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SIMULATION OF FLOW IN ROOT-SOIL SYSTEMS 

TODD ARBOGASTt, MAND RI OBEYESEKERE+, 

AND MARY F. WHEELER t 

Abstract. In this paper we develop a mathematical model of a root-soil system, and 
also accurate and efficient finite element and finite difference algorithms for approx­
imating this model. The goal of our work is to develop an understanding of the 
properties of root systems, which can be modified by using genetic engineering tech­
niques, in order to improve the performance of plants when water availability is 
limited. The results of some numerical simulations are presented, which demonstrate 
the effectiveness of genetic and physical changes to the root-soil system. 

1. Introduction. 
Plants extract water from the soil through their roots and lose water to the at­

mosphere through their leaves in a process called transpiration. The environmental 
demand for water induces a reduction in the total potential of the water in the plant 
leaves as water evaporates from the leaves. This reduction of leaf water potential 
creates a potential gradient along the soil-plant-atmosphere-continuum which in­
duces water transport from soil to roots and then through the plant to the leaves. 
The rate at which water moves is determined by the conductivity and potential 
gradient in the pathway. Very little (1 to 5%) of the water extracted by the root 
system is actually utilized for metabolism or growth, the vast majority (95 to 99%) 
simply passes through the plant and is lost to the atmosphere. Without the addi­
tion of water to the soil by irrigation or rainfall, the plant would quickly deplete its 
supply of water. 

Within the root, water first flows through the cortex ( outer layer of tissue) along 
the cell walls. At the endodermis, water must pass through the cell membranes 
because the cell wall pathway is blocked. Water again passes through the cell 
membrane as it leaves the endodermis and enters the stele (inner zone of the root). 
Within the stele water flows through xylem elements which are the water conducting 
vessels of the plant. The xylem is made up of dead cells in which the cell content has 
been removed and only the rigid cell wall remains. It is the goal of current research 
to identify the sites of major resistance in the root which might be modified using 
genetic engineering techniques, so that the overall resistance to water flow would 
be reduced. With an increased conductivity (reduced overall resistance), a smaller 
gradient in water potential will be required between the soil and plant leaves to 
meet the atmospheric demand for water. This will result in a more favorable leaf 
water status (higher water potential in the leaf) with no change in water used by 

tDepartment of Mathematical Sciences, Rice University, Houston, Texas 77251-1892 
tDepartment of Mathematics, University of Houston, Houston, Texas 77204 



the plant. The working hypothesis is that an improved leaf water status will result 
in an increased water use efficiency ( amount of the plant biomass produced per unit 
of water used). It is apparent that all of these tissues must be explicitly considered 
in order that a model of water transport can assist in guiding the ongoing research. 

The model we describe here is a reformulation of an earlier model defined by 
Anderson, Obeyesekere, and Upchurch [1], [11]. Their major assumptions, as are 
ours, are that the plant has a taproot, the soil is homogeneous ( at least in horizontal 
planes), transpiration is the only driving force for water movement, and the total 
water potential is the sum of matric and gravitational water potentials. The major 
differences between the two models are that in our model the soil, very near to the 
root, and the cortex are assumed to be saturated, and that our model is formulated 
completely in terms of the water potentials. 

We describe the transport of soil-water in the roots and the surrounding soil, for 
a given transpiration rate, by three coupled partial differential equations. The first 
describes water transport through the soil. In it, the roots are treated as a water 
sink. The second equation describes the radial flow of water into the secondary 
roots along the soil-cortex-endodermis-xylem path. Finally, the last equation de­
scribes the transport of water through the xylem vessels in the taproot; wherein, 
the secondary root system is treated as a water source. Most of the models pre­
ceding this one merely incorporated the water uptake effect through an empirically 
defined source function (see, e.g., [10] and [8]), although the work of [9], [7], and 
[11] moves in the direction of actual flow modeling. In the next section, we derive 
an expression for the water uptake term by considering the closed form solution of 
the second equation mentioned above. 

In Section 3, we derive numerical procedures based on finite elements and finite 
differences for approximating the solution to the equations. Some convergence re­
sults are stated in the appendix, and further details of these theoretical results and 
theorems can be found in [3]. These results confirm that the algorithms are stable 
and approximate well the true solution. 

