

Abstract

Accelerated PDE Constrained Optimization

Using Direct Solvers

by

Peter J. Geldermans

In this thesis, I propose a method to reduce the cost of computing solutions to op-

timization problems governed by partial differential equations (PDEs). Standard

second order methods such as Newton apply an iterative method to solve the Newton

system. Iteratively solving the Newton system requires the solution of two PDEs

per iteration, which can be prohibitively expensive when applying iterative solvers to

the PDEs. In contrast, this work takes advantage a recently developed high order

discretization method that comes with an efficient direct solver. The new technique

precomputes a solution operator that can be reused for any body load, which is ap-

plied whenever a PDE solve is required. Thus the precomputation cost is amortized

over many PDE solves. This approach will make second order optimization algo-

rithms computationally affordable for practical applications such as photoacoustic

tomography and optimal design problems.

Acknowledgements

This work is supported by the National Science Foundation Graduate Research Fel-

lowship under Grant No. 1450681.

Contents

Abstract ii

List of Figures vii

List of Tables xii

1 Introduction 1

1.1 Model Problem . 2

1.2 Organization . 3

2 Literature Review 4

2.1 PDE Constrained Optimization . 4

2.2 The Hierarchical Poincaré-Steklov Method 7

3 Background 11

3.1 Polynomials, Differentiation Matrices, Quadrature Rules, and Interpo-

lation . 11

3.2 Extension to Higher Dimensions . 14

4 Discretization of the State Equation 19

4.1 Weak Formulation . 20

4.2 Single Domain Discretization . 21

4.2.1 Discretization of the Weak Formulation 21

v

4.2.2 Linear System . 24

4.2.3 Discretization of the Strong Formulation 31

4.3 Multidomain Discretization . 37

4.3.1 The Four Leaf Discretization 37

4.3.2 Weak Formulation Error Estimates 39

4.3.3 Discretization of the Weak Formulation 41

4.3.4 Discretization of the Strong Formulation 52

4.4 State Equation Numerical Example 57

5 The Optimal Control Problem 60

5.1 The Infinite Dimensional Problem . 61

5.2 Optimize-then-Discretize Approach 63

5.2.1 Weak Form Discretization of the Model Problem 64

5.2.2 Strong Form Discretization of the Model Problem 64

5.2.3 Numerical Experiment . 65

5.3 Discretize-then-Optimize Approach 68

5.3.1 Weak Form Discretization of the Model Problem 68

5.3.2 Strong Form Discretization of the Model Problem 76

5.3.3 Modifications to the Discretization to Improve Convergence Be-

havior . 81

5.3.4 Numerical Experiment . 84

5.4 Error Estimate for the Weak Discretization 85

6 The Hierarchical Poincaré-Steklov Method 91

6.1 Solving a Differential Equation . 91

6.1.1 Overview of the Direct Solver 91

6.1.2 Leaf Computations . 93

6.1.3 Merge Operations . 97

6.1.4 The Full Solver on a Uniform Grid 99

vi

6.1.5 Direct Solver Complexity . 103

6.2 Solving the Optimal Control Problem 106

6.3 The Benefit of Using a Direct Solver in Optimization 108

7 Conclusion 111

Bibliography 113

List of Figures

2.1 Illustration of domain partitioning for a four level binary space parti-

tioning tree. The whole domain is the box numbered 1 (far left) and

the leaf boxes are numbered 16-31 (far right). Each subdomain corre-

sponds to the node in the binary space partitioning tree (see Figure2.2)

with the same number. 8

2.2 Illustration of the binary space partitioning tree. Node numbers cor-

respond to the subdomains in Figure 2.1. The root is at the top of the

tree and the leaf boxes are at the bottom. 8

3.1 Illustration of the tensor product grid of LGL quadrature nodes on Ω

for q = 6. Observe that this is given by the Cartesian product of the

set of 1D LGL quadrature nodes in each direction. 15

4.1 Illustration of geometry for the single domain problem. ΓD is the solid

line (bottom and left faces) and ΓN is the dashed line (top and right

faces). 22

4.2 Illustration of the tensor product grid of LGL quadrature points {xj}q
2

j=1

on Ω for q = 6. 24

viii

4.3 Illustration of the collocation points {xj}q
2

j=1 by index sets. The gray

crosses denote the interior points corresponding to JI . The red di-

amonds denote the points corresponding to JD, where the Dirichlet

boundary condition is applied. The green squares, blue circles, and

black triangle denote the points where the Neumann condition is ap-

plied, corresponding to JN(E), JN(N), and JC respectively. 26

4.4 Illustration of the tensor product grid of LGL quadrature points less

corners {x̃σ}q
2−4
σ=1 on Ω for q = 6. Observe that the only difference

between this set of points and the set considered in Figure 4.2 is the

removal of the collocation points on the corners of the domain. 32

4.5 Illustration of the collocation points {x̃σ}q
2−4
σ=1 by index sets. The gray

crosses denote the interior points corresponding to J̃I . The red di-

amonds denote the points corresponding to J̃D, where the Dirichlet

boundary condition is applied. The green squares and blue circles de-

note the points where the Neumann condition is applied, corresponding

to J̃N(E) and J̃N(N). Observe that the removal of corner points elimi-

nates the need to apply a Neumann condition on a corner of the domain

as was required for the weak form discretization (compare to Figure 4.3). 34

4.6 Illustration of the partition of Ω for the four leaf problem. Note this

corresponds to two levels of binary space partitioning. 38

4.7 Illustration of the tensor product grid of LGL quadrature points on

each subdomain Ωk for q = 6. Observe that there are not 4q2 unique

collocation points due the fact collocation points that lie on the inter-

section of subdomain boundaries are described from each subdomain. 43

ix

4.8 Illustration of the collocation points for the four leaf problem by index

sets. The gray crosses denote interior points of Ωk, corresponding to

JI(k). The red diamonds denote points on the boundary of Ω that lie

on the boundary of a single subdomain, corresponding to JB. The blue

circles denotes points on the boundary of Ω that lie in the intersection

of two subdomain boundaries corresponding to JB ∩ JE(k,`). The green

squares denote interior points of Ω that lie in the intersection of exactly

two subdomain boundaries ∂Ωk and ∂Ω`, corresponding to JM(k,`). Fi-

nally, the black triangle denotes the point that lies in the intersection

of all four subdomain boundaries. 45

4.9 Illustration of the tensor product grid of LGL quadrature points less

corners on each subdomain Ωk for q = 6. Observe that the only differ-

ence between this set of points and the set considered in Figure 4.7 is

the removal of collocation points on corners of each subdomain. . . . 52

4.10 Illustration of the collocation points for the four leaf problem by index

sets. The gray crosses denote interior points of Ωk, corresponding to

J̃I(k). The red diamonds denote points on the boundary of Ω that lie

on the boundary of a single subdomain, corresponding to J̃B. Finally,

the green squares denote interior points of Ω that lie in the intersection

of exactly two subdomain boundaries ∂Ωk and ∂Ω`, corresponding to

J̃M(k,`). The important difference between this set of points and the

set considered in Figure 4.8 is that there are no points that lie in the

intersection of all four subdomain boundaries. 54

x

4.11 The relative L2 errors vs. q for the weak and strong four leaf formu-

lations applied to the test problem. Both formulations converge at

similar rates. The error in the weak formulation is smaller than the er-

ror in the strong formulation for the same value of q as the presence of

corner nodes allows the weak composite polynomial approximation (yq)

to represent more functions exactly compared to the strong composite

polynomial approximation (ỹq). 58

5.1 The relative L2 errors vs. q for the state, control, and adjoint for the

weak and strong four leaf formulations applied to the test problem for

the optimize-then-discretize approach. The state, control, and adjoint

errors converge at a similar rate for both formulations. 67

5.2 The relative L2 error vs. q for the state and control for the strong form

four leaf discretization applied to the test problem under the discretize-

then-optimize approach. Both the state and control errors exhibit very

poor convergence compared to the optimize-then-discretize approach

(compare to Figure 5.1) and do not achieve errors on the order of

machine precision. 79

5.3 Comparison of the LG points (blue circles) and the LGL points less

corners (black crosses) for the four leaf problem. Observe that the LG

points do not lie on the boundary of any of the subdomains. 83

5.4 The L2 errors for the state and control for the discretize-then-optimize

approach to solving the test problem. Each attempt to restore the

convergence for the strong form improves the error, but only the weak

form discretization obtains the desired convergence behavior (as seen in

the optimize-then-discretize approach). The weak formulation should

be used for the discretize-then-optimize approach. 86

xi

6.1 Illustration of indexed collocation points on Ωτ . The blue circles de-

note collocation points where the Dirichlet boundary condition will be

applied. The red triangles denote the interior collocation points where

the PDE will be enforced. 95

6.2 Illustration of the indexed points for the merge. The goal of the merge

is to eliminate unknowns on the interior edge indexed by J3. 98

6.3 Illustration of the indexed points for the merge after the elimination

of the unknowns on the interior edge. Observe that the unknowns now

lie on the boundary of the parent box Ωτ 99

List of Tables

6.1 Timing Results for Four Leaf Test Problem 110

Chapter 1

Introduction

The numerical solution of optimization problems governed by partial differential equa-

tions (PDEs) is important for optimal design, modeling of physical systems, and in-

verse problems in many fields of science and engineering. Computing solutions to

practical PDE constrained optimization problems requires the solution of the govern-

ing PDE many times. Repeatedly solving the PDE at each optimization iteration can

easily cause the cost of solving these problems to become very expensive. Addition-

ally, in many real applications, it is desirable to solve the optimization problem over

a range (or sampling) of some parameter rather than solving a single deterministic

problem. If solving the PDE constrained optimization problem for a single parameter

value is expensive, then solving the problem over a range of parameter values may be

computationally intractible. Reducing the cost of computing solutions to PDE con-

strained optimization problems will extend the range of computationally affordable

problems.

Solving the governing PDE for many different right hand sides dominates the

cost of computing solutions to PDE constrained optimization problems. The Hier-

archical Poincaré-Steklov (HPS) method, is a recently developed high order accurate

discretization technique that comes with an efficient direct solver. The HPS method

uses the pseudospectral (or spectral collocation) method on a collection of disjoint

1

2

leaf boxes whose union is the domain.

The boxes are then hierarchically merged to construct local solution operators at

each step by computing discrete Poincaré-Steklov operators on the union of two boxes

at a time. Merging each of the local solution operators results in an efficient direct

solver such that solution to the PDE may be evaluated very rapidly for new boundary

conditions and body loads. This thesis examines the HPS method in the setting of

PDE constrained optimization. The objective of this work is to exploit the efficiency

of the direct solver that comes with the HPS discretization to obtain second order

optimization algorithms at low cost relative to first order methods.

1.1 Model Problem

To examine the HPS discretization technique in the optimization setting, consider

the following linear quadratic optimal control problem.

Minimize
u ∈ U

1

2

∫
Ω

(y(x;u)− z(x))2 dx+
α

2

∫
Ω

u2(x)dx (1.1.1a)

where y(x;u) ∈ Y satisfies the differential equation−∆y(x) = u(x) + f(x), x ∈ Ω = (0, 1)2,

y(x) = g(x), x ∈ ∂Ω,
(1.1.1b)

for a given function u ∈ U .

This simple model problem will provide insight for how to extend the HPS method

to the optimization setting. It should be noted that the extension is not limited to

problems of the form (1.1.1). The optimization methods developed can also be applied

to problems with boundary control or inverse problems in which the PDE coefficients

are recovered, but for simplicity of presentation I focus on problems of the form

(1.1.1).

Throughout the remainder of the thesis I refer to y as the state Y as the state

space, u as the control, U as the control space, and (1.1.1b) as the state equation.

3

1.2 Organization

The organization of the thesis is as follows. Chapter 2 reviews relevant literature

from PDE constrained optimization as well as for the HPS method to provide con-

text for this work. Chapter 3 reviews basic material that will be used throughout

the thesis including polynomials, quadrature, and differentiation matrices. Chapter

4 presents the weak formulation and strong formulation for discretizing a PDE by

the HPS method. Then Chapter 5 presents the infinite dimensional optimal control

problem and examines its discretization in detail by considering each formulation

presented in Chapter 4. The direct solver is presented in Chapter 6 along with how

to exploit its efficiency in the optimization setting. Additionally, a numerical experi-

ment is provided to illustrate the benefit of using the direct solver in the context of

optimization. Finally, Chapter 7 summarizes the contributions and identifies several

areas for future work.

Chapter 2

Literature Review

Taking advantage of the performance of the HPS method in PDE constrained opti-

mization intersects the optimization community with active research in discretization

techniques for PDEs. It is important to understand the context of this work from

the perspective of each community. This chapter first reviews literature regarding

PDE constrained optimization. Then it provides context for the HPS method in the

PDE discretization community. Finally a recent publication is highlighted that il-

lustrates the potential of using the HPS discretization method for PDE constrained

optimization problems. This provides the starting point for developing a more general

framework for exploiting the performance of the HPS discretization method in PDE

constrained optimization.

2.1 PDE Constrained Optimization

For optimization problems governed by PDEs there are two fundamentally different

approaches to computing numerical solutions: optimize-then-discretize, and discretize-

then-optimize. In the optimize-then-discretize approach, optimality conditions are

derived in the appropriate function space (as in Lions [12, Ch. 2], or Tröltzsch [24,

Ch. 2]) and then the infinite dimensional optimality conditions are discretized to ob-

4

5

tain the solution. On the other hand, in the discretize-then-optimize approach, the

objective function and constraint equation are discretized directly to obtain a finite di-

mensional problem which may then be solved using standard quadratic programming

techniques (as in Heinkenschloss [9]). In general, the two approaches to solving PDE

constrained optimization problems do not lead to the same algorithm. Furthermore,

in certain applications one approach may be preferable to the other (see discussion in

Quarteroni [18, Ch. 16]). Therefore in developing a framework it is important that

either approach may be used to efficiently and accurately compute solutions. Under

either approach, discretization results in a finite dimensional problem that can be

solved by standard techniques. However, numerically solving these problems is com-

putationally expensive or may even be intractable due to the large number of PDE

solves required in a typical optimization problem.

Optimization algorithms for solving PDE constrained optimization problems are

typically based on either first or second order derivative information. First order

(gradient-based) methods require the solution of two PDEs, the state and adjoint

equations, at each optimization iteration. Second order methods require the gradient

as well as the solution of the Newton system (or the Newton-like system as in the

Gauss-Newton method) at each optimization iteration. Since the Hessian is both

very large and may be dense, often it is unsuitable to store or compute with it

explicitly. Instead, when solving the Newton system, well known iterative methods

such as the conjugate gradient (CG) method or the generalized minimal residual

(GMRES) method are employed, which do not require the Hessian itself, but rather

the application of the Hessian to a vector. The Hessian-times-vector computation

can be performed by solving two PDEs similar to the state and adjoint equations (see

for example Heinkenschloss [9]). Thus second order optimization methods require

the solution of 2k + 2 PDEs per optimization iteration, where k is the number of

inner iterations (or Hessian-times-vector computations) required to solve the Newton

system. Typically an iterative solver is used to compute solutions to each PDE

6

when solving PDE constrained optimization problems. However, for problems where

the Newton system is large, the number of PDE solves required by second order

optimization algorithms can grow large enough that the cost of solving the PDEs by

an iterative method becomes impractical.

In contrast to solving each PDE by an iterative method, the method I propose

takes advantage of the efficient direct solver that comes with the HPS discretization.

