions. Extinction probabilities and extinction301

times generally do not correlate with each other, so it is dangerous to make predictions on bacterial302

population dynamics by considering only the extinction probabilities as typically done in the field.303

There is a significant range of parameters when the fluctuations in the growth rates lead to the304

overall slowing down in the eradication of the infection. Bacterial response to antibiotics is a305

complex process, which depends on genetic and environmental factors (Mitosch and Bollenbach306

(2014)). Some bacterial strains are difficult to eradicate because their clearance needs a higher levels307

of antibiotics that are toxic to hosts. Such bacteria are commonly known as antibiotic-resistant. It308

is a very challenging task to uncover the mechanisms of the development of bacterial resistance.309

Our results suggest that one of the first steps in the resistance pathway might be turning on the310

fluctuations in the growth rates, which would give bacteria an extra time to find another means311

to avoid the effect of antibiotic drugs. Although at this moment, this is just a pure speculation, it312

9 of 18



Manuscript submitted to eLife

will be interesting to investigate this possibility with experimental methods and more advanced313

theoretical approaches.314

Even at concentrations above MIC, some bacteria survive a short-term exposure to antibiotics315

before being affected by it. This ability of bacterial population is known as tolerance (Brauner et al.316

(2017). In contrast to resistance, which is quantified by the MIC, tolerance is poorly characterized.317

The most commonly used approach for quantifying tolerance is the measurement of time-kill318

curves (Handwerger and Tomasz (1985)). Recently, a new metric for bacterial tolerance has been319

introduced Brauner et al. (2016). This new metric, known as the minimum duration for killing 99%320

of the population,MDK99, can be evaluated by statistical analysis of measurements. Our theoretical321

method provides the extinction time as a new measure of bacterial tolerance. The advantage of322

this approach is that it takes into account the stochastic features of the population dynamics and it323

gives the average dynamic property of the bacterial clearance, which might be much more useful324

for practical applications.325
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Figure 6. Predictions of Monte-Carlo computer simulations for the fluctuating growth-rate and single
growth-rate models. (a) The ratio of extinction probabilities as a function of x for three different values of n; and
(b) the ratio of extinction times as a function of x for three different values of n. In simulations the following
parameters were utilized: N = 20, �1 =

3
60 min

−1, �2 =
0.3
60 min

−1, � = 
 = 0.165
60 min−1.
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Appendix 1400

Exact solution for the single-growth rate model401

In this appendix, we present the details for calculations of the extinction probability and

the extinction time. As given in the main text, the temporal evolution of the first-passage

probability function is governed by the following backward master equation (Redner (2001)):
dFn(t)
dt

= n�Fn−1(t) + n�Fn+1(t) − n(� + �)Fn(t) (A.1)

Introducing the Laplace transform of this probability density function, F̃n(s) = ∫ ∞
0 Fn(t)e−st,

we obtain:

( s
n
+ � + �)F̃n(s) = �F̃n−1(s) + �F̃n+1(s) (A.2)

To solve this recurrence relation, it is convenient to write the following expansion:

F̃n(s) ≃ fn − sbn (A.3)

Then F̃n(s = 0) = fn yields the extinction probability. To proceed further we substitute (A.3)
into (A.2):

( s
n
+ � + �)(fn − sbn) = �(fn−1 − sbn−1) + �(fn+1 − sbn+1) (A.4)

Rearranging terms yields:

−
s2bn
n

+ s(
fn
n
− bn(� + �)) + (� + �)fn = �fn−1 + �fn+1 − s(�bn−1 + �bn+1) (A.5)

Equating coefficients of s on both sides yields two equation recurrence relations:

(� + �)fn = �fn−1 + �fn+1 (A.6)

fn
n
− (� + �)bn = −�bn−1 − �bn+1 (A.7)

Equation (A.6) can be simplified as:

�gn−1 = �gn (A.8)

where,

gn = fn − fn−1 (A.9)