Finally, in the last section, we present and discuss the results obtained from 
several numerical simulations. These results illustrate the influence of the various 
root-cell, soil, and environmental properties on the matric water potential within 
the taproot xylem and within the soil. Assuming that the taproot xylem potential 
is directly related to the leaf water potential, the results of these simulations can 
help genetic engineers understand the effects of these root traits in order that they 
can modify the roots to produce more productive plants. 

2. The model. 
We first consider the flow of water in the soil. It is assumed that the block of soil 

containing the roots (see Fig. 1) is an unsaturated homogeneous porous medium and 
that the macroscopic water fl.ow is one dimensional, being in the vertical direction 
only. Moreover, we assume that the mass of water extracted by the subroots is 
macroscopically distributed throughout the medium. Suppose that the block of soil 
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containing the root system is a cylinder of depth L and cross-sectional area As. 
Conservation of water mass combined with Darcy's law for vertical flow in soil gives 
Richard's equation (6] for the matric potential 1Ps(z, t). If pis the density of water, 
8(¢) is the water content (volume of water per unit volume of soil), Ks(¢) is the 
conductivity of water in the soil, and g is the gravitational acceleration constant, 
then 

88( 1/J s ) 8 ( _ ( 8¢ s ) ) -1 ( 2 .1 ) p at -
0 

z h s ( 1/J s ) 
0 

z - g = -As S for 0 < z < L, t > 0, 

where S represents the macroscopic extraction of water by the plant's roots ( defined 
by (2.11) or (2.14) below). To this equation we impose a flux boundary condition 
to model evaporation and precipitation at the surface of the ground, where z = 0, a 
time dependent function to model continuity of potential at the lower end, z = L, 
and an initial condition: 

(2.2) Ks ( O:s (0, t) - g) = qevap(t, 1Ps(O, t)) - qprec(t) fort> 0, 

(2.3) 1Ps(L, t) = 1Pbot(t) fort> 0, 

(2.4) 1/Js(z,O) = 1/J~(z) for O < z < L. 

For consistency, 1/J~(L) = 1Pbot(0). (Presumably, Lis the depth of the water table 
and 7Pbot reflects saturated conditions.) 

Ground surface 

-------1 t----'-----z=O 

Xylem bundles 

Subroots 
Soil 

C Watertable 

--------~-------z=L 

Fig. 1. A root-soil system. Fig. 2. Cross-section of a root 
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For the taproot, we assume that the xylem bundles form a one dimensional satu­
rated porous medium that contains a distributed water source term. Conservation 
of water implies that this source term is the same as the sink term for the flow in 
the soil medium. Again it is Richard's equation that governs the water potential in 
the taproot xylem, 1Px(z, t). If Ax is the total cross-sectional area of all the xylems 
in the taproot (or taproots in the soil column, if there are more than one), and Kx 
is the saturated conductivity of a xylem, then we have that the axial flow through 
the taproot is given by 

(2.5) -:z ( Kx(&!x -g)) = A;1s for 0 < z < Lx, t > 0, 

where Lx :'.SL is the taproot's length. To this equation we impose a flux boundary 
condition representing the given transpiration rate at ground level and a no-flow 
condition at the lower end of the taproot: 

(2.6) 

(2.7) 

The coupling term S is calculated using the microscopic model. In the microscopic 
model, we consider saturated porous medium flow through the subroot cortex as 
well as through a small cylinder of soil surrounding the subroot (see Fig. 2). The 
conductivity of the medium changes as we go from the soil to the cortex, and a 
resistance to flow is encountered at the endodermis. In this model it is assumed 
that at a given depth, the water potential in the xylem of the taproot and the xylem 
of a subroot are equal (i.e., that the conductivity for axial flow in the subroot is 
very high). Neglecting the effects of gravity, then, the microscopic flow is restricted 
to the radial direction. So we consider the flow only in a cross-section of a generic 
subroot. Again Richard's equation governs the water potential 1Pr(z, r, t) in the 
subroot; for each fixed z (between O and Lx) and t > 0, in cylindrical coordinates 
this is 

