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ABSTRACT

Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi,

protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains

44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological func-

tion or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal struc-

ture of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was

determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree 5 26.1%) at

2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each pro-

tomer, comprising a Rossmann-like a/b overall fold. The bound AMP and conservation of residues in the ATP-binding loop

suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members.
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INTRODUCTION

The gene At3g01520 of Arabidopsis thaliana encodes

175-residue universal stress protein (USP)-like protein

(Pfam accession: PF00582), which is widely found in the

genomes of bacteria, as well as fungi, protozoa, and

plants.1 The USP superfamily represents a set of small

cytoplasmic proteins whose expressions are affected by a

wide range of internal or external stresses.1,2 Genetic

evidence has subsequently shown that USP mediates sur-

vival of cells in response to a wide variety of stress states,

including nutrient starvation, exposure to heat, acid,

heavy metals, oxidative agents, osmotic stress, antibiotics,

and uncouplers of oxidative phosphorylation.3–5

Structures of many bacterial and viral USP proteins

have been solved so far. Interestingly, while the USP

domain structure of MJ0577 from Methanocaldococcus

jannaschii was solved with a bound ATP, Haemophilus

influenzae UspA lacks both ATP-binding activity and

ATP-binding residues.6,7 This suggests that the USP

domain family proteins fall into two major groups

depending on their nucleotide binding capabilities. How-

ever, despite the knowledge of bacterial USP proteins,

the functional diversity of the USPs in other organisms,

including various plant species, has not been well

defined.8

A. thaliana contains 44 USP domain-containing pro-

teins, and USP domain is found either in a small protein

with unknown physiological function or in an N-

terminal portion of a multidomain protein, usually a

protein kinase.1 Most of the A. thaliana USP-like pro-

teins are annotated as “adenine nucleotide a-hydrolase-

like superfamily protein”, although it has not been

reported whether they bind or hydrolyze ATP.9,10 In this

study, we report the crystal structure of a eukaryotic

USP-like protein At3g01520 from A. thaliana in complex

with AMP at 2.5 Å resolution. This work represents the

first structure of eukaryotic USP family protein, thus

contributing to expand our knowledge on the structural

features of the diverse USP protein family members.

MATERIALS AND METHODS

Native and SeMet-labeled At3g01520 proteins were

cloned and purified following the standard Center for

Eukaryotic Structural Genomics (CESG) pipeline proto-

col described in detail elsewhere.11–14 Crystals of the

protein At3g01520 were grown at 293 K by the hanging-

drop method from 10 mg mL21 protein solution in

buffer (50 mM NaCl, 3 mM NaN3, 0.3 mM TCEP, and

5 mM MES-NaOH, pH 7.0) mixed with an equal

amount of well solutions containing 18% (v/v) PEG 2K,

5% (v/v) DMSO, and 100 mM PIPES, pH 6.5. They

belong to space group P1, with unit-cell parameters

a 5 63.35, b 5 65.66, c 5 73.01 Å, a 5 75.45, b 5 75.04,

c 5 66.118. Crystals were cryoprotected by soaking in a

cryosolution containing 20% (v/v) PEG 2K and 100 mM

Tris-HCl, pH 8.0, and a final concentration of 20% (v/v)

ethylene glycol. X-ray diffraction data for native and sele-

nomethionine crystals were collected at the 22-ID syn-

chrotron beamlines at the Advanced Photon Source of

Argonne National Laboratory.

We have solved the crystal structure of At3g01520 by

SAD phasing at 2.50 Å resolution. Twenty selenomethio-

nine sites were located with the program SHELXD.15

After initial refinement, six At3g01520 protomers were

defined in an asymmetric unit. Out of 18 methionine

residues in an asymmetric unit, two of the residues

showed definable alternate conformations, explaining the

two extra selenomethionine sites found with SHELXD.