Solution of (A.9) is given by:

gn =
(

�
�

)n

g0 = xng0 (A.10)

where x = �
�
. To find constant g0, we perform summation over equation (A.9):

N−1
∑

k=0
gk =

N−1
∑

k=0
fk −

N−1
∑

k=0
fk+1 = f0 − f1 + f1 − f2 + ... + fN−1 − fN = f0 − fN = 1 (A.11)

Combining (A.10) and (A.11) yields:

N−1
∑

k=1
gk = g0

N−1
∑

k=1
xk = 1 (A.12)

Then, g0 is given by:

g0 =
1

(

∑N−1
k=1 xk

) = x − 1
xN − 1

(A.13)
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Therefore:

gn = xng0 =
xn(x − 1)
xN − 1

(A.14)

Now using (A.9), we obtain the extinction probability:

fn = 1 −
n−1
∑

k=1
gk = 1 −

( x − 1
xN − 1

)

n−1
∑

k=1
xk = xN − xn

xN − 1
(A.15)
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To calculate bn, we use equation (A.7)

fn
n
− (� + �)bn = −�bn−1 − �bn+1 (A.16)

This recurrence relations can be simplified as:

1
�
fn
n
= xKn−1 −Kn (A.17)

where

Kn = bn+1 − bn (A.18)

It can be shown that the solution of equation (A.17) is given by:

Kn = xnK0 −
1
�

n−1
∑

l=0
xl

fn−l
(n − l)

(A.19)

It is convenient to rewrite the summation in the following form:

n−1
∑

l=0
xl

fn−l
(n − l)

=
n
∑

l=1
xn−l

fl
l

(A.20)

Solution of the recurrence relation Kn = bn+1 − bn takes the form:

bn =
n−1
∑

j=0
Kj (A.21)

Using boundary condition, we obtain bN =
∑N−1

j=0 Kj = 0. To calculate constantK0, we perform

summation over (A.19):
N−1
∑

j=0
Kj = K0

N−1
∑

j=0
xj − 1

�

N−1
∑

j=0

j
∑

l=1
xj−l

fl
l

(A.22)

Thus, K0 is given by:

K0 =

∑N−1
j=0

∑j
l=1 x

j−l fl
l

�
[

1−xN

1−x

] (A.23)

Finally, combining (A.19) and (A.21) yields bn:

bn = K0

[1 − xn
1 − x

]

− 1
�

n−1
∑

j=0

j
∑

l=1
xj−l

fl
l

(A.24)
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Having determined fn and bn, we can now obtain the expression for the extinction time,

Tn =
− )F̃n

)s
|s=0

F̃n(s = 0)
=
bn
fn
. (A.25)

Using (A.15) and (A.24), we have

Tn =
[

(1 − xn)
�(xN − xn)(1 − xN )

]N−1
∑

j=0

j
∑

l=1

xN+j−l − xj
l

−
[

1
�(xN − xn)

] n−1
∑

j=0

j
∑

l=1

xN+j−l − xj
l

, (A.26)
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which can be further simplified into

Tn =
1

�(xN − xn)(x − 1)

[

1 − xn
1 − xN

N−1
∑

k=1

(xN − xk)(xN−k − 1)
k

−
n−1
∑

k=1

(xN − xk)(xn−k − 1)
k

]

. (A.27)

When x = 1, this expressions yields

Tn =
1

�(N − n)

[

n
N

N−1
∑

k=1

(N − k)2

k
−

n−1
∑

k=1

(N − k)(n − k)
k

]

. (A.28)

In the case of x > 1 and N →∞, it can be shown that

Tn =
1
�

[

xn − 1
x − 1

ln
( x
x − 1

)

−
n−1
∑

k=1

(

1
k

n−k−1
∑

j=0
xj
)]

, (A.29)

while for x→ 0 we have
Tn ≃

1
�

[1
n
+ x
n + 1

+ ...
]