(2.8) -! (rKr(Z,1Pr)O:r) = 0 for re(z) < r < r8 (z), 

where re(z) and r8 (z) are the radii of the endodermis and of the saturated soil 
cylinder around the subroot, respectively, and Kr(z, 1Pr) is the conductivity. This 
function is 

if r c ( z) :'.S r :'.S rs ( z) 

if re ( z) :'.S r :'.S r c( z), 
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where Ks and Kc( z) are the saturated conductivities of the soil and cortex, respec­
tively, and rc(z) is the outer radius of the cortex. The boundary conditions for (2.8) 
are 

(2.9) 

(2.10) 

~, 81.pr ( )-1 ( ) Kc(z) ar (z,re(z),t) = 211-re(z)R 1Pr(z,re(z),t)-1Px(z,t), 

1Pr(z, rs(z), t) = 1Ps(z, t), 

representing the resistive endodermal layer and continuity of potential, respectively, 
where R is the resistance of the endodermis per unit length of root times the width of 
the endodermis. We should point out that there is a small inconsistency between the 
assumption of the subroot's soil cylinder being saturated and (2.10). A consistent 
approach would use Ks in place of Ks in the definition of Kr; however, the current 
approach seems to be adequate in practice (11]. 

We assume that the amount of water extracted by the subroots at a given depth 
is directly proportional to the total linear length of subroots contained within the 
block at that depth. So let .C( z) denote the root length density function. Finally, 
using (2.9), the coupling term is given for t > 0 by 

(2.11) 
S(z,t) = { i(z)A, R-

1 (,j,,(z,r,(z),t)-,j,,(z,t)) for O < Z < Lx, 

for Lx < z < L. 

Note that (2.8)-(2.10) can be solved analytically, since Kr is a piece-wise constant 
function ( we must merely match the potential and the flux at the interface r = 
r c( z) ). The closed form of the solution at r = re ( z) is 

(2.12) 
R c(z) 

1/ir(z,re(z),t)= R ( )1Ps(z,t)+ R ( )1Px(z,t), 
+cz +cz 

where 

(2.13) 1 ( 1 rc(z) 1 rs(z)) 
c(z) = - -}, ln -(-) + R.' ln -(-) . 271' i c re z s r c z 

Now we can substitute this in (2.11) to obtain simply that 

(2.14) S(z,t) = S(z)(1Ps(z,t) -1.px(z,t)) for O < z < Lx, t > 0, 

where 

(2.15) S(z) = .C(z) As . 
R + c(z) 

The full model is now (2.1)-(2.7) and (2.13)-(2.15). 
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We briefly mention two generalizations. First, instead of assuming a homogeneous 
soil, we can assume that the soil is homogeneous only in horizontal planes (strata). 
Also, the taproot can be nonhomogeneous. That is, we can allow B, Kx, and Ks to 
depend on depth z. Second, the model does not predict plant growth, but it may 
be imposed empirically by allowing Lx and S (i.e., .C, R, rs, re, etc.) to depend 
on z. 

We find it inconvenient to allow Lx < L, especially when Lx depends on t. As 
an alternative, let Lx = L and set .C(z) = S(z) = 0 for z > Lx; the model is 
mathematically unchanged. In the next section, we shall assume Lx = L and also 
that S = S(z, t). 

3. Numerical Algorithms. 
In this section we formulate finite element and finite difference schemes for ap­

proximating the potentials of the soil and xylem. We also present a method for 
improving the accuracy of the two approximate fluxes by a post-processing tech­
nique. A theoretical analysis of the approximation errors of both schemes is given 
in the appendix. 

3.1 A finite element scheme. We begin by defining some notation and a weak 
form of the problem. Let L2(J), I = (0, 1), denote the Hilbert space of square 
integrable functions, 

L2(I)={ulf,L u2dz<oo}, 

and let ( ·, ·) denote its inner product, 

(u,v) = 1L uvdz for any u,v E L2 (I). 

Let H1 (I) = {u E L 2 (I) I u' E L2(I)} denote the standard Sobolev space of weakly 
differentiable functions in L2(I). Define the function spaces 

V = {v E H 1 (I)lv(L) = O} and U = H1(I). 