By choosing to work with a direct solver for the PDEs, the solution operator is pre-

computed once, and then it is applied to efficient evaluate each PDE solution required

by the optimization algorithm. Applying the solution operator is more efficient than

calling an iterative solver. However, making use of a direct solver also incurs the

cost of constructing the solution operator. While constructing the solution operator

and then applying it is relatively expensive for a single PDE compared to calling an

iterative solver, the solution operator may be reused for many PDE solves. That is,

the cost of the precomputation is amortized over many PDE solves. Thus efficient

direct solvers for PDEs are ideally suited for applying iterative methods to optimality

systems in PDE constrained optimization.

An alternative approach that is used to reduce the computational burden of solv-

ing PDE constrained optimization problems is to employ reduced order models (also

known as surrogates). Reduced order modeling is an active research area in the con-

text of PDE constrained optimization. Typically, a reduced order model or surrogate

for the governing PDE is used in place of the PDE constraint (see Sachs [22], Benner

[2]). Computing solutions to the surrogate is significantly less expensive than com-

puting solutions to the full order model. The surrogate models can be obtained by

mathematical techniques such as the proper orthogonal decomposition, or they can

be given as an engineering or physics model. Additionally, the solution to the opti-

mization problem governed by the surrogate model can be used as an initial guess for

the problem governed by the full order model. This ensures accuracy of the solution

to the original problem, while minimizing the number of full order model evaluations

7

required. This idea can be generalized by including a hierarchy of surrogate mod-

els and selecting which to use at each optimization step (see the survey provided

by Peherstorfer et al. [16]). The reduction in cost achieved by employing reduced

order models can lead to efficient methods for computing solutions to some PDE

constrained optimization problems. The approach of reduced order modeling is not

considered in this work.

2.2 The Hierarchical Poincaré-Steklov Method

The HPS method is a high order accurate discretization technique for PDEs that

was first proposed by Martinsson [14] in 2013. After discretization, the direct solver

consists of a build stage which precomputes the solution operator in a factored form,

and a solve stage which applies the solution operator given a body load and boundary

conditions consisting of a collection of small matrix vector multiplies.

To discretize, the domain is broken into a collection of rectangular patches. These

patches are organized via a binary space partitioning tree with the whole domain at

the root, and the collection of patches as the leaves, which are called leaf boxes. Figure

2.1 illustrates the collection of patches and Figure 2.2 illustrates the binary space

partitioning tree. On each leaf box, the local boundary value problem is discretized

by spectral collocation on a tensor product grid of either Chebyshev of Legendre

nodes, and requires that the solution and its derivative are continuous across leaf

edges.

For the build stage, a solution operator and a Dirichlet-to-Neumann (DtN) op-

erator for the local boundary value problem is constructed directly via the spectral

collocation method. Then the local DtN operators are used to hierarchically merge

the operators on the leaf boxes, sweeping up the binary tree, to obtain a solution op-

erator and a DtN operator for the whole domain. The build stage scales as O(N3/2)

where N is the number of unknowns.

8

Level 0

1

Level 1

2 3

Level 2

4

5

6

7

Level 3

8 9

10 11

12 13

14 15

Level 4

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Figure 2.1: Illustration of domain partitioning for a four level binary space partition-

ing tree. The whole domain is the box numbered 1 (far left) and the leaf boxes are

numbered 16-31 (far right). Each subdomain corresponds to the node in the binary

space partitioning tree (see Figure2.2) with the same number.

Level 3 8 9 10 11 12 13 14 15

Level 2 4 5 6 7

Level 1 2 3

Level 0 1

.

Figure 2.2: Illustration of the binary space partitioning tree. Node numbers corre-

spond to the subdomains in Figure 2.1. The root is at the top of the tree and the

leaf boxes are at the bottom.

9

During the solve stage the solution operator constructed during the build stage

is applied to the given boundary condition for the PDE to obtain boundary data

on each leaf box, sweeping down the binary tree from the root to the leaves. At

the leaf level, the local solution operators are applied to obtain the solution on the

interior of the leaf boxes. Since the boundary data maps and local solution operators

were precomputed during the build stage, the solve is very efficient and scales as

O(N logN).

The HPS method is closely related to domain decomposition methods for applying

spectral methods to solving PDEs. The discretization method employed in the HPS

method is similar to the multidomain spectral discretization proposed by Orszag [15]

in 1980 to apply spectral methods to problems with complex geometries. Both meth-

ods discretize local subdomains with spectral collocation (as in Boyd [5], Trefethen

[23]) and require the solution and its derivative to match at the subdomain interfaces.

The work by Orzsag was later generalized by Pfeiffer et al. [17] in 2003 to allow for

a wider range of basis functions, to handle overlapping subdomains, and to provide

the capability to match higher order derivatives across subdomain boundaries. A key

distinction between the HPS method and earlier work on composite spectral colloca-

tion techniques is that the HPS method immediately eliminates interior unknowns.

The earlier works produced large discretization matrices to be solved by an iterative

solver such as GMRES or another Krylov subspace method. In contrast, the hierar-

chical elimination of interior unknowns and construction of local solution operators

in the HPS method results in an efficient direct solver that is a series of small matrix

vector multiplications the size of information on the boundary of the subdomains.

In 2014, Gillman and Martinsson [8] demonstrated that for problems that are not

highly oscillatory, Martinsson’s original scheme can be further accelerated to achieve

O(N) complexity for both the build and solve stages. They achieved the speedup

by exploiting the special structure of hierarchical block separable (HBS) matrices to

make use of fast linear algebra.

10

Then Babb et al. [1] in 2016 provided an efficient method for handling body

loads in the build and solve stages to reuse the precomputation for multiple body

loads. Unlike in the original method, the solution is represented as the superposition

of a homogeneous solution and a particular solution. Then during the build stage,

solution operators and DtN operators are constructed for both the homogeneous and

particular solutions. The solve stage for the body load problem includes an additional

sweep up the tree. For each new body load, the particular solution operator is applied

to the body load on each leaf box. Then the contribution to the Neumann data from

the particular solution is computed by applying the particular DtN operator. This

information is swept up the tree to the root, where the boundary conditions are

known. Then the solve stage sweeps down the tree mapping boundary data to the

leaf boxes and applying the local solution operators as in the case without a body

load. This algorithm will be reviewed in detail in Section 6.1.

The HPS method has been used in the optimization context by Borges et al. [4] for

application to an inverse acoustic imaging problem from the medical imaging commu-

nity. In the largest problem considered, a Matlab implementation of the HPS method

was used to solve approximately one million PDEs, each with 19,600 unknowns, in

approximately two days (on a multi-core workstation). The authors report that the

reconstructions presented in their paper are among the largest ever computed in the

medical imaging community.

This success demonstrates the potential of exploiting the HPS discretization and

its direct solver in PDE constrained optimization. The goal of this work is to develop

a general framework for taking advantage of the HPS method in the optimization

setting. This work illustrates how the HPS method can be applied for both the

optimize-then-discretize approach as well as the discretize-then-optimize approach.

Additionally, optimization algorithms that take advantage of the efficiency of the

direct solver to reduce the cost of solving PDE constrained optimization problems

are provided.

Chapter 3

Background

This chapter reviews background material that is used throughout the thesis. First,

Section 3.1 reviews a set of 1D polynomials, differentiation matrices, quadrature rules,

and interpolation. Then Section 3.2 provides the extension of the 1D tools to 2D. Note

that the extension can be performed for N dimensional polynomials in general, but

the 2D case is emphasized as this work considers 2D problems. The results reviewed

in this section can be found in many places, for example in the books by Canuto et

al. [6, Ch. 2] or Quarteroni and Valli [20, Ch. 4] or in the paper by Bernardi and

Maday [3, Thm. 13.4].

3.1 Polynomials, Differentiation Matrices, Quadra-

ture Rules, and Interpolation

Consider the Legendre-Gauss-Lobatto (LGL) collocation points

−1 = x1 < x2 < · · · < xq−1 < xq = 1, (3.1.1)

which are the roots of (1 − x2) d
dx

[Lq−1(x)], where Lq−1 is the Legendre polynomial

of degree q − 1.

11

12

The set of polynomials on [a, b] of degree less than or equal to p is denoted by

Pp[a, b].

Let the Lagrange interpolation polynomials be given by,

ψj(x) =

q∏
k=1
k 6=j

x− xk
xj − xk

∈ Pq−1[−1, 1], j = 1, . . . , q. (3.1.2)

Furthermore, given the Legendre-Gauss-Lobatto points (3.1.1) and the corresponding

Lagrange polynomials (3.1.2), let Iq−1 : C([−1, 1])→ Pq−1[−1, 1] be the interpolation

operator

(Iq−1u)(x) =

q∑
j=1

u(xj)ψj(x). (3.1.3)

The LGL quadrature rule is given by∫ 1

−1

r(x)dx ≈
∫ 1

−1

(Iq−1r)(x)dx =

q∑
j=1

wjr(xj). (3.1.4)

where the quadrature weights are

wj =

∫ 1

−1

ψj(x)dx =
2

q(q − 1)

1

[Lq−1(xj)]2
. (3.1.5)

The exactness of the quadrature rule is given by Theorem 3.1.1 below. This is a

standard result from Gauss-Lobatto quadrature. Details on the proof of the following

theorem can be found in Chapter 10.4 of [19].

Theorem 3.1.1 (Legendre-Gauss-Lobatto Quadrature Exactness) The

Legendre-Gauss-Lobatto quadrature rule with q points given by (3.1.5) and (3.1.4) is

exact for all all polynomials on [−1, 1] of degree less than or equal to 2q − 3, i.e.,∫ 1

−1

r(x)dx =

q∑
j=1

wjr(xj) ∀r ∈ P2q−3[−1, 1]. (3.1.6)

The following results on interpolation error can be found, e.g., Bernardi and Maday

[3, Thm. 13.4] or Canuto et al. [6, Sec 5.4.3].

13

Theorem 3.1.2 (Legendre-Gauss-Lobatto Interpolation Error) Let k ∈ {0, 1}

and m > (1 + k)/2. There exists a constant C > 0 such that for all functions

u ∈ Hm(−1, 1) the following interpolation error estimate holds

‖u− Iq−1u‖Hk(−1,1) ≤ C(q − 1)k−m‖u‖Hm(−1,1). (3.1.7)

The derivative matrices D,D(2) ∈ Rq×q have entries

Dk,j =
d

dx
ψj(xk), (3.1.8a)

D
(2)
k,j =

d2

dx2
ψj(xk), (3.1.8b)

so that if r = (rq(x1), . . . , rq(xq))
T , then the derivatives of the interpolating polyno-

mial, rq, at the collocation points are given by

d

dx
rq(xk) =

q∑
j=1

r(xj)
d

dx
ψj(xk) = eTkDr, (3.1.9a)

d2

dx2
rq(xk) =

q∑
j=1

r(xj)
d2

dx2
ψj(xk) = eTkD(2)r, (3.1.9b)

where ek ∈ Rq is the k-th standard basis unit vector. Welfert [25, Thm. 6.1] shows

that the second order derivative matrix is the square of the first order derivative

matrix, i.e.

D(2) = D2. (3.1.10)

Each of the results on the reference interval [−1, 1] can be generalized to a target

interval [a, b] by mapping the collocation points from the reference interval to the

target interval. Let x = (x1, . . . ,xq)
T be the LGL collocation points on the reference

interval. Then the LGL collocation points on the target interval are given by

x(a,b) =
(b− a)

2
x +

(b+ a)

2
. (3.1.11)

Define the Lagrange polynomials on the target interval by

ψ
(a,b)
j (x) =

q∏
k=1
k 6=j

x− x
(a,b)
k

x
(a,b)
j − x

(a,b)
k

, j = 1, . . . , q. (3.1.12)

14

Let Iq−1 : C[a, b]→ Pq−1[a, b] be the interpolation operator

(Iq−1u)(x) =

q∑
j=1

u(x
(a,b)
j)ψ

(a,b)
j (x). (3.1.13)

Let the {wj}qj=1 be the quadrature weights associated with the LGL collocation points

on the reference interval. Then the quadrature weights for the generic interval [a, b]

are given by

w
(a,b)
j =

(b− a)

2
wj, for j = 1, . . . , q, (3.1.14)

so that the quadrature formula over the generic interval given by∫ b

a

r(x)dx ≈
∫ b

a

(Iq−1r)(x)dx =

q∑
j=1

w
(a,b)
j r(x

(a,b)
j), (3.1.15)

is exact for all r ∈ P2q−3(a, b) similar to the result in Theorem 3.1.1. The interpolation

error (4.3.9) generalizes to the following estimate, see Canuto et al. [6, Eqn. (5.4.42)].

‖u− Iq−1u‖Hk(a,b) ≤ C (b− a)k−min{m,q−1} (q − 1)k−m ‖u‖Hm,q−1(−1,1). (3.1.16)

The differentiation matrix on the generic interval is obtained by scaling the dif-

ferentiation matrix from the reference interval

D(a,b) =
2

(b− a)
D. (3.1.17)

Now that the 1D polynomial approximation, the quadrature rule, and the differenti-

ation matrices are known, it is necessary to extend these tools to higher dimensions

to use them in solving partial differential equations via spectral collocation.

3.2 Extension to Higher Dimensions

To represent polynomials in multiple dimensions, a tensor product grid of LGL points

is used. As noted before, the extension may be carried out to represent polynomials

15

in N dimensions, but as the work in the thesis focuses on 2D problems, I will discuss

extending the results from Section 3.1 to two dimensions.

Consider the domain Ω = (a, b)× (c, d) ⊂ R2, and define the 1D LGL collocation

points x(a,b) on the interval (a, b) and x(c,d) on (c, d) as in (3.1.11). Then the 2D LGL

collocation points on Ω are given by the tensor product grid

(x
(a,b)
i ,x

(c,d)
j), ∀ i, j ∈ {1, . . . , q}. (3.2.1)

Figure 3.1 provides an illustration of the 2D LGL collocation points.

(a, c) (b, c)

(b, d)(a, d)

x1

x2

Figure 3.1: Illustration of the tensor product grid of LGL quadrature nodes on Ω for

q = 6. Observe that this is given by the Cartesian product of the set of 1D LGL

quadrature nodes in each direction.

Order the collection of q2 collocation points by the single index σ(i, j, q) where

σ(i, j, q) = (i− 1)q + j, (3.2.2)

and define

xσ(i,j,q) = (x
(a,b)
i ,x

(c,d)
j). (3.2.3)

16

Let x = (x1, x2) ∈ Ω. Then the 2D interpolation basis functions are given by

ψσ(i,j,q)(x) = ψ
(a,b)
i (x1)ψ

(c,d)
j (x2). (3.2.4)

Note that upon inspection it is immediate that

ψσ(i,j,q)(x
(a,b)
k ,x

(c,d)
`) =

1, (k, `) = (i, j),

0, (k, `) 6= (i, j),

(3.2.5)

since

ψ
(a,b)
i (x

(a,b)
k) =

1, k = i,

0, k 6= i,

and

ψ
(c,d)
j (x

(c,d)
`) =

1, ` = j,

0, ` 6= j.

The set of polynomials on Ω̄ of degree less than or equal to p in each variable is

denoted by

Pp(Ω).

Furthermore, given the tensor product grid Legendre-Gauss-Lobatto points (3.2.1)

and the corresponding Lagrange polynomials (3.2.4), let Iq−1 : C(Ω̄) → Pq−1(Ω) be

the interpolation operator

(Iq−1u)(x) =

q2∑
σ=1

u(xσ)ψσ(x). (3.2.6)

The polynomial interpolation error is bounded according to the following theorem

(for details see Bernardi and Maday [3, Thm. 14.2] and Canuto et al. [6, Sec. 5.8.2]).

