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Abstract

Accelerated PDE Constrained Optimization
Using Direct Solvers

by

Peter J. Geldermans

In this thesis, I propose a method to reduce the cost of computing solutions to op-
timization problems governed by partial differential equations (PDEs). Standard
second order methods such as Newton apply an iterative method to solve the Newton
system. Iteratively solving the Newton system requires the solution of two PDEs
per iteration, which can be prohibitively expensive when applying iterative solvers to
the PDEs. In contrast, this work takes advantage a recently developed high order
discretization method that comes with an efficient direct solver. The new technique
precomputes a solution operator that can be reused for any body load, which is ap-
plied whenever a PDE solve is required. Thus the precomputation cost is amortized
over many PDE solves. This approach will make second order optimization algo-
rithms computationally affordable for practical applications such as photoacoustic

tomography and optimal design problems.
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Chapter 1

Introduction

The numerical solution of optimization problems governed by partial differential equa-
tions (PDEs) is important for optimal design, modeling of physical systems, and in-
verse problems in many fields of science and engineering. Computing solutions to
practical PDE constrained optimization problems requires the solution of the govern-
ing PDE many times. Repeatedly solving the PDE at each optimization iteration can
easily cause the cost of solving these problems to become very expensive. Addition-
ally, in many real applications, it is desirable to solve the optimization problem over
a range (or sampling) of some parameter rather than solving a single deterministic
problem. If solving the PDE constrained optimization problem for a single parameter
value is expensive, then solving the problem over a range of parameter values may be
computationally intractible. Reducing the cost of computing solutions to PDE con-
strained optimization problems will extend the range of computationally affordable
problems.

Solving the governing PDE for many different right hand sides dominates the
cost of computing solutions to PDE constrained optimization problems. The Hier-
archical Poincaré-Steklov (HPS) method, is a recently developed high order accurate
discretization technique that comes with an efficient direct solver. The HPS method

uses the pseudospectral (or spectral collocation) method on a collection of disjoint



leaf boxes whose union is the domain.

The boxes are then hierarchically merged to construct local solution operators at
each step by computing discrete Poincaré-Steklov operators on the union of two boxes
at a time. Merging each of the local solution operators results in an efficient direct
solver such that solution to the PDE may be evaluated very rapidly for new boundary
conditions and body loads. This thesis examines the HPS method in the setting of
PDE constrained optimization. The objective of this work is to exploit the efficiency
of the direct solver that comes with the HPS discretization to obtain second order

optimization algorithms at low cost relative to first order methods.

1.1 Model Problem

To examine the HPS discretization technique in the optimization setting, consider

the following linear quadratic optimal control problem.

1
Minimize —/ (y(z;u) — z(2))? d + g/lf(x)dx (1.1.1a)
ueld 2Jo 2 Jo

where y(x;u) € ) satisfies the differential equation
—Ay(x) = u(z) + f(z), TEQ=(0,1)
y(x) = g(x), x € 04,

(1.1.1b)

for a given function u € U.

This simple model problem will provide insight for how to extend the HPS method
to the optimization setting. It should be noted that the extension is not limited to
problems of the form (1.1.1). The optimization methods developed can also be applied
to problems with boundary control or inverse problems in which the PDE coefficients
are recovered, but for simplicity of presentation I focus on problems of the form
(1.1.1).

Throughout the remainder of the thesis I refer to y as the state ) as the state

space, u as the control, U as the control space, and (1.1.1b) as the state equation.



1.2 Organization

The organization of the thesis is as follows. Chapter 2 reviews relevant literature
from PDE constrained optimization as well as for the HPS method to provide con-
text for this work. Chapter 3 reviews basic material that will be used throughout
the thesis including polynomials, quadrature, and differentiation matrices. Chapter
4 presents the weak formulation and strong formulation for discretizing a PDE by
the HPS method. Then Chapter 5 presents the infinite dimensional optimal control
problem and examines its discretization in detail by considering each formulation
presented in Chapter 4. The direct solver is presented in Chapter 6 along with how
to exploit its efficiency in the optimization setting. Additionally, a numerical experi-
ment is provided to illustrate the benefit of using the direct solver in the context of
optimization. Finally, Chapter 7 summarizes the contributions and identifies several

areas for future work.



Chapter 2

Literature Review

Taking advantage of the performance of the HPS method in PDE constrained opti-
mization intersects the optimization community with active research in discretization
techniques for PDEs. It is important to understand the context of this work from
the perspective of each community. This chapter first reviews literature regarding
PDE constrained optimization. Then it provides context for the HPS method in the
PDE discretization community. Finally a recent publication is highlighted that il-
lustrates the potential of using the HPS discretization method for PDE constrained
optimization problems. This provides the starting point for developing a more general
framework for exploiting the performance of the HPS discretization method in PDE

constrained optimization.

2.1 PDE Constrained Optimization

For optimization problems governed by PDEs there are two fundamentally different
approaches to computing numerical solutions: optimize-then-discretize, and discretize-
then-optimize. In the optimize-then-discretize approach, optimality conditions are
derived in the appropriate function space (as in Lions [12, Ch. 2], or Troltzsch [24,

Ch. 2]) and then the infinite dimensional optimality conditions are discretized to ob-



tain the solution. On the other hand, in the discretize-then-optimize approach, the
objective function and constraint equation are discretized directly to obtain a finite di-
mensional problem which may then be solved using standard quadratic programming
techniques (as in Heinkenschloss [9]). In general, the two approaches to solving PDE
constrained optimization problems do not lead to the same algorithm. Furthermore,
in certain applications one approach may be preferable to the other (see discussion in
Quarteroni [18, Ch. 16]). Therefore in developing a framework it is important that
either approach may be used to efficiently and accurately compute solutions. Under
either approach, discretization results in a finite dimensional problem that can be
solved by standard techniques. However, numerically solving these problems is com-
putationally expensive or may even be intractable due to the large number of PDE
solves required in a typical optimization problem.

Optimization algorithms for solving PDE constrained optimization problems are
typically based on either first or second order derivative information. First order
(gradient-based) methods require the solution of two PDEs, the state and adjoint
equations, at each optimization iteration. Second order methods require the gradient
as well as the solution of the Newton system (or the Newton-like system as in the
Gauss-Newton method) at each optimization iteration. Since the Hessian is both
very large and may be dense, often it is unsuitable to store or compute with it
explicitly. Instead, when solving the Newton system, well known iterative methods
such as the conjugate gradient (CG) method or the generalized minimal residual
(GMRES) method are employed, which do not require the Hessian itself, but rather
the application of the Hessian to a vector. The Hessian-times-vector computation
can be performed by solving two PDEs similar to the state and adjoint equations (see
for example Heinkenschloss [9]). Thus second order optimization methods require
the solution of 2k + 2 PDEs per optimization iteration, where k is the number of
inner iterations (or Hessian-times-vector computations) required to solve the Newton

system. Typically an iterative solver is used to compute solutions to each PDE



when solving PDE constrained optimization problems. However, for problems where
the Newton system is large, the number of PDE solves required by second order
optimization algorithms can grow large enough that the cost of solving the PDEs by
an iterative method becomes impractical.

In contrast to solving each PDE by an iterative method, the method I propose
takes advantage of the efficient direct solver that comes with the HPS discretization.
By choosing to work with a direct solver for the PDESs, the solution operator is pre-
computed once, and then it is applied to efficient evaluate each PDE solution required
by the optimization algorithm. Applying the solution operator is more efficient than
calling an iterative solver. However, making use of a direct solver also incurs the
cost of constructing the solution operator. While constructing the solution operator
and then applying it is relatively expensive for a single PDE compared to calling an
iterative solver, the solution operator may be reused for many PDE solves. That is,
the cost of the precomputation is amortized over many PDE solves. Thus efficient
direct solvers for PDEs are ideally suited for applying iterative methods to optimality
systems in PDE constrained optimization.

An alternative approach that is used to reduce the computational burden of solv-
ing PDE constrained optimization problems is to employ reduced order models (also
known as surrogates). Reduced order modeling is an active research area in the con-
text of PDE constrained optimization. Typically, a reduced order model or surrogate
for the governing PDE is used in place of the PDE constraint (see Sachs [22], Benner
2]). Computing solutions to the surrogate is significantly less expensive than com-
puting solutions to the full order model. The surrogate models can be obtained by
mathematical techniques such as the proper orthogonal decomposition, or they can
be given as an engineering or physics model. Additionally, the solution to the opti-
mization problem governed by the surrogate model can be used as an initial guess for
the problem governed by the full order model. This ensures accuracy of the solution

to the original problem, while minimizing the number of full order model evaluations



required. This idea can be generalized by including a hierarchy of surrogate mod-
els and selecting which to use at each optimization step (see the survey provided
by Peherstorfer et al. [16]). The reduction in cost achieved by employing reduced
order models can lead to efficient methods for computing solutions to some PDE
constrained optimization problems. The approach of reduced order modeling is not

considered in this work.

2.2 The Hierarchical Poincaré-Steklov Method

The HPS method is a high order accurate discretization technique for PDEs that
was first proposed by Martinsson [14] in 2013. After discretization, the direct solver
consists of a build stage which precomputes the solution operator in a factored form,
and a solve stage which applies the solution operator given a body load and boundary
conditions consisting of a collection of small matrix vector multiplies.

To discretize, the domain is broken into a collection of rectangular patches. These
patches are organized via a binary space partitioning tree with the whole domain at
the root, and the collection of patches as the leaves, which are called leaf boxes. Figure
2.1 illustrates the collection of patches and Figure 2.2 illustrates the binary space
partitioning tree. On each leaf box, the local boundary value problem is discretized
by spectral collocation on a tensor product grid of either Chebyshev of Legendre
nodes, and requires that the solution and its derivative are continuous across leaf
edges.

For the build stage, a solution operator and a Dirichlet-to-Neumann (DtN) op-
erator for the local boundary value problem is constructed directly via the spectral
collocation method. Then the local DtN operators are used to hierarchically merge
the operators on the leaf boxes, sweeping up the binary tree, to obtain a solution op-
erator and a DtN operator for the whole domain. The build stage scales as O(N3/2)

where N is the number of unknowns.
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Figure 2.1: Illustration of domain partitioning for a four level binary space partition-
ing tree. The whole domain is the box numbered 1 (far left) and the leaf boxes are
numbered 16-31 (far right). Each subdomain corresponds to the node in the binary

space partitioning tree (see Figure2.2) with the same number.

Level 0

Level 1

Level 2

Level 3

Figure 2.2: Illustration of the binary space partitioning tree. Node numbers corre-
spond to the subdomains in Figure 2.1. The root is at the top of the tree and the

leaf boxes are at the bottom.



During the solve stage the solution operator constructed during the build stage
is applied to the given boundary condition for the PDE to obtain boundary data
on each leaf box, sweeping down the binary tree from the root to the leaves. At
the leaf level, the local solution operators are applied to obtain the solution on the
interior of the leaf boxes. Since the boundary data maps and local solution operators
were precomputed during the build stage, the solve is very efficient and scales as
O(Nlog N).

The HPS method is closely related to domain decomposition methods for applying
spectral methods to solving PDEs. The discretization method employed in the HPS
method is similar to the multidomain spectral discretization proposed by Orszag [15]
in 1980 to apply spectral methods to problems with complex geometries. Both meth-
ods discretize local subdomains with spectral collocation (as in Boyd [5], Trefethen
[23]) and require the solution and its derivative to match at the subdomain interfaces.
The work by Orzsag was later generalized by Pfeiffer et al. [17] in 2003 to allow for
a wider range of basis functions, to handle overlapping subdomains, and to provide
the capability to match higher order derivatives across subdomain boundaries. A key
distinction between the HPS method and earlier work on composite spectral colloca-
tion techniques is that the HPS method immediately eliminates interior unknowns.
The earlier works produced large discretization matrices to be solved by an iterative
solver such as GMRES or another Krylov subspace method. In contrast, the hierar-
chical elimination of interior unknowns and construction of local solution operators
in the HPS method results in an efficient direct solver that is a series of small matrix
vector multiplications the size of information on the boundary of the subdomains.
In 2014, Gillman and Martinsson [8] demonstrated that for problems that are not
highly oscillatory, Martinsson’s original scheme can be further accelerated to achieve
O(N) complexity for both the build and solve stages. They achieved the speedup
by exploiting the special structure of hierarchical block separable (HBS) matrices to

make use of fast linear algebra.
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Then Babb et al. [1] in 2016 provided an efficient method for handling body
loads in the build and solve stages to reuse the precomputation for multiple body
loads. Unlike in the original method, the solution is represented as the superposition
of a homogeneous solution and a particular solution. Then during the build stage,
solution operators and DtN operators are constructed for both the homogeneous and
particular solutions. The solve stage for the body load problem includes an additional
sweep up the tree. For each new body load, the particular solution operator is applied
to the body load on each leaf box. Then the contribution to the Neumann data from
the particular solution is computed by applying the particular DtN operator. This
information is swept up the tree to the root, where the boundary conditions are
known. Then the solve stage sweeps down the tree mapping boundary data to the
leaf boxes and applying the local solution operators as in the case without a body
load. This algorithm will be reviewed in detail in Section 6.1.

The HPS method has been used in the optimization context by Borges et al. [4] for
application to an inverse acoustic imaging problem from the medical imaging commu-
nity. In the largest problem considered, a Matlab implementation of the HPS method
was used to solve approximately one million PDEs, each with 19,600 unknowns, in
approximately two days (on a multi-core workstation). The authors report that the
reconstructions presented in their paper are among the largest ever computed in the
medical imaging community.

This success demonstrates the potential of exploiting the HPS discretization and
its direct solver in PDE constrained optimization. The goal of this work is to develop
a general framework for taking advantage of the HPS method in the optimization
setting. This work illustrates how the HPS method can be applied for both the
optimize-then-discretize approach as well as the discretize-then-optimize approach.
Additionally, optimization algorithms that take advantage of the efficiency of the
direct solver to reduce the cost of solving PDE constrained optimization problems

are provided.



Chapter 3

Background

This chapter reviews background material that is used throughout the thesis. First,
Section 3.1 reviews a set of 1D polynomials, differentiation matrices, quadrature rules,
and interpolation. Then Section 3.2 provides the extension of the 1D tools to 2D. Note
that the extension can be performed for N dimensional polynomials in general, but
the 2D case is emphasized as this work considers 2D problems. The results reviewed
in this section can be found in many places, for example in the books by Canuto et
al. [6, Ch. 2] or Quarteroni and Valli [20, Ch. 4] or in the paper by Bernardi and
Maday [3, Thm. 13.4].

3.1 Polynomials, Differentiation Matrices, Quadra-
ture Rules, and Interpolation
Consider the Legendre-Gauss-Lobatto (LGL) collocation points
—1l=x <X <+ <X41 <X, =1, (3.1.1)

which are the roots of (1 — z%)-L [Z,_;(z)], where .Z,_; is the Legendre polynomial

of degree ¢ — 1.

11



12
The set of polynomials on [a, b] of degree less than or equal to p is denoted by
Ppla,bl.

Let the Lagrange interpolation polynomials be given by,

T — Xk

Ee

P11,  j=1,...¢q (3.1.2)

k=1 B Xk

k#j
Furthermore, given the Legendre-Gauss-Lobatto points (3.1.1) and the corresponding
Lagrange polynomials (3.1.2), let I,y : C([—1,1]) — P,—1[—1, 1] be the interpolation
operator

q

I,qu)(z) = Zu (x;);(z (3.1.3)
j=1

The LGL quadrature rule is given by

/_1 (@)~ /_11( g17)(z)dr = ij r(x))- (3.1.4)

1

where the quadrature weights are

2 1
q(q — 1) [L41(x5)]*

The exactness of the quadrature rule is given by Theorem 3.1.1 below. This is a

» Y(x)dr = (3.1.5)

standard result from Gauss-Lobatto quadrature. Details on the proof of the following

theorem can be found in Chapter 10.4 of [19].