Integration by parts in z shows that if 1Ps and 1Px constitute a solution to (2.1)­
(2.7), (2.13)-(2.15), then 1Ps( ·, t) E V + 1Pbot(t) and 1Px( ·, t) EU satisfies for any 
t > 0 the weak equations 

(3.1) (p 8B~s) 'v) + ( I<s(1Ps) ( 8:s - g)' ~:) 
= -[qevap(1Ps(O,t)) - qprec]v(O)- (A; 1 S(1Ps -1Px),v) for all VE V 

and 
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(3.2) ( Kx( 8!x -g), ~:) 
= -A;1qtransu(O) + (A; 1 S(1/is -1/ix),u) for all U EU; 

the initial condition (2.4) must also be satisfied. 
We discretize space and time as follows. Choose some partition zo = 0 < z1 < 

· · · < ZM = L of I = (0, L), and let hi = Zi - Zi-I, h = maxi hi. Choose some 
partition to = 0 < t 1 < · · · < tN = T of J = (0, T] for some final time of interest T, 
and let tltn = tn - tn-1· For any function u(z, t), denote u(z, tn) by un(z) and let 
the backward time difference operator be given by 

Finally, let Vh and Uh be standard finite element subspaces of V and U defined over 
the given partition of I (see, e.g., [4]). 

Our finite element procedure is the following: For n = l, ... , N, let 'P~ E Vh +1/ibot 
and '11~ E Uh satisfy 

(3.3) (p8tf:l(w st, v) + (Ks(w;) ( a:: -g), :: ) 

= -[q:vap(w;(o)) - q;reclv(O) - (A;1 sn(w; - w:), V) for all VE vh 

and 

(3.4) (Rx(a;~ -g),::) 
= -A;1 q~ansu(O) + (A; 1 Sn(w; - w:), u) for all u E Uh, 

where we initialize the scheme by choosing some reasonable approximation W~ E 
Vh + 1/ig0 t to 1/i~. For example, one can take the interpolant of 1/i~ in Vh + 1/ig0 t. 

One of the important quantities of interest to the agricultural scientist is the 
water flow rate up the taproot, which we denote by ,x: 

(3.5) - (81/ix ) IX= Kx az -g . 

For i 2:: 1, we multiply (2.5) by z- Zi-l and integrate in space over (zi-I,Zi) to 
obtain with (2.14) that 

[Zi (81/i ) [Zi 
(3.6) 'Yx(Zi, t) hi= }Zi-1 Rx azx - g dz - }Zi-1 A;

1 
S(1/is -1/ix)(z - Zj-d dz. 
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This motivates the definition [5], [12],[13] of our improved approximate flux r;,i: 

In an entirely similar way, we can also approximate the water flow rate in the soil 
column. We define 

(3.8) 

and we note that for i ~ 1, if we multiply (2.1) by z - Zi-I and integrate in space 
over (zi-l, Zi), we obtain with (2.14) that 

ri 80(1/Js) ri T (01Ps ) 
(3.9) ,s(Zi,t)hi = }Zi-1 p ot (z - Zi-1)dz + }Zi-1 As(1Ps) oz - g dz 

+ 1iz~l A;1S(¢s -1/Jx)(z - Zi-1)dz. 

Therefore we define our improved approximate flux r: i by , 

(3.10) ri [z; (awn ) 
r:,i hi= }Zi-1 POtB(\JI st(z - Zi-1) dz+ }Zi-1 Ks(w:) a/ - g dz 

+ 1Zi A;1sn(w;-w;)(z-Zi-1)dz. 
Zi-1 

These quantities can be computed easily from the approximate solutions of the 
xylem and soil potentials. They are more accurate than simply taking the fluxes 
directly from the approximate potentials ( see the theoretical results in the appendix 
for a justification of this statement). 