Theorem 3.2.1 Let k ∈ {0, 1} and m > (2 + k)/2. There exists a constant C > 0

such that for all functions u ∈ Hm(Ω) the following interpolation error estimate holds

‖u− Iq−1u‖Hk(Ω) ≤ C(q − 1)k−m‖u‖Hm(Ω). (3.2.7)

17

The 2D LGL quadrature formula is given by∫
Ω

r(x)dx ≈
∫

Ω

(Iq−1r)(x)dx =

q2∑
σ=1

wσr(xσ), (3.2.8)

where the quadrature weights are

wσ(i,j,q) =

∫
Ω

ψσ(i, j, q)(x)dx

=

∫ d

c

∫ b

a

ψ
(a,b)
i (x1)ψ

(c,d)
j (x2)dx1dx2

=

∫ d

c

ψ
(c,d)
j (x2)dx2

∫ b

a

ψ
(a,b)
i (x1)dx1

= w
(c,d)
j w

(a,b)
i .

(3.2.9)

Thus the 2D quadrature weight wσ(i,j,q) is simply the product of the 1D quadrature

weights associated with the collocation point coordinate values in each direction.

Theorem 3.2.2 defines the exactness of the Legendre-Gauss-Lobatto quadrature rule

on Ω. For details, again refer to [19] and the references therein.

Theorem 3.2.2 (2D Legendre-Gauss-Lobatto Quadrature Exactness) The

Legendre-Gauss-Lobatto quadrature rule given by (3.2.9) and (3.2.8) is exact for all

polynomials on Ω of degree less than or equal to 2q − 3 in each variable,∫
Ω

r(x)dx =

q2∑
σ=1

wσr(xσ) ∀r ∈ P2q−3(Ω).

The structure of the tensor product grid allows the partial differentiation matrices to

be defined in terms of a Kronecker product of the 1D differentiation matrices and the

identity matrix. Let I ∈ Rq×q, then the first partial derivative matrices are given by

D1 = D(a,b) ⊗ I, (3.2.10)

D2 = I⊗D(c,d). (3.2.11)

Let r = (rq(x1), . . . , rq(xq2))
T , and let eσ the σ-th standard basis vector in Rq2 . Then

the partial derivatives of the interpolation polynomial rq evaluated at the collocation

18

points are given by

d

dx1

rq(xσ) = eTσD1r, (3.2.12)

d

dx2

rq(xσ) = eTσD2r. (3.2.13)

More generally, define the partial differentiation matrix

Dk
1D

`
2 = (D(a,b))k ⊗ (D(c,d))`, (3.2.14)

so that

dk+`

dxk1dx
`
2

rq(xσ) = eTσDk
1D

`
2r. (3.2.15)

Now that the 2D polynomial approximation, the quadrature rule, and the partial

differentiation matrices are known, these tools can be used to approximate solutions

to partial differential equations via spectral collocation.

Chapter 4

Discretization of the State

Equation

This chapter describes two discretizations for the state equation (the differential equa-

tion that relates the control to the state in the model optimization problem). The

first discretization approach is based on the Galerkin discretization of the weak form

of the state equation as in [20]. The second approach is based on discretizing the

strong form of the state equation via a composite spectral collocation scheme. In

this approach, subdomains are discretized by spectral collocation as in [23], [5] and

the solutions on subdomains are related by requiring that the solution and normal

derivative match at the interface between subdomains. This is the discretization that

the Hierarchical Poincaré-Steklov method, for details see [14]. The major difference

between the two approaches is in the implementation of the Neumann condition. The

Galerkin approach uses the weak form of the Neumann condition whereas the com-

posite spectral collocation scheme uses the strong form of the Neumann condition.

Section 4.1 reviews the weak formulation and its Galerkin discretization Then

Sections 4.2 and 4.3 describe the discretizations for a single domain and then for

multiple subdomains respectively. Finally, the performance of the weak form and

strong form discretizations are illustrated in Section 4.4 for a test problem.

19

20

4.1 Weak Formulation

Given a real Hilbert space V with inner product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉1/2, a

bilinear operator

a : V × V → R,

and a continuous linear functional

b : V → R,

consider the following problem. Find y ∈ V such that

a(y, φ) = b(φ), ∀ φ ∈ V . (4.1.1)

Theorem 4.1.1 (stated without proof) is a standard result from functional analysis

that provides conditions for the existence of a unique solution to (4.1.1).

Theorem 4.1.1 (Lax-Milgram Theorem) Let V be a (real) Hilbert space, en-

dowed with the norm ‖ · ‖, a(·, ·) : V × V → R a bilinear form and b : V → R a

continuous linear functional, i.e. b ∈ V ′ where V ′ denotes the dual space of V. If

there exist constants β1, β2 > 0 such that

|a(ψ, φ)| ≤ β1‖ψ‖V ‖φ‖V , ∀ ψ, φ ∈ V , (4.1.2)

β2‖φ‖2
V ≤ a(φ, φ), ∀ φ ∈ V , (4.1.3)

i.e. a(·, ·) is continuous and coercive, then there exists a unique solution y ∈ V to

(4.1.1) and

‖y‖V ≤
1

β2

‖b‖V ′ . (4.1.4)

The proof of Theorem 4.1.1 can be found in almost any text on the treatment of

partial differential equations. In particular see [20] Thm 5.1.1.

To discretize the weak formulation, consider a finite dimensional subspace Vq ⊂ V .

The discretized weak form is then given by, find yq ∈ Vq such that

a(yq, φq) = b(φq), ∀ φq ∈ Vq. (4.1.5)

21

Lemma 4.1.2 establishes a general error bound for the discretization of the weak

formulation.

Lemma 4.1.2 (Céa’s Lemma) Under the assumptions of Theorem 4.1.1 there ex-

ists a unique solution yq ∈ Vq to (4.1.5). Moreover, if y is the solution to (4.1.1),

then

‖y − yq‖V ≤
β1

β2

inf
φq ∈ Vq

‖y − φq‖V . (4.1.6)

In Section 4.2 and Section 4.3, an appropriate finite dimensional subspace Vq is identi-

fied and the general error estimate via Céa’s Lemma is made specific by approximation

results for the chosen subspace.

4.2 Single Domain Discretization

The state equation considered in this section is a slight variation of (1.1.1b). This

variation will be useful when considering multi-domain discretizations. Let Ω =

(0, 1)2, ΓD = {x ∈ ∂Ω | x1 = 0} ∪ {x ∈ ∂Ω | x2 = 0} and ΓN = ∂Ω \ ΓD, and consider

the boundary value problem
−∆y(x) = u(x) + f(x), x ∈ Ω

y(x) = 0, x ∈ ΓD

∂

∂n
y(x) = v(x), x ∈ ΓN .

(4.2.1)

The geometry for the boundary value problem is provided in Figure 4.1.

This section presents two spectral collocation approaches to discretize the state

equation (4.2.1). First, I present discretization of the weak formulation in Section

4.2.1. Then I provide the discretization of the strong formulation in Section 4.2.3.

4.2.1 Discretization of the Weak Formulation

Let

V = {y ∈ H1(Ω) | y = 0 on ΓD}

22

ΓN

ΓD

Ω

(1, 1)

(0, 0)
x1

x2

Figure 4.1: Illustration of geometry for the single domain problem. ΓD is the solid

line (bottom and left faces) and ΓN is the dashed line (top and right faces).

be endowed with the H1(Ω) norm. The weak formulation of (4.2.1) is given by∫
Ω

∇y(x) · ∇φ(x)dx

=

∫
Ω

(u(x) + f(x))φ(x)dx+

∫
ΓN

v(x)φ(x)dx, ∀ φ ∈ V . (4.2.2)

This is the identity (4.1.1) if the bilinear operator is defined as

a(y, φ) =

∫
Ω

∇y(x) · ∇φ(x)dx, (4.2.3)

and the continuous linear functional is defined as

b(φ) =

∫
Ω

(u(x) + f(x))φ(x)dx+

∫
ΓN

v(x)φ(x)dx (4.2.4)

Corollary 4.2.1 is then immediate by applying Theorem 4.1.1 to the weak formu-

lation (4.1.1) with V = H1(Ω).

Corollary 4.2.1 For any f, u ∈ L2(Ω) and v ∈ L2(ΓN) the state equation (4.2.1) has

a unique weak solution y ∈ V. Moreover, there exists a constant C > 0 (independent

of f and v) such that

‖y‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω) + ‖v‖L2(ΓN)

)
.

23

Let Pq−1(Ω) be the set of polynomials of degree less than or equal to (q − 1). The

finite dimensional subspace is given by

Vq = Pq−1(Ω) ∩ V , (4.2.5)

and the Galerkin discretization of the (4.2.2) is∫
Ω

∇yq(x) · ∇φ(x)dx

=

∫
Ω

(u(x) + f(x))φ(x)dx+

∫
ΓN

v(x)φ(x)dx, ∀ φ ∈ Vq. (4.2.6)

A bound for the error between the exact solution and the solution to the finite

dimensional subspace approximation is given by the following lemma.

Lemma 4.2.2 Let the weak solution y to (4.2.1) satisfy y ∈ Hm(Ω) with m > 3/2.

There exists a constant C > 0 such that the error between y and the solution yq of

(4.2.6) satisfies

‖y − yq‖H1(Ω) ≤ C(q − 1)1−m‖y‖Hm(Ω). (4.2.7)

Proof: Lemma 4.1.2 gives

‖y − yq‖H1(Ω) ≤ C1 inf
vq∈Vq

‖y − vq‖H1(Ω).

Applying Theorem 3.2.1 with k = 1 to bound the right hand side

inf
vq ∈ Vq

‖y − vq‖H1(Ω) ≤ ‖y − Iq−1y‖H1(Ω)

gives the desired result. 2

Remark 4.2.3 The error bound in Lemma 4.2.2 requires that integrals such as∫
Ω

(u(x) + f(x))φ(x)dx for φ ∈ Vq are evaluated exactly. If instead they are ap-

proximated by quadrature an additional term on the right hand side arises, which is

proportional to the quadrature error.

24

4.2.2 Linear System

Now I set up and solve a linear system corresponding to the discretization of the weak

formulation (4.2.6). Let x be a tensor product grid of q × q Legendre-Gauss-Lobatto

(LGL) quadrature points on Ω, where xj denote the j-th point of the tensor product

grid. Let wj be the 2D quadrature weight associated with xj, and let ψj(x) be the

2D Lagrange interpolation basis function associated with xj.

Ω

Figure 4.2: Illustration of the tensor product grid of LGL quadrature points {xj}q
2

j=1

on Ω for q = 6.

First write

ΓN = ΓN(E) ∪ ΓN(N),

where

ΓN(E) = {x ∈ ∂Ω | x1 = 1} and ΓN(N) = {x ∈ ∂Ω | x2 = 1}.

Because yq is a polynomial and, hence, smooth, the left hand side in the discretized

weak form (4.2.6) may be rewritten using the divergence theorem to obtain∫
Ω

∇yq(x) · ∇φ(x)dx

=

∫
Ω

−∆yq(x)φ(x)dx+

∫
ΓN

(∇yq(x) · n)φ(x)dx

=

∫
Ω

−∆yq(x)φ(x)dx+

∫
ΓN(E)

∂

∂x1

yq(x)φ(x)dx+

∫
ΓN(N)

∂

∂x2

yq(x)φ(x)dx. (4.2.8)

25

Substituting this expression for the left hand side in (4.2.6) yields the following equiv-

alent expression for the weak form (4.2.6)∫
Ω

−∆yq(x)φ(x)dx+

∫
ΓN(E)

∂

∂x1

yq(x)φ(x)dx+

∫
ΓN(N)

∂

∂x2

yq(x)φ(x)dx (4.2.9)

=

∫
Ω

(u(x) + f(x))φ(x)dx+

∫
ΓN(E)

v(x)φ(x)dx+

∫
ΓN(N)

v(x)φ(x)dx ∀ φ ∈ Vq.

To obtain the linear system corresponding to (4.2.9), replace the integrals by quadra-

ture and require the resulting equation to hold for all φ ∈ span{ψ1, . . . , ψq2} such

that φ = 0 on ΓD. Note that the quadrature rule is exact for the integrals in (4.2.9)

involving yq due to Theorem 3.2.2.

Let y be the vector given by

y = (y1, . . . ,yq2)
T , (4.2.10)

and let yj denote the j-th element of y (i.e. yj = yq(xj)). Furthermore, let

u = (u(x1), . . . , u(xq2))
T , (4.2.11)

f = (f(x1), . . . , f(xq2))
T , (4.2.12)

v = (v(x1), . . . , v(xq2))
T . (4.2.13)

Given interpolation points xj and the Lagrange basis functions ψj(x), the solution

of the discretized weak form (4.2.6) is

yq(x) =

q2∑
j=1

yjψj(x). (4.2.14)

Let Dk
1 be the k-th order partial differentiation matrix in the x1 direction, and let

Dk
2 be the k-th order partial differentiation matrix in the x2 direction as defined in

(3.2.14). Then the discretized differential operator L ∈ Rq2×q2 is given by

L = −(D2
1 + D2

2), (4.2.15)

so that

−∆yq(xj) = eTj Ly. (4.2.16)

26

Next, partition

J := {1, . . . , q2} = JI ∪ JD ∪ JN(E) ∪ JN(N) ∪ JC

where the index sets JI , JD, JN(E), JN(N) and JC are defined next. See Figure 4.3 for

an illustration of these index sets.

Ω

Figure 4.3: Illustration of the collocation points {xj}q
2

j=1 by index sets. The gray

crosses denote the interior points corresponding to JI . The red diamonds denote the

points corresponding to JD, where the Dirichlet boundary condition is applied. The

green squares, blue circles, and black triangle denote the points where the Neumann

condition is applied, corresponding to JN(E), JN(N), and JC respectively.

Let

JI = {j | xj ∈ Ω}

be the set of indices of interior collocation points and let

JD = {j | xj ∈ ΓD}

be the set of indices of collocation points where the Dirichlet boundary condition is

enforced. To define the remaining index sets, first define sets to describe the northeast,

southeast, and northwest corners of the domain

CNE = {(1, 1)}, CSE = {(1, 0)}, CNW = {(0, 1)}.

27

Then let

JN(E) = {j | xj ∈ ΓN(E) \ (CNE ∪ CSE)},

be the set of indices of collocation points on the interior of the east edge of the domain

and let

JN(N) = {j | xj ∈ ΓN(N) \ (CNE ∪ CNW)}.

be the set of indices of collocation points on the interior of the north edge of the

domain. Finally, let

JC = {j | xj ∈ CNE}

be the index of the collocation point at the northeast corner of the domain.

The Dirichlet boundary condition yq(x) = 0 for all x ∈ ΓD implies that

eTµy = 0 for µ ∈ JD. (4.2.17)

Since

Vq = Pq−1(Ω) ∩ V = {ψµ | µ 6∈ JD}

(4.2.9) is equivalent to∫
Ω

−∆yq(x)ψµ(x)dx+

∫
ΓN(E)

∂

∂x1

yq(x)ψµ(x)dx+

∫
ΓN(N)

∂

∂x2

yq(x)ψµ(x)dx

=

∫
Ω

(u(x) + f(x))ψµ(x)dx+

∫
ΓN(E)

v(x)ψµ(x)dx+

∫
ΓN(N)

v(x)ψµ(x)dx ∀ µ 6∈ JD.