The selenomethionine sites were used to calculate the

phases with RESOLVE.16 The SAD-phased electron den-

sity map was of high quality and was readily interpreted

by the automatic model building procedure of

RESOLVE.16 The structure was completed using alter-

nate cycles of manual building in Xfit17 and refinement

in REFMAC.18 Noncrystallographic symmetry con-

straints, as defined in the standard refinement protocol

of Refmac,18 were applied throughout the refinement.

NCS constraints were not released due to low redun-

dancy of the data as the structure was refined in P1 space

group. All refinement steps were monitored using an

Rfree value based on 5.3% of the independent reflections.

The stereochemical quality of the final model was

assessed using PROCHECK19 and MolProbity.20 The

coordinates and structure factors have been deposited in

the Protein Data Bank (http://www.pdb.org) for immedi-

ate release with PDB ID code 2GM3. Table I summarizes

the data collection, phasing, and model refinement

statistics.

Analytical size-exclusion chromatography was per-

formed on a Superdex 200 10/300 GL column (GE

Healthcare) equilibrated with 50 mM Bis-Tris at pH

7.0, 150 mM NaCl, 0.3 mM TCEP at 277 K. The sam-

ples were injected using a 0.25 mL loop, and the flow

rate was 0.5 mL/min for 36 mL. Six protein standards

from Gel Filtration Marker Kit (Sigma-Aldrich) were

used to calibrate the column. The protein standards

used were thyroglobulin (MW 669,000), apoferritin

(MW 443,000), b-amylase (MW 200,000), alcohol dehy-

drogenase (MW 150,000), bovine serum albumin (MW

66,000), and carbonic anhydrase (MW 29,000). Output

data were subsequently exported and analyzed in Excel

(Microsoft)

RESULTS AND DISCUSSION

We have determined the crystal structure of the protein

At3g01520 in complex with AMP. The final model includes

six AMP-bound protomers in a crystallographic asymmet-

ric unit. The R and Rfree factors were 22.1 and 26.1%,
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respectively, for the 20.00 2 2.50 Å data (Table I). The

structure is resolved from residue 5 to residue 175. Loops

comprising residues 56–65 and 137–145 are missing in all

the chains in the asymmetric unit, suggesting that these are

highly flexible regions. One At3g01520 protomer com-

prises a central five-stranded, parallel b-sheet (b4-b5-b1-

b2-b3), which is surrounded by five a-helices [Fig. 1(A)].

It is folded into the classic Rossmann-like a/b-fold, resem-

bling the structures of other reported structures of USP

family members.6,7,21–24

Although it was previously reported that the protein

At3g01520 lacks dimer-forming hydrophobic b5 region,9

the hydrophobic b5 sequence is highly conserved and the

protein At3g01520 also exists as a dimer in the crystal

[Fig. 1(B,C)]. The protein At3g01520 has buried surface

area of 1,017 Å2 per monomer, which corresponds to

�12% of the monomer surface area (87,875 Å2). The

central b-sheets of the two protomers form an extended

b-sheet by b5 strands from each protomer in the dimer

structure and this feature has been widely observed in

other reported USP structures in a dimeric state [Fig.

1(B)].6,7,21–24 The dimer interface is mediated through

van der Waals packing of a number of hydrophobic resi-

dues (Ile38, Phe46, Phe127, Pro157, and Met159) as well

as electrostatic interactions formed by side chains of

Thr6, Arg40, Asn42, Asp45, and Asp126. Based on the

dimeric interface analysis from crystallographic dimer

packing and size-exclusion chromatography data [Fig.

1(D)], we propose that the protein At3g01520 forms a

dimer for its physiological conditions.