Theorem 3.1.1 (Legendre-Gauss-Lobatto Quadrature Exactness) The
Legendre-Gauss-Lobatto quadrature rule with q points given by (3.1.5) and (3.1.4) is

exact for all all polynomials on [—1,1] of degree less than or equal to 2q — 3, i.e.,
1 q
/ r(z)dz = ijr(xj) Vr € Pog—s[—1,1]. (3.1.6)

The following results on interpolation error can be found, e.g., Bernardi and Maday

[3, Thm. 13.4] or Canuto et al. [6, Sec 5.4.3].
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Theorem 3.1.2 (Legendre-Gauss-Lobatto Interpolation Error) Letk € {0,1}
and m > (14 k)/2. There exists a constant C' > 0 such that for all functions

u € H™(—1,1) the following interpolation error estimate holds
HU - Iq_1u||Hk(_171) S C(q - ]_)k_m”UHHm(_L]). (317)

The derivative matrices D, D® € R7%? have entries

d
Dk,j = %wj(xk), (318&)
0 _ &
so that if r = (ry(x1),...,7,(x,))7, then the derivatives of the interpolating polyno-

mial, r,, at the collocation points are given by

d ! d
——ry(x) = Y 7(x;)=1;(xx) = €] Dr, (3.1.9a)
dx = dx
d? - d? T (2
dxzrq(xk) = ZT(Xj)dewj(xk) =elDPr, (3.1.9b)
j=1

where e, € RY is the k-th standard basis unit vector. Welfert [25, Thm. 6.1] shows
that the second order derivative matrix is the square of the first order derivative

matrix, i.e.
D® = D2 (3.1.10)

Each of the results on the reference interval [—1, 1] can be generalized to a target
interval [a,b] by mapping the collocation points from the reference interval to the
target interval. Let x = (x1,...,%,)” be the LGL collocation points on the reference

interval. Then the LGL collocation points on the target interval are given by

et _ (b~ G)X+ (b+a)

. 3.1.11
5 5 ( )
Define the Lagrange polynomials on the target interval by
(0. T x
w] ’ (:C):Hm, ]:17,q (3112)
k=1 X; T — Xp

k#j
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Let I, : Cla,b] — P,_1]a, b] be the interpolation operator
(Ij—u)(x) = Zu(x§a’b))¢§a’b)(x). (3.1.13)
j=1
Let the {w;}7_, be the quadrature weights associated with the LGL collocation points

on the reference interval. Then the quadrature weights for the generic interval [a, b]

are given by

a b—
wi™ = ( 5 “)wj, for j=1,...,q, (3.1.14)

so that the quadrature formula over the generic interval given by
b b q
/ r(z)dr ~ / (Iy—17)(2)dx = Z w](-a’b)r(xga’b)), (3.1.15)
a a 7j=1

is exact for all r € Py,_3(a, b) similar to the result in Theorem 3.1.1. The interpolation

error (4.3.9) generalizes to the following estimate, see Canuto et al. [6, Eqn. (5.4.42)].
|u — L1l grp < C(b— a)k—min{ma=1} (g _ 1)k=m || grmoa—1(—1,1)- (3.1.16)

The differentiation matrix on the generic interval is obtained by scaling the dif-

ferentiation matrix from the reference interval

D(a,b) _

= a)D. (3.1.17)

Now that the 1D polynomial approximation, the quadrature rule, and the differenti-

ation matrices are known, it is necessary to extend these tools to higher dimensions

to use them in solving partial differential equations via spectral collocation.

3.2 Extension to Higher Dimensions

To represent polynomials in multiple dimensions, a tensor product grid of LGL points

is used. As noted before, the extension may be carried out to represent polynomials
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in N dimensions, but as the work in the thesis focuses on 2D problems, I will discuss
extending the results from Section 3.1 to two dimensions.

Consider the domain Q = (a,b) x (¢,d) C R?, and define the 1D LGL collocation
points x(¢% on the interval (a, b) and x(“? on (¢, d) as in (3.1.11). Then the 2D LGL

collocation points on € are given by the tensor product grid

(= %D v e {1, q). (3.2.1)

Figure 3.1 provides an illustration of the 2D LGL collocation points.

(a,d) (b,d)
X X X X
L2
X X X X
X X X X
X X X X
(a,0) . (00

Figure 3.1: Illustration of the tensor product grid of LGL quadrature nodes on € for
q = 6. Observe that this is given by the Cartesian product of the set of 1D LGL

quadrature nodes in each direction.

Order the collection of ¢* collocation points by the single index (3, j, q¢) where
(i j.q) = (i = 1)g +j, (3.2.2)
and define

a,b c,d
Xo(iq) = ("7, %), (3.2.3)
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Let 2 = (21, 75) € Q. Then the 2D interpolation basis functions are given by

Yotiga) (@) = VD (@1)0 1 (22). (3.2.4)

Note that upon inspection it is immediate that

Lo (k0 = (i),

a,b c,d
Vo(ig (", x(00) = (3.2.5)
0, (k,0)#(i,5),
since
.
1, k=1
a,b a,b ) )
P () =
\O, k # 1,
and
(
1, (=
c,d c,d ) )
i () =
0, (#j.

The set of polynomials on Q of degree less than or equal to p in each variable is
denoted by
P,(82).

Furthermore, given the tensor product grid Legendre-Gauss-Lobatto points (3.2.1)

and the corresponding Lagrange polynomials (3.2.4), let I,_; : C(2) = P,_1(Q2) be
the interpolation operator

q2

(Ig1u) (@) = > u(xe) (). (3.2.6)

o=1

The polynomial interpolation error is bounded according to the following theorem

(for details see Bernardi and Maday [3, Thm. 14.2] and Canuto et al. [6, Sec. 5.8.2]).

Theorem 3.2.1 Let k € {0,1} and m > (2 + k)/2. There exists a constant C" > 0

such that for all functions w € H™(2) the following interpolation error estimate holds

lu = Lyyu| ey < Clg — 1) ™|yl
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The 2D LGL quadrature formula is given by

q2
/ r(z)dr ~ /(Iq_lr)(x)dx = Zwar(xa), (3.2.8)
Q Q o=1
where the quadrature weights are
Wo(i,5,q) = / wa(iuja q)(ZL’)dlL’
Q
d b

- / B (@) () dy i
e Ja (3.2.9)

Thus the 2D quadrature weight wo(; ;) is simply the product of the 1D quadrature
weights associated with the collocation point coordinate values in each direction.
Theorem 3.2.2 defines the exactness of the Legendre-Gauss-Lobatto quadrature rule

on Q. For details, again refer to [19] and the references therein.

Theorem 3.2.2 (2D Legendre-Gauss-Lobatto Quadrature Exactness) The
Legendre-Gauss-Lobatto quadrature rule given by (3.2.9) and (3.2.8) is exact for all

polynomials on €2 of degree less than or equal to 2q — 3 in each variable,

/Qr(x)dx = ZWUT(XU) Vr € Pag—3(02).

The structure of the tensor product grid allows the partial differentiation matrices to
be defined in terms of a Kronecker product of the 1D differentiation matrices and the

identity matrix. Let I € R9%9, then the first partial derivative matrices are given by

D; =D T, (3.2.10)
D, = 1@ DD, (3.2.11)
Let v = (ry(X1), - . .,74(x2))7, and let e, the o-th standard basis vector in R?. Then

the partial derivatives of the interpolation polynomial r, evaluated at the collocation
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points are given by

d

d—q;qu(xg) =e!Dyr, (3.2.12)
d

d—mzrq(xg) = e Dor. (3.2.13)

More generally, define the partial differentiation matrix

D’ng _ (D(ayb))k ® (D(C»d))é’ (3.2.14)
so that
dkz—i—é Tkl
,) = e/ D'Der. 3.2.15
dm’fd:vgrq(X) el ( )

Now that the 2D polynomial approximation, the quadrature rule, and the partial
differentiation matrices are known, these tools can be used to approximate solutions

to partial differential equations via spectral collocation.



Chapter 4

Discretization of the State

Equation

This chapter describes two discretizations for the state equation (the differential equa-
tion that relates the control to the state in the model optimization problem). The
first discretization approach is based on the Galerkin discretization of the weak form
of the state equation as in [20]. The second approach is based on discretizing the
strong form of the state equation via a composite spectral collocation scheme. In
this approach, subdomains are discretized by spectral collocation as in [23], [5] and
the solutions on subdomains are related by requiring that the solution and normal
derivative match at the interface between subdomains. This is the discretization that
the Hierarchical Poincaré-Steklov method, for details see [14]. The major difference
between the two approaches is in the implementation of the Neumann condition. The
Galerkin approach uses the weak form of the Neumann condition whereas the com-
posite spectral collocation scheme uses the strong form of the Neumann condition.
Section 4.1 reviews the weak formulation and its Galerkin discretization Then
Sections 4.2 and 4.3 describe the discretizations for a single domain and then for
multiple subdomains respectively. Finally, the performance of the weak form and

strong form discretizations are illustrated in Section 4.4 for a test problem.

19
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4.1 Weak Formulation

Given a real Hilbert space V with inner product (-,-) and norm || - || = (-,-)'/?, a
bilinear operator
a:VxV =R,
and a continuous linear functional
b:V —R,
consider the following problem. Find y € V such that
aly, d) = b(), VeV, (4.1.1)

Theorem 4.1.1 (stated without proof) is a standard result from functional analysis

that provides conditions for the existence of a unique solution to (4.1.1).

Theorem 4.1.1 (Lax-Milgram Theorem) Let V be a (real) Hilbert space, en-
dowed with the norm || - ||, a(-,-) : V x ¥V — R a bilinear form and b :V — R a
continuous linear functional, i.e. b € V' where V' denotes the dual space of V. If

there exist constants By, B2 > 0 such that

la(y, 9)1 < By 191y, Vi, 9 €V, (4.1.2)
Ballolly < al(e, ¢), Voev, (4.1.3)

i.e. a(-,+) is continuous and coercive, then there exists a unique solution y € V to

(4.1.1) and

1
lylly < E\Iwa- (4.1.4)

The proof of Theorem 4.1.1 can be found in almost any text on the treatment of
partial differential equations. In particular see [20] Thm 5.1.1.
To discretize the weak formulation, consider a finite dimensional subspace V, C V.

The discretized weak form is then given by, find y, € V, such that

a(Yg ¢g) = b(dg), YV B € Vy. (4.1.5)
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Lemma 4.1.2 establishes a general error bound for the discretization of the weak

formulation.

Lemma 4.1.2 (Céa’s Lemma) Under the assumptions of Theorem 4.1.1 there ex-
ists a unique solution y, € V, to (4.1.5). Moreover, if y is the solution to (4.1.1),
then

Iy — wally < g— e =6l (4.1.6)
q q

In Section 4.2 and Section 4.3, an appropriate finite dimensional subspace V, is identi-
fied and the general error estimate via Céa’s Lemma is made specific by approximation

results for the chosen subspace.

4.2 Single Domain Discretization

The state equation considered in this section is a slight variation of (1.1.1b). This
variation will be useful when considering multi-domain discretizations. Let Q =
0,1)2, Tp={z€dQ| 2, =0}U{x € 90|z =0} and 'y = 9N\ I'p, and consider
the boundary value problem

—Ay(z) =u(z)+ f(z), z€Q

y(x) =0, relp (4.2.1)

0
o () = v(z), x € Iy.

The geometry for the boundary value problem is provided in Figure 4.1.
This section presents two spectral collocation approaches to discretize the state
equation (4.2.1). First, I present discretization of the weak formulation in Section

4.2.1. Then I provide the discretization of the strong formulation in Section 4.2.3.

4.2.1 Discretization of the Weak Formulation

Let
V={ye H(Q)|y=0onTp}
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L2

)

(0,0)

I

Figure 4.1: Illustration of geometry for the single domain problem. I'p is the solid

line (bottom and left faces) and I'y is the dashed line (top and right faces).

be endowed with the H'(€2) norm. The weak formulation of (4.2.1) is given by
/QVy(x) -Vo(x)dzx
= /Q (u(z) + f(x)) ¢(z)dx —|—/ v(z)p(x)dz, Y¢e. (4.2.2)

I'n

This is the identity (4.1.1) if the bilinear operator is defined as

olu.6) = [ Vola) - Vo(os (12.3)
Q
and the continuous linear functional is defined as
o) = [ (ule) + f@)ot)ds + [ vx)o(wrts (424
Q Iy

Corollary 4.2.1 is then immediate by applying Theorem 4.1.1 to the weak formu-
lation (4.1.1) with V = H'(Q).

Corollary 4.2.1 For any f,u € L*(Q) and v € L*(Tx) the state equation (4.2.1) has
a unique weak solution y € V. Moreover, there exists a constant C' > 0 (independent

of f and v) such that

lyllare) < C (12 + llullz@) + 10l 2@y)) -
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Let P,—1(92) be the set of polynomials of degree less than or equal to (¢ —1). The

finite dimensional subspace is given by
Vo =P1()NV, (4.2.5)
and the Galerkin discretization of the (4.2.2) is

/Qqu(x) -Vo(z)dx
:/Q(u(x) —l—f(x))qﬁ(x)dx—l—/ v(z)p(x)dx, Vo€V, (4.2.6)

INY;
A bound for the error between the exact solution and the solution to the finite

dimensional subspace approximation is given by the following lemma.

Lemma 4.2.2 Let the weak solution y to (4.2.1) satisfy y € H™(QQ) with m > 3/2.
There exists a constant C' > 0 such that the error between y and the solution y, of

(4.2.6) satisfies

ly = allzrr @) < Cla = 1) "yl o)- (4.2.7)

Proof: Lemma 4.1.2 gives

vg€Vq

Applying Theorem 3.2.1 with £ = 1 to bound the right hand side
inf_ |y = vgllme) < ly = L-1yllm o)
Vg € Vg

gives the desired result. O

Remark 4.2.3 The error bound in Lemma 4.2.2 requires that integrals such as
Jo (u(x) + f(x)) ¢(x)dx for ¢ € V, are evaluated exactly. If instead they are ap-
proximated by quadrature an additional term on the right hand side arises, which is

proportional to the quadrature error.
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4.2.2 Linear System

Now I set up and solve a linear system corresponding to the discretization of the weak
formulation (4.2.6). Let x be a tensor product grid of ¢ x g Legendre-Gauss-Lobatto
(LGL) quadrature points on , where x; denote the j-th point of the tensor product
grid. Let w; be the 2D quadrature weight associated with x;, and let ;(x) be the

2D Lagrange interpolation basis function associated with x;.

X X X X
X X X X
Q
X X X X
X X X X

Figure 4.2: Illustration of the tensor product grid of LGL quadrature points {x; };?2:1
on Q for ¢ = 6.

First write
I'n =Tne) Uy,
where

FN(E) :{ZL‘€89|ZE1 :1} and FN(N) :{I'EanZEQ:]_}

Because y, is a polynomial and, hence, smooth, the left hand side in the discretized

weak form (4.2.6) may be rewritten using the divergence theorem to obtain

/Q Vyy(x) - Vo(x)dr
_/Q—qu(x)gzﬁ(x)dx—i-/ (Vyg(x) - m)p(x)dx

) 9, 0
= [ —Ay,(x)p(x)dx + —yq(x)p(z)dx + —yy(x)p(z)dx. (4.2.8)
/Q Y /1“]\,(,5> axly /1“N(N) é)3'32y
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Substituting this expression for the left hand side in (4.2.6) yields the following equiv-

alent expression for the weak form (4.2.6)

0 0
Jduwoirs [ gl [ Slu@etnie (429
= u(x) + f(x)) o(x)dr + v(z)p(x)dx + v(z)p(x)dr Yo eV,

| () + 1@ o62) A®<M> ﬁww>m

To obtain the linear system corresponding to (4.2.9), replace the integrals by quadra-
ture and require the resulting equation to hold for all ¢ € span{y,...,9,2} such
that ¢ = 0 on I'p. Note that the quadrature rule is exact for the integrals in (4.2.9)
involving y, due to Theorem 3.2.2.

Let y be the vector given by

y: (yla"'7yq2)T7 (4210)

and let y; denote the j-th element of y (i.e. y; = y,(x;)). Furthermore, let

u = (u(xy),...,uxz2))", (4.2.11)
f=(f(x1),..., f(x2)7, (4.2.12)
v=(v(x1),...,0(xz2))". (4.2.13)

Given interpolation points x; and the Lagrange basis functions ;(z), the solution

of the discretized weak form (4.2.6) is

(@) = Y ¥,04(0). (1214

Let D be the k-th order partial differentiation matrix in the x; direction, and let
D% be the k-th order partial differentiation matrix in the x, direction as defined in

(3.2.14). Then the discretized differential operator L € R? %7 is given by
L = —(Dj + D3), (4.2.15)
so that

—Ay,(x;) = e Ly. (4.2.16)
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Next, partition
J = {1,...,q2} = J[UJDUJN(E)UJN(N)UJC

where the index sets Jr, Jp, Jn(g), Jvv) and Jo are defined next. See Figure 4.3 for

an illustration of these index sets.

Ix X X xI
4 +

Figure 4.3: Illustration of the collocation points {xj};il by index sets. The gray

crosses denote the interior points corresponding to .JJ;. The red diamonds denote the
points corresponding to Jp, where the Dirichlet boundary condition is applied. The
green squares, blue circles, and black triangle denote the points where the Neumann

condition is applied, corresponding to Jy(g), Jy(n), and Jeo respectively.
Let
Jr={jlx; € Q}
be the set of indices of interior collocation points and let

Jp={j|x; €Ip}

be the set of indices of collocation points where the Dirichlet boundary condition is
enforced. To define the remaining index sets, first define sets to describe the northeast,

southeast, and northwest corners of the domain

CNE = {(17 1>}7 CSE = {(170)}7 CNW = {(07 1)}
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Then let

INE) = {ilx; € IS \ (CxyrUCsg)},

be the set of indices of collocation points on the interior of the east edge of the domain

and let

Inevy =171 %5 € Tvavy \ (Cve UChw) }-

be the set of indices of collocation points on the interior of the north edge of the

domain. Finally, let
JC = {j ‘ X; € CNE}

be the index of the collocation point at the northeast corner of the domain.