(4.2.18)

Next, replace the integrals by quadrature. Note that the quadrature rule is exact for

the integrals in (4.2.18) involving yq due to Theorem 3.2.2.

28

q2∑
`=1

−w`∆yq(x`)ψµ(x`) +
∑
`∈JE

w`,2
∂

∂x1

yq(x`)ψµ(x`) +
∑
`∈JN

w`,1
∂

∂x2

yq(x`)ψµ(x`)

=

q2∑
`=1

w` (u(x`) + f(x`))ψµ(x`)

+
∑
`∈JE

w`,2v(x`)ψµ(x`) +
∑
`∈JN

w`,1v(x`)ψµ(x`) ∀ µ 6∈ JD.

(4.2.19)

For µ corresponding to the interior collocation points, µ ∈ JI , (4.2.19) simplifies as

q2∑
`=1

−w`∆yq(x`)ψµ(x`) =

q2∑
`=1

w` (u(x`) + f(x`))ψµ(x`).

Since ψµ(x`) = 0 for each ` 6= µ, the sums each reduce to the single term corresponding

to the index µ

−wµ∆yq(xµ) = wµ (u(xµ) + f(xµ)) .

Finally, dividing each side by the constant wµ yields

−∆yq(xµ) = u(xµ) + f(xµ),

which can be interpreted as enforcing the strong form of the PDE at each interior

collocation point. This can be written in terms of the discretized differential operators

as

eTµLy = eTµu + fµ for µ ∈ JI . (4.2.20a)

For µ corresponding to collocation points on the interior of the east edge of the

domain, µ ∈ JN(E), (4.2.19) simplifies as

q2∑
`=1

−w`∆yq(x`)ψµ(x`) +
∑
`∈JE

w`,2
∂

∂x1

yq(x`)ψµ(x`)

=

q2∑
`=1

w` (u(x`) + f(x`))ψµ(x`) +
∑
`∈JE

w`,2v(x`)ψµ(x`).

29

Again since ψµ(x`) = 0 for each ` 6= µ, the sums each reduce to the single term

corresponding to the index µ(
−wµ∆ + wµ,2

∂

∂x1

)
yq(xµ) = wµ (u(xµ) + f(xµ)) + wµ,2v(xµ).

Dividing both sides by the constant wµ,2 yields(
−wµ,1∆ +

∂

∂x1

)
yq(xµ) = wµ,1 (u(xµ) + f(xµ)) + v(xµ).

This can be written in terms of the discretized differential operators as

eTµ (wµ,1L + D1) y = wµ,1
(
eTµu + fµ

)
+ vµ for µ ∈ JN(E). (4.2.20b)

Similarly, for µ corresponding to collocation points on the interior of the north edge

of the domain, µ ∈ JN(N), (4.2.19) simplifies as

q2∑
`=1

−w`∆yq(x`)ψµ(x`) +
∑
`∈JN

w`,1
∂

∂x2

yq(x`)ψµ(x`)

=

q2∑
`=1

w` (u(x`) + f(x`))ψµ(x`) +
∑
`∈JN

w`,1v(x`)ψµ(x`).

As ψµ(x`) = 0 for each ` 6= µ, the sums each reduce to the single term corresponding

to the index µ(
−wµ∆ + wµ,1

∂

∂x2

)
yq(xµ) = wµ (u(xµ) + f(xµ)) + wµ,1v(xµ).

Dividing by the constant wµ,1 yields(
−wµ,2∆ +

∂

∂x2

)
yq(xµ) = wµ,2 (u(xµ) + f(xµ)) + v(xµ).

This can be written in terms of the discretized differential operators as

eTµ (wµ,2L + D2) y = wµ,2
(
eTµu + fµ

)
+ vµ for µ ∈ JN(N). (4.2.20c)

Finally, for µ corresponding to the northeast corner of the domain, µ ∈ JC , (4.2.19)

simplifies as

−wµ∆yq(xµ) + wµ,2
∂

∂x1

yq(xµ) + wµ,1
∂

∂x2

yq(xµ)

= wµ (u(xµ) + f(xµ)) + wµ,2v(xµ) + wµ,1v(xµ),

30

which can be written in factored form as(
−wµ∆ + wµ,2

∂

∂x1

+ wµ,1
∂

∂x2

)
yq(xµ) = wµ (u(xµ) + f(xµ)) + (wµ,2 + wµ,1) v(xµ).

This can be written in terms of the discretized differential operators as

eTµ (wµL + wµ,2D1 + wµ,1D2) y = wµ

(
eTµu + fµ

)
+ (wµ,2 + wµ,1) vµ for µ ∈ JC .

(4.2.20d)

In summary, after an approximation of the integrals by quadrature, the discretized

weak form (4.2.9) leads to the linear system (4.2.17), (4.2.20) in y which is denoted

by

Ay = −Bu + c. (4.2.21)

where A,B ∈ RN×N , y,u, c ∈ RN . Solving the linear system for y provides the

coefficient values of the composite polynomial approximation of the weak solution yq.

The matrix A ∈ RN×N in (4.2.21) inherits important properties from the bilinear

form (4.2.3).

Theorem 4.2.4 The matrix A ∈ RN×N in (4.2.21) is symmetric positive definite on

{v | vµ = 0, µ ∈ JD}.

Proof: Let y,v be vectors with yµ = vµ = 0, µ ∈ JD, and define

yq(x) =

q2∑
j=1

yjψj(x), vq(x) =

q2∑
j=1

vjψj(x).

31

Following the derivations (4.2.20), (4.2.19), and (4.2.18) yields

vTAy =

q2∑
µ=1

vµ

(q2∑
`=1

−w`∆yq(x`)ψµ(x`) +
∑
`∈JE

w`,2
∂

∂x1

yq(x`)ψµ(x`)

+
∑
`∈JN

w`,1
∂

∂x2

yq(x`)ψµ(x`)
)

=

q2∑
µ=1

vµ

(∫
Ω

−∆yq(x)ψµ(x)dx+

∫
ΓN

∂

∂x1

yq(x)ψµ(x)dx
)

=

q2∑
µ=1

vµ

(∫
Ω

∇yq(x)T∇ψµ(x)dx
)

=

∫
Ω

∇yq(x)T∇vq(x)dx.

This shows the symmetry, vTAy = yTAv for all vectors y,v with yµ = vµ = 0,

µ ∈ JD, and the positive definiteness,

vTAv =

∫
Ω

∇vq(x)T∇vq(x)dx > 0

for all vectors v 6= 0 with vµ = 0, µ ∈ JD. 2

4.2.3 Discretization of the Strong Formulation

Consider the boundary value problem (4.2.1). Note that in the strong sense, the

normal derivative is not well defined at the corners of the domain. Place a tensor

product grid of LGL quadrature points less corners on Ω. The tensor product grid

of quadrature points less corners is illustrated in Figure 4.4.

To define the 2D Lagrange basis functions on Ω, let z be a set of 1D LGL points

on a general interval (a, b). Then consider the points on the interior of the interval

(i.e. consider {zk}q−1
k=2). Define the Lagrange basis polynomials for interpolating the

interior points on the interval as follows

ϕk(z) =

q−1∏
j=2
k 6=j

z − zk
zj − zk

, j = 2, . . . , q − 1. (4.2.22)

32

Ω

Figure 4.4: Illustration of the tensor product grid of LGL quadrature points less

corners {x̃σ}q
2−4
σ=1 on Ω for q = 6. Observe that the only difference between this set

of points and the set considered in Figure 4.2 is the removal of the collocation points

on the corners of the domain.

Analogous to (3.2.2), define the mapping σ : (i, j, q) 7→ Z+ such that x̃σ(i,j,q) =

(x
(a,b)
i ,x

(c,d)
j) for each (i, j) such that (x

(a,b)
i ,x

(c,d)
j) is in the tensor product grid less

corners.

The 2D Lagrange basis polynomials for the tensor product grid of LGL points

less corners are defined as follows. For basis functions corresponding to points on the

interior of the domain, x̃σ(i,j,q) ∈ Ω, the basis function is the same as in the weak

formulation

ψ̃σ(i,j,q)(x) = ψi(x1)ψj(x2). (4.2.23)

However, for basis functions corresponding to collocation nodes on the boundary, the

basis functions are modified to account for the removal of the corner nodes. For

basis functions corresponding to points on the north and south edges of the domain,

x̃σ(i,j,q) ∈ ∂Ω ∩ ({x | x2 = 0} ∪ {x | x2 = 1}), the basis functions are given by

ψ̃σ(i,j,q)(x) = ϕi(x1)ψj(x2). (4.2.24)

Similarly, for basis function corresponding to points on the east and west edges,

33

x̃σ(i,j,q) ∈ ∂Ω ∩ ({x | x1 = 0} ∪ {x | x1 = 1}), the basis functions are given by

ψ̃σ(i,j,q)(x) = ψi(x1)ϕj(x2). (4.2.25)

Given this definition of the basis functions, the polynomial interpolation of a

function r : Ω→ R is given by

r(x) ≈ r̃q(x) =

q2−4∑
σ=1

r(x̃σ)ψ̃σ(x). (4.2.26)

The quadrature is obtained by integrating the polynomial approximation∫
Ω

r(x)dx ≈
∫

Ω

r̃q(x)dx =

q2−4∑
σ=1

w̃σr(x̃σ), (4.2.27)

where the quadrature weights are given by

w̃σ =

∫
Ω

ψ̃σ(x)dx. (4.2.28)

Again, note that due to the tensor product grid, the 2D quadrature weights are given

by the product of the 1D quadrature weights of the polynomial approximation in each

coordinate direction.

To discretize the boundary value problem (4.2.1), approximate the solution y by

ỹq(x) =

q2−4∑
σ=1

ỹσψ̃σ(x) (4.2.29)

insert ỹq into the boundary value problem (4.2.1), and require that (4.2.1) holds at

the collocation points {x̃σ}q
2−4
σ=1 .

To derive the corresponding linear equation, let ỹ be the vector given by

ỹ = (ỹ1, . . . , ỹq2−4)T , (4.2.30)

and similarly, let

ũ = (u(x̃1), . . . , u(x̃q2−4))T , (4.2.31)

f̃ = (f(x̃1), . . . , f(x̃q2−4))T , (4.2.32)

ṽ = (v(x̃1), . . . , v(x̃q2−4))T . (4.2.33)

34

Define the entries of the k-th order partial differentiation matrices D̃k
1 and D̃k

2 by

D̃k
1σ,` =

∂k

∂xk1
ψ̃σ(x̃`), (4.2.34)

D̃k
2σ,` =

∂k

∂xk2
ψ̃σ(x̃`), (4.2.35)

so that the discretized differential operator is given by

L̃ = −(D̃2
1 + D̃2

2). (4.2.36)

As in the weak formulation, it will be useful to partition

J̃ := {1, . . . , q2 − 4} = J̃I ∪ J̃D ∪ J̃N(E) ∪ J̃N(N),

where the index sets J̃I , J̃D, J̃N(E) and J̃N(N) are defined next See also Figure 4.5 for

an illustration of these index sets.

Ω

Figure 4.5: Illustration of the collocation points {x̃σ}q
2−4
σ=1 by index sets. The gray

crosses denote the interior points corresponding to J̃I . The red diamonds denote

the points corresponding to J̃D, where the Dirichlet boundary condition is applied.

The green squares and blue circles denote the points where the Neumann condition

is applied, corresponding to J̃N(E) and J̃N(N). Observe that the removal of corner

points eliminates the need to apply a Neumann condition on a corner of the domain

as was required for the weak form discretization (compare to Figure 4.3).

35

Let

J̃I = {σ | x̃σ ∈ Ω}

be the set of indices of collocation points in the interior of the domain and let

J̃D = {σ | x̃σ ∈ ΓD}

be the set of indices of collocation points where the Dirichlet boundary condition will

be applied. The index sets corresponding to the Neumann boundary are defined as

follows. Let

J̃N(E) = {σ | x̃σ ∈ ΓN(E) \ (CNE ∪ CSE)}

be the set of indices of collocation points along the east edge of the domain where

the Neumann boundary condition will be applied and let

J̃N(N) = {σ | x̃σ ∈ ΓN(N) \ (CNE ∪ CNW)}

be the set of indices of collocation points along the north edge of the domain where

the Neumann boundary condition will be applied. The indexed collocation points are

illustrated in Figure 4.5.

As mentioned before, to discretize (4.2.1), approximate y by the interpolating

polynomial ỹq, then require the resulting equation to hold at each collocation point.

For the Dirichlet boundary condition, require that ỹ(q)(x) = 0 for all x ∈ ΓD.

Explicitly, for µ ∈ J̃D enforce the Dirichlet boundary condition by

eTµ ỹ = 0 for µ ∈ J̃D. (4.2.37)

For µ corresponding to collocation points on the interior of the domain, µ ∈ J̃I
enforce the PDE by

−∆ỹq(x̃µ) = u(x̃µ) + f(x̃µ),

36

which can be written in terms of the discretized differential operators as

eTµ L̃ỹ = eTµ ũ + f̃µ for µ ∈ J̃I . (4.2.38a)

For µ corresponding to collocation points on the east edge of the domain, µ ∈ J̃N(E)

enforce the strong form of the Neumann condition by

∂

∂x1

ỹq(x̃µ) = v(x̃µ),

which can be written in terms of the discretized differential operators as

eTµD̃1ỹ = vµ for µ ∈ J̃N(E). (4.2.38b)

Finally, for µ corresponding to collocation points on the north edge of the domain

µ ∈ J̃N(N) enforce the strong form of the Neumann condition by

∂

∂x2

ỹq(x̃µ) = v(x̃µ),

which can be written in terms of the discretized differential operators as

eTµD̃2ỹ = vµ for µ ∈ J̃N(N). (4.2.38c)

In summary, the collocation approximation of the strong form (4.2.1) leads to the

linear system (4.2.37), (4.2.38) in y.

Comparing the strong formulation with the weak formulation, observe that the

discretized equations that enforce the PDE at the interior collocation points and

the Dirichlet boundary condition are the same. However, the discretized equations

that enforce the Neumann boundary condition are different. In particular, the weak

formulation includes the body load (or source term) in the implementation of the

Neumann boundary condition, but the strong formulation does not.

Now that the each discretization of the state equation for a single domain is

understood, both can be extended to the multidomain case as will be necessary for

the HPS method.

37

4.3 Multidomain Discretization

Let Ω = (0, 1)2 and consider the boundary value problem−∆y(x) = u(x) + f(x), x ∈ Ω,

y(x) = 0, x ∈ ∂Ω.
(4.3.1)

The HPS method discretization partitions the domain via a binary space partitioning

tree, then formulates a local boundary value problem each subdomain. The local

boundary value problems require that the solution to the a given local boundary

value problem has consistent Dirichlet and Neumann boundary conditions with the

solution to each neighoring local boundary value problem. That is, at each sub-

domain interface the solution and its derivative are continuous. The discussion of

the discretization is restricted to a problem with four subdomains (corresponding to

four leafs in the binary space partitioning tree). Considering the “four leaf problem”

simplifies discussion, but extends naturally to the more general case.

4.3.1 The Four Leaf Discretization

Consider the uniform partition of the domain Ω into four subdomains

Ω1 = (0, 0.5)2, Ω2 = (0, 0.5)× (0.5, 1), Ω3 = (0.5, 1)× (0, 0.5), Ω4 = (0.5, 1)2,

so that Ω = ∪4
k=1Ωk. The geometry partition is illustrated in Figure 4.6.