3.2 A finite difference scheme. We define a finite difference scheme (see (3.14)­
( 3 .1 7) below) as a special case of our finite element scheme by specifying a certain 
choice for the Vh and Uh, and by requiring certain quadrature rules in the evaluation 
of the integrals. We take as finite dimensional subspaces the continuous, piece­
wise linear functions defined on the given mesh; that is, Vh = span{ wi}~01 and 
uh= span{wi}~o, where 

if i > 0 and Zi-1 ~ z ~ Zi, 

if i < M and Zi ~ z ~ Zi+I, 

otherwise. 
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We use the midpoint rule to evaluate any integral involving a spatial derivative, 
and otherwise we use the trapezoidal rule. We denote these rules, respectively, as 
discrete inner products for any u and v as 

M 

(u, v)M = L ui-1/2 vi-1/2 hi 
i=l 

and 
1 M 

(u, v)T = - L ( UiVi + Ui-1 Vi-I) hi, 
2. 

1=1 

whereweusethenotationui = u(zi), zi-i/2 = (zi+Zi-1)/2, andui-i/2 = u(zi-i;2 ). 

Note that for u E uh or vh, Ui-1/2 = ( Ui + Ui-1 )/2. 

Our finite difference procedure is then the following: For n = l, ... , N, let '11; E 
Vh + 1Pbot and w; E Uh satisfy 

(3.11) (p8tf}('1t st, Wi)T + ( Ks('¥;) ( a!; -g), ~:i) M 
= -[q:vap('11;(o)) - q;recl8i,O - (A:;- 1 sn('11; - w;), Wih 

for i = 0, 1, ... , M - l, 

and 

(3.12) 11-,,. (a'11; ) 8wi) A-1 n i: (A-1 sn(,T,n ,T,n) ) \ \.x 8z - g ' 8z M = - x qtrans 0 i,O + x '£' s - '£' x , Wj T 

fori=0,1, ... ,M, 

where 8i,j is the Kronecker delta. We initialize the scheme by choosing the inter­
polant of l/J~: 

(3.13) '11~,i = l/J~,i for i = 0, 1, ... , M. 

Our scheme can be expressed equivalently in more traditional finite difference 
notation as follows. We first define by reflection ho= h1, hM+1 = hM, 

1Ps,-l = 1Ps,l - 2gh1, 1Px,-1 = 1Px,1 - 2gh1, 1Px,M+1 = 1Px,M-l + 2ghM, 

and Ks(w:,-i;2 ) = Ks(w;, 1; 2 ). 
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Then, for n = l, ... , N and i = 0, ... , M, let \¥: i and \ll; i satisfy 
' ' 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

q,O . _ .t,O . 
s,1 - '+"s,,, 

\¥:,M = 1Pbot, 

if i =/= M, 

2.Kx (\¥~ i+l - \¥~ i \¥~ i - \¥~ i-1) 
' ' ' ' - -

hi+l + hi hi+l hi 

2 
= -f½A;;- 1 

q~ans<\o + A;1 s;i(\ll;,i - \ll;,i). 

We can also define the improved fluxes by the same choice of quadrature rules: 
the midpoint rule on integrals involving spatial derivatives and the trapezoidal rule 
otherwise. From (3.7) and (3.10), we therefore define for i = 1, ... , M, 

(3.18) r n .,;~ ( \¥ x,i - \¥ x,i-1 ) 1A-15n (,T, ,T, ) h 
x,i = .fix hi - g - 2 x i 'i's,i - 'i'x,i i, 

(3.19) n l ~ 0( ff, ) n h .,. ( n ) ( \¥ s, i - \¥ s, i -1 ) 
rs,i = 2,PUt 'i's,i i + I1s \lls,i-I/2 hi - g 

+ 1A;1 Sf(\lls,i - \¥x,i)hj. 

3.3 Remarks on implementing the schemes. Our two schemes are nonlinear, 
so some iterative procedure such as Newton's method or a Picard successive sub­
stitution must be used to solve the equations. (The results of the next section were 
obtained from a finite difference code utilizing a Newton iteration procedure.) If we 
order the unknowns spatially, alternating the two potentials, we obtain a block tridi­
agonal system; the blocks are 2 x 2. As a consequence, direct Gaussian elimination 
can be used effectively to solve the matrix problems that arise. 