The Dirichlet boundary condition y,(x) = 0 for all x € I'p implies that
eZy =0 for p € Jp. (4.2.17)

Since
Vo= ,qul(Q) ny = {% ‘ pé JD}
(4.2.9) is equivalent to

0 0
[ dwu@ir s [ S [ b

N(N)

v(z)Y,(x)dx +/ v(x)Yu(r)de Y u & Jp.

vy

:/Q(u(:c)Jrf(:c))%(x)der/

I'ne)

(4.2.18)

Next, replace the integrals by quadrature. Note that the quadrature rule is exact for

the integrals in (4.2.18) involving y, due to Theorem 3.2.2.
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q2

0 0
D =Wy (xe)u(xe) + Y Wi 5y Yo (Xe) ¥ (Xe) + > W1 5 Yo (Xe) Y (Xe)

(=1 leJg leJn

_sz u(xe) + f(xe)) u(xe)

+ Z We2v(X¢) 1, (Xe) Z W0 (Xe) Y, (Xe) Vouéd Jp.

lelg ledn
(4.2.19)

For p corresponding to the interior collocation points, u € Jr, (4.2.19) simplifies as

q2 2

Y —wely(xe ) (xe) = D we (ulxe) + f(xe)) ().

(=1 (=1

£~}

Since ¢, (x,) = 0 for each £ # p, the sums each reduce to the single term corresponding

to the index p

—W, Ay, (%) = W, (u(x,) + (X)) -

Finally, dividing each side by the constant w, yields

— Ay (%) = u(x) + F(x),

which can be interpreted as enforcing the strong form of the PDE at each interior
collocation point. This can be written in terms of the discretized differential operators

as
eZLy = eZu +f, for p € Jy. (4.2.20a)

For p corresponding to collocation points on the interior of the east edge of the

domain, p € Jy(g), (4.2.19) simplifies as

q2

3wl (e ) + Y e

/=1 lelg

— ng u(xe) + f(x0)) Yu(xe) + Z W20 (X)) (%)

ledp
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Again since 9,(x,) = 0 for each ¢ # p, the sums each reduce to the single term

corresponding to the index p

(_WHA + wm?aixl) Yg(x) = Wy (u(x) + f(x4)) + wu2v(x,).

Dividing both sides by the constant w, o yields

0
(84 ) ) = s () + £, + 0005
This can be written in terms of the discretized differential operators as
ez (w1 L+D1)y = w1 (ezu +1,) + v, for p € Jngy. (4.2.20b)

Similarly, for p corresponding to collocation points on the interior of the north edge

of the domain, p1 € Jy(ny, (4.2.19) simplifies as

q2

> Wik (x0) + D gtk ()

=1 ledn

- ZWz (u(xe) + f(x0)) ¥pu(xe) + Z weav(xe) ().
=1

ledn

As 1, (x¢) = 0 for each £ # p, the sums each reduce to the single term corresponding

to the index p
0
—w, A+ w“’lﬁ_xg Yo%) = Wy (w(x,) + f(X4)) + wuiv(X,).
Dividing by the constant w, ; yields
0
(_w/ﬂA + a_m) Yo(Xu) = wp2 (u(x,) + f(x)) + v(x)-
This can be written in terms of the discretized differential operators as
el:f (wy oL+ D2)y = w2 (eZu + fu) + v, for € Iy (4.2.20¢)

Finally, for p corresponding to the northeast corner of the domain, u € Jg, (4.2.19)

simplifies as
0 0
~ W, Ay (X)) + Wy a_xlyq(xu) + Wy 8_aiqu(xu)

= w, (u(x,) + f(X4)) + wu2v(X,) + w,u1v(X,),
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which can be written in factored form as

0 0
WA+ wppo— F W — | Yg(X) = Wy (u(Xy) + (%) + (w2 + wya) v(x,).
8$1 89{;2

This can be written in terms of the discretized differential operators as
ez (w,L +w, 2D +w, D)y =w, (eZu + f#) + (w2 +wu1) vy, for € Je.
(4.2.20d)

In summary, after an approximation of the integrals by quadrature, the discretized
weak form (4.2.9) leads to the linear system (4.2.17), (4.2.20) in y which is denoted
by

Ay =—-Bu+ec. (4.2.21)

where A,B € RV*Y y u,c € RY. Solving the linear system for y provides the
coefficient values of the composite polynomial approximation of the weak solution y,.
The matrix A € R¥*¥ in (4.2.21) inherits important properties from the bilinear

form (4.2.3).

Theorem 4.2.4 The matriz A € RV*N in (4.2.21) is symmetric positive definite on

{v|v,=0, pedJp}

Proof: Let y,v be vectors with y, = v, =0, u € Jp, and define

wl@) =Dy ule) =D v (e).
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Following the derivations (4.2.20), (4.2.19), and (4.2.18) yields

a2 a2

VEAY = Y v D2 Wiyl 3 w5
=1 =1 teJg
0
£ gy (a)(x))
ledn

—Zvu( | ~du@iada+ [ Sl d)

—Zvu( | Vuta) v, w)ie)

= /Q Vy,(2) Vo, (z)d.

This shows the symmetry, vl Ay = yTAv for all vectors y,v with y, = v, = 0,

i € Jp, and the positive definiteness,
vIiAv = / Vo (z)" Vo, (z)dz > 0
Q

for all vectors v # 0 with v, =0, u € Jp. O

4.2.3 Discretization of the Strong Formulation

Consider the boundary value problem (4.2.1). Note that in the strong sense, the
normal derivative is not well defined at the corners of the domain. Place a tensor
product grid of LGL quadrature points less corners on §2. The tensor product grid
of quadrature points less corners is illustrated in Figure 4.4.

To define the 2D Lagrange basis functions on €, let z be a set of 1D LGL points
on a general interval (a,b). Then consider the points on the interior of the interval
(i.e. consider {z;}¢_}). Define the Lagrange basis polynomials for interpolating the
interior points on the interval as follows

q—1
zZ — 2

z) = . j=2,...,q—1 4.2.22
e(2) gzj_zk ( )
k#j
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X X X X
X X X X
Q
X X X X
X X X X

Figure 4.4: Illustration of the tensor product grid of LGL quadrature points less
corners {ig}f:_fl on ) for ¢ = 6. Observe that the only difference between this set
of points and the set considered in Figure 4.2 is the removal of the collocation points

on the corners of the domain.

Analogous to (3.2.2), define the mapping o : (i,j,q) — Z* such that X,q 4 =
(x§a7b),x§-c’d)) for each (7, 7) such that (X§a7b),x§-c’d)) is in the tensor product grid less
corners.

The 2D Lagrange basis polynomials for the tensor product grid of LGL points
less corners are defined as follows. For basis functions corresponding to points on the
interior of the domain, X,(; ;4 € €2, the basis function is the same as in the weak

formulation

Votija (1) = i(@1)i;(2). (4.2.23)

However, for basis functions corresponding to collocation nodes on the boundary, the
basis functions are modified to account for the removal of the corner nodes. For
basis functions corresponding to points on the north and south edges of the domain,

Xo(ijg) € 02N ({x | 22 =0} U{x |22 = 1}), the basis functions are given by

Dotoia) (@) = i) 5 (x2). (4.2.24)

Similarly, for basis function corresponding to points on the east and west edges,
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Xo(ijg) € 02N ({x |21 =0} U{z |2y = 1}), the basis functions are given by

Votija (1) = i(@1)p;(2). (4.2.25)

Given this definition of the basis functions, the polynomial interpolation of a

function r : Q — R is given by

r(z) R T(x) = Y 1(Xe)o(2). (4.2.26)

o=1

The quadrature is obtained by integrating the polynomial approximation

?—4
/ r(x)ds ~ / Fo(@)dr =Y Wor(X,), (4.2.27)
Q2 Q2 o=1
where the quadrature weights are given by

W, = / Vo (z)dz. (4.2.28)
Q

Again, note that due to the tensor product grid, the 2D quadrature weights are given
by the product of the 1D quadrature weights of the polynomial approximation in each
coordinate direction.

To discretize the boundary value problem (4.2.1), approximate the solution y by

q°—4

Ta(@) = ) Fothalz) (4.2.29)

o=1
insert y, into the boundary value problem (4.2.1), and require that (4.2.1) holds at
the collocation points {ig}fj.

To derive the corresponding linear equation, let y be the vector given by

Y= Ye-a), (4.2.30)

and similarly, let
o= (uX),. .. uFXpe_)", (4.2.31)
f=(f&),. .., fZe)T, (4.2.32)

V= (X)), ..., v(Xz2 1)) (4.2.33)
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Define the entries of the k-th order partial differentiation matrices D} and D& by

—~ ak .

Di, = 55V« (X0), (4.2.34)
Lol = gk

o~ (%) (4.2.35)
o p— o E 5 . .
20,8 ok

so that the discretized differential operator is given by

L =—(D?+D2). (4.2.36)

As in the weak formulation, it will be useful to partition
j;: {1,...,(]2—4} = LUJDUJN(E)UJN(N),

where the index sets j}, J; D, jN( g) and J, ~n(n) are defined next See also Figure 4.5 for

an illustration of these index sets.

x x x xT
L‘ 4 4

Figure 4.5: [llustration of the collocation points {io}g:f by index sets. The gray

crosses denote the interior points corresponding to Jr. The red diamonds denote
the points corresponding to J, p, where the Dirichlet boundary condition is applied.
The green squares and blue circles denote the points where the Neumann condition
is applied, corresponding to jN(E) and jN(N). Observe that the removal of corner
points eliminates the need to apply a Neumann condition on a corner of the domain

as was required for the weak form discretization (compare to Figure 4.3).
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Let
Jr={0|X, € Q}
be the set of indices of collocation points in the interior of the domain and let
Jp={0|%, € p}

be the set of indices of collocation points where the Dirichlet boundary condition will
be applied. The index sets corresponding to the Neumann boundary are defined as

follows. Let

Inee) = {0 | % € Ty \ (Cyve UCsr)}

be the set of indices of collocation points along the east edge of the domain where

the Neumann boundary condition will be applied and let

JNN(N) ={o|x, € I'nvy \ (CxneUCNw)}

be the set of indices of collocation points along the north edge of the domain where
the Neumann boundary condition will be applied. The indexed collocation points are
illustrated in Figure 4.5.

As mentioned before, to discretize (4.2.1), approximate y by the interpolating
polynomial ¥,, then require the resulting equation to hold at each collocation point.
For the Dirichlet boundary condition, require that @ (x) = 0 for all z € I'p.
Explicitly, for pu € Jp enforce the Dirichlet boundary condition by

e/f? =0 for yu € Jp. (4.2.37)

For p corresponding to collocation points on the interior of the domain, p € Jr

enforce the PDE by

—AY(X) = w(Xy) + f(X,),
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which can be written in terms of the discretized differential operators as
e/Ly = e u+f, for p € J;. (4.2.38a)

For p corresponding to collocation points on the east edge of the domain, u € J; N(E)

enforce the strong form of the Neumann condition by

0

a_xl?jq<;(u) = U(iﬁ)?
which can be written in terms of the discretized differential operators as
eZﬁ}? =V, for p € jN(E). (4.2.38D)

Finally, for p corresponding to collocation points on the north edge of the domain

JIRS J; ~(~) enforce the strong form of the Neumann condition by

0

a_:mgq<iu) = v(Xu),
which can be written in terms of the discretized differential operators as
ef]i? =v, for € jN(N). (4.2.38¢)

In summary, the collocation approximation of the strong form (4.2.1) leads to the
linear system (4.2.37), (4.2.38) in y.

Comparing the strong formulation with the weak formulation, observe that the
discretized equations that enforce the PDE at the interior collocation points and
the Dirichlet boundary condition are the same. However, the discretized equations
that enforce the Neumann boundary condition are different. In particular, the weak
formulation includes the body load (or source term) in the implementation of the
Neumann boundary condition, but the strong formulation does not.

Now that the each discretization of the state equation for a single domain is
understood, both can be extended to the multidomain case as will be necessary for

the HPS method.
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4.3 Multidomain Discretization

Let 2 = (0,1)? and consider the boundary value problem

—Ay(z) =u(z) + f(z), z€Q,
y(x) =0, x € 0f).

(4.3.1)

The HPS method discretization partitions the domain via a binary space partitioning
tree, then formulates a local boundary value problem each subdomain. The local
boundary value problems require that the solution to the a given local boundary
value problem has consistent Dirichlet and Neumann boundary conditions with the
solution to each neighoring local boundary value problem. That is, at each sub-
domain interface the solution and its derivative are continuous. The discussion of
the discretization is restricted to a problem with four subdomains (corresponding to
four leafs in the binary space partitioning tree). Considering the “four leaf problem”

simplifies discussion, but extends naturally to the more general case.

4.3.1 The Four Leaf Discretization

Consider the uniform partition of the domain €2 into four subdomains
Q' =(0,0.5)% Q*=(0,0.5) x (0.5,1), 0°=(0.5,1) x (0,0.5), Q' =(0.51)%

so that = Uﬁzlm. The geometry partition is illustrated in Figure 4.6.
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2 0? Q!
Q! 03
(0,0)
I

Figure 4.6: Illustration of the partition of Q for the four leaf problem. Note this

corresponds to two levels of binary space partitioning.

From the geometry of the partition, introduce the following sets which will be
useful for defining index sets as in the single domain case. Let C denote the intersection

of each of the four subdomains
C =n;_, 008 = {(0.5,0.5)}.

Let I'®® denote the interior of the shared edge between neighboring subdomains Q¥

and QF
et = (0QF N oQY) \ (CU Q).
The solution of (4.3.1) restricted to the subdomain QF will be denoted by y®*),

y(k) = ylon.

Then by requiring the solution to the differential equation (4.3.1) to have consis-

tent Dirichlet and Neumann conditions at the subdomain interfaces I'** and C, the
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differential equation on the partitioned geometry is formally given by

Ay (z) =u(z) + f(z), zeQ ke{l,... 4}, (4.3.2a)
y®(z) =0, r € 00NNk, (4.3.2b)

y®(z) —yP(z) =0, el kee{l,.. . 4} k#L,
(4.3.2¢)

0 _ 0w e
(4.3.2d)
S
> 5@ =0, rec, (4.3.2)
k=1

where % denotes the partial derivative with respect to the outward pointing normal
vector of OF. Note that along an edge shared by two neighboring subdomains, the
outward pointing normal vectors have opposite direction. Additionally it is important
to recognize that the normal derivative at the corner point x € C is only well defined
in the weak sense. As such the discretization of (4.3.2) corresponding to the weak
form treats (4.3.2e) explicitly. In contrast, the discretization of (4.3.2) corresponding
to the strong form does not have a collocation point at C. Instead, the continuity
of the solution and derivative at C is enforced implicitly by the approximation of
the solution as a polynomial. These differences in interpretation and implementation

ultimately result in different discretizations of (4.3.2).

4.3.2 Weak Formulation Error Estimates

In this section, a multidomain error estimate is developed for one dimensional prob-
lems using approximation results from [13] and the references therein.

Consider the one dimensional boundary value problem

d2
——y(@) = ule) + f(a), x € (~L1), (4.3.3)
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Let V = H}(—1,1). Then the weak form of (4.3.3) is given by, find y € V such that

/_ 1 %y(z)%gﬁ(m)dw _ /_ (ula) + S@)ola)dr. Vo EV. (4.3.4)

For the one dimensional multidomain problem, let
—l=xy<x1<...<x_1<xxg=1

and define the subintervals 77 = (x,_1,%,) for 7 = 1,..., K. Let PX (—1,1) be
the set of functions in L*(—1, 1) such that for the restriction to a subdomain Z” the

function is a polynomial of degree less than or equal to (¢ — 1), that is

sz(—l(_lv 1) = {¢ S LZ(_L 1) | ¢

» €P(T7),T=1....,K}. (4.3.5)
Define the finite dimensional subspace

Vy(—=1,1) =P (=1,1) N Hj(—1,1). (4.3.6)
Then the Galerkin discretization of (4.3.4) is given by, find y, € V, such that

| om@)go@ie = [ @)+ f@hos, voev, s

1

Theorem 4.3.1 below provides an approximation error result for the piecewise
polynomial subspace V, (for details refer to [13]).

For k=1,...,K, let x}¥ € [x,_1,%], j = 1,...,¢, be the LGL collocation points
in [xx_1, %), let w;?, j=1,...,q, be the corresponding Lagrange polynomials, and let
wf, 7 =1,...,q, be the LGL quadrature nodes. Define the interpolation operator
Let I,y : Cla,b] — PX(—1,1) be the interpolation operator

K q
(Tgw)(@) = D> u(x))f(x). (4.3.8)
k=1 j=1
Theorem 4.3.1 Let k € {0,1} and m > (1 + k)/2. There exists a constant C' > 0

such that for all functions r € H™(—1,1) the following interpolation error estimate

holds

HT' — [q,17‘|Hk(,171) S C(q — 1)k7erHHm(_1,1). (439)
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Remark 4.3.2 The right hand side in (4.3.9) also depends on the subinterval lengths
T, — T_1. Since uniform partitions are used in this thesis, this term is dropped. See,

e.g., [15] for details.

A bound for the error between the exact solution and the solution to the finite

dimensional subspace approximation is given by Lemma 4.3.3.

Lemma 4.3.3 Let the weak solution y to (4.3.4) satisfyy € H™(—1,1) withm > 3/2.

There exists a constant C' > 0 such that the error satisfies

1y = yqllmr—1y) < Cla — D[yl gm(-1,1)- (4.3.10)

Similar to the error bound for the single domain discretization in Lemma 4.2.2; the
error bound in Lemma 4.3.3 is obtained by substituting the polynomial approximation

error estimate from Theorem 4.3.1 into Céa’s Lemma.