38

Ω1

Ω2

Ω3

Ω4

(1, 1)

(0, 0)
x1

x2

Figure 4.6: Illustration of the partition of Ω for the four leaf problem. Note this

corresponds to two levels of binary space partitioning.

From the geometry of the partition, introduce the following sets which will be

useful for defining index sets as in the single domain case. Let C denote the intersection

of each of the four subdomains

C = ∩4
k=1∂Ωk = {(0.5, 0.5)}.

Let Γ(k,`) denote the interior of the shared edge between neighboring subdomains Ωk

and Ω`

Γk,` = (∂Ωk ∩ ∂Ω`) \ (C ∪ ∂Ω).

The solution of (4.3.1) restricted to the subdomain Ωk will be denoted by y(k),

y(k) = y|Ωk .

Then by requiring the solution to the differential equation (4.3.1) to have consis-

tent Dirichlet and Neumann conditions at the subdomain interfaces Γk,` and C, the

39

differential equation on the partitioned geometry is formally given by

−∆y(k)(x) = u(x) + f(x), x ∈ Ωk, k ∈ {1, . . . , 4}, (4.3.2a)

y(k)(x) = 0, x ∈ ∂Ω ∩ ∂Ωk, (4.3.2b)

y(k)(x)− y(`)(x) = 0, x ∈ Γk,`, k, ` ∈ {1, . . . , 4}, k 6= `,

(4.3.2c)

∂

∂n(k)
y(k)(x) +

∂

∂n(`)
y(`)(x) = 0, x ∈ Γk,`, k, ` ∈ {1, . . . , 4}, k 6= `,

(4.3.2d)

4∑
k=1

∂

∂n(k)
y(k)(x) = 0, x ∈ C, (4.3.2e)

where ∂
∂n(k) denotes the partial derivative with respect to the outward pointing normal

vector of Ωk. Note that along an edge shared by two neighboring subdomains, the

outward pointing normal vectors have opposite direction. Additionally it is important

to recognize that the normal derivative at the corner point x ∈ C is only well defined

in the weak sense. As such the discretization of (4.3.2) corresponding to the weak

form treats (4.3.2e) explicitly. In contrast, the discretization of (4.3.2) corresponding

to the strong form does not have a collocation point at C. Instead, the continuity

of the solution and derivative at C is enforced implicitly by the approximation of

the solution as a polynomial. These differences in interpretation and implementation

ultimately result in different discretizations of (4.3.2).

4.3.2 Weak Formulation Error Estimates

In this section, a multidomain error estimate is developed for one dimensional prob-

lems using approximation results from [13] and the references therein.

Consider the one dimensional boundary value problem
− d2

dx2
y(x) = u(x) + f(x), x ∈ (−1, 1),

y(−1) = y(1) = 0.

(4.3.3)

40

Let V = H1
0 (−1, 1). Then the weak form of (4.3.3) is given by, find y ∈ V such that∫ 1

−1

d

dx
y(x)

d

dx
φ(x)dx =

∫ 1

−1

(u(x) + f(x))φ(x)dx, ∀φ ∈ V . (4.3.4)

For the one dimensional multidomain problem, let

−1 = x0 < x1 < . . . < xK−1 < xK = 1

and define the subintervals Iτ = (xτ−1, xτ) for τ = 1, . . . , K. Let PKq−1(−1, 1) be

the set of functions in L2(−1, 1) such that for the restriction to a subdomain Iτ the

function is a polynomial of degree less than or equal to (q − 1), that is

PKq−1(−1, 1) = {φ ∈ L2(−1, 1) | φ
∣∣
Iτ ∈ Pq−1(Iτ), τ = 1. . . . , K}. (4.3.5)

Define the finite dimensional subspace

Vq(−1, 1) = PKq−1(−1, 1) ∩H1
0 (−1, 1). (4.3.6)

Then the Galerkin discretization of (4.3.4) is given by, find yq ∈ Vq such that∫ 1

−1

d

dx
yq(x)

d

dx
φ(x)dx =

∫ 1

−1

(u(x) + f(x))φ(x)dx, ∀φ ∈ Vq. (4.3.7)

Theorem 4.3.1 below provides an approximation error result for the piecewise

polynomial subspace Vq (for details refer to [13]).

For k = 1, . . . , K, let xkj ∈ [xk−1, xk], j = 1, . . . , q, be the LGL collocation points

in [xk−1, xk], let ψkj , j = 1, . . . , q, be the corresponding Lagrange polynomials, and let

wkj , j = 1, . . . , q, be the LGL quadrature nodes. Define the interpolation operator

Let Iq−1 : C[a, b]→ PKq−1(−1, 1) be the interpolation operator

(Iq−1u)(x) =
K∑
k=1

q∑
j=1

u(xkj)ψ
k
j (x). (4.3.8)

Theorem 4.3.1 Let k ∈ {0, 1} and m > (1 + k)/2. There exists a constant C > 0

such that for all functions r ∈ Hm(−1, 1) the following interpolation error estimate

holds

‖r − Iq−1r‖Hk(−1,1) ≤ C(q − 1)k−m‖r‖Hm(−1,1). (4.3.9)

41

Remark 4.3.2 The right hand side in (4.3.9) also depends on the subinterval lengths

xk − xk−1. Since uniform partitions are used in this thesis, this term is dropped. See,

e.g., [13] for details.

A bound for the error between the exact solution and the solution to the finite

dimensional subspace approximation is given by Lemma 4.3.3.

Lemma 4.3.3 Let the weak solution y to (4.3.4) satisfy y ∈ Hm(−1, 1) with m > 3/2.

There exists a constant C > 0 such that the error satisfies

‖y − yq‖H1(−1,1) ≤ C(q − 1)1−m‖y‖Hm(−1,1). (4.3.10)

Similar to the error bound for the single domain discretization in Lemma 4.2.2, the

error bound in Lemma 4.3.3 is obtained by substituting the polynomial approximation

error estimate from Theorem 4.3.1 into Céa’s Lemma.

Remark 4.3.4 The error bound in Lemma 4.3.3 requires that integrals such as∫
Ω

(u(x) + f(x))φ(x)dx for φ ∈ Vq are evaluated exactly. If instead they are ap-

proximted by quadrature an additional term on the right hand side arises, which is

proportional to the quadrature error.

4.3.3 Discretization of the Weak Formulation

Let V = {φ ∈ H1(Ω) | φ = 0 on ∂Ω}. Then the weak formulation for (4.3.1) is given

by, find y ∈ V such that

a(y, φ) = b(φ), ∀ φ ∈ V , (4.3.11)

where

a(y, φ) =

∫
Ω

∇y(x) · ∇φ(x)dx and b(φ) =

∫
Ω

(u(x) + f(x))φ(x)dx.

42

Let P4
q−1(Ω) be the set of functions φ on Ω such that φ restricted to Ωk for

k ∈ {1, 2, 3, 4} is a polynomial of degree no more than (q−1) and define the subspace

Vq = P4
q−1(Ω) ∩ V .

The Galerkin discretization of (4.3.11) is given by, find yq ∈ Vq such that∫
Ω

∇yq(x)∇φ(x)dx =

∫
Ω

(u(x) + f(x))φ(x)dx, ∀ φ ∈ Vq. (4.3.12)

The solution of (4.3.12) restricted to the subdomain Ωk will be denoted by y
(k)
q ,

y(k)
q = y|

Ωk
.

In terms of the partitioned geometry, (4.3.12) can be written as

4∑
k=1

∫
Ωk
∇y(k)

q (x)∇φ(x)dx =
4∑

k=1

∫
Ωk

(u(x) + f(x))φ(x)dx, ∀ φ ∈ Vq. (4.3.13)

Because yq is a polynomial on each subdomain, and thus smooth on each subdomain,

the left hand side can be rewritten by the diverence theorem, which yields

4∑
k=1

∫
Ωk
−∆y(k)

q (x)φ(x)dx+
4∑

k=1

∫
∂Ωk\∂Ω

(∇y(k)
q (x) · n̄)φ(x)dx

=
4∑

k=1

∫
Ωk

(u(x) + f(x))φ(x)dx, ∀ φ ∈ Vq.
(4.3.14)

Now I set up and solve a linear system corresponding to the discretization of the

weak formulation of the state equation on four leaf boxes. Discretize each subdomain

as in the single domain case by placing a tensor product grid of LGL quadrature

points on each subdomain. Let x
(k)
j denote collocation point j of the tensor product

grid on Ωk, and let ψ
(k)
j (x) be the 2D Lagrange interpolation basis function for the

collocation points on domain Ωk associated with the point x
(k)
j . Let w

(k)
j be the 2D

LGL quadrature weight for the collocation points x
(k)
j . Note that w

(k)
j = w

(k)
j,1w

(k)
j,2 ,

where w
(k)
j,` is the 1D LGL quadrature weight in the x` direction associated with the

point x
(k)
j .

43

Ω1

Ω2

Ω3

Ω4

Figure 4.7: Illustration of the tensor product grid of LGL quadrature points on each

subdomain Ωk for q = 6. Observe that there are not 4q2 unique collocation points

due the fact collocation points that lie on the intersection of subdomain boundaries

are described from each subdomain.

Let π be a mapping such that the index pair (j, k) for each collocation point x
(k)
j is

mapped to a single index (i.e. π(j, k) = µ means that x
(k)
j = xµ). Note that this

mapping is not one-to-one as for some µ, xµ ∈ Ωk ∩ Ω`.

It will prove useful to be able to “undo” the mapping π. To accomplish this,

define the mapping ρ such that if π(j, k) = µ then ρ(µ, k) = j (i.e. ρ(µ, k) = j means

that xµ = x
(k)
j).

As in the single domain case, it will be useful to partition

J := {1, . . . , q2} = JI(k) ∪ JB ∪ JE(k,`) ∪ JM(k,`) ∪ JC

where the index sets JI(k), JB, JE(k,`), JM(k,`) and JC are defined next. See Figure 4.8

for an illustration of these index sets.

As in the single domain discretization, introduce the following convenient sets of

indices.

44

Let JI(k) index the collocation points on the interior of the k-th subdomain

JI(k) = {π(j, k) | x(k)
j ∈ Ωk}.

Let JB index the collocation points that intersect the boundary of the whole domain

JB = {π(j, k) | x(k)
j ∈ ∂Ω}.

Let JE(k,`) index the collocation points on the shared edge of neighboring subdomains

Ωk and Ω`

JE(k,`) = {π(j, k) | x(k)
j ∈ ∂Ωk ∩ ∂Ω`}.

Let JM(k,`) index the collocation points on the interior of the shared edge of neigh-

boring subdomains Ωk and Ω`

JM(k,`) = {π(j, k) | x(k)
j ∈ Γk,`},

so that JM(k,`) ⊂ JE(k,`). Finally, let JC index the collocation point at the intersection

of each of the four subdomains

JC = {π(j, k) | x(k)
j ∈ C}.

To represent a function on Ω in terms of the basis functions ψ
(k)
j (x) it is necessary to

extend the basis functions to Ω while maintaining orthogonality.

For the µ corresponding to collocation points on the interior of a subdomain, µ =

π(j, k) ∈ JI(k), extend the local basis functions to the whole domain by

ψµ(x) =

ψ
(k)
j (x), x ∈ Ωk,

0, x ∈ Ω \ Ωk.

For µ corresponding to collocation points on the boundary of the whole domain that

45

Ω1

Ω2

Ω3

Ω4

Figure 4.8: Illustration of the collocation points for the four leaf problem by index

sets. The gray crosses denote interior points of Ωk, corresponding to JI(k). The red

diamonds denote points on the boundary of Ω that lie on the boundary of a single sub-

domain, corresponding to JB. The blue circles denotes points on the boundary of Ω

that lie in the intersection of two subdomain boundaries corresponding to JB ∩ JE(k,`).

The green squares denote interior points of Ω that lie in the intersection of exactly

two subdomain boundaries ∂Ωk and ∂Ω`, corresponding to JM(k,`). Finally, the black

triangle denotes the point that lies in the intersection of all four subdomain bound-

aries.

46

only lie on the boundary of a single subdomain, µ = π(j, k) ∈ JB \ JE(k,`), extend the

local basis functions by

ψµ(x) =

ψ
(k)
j (x), x ∈ Ωk,

0, x ∈ Ω \ Ωk.

For µ corresponding to collocation points on a subdomain interface, µ = π(j, k) =

π(m, `) ∈ JE(k,`) \ JC , extend the local basis functions by

ψµ(x) =


ψ

(k)
j (x), x ∈ Ωk,

ψ
(`)
m (x), x ∈ Ω` \ Ωk,

0, x ∈ Ω \ (Ωk ∪ Ω`).

Finally, for µ corresponding the collocation point at the intersection of all four sub-

domains (i.e. at the point (0.5, 0.5)), µ = π(j, 1) = π(k, 2) = π(`, 3) = π(m, 4) ∈ JC ,

extend the basis function by

ψµ(x) =



ψ
(1)
j (x), x ∈ Ω1,

ψ
(2)
k (x), x ∈ Ω2 \ Ω1,

ψ
(3)
` (x), x ∈ Ω3 \ Ω1,

ψ
(4)
m (x), x ∈ Ω4 \ (Ω2 ∪ Ω3).

Now that the local basis functions have been extended to the whole domain, a

function r ∈ Vq may be represented by the basis expansion

r(x) =
∑
µ∈J

r(xµ)ψµ(x). (4.3.15)

Let y be given by

y = (y1, . . . ,yN)T (4.3.16)

47

and let yµ denote the µ-th element of y (i.e. yµ = yq(xµ)). Furthermore, let

u = (u(x1), . . . , u(xN))T , (4.3.17)

f = (f(x1), . . . , y(xN))T . (4.3.18)

Let D
(k)
1 ,D

(k)
2 and L(k) be the local partial differentiation matrices and the local

discretized differential operator on Ωk, so that

∂

∂x1

y(k)(x
(k)
j) = eTj D

(k)
1 y(k), (4.3.19a)

∂

∂x2

y(k)(x
(k)
j) = eTj D

(k)
2 y(k), (4.3.19b)

−∆y(k)(x
(k)
j) = eTj L(k)y(k). (4.3.19c)

To obtain the linear system corresponding to (4.3.14), replace the integrals by

quadrature and require the resulting equation to hold for all φ ∈ span{ψ1, . . . , ψN}

such that φ = 0 on ∂Ω. Note that the quadrature rule is exact for the integrals in

(4.3.14) involving yq.

The Dirichlet boundary condition yq(x) = 0 for all x ∈ ∂Ω implies

eTµy = 0, for µ ∈ JB. (4.3.20)

Thus for all µ such that the collocation point xµ is not in ∂Ω, i.e. µ ∈ J \ JB the

48

discretization of (4.3.14) is given by

4∑
k=1

q2∑
`=1

−w
(k)
` ∆y(k)

q (x
(k)
`)ψµ(x

(k)
`) +

∑
j∈JE(1,3)

wj,2

(
∂y

(1)
q

∂x1

(xj)−
∂y

(3)
q

∂x1

(xj)

)
ψµ(xj)

+
∑

j∈JE(2,4)

wj,2

(
∂y

(2)
q

∂x1

(xj)−
∂y

(4)
q

∂x1

(xj)

)
ψµ(xj)

+
∑

j∈JE(1,2)

wj,1

(
∂y

(1)
q

∂x2

(xj)−
∂y

(2)
q

∂x2

(xj)

)
ψµ(xj)

+
∑

j∈JE(3,4)

wj,1

(
∂y

(3)
q

∂x2

(xj)−
∂y

(4)
q

∂x2

(xj)

)
ψµ(xj)

=
4∑

k=1

q2∑
`=1

w
(k)
`

(
u(x

(k)
`) + f(x

(k)
`)
)
ψµ(x

(k)
`).