4. Simulation Results. 
The data used for the standard, base case in the simulations is given in Table 1, 

wherein rt is the radius of a single taproot xylem and Nt is the total number of 
taproot xylems in the soil block ( thus Ax = Nt1rr;), and alsoµ is the water viscosity 
and Kx is defined from the Hagen-Poiseuille law for fluid fl.ow through pipes (i.e., 
Kx = pr; /8µ). We used the finite difference scheme to obtain the results discussed 
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Quantity 

L 

A, 
rt 

Ni 

C(z) 

R 

r, 

f<. 
f<c 

qi rans ( t) 

qeva.p 

qprec 

K,(t/J) 

B(tj;) 

tf;~(z) 

t/Jbot 

p 

µ 

g 

h 

6.t 

TABLE 1. 
Simulation parameters. 

Value (in S.I. units) 

1 

4 

.0005 

150 

10(1 - z) + .0005 

2 X 108 

.00022 

.005 

.02 

0.58 

15 

max ( .0013 sin( 1rt/43200), 0) 

0 

0 

[3.56(-tj;/2350)<-l 2 ·2 /l0. 9) - 1.09] X 10- 7 

-ln(-t/;/2350)/10.9 

- 709.8 + 9.8z 

-700 

1000 

10-6 

9.8 
2-9 

42.1875 

in this section. Note that since the initial soil potential is linear, the initialization 
of our finite difference scheme is exact. 

Our initial condition assumes that the root-soil system is at equilibrium at 6:00 
a.m., just before transpiration begins. We let the transpiration rate follow the 
positive portion of a sine curve from 6:00 a.m. to 6:00 p.m.; thereafter, transpiration 
is set to zero. 

The Erst three figures, Fig. l(a), l(b), and l(c), show hourly potential profiles 
of the soil. Back flow occurs during the latter part of the day, recharging the soil 
matrix near the surface. Compared to the soil profiles, Fig. 2( a), 2(b ), and 2( c) 
illustrate that the xylem potential is very low, and that it varies dramatically in 
time, but very little in space (see Fig. 3(a) for a comparison to the first three figures 
on the same scale). 

In the following discussion, the potentials are given at noon, and data varying 
from that given in Table 1 is noted in the figures. During transpiration, production 
is hampered by the low xylem potential at z = 0, since it is related directly to the 
leaf potential. In order to obtain a more favorable xylem potential, we first discuss 
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some non-genetic changes, shading and tilling. We simulate these two processes by 
changing the transpiration rate and the conductivity of the soil, respectively. As 
seen by Fig. 3(a), 3(b), 4(a), and 4(b), shading (decreased amplitude) shows a better 
ratio of decreasing the xylem potential than tilling (increased soil conductivity). 
However, a reduced transpiration lowers the amount of water available to the plant. 

With respect to genetic changes, we consider changing the resistance and/or the 
thickness of the endodermis and the saturated conductivity of the cortex. Though 
cortex effects are negligible (Fig. 5(a) and 5(b)), the endodermis changes show 
profound effects on the xylem (Fig. 6-7). Recall that R is the product of endodermal 
resistance and thickness, so changing either one simply has the effect of changing R. 
It is important to realize that the transpiration rate is left unchanged when these 
genetic changes are made. 

In conclusion, based on the simulation results of this model, genetic changes 
can produce dramatic reduction in xylem potential. This in turn should result in 
improved plant growth. 
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Fig. l(a). Soil potential profiles from 6:00 a.m. to noon, base case. 
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Fig. l(b). Soil Potential profiles from 1:00 p.m. to 6:00 p.m., base case. 
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Fig. l(c). Soil potential profiles from 7:00 p.m. to midnight, base case. 
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Appendix. 
In this appendix, we summarize the authors' main theoretical results concerning 

the convergence of the solutions of the approximation schemes to the true solution. 
Full proofs of the theorems below are given in [3]. See also the analysis of approx­
imation errors as given by the authors in [2] for a model similar to the one in this 
paper ( essentially the unreformulated model [11] was treated). 

We use the definitions and notation given in previous sections. Also let L;1t = 
maXnL;1tn. Denote the Hk(I)-norm by II· Ilk; that is, llullo = (u,u) 112 and, for 
integer k 2: 1, 

k II di 112 llulli = ~ dz~ o. 