The USP family proteins fall into two groups depend-

ing on their ATP-binding capabilities.7,9 In the case of

the protein At3g01520, there have been mixed predic-

tions for its ATP-binding capability. According to the

overall sequence similarity of At3g01520 to MJ0577 (Pro-

tein Data Bank, PDB, ID 1 MJH), which contained natu-

rally acquired ATP in its solved crystal structure, the

protein At3g01520 has been classified as a 1 MJH-like

plant protein. However, extensive sequence analysis could

not reveal conserved ATP-binding residues such as Asp

and Ser that have been predicted as ATP-binding residues

from the crystal structure of 1 MJH.9 Interestingly, after

model building of all the protein residues in a crystallo-

graphic asymmetric unit, the Fo 2 Fc omit electron den-

sity map clearly showed positive extra electron densities

around the similar ATP-binding site of MJ0577 in all six

protomers in the asymmetric unit, which could be defi-

nitely modeled as an AMP molecule [Figs. 1(A,B) and

2(A)]. Since we did not add any nucleotide supplements

in culture media for E. coli, this naturally acquired AMP

molecule from E. coli could be reminiscent of ATP mole-

cule of other ATP-binding USP proteins. Thus, this

observation strongly supports that the protein At3g01520

also belongs to the nucleotide-binding USP subfamily

members.

Whether the preferred ligand of the protein At3g01520

is ATP or AMP has not been known. However, key resi-

dues for the AMP interaction exist on a flexible loop

that corresponds to the ATP-binding sites of homologous

USP proteins. The bound AMP molecule is buried

within a cleft near the surface mainly interacting with a

number of main chain nitrogen and carbonyl oxygen

atoms [Figs. 1(A) and 2(A)], resembling other AMP/

ATP-bound USP structures.6,21,23,24 The ATP-binding

USP subfamily members adopts a similar conformation

of ATP-binding loops with a consensus motif G-2x-G-

9x-G-(S/T) (x stands for any amino acid).7,21–24 This

ATP-binding consensus sequence motif is also strictly

conserved in At3g01520 [Fig. 1(C)]. The phosphate

group of the bound AMP is exposed to the solvent, leav-

ing enough room for b- and g-phosphates for ATP bind-

ing. However, unlike other ATP-bound USP structures,

the conserved ATP-binding loop region of the protein

At3g01520 could not be fully defined in our crystal

structure and it may be caused by the absence of b- and

g- phosphate moiety in the case of the bound AMP,

resulting in a degree of conformational flexibility. Pre-

sumably, the disordered loop of the protein At3g01520

may be able to form an optimum structure in the event

Table I
Statistics for Data Collection, Phasing, and Model Refinement

Data collection and phasinga

Space group P1
Cell dimensions
a, b, c (�) 63.35, 65.66, 73.01
a, b, c (8) 75.45, 75.04, 66.11
Data set Se k1 (peak)

X-ray wavelength (�) 0.9793
Resolution (�)b 50.00–2.50 (2.59–2.50)
Total/unique reflections 133,684/36,006
Completeness (%) 97.2 (89.4)
Rmerge (%)c 5.8 (23.9)

Figure of meritd for SAD phasing: 0.51
Refinement Data set: Se k1 (peak)

Resolution (�) 50.0–2.50
Rwork

e/Rfree
f 0.221/0.261

No. of protein atoms/mean B-factor (�2) 7,084g/60.5
No. of ligand atoms (AMP)/mean B-factor (�2) 138/47.1
No. of solvent atoms/mean B-factor (�2) 13/46.1
Ramachandran plot analysis (for Chain A)

Most favored regions 143 (97.3%)
Additional allowed regions 4 (2.7%)
Disallowed regions 0 (0%)