(4.3.21)

For µ corresponding to collocation points on the interior of a subdomain, µ ∈ JI(k),

k = 1, . . . , 4, (4.3.21) simplifies as follows

q2∑
`=1

−w
(k)
` ∆y(k)

q (x
(k)
`)ψµ(x

(k)
`) =

q2∑
`=1

w
(k)
`

(
u(x

(k)
`) + f(x

(k)
`)
)
ψµ(x

(k)
`).

Due to the Lagrange basis functions, each sum reduces to a single term

−wµ∆y(k)
q (xµ) = wµ (u(xµ) + f(xµ)) .

Dividing by the constant wµ yields

−∆y(k)
q (xµ) = u(xµ) + f(xµ).

This can be written in terms of the local discretized differential operators as

eTρ(µ,k)L
(k)yπ(1:q2,k) = eTµu + fµ, for µ ∈ JI(k). (4.3.22a)

For µ corresponding to collocation points on the interior of the shared edge between

49

Ω1 and Ω3, that is µ ∈ JM(1,3), (4.3.21) simplifies as

4∑
k=1

q2∑
`=1

−wk
`∆y

(k)
q (x

(k)
`)ψµ(x

(k)
`) +

∑
j∈JE(1,3)

wj,2

(
∂y

(1)
q

∂x1

(xj)−
∂y

(3)
q

∂x1

(xj)

)
ψµ(xj)

=
4∑

k=1

q2∑
`=1

w
(k)
`

(
u(x

(k)
`) + f(x

(k)
`)
)
ψµ(x

(k)
`).

Again each sum has only one non-zero term, which yields(
−wµ∆y(1)

q (xµ)−wµ∆y(3)
q (xµ) + wµ,2

∂y
(1)
q

∂x1

(xµ)− wµ,2
∂y

(3)
q

∂x1

(xµ)

)
= 2wµ (u(xµ) + f(xµ)) .

Dividing by the constant wµ,2 gives(
−wµ,1∆y(1)

q (xµ) +
∂y

(1)
q

∂x1

(xµ)− wµ,1∆y(3)
q (xµ)− ∂y

(3)
q

∂x1

(xµ)

)
= 2wµ,1 (u(xµ) + f(xµ)) .

This can be written in terms of the local discretized differential operators as

eTρ(µ,1)

(
wµ,1L

(1) + D
(1)
1

)
yπ(1:q2,1) + eTρ(µ,3)

(
wµ,1L

(3) −D
(3)
1

)
yπ(1:q2,3)

= 2wµ,1
(
eTµu + fµ

)
, for µ ∈ JM(1,3).

(4.3.22b)

Following a similar process for µ ∈ JM(2,4) yields(
−wµ,1∆y(2)

q (xµ) +
∂y

(2)
q

∂x1

(xµ)− wµ,1∆y(4)
q (xµ)− ∂y

(4)
q

∂x1

(xµ)

)
= 2wµ,1 (u(xµ) + f(xµ)) ,

which in terms of the local discretized differential operators is given by

eTρ(µ,2)

(
wµ,1L

(2) + D
(2)
1

)
yπ(1:q2,2) + eTρ(µ,4)

(
wµ,1L

(4) −D
(4)
1

)
yπ(1:q2,4)

= 2wµ,1
(
eTµu + fµ

)
, for µ ∈ JM(2,4).

(4.3.22c)

50

For µ corresponding to collocation points on the interior of the shared edge between

Ω1 and Ω2, that is µ ∈ JM(1,2), (4.3.21) simplifies as follows

4∑
k=1

q2∑
`=1

−wk
`∆y

(k)
q (x

(k)
`)ψµ(x

(k)
`) +

∑
j∈JE(1,2)

wj,1

(
∂y

(1)
q

∂x2

(xj)−
∂y

(2)
q

∂x2

(xj)

)
ψµ(xj)

=
4∑

k=1

q2∑
`=1

w
(k)
`

(
u(x

(k)
` + f(x

(k)
`)
)
ψµ(x

(k)
`).

As before, the Lagrange basis causes each sum to reduce to a single non-zero term(
−wµ∆y(1)

q (xµ)−wµ∆y(2)
q (xµ) + wµ,1

∂y
(1)
q

∂x2

(xµ)− wµ,1
∂y

(2)
q

∂x2

(xµ)

)
= 2wµ (u(xµ) + f(xµ)) .

Dividing by the constant wµ,1 yields(
−wµ,2∆y(1)

q (xµ) +
∂y

(1)
q

∂x2

(xµ)− wµ,2∆y(2)
q (xµ)− ∂y

(2)
q

∂x2

(xµ)

)
= 2wµ,2 (u(xµ) + f(xµ)) .

This can be written in terms of the local discretized differential operators as

eTρ(µ,1)

(
wµ,2L

(1) + D
(1)
2

)
yπ(1:q2,1) + eTρ(µ,2)

(
wµ,2L

(2) −D
(2)
2

)
yπ(1:q2,2)

= 2wµ,2
(
eTµu + fµ

)
, for µ ∈ JM(1,2).

(4.3.22d)

Following a similar process for µ ∈ JM(3,4) yields(
−wµ,2∆y(3)

q (xµ) +
∂y

(3)
q

∂x2

(xµ)− wµ,2∆y(4)
q (xµ)− ∂y

(4)
q

∂x2

(xµ)

)
= 2wµ,2 (u(xµ) + f(xµ)) ,

which in terms of the local discretized differential operators is given by

eTρ(µ,3)

(
wµ,2L

(3) + D
(3)
2

)
yπ(1:q2,3) + eTρ(µ,4)

(
wµ,2L

(4) −D
(4)
2

)
yπ(1:q2,4)

= 2wµ,2
(
eTµu + fµ

)
, for µ ∈ JM(3,4).

(4.3.22e)

51

For µ corresponding to the collocation point on the intersection of each of the four

subdomains, that is µ ∈ JC , (4.3.21) simplifies as

4∑
k=1

−wµ∆y(k)
q (xµ) + wµ,2

(
∂y

(1)
q

∂x1

(xµ)− ∂y
(3)
q

∂x1

(xµ) +
∂y

(2)
q

∂x1

(xµ)− ∂y
(4)
q

∂x1

(xµ)

)

+wµ,1

(
∂y

(1)
q

∂x2

(xµ)− ∂y
(2)
q

∂x2

(xµ) +
∂y

(3)
q

∂x2

(xµ)− ∂y
(4)
q

∂x2

(xµ)

)
= 4wµ (u(xµ) + f(xµ)) ,

This can be written in terms of the local discretized differential operators as

eTρ(µ,1)

(
−wµL

(1) + wµ,2D
(1)
1 + wµ,1D

(1)
2

)
yπ(1:q2,1)

+ eTρ(µ,2

(
−wµL

(2) + wµ,2D
(2)
1 − wµ,1D

(2)
2

)
yπ(1:q2,2)

+ eTρ(µ,3

(
−wµL

(3) − wµ,2D(3)
1 + wµ,1D

(3)
2

)
yπ(1:q2,3)

+ eTρ(µ,4

(
−wµL

(4) − wµ,2D(4)
1 − wµ,1D

(4)
2

)
yπ(1:q2,4)

= 4wµ

(
eTµu + fµ

)
, for µ ∈ JC .

(4.3.22f)

In summary, approximating the integrals in (4.3.14) by quadrature results in the

linear system (4.3.20),(4.3.22) in y which is denoted by

Ay = −Bu + c. (4.3.23)

where A,B ∈ RN×N , y,u, c ∈ RN . Solving the linear system for y provides the

coefficient values of the composite polynomial approximation of the weak solution

yq(x). Although the matrices in (4.2.21) and (4.3.23) are different, the same notation

is used since ultimately only the multidomain discretization will be considered. Note

that the matrix B is a diagonal matrix with entries

Bµµ =



−1, µ ∈ ∪4
k=1JI(k),

−2wµ,1, µ ∈ JM(1,3) ∪ JM(2,4),

−2wµ,2, µ ∈ JM(1,2) ∪ JM(3,4),

−4wµ, µ ∈ JC ,

0, µ ∈ JB.

(4.3.24)

52

Analogous to Theorem 4.2.4 the following result can be proven.

Theorem 4.3.5 The matrix A ∈ RN×N in (4.3.23) is symmetric positive definite on

{v | vµ = 0, µ ∈ JD}.

4.3.4 Discretization of the Strong Formulation

Discretize each subdomain as in the single domain case by placing a tensor product

grid of LGL quadrature points less corners on each subdomain. Let x̃
(k)
j denote col-

location point j of the tensor product grid on Ωk, and let ψ̃
(k)
j (x) be the 2D Lagrange

interpolation basis function for the collocation points on domain Ωk associated with

the point x̃
(k)
j . The quadrature points are illustrated in Figure 4.9.

Ω1

Ω2

Ω3

Ω4

Figure 4.9: Illustration of the tensor product grid of LGL quadrature points less

corners on each subdomain Ωk for q = 6. Observe that the only difference between

this set of points and the set considered in Figure 4.7 is the removal of collocation

points on corners of each subdomain.

Define the mapping π̃ and ρ̃ (analogous to π and ρ in Section 4.3.4) such that

π̃(j, k) = µ implies that x̃
(k)
j = x̃µ and ρ̃(µ, k) = j.

53

It will again be useful to partition the index set

J̃ := J̃I(k) ∪ J̃B ∪ J̃M(k,`)

where the index sets J̃I(k), J̃B, and J̃M(k,`) will be defined next. The indexed colloca-

tion points are illustrated in Figure 4.10.

Define the index sets

J̃I(k) = {π̃(j, k) | x̃(k)
j ∈ Ωk},

J̃B = {π̃(j, k) | x̃(k)
j ∈ ∂Ω},

J̃M(k,`) = {π̃(j, k) | x̃(k)
j ∈ Γk,`}.

Again it is necessary to extend the local basis functions ψ̃
(k)
j (x) to the entire domain

Ω.

For µ = π̃(j, k) ∈ J̃I(k) ∪ J̃B

ψ̃µ(x) =

ψ̃
(k)
j (x), x ∈ Ωk,

0, x ∈ Ω \ Ωk.

For µ = π̃(j, k) = π(m, `) ∈ J̃M(k,`)

ψ̃µ(x) =


ψ̃

(k)
j (x), x ∈ Ωk,

ψ̃
(`)
m (x), x ∈ Ω` \ Ωk,

0, x ∈ Ω \ (Ωk ∪ Ω`).

Given the collocation points {x̃µ}µ∈J̃ and the extended basis functions {ψ̃µ(x)}µ∈J̃ ,

the composite polynomial approximation of the function y is given by

y(x) ≈ ỹq(x) =
∑
µ∈J̃

ỹµψ̃µ(x). (4.3.25)

The restriction of (4.3.25) to the subdomain Ωk will be denoted by ỹ
(k)
q ,

ỹ(k)
q = ỹ|

Ωk
.

54

Ω1

Ω2

Ω3

Ω4

Figure 4.10: Illustration of the collocation points for the four leaf problem by index

sets. The gray crosses denote interior points of Ωk, corresponding to J̃I(k). The red

diamonds denote points on the boundary of Ω that lie on the boundary of a single

subdomain, corresponding to J̃B. Finally, the green squares denote interior points

of Ω that lie in the intersection of exactly two subdomain boundaries ∂Ωk and ∂Ω`,

corresponding to J̃M(k,`). The important difference between this set of points and the

set considered in Figure 4.8 is that there are no points that lie in the intersection of

all four subdomain boundaries.

55

Let D̃1

(k)
, D̃2

(k)
and L̃(k) be the partial differentiation matrices and the discretized

differential operator on Ωk as in the single domain case.

To discretize (4.3.2), approximate y by the polynomial ỹq as in (4.3.25), then

require the resulting equation to hold at each collocation point.

For the Dirichlet boundary condition, require that ỹq(x̃µ) = 0 for all x̃µ ∈ ∂Ω

ẽTµ ỹ = 0, for µ ∈ J̃B. (4.3.26)

Note that the Dirichlet boundary condition is enforced explicitly as in the discretiza-

tion of the weak formulation (4.3.20). For µ corresponding to collocation points on

the interior of a subdomain, that is µ ∈ J̃I(k)

−∆ỹ(k)
q (x̃µ) = u(x̃µ) + f(x̃µ),

which can be written in terms of the local discretized differential operators as

ẽTρ̃(µ,k)L̃
(k)ỹπ̃(1:q2−4,k) = ẽTµ ũ + f̃µ, for µ ∈ J̃I(k). (4.3.27a)

This is equivalent to the condition enforced in the discretization of the weak formu-

lation (4.3.22a).

For µ corresponding to collocation points on the shared edge of Ω1 and Ω3, that

is µ ∈ J̃M(1,3)

∂ỹ
(1)
q

∂x1

(x̃µ)− ∂ỹ
(3)
q

∂x1

(x̃µ) = 0,

which can be written in terms of the local discretized differential operators as

ẽTρ̃(µ,1)D̃1

(1)
ỹπ̃(1:q2−4,1) − ẽTρ̃(µ,3)D̃1

(3)
ỹπ̃(1:q2−4,3) = 0, for µ ∈ J̃M(1,3). (4.3.27b)

In contrast to the weak formulation Neumann condition (4.3.22b), the strong

formulation of the Neumann condition (4.3.27b) does not include a linear combination

of the differential operator and right hand side. Similarly, for µ corresponding to

collocation points on the shared edge of Ω2 and Ω4, that is µ ∈ J̃M(2,4)

∂ỹ
(2)
q

∂x1

(x̃µ)− ∂ỹ
(4)
q

∂x1

(x̃µ) = 0,

56

which can be written in terms of the local discretized differential operators as

ẽTρ̃(µ,2)D̃1

(2)
ỹπ̃(1:q2−4,2) − ẽTρ̃(µ,4)D̃1

(4)
ỹπ̃(1:q2−4,4) = 0, for µ ∈ J̃M(2,4). (4.3.27c)

For µ corresponding to collocation points on the shared edge of Ω1 and Ω2, that is

µ ∈ J̃M(1,2)

∂ỹ
(1)
q

∂x2

(x̃µ)− ∂ỹ
(2)
q

∂x2

(x̃µ) = 0,

which can be written in terms of the local discretized differential operators as

ẽTρ̃(µ,1)D̃2

(1)
ỹπ̃(1:q2−4,1) − ẽTρ̃(µ,2)D̃2

(2)
ỹπ̃(1:q2−4,2) = 0, for µ ∈ J̃M(1,2). (4.3.27d)

Finally, for µ corresponding to collocation points on the shared edge of Ω3 and Ω4,

that is µ ∈ J̃M(3,4)

∂ỹ
(3)
q

∂x2

(x̃µ)− ∂ỹ
(4)
q

∂x2

(x̃µ) = 0,

which can be written in terms of the local discretized differential operators as

ẽTρ̃(µ,3)D̃2

(3)
ỹπ̃(1:q2−4,3) − ẽTρ̃(µ,4)D̃2

(4)
ỹπ̃(1:q2−4,4) = 0, for µ ∈ J̃M(3,4). (4.3.27e)

In summary, discretizing the strong formulation by composite collocation results in

the linear system (4.3.26), (4.3.27) which is denoted by

Ãỹ = −B̃ũ + c̃. (4.3.28)

where Ã, B̃ ∈ R(N−9)×(N−9), ỹ, ũ, c̃ ∈ R(N−9). Solving the linear system for ỹ pro-

vides the coefficient values for the composite polynomial approximation of the strong

solution ỹq(x).