Remark 4.3.4 The error bound in Lemma 4.3.3 requires that integrals such as
Jo (u(x) + f(x)) ¢(x)dx for ¢ € V, are evaluated exactly. If instead they are ap-
proximted by quadrature an additional term on the right hand side arises, which is

proportional to the quadrature error.

4.3.3 Discretization of the Weak Formulation

Let V={¢ € H(Q)]| ¢ =0 on 9Q}. Then the weak formulation for (4.3.1) is given
by, find y € V such that

aly, ¢) =b(¢), VoeV, (4.3.11)

where

.0) = [ Vy(o) Vo)s and b(0) = [ (ula) + F()o(a)ds
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Let P} () be the set of functions ¢ on Q such that ¢ restricted to QF for

k € {1,2,3,4} is a polynomial of degree no more than (¢— 1) and define the subspace
V, =P (Q)NV.
The Galerkin discretization of (4.3.11) is given by, find y, € V, such that
/Q Vy(2)Vo(z)ds /Q (@) + f(2) d(x)de,  VoeEV, (4.3.12)

The solution of (4.3.12) restricted to the subdomain Q* will be denoted by y((lk),

(k)

Yo = Ylgr-

In terms of the partitioned geometry, (4.3.12) can be written as

/ Vy (2)Vé(z da:—Z/ o)) o(x)dz, YoeV, (43.13)

Because y, is a polynomial on each subdomain, and thus smooth on each subdomain,

the left hand side can be rewritten by the diverence theorem, which yields

i /Q k ~AyW (2)p(x)dx + Z / (2) - n)o(x)dax

Qk\aQ

5> | @)+ s@) s, voev,

Now I set up and solve a linear system corresponding to the discretization of the

(4.3.14)

weak formulation of the state equation on four leaf boxes. Discretize each subdomain
as in the single domain case by placing a tensor product grid of LGL quadrature
points on each subdomain. Let X ) denote collocation point j of the tensor product
grid on QF, and let wjk) () be the 2D Lagrange interpolation basis function for the
collocation points on domain QF associated with the point X( ). Let w ) be the 2D

LGL quadrature weight for the collocation points Xg-k). Note that w k) = wFyth)

7,1 % 3,2>
where w](.? is the 1D LGL quadrature weight in the x, direction associated with the
(k)

point x;
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X X X X X X X X
X X X X X X X X
0? O
X X X X X X X X
X X X X X X X X
X
X X X X X X X X
X X X X X X X X
O Q3
X X X X X X X X
X X X X X X X X

Figure 4.7: Illustration of the tensor product grid of LGL quadrature points on each
subdomain QF for ¢ = 6. Observe that there are not 4¢® unique collocation points
due the fact collocation points that lie on the intersection of subdomain boundaries

are described from each subdomain.

Let m be a mapping such that the index pair (j, k) for each collocation point Xg»k) is

mapped to a single index (i.e. 7w(j,k) = p means that x§k) = x,). Note that this
mapping is not one-to-one as for some p, x,, € QF N QL

It will prove useful to be able to “undo” the mapping . To accomplish this,
define the mapping p such that if 7(j, k) = p then p(u, k) = 7 (i.e. p(u, k) = j means
that x, = xék)).

As in the single domain case, it will be useful to partition
J={1,....¢"} = Jiy U I U Jpgo U I U Jo

where the index sets Jy), JB, Je(k0), Jmk,e) and Jo are defined next. See Figure 4.8
for an illustration of these index sets.
As in the single domain discretization, introduce the following convenient sets of

indices.
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Let Jrax) index the collocation points on the interior of the k-th subdomain
. k
T = {m (. k) | x§ € 0¥},
Let Jp index the collocation points that intersect the boundary of the whole domain
Jp = {7(j, k) | x" € o0
p=A{7(j, k) |x;" € 0Q}.

Let Jg(,) index the collocation points on the shared edge of neighboring subdomains

OF and Qf
Jeee = {74, k) | x§k) c 00" N oN‘l.

Let Jas(x,e) index the collocation points on the interior of the shared edge of neigh-

boring subdomains Q% and Q)

Taee = {70, k) | x%) e T4},

J
so that Jyrk,e) C JE,. Finally, let Jo index the collocation point at the intersection

of each of the four subdomains

Jo = {n(j, k) | x\" € c}.

To represent a function on €2 in terms of the basis functions wj(-k) (x) it is necessary to
extend the basis functions to Q while maintaining orthogonality.
For the p corresponding to collocation points on the interior of a subdomain, u =

7(J, k) € Jiwy, extend the local basis functions to the whole domain by

For y corresponding to collocation points on the boundary of the whole domain that
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X X X X X X X X
@ X X X X B X X X X @
0? O
@ X X X X B X X X X @

@ X X X X M X X X X @
Ol 03
@ X X X X M X X X X @
X X X X X X X X

Figure 4.8: Illustration of the collocation points for the four leaf problem by index
sets. The gray crosses denote interior points of W, corresponding to Jyy). The red
diamonds denote points on the boundary of Q that lie on the boundary of a single sub-
domain, corresponding to Jg. The blue circles denotes points on the boundary of Q
that lie in the intersection of two subdomain boundaries corresponding to Jp N JEg(ke).-
The green squares denote interior points of € that lie in the intersection of exactly
two subdomain boundaries 9Q* and 9, corresponding to J M(k,e)- Finally, the black
triangle denotes the point that lies in the intersection of all four subdomain bound-

aries.
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only lie on the boundary of a single subdomain, u = 7(j,k) € Jp \ Jg@k,), extend the

local basis functions by

For p corresponding to collocation points on a subdomain interface, yu = w(j, k) =

(m,?) € Jgmye \ Jo, extend the local basis functions by

(

(), = ek,

Pu(r) = S (z), = e Ql\QF,

Finally, for u corresponding the collocation point at the intersection of all four sub-
domains (i.e. at the point (0.5,0.5)), u = n(j,1) = 7(k,2) = 7(¢,3) = 7(m, 4) € Jg,
extend the basis function by

YP(2), e,

r), x€Q2\ 0L

(
P (@), e B\QL,

W), ze P\ (RUD).

Now that the local basis functions have been extended to the whole domain, a

function r € V, may be represented by the basis expansion

r() =Y r(xu)vu(e). (4.3.15)

neJ

Let y be given by

y =y, - yn)" (4.3.16)
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and let y, denote the p-th element of y (i.e. y, = vy,(x,)). Furthermore, let

u = (u(xy),...,uxy))", (4.3.17)

£ = (f(x1),...,yn))". (4.3.18)

Let D(lk), D(zk) and L® be the local partial differentiation matrices and the local

discretized differential operator on QF, so that

k k
a_my(k)(xg )) _ e;‘.FD(l )y(k)7 (4.3.19a)

0 k k
a_ny(k)(Xé )) _ e;‘rD; )y(k)’ (4.3.19b)
— Ay (ng)) _ e;‘.FL(k)y(k). (4.3.19¢)

To obtain the linear system corresponding to (4.3.14), replace the integrals by
quadrature and require the resulting equation to hold for all ¢ € span{vy,...,¥n}
such that ¢ = 0 on 0€2. Note that the quadrature rule is exact for the integrals in
(4.3.14) involving y,.

The Dirichlet boundary condition y,(z) = 0 for all x € 92 implies

el:fy =0, for pu € Jg. (4.3.20)

Thus for all u such that the collocation point x, is not in 9, i.e. p € J\ Jp the
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discretization of (4.3.14) is given by

o k) (k k) 8951) ayég)
Y —w Ay + > wys B X)) = 5 — (%)) | Yulxy)
k=1 ¢=1 JGJEu 3) ! '
ay(Q) ay(4)
+ Y w aqu (Xj)_a—;l(xj) Uu(x;)
J€JE(2,4)
ay(l) ay@)
+ > w 8;2 (x;) — 8;2 (x;) | Yulx;)
J€JB1,2)
ay(?)) ay(4)
+ > wi a—;(xj)—a—:;(xj) Uu(x;)
j€JE(34)

—ZZW (ux) + 7)) w2,

k=1 ¢=1
(4.3.21)

For p corresponding to collocation points on the interior of a subdomain, pu € Jy,
k=1,...,4, (4.3.21) simplifies as follows

q2

> —w Ay (! ng (™) + (7)) v (x).

(=1

Due to the Lagrange basis functions, each sum reduces to a single term
~w, Ay (x,) = Wy (u(x,) + f(x,) -
Dividing by the constant w, yields
—Ay P (x,) = ulx,) + f(x,)
This can be written in terms of the local discretized differential operators as
ef(%k)L(k)y,r(l:qz,k) = egu + £, for p € Jrw). (4.3.22a)

For p1 corresponding to collocation points on the interior of the shared edge between
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Q' and Q°, that is p € Jya1,3), (4.3.21) simplifies as

4 ¢ (3)
S5 w3 w(aay () = %quJXj))WXj)

k=1 ¢=1 jGJE(Lg,)

=3 i () + ) ).

Dividing by the constant w, o gives

1 ayél) (3) ay(gg)
_wu,lAyé )(Xu) + o1 (xp) — wu,lqu (x.) — Oy (%)
= 2wy (u(xy) + f(X,)) -
This can be written in terms of the local discretized differential operators as

egj(u,l) (wu’lL(l) -+ D(ll)) y7r(1:q2,1) + ef(llﬁ) <wu71L(3) — D(l?’)) y7r(1:q2,3)

(4.3.22b)
= 2w, (eZu + fu) , for € Jyra ).
Following a similar process for pu € Jys(24) yields
2 9152) (4) y§4)
—Wy 1Ay(§ )(Xu) + o (%) — Wy Ay~ (x,) — O (%4)
= 2wy, (u(xy) + (X)) 5
which in terms of the local discretized differential operators is given by
T (2) (2) T (4) (4)
€p(u,2 (w ALY + Dy )Yﬂ'(l: 29) T €,0,4 (w ALY — Dy >Y7r(1: 2.4)
p(p,2) \ VK q p(p,d) \ VK q (4.3.22¢)

= 2w, (egu + fu) , for € Jar2,0)
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For p corresponding to collocation points on the interior of the shared edge between

O and 2, that is u € Jy19), (4.3.21) simplifies as follows
(1,2)

- (k e Oy Oy’
Z qu ) )%(Xz ) + Z Wy <8—xg(xj) " oy (Xj)> Vu(x;)

k=1 (=1 J€JE@1,2)

[

Eonl
Il
-
~
Il
-

As before, the Lagrange basis causes each sum to reduce to a single non-zero term

) yy") ayy)
WMA?J( )( ) WMA?/C(, (Xu> T Wy — O (Xu) - wu,la—@(xu)

= 2w, (u(xu) + f(xu)) -

Dividing by the constant w, ; yields

] oy 2 oys”
_wu@A?J((; )(Xu) + D7y (x.) — quA?J(g )(Xu) - O%s (Xp.)

= 2wy, (u(x,) + f(x,)) -
This can be written in terms of the local discretized differential operators as

eg(u,l) (w#yZL(l) + D(21)) yﬂ_(lzqu) + e;‘f(u,z) <wu72L(2) — D(22)) y7r(1:q2,2)

(4.3.22d)
= 2wy (egu + fu) , for € Jyra ).
Following a similar process for p € Jyy34) yields
ay(3) ay(g‘l)
<—wu72Ay((13)(X’u) + a:;; (X#) - wy,QAy(g4)(XM) 61’2 (X#)
= 2wy (u(x,) + f(x4)),
which in terms of the local discretized differential operators is given by
elj;(ﬂﬁ) (wu72L(3) + D(Qg)) Y7r(1:q2,3) + eg(ﬂA) (w#’ZL(LL) — D(24)> yﬂ(1:q274)
(4.3.22¢)

= 2wy (egu + f#) ) for € Jur(z -



ol

For p corresponding to the collocation point on the intersection of each of the four

subdomains, that is p € Jo, (4.3.21) simplifies as

4 (1) (3) (2) (4)
dy. oy ay. Ay
Z _WMAytgk)(Xu) + W2 < aqu (%) — 6;1 (x.) + 8;1 (x.) — (3;1 (x,.)

k=1

= 4W” (U(X,u) + f(xﬂ)) )

This can be written in terms of the local discretized differential operators as
eg(m) <—W#L(1) + wu,zD(ll) + wu,1D(21)> Yr(1:42,1)

+ el:f(%2 (—WML@) + wu,zD(f) — w#,1D;2)> Yr(1:42,2)

+el (—WML(S) —w, DY+ wule(;’)) Vi) (4.3.22f)

+ ef:f(m4 (—WML(4) — ’LUM,QD({L) — wu,lD(24)) Yr(1:q2,4)

= 4w, (egu + fu) , for p € Jo.
In summary, approximating the integrals in (4.3.14) by quadrature results in the
linear system (4.3.20),(4.3.22) in y which is denoted by

Ay = —Bu+c. (4.3.23)

where A,B € RV*N y u,c € R". Solving the linear system for y provides the
coefficient values of the composite polynomial approximation of the weak solution
yq(z). Although the matrices in (4.2.21) and (4.3.23) are different, the same notation
is used since ultimately only the multidomain discretization will be considered. Note

that the matrix B is a diagonal matrix with entries
(

_17 e Ui:l‘]f(k)a
2wy, € Juaz) U@,

_4W,LL7 JAS JC7

O, ,MGJB.



52
Analogous to Theorem 4.2.4 the following result can be proven.

Theorem 4.3.5 The matriz A € RV*N in (4.3.23) is symmetric positive definite on

{v|v,=0, pedJp}

4.3.4 Discretization of the Strong Formulation

Discretize each subdomain as in the single domain case by placing a tensor product

grid of LGL quadrature points less corners on each subdomain. Let igk) denote col-
. . . . Ok (k)

location point j of the tensor product grid on 2%, and let ¢); (x) be the 2D Lagrange

interpolation basis function for the collocation points on domain QF associated with

the point i&k). The quadrature points are illustrated in Figure 4.9.

X X X X X X X X
X X X X X X X X
0? O
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
Ol O3
X X X X X X X X
X X X X X X X X

Figure 4.9: Illustration of the tensor product grid of LGL quadrature points less
corners on each subdomain QF for ¢ = 6. Observe that the only difference between
this set of points and the set considered in Figure 4.7 is the removal of collocation

points on corners of each subdomain.

Define the mapping 7 and p (analogous to m and p in Section 4.3.4) such that

)

7(j,k) = p implies that §§k =X, and p(u, k) = 7.
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It will again be useful to partition the index set
J = j](k) UJpU jM(k,Z)

where the index sets j[(k), J, B, and J, M(k,e) Will be defined next. The indexed colloca-
tion points are illustrated in Figure 4.10.

Define the index sets

Trw = {75, k) |2 € 04,
Jp = {7(j, k) | X € 99},

Tuwe = (70, | X € T,

Again it is necessary to extend the local basis functions {/;](k) (x) to the entire domain

Q.
For p=7(j,k) € j}(k) U Jg

12#(13) =

For p=7(j,k) = m(m,¥) € jM(k#’)

Uu(@) =S oW (), e Q\QF,

Given the collocation points {X,} . 7 and the extended basis functions {&u(a:)}#e 7,

the composite polynomial approximation of the function y is given by

y(@) = Gy(2) = 3 F,u(a). (4.3.25)

uej

The restriction of (4.3.25) to the subdomain QF will be denoted by @ék),

7" = Tlgr
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Figure 4.10: Illustration of the collocation points for the four leaf problem by index
sets. The gray crosses denote interior points of W, corresponding to jf(k). The red
diamonds denote points on the boundary of Q that lie on the boundary of a single
subdomain, corresponding to jB. Finally, the green squares denote interior points
of Q that lie in the intersection of exactly two subdomain boundaries 9QF and 99,
corresponding to J, M(k,¢)- The important difference between this set of points and the
set considered in Figure 4.8 is that there are no points that lie in the intersection of

all four subdomain boundaries.
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(k) (k)

Let ]/)vl , ]/)vz ; and L® be the partial differentiation matrices and the discretized
differential operator on QF as in the single domain case.

To discretize (4.3.2), approximate y by the polynomial ¥, as in (4.3.25), then
require the resulting equation to hold at each collocation point.

For the Dirichlet boundary condition, require that ,(X,) = 0 for all x,, € 99
&'y =0, forpue Jp (4.3.26)

Note that the Dirichlet boundary condition is enforced explicitly as in the discretiza-
tion of the weak formulation (4.3.20). For p corresponding to collocation points on

the interior of a subdomain, that is y € j](k)
—ATP (%) = w(X,) + F(X),
which can be written in terms of the local discretized differential operators as
é%ﬂ(%k)f;(k)y%(lzﬁ_&k) = é/f:ﬁ +?M, for u € j[(k). (4.3.27a)

This is equivalent to the condition enforced in the discretization of the weak formu-
lation (4.3.22a).