. (A.30)
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Appendix 2528

Calculation of saturation point for extinction probability529

Since the extinction probability versus x follows a logistic sigmoid curve, we can define a
saturation value of x for which the extinction probability saturates to higher values. There
is not a unique way for definition of this saturation point. Here we use a simple definition

presented in (McDowall and Dampney (2006); Chen and Chang (1991)). In the simplest

approximation, the saturation point is the value of x at which the straight line passing
through the midpoint (x = 1), and with a slope equal to the first derivative of the extinction
probability at this point, intersects with fn = 1. We start by taking derivative of the extinction
probability fn =

xN−xn

xN−1
with respect to x.

dfn
dx

|x=1 =
(NxN−1 − nxn−1)(xN − 1) −NxN−1(xN − xn)

(xN − 1)2
=
n(N − n)
2N

(A.31)

Using this derivate value and coordinate of the midpoint (x = 1 and fn = 1∕2), we can obtain
the equation of the straight line passing from the midpoint. The equation of line is y = ax+ b
where a = n(N−n)

2N
. After some algebra we obtain

y =
(

n(N − n)
2N

)

x + 1
2
−
n(N − n)
2N

(A.32)

Solution of this equation at y = 1 yields the saturation point:

xsat = 1 +
N

n(N − n)
(A.33)

This method only provides a first-order approximation for the saturation point. This approxi-

mation can be improved by evaluating higher order (second, third, or fourth) derivatives of

fn. In this case, the straight line passes through the point at which higher derivatives are
zero.
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Appendix 3555

Exact solution for the coupled-parallel lattice model556

It is difficult to obtain a general analytical solution for equations (12). However, for the small

population numbers the exact solution can be derived. In the following we present the

details of our calculations for N = 3model.
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560 Appendix 3 Figure 1. Schematic representation of the fluctuating growth rate model for N = 3561562

Schematic of the coupled -parallel mode is shown in (Appendix 3— Figure 1). Dynamics

of this model is governed by following backward master equations:

dF (1)
1

dt
= �F0 + �1F

(1)
2 + 
F (2)

1 − (� + � + �1)F
(1)
1 (A.34)

dF (2)
1

dt
= �F0 + �2F

(2)
2 + �F (1)

1 − (
 + � + �2)F
(2)
1 (A.35)

dF (2)
2

dt
= 2�F (2)

1 + 2�F (1)
2 − (2
 + 2� + 2�2)F

(2)
2 (A.36)

dF (1)
2

dt
= 2�F (1)

1 + 2
F (2)
2 − (2� + 2� + 2�1)F

(1)
1 (A.37)

Performing the Laplace transform, we obtain:

(s + �1 + � + �)F̃
(1)
1 = � + 
F̃ (2)

1 + �1F̃
(1)
2 (A.38)

(s + �2 + � + 
)F̃
(2)
1 = � + �F̃ (1)

1 + �2F̃
(2)
2 (A.39)

(s + 2�1 + 2� + 2�)F̃
(1)
2 = 2�F̃ (1)

1 + 2�F̃ (2)
2 (A.40)

(s + 2�2 + 2� + 2
)F̃
(2)
2 = 2�F̃ (2)

1 + 2
F̃ (1)
2 (A.41)

Solving this system of four equations and four unknowns, yields F̃ (1)
1 , F̃

(2)
1 , F̃

(1)
2 , F̃

(2)
2 . Expanding

these functions in terms of s yields the extinction probabilities,

f (1)1 =
�
(

4�2
(


� + 2
� + �2 + 2�� + �2
)

+ 4�(
 + � + �)2 + 4��22 + 4�
2
2� + 4�1Λ

)

4�2�
(


(� + 2�) + (� + �)2
)

+ 4�2(
 + � + �)2 + 4�22(� + �)2 + Δ�1 + 4�
2
1Ψ

(A.42)

f (2)1 =
�
(

4�2
(


� + 2
� + �2 + 2�� + �2
)

+ 4�(
 + � + �)2 + 4�21
(


 + �2 + �
)

+ 4�1Ω
)

4�2�
(


(� + 2�) + (� + �)2
)