Note that the matrix B̃ is a diagonal matrix with entries

B̃µµ =


−1, µ ∈ ∪4

k=1J̃I(k),

0 µ ∈ J̃M(1,2) ∪ J̃M(1,3) ∪ J̃M(2,4) ∪ J̃M(3,4),

0, µ ∈ J̃B.

(4.3.29)

57

There are two distinctions between the linear systems corresponding to the weak

form discretization and the strong form discretization for the four leaf problem. First,

the weak form discretization has collocation points at the corners of each subdomain

whereas the strong form discretization does not (thus the linear system for the strong

form discretization is slightly smaller than for the weak form). Second, the implemen-

tation of the Neumann condition for the weak form discretization includes a linear

combination of the differential operator and right hand side whereas the implemen-

tation of the Neumann condition in the strong form discretization does not. This is

made more precise in the following remark.

Remark 4.3.6 In the strong form multidomain discretization, the control at the sub-

domain interfaces (i.e. ũµ for µ ∈ J̃M(k,`)) does not enter the discretization. See

(4.3.29). This is the most important distinction between the strong form discretiza-

tion (4.3.28) and the weak form discretization (4.3.23) of the state equation.

In the next section, the performance of each discretization is examined for solving

a simple boundary value problem.

4.4 State Equation Numerical Example

Let Ω = (0, 1)2 and consider the boundary value problem−∆y(x) = u(x) + f(x), x ∈ Ω

y(x) = 0, x ∈ ∂Ω,

where

u(x) = 10 sin(3πx1) sin(πx2),

f(x) = 10π2 sin(πx1) sin(3πx2)− 10 sin(3πx1) sin(πx2),

which yields the exact solution

yex(x) = sin(πx1) sin(3πx2).

58

To evaluate the performance of the weak and strong discretizations for the four leaf

boundary value problem, the linear systems corresponding to the weak form and

the strong form ((4.3.23) and (4.3.28) respectively) were constructed and solved over

a range of polynomial orders. Figure 4.11 provides the convergence behavior by

comparing the relative error in the approximate solutions yq for the weak form and

ỹq for the strong form.

4 6 8 10 12 14 16 18 20 22

10−15

10−12

10−9

10−6

10−3

100

q

R
el

at
iv

e
E

rr
or

Convergence Behavior

weak
strong

Figure 4.11: The relative L2 errors vs. q for the weak and strong four leaf formula-

tions applied to the test problem. Both formulations converge at similar rates. The

error in the weak formulation is smaller than the error in the strong formulation for

the same value of q as the presence of corner nodes allows the weak composite polyno-

mial approximation (yq) to represent more functions exactly compared to the strong

composite polynomial approximation (ỹq).

Define the relative errors

EL2(yq) =
(y − yex(x))TW(y − yex(x))

maxj |y(xj)|
, (4.4.1a)

59

for the weak form, and

EL2(ỹq) =
(ỹ − yex(x̃))TW̃(ỹ − yex(x̃))

maxj |y(x̃j)|
, (4.4.1b)

for the strong form.

Both discretizations perform well and achieve errors on the order of machine pre-

cision. As from the 1D error estimate for the multidomain weak form discretization,

see Lemma 4.3.3, the numerical results indicate that the order of accuracy of the so-

lution increases with q for smooth solutions. Additionally, the error from the solution

corresponding to the weak form is less than the error for the solution corresponding

to the strong form. This behavior is expected as the composite polynomial represen-

tation of the solution for the weak form yq(x) can represent higher order composite

polynomials exactly than the composite polynomial representation of the solution for

the strong form ỹq(x) due to the presence of the corner nodes in the weak form.

Chapter 5

The Optimal Control Problem

The overall goal of this thesis is to accelerate the solution of PDE constrained opti-

mization problems by exploiting the efficiency of the HPS method. The strong form

discretization as presented in Section 4.3.4 underlies the standard HPS method. In

this Chapter, the convergence behavior of the strong form discretization is examined

in both the optimize-then-discretize and the discretize-then-optimize approaches. In

particular for the discretize-then-optimize approach it is observed that strong form

discretization does not provide high order accurate convergence. For this case sev-

eral modified discretizations are examined and ultimately it is concluded that in the

discretize-then-optimize approach the weak form discretization (as presented in Sec-

tion 4.3.3) should be used.

First in Section 5.1 the infinite dimensional optimal control problem is presented.

Then, the performance of the discretizations in the optimization context are inves-

tigated. In Section 5.2, I derive the optimality system for the model problem under

the optimize-then-discretize approach. Then the corresponding optimality system is

solved for a test problem to observe the behavior of the both the weak and strong

form discretizations under the optimize-then-discretize approach. In Section 5.3, I de-

rive the optimality system for the model problem under the discretize-then-optimize

approach. Both the weak and strong form discretizations are considered as well as

60

61

several modifications to the strong form discretization. The optimality system corre-

sponding to a test problem is solved for each discretization to examine the behavior

under the discretize-then-optimize approach. Finally, I given an error estimate for

the weak form discretization in the context of optimization in Section 5.4.

5.1 The Infinite Dimensional Problem

Let Ω = (0, 1)2. For any u ∈ L2(Ω) the state equation (1.1.1b) has a unique solution

y(· , u) ∈ H1(Ω). Therefore the model problem can be written as

Minimize
u

J(u)
def
=

1

2

∫
Ω

(y(x;u)− z(x))2 dx+
α

2

∫
Ω

u2(x)dx (5.1.1)

where y(· ;u) ∈ H1(Ω) is the solution of (1.1.1b) for a given control u.

The analytical treatement of the optimal control problem (5.1.1) is based on the

weak formulation of the state equation. See, e.g., Hinze et al. [11, Ch. 1], Lions [12],

or Tröelsch [24, Ch. 2]. Consider the weak formulation of the state equation: find y

such that y = g on ∂Ω and∫
Ω

∇y(x)∇φ(x)dx =

∫
Ω

(u(x) + f(x))φ(x)dx, ∀ φ ∈ V . (5.1.2)

Let yd ∈ H1(Ω) be a function that satisfies the inhomogeneous Dirichlet boundary

conditions y = g on ∂Ω, and define

V =
{
v ∈ H1(Ω) : v(x) = 0 on ∂Ω

}
.

Define y0 = y − yd so that y0 ∈ V . The state space is Y = yd + V and the control

space is U = L2(Ω).

The Lagrange functional

L : V × U × V → R (5.1.3a)

62

associated with (1.1.1) is given by

L(y0, u, p) =
1

2

∫
Ω

(yd(x) + y0(x)− z(x))2dx+
α

2

∫
Ω

u2(x)dx

+

∫
Ω

∇(yd(x) + y0(x))∇p(x)dx−
∫

Ω

(u(x) + f(x))p(x)dx.

(5.1.3b)

The partial Fréchet derivative ∂pL(y0, u, p)φ = 0 for all φ ∈ V gives the weak form of

the state equation∫
Ω

∇y(x)∇φ(x)dx =

∫
Ω

(u(x) + f(x))φ(x)dx for all φ ∈ V . (5.1.4a)

The partial Fréchet derivative ∂y0L(y0, u, p)φ = 0 for all φ ∈ V gives the weak form

of the adjoint equation∫
Ω

∇φ(x)∇p(x)dx = −
∫

Ω

(y(x)− z(x))φ(x)dx for all φ ∈ V . (5.1.4b)

Finally, the partial Fréchet derivative ∂uL(y, u, p)ω = 0 for all ω ∈ U gives

αu(x)− p(x) = 0 almost everywhere in Ω. (5.1.4c)

The gradient of J defined in (5.1.1) can be computed using the adjoint equation

approach. Specifically, the gradient of J is

∇J(u) = αu− p, (5.1.5)

where p ∈ H1(Ω) is the solution of the adjoint equation (5.1.4b) with y = y(· , u) the

solution of the state equation (5.1.4a).

Since (5.1.1) is a strictly convex quadratic problem, the condition ∇J(u) = αu−

p = 0 almost everywhere on Ω is a necessary and sufficient condition for u to be the

solution of (5.1.1). Using the definition (5.1.5) of the gradient, finding u that solves

∇J(u) = 0 is equivalent to finding y ∈ H1(Ω), u ∈ L2(Ω), and p ∈ H1(Ω), such that

the coupled system (5.1.4) is satisfied. Under additional regularity assumptions, the

63

weak solution of (5.1.4) is also the strong solution of

−∆p(x) = −(y(x)− z(x)), x ∈ Ω, (5.1.6a)

p(x) = 0, x ∈ ∂Ω, (5.1.6b)

−p(x) + αu(x) = 0, (5.1.6c)

−∆y(x) = u(x) + f(x), x ∈ Ω, (5.1.6d)

y(x) = g(x), x ∈ ∂Ω. (5.1.6e)

Note that the optimality conditions (5.1.6c) and (5.1.6b) imply that the optimal

control satisfies u(x) = 0 for x ∈ ∂Ω.

Since the optimality conditions (5.1.6) are necessary and sufficient for the solution

of the optimal control problem (1.1.1), there are two main directions to pursue for

discretization of the problem, the optimize-then-discretize approach, and discretize-

then-optimize approach. First the optimize-then-discretize approach is presented for

the four leaf problem in Section 5.2. Under this approach, the continuous optimality

system is derived and then each of the differential equations is discretized to obtain

a finite dimensional system. Then the discretize-then-optimize approach for the four

leaf problem is presented in Section 5.3. In this approach the optimal control problem

is discretized directly, which leads to a finite dimensional quadratic optimization

problem.

5.2 Optimize-then-Discretize Approach

Solving the optimal control problem (5.1.1) is equivalent to solving the necessary and

sufficient optimality conditions (5.1.6). In the optimize-then-discretize approach, the

optimality conditions (5.1.6) are discretized and the discretized optimality conditions

are then solved. Both the discretization based on the weak form and the discretization

based on the strong form of the state equation (5.1.6d)–(5.1.6e) and the adjoint

equation (5.1.6a)–(5.1.6b) can be used. Again for simplicity, I consider the four leaf

64

problem as discussed in Section 4.3.1.

5.2.1 Weak Form Discretization of the Model Problem

The weak form discretization of the state equation (5.1.6d)–(5.1.6e) is given by

Ay = −Bu + c, (5.2.1)

for details refer to Section 4.3.3. Similarly, the discretization of the adjoint equation

(5.1.6a)–(5.1.6b) is given by

Ap = By + d, (5.2.2)

and finally, the gradient condition (5.1.6c) is enforced at each collocation point to

obtain the discretized condition

αu− p = 0. (5.2.3)

Collecting equations (5.2.1)–(5.2.3) yields the linear system
−B 0 A

0 αI −I

A B 0




y

u

p

 =


d

0

c

 . (5.2.4)

The linear system (5.2.4) is invertible (for details see Corollary 5.3.2, Remark

5.3.3). Computing the solution to the linear system (5.2.4) provides the compos-

ite polynomial approximation coefficients for the for the state, control, and adjoint

variables corresponding to the weak form discretization.

5.2.2 Strong Form Discretization of the Model Problem

The strong form discretization of the state equation (5.1.6d)–(5.1.6e) is given by

Ãỹ = −B̃ũ + c̃, (5.2.5)

65

for details refer to Section 4.3.4. Similarly, the discretization of the adjoint equation

(5.1.6a)–(5.1.6b) is given by

Ãp̃ = B̃ỹ + d̃, (5.2.6)

and finally the gradient condition (5.1.6c) is enforced at each collocation point by

αũ− p̃ = 0. (5.2.7)

Collecting equations (5.2.5)–(5.2.7) yields the linear system
−B̃ 0 Ã

0 αĨ −Ĩ

Ã B̃ 0




ỹ

ũ

p̃

 =


d̃

0

c̃

 . (5.2.8)

Computing the solution to the linear system (5.2.8) provides the composite polyno-

mial approximation coefficients for the for the state, control, and adjoint variables

corresponding to the strong form discretization.

5.2.3 Numerical Experiment

Consider the optimal control problem

Minimize
u

J(u)
def
=

1

2

∫
Ω

(y(x;u)− z(x))2 dx+
α

2

∫
Ω

u2(x)dx

where Ω = (0, 1)2, α = 0.1, and y(· ;u) ∈ H1
0 (Ω) satisfies

−∆y(x) = u(x) + f(x), x ∈ Ω,

y(x) = 0, x ∈ ∂Ω,

for a given control u.

To construct an example with a known exact solution, choose exact state and

adjoint functions yex and pex that satisfy the appropriate boundary conditions from

the infinite dimensional optimality conditions (5.1.6).

66

Let

yex(x) = sin(πx1) sin(3πx2),

pex(x) = sin(3πx1) sin(πx2).

Then the optimality condition (5.1.6c) gives

uex(x) =
1

α
pex(x).

Finally, the functions z and f are computed from the optimality conditions (5.1.6a)

and (5.1.6d) respectively

z(x) = −∆pex(x) + yex(x),

f(x) = −∆yex(x)− uex(x).

To evaluate the performance of the weak and strong four leaf discretizations for

the optimize-then-discretize approach to solving the optimal control problem, the

optimality systems corresponding to the weak form of the state and adjoint equations

(5.2.4) and the strong form of the state and adjoint equations (5.2.8) were constructed

and solved over a range of q values. Figure 5.1 provides the convergence behavior by

comparing the relative error in the L2-norm of the state, control, and adjoint for the

weak form and the strong form discretizations. Note the relative errors for the weak

and strong formulations are defined as in (4.4.1a) and (4.4.1b) respectively.

Each discretization exhibits high order accurate convergence to the exact solu-

tion and achieves relative errors on the order of machine precision and they both

appear to converge at a similar rate. As anticipated, the solution from the weak form

discretization admits smaller relative errors than the solution from the strong form

discretization for the same value of q since the weak form is able to represent higher

order polynomials exactly than the strong form due to the presence of the corner

points. This is consistent with the convergence results for solving the state equation

by each discretization (see Section 4.4).

67

5 10 15 20
10−15

10−11

10−7

10−3

q

R
el

at
iv

e
E

rr
or

State

weak L2 error
strong L2 error

5 10 15 20
10−15

10−11

10−7

10−3

q

R
el

at
iv

e
E

rr
or

Control

weak L2 error
strong L2 error

5 10 15 20
10−15

10−11

10−7

10−3

q

R
el

at
iv

e
E

rr
or

Adjoint

weak L2 error
strong L2 error

Figure 5.1: The relative L2 errors vs. q for the state, control, and adjoint for the

weak and strong four leaf formulations applied to the test problem for the optimize-

then-discretize approach. The state, control, and adjoint errors converge at a similar

rate for both formulations.

68

The strong form discretization underlies the standard HPS method. Since the

strong form discretization exibits high order convergence behavior with the optimize-

then-discretize approach, the standard HPS method can be used under this approach

without modification. Note that the weak form discretization can also be used with

the HPS method but this requires some modification (refer to Section 6.1).

5.3 Discretize-then-Optimize Approach

Under the discretize-then-optimize approach, the equality constraint (state equation)

and the objective function in (5.1.1) are each discretized to obtain a finite dimensional

optimal control problem which then can be solved numerically.