For pu corresponding to collocation points on the shared edge of Q! and Q3, that

1S f1 € jM(l,:’,)

%5, (X,,) — 05’ (X,) =0
8x1 H Bxl " ’

which can be written in terms of the local discretized differential operators as

(1) ®3)

’éjg(ﬂal)Dl y%(11‘]2—471) o ’éjg(u,S)Dl y%(l:q2—4,3) =0, for ue jM(l’g). (4327b)

In contrast to the weak formulation Neumann condition (4.3.22b), the strong
formulation of the Neumann condition (4.3.27b) does not include a linear combination
of the differential operator and right hand side. Similarly, for p corresponding to
collocation points on the shared edge of Q2 and Q*, that is u € J, M(2,4)

oy oy
o7y (X) — a—xl(xu)

=0,
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which can be written in terms of the local discretized differential operators as

(2)~ (4)~ =
( )D]_ 7(1:q2—4,2) — ( )D]_ F(1:q2—4,4) — 0, for JIRS JM(274). (4327C)

For j corresponding to collocation points on the shared edge of Q! and Q?, that is
©E Jna2)

a5 07y -
axz (X - 81‘2 (X,U)

=0,

which can be written in terms of the local discretized differential operators as

—~— (1) —~—(2) . =~
Ae%(,m)Dz Yx(1:q2-4,1) — Ae%(mg)Dz Ya1q2-42) = 0, for p € Jrra2)- (4.3.27d)

Finally, for p corresponding to collocation points on the shared edge of Q* and Q,
that is y € jM(gA)

o) oY

axZ (X - ax2 (X,LL) = 07

which can be written in terms of the local discretized differential operators as
D2 y7r 1:q2—4,3) — D2 y7r 1:q2—4,4) = 0 for n e jj\/[(3,4). (43276)

In summary, discretizing the strong formulation by composite collocation results in

the linear system (4.3.26), (4.3.27) which is denoted by

Ay = -Bu+¢. (4.3.28)

where A, B € RV-9x(V=9) 5 § ¢ € ROV, Solving the linear system for ¥ pro-
vides the coefficient values for the composite polynomial approximation of the strong
solution y,(x).

Note that the matrix B is a diagonal matrix with entries

(

_17 IU’E Ui:lj}(k)u

Bu. =140 IS jM(l,Q) U jM(l,S) U jM(2,4) U jM(3,4), (4.3.29)

0, /LGjB.

\
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There are two distinctions between the linear systems corresponding to the weak
form discretization and the strong form discretization for the four leaf problem. First,
the weak form discretization has collocation points at the corners of each subdomain
whereas the strong form discretization does not (thus the linear system for the strong
form discretization is slightly smaller than for the weak form). Second, the implemen-
tation of the Neumann condition for the weak form discretization includes a linear
combination of the differential operator and right hand side whereas the implemen-
tation of the Neumann condition in the strong form discretization does not. This is

made more precise in the following remark.

Remark 4.3.6 In the strong form multidomain discretization, the control at the sub-
domain interfaces (i.e. 1, for p € jM(k’g)) does not enter the discretization. See
(4.3.29). This is the most important distinction between the strong form discretiza-

tion (4.3.28) and the weak form discretization (4.3.23) of the state equation.

In the next section, the performance of each discretization is examined for solving

a simple boundary value problem.

4.4 State Equation Numerical Example

Let Q = (0,1)? and consider the boundary value problem
—Ay(z) = u(z) + f(z), v
y(x) =0, x € 092,

where

u(z) = 10sin(37xy) sin(mxsg),

f(z) = 107? sin(7x1) sin(3wwy) — 10sin(37x,) sin(7zy),
which yields the exact solution

Yer () = sin(mzy) sin(3mxs).
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To evaluate the performance of the weak and strong discretizations for the four leaf
boundary value problem, the linear systems corresponding to the weak form and
the strong form ((4.3.23) and (4.3.28) respectively) were constructed and solved over
a range of polynomial orders. Figure 4.11 provides the convergence behavior by
comparing the relative error in the approximate solutions y, for the weak form and

Yy, for the strong form.

Convergence Behavior

10° —— weak
—=—strong

Relative Error

10—15, N
4 6 8 10 12 14 16 18 20 22
q

Figure 4.11: The relative L? errors vs. ¢ for the weak and strong four leaf formula-
tions applied to the test problem. Both formulations converge at similar rates. The
error in the weak formulation is smaller than the error in the strong formulation for
the same value of ¢ as the presence of corner nodes allows the weak composite polyno-
mial approximation (y,) to represent more functions exactly compared to the strong

composite polynomial approximation ().

Define the relative errors

(y — yex(x))TW<y B yex(x))

max; |y(Xj)\

Ep2(y,) = : (4.4.1a)
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for the weak form, and

(¥ — 4ee (X)W (F — 40 (X))
max, |y(§j)|

Ep2(7,) = , (4.4.1b)

for the strong form.

Both discretizations perform well and achieve errors on the order of machine pre-
cision. As from the 1D error estimate for the multidomain weak form discretization,
see Lemma 4.3.3, the numerical results indicate that the order of accuracy of the so-
lution increases with ¢ for smooth solutions. Additionally, the error from the solution
corresponding to the weak form is less than the error for the solution corresponding
to the strong form. This behavior is expected as the composite polynomial represen-
tation of the solution for the weak form y,(x) can represent higher order composite
polynomials exactly than the composite polynomial representation of the solution for

the strong form y,(z) due to the presence of the corner nodes in the weak form.



Chapter 5

The Optimal Control Problem

The overall goal of this thesis is to accelerate the solution of PDE constrained opti-
mization problems by exploiting the efficiency of the HPS method. The strong form
discretization as presented in Section 4.3.4 underlies the standard HPS method. In
this Chapter, the convergence behavior of the strong form discretization is examined
in both the optimize-then-discretize and the discretize-then-optimize approaches. In
particular for the discretize-then-optimize approach it is observed that strong form
discretization does not provide high order accurate convergence. For this case sev-
eral modified discretizations are examined and ultimately it is concluded that in the
discretize-then-optimize approach the weak form discretization (as presented in Sec-
tion 4.3.3) should be used.

First in Section 5.1 the infinite dimensional optimal control problem is presented.
Then, the performance of the discretizations in the optimization context are inves-
tigated. In Section 5.2, I derive the optimality system for the model problem under
the optimize-then-discretize approach. Then the corresponding optimality system is
solved for a test problem to observe the behavior of the both the weak and strong
form discretizations under the optimize-then-discretize approach. In Section 5.3, I de-
rive the optimality system for the model problem under the discretize-then-optimize

approach. Both the weak and strong form discretizations are considered as well as

60
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several modifications to the strong form discretization. The optimality system corre-
sponding to a test problem is solved for each discretization to examine the behavior
under the discretize-then-optimize approach. Finally, I given an error estimate for

the weak form discretization in the context of optimization in Section 5.4.

5.1 The Infinite Dimensional Problem

Let Q = (0,1)% For any u € L*(2) the state equation (1.1.1b) has a unique solution

y(-,u) € HY(Q). Therefore the model problem can be written as

Minilrtnize J(u) = % /Q (y(z;u) — 2(x))* dx + %/QUQ(x)dx (5.1.1)

where y( - ;u) € H'(Q) is the solution of (1.1.1b) for a given control u.

The analytical treatement of the optimal control problem (5.1.1) is based on the
weak formulation of the state equation. See, e.g., Hinze et al. [11, Ch. 1], Lions [12],
or Troelsch [24, Ch. 2]. Consider the weak formulation of the state equation: find y
such that y = g on 002 and

/Q V(@) Vé(x)ds — /Q (@) + f(@))(x)dz, Vo V. (5.1.2)

Let y; € H*(Q2) be a function that satisfies the inhomogeneous Dirichlet boundary
conditions y = g on 02, and define

V={veH(Q) : v(x)=0on 00}

Define yo = y — y4 so that yo € V. The state space is = y; + V and the control
space is U = L*(9).

The Lagrange functional

L:VxUXxYV—=R (5.1.3a)



62

associated with (1.1.1) is given by

Lloow.p) =5 [ (alae) + la) — 2(0)Pde + 5 [ w?(a)da
@ @ (5.1.3b)
+ / V(ya(z) + 90(2)) Vp(z)dz — / (ule) + f(2))pla)da.

The partial Fréchet derivative 9,L(yo,u,p)¢ = 0 for all ¢ € V gives the weak form of

the state equation

/Q V(@) Vé(x)ds — /Q (w(x) + f(2))(x)dz for all 6 € V. (5.1.40)

The partial Fréchet derivative 0y, L(yo, u,p)¢ = 0 for all ¢ € V gives the weak form

of the adjoint equation

/ Vo(x)Vp(zr)dr = —/(y(x) — z(x))p(x)dx for all ¢ € V. (5.1.4b)
Q Q
Finally, the partial Fréchet derivative 0, L(y,u, p)w = 0 for all w € U gives

au(x) — p(x) =0 almost everywhere in . (5.1.4¢)

The gradient of J defined in (5.1.1) can be computed using the adjoint equation
approach. Specifically, the gradient of J is

VJ(u) = au —p, (5.1.5)

where p € H'(Q) is the solution of the adjoint equation (5.1.4b) with y = y( -, u) the
solution of the state equation (5.1.4a).

Since (5.1.1) is a strictly convex quadratic problem, the condition VJ(u) = au —
p = 0 almost everywhere on (2 is a necessary and sufficient condition for u to be the
solution of (5.1.1). Using the definition (5.1.5) of the gradient, finding u that solves
VJ(u) = 0 is equivalent to finding y € H (), u € L*(Q), and p € H'(2), such that
the coupled system (5.1.4) is satisfied. Under additional regularity assumptions, the
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weak solution of (5.1.4) is also the strong solution of

= —(y(x) — ,2(3;'))7 x €, (5.1.6a
=0, x € 01, (

(
—Ay(z) = u(z) + f(x), x €, (5.1.6d

= g(x), x € 0N. (5.1.6e

Note that the optimality conditions (5.1.6¢) and (5.1.6b) imply that the optimal
control satisfies u(z) = 0 for z € 9.

Since the optimality conditions (5.1.6) are necessary and sufficient for the solution
of the optimal control problem (1.1.1), there are two main directions to pursue for
discretization of the problem, the optimize-then-discretize approach, and discretize-
then-optimize approach. First the optimize-then-discretize approach is presented for
the four leaf problem in Section 5.2. Under this approach, the continuous optimality
system is derived and then each of the differential equations is discretized to obtain
a finite dimensional system. Then the discretize-then-optimize approach for the four
leaf problem is presented in Section 5.3. In this approach the optimal control problem
is discretized directly, which leads to a finite dimensional quadratic optimization

problem.

5.2 Optimize-then-Discretize Approach

Solving the optimal control problem (5.1.1) is equivalent to solving the necessary and
sufficient optimality conditions (5.1.6). In the optimize-then-discretize approach, the
optimality conditions (5.1.6) are discretized and the discretized optimality conditions
are then solved. Both the discretization based on the weak form and the discretization
based on the strong form of the state equation (5.1.6d)—(5.1.6e) and the adjoint

equation (5.1.6a)—(5.1.6b) can be used. Again for simplicity, I consider the four leaf
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problem as discussed in Section 4.3.1.

5.2.1 Weak Form Discretization of the Model Problem

The weak form discretization of the state equation (5.1.6d)—(5.1.6e) is given by
Ay = —-Bu+c, (5.2.1)

for details refer to Section 4.3.3. Similarly, the discretization of the adjoint equation

(5.1.6a)—(5.1.6b) is given by
Ap = By +d, (5.2.2)

and finally, the gradient condition (5.1.6¢) is enforced at each collocation point to

obtain the discretized condition
au—p=0. (5.2.3)

Collecting equations (5.2.1)—(5.2.3) yields the linear system

-B 0 A| |y d
0 ol —I| [u|l=10 (5.2.4)
A B 0 P c

The linear system (5.2.4) is invertible (for details see Corollary 5.3.2, Remark
5.3.3). Computing the solution to the linear system (5.2.4) provides the compos-
ite polynomial approximation coefficients for the for the state, control, and adjoint

variables corresponding to the weak form discretization.

5.2.2 Strong Form Discretization of the Model Problem

The strong form discretization of the state equation (5.1.6d)—(5.1.6e) is given by

Ay = —Biu +¢, (5.2.5)
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for details refer to Section 4.3.4. Similarly, the discretization of the adjoint equation

(5.1.6a)—(5.1.6b) is given by
Ap =By +4d, (5.2.6)

and finally the gradient condition (5.1.6¢) is enforced at each collocation point by

acu—p=0. (5.2.7)

Collecting equations (5.2.5)—(5.2.7) yields the linear system

-B 0o A|l|y| |d
1 0

0 ol —I| |u|= (5.2.8)

A B 0 p c
Computing the solution to the linear system (5.2.8) provides the composite polyno-

mial approximation coefficients for the for the state, control, and adjoint variables

corresponding to the strong form discretization.

5.2.3 Numerical Experiment

Consider the optimal control problem

Minilrbnize J(u) = % /Q (y(z;u) — z(x))? do + %/QuQ(x)d:c

where Q = (0,1)%, a = 0.1, and y( - ;u) € H} () satisfies

—Ay(r) = u(x) + f(2), z €9,
y(.%') = 07 S GQ,

for a given control u.
To construct an example with a known exact solution, choose exact state and
adjoint functions ., and p., that satisfy the appropriate boundary conditions from

the infinite dimensional optimality conditions (5.1.6).
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Let

Yer (z) = sin(mzy) sin(3mxs),

Pex () = sin(3mxy) sin(mxs).

Then the optimality condition (5.1.6¢) gives

1
ue:p(x) - apex<x)
Finally, the functions z and f are computed from the optimality conditions (5.1.6a)

and (5.1.6d) respectively

To evaluate the performance of the weak and strong four leaf discretizations for
the optimize-then-discretize approach to solving the optimal control problem, the
optimality systems corresponding to the weak form of the state and adjoint equations
(5.2.4) and the strong form of the state and adjoint equations (5.2.8) were constructed
and solved over a range of g values. Figure 5.1 provides the convergence behavior by
comparing the relative error in the L?-norm of the state, control, and adjoint for the
weak form and the strong form discretizations. Note the relative errors for the weak
and strong formulations are defined as in (4.4.1a) and (4.4.1b) respectively.

Each discretization exhibits high order accurate convergence to the exact solu-
tion and achieves relative errors on the order of machine precision and they both
appear to converge at a similar rate. As anticipated, the solution from the weak form
discretization admits smaller relative errors than the solution from the strong form
discretization for the same value of ¢ since the weak form is able to represent higher
order polynomials exactly than the strong form due to the presence of the corner
points. This is consistent with the convergence results for solving the state equation

by each discretization (see Section 4.4).



67

State Control
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Figure 5.1: The relative L? errors vs. ¢ for the state, control, and adjoint for the
weak and strong four leaf formulations applied to the test problem for the optimize-
then-discretize approach. The state, control, and adjoint errors converge at a similar

rate for both formulations.
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The strong form discretization underlies the standard HPS method. Since the
strong form discretization exibits high order convergence behavior with the optimize-
then-discretize approach, the standard HPS method can be used under this approach
without modification. Note that the weak form discretization can also be used with

the HPS method but this requires some modification (refer to Section 6.1).

5.3 Discretize-then-Optimize Approach

Under the discretize-then-optimize approach, the equality constraint (state equation)
and the objective function in (5.1.1) are each discretized to obtain a finite dimensional
optimal control problem which then can be solved numerically.

I start with the discretization based on the weak form in Section 5.3.1. In par-
ticular, will show that of the discretization based on the weak form is used, the
optimize-then-discretize approach and the discretize-then-optimize approach leads to
the same system. Then I examine the behavior of the strong form discretization pre-
sented. This is the underlying discretization in the standard HPS method and the
goal is to determine what modifications (if any) need to be made to the this underlying

discretization in order to accelerate the solution of optimal control problems.

5.3.1 Weak Form Discretization of the Model Problem

For the weak form discretization of the state equation (refer to Section 4.3.3), the
objective function is discretized by applying the LGL quadrature rule on each sub-

domain. That is

Tyow) = 5 S walylx) — 2000+ 5 0w, (5.3.1)

ped nedJ

For convenience, define
W = diag(wl, R ,Wl]‘),

Z = (Z(X1>7 R 7Z(X\J‘))T’
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so that the (5.3.1) may be written as
1 T @.r
Iy, u) =50y —2) Wiy —z) + Ju Wu

Thus the finite dimensional optimal control problem corresponding to the weak form

discretization is given by

1
Minimize §(y —z)"W(y —2z) + %uTWu (5.3.2a)

u

where y is the solution to
Ay +Bu—-c=0. (5.3.2b)

To obtain the optimality conditions for the finite dimensional problem (5.3.2), in-
troduce the vector of Lagrange multipliers A associated with the equality constraint
(5.3.2b). Then define the Lagrangian function L for the discretized optimal control
problem (5.3.2) by

L(y,u,A) = J(y,u) + A" (Ay + Bu —c).

Then the KKT conditions require that at optimality

VyL(y,u,A) =0, (5.3.3a)
VuL(y,u,A) =0, (5.3.3b)
VaL(y,u,A) =0. (5.3.3c)

The KKT condition (5.3.3a) yields the optimality condition
Wy — Wz +ATA =0, (5.3.4a)
(5.3.3b) yields
aWu + BT =0, (5.3.4b)
and (5.3.3c) simply yields the discretized state equation

Ay +Bu—-c=0. (5.3.4¢)
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Then the optimality system for (5.3.2) is given by collecting equations Equa-
tions (5.3.4a)—(5.3.4¢) to form the linear system

W 0 AT| |y Wz
0 oW B”| |u|l=|0|. (5.3.5)
A B 0 A c

It is necessary to relate the Lagrange multipliers A to the adjoint p for developing
error estimates for the discretize-then-optimize approach. The following theorem

provides the relationship between the Lagrange multipliers and the adjoint.