+ 4�2(
 + � + �)2 + 4�22(� + �)2 + Δ�1 + 4�
2
1Ψ

(A.43)

f (1)2 =
4�2

(


2 + 2
� + 2
�2 + 2
� + �2 + ��1 + ��2 + 2�� + �2� + �22 + �
2
)

4�2�
(


(� + 2�) + (� + �)2
)

+ 4�2(
 + � + �)2 + 4�22(� + �)2 + Δ�1 + 4�
2
1Ψ

(A.44)
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f (2)2 =
4�2

(


2 + 2
� + 
�1 + 
�2 + 2
� + �2 + 2��1 + 2�� + �1� + �21 + �
2
)

4�2�
(


(� + 2�) + (� + �)2
)

+ 4�2(
 + � + �)2 + 4�22(� + �)2 + Δ�1 + 4�
2
1Ψ

(A.45)

and, the extinction times

T (1)1 =
−4�2(
 + 2� + 2�) − 2�1

(

3
 + � + 3�2 + 3�
)

− 2(
 + � + �)2 − 6�(
 + � + �) − 2�22
Ξ

+
6�2(� + 2�)(
 + � + �) + 6�2(
 + � + �) + 6�(
 + � + �)2 + 6�21

(


 + �2 + �
)

+ 6�22(� + �) + �1Υ
Θ

(A.46)

T (2)1 =
−2�2(
 + 3� + 3�) − �1

(

8
 + 4� + 6�2 + 8�
)

− 2(
 + � + �)2 − 6�(
 + � + �) − 2�21
A

+
6�2(� + 2�)(
 + � + �) + 6�2(
 + � + �) + 6�(
 + � + �)2 + 6�21

(


 + �2 + �
)

+ 6�22(� + �) + �1Υ
Θ

(A.47)

T (1)2 = −
3
(


 + � + �2 + �
)

Δ

+
2B

(

6�2(� + 2�)(
 + � + �) + 6�2(
 + � + �) + 6�(
 + � + �)2 + 6�21
(


 + �2 + �
)

+ 6�22(� + �) + �1Υ
)

Θ
(A.48)

T (2)2 = −
3
(


 + � + �1 + �
)

2C

+
6�2(� + 2�)(
 + � + �) + 6�2(
 + � + �) + 6�(
 + � + �)2 + 6�21

(


 + �2 + �
)

+ 6�22(� + �) + �1Υ
Θ

(A.49)

where parameters Ψ,Δ,Λ, Θ, Υ, Ξ, Ω, A, B, and C are given by:

Λ = 
2 + 
� + 2
�2 + 2
� + ��2 + 2�� + �2� + �22 + �
2

Δ = 4�
(


2 + 
� + 2
� + 2�� + �2
)

+ 4�2
(

2
� + 2
� + 2�� + �2
)

+ 8��22 + 4�
2
2�

Ψ = 
2 + 2
�2 + 2
� + �2� + �22 + �
2

Ω = 
2 + 
� + 
�2 + 2
� + 2��2 + 2�� + �2� + �2

Θ = 4�2�
(


(� + 2�) + (� + �)2
)

+ 4�2(
 + � + �)2 + 4�22(� + �)
2 + Δ�1 + 4�21Ψ

Ξ = 4�2
(


� + 2
� + �2 + 2�� + �2
)

+ 4�(
 + � + �)2 + 4Γ�1 + 4��22 + 4�
2
2�

Υ = 12�2(
 + � + �) + 6(
 + 2�)(
 + � + �) + 6�22
A = 4�2

(


� + 2
� + �2 + 2�� + �2
)

+ 4�(
 + � + �)2 + 4�21
(


 + �2 + �
)

+ 4�1Ω

B = 
2 + 2
� + 2
�2 + 2
� + �2 + ��1 + ��2 + 2�� + �2� + �22 + �
2

C = 
2 + 2
� + 
�1 + 
�2 + 2
� + �2 + 2��1 + 2�� + �1� + �21 + �
2

(A.50)
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