R.m.s. deviations from ideal geometry
Bond lengths (�) 0.016
Bond angles (8) 1.50

aData collected at the Sector 22-ID of the Advanced Photon Source.
bNumbers in parentheses indicate the highest resolution shell of 20.
cRmerge 5 Rh Ri |I(h)i – <I(h)>|/Rh Ri I(h)i, where I(h) is the observed intensity

of reflection h, and< I(h)> is the average intensity obtained from multiple

measurements.
dFigure of merit 5<|R P(a)eia/R P(a)|>, where a is the phase angle and P(a) is

the phase probability distribution.
eRwork 5 RjjFo| 2 |Fc| |/R |Fo|, where |Fo| is the observed structure factor ampli-

tude and |Fc| is the calculated structure factor amplitude.
fRfree 5 R-factor based on 5.1% of the data excluded from refinement.
gNumber of nonhydrogen protein atoms included in refinement.
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Figure 1
Overall structure of the protein At3g01520. A: Monomer structure of the protein At3g01520. a-helices, b-strands, and loops are colored in cyan,
yellow, and pink, respectively. The bound AMP is shown in a stick model. B: Dimerization of the protein At3g01520. Chain A and B are colored in

yellow and green, respectively. The bound AMP is shown in a stick model. C: Multiple sequence alignment of USP proteins from A. thaliana (PDB
ID: 2GM3), M. jannaschii (PDB ID: 1 MJH), T. thermophilus (PDB ID: 3AB7), H. elongata (PDB ID: 3HGM), and H. influenzae (PDB ID: 1JMV).

The conserved G-2X-G-9X-(S/T) motif is boxed in red. a-helices and b-strands are indicated above the sequences as cyan cylinders and yellow
arrows, respectively. D: Analytical size-exclusion chromatograms of At3g01520 (blue line) and size markers (magenta line). The position of molecu-

lar weight markers is indicated for comparison.



of interaction with a proper ligand, such as ATP, by reor-

ienting and ordering the flexible loop.

A structural homology search was conducted using

the DALI server.25 Close structural homologs of the

protein At3g01520 (DALI Z score higher than 15)

include a number of established ATP-binding USP sub-

family proteins: USP domain of MJ0577 from M. jan-

naschii with Z score 15.7, r.m.s.d. distance 3.5 Å

[mt]128 aligned Ca residues, and 20% sequence identity

(PDB ID 1 MJH6); N-terminal USP domain of tandem-

type USP TTHA0350 from Thermus thermophilus HB8

with Z score 15.5, r.m.s.d. distance 2.4 Å over 118

aligned Ca residues, and 20% sequence identity (PDB

ID 3AB724); USP TeaD from Halomonas elongata with

Z score 15.3, r.m.s.d. distance 3.9 Å over 120 aligned

Ca residues, and 23% identity (PDB ID 3HGM21).

UspA from H. influenzae also shares a high level of

structural similarity with Z score 15.7, r.m.s.d. distance

3.5 Å over 128 aligned Ca positions, and 20% sequence

identity (PDB ID 1JMV7), despite its lack of ATP-

binding capability and altered ATP-binding loop

sequence [Fig. 1(C)]. Interestingly, even though these

USP subfamily members share a high degree of struc-

tural similarities, the region corresponding to a2 (resi-

dues 70-78) of the protein At3g01520 structure shows

distinctive conformational diversity [Fig. 2(B)]. It is

plausible to speculate that the region is involved in

diverse interactions with other cellular components in

response to stress signals in various pathways.

In conclusion, we report the first crystal structure of a

eukaryotic USP family protein. Its structural similarity

with other ATP-binding USP subfamily proteins, as well

as the bound AMP and conservation of residues in the

ATP-binding loop, suggest that the protein At3g01520

also belongs to the ATP-binding USP subfamily mem-

bers. The biological function of the protein At3g01520

still remains elusive. However, it has been previously sug-

gested that ATP-binding USP proteins might function as

a molecular switch much like the Ras protein family,

whose GTP hydrolysis ability is modulated by interaction

with a number of regulatory proteins.22 It is therefore

plausible that At3g01520 possibly functions as a molecu-

lar switch by its putative ATP-binding and ATP-

hydrolyzing properties. Further structure-guided bio-

chemical studies to investigate how potential ATP-

hydrolyzing activity of the protein At3g01520 is related

to physiological phenotypes will shed light on the role of

this uncharacterized USP protein in a wide range of

stress-related signaling pathways in A. thaliana.
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