Theorem 5.3.1 Let A = (Aq,..., )\M)T be the vector of Lagrange multipliers corre-
sponding to the optimal solution of (5.3.5). Then the polynomial
pa(®) = ) pjtty() (5.3.62)
jet

where

)
Wj_l)‘ja J € Ui:rjl(k)

w;21Aj7 J € Iz UJmea

p; = w;ll)\j, ] c JM(LQ) U JM(374) (536b>
)\j j e Jeo
07 j € JB

\

is the solution to the weak form discretization of the adjoint equation (5.1.4b).
Proof: The first row equation of (5.3.5) is equivalent to
AMTAV =vIATA = vIW(y —2z) Vv eR (5.3.7)

Given v = (v1,...,v;)" € RVl such that v; = 0 for j € Jp, associate it with the

polynomial

vo(x) =) viiby() (5.3.8)

jeJ
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Let Ju = Juvas) U Jaz,a) U Jaaz) U Jase). Then the right hand side of (5.3.7)

yields
4 2
k k k
Wiy —2) =3 > =wi (5 (x(") = z(x()) v, ()

k=1 (=1

4

= —w; (¥ — %)) v; Z w; (yj — 2j) v;
k=1 jeJw j€JB (539)
- Z 2w; (y; —2j) v — Z Aw; (y; — z;) v;
JEJIM Jj€Jc

Note that the quadrature is not exact for (y, — z,)v,.

k)

In the following let vé , p((;,k) denote the restriction of v,, p, to the subdomain QF,

Uék) = vlgr; pff) = plar
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Then from the definition of A as in (4.3.22) and (4.3.23)

4
AAv = Z Z —)\jAvék)(xj)

k=1 jEJ[(k)
0 0
+ SN [ —winaI(x)) + a—%vgﬂ(xj) — w1 A (x;) — a—%vgi”)(xj))
J€JInm,3)
0 0
+ ‘ Z Aj —wj,lAvéz) (x;) + a_xlvf) (x;) — wj,1AU§4) (x;) — 8_951U‘§4) (Xj))
J€JIn(2,4)
0 0
+j€; A <—wj,2AU§1)(Xj) + a_xgvél)(xj) — w5 Av? (x;) — a—bvg)(xj))
M(1,2)
A Ap® 0 ® Ap@ 0 @
+ > A [ —wiedP(x)) + FI (%)) — wj2Av, 7 (x5) — 2, (x;)
J€JIM(3,9)
a 1 a 3 a 2 a 4
+J; Aj [%2 (8_xlvé (%) — 8_351”‘5 (%) + a—xlvé (%) — 8—%1&(, (%)
C

0 0 0 0
+ Wi (a_mvél)(xj) - 8—362”[52)(&) + 3—@0((;3)(39) - a_ZEQU((]4) (Xj))

—W; (Avél)(xj) + Avf) (x;) + Avg?’) (x;) + Avé‘” (x5)) ]

(5.3.10)
Writing A in terms of p via (5.3.6b) and grouping like terms yields
4 g2
AAv — Z Z _p((gk)wék)Avék) (Xék))
k=1 (=1
0 0
+ Z Pjw;2 (87%(11)(){]‘) — 87U‘(I3) (Xj))
J€JE1,3) L !
0 @ 0 @
Y Piw ol (%) = 5 (%)) (5.3.11)
J€JE(2,9) ! !
0 0
+ Z P;jWj1 (%Uél)(xj) - %U?)(Xj))
J€JB@1,2) 2 2
0 0
+ Y piwj (87”33) (%) — 87”54) (Xj)>
J€JE(3,4) 2 2

Since p, and v, are polynomials of sufficiently small degree, the quadrature formulas
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are exact. Writing (5.3.11) as integrals yields

+ [ o) (a%vé”(x) - 5t <w>) ds()
# [ o) (o) - et ) i)
v /F | pa(a) (%vé”(w) - 0%2“‘(12) (as)) ds(z) (5.3.12)
t [ o) ()~ ) ) st

py() <Vvék)(x) ﬁ) ds(zx)

where nF is the outward pointing normal direction with respect to QF. Applying the

divergence theorem to (5.3.12) once yields

ATAv = Z qu k)(x)dx,



and applying it a second time yields

AAv = Z —Apy()vy ®) () dax:

o
T2

0 0
= 3 _ 2 4
+ /1“374 (8x2pq (JJ) 8x2p‘1
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(5.3.13a)

(5.3.13b)

Writing each of the integrals in (5.3.13b) by the corresponding quadrature rule yields

ATAV _ Z Z (k? (k))Vék)

k=1 =1

+ Z ijﬁ(_pél)( i) —
J€JE(1,3)

+ Z VJwJQ(_p((JQ)( i) —
J€JE(2,4)

+ Z Vawjl(_pgl)< i) —
J€JE@1,2)

+ Z vjwj1(—p§3)( X;j) —
J€JE(3,4)

ip@)
@CCQ g

0
(4) (.
81‘2 pq (X] )) .

(5.3.14)

Again because p, and v, are polynomials of sufficiently small degree, the quadrature

is exact. Comparing (5.3.14) with (5.3.11) and (5.3.10), observe that (5.3.14) is

equivalent to v Ap up to row scaling. More precisely, let T € RI7I*I/l be a diagonal
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matrix with entries

4
Wj7 .] € U%:IJI(k>

wio, J € Jmaz) U Jmea

T =4 Y ey (5.3.15)
wit, J € Juae) U JImEa

1, 7€ JoUJp

\

Then
vIATA =vT'TAp, Vv e {RVI|v,=0forjc Jz}. (5.3.16)
Similarly, comparing (5.3.9) and the definition of B in (4.3.24) yields
—~VvIW(y —2) =vIT(By +d), ¥vec{R|v;=0forjc s} (5.3.17)

The desired result is obtained by combining (5.3.16) and (5.3.17). O

Corollary 5.3.2 For the weak form discretization applied to the model problem (1.1.1),
the optimality systems for the discretize-then-optimize approach (5.3.5) and the optimize-

then-discretize approach (5.2.4) are equivalent.
Proof: Theorem 5.3.1 shows that
Wy +A"A=Wz < -By+Ap=d
It remains to show that
aWu+B'A=0 <<= oau-p=0 (5.3.18)

Comparing the definitions of p in (5.3.6b), T in (5.3.15) and B in (4.3.24), observe
that

B”X = TBp
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Thus
W HaWu + BA) = W (aWu + TBp) = au+ W 'TBp = 0 (5.3.19)

Furthermore, by comparison with (5.3.9) the diagonal matrix

_17 j ¢ ']B
(W'TB);; = (5.3.20)
07 ] S JB
That
au; — p; =0, for j & Jp
Oéuj:07 fOI'jGJB

Finally, taking into account the boundary condition p; = 0 for j € Jp (see (5.1.6b))

shows that the two linear systems are equivalent. O

Remark 5.3.3 Solvability of (5.3.5) follows from invertability of A and the positive
definiteness of W. By Corollary 5.3.2 the linear system (5.2.4) is equivalent to (5.3.5)

and thus is invertible.

5.3.2 Strong Form Discretization of the Model Problem

Now I investigate the performance of the strong form discretization to see what (if
any) modifications need to be made to the standard HPS method for use under the
discretize-then-optimize approach.

The state equation is discretized by (4.3.28) and the quadrature rule (4.2.27) corre-
sponding to the strong discretization collocation points is applied on each subdomain
to discretize the objective function Define

—~

W = diag(wy, ... ,W|ﬂ),

7= (2(§1>7 o ,z(im))T,
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so that the finite dimensional optimal control problem corresponding to the strong

form discretization is given by

—~

1 . -~ P~ def e ~
Minimize i(y ~2)'W(y —2) + %uTWu = J(y,1) (5.3.21a)
where y is the solution to
Ay+Bu-c¢=0. (5.3.21b)

Recall from the discretization of the state equation in Section 4.3.4 that in contrast
to the weak form discretization in (5.3.2), the control along the shared subdomain
boundaries does not enter the strong form discretization of the state equation as given
by (5.3.21b) (see Remark 4.3.6).

Introduce the vector of Lagrange multipliers X associated with the equality con-
straint (5.3.21b), and define the Lagrangian function L for the discretized optimal
control problem (5.3.21) by

Ly, u,A) = J(y,0) + AT(Ay + Bu — ¢).

At optimality the KKT conditions require that

V,L(y,1,A) = 0, (5.3.22a)
VoL(y,1,X) =0, (5.3.22D)
VAL(y,1,A) = 0. (5.3.22¢)
The KKT condition (5.3.22a) yields the optimality condition
Wy - Wz +ATX =0, (5.3.23a)
(5.3.22b) yields
aWi +B'A=0. (5.3.23b)

and (5.3.22¢) simply yields the discretized state equation

Ay +Bu—-¢=0. (5.3.23¢)
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Then the optimality system for (5.3.21) is given by collecting equations Equa-
tions (5.3.23a)—(5.3.23¢) to form the linear system

W o0 AT| |y Wz
0 oW B7| lal=1o01|. (5.3.24)
A B 0] |X ¢

Again consider the test problem from Section 5.2.3 with exact solution

Yer(z) = sin(mzy) sin(3mwxs),
Uer(2) = 10sin(3mxy) sin(mxs),

Pex(x) = sin(3mzy) sin(mxs).

To evaluate the performance of the strong four leaf discretizations for the discretize-

then-optimize approach to solving the optimal control problem, the optimality system
(5.3.24) was constructed and solved over a range of ¢ values. Figure 5.2 provides the
convergence behavior of the relative error in the L?-norm of the state and control for
the strong four leaf formulation applied to the test problem. Note the relative errors
are defined as in (4.4.1b).
The strong form discretization does not converge to the exact solution for either the
state or the control. To determine what is inhibiting the rapid convergence behavior
expected of the strong form discretization, I examine the discretized optimal control
problem.

Solving (5.3.21) is equivalent to choosing the vector u that minimizes the objective
function from the set vectors that satisfy the linear constraint (A? +BU-¢= 0). It
has already been shown that the exact solution evaluated at the collocation points sat-
isfies the linear constraint (see Section 4.4). This suggests that the objective function
is penalizing the exact control u., more than some other vector that also satisfies

the linear constraint. Rewriting the objective function as a sum of the individual
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Figure 5.2: The relative L? error vs. ¢ for the state and control for the strong form
four leaf discretization applied to the test problem under the discretize-then-optimize
approach. Both the state and control errors exhibit very poor convergence compared
to the optimize-then-discretize approach (compare to Figure 5.1) and do not achieve

errors on the order of machine precision.
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components of the vectors y,d, and u yields

Jg.a=> %w,&i W FuE, + %wuﬁi. (5.3.25)
RE|J|

Temporarily consider minimizing the objective function (5.3.25) without any con-
straints relating the state y and the control u. Then the control u must be equal
to zero or the objective function has not been minimized. Now again consider the
discretized optimal control problem with the equality constraint given by the strong
form discretization of the state equation (5.3.21b). As observed in Remark 4.3.6, the
control along the subdomain interfaces does not enter the discretization. In other
words, the control values at collocation points on the subdomain interfaces are un-
constrained and must be set equal to zero in order to minimize the objective function
(5.3.25).

Specifically, let u € J) M(k,e)- Then in the strong form discretization of the state
equation the value of the control at the p-th collocation point is unconstrained (i.e.
B&, = 0).

Examining the p-th row equation from the gradient condition in the optimality

system yields

anWﬁ + eZﬁTX =0,
aw, i, + 07X = 0,

u, = 0.

Since u,, is unconstrained by the strong form discretization of the state equation,
regardless of the value of the exact solution, the value of u, must equal zero to
minimize the discretized objective function.

Indeed examining the computed control from the test problem, the numerical
experiment supports these findings as the computed control solution is equal to zero

at each collocation node on a subdomain interface.
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5.3.3 Modifications to the Discretization to Improve Conver-

gence Behavior

Modification I. As observed in Section 5.3.2, under the discretize-then-optimize
approach, the strong form discretization leading to the linear system (5.3.24) does not
converge at a similar rate compared to solving a boundary value problem as in Section
4.4. A natural question is if it is possible to modify the strong form discretization
in some way to regain the high order converge observed for solving boundary value
problems.

Upon closer examination of (5.3.24) it was observed that the control on the sub-
domain interfaces is unconstrained by the strong form discretization of the state
equation. To correct this, consider adding an addition equality constraint to the dis-
cretized optimization problem that requires the control values on the merge interfaces
to satisfy the differential equation. This can be thought of as post-processing the state
solve in the following sense. From the discretization of the state equation, given the
control values at the interior collocation points on each subdomain uniquely deter-
mines the state at each collocation point. Once the state is known, the control values
on the merge interface can be solved for by requiring that the differential equation is
satisfied at the collocation points on the merge interface.

Enforcing the differential equation on the merge interface is given by the following
equations.

For p € jM(k,é)

éfﬁf(u,é)L(e)y%(lquzl,e) =eu+f, (5.3.26)

~ 1
S LM Va1 ap) + 3

N —

Collecting these equations for each merge interface in the four leaf problem leads

to the linear system
Ey + Fu=a. (5.3.27)

Adding this equality constraint to the formulation of the discretized optimization
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problem yields

1 o o~ - T~
Minimize §(y ~-2)"W({y —2) + %uTWu (5.3.28a)
st. Ay+Bu—¢=0 (5.3.28b)
Ey +Fu—-a=0. (5.3.28c¢)

Introducing the vectors of Lagrange multipliers X and U with the equality con-

straints, form the Lagrangian function
Ly, 0, D) = J(¥,0) + N'(Ay + Bu — ¢) + o7 (Ey + Fu — a). (5.3.29)

Then the system of optimality conditions is given by

W 0 AT ET| |y Wz
0 oW B” FT| |a 0
o | = . (5.3.30)
A B o0 o0} |x ¢
E F 0 0 v a

Modification II. A second modification to the strong form discretization under
the discretize-then-optimize approach that has potential to improve the convergence
behavior is to discretize the control such that it does not have collocation points
located on the merge interfaces. Intuitively, this removes the issue of control variables
being set equal to zero along the merge interface.

To accomplish this, place a tensor product grid of (¢ — 2)? Legendre-Gauss (LG)
quadrature points on each subdomain. Figure 5.3 compares the Legendre-Gauss
quadrature points with the LGL points less corners for the four leaf problem.

Let 1}\# and w, be the 2D Lagrange basis polynomial and 2D quadrature weight
corresponding to the collocation point X,,. Then the 2D composite polynomial ap-

proximation of the function w is given by

wx) = Yy uX,)u(r). (5.3.31)
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Figure 5.3: Comparison of the LG points (blue circles) and the LGL points less
corners (black crosses) for the four leaf problem. Observe that the LG points do not

lie on the boundary of any of the subdomains.

As before, define the vector

= (uX1),...,Xg-22)", (5.3.32)
and let

W = diag(W1, ..., W(_2)2) (5.3.33)

be the diagonal matrix of Legendre-Gauss quadrature weights. Next define the 2D

interpolation matrix Q such that

x = Qx. (5.3.34)
Finally, let

B =BQ (5.3.35)

so that the discretization of the state equation is given by

Ay +Bu="¢. (5.3.36)
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Then the discretized optimization problem is given by

1. - ~  ~ AT A
Minimize i(y -2)"W(y —2) + %uTWu (5.3.37a)
st. Ay +Bli—¢=0, (5.3.37h)

which corresponds to the optimality system

W 0 AT| |y Wz
0 oW BT||d|=]0|. (5.3.38)

~ o~ ~

A B 0 A c

5.3.4 Numerical Experiment

Again consider the test problem from Section 5.2.3. To examine the performance of

the weak form discretization, the linear system (5.3.5) was solved for the test problem.
Define the relative errors for the weak form discretization to be

yIWy u’Wu

E;- = Er- =
L (yq) man |y(X])|7 L (uq>

max; [u(x;)]

where y and u are the state and control components of the solution to (5.3.5).
The relative errors for the (unmodified) strong form discretization are given by

yIWy WTWi

E 2 1, = E 2 U =
L (yq) man |y(X])|7 L (uq>

max; Ju(x;)]

where y and u are the state and control components of the solution to (5.3.24).
The relative errors for the strong form discretization with the additional constraint

are given by

vIWy Wi

Er,(y,) = —————— Ero (U) =
LQ,V(yq) max; |y(xj)|7 LQ,V(uq)

max; [u(x;)|

where y and u are the state and control components of the solution to (5.3.30).
Finally, the relative errors for the strong form discretization with the control

discretized on Legendre-Gauss points are given by

~T~~ /\TA/\
- vy Wy N u’ Wu
E u e EEEENE E o = =

z2(Ya) max; [y(X,)| r2a(tlg) max; [u(X;)]
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where y and U are the state and control components of the solution to (5.3.38).