Then the Sobolev space Hk(J) = {u I llullk < oo} (and L2(I) = H0 (I)). Finally, 

L2(J;H'(I)) = { u 11T llullidt < oo} 
and 

L 00 (J; Hk(I)) = { u I ess supllullk < oo }. 
tEJ 

We make the following assumptions, wherein c and C are some fixed positive 
constants. 

(Al) Cs; I<s s; C, IK;I s; C, IK;'I s; C, and Cs; f<x s; C. 
(A2) 0 s; S s; C, cs; S for z in some fixed nonempty interval for each t E J, and 

j8S/8t1 s; C. 
(A3) There exists some fixed integer p 2: 2, such that 

inf 117P - viii s; Cll1Pllphp-l for any 7j, EV n HP(I), 
vEVh 

inf 117P - ui11 s; Cll1Pllphp-l for any 7j, EU n HP(I). 
uEUh 

(A4) 1Ps, 81j,s/8t, and 1Px E L2 (J; HP(I)). 
(A5) 87j,s/8t E L00 (J; H 2(I)) and 82'1jJs/8t 2 E L2(J; L2(I)). 
(A6) lqevapl s; C, lqprecl s; C, lqtransl s; C, 0 s; 8qevap/81j, SC, l82 qevap/87j,2 I SC, 

l8qevap/8t1 s; C, and l82 qevap/87j,8tl s; C. 
(A7) CS hi+i/hi SC and L;1tn+ljL;1tn s; C. 
(AS) ?jybot SO and 7P~ E HP(I). Moreover, '11~ is defined so that ll'11~ - 7j,~llj S 

Cll1P~ IIPhP-i, j = 0, l. 
(A9) c S 0' SC and 10"1 SC (physically, this means that-CS 1Ps S -c). 

Note that (AS) is easily satisfied by reasonable initialization procedures. 
We remark that 0' is in general a degenerate function: 0' ( 'ljJ s) = 0 precisely when 

1Ps 2: 0 (the saturated region) and 0'(1Ps) -t O as 1Ps -t -oo (the dry region) [6]. 
Since most plants die in cases of either extreme, we have restricted ourselves to the 
case defined by (A9) above. 

First, we consider errors in the finite element approximations. 
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THEOREM 1. Assume (Al)-(A9). Tben for tbe solution to tbe B.nite element 
scheme, for h and 6t sufficiently small, 

(i) max llw; -1/i:llo + max llw; -1/i; llo s:; C { hP + 6t}, 
n n 

(ii) m:xll:z(w;-1/i;)lio +m:xll!(w;-1/i;)llo s:; C{hp-I +6t}, 

(iii) ( t 118,(w, - ,P, )"llit,,t" f 2 

S C {h'-1 + t,,t), 

(iv) max 1r;,i - ,:,ii s:; C{hP + 6t}, 
n 

(v) (t, Jr:,; - ,:,,I' t,,t" )'
1
':,; C{hH + t,,t), 

where C depends on the bounds in the assumptions but is independent of h and 
6t, and where i = 1, ... , M. Moreover, if the scheme is initialized by setting '11~ E 

vh + 1Pgot such that 

then hP replaces hP-l in (iii) and (v). 

Note that the error in the improved xylem flux (iv) is less than that in the 
derivative of the xylem potential itself (ii). The same is true for the improved soil 
flux, since the norm in (v) is stronger than that in (ii); a careful initialization makes 
the improvement even better. 

For the approximation error in the finite difference scheme, we obtain the follow­
ing theorem, in which some of the errors are expressed in terms of the piecewise 
linear interpolants of the approximation's nodal values. 

THEOREM 2. Assume (Al)-(A9) with p = 2. Assume also that 1Ps and 1Px are 
continuous. Then for h and 6t sufficiently small, (i)-(v) of Theorem 1 hold (with 
p = 2) for the solution to the finite difference scheme, where again C depends on 
the bounds in the assumptions but is independent of h and 6t, and i = 1, ... , M. 
Moreover, if the B.nite difference scheme is initialized by setting \JI~ E Vh + V'~ot such 
that 

/ Ks( vi~) (aw~ - av,~), awj) = 0 for i = 0, 1, ... , M - l, 
\ 8z 8z 8z M 

then h2 replaces h in (iii) and (v ). 
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