Figure 5.4 compares the relative errors for the various discretizations under the
discretize-then-optimize approach applied to the test problem. Each of the proposed
modifications to the strong form discretization improves the convergence behavior
with the discretize-then-optimize approach relative to the strong form discretization.
However, both the state and control errors do not exhibit the high order convergence
behavior expected.

In contrast, the weak form discretization under the discretize-then-optimize ap-
proach exhibits the expected desirable convergence behavior. This indicates that only
the weak form discretization as presented in Section 4.3.3 should be used with the
discretize-then-optimize approach. The standard HPS method must be modified to
use the weak form discretization in order to accelerate the solution of PDE constrained

optimization problems under the discretize-then-optimize approach.

5.4 Error Estimate for the Weak Discretization

In this section I present error analysis for the discretize-then-optimize approach based
on the weak form multidomain discretization presented in Section 4.3.3. As noted in
Section 5.3.1 the discretize-then-optimize approach is equivalent to the optimize-then-
discretize approach when the weak form discretization used. So the error estimate

holds for either approach. For simplicity I present results for the 1D case,
Q=(-1,1),

but the results can be generalized to higher dimensions.
Let V = H}(Q). Let the state space Y =V and the control space U = L*(2) so
that the model optimization problem is given by

o ger 1 2 o 2
11>/[1€n1[rjI%1(z§)J(u) = Q/Q(y(u,x) — z(z))" dz + 5 /Qu(:c) dx (5.4.1a)
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Figure 5.4: The L? errors for the state and control for the discretize-then-optimize
approach to solving the test problem. Each attempt to restore the convergence for
the strong form improves the error, but only the weak form discretization obtains the
desired convergence behavior (as seen in the optimize-then-discretize approach). The

weak formulation should be used for the discretize-then-optimize approach.
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where y(u;-) € V solves
a(y,v) = blu+ f,v), Yo ey (5.4.1Db)

where

ol [ Tu)Todn, b f0) 2 [ (ule) + f@)o(a)ds

Q

Define the finite dimensional subspaces V, C V, U, C U by
V,=Pr(-1,1)NHy(—1,1), U, =Pr(-1,1)

as in (4.3.6). The discretized optimization problem is then given by replacing the

state space and the control space by the finite dimensional subspace V.

ef 1
Minimize J,(u,) = — / (yg(ug; 2) — 2(x))* d + a / uy(7)*dw (5.4.2a)
uq, € U, 2 Ja 2 Jo

where y,(ug;-) € Vy solves
a(yq,v) = bu, + f,v), Yv eV, (5.4.2b)

Theorem 5.4.1 Let u be the solution to the continuous optimization problem (5.4.1)
and u, be the solution to the discretized optimization problem (5.4.2). Furthermore,

let D(uy) € V be the solution of

a(p(ug),v) = — /Q(yq(uq;x) —2(@))v(x)de  VoeV (5:4.3)

and let y(u,) € V be the solution of the state equation (5.4.1b) with u replaced by u,.
If y(uy), p(uy) € H™(Q) with m > 3/2. Then

= ugllr20) < Clg — 1) (P(ug) lrmie) + 1y (ug)|l mme))-

Proof: The gradients of the infinite dimensional and the discretized problem are

given by

VJ(u) = au+ p, VJ,(ug) = au, + py,
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where p, p, solve the weak form of the adjoint equations
a(v,p) = — /Q(y(u,x) — z(z))v(z)dx, Yovel,
alog ) = = [ (ugi) = 2)u(o)de, Vo, €V,
At the solutions uw and u, of the infinite dimensional and the discretized problem,
VJ(u) =au+p=0, VJy(ug) = aug + py = 0.
Since the map u — J(u) is strongly convex with parameter a > 0
allu — wH%Q(Q) <(VJ(u) = VJ(w),u — w) 20 (5.4.4)

for all u, w € L*(Q2). Choosing w = u, and using the optimality conditions V.J(u) = 0
and VJ,(u,) = 0 gives

allu — uq||2L2(Q) < (VJ(u) = VI (ug),u — ug)r2(0)
< <VJq(uq) - VJ(“q)a U — uq>L2(Q)

< IV Jg(ug) = VI (ug) |l 2@l — gl 22(0)- (5.4.5)
Using the definition of the gradients gives
(VJg(ug) — VJ(ug), w) 20
= /ﬂ (aug(z) + polug; z))w(z) — (oug(z) + plug; ) )w(z)de
< [lwllzz@) 1pg(ug) — p(ug) |2, (5.4.6)

where p,(u,) solves

WM%sz—L@N@@—AMMWMt Vo, € V), (5.4.7)

and p(u,) solves
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Combining equations (5.4.5) and (5.4.6) gives

lu = ugllzz@) < o™ lpy(uag) = plug) 220

Introduce p(u,) as the solution to (5.4.3). By the triangle inequality,

lu = ugllr2 < @ Hpg(ug) — p(ug) |l 20
< O‘_l(Hpq(uq) — Pug) || 2y + ||P(uq) —P(Uq)HL?(Q))

< a7 (Ipg(ug) = Blug) e + P(ug) = Plug) ). (5:4.8)

The first term on the right hand side in (5.4.8) is bounded by the discretization error
for the adjoint equation (5.4.3) and its discretization (5.4.7). The second term on the
right hand side in (5.4.8) is bounded as follows. By definition of p(u,) and p(u,),

ofpg) ), v) = [ (wn(ug) ~ y(ug) s

Q
< yg(ug) — y(ug) |2 lv] 22 @)

< lya(ug) = y(u @ llvllare Yo eV
The choice of v = p(u,) — p(u,) and the ellipticity f the bilinear form a give
lBlag) — Dl ey < a(Btg) — plug) Flug) — p(ay)
< Nlyq(ug) = y(ug)llm @) [P(uq) — plug) || @),

ie.,
1P(uq) — p(uq) (@) < By Y (ug) — y(ug) |l ey

Inserting this bound into (5.4.8) gives

I = vgll 20y < C(lIpg(q) = Plug)llmr o) + [1ya(ttq) — y(ug)llm ()

for some C' > 0/ Applying the discretization error estimate from Lemma 4.3.3 for
both the adjoint equation discretization error ||p,(uq) — P(uq)|lm1(0) and the state

equation discretization error ||y,(uq) — y(uq)| s (o) yields the desired result. O
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Now that the performance of the multidomain discretizations is understood in
the context of the optimization problem, the remaining chapters focus on using the
efficient direct solver that comes with the HPS method to accelerate the solution
of optimization problems of the form (1.1.1). For simplicity, attention is restricted
to the optimize-then-discretize approach and the strong form discretization is used.
Chapter 6 presents the direct solver that comes with the HPS discretization method
and provides algorithms for computing solutions to the optimization problem. Then
in Section 6.3 a simple numerical example illustrates the performance benefit of using

an efficient direct solver in the optimization setting.



Chapter 6

The Hierarchical Poincaré-Steklov

Method

This chapter presents the efficient direct solver that comes with the HPS discretization
method that will be used to accelerate the solutino of PDE constrained optimization
problems. Section 6.1 presents the direct solver for solving a boundary value problem
(i.e. the state equation (1.1.1b)). Then Section 6.2 provides algorithms for using
the direct solver to solve the optimize-then-discretize formulation of the optimization
model problem (1.1.1). Section 6.3 uses a simple numerical example to illustrates the

performance benefit of using an efficient direct solver in the optimization setting.

6.1 Solving a Differential Equation

6.1.1 Overview of the Direct Solver

Consider the boundary value problem

—Ay(z) = u(z) + f(z), r€Q=(0,1)7 (6.1.1a)
y(x) = g(z), x € S (6.1.1b)

91
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The direct solver that comes with the Hierarchical Poincaré-Steklov method con-
structs an approximation to the solution operator of (6.1.1). The domain is parti-
tioned hierarchically via a binary space partitioning tree (refer to Figures 2.1 and
2.2). Once the hierarchical tree has been constructed, the solver consists of a build
stage, which constructs the approximation to the solution operator for the differential
equation (6.1.1), and a solve stage, which applies the approximation solution operator
for a given boundary condition and body load to obtain the solution to the differential
equation (6.1.1). The build stage consists of a single upward sweep through the tree
from the leaves to the root (from the smallest boxes to the largest box, see Figures
2.1 and 2.2) as described in Algorithm 6.1.1. On each leaf box, a ¢ X ¢ tensor product
grid of collocation points is placed, and the restriction of (6.1.1) to the leaf box is
discretized by the standard spectral collocation approach based on the strong form
as in Section 4.3.4. See also Boyd [5], or Trefethen [23]. By performing dense linear
algebra on matrices of at most size ¢ x ¢? a local solution operator and local DtN
operator is formed for each leaf as described in Section 6.1.2. Then beginning the
upward sweep, a local solution operator and DtN operator is constructed for each
parent in the tree by “merging” the DtN operators from each child as described in
Section 6.1.3. This results in a hierarchical representation for approximate solution
operator of (6.1.1) and ends the build stage.

Once the solution operator is available the solve stage takes in the bodyload u+ f
and the boundary data ¢g and returns the approximate solution y. The solve stage
consists of an upward sweep and then a downward sweep through the hierarchical tree
as described in Algorithm 6.1.2. Given the bodyload u+ f, precomputed operators are
applied on each leaf to evaluate the contribution to the local Neumann data due to the
particular solution. Then during the upward sweep through the tree, precomputed
operators are applied to evaluate the contribution to the local Neumann data on the
parent due to the local Neumann data on each child. Then starting at the root of

the tree and sweeping down to the leaves, precomputed operators map the boundary
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data g to the boundary data for each child. Finally, at the leaf level, the precomputed

local solution operators are applied to obtain the solution everywhere in the domain.

6.1.2 Leaf Computations
On a leaf box 27, consider the local boundary value problem

—Ay"(x) = u(z) + f(x), z e, (6.1.2a)

Yy (z) = g(x), xr € 00", (6.1.2b)

Observe that for this local problem, the body load (u + f) is known, but the local
Dirichlet boundary condition ¢ is an unknown that must also be solved for. This
is done by finding g such that the normal derivatives dy”/On”, where n” is the unit
outward normal of leaf box 2™ match the normal derivatives of solution on neighboring

boxes on the interface between the boxes.

Let ™ be the homogeneous solution which satisfies
—ArT(x) =0, x e, (6.1.3a)
r(z) = g(x), z €007, (6.1.3b)
and t” be the particular solution which satisfies
—At(z) = u(z) + f(z), r e, (6.1.4a)
t"(x) =0, x € 0. (6.1.4b)
Then it is clear that y™ = 77 4+ ¢7 solves (6.1.2a).

As indicated before, it is necessary to find the normal derivative Or” /0n” or more

precisely the Dirichlet-to-Neumann (DtN) map
g or’/on”

that maps the Dirichlet boundary data ¢ into the normal derivative of the solution
r7 of (6.1.3), as well as the normal derivative 0t™/On" of the solution of (6.1.4) for

given body loads u + f.
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As in Section 4.2.3, to discretize place a tensor product grid of LGL quadrature
points less corners on Q7 (refer to Figure 4.4. As before, let X} denote the j-th

quadrature point, and define the vectors

Y = &), y(Xea)
U= (u(XD), - u(Xe_y),
£ = (F&D - S &)
g = (9(x7), -, 9(Xp_y))

Approximate the homogeneous and particular solutions by the poloynomial represen-

tations
>4
rT(z) () =Y r(E)Y](x),
j=1
¢°—4
()~ tp(x) = Y HE)U] (o),
j=1
and define the coefficient vectors
= (r(x]),... ,r(igzﬂ))T,

t7 = (HX]), ..., t(X_y))"

Next, define the partial differentiation matrices ﬁT, [ﬁT, and L7 as in Section

4.2.3.

Finally, introduce the index sets
I={j|x};€Q},
B={j|x}€0Q}.

Then the discretization of the local homogeneous boundary value problem (6.1.3) is

given by

T T v
Lip L r

~3
[e]
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QT

L. o .1

Figure 6.1: Illustration of indexed collocation points on €2". The blue circles denote

collocation points where the Dirichlet boundary condition will be applied. The red

triangles denote the interior collocation points where the PDE will be enforced.

Then immediately,
Ty =8gg (6.1.5)
and solving for r7 yields
= (En) Tisg (616)
Define the local homogeneous solution operator as the operator that acts on the

boundary data g and returns the local homogeneous solution r”. From (6.1.5) and

(6.1.6) the local homgeneous solution operator is given by

IBB

ST = NS
-(Ty) Ly

(6.1.7)

so that
r =85"gg.

Similarly, the discretization of the local particular boundary value problem (6.1.4)

is given by

Isz 0 | |t5 0

Lip Li| |t7 up + fj
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Immediately, N% = 0 and solving for f} yields
T T -1 ~7r | oT
i = (LL,) (& + 1), (6.1.8)

Define the particular solution operator as the operator that acts on the source data
U7 + 7 and returns the local particular solution t7. Then from (6.1.8) the particular

solution operator is given by

0
FF=1|,_ .2 (6.1.9)
(E:)
Then the total local solution y7 is given by
y = STgL +FT(a] +f7). (6.1.10)

Note that after the construction of the local particular and homogeneous solution
operators, all of the unknowns live on the boundary of 27. That is, given the local
boundary data on 27 then simply applying the solution operators yields the solution
on the interior of Q7.

Next construct the local DtN operator for {2”. Begin by partitioning the index set
B into the subsets S, E, N, and W that correspond to the collocation points on the

north, east, south, and west boundaries respectively. Then define the operator D™

B —~— T 7

—Dag 5.1

D DlE,(B,I)

D2N,(B,I)

—~ T

—Dawsn

The local homogeneous DtN operator is given by
T =D"S", (6.1.11)
and similarly the local particular DtN operator is given by

H =D'F". (6.1.12)
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Finally, denote the contribution of the particular solution to the Neumann data by
hy, = H(u] + f7)

(this is the discretization of 0t™/On™), so that
vy =T7gy + hj. (6.1.13)

(T7g% is the discretization of g — Or™/on".)
Note that going forward I will drop the subscript B as each vector corresponds to

points on the boundary.

6.1.3 Merge Operations

Consider a parent box Q7 with child boxes Q° and Q such that Q7 = QF U Q7.
Suppose that the interior unknowns on the child boxes have already been eliminated

and the DtN operators on the child boxes are given by
vP = Tﬁ’gﬁ + hﬁ, v = T'y’g“'y +h.

Let x; be the j-th collocation point on the interface 9Q° U Q" and introduce the

index sets

J = {] | Xj € 896 U 8&27},
J2 = {] ‘ X e o0 U 897},
Js ={j|x; € 997 LV},

which are illustrated in Figure 6.2.
Then the DtN operators on the child boxes can be written as
V| | Th Th| (8|  |b Vil |Th T & | W

g —I— , — _I_
Vg T§1 ng gg hg Vg Tg2 ng gg hg
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Figure 6.2: Illustration of the indexed points for the merge. The goal of the merge is

to eliminate unknowns on the interior edge indexed by Js.

To enforce that the solution on each subdomain has consistent Dirichlet and Neumann
boundary data on the shared edge (i.e. at collocation points in the index set J3), it

is required that géf =gJ = g3 and ?g + v3 = 0. Then write the combined equation

v/ T, O T/ g h
=10 1 T g|+| n3 | (6.1.14)
0 Tf:a T5; (ng + Tg?)) g3 hg +h3

To eliminate the unknowns on the interior edge, solve for gz from the bottom row
equation in (6.1.14). Define K™ = (ng + ng)fl. Then the unknowns on the interior

edge are given by

g =K |1 T} — K" (h{ +h}). (6.1.15)

Observe that the first term yields the homogeneous solution on the interior edge.

That is, define the local homogeneous solution operator for (2™ by
S™=-K" [T§1 ng] ’ (6.1.16)

so that
g

g

(6.1.17)
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Similarly, the particular solution on the interior edge is given by the second term.
That is

t; =t = —K"(hj +h}). (6.1.18)

Since the total solution on the interior edge of the parent box is known, the unknowns

on the interior edge are now eliminated.

r‘ L L L L L L I1

[ ] | ]
Ji 0f Q Jo

L‘ @ @ @ L L L IJ

Figure 6.3: Illustration of the indexed points for the merge after the elimination of the

unknowns on the interior edge. Observe that the unknowns now lie on the boundary

of the parent box €27.

Then the DtN operators for the parent box €7 is obtained by eliminting g3 from the
first two row equations in (6.1.14) via (6.1.15)

(o], el ) ] ][] sy
\Z] 0 T T3, g |h T3
= T ArZen h" ’
(6.1.19)
so that the DtN map for the parent box 27 is given by
vi=T7g" +h". (6.1.20)

6.1.4 The Full Solver on a Uniform Grid

Once the domain has been partitioned via the binary space paritioning tree, a pre-

computation or build stage is performed. The build stage consists of a single upward
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sweep through the tree (from the smallest boxes to the largest boxes). For the build
stage, any ordering may be used as long as the child nodes in the tree are processed
before their parent node.

On each leaf box, solution operators and DtN operators are approximated for the
homogeneous and particular solutions by the method described in Section 6.1.2. For

a leaf box Q7 the following operators are computed:

F7™ The local particular solution operator maps the evaluation of the
source term at the interior collocation points to the values of the lo-
cal particular solution at each the collocation point. In other words
= F(u; + 7).

S™ The local homogeneous solution operator maps the values of the local
Dirichlet boundary data to the local homogeneous solution at each
collocation point. In other words 7 = S7gF,.

H™ The local particular DtN operator maps the evaluation of the source
term at the interior collocation points to the boundary flux due to the
local particular solution at each boundary collocation point. In other
words h, = H™ (0] + f7).

T7 The local homogeneous DtN operator maps the values of the local
Dirichlet boundary data to the boundary flux due to the local homo-

geneous solution. In other words v = T"g% + hi,.

Then on each parent box, the boundary data maps and DtN operators are constructed
as described in Section 6.1.3. For each parent node 7 with child nodes g and ~, the

following operators are computed:
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K7 The particular contribution to the boundary data map acts on the
flux in the particular solutions on each child at the interior nodes of
the parent and returns the particular solution on the interior of the
parent. In other words t5 =t = —K"(hj + h]).

ST The homogeneous contribution to the boundary data map acts on the
Dirichlet boundary data on the parent and returns the homogeneous
solution on the interior of the parent. In other words Ty = T3 = S7g".

T7 The homogeneous DtN operator for the parent maps the local Dirichlet
boundary data on the parent to the boundary flux on the parent due
to the local homogeneous soloution. In other words v = T"g” + h".

An outline for the build stage is provided in Algorithm 6.1.1. Since the algorithm is
potentially applied to different PDEs and associated discretizations, the discretized

differential operator A is used as an input. However, A is not needed explicitly.

Algorithm 6.1.1

Input: discretized differential operator A
fO’l" T = Nbozes> Nboxes - 17 SRR 1
if (1 is a leaf)

0

F = -1
(E5r)
[ I

ST = N1
- (L) L

H =N"F"

T7 = N7S7

else

Let 8 and ~ be children of T.

Partition into vectors Jy, Jo, and J3 as shown in Figure 6.2.
K™ = (T3, + T3;) !

s 1c [ 7o)
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T =

T 0 T?
11 X 13 g7

0 Ty T
end if

end for

Output: HPS solution operator needed to apply Al (input for Algorithm 6.1.2)

After the executing Algorithm 6.1.1, given a specific Dirichlet boundary condition and
source term the solution to the boundary value problem may be evaluated rapidly by
the solve stage of the HPS method. The solve stage consists of a single upward sweep
followed by a single downward sweep of the tree. In the upward sweep (from smallest
to largest boxes) the particular solutions and boundary fluxes due to the particular
solutions are computed. At the root of the tree (the largest box) the solution on the
boundary of the domain is then given by the provided Dirichlet boundary condition.
During the downward sweep (from largest to smallest boxes) the boundary data maps
computed during the build phase are applied to map the boundary data from the root
box to the leaf boxes, and finally the local solution operators on each leaf box are
applied to obtain the approximate solution. The outline for the solve stage is given

by Algorithm 6.1.2.

Algorithm 6.1.2 : y = hps_solve(A~1, U, £, g)
Input: HPS solution operator needed to apply A-! (output of Algorithm 6.1.1),
u - control evaluated at collocation points,
f- body load component evaluated at collocation points,
g - Dirichlet data evaluated at collocation points.
Upward sweep — construct all particular solutions:
Jor 7 = Niozes; Npoges — 1, ., 1
if (1 is a leaf)

# Compute boundary flur due to local particular solution
h™ = H' (4 + f7)

else
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Let 8 and ~ be children of T.
# Compute the local particular solution
t7 = —K"(h5 + hy)

# Compute the boundary flux due to the particular solution

h™ = hy + Try 7
= I
h; T3
end if
end for

Downward sweep — construct all potentials:
# Use the provided Dirichlet data to set solution on the boundary of the root
Yb = 8p
fOTT =12,... >Nb0a:es
if (1 is a parent)
# Add the homogeneous term and the particular term
Y =S7y5 +t].
else
# Add the homogeneous term and the particular term
y =87y +F(u; +1]).
end if
end for

Output: y - computed solution evaluated at collocation points

6.1.5 Direct Solver Complexity

Let N denote the total number of discretization points in Q@ C R?. Let ¢ be the
number of collocation points per linear dimension across a leaf box so that the tensor
product grid has ¢¢ collocation points per leaf box. Finally let L be the total number

of levels in the binary space partitioning tree. Then there are 2% leaf boxes and
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N ~ 2E¢¢ discretization points.

The build stage of the algorithm can be broken into two primary steps, construct-
ing operators on the leaf boxes, and constructing operators for the merge operations.
The computational complexity for constructing operators on the leaf boxes is domi-
nated by inverting the dense matrices L7, of size O(¢%) x O(¢?) on each leaf. Since

there 2” leaf boxes, the total cost for the leaf computations is approximately
2L x 3 ~ Ng*. (6.1.21)

During the merge operations, on each level ¢ in the tree, operators are con-
structed by inverting the dense matrices (Th;+T3,) of the size O(2(d-DE/d N (d-1)/d)
O(2~(@=D¥/d N(@d=1/d) Ty understand this formula, N@~1/4 is the number of colloca-
tion points along one face of the domain. In 2D this corresponds to N'/? which is the
number of nodes along a single edge of the domain. The 2-(@=D¢4 factor represents
the ratio of the size of a merge interface on level ¢ of the binary tree to the size of
a face of the domain. For example, for a 2D problem on level ¢ = 2 of the tree, the
size of a merge interface is one half of the size of a face of the total domain. Similarly
on level ¢ = 4 the merge interface is one fourth of the size of a face of the total

domain. Since on level ¢ there are 2° boxes, the total cost for the merge operations is

approximately
L L
Z 2@ % 2—3(d—1)€/dN3(d—1)/d ~ N3(d—1)/d Z 2(—2d€+3f)/d. (6122)
=1 =1

For the case d = 2 the approximate cost is given by

L
N32N 272~ N3, (6.1.23)
(=1

Summing the contributions of the leaf and merge operations gives the computational
complexity for the build stage of the algorithm as O(N?3/2) for 2D problems.
For the upward sweep of the solve stage, on each of the leaf boxes the operator H”

of size O(2dg?') x O(q?) is applied to compute the boundary flux due to the local
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particular solution. Thus the complexity of applying the operator on each of the 2*

leaf boxes is given by
2L % 2dgl=D ~ Ngd 1 (6.1.24)

Then on level ¢ in the tree, the matrix K7 of size OQ(27(d-D¢/dNd=1/d) »
O(2-@=NtdN(@=1/d) is applied on each of the 2¢ boxes in the level. This gives the

approximate cost

L
2€ % 2—2(d—1)€/dN2(d—1)/d ~ N2(d—1)/d Z 2(—df+2€)/d (6125)
=1 =1

M) =

For the case d = 2 the approximate cost is given by

L
N> 1~ NL~ Nlog(N). (6.1.26)

=1
For the downward sweep, on level ¢ in the tree, the matrices S™ of size
O(2~(d=D/d Nd=1D/dy . @ (2-(d=D/d N (d=1)/d) are applied on the 2¢ boxes, leading to
the same computational complexity as for the upward sweep of the tree. Finally, on
the leaf boxes, the homogeneous and particular solution operators S™ and F™ are ap-
plied to obtain the total solution. This cost is dominated by applying the particular
solution operators, which are matrices of size O(¢%) x O(g?) on the 2L leaf boxes.

This yields the cost
28 % ¢* ~ N¢*. (6.1.27)

Summing the contributions from each step in the solve algorithm yields the asymptotic
complexity of O(N log(N)) for 2D problems.

Finally, note that for non-highly oscillatory problems, the asymptotic complexity
of the build stage and the solve stage may each be improved by exploiting accelerated
linear algebra as by Babb et al. [1]. However, this acceleration is not considered in

the present work.
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6.2 Solving the Optimal Control Problem

Recall the optimality system
-B 0 Al ly ¢
0 of —I||u|=1|o0 (6.2.1)
A B o] |p d
for the optimize then discretize approach to the model problem, cf. (5.2.8). Note
that the discretized differential operator A appears twice in (6.2.1). This is due to
the fact to the fact that the differential operator in the state equation of the model
problem (1.1.1b) is self-adjoint. In general, A in the first block row equation will be

the discretization of the adjoint of the differential operator in the state equation. The

third and first block can be used to express y and p in terms of u. This gives
y=A! (_Eﬁ + E)
and
p=A" (1§§+5),
—A! <]§Z&—1 (—Eﬁ + E) + Ei) .
Substituting p into the remaining second block of the optimality system yields
0=oaou-np,

= ol — A (EZ&* (—Eﬁ + E) + &) :

= ol — A (—EK—lﬁﬁ +BA ¢+ H) ,

= (aﬂ _f&‘lﬁi&—lﬁ) u-A! (ﬁf&‘lé + a) .
This is a linear sytem

<ai+ Zrlia’&lﬁ) i=A! (1“3’2&*16 + a) . (6.2.2)

def"5 def
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in discretized controls u.

For problems of interest, the matrix M may be too large to store and compute with
directly. Instead, ones applies an iterative scheme that only requires the matrix vector
product M s for a given vector s instead of an explicit representation of M. If M is
symmetric the conjugate gradient (CG) method [10] can be used. For nonsymmetric
M, which is the case in (6.2.2), the generalized minimal residual (GMRES) method
[21] can be used.

To take advantage of the efficient direct solver presented in Section 6.1.4 when
solving the reduced ptimality system (6.2.2), the direct solver can be used to compute
the residual Ms — b or the matrix vector product M's. The residual is computed by

Algorithm 6.2.1.

Algorithm 6.2.1 : r = optsys_res(A~' s, f,Z,§)
Input: HPS state (and adjoint) solution operator (output of Algorithm 6.1.1),
s - trial control vector,
f - state equation body load component,
z - desired state,
g - state equation Dirichlet boundary condition.
y = hps_solve(A~L,s, £, g).
p= hps,solve(;&_l, -y,7,0).
Output: r = as — p - residual of reduced optimality system (r = Ms — b).

Note that the matrix vector product M's can be evaluated by (6.2.2) with ¢ =
d = 0 (which is equivalent to setting g = f =z = 0). Thus the matrix vector product
is evaluated by Algorithm 6.2.2.

Algorithm 6.2.2 : v = optsys_matvec(A™",s)
Input: HPS state (and adjoint) solution operator (output of Algorithm 6.1.1),

s - trial control vector.

y = hps_solve(A™1s,0,0).
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P = hps_solve(A™,—¥,0,0).

Output: v = as — p - reduced optimality system matriz-vector product (v = Ms).

6.3 The Benefit of Using a Direct Solver in Opti-
mization

So far, this work has illustrated how to use the HPS discretization and the direct
solver in the optimization setting. However, the goal of this work is to reduce cost
and thus extend the range of practical optimization problems that can be solved. It
remains to be shown that the direct solver does in fact reduce the cost of solving the
PDE constrained optimization problem. This section illustrates the benefit of using
the efficient direct solver that comes with the HPS method for solving an optimization
problem of the form of the model problem (1.1.1).
Let 2= (0,1)% a = 0.1, and define the functions
z(x) = 107? sin(37z; ) sin(7mry),
f(z) = 107%sin(7x, ) sin(3mzs) — ésin((&m&l) sin(ms).

Then consider the optimal control problem

o 1
Minimize J(u) = —/ (y(z;u) — z(x))? do + 2 / u?(z)dw
u 2 Jq 2 Jq

where y( - ;u) € H}(Q) is the solution of

—Ay(z) = u(z) + f(z), v,

y(z) =0, x € 09,

for a given control u. The optimal control u., and the corresponding state y., and
adjoint p., are given by

Uez () = 10sin(37xy) sin(mxs),

Yer () = sin(mxy) sin(3mzs),

Pex () = sin(3mxq) sin(mxs).
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Let the strong form four leaf discretization of the state equation be given by
Ay +Bu==¢.

Then under the optimize-then-discretize approach, the solution to the test problem

is the solution to

B 0 A|l|y Wz
Oaf—TuZO

A B ollp ¢

Finally, consider applying GMRES to the reduced optimality system
Mu=b

as defined in (6.2.2).

In each GMRES iteration, the matrix vector product M applied to a vector is
computed by solving the state equation and then the adjoint equation as described
in Algorithm 6.2.2.

To determine if using the direct solver reduces the cost for this simple test problem,
compare run times for two vwersions. In one version solving the state and adjoint
solves needed to apply M to a vector are performed by precomputing the HPS solution
operators. In the other version solving the state and adjoint solves needed to apply
M to a vector are performed by applying GMRES. The Matlab gmres function was
used as the iterative solver to obtain solutions to the state and adjoint equations.
Table 6.1 reports the timings results for the experiment applied to the test problem
with the strong form four leaf discretization.

The subscript “gm” refers to the results for which gmres was used to compute
the solution to the state and adjoint equations and the subscript “hps” refers tot he
results for which the HPS solution operator was applied to solve the state and adjoint

equations.
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Table 6.1: Timing Results for Four Leaf Test Problem

q | Egn(u) | Enps(u) | kgm | Enps | tgm | thps | tratio
6 | 4.93e-02 | 4.93e-02 4 10.133 | 0.026 | 5.20
8 | 2.86e-03 | 2.86e-03 0.375 1 0.024 | 154
10 | 7.41e-05 | 7.41e-05 1.12 | 0.015 | 74.6
12 | 1.13e-06 | 1.14e-06 291 | 0.029 | 99.2
14 | 7.64e-09 | 1.17e-08 6.40 | 0.026 | 245
16 | 2.05e-08 | 8.72e-11 12.3 | 0.030 | 414

W W W W W
NNWw W W

Define the relative error

max; |U; — tes(X;)|

E(u) =

e, (e (%)
Define k£ as the number of GMRES iterations required to solve the reduced optimality
system. Finally, ¢, gives the total time to solve the reduced optimality system, .
gives the total time to precompute the state and adjoint HPS solution operators plus

the time to solve the reduced optimality system, and

— tgm

tratio - n .
hps

As the polynomial order increases, using the direct solver is much more efficient
than applying an iterative solver each time a PDE solution is required. While this is
an encouraging first result, it is necessary to compare the performance of using the
direct solver vs. leading methods in PDE constrained optimization on a more realistic

problem to quantify the reduction in cost.



Chapter 7

Conclusion

This thesis developed a framework for using the HPS method in the context of PDE
constrained optimization. In Chapter 5 the HPS discretization was examined in
the optimization setting under both the optimize-then-discretize and discretize-then-
optimize approaches.

In the optimize-then-discretize approach, optimization theory was used to derive
the continuous optimality conditions which consisted of the state equation, the adjoint
equation, and a relationship between the control and the adjoint variables. Then the
continuous optimality system was discretized to provide a finite dimensional linear
system to be solved. Discretizing the state and adjoint equations by the strong form of
the HPS method provided the expected convergence behavior for the optimal control
problem.

In the discretize-then-optimize approach, the objective function and constraint
(state equation) were immediately discretized, resulting in a finite dimensional op-
timization problem. The finite dimensional optimality conditions were derived con-
sisting of the discretized state equation, an equation involving the transpose of the
discretized differential operator from the state equation, and a relationship between
the control and the adjoint.

Discretization of the state equation by the strong form of the HPS method set all

111
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of the control variables along merge interfaces equal to zero since the strong form of
the Neumann condition does not touch the body load on a leaf box boundary. This
prevents convergence to the exact solution for the optimization problem.

Several methods were examined to attempt to restore the convergence behav-
ior under the discretize-then-optimize approach. First, an additional constraint was
added to the finite dimensional optimization problem to explicitly require that the
control along the merge interfaces satisfy the differential equation. Second, a mod-
ified discretization of the state equation was considered that discretized the control
via a tensor product grid of Legendre-Gauss points on each leaf box (which only
live on the interior of the domain). Each of these methods improved the errors, but
did not restore the convergence to the desired behavior. Finally, the state equation
was discretized by the weak form of the HPS method discretization, which restored
the convergence behavior to the same rate observed in the optimize-then-discretize
approach.

After establishing the performance of the HPS discretization in the optimization
setting, a simple numerical test was used to examine the cost reduction by using the
direct solver from the HPS method. Under the optimize-then-discretize approach, the
reduced optimality system was solved iteratively by GMRES where the application
of the matrix-vector product was computed on one hand by calling an inner loop
of GMRES to solve the state and adjoint equations, and on the other hand using
the direct solver from the HPS method to solve the state and adjoint equations.
Timing results for the numerical experiment indicate that applying the direct solver
significantly reduces the cost of solving the reduced optimality system.

However, to understand the cost reduction in a realistic scenario, a practical op-
timization problem should be considered, and computing solutions to the state and
adjoint equations via the HPS direct solver should be compared to solving the state
and adjoint equations by a problem-specific preconditioned iterative scheme. Com-

paring the performance of the HPS method in the optimization setting against a state
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of the art method for PDE constrained optimization will illuminate cost reduction
achieved by using the efficient direct solver.

Other areas for future work include implemented the accelerated O(N) version
of the HPS method for non-oscillatory problems to obtain further efficiency from
the direct solver. Additionally, when localized phenomena are expected, using the
adaptive refinement version of the HPS method will lead to further cost reduction.
Finally, as many real applications have additional constraints, for example bounds on
the state or c