I start with the discretization based on the weak form in Section 5.3.1. In par-

ticular, will show that of the discretization based on the weak form is used, the

optimize-then-discretize approach and the discretize-then-optimize approach leads to

the same system. Then I examine the behavior of the strong form discretization pre-

sented. This is the underlying discretization in the standard HPS method and the

goal is to determine what modifications (if any) need to be made to the this underlying

discretization in order to accelerate the solution of optimal control problems.

5.3.1 Weak Form Discretization of the Model Problem

For the weak form discretization of the state equation (refer to Section 4.3.3), the

objective function is discretized by applying the LGL quadrature rule on each sub-

domain. That is

J(y,u) =
1

2

∑
µ∈J

wµ(y(xµ)− z(xµ))2 +
α

2

∑
µ∈J

wµu(xµ)2. (5.3.1)

For convenience, define

W = diag(w1, . . . ,w|J |),

z = (z(x1), . . . , z(x|J |))
T ,

69

so that the (5.3.1) may be written as

J(y,u) =
1

2
(y − z)TW(y − z) +

α

2
uTWu.

Thus the finite dimensional optimal control problem corresponding to the weak form

discretization is given by

Minimize
u

1

2
(y − z)TW(y − z) +

α

2
uTWu (5.3.2a)

where y is the solution to

Ay + Bu− c = 0. (5.3.2b)

To obtain the optimality conditions for the finite dimensional problem (5.3.2), in-

troduce the vector of Lagrange multipliers λ associated with the equality constraint

(5.3.2b). Then define the Lagrangian function L for the discretized optimal control

problem (5.3.2) by

L(y,u,λ) = J(y,u) + λT (Ay + Bu− c).

Then the KKT conditions require that at optimality

∇yL(y,u,λ) = 0, (5.3.3a)

∇uL(y,u,λ) = 0, (5.3.3b)

∇λL(y,u,λ) = 0. (5.3.3c)

The KKT condition (5.3.3a) yields the optimality condition

Wy −Wz + ATλ = 0, (5.3.4a)

(5.3.3b) yields

αWu + BTλ = 0, (5.3.4b)

and (5.3.3c) simply yields the discretized state equation

Ay + Bu− c = 0. (5.3.4c)

70

Then the optimality system for (5.3.2) is given by collecting equations Equa-

tions (5.3.4a)–(5.3.4c) to form the linear system
W 0 AT

0 αW BT

A B 0




y

u

λ

 =


Wz

0

c

 . (5.3.5)

It is necessary to relate the Lagrange multipliers λ to the adjoint p for developing

error estimates for the discretize-then-optimize approach. The following theorem

provides the relationship between the Lagrange multipliers and the adjoint.

Theorem 5.3.1 Let λ = (λ1, . . . , λ|J |)
T be the vector of Lagrange multipliers corre-

sponding to the optimal solution of (5.3.5). Then the polynomial

pq(x) =
∑
j∈J

pjψj(x) (5.3.6a)

where

pj =



w−1
j λj, j ∈ ∪4

k=1JI(k)

w−1
j,2λj, j ∈ JM(1,3) ∪ JM(2,4)

w−1
j,1λj, j ∈ JM(1,2) ∪ JM(3,4)

λj, j ∈ JC

0, j ∈ JB

(5.3.6b)

is the solution to the weak form discretization of the adjoint equation (5.1.4b).

Proof: The first row equation of (5.3.5) is equivalent to

λTAv = vTATλ = −vTW(y − z) ∀v ∈ R|J | (5.3.7)

Given v = (v1, . . . ,v|J |)
T ∈ R|J | such that vj = 0 for j ∈ JB, associate it with the

polynomial

vq(x) =
∑
j∈J

vjψj(x) (5.3.8)

71

Let JM = JM(1,3) ∪ JM(2,4) ∪ JM(1,2) ∪ JM(3,4). Then the right hand side of (5.3.7)

yields

−vTW(y − z) =
4∑

k=1

q2∑
`=1

−w
(k)
`

(
yq(x

(k)
`)− zq(x(k)

`)
)
vq(x

(k)
`)

=
4∑

k=1

∑
j∈JI(k)

−wj (yj − zj) vj −
∑
j∈JB

wj (yj − zj) vj

−
∑
j∈JM

2wj (yj − zj) vj −
∑
j∈JC

4wj (yj − zj) vj

≈
∫

Ω

(yq(x)− zq(x))vq(x)dx

(5.3.9)

Note that the quadrature is not exact for (yq − zq)vq.

In the following let v
(k)
q , p

(k)
q denote the restriction of vq, pq to the subdomain Ωk,

v(k)
q = v|

Ωk
, p(k)

q = p|
Ωk
.

72

Then from the definition of A as in (4.3.22) and (4.3.23)

λTAv =
4∑

k=1

∑
j∈JI(k)

−λj∆v(k)
q (xj)

+
∑

j∈JM(1,3)

λj

(
−wj,1∆v(1)

q (xj) +
∂

∂x1

v(1)
q (xj)− wj,1∆v(3)

q (xj)−
∂

∂x1

v(3)
q (xj)

)

+
∑

j∈JM(2,4)

λj

(
−wj,1∆v(2)

q (xj) +
∂

∂x1

v(2)
q (xj)− wj,1∆v(4)

q (xj)−
∂

∂x1

v(4)
q (xj)

)

+
∑

j∈JM(1,2)

λj

(
−wj,2∆v(1)

q (xj) +
∂

∂x2

v(1)
q (xj)− wj,2∆v(2)

q (xj)−
∂

∂x2

v(2)
q (xj)

)

+
∑

j∈JM(3,4)

λj

(
−wj,2∆v(3)

q (xj) +
∂

∂x2

v(3)
q (xj)− wj,2∆v(4)

q (xj)−
∂

∂x2

v(4)
q (xj)

)

+
∑
j∈JC

λj

[
wj,2

(
∂

∂x1

v(1)
q (xj)−

∂

∂x1

v(3)
q (xj) +

∂

∂x1

v(2)
q (xj)−

∂

∂x1

v(4)
q (xj)

)
+ wj,1

(
∂

∂x2

v(1)
q (xj)−

∂

∂x2

v(2)
q (xj) +

∂

∂x2

v(3)
q (xj)−

∂

∂x2

v(4)
q (xj)

)
−wj

(
∆v(1)

q (xj) + ∆v(2)
q (xj) + ∆v(3)

q (xj) + ∆v(4)
q (xj)

)]
(5.3.10)

Writing λ in terms of p via (5.3.6b) and grouping like terms yields

λTAv =
4∑

k=1

q2∑
`=1

−p
(k)
` w

(k)
` ∆v(k)

q (x
(k)
`)

+
∑

j∈JE(1,3)

pjwj,2

(
∂

∂x1

v(1)
q (xj)−

∂

∂x1

v(3)
q (xj)

)

+
∑

j∈JE(2,4)

pjwj,2

(
∂

∂x1

v(2)
q (xj)−

∂

∂x1

v(4)
q (xj)

)

+
∑

j∈JE(1,2)

pjwj,1

(
∂

∂x2

v(1)
q (xj)−

∂

∂x2

v(2)
q (xj)

)

+
∑

j∈JE(3,4)

pjwj,1

(
∂

∂x2

v(3)
q (xj)−

∂

∂x2

v(4)
q (xj)

)

(5.3.11)

Since pq and vq are polynomials of sufficiently small degree, the quadrature formulas

73

are exact. Writing (5.3.11) as integrals yields

λTAv =
4∑

k=1

∫
Ωk
−pq(x)∆v(k)

q (x)dx

+

∫
Γ1,3

pq(x)

(
∂

∂x1

v(1)
q (x)− ∂

∂x1

v(3)
q (x)

)
ds(x)

+

∫
Γ2,4

pq(x)

(
∂

∂x1

v(2)
q (x)− ∂

∂x1

v(4)
q (x)

)
ds(x)

+

∫
Γ1,2

pq(x)

(
∂

∂x2

v(1)
q (x)− ∂

∂x2

v(2)
q (x)

)
ds(x)

+

∫
Γ3,4

pq(x)

(
∂

∂x2

v(3)
q (x)− ∂

∂x2

v(4)
q (x)

)
ds(x)

=
4∑

k=1

∫
Ωk
−pq(x)∆v(k)

q (x)dx

+
4∑

k=1

∫
∂Ωk\∂Ω

pq(x)
(
∇v(k)

q (x) · nk
)
ds(x)

(5.3.12)

where nk is the outward pointing normal direction with respect to Ωk. Applying the

divergence theorem to (5.3.12) once yields

λTAv =
4∑

k=1

∫
Ωk
∇pq(x)∇v(k)

q (x)dx,

74

and applying it a second time yields

λTAv =
4∑

k=1

∫
Ωk
−∆pq(x)v(k)

q (x)dx

+
4∑

k=1

∫
∂Ωk\∂Ω

(
∇p(k)

q (x) · nk
)
vq(x)ds(x)

(5.3.13a)

=
4∑

k=1

∫
Ωk
−∆pq(x)v(k)

q (x)dx

+

∫
Γ1,3

(
∂

∂x1

p(1)
q (x)− ∂

∂x1

p(3)
q (x)

)
vq(x)ds(x)

+

∫
Γ2,4

(
∂

∂x1

p(2)
q (x)− ∂

∂x1

p(4)
q (x)

)
vq(x)ds(x)

+

∫
Γ1,2

(
∂

∂x2

p(1)
q (x)− ∂

∂x2

p(2)
q (x)

)
vq(x)ds(x)

+

∫
Γ3,4

(
∂

∂x2

p(3)
q (x)− ∂

∂x2

p(4)
q (x)

)
vq(x)ds(x)

(5.3.13b)

Writing each of the integrals in (5.3.13b) by the corresponding quadrature rule yields

λTAv =
4∑

k=1

q2∑
`=1

−w
(k)
` ∆p(k)

q (x
(k)
`)v

(k)
`

+
∑

j∈JE(1,3)

vjwj,2

(
∂

∂x1

p(1)
q (xj)−

∂

∂x1

p(3)
q (xj)

)

+
∑

j∈JE(2,4)

vjwj,2

(
∂

∂x1

p(2)
q (xj)−

∂

∂x1

p(4)
q (xj)

)

+
∑

j∈JE(1,2)

vjwj,1

(
∂

∂x2

p(1)
q (xj)−

∂

∂x2

p(2)
q (xj)

)

+
∑

j∈JE(3,4)

vjwj,1

(
∂

∂x2

p(3)
q (xj)−

∂

∂x2

p(4)
q (xj)

)
.

(5.3.14)

Again because pq and vq are polynomials of sufficiently small degree, the quadrature

is exact. Comparing (5.3.14) with (5.3.11) and (5.3.10), observe that (5.3.14) is

equivalent to vTAp up to row scaling. More precisely, let T ∈ R|J |×|J | be a diagonal

75

matrix with entries

Tjj =



wj, j ∈ ∪4
k=1JI(k)

wj,2, j ∈ JM(1,3) ∪ JM(2,4)

wj,1, j ∈ JM(1,2) ∪ JM(3,4)

1, j ∈ JC ∪ JB

(5.3.15)

Then

vTATλ = vTTAp, ∀v ∈ {R|J | | vj = 0 for j ∈ JB}. (5.3.16)

Similarly, comparing (5.3.9) and the definition of B in (4.3.24) yields

−vTW(y − z) = vTT(By + d), ∀v ∈ {R|J | | vj = 0 for j ∈ JB}. (5.3.17)

The desired result is obtained by combining (5.3.16) and (5.3.17). 2

Corollary 5.3.2 For the weak form discretization applied to the model problem (1.1.1),

the optimality systems for the discretize-then-optimize approach (5.3.5) and the optimize-

then-discretize approach (5.2.4) are equivalent.

Proof: Theorem 5.3.1 shows that

Wy + ATλ = Wz ⇐⇒ −By + Ap = d

It remains to show that

αWu + BTλ = 0 ⇐⇒ αu− p = 0 (5.3.18)

Comparing the definitions of p in (5.3.6b), T in (5.3.15) and B in (4.3.24), observe

that

BTλ = TBp

76

Thus

W−1(αWu + Bλ) = W−1(αWu + TBp) = αu + W−1TBp = 0 (5.3.19)

Furthermore, by comparison with (5.3.9) the diagonal matrix

(W−1TB)jj =

−1, j 6∈ JB

0, j ∈ JB
(5.3.20)

That

αuj − pj = 0, for j 6∈ JB

αuj = 0, for j ∈ JB

Finally, taking into account the boundary condition pj = 0 for j ∈ JB (see (5.1.6b))

shows that the two linear systems are equivalent. 2

Remark 5.3.3 Solvability of (5.3.5) follows from invertability of A and the positive

definiteness of W. By Corollary 5.3.2 the linear system (5.2.4) is equivalent to (5.3.5)

and thus is invertible.

5.3.2 Strong Form Discretization of the Model Problem

Now I investigate the performance of the strong form discretization to see what (if

any) modifications need to be made to the standard HPS method for use under the

discretize-then-optimize approach.

The state equation is discretized by (4.3.28) and the quadrature rule (4.2.27) corre-

sponding to the strong discretization collocation points is applied on each subdomain

to discretize the objective function Define

W̃ = diag(w̃1, . . . , w̃|J̃ |),

z̃ = (z(x̃1), . . . , z(x̃|J̃ |))
T ,

77

so that the finite dimensional optimal control problem corresponding to the strong

form discretization is given by

Minimize
ũ

1

2
(ỹ − z̃)TW̃(ỹ − z̃) +

α

2
ũTW̃ũ

def
= J̃(ỹ, ũ) (5.3.21a)

where ỹ is the solution to

Ãỹ + B̃ũ− c̃ = 0. (5.3.21b)

Recall from the discretization of the state equation in Section 4.3.4 that in contrast

to the weak form discretization in (5.3.2), the control along the shared subdomain

boundaries does not enter the strong form discretization of the state equation as given

by (5.3.21b) (see Remark 4.3.6).

Introduce the vector of Lagrange multipliers λ̃ associated with the equality con-

straint (5.3.21b), and define the Lagrangian function L̃ for the discretized optimal

control problem (5.3.21) by

L̃(ỹ, ũ, λ̃) = J̃(ỹ, ũ) + λ̃T (Ãỹ + B̃ũ− c̃).

At optimality the KKT conditions require that

∇yL̃(ỹ, ũ, λ̃) = 0, (5.3.22a)

∇uL̃(ỹ, ũ, λ̃) = 0, (5.3.22b)

∇λL̃(ỹ, ũ, λ̃) = 0. (5.3.22c)

The KKT condition (5.3.22a) yields the optimality condition

W̃ỹ − W̃z̃ + ÃT λ̃ = 0, (5.3.23a)

(5.3.22b) yields

αW̃ũ + B̃T λ̃ = 0. (5.3.23b)

and (5.3.22c) simply yields the discretized state equation

Ãỹ + B̃ũ− c̃ = 0. (5.3.23c)

78

Then the optimality system for (5.3.21) is given by collecting equations Equa-

tions (5.3.23a)–(5.3.23c) to form the linear system
W̃ 0 ÃT

0 αW̃ B̃T

Ã B̃ 0




ỹ

ũ

λ̃

 =


W̃z̃

0

c̃

 . (5.3.24)

Again consider the test problem from Section 5.2.3 with exact solution

yex(x) = sin(πx1) sin(3πx2),

uex(x) = 10 sin(3πx1) sin(πx2),

pex(x) = sin(3πx1) sin(πx2).

To evaluate the performance of the strong four leaf discretizations for the discretize-

then-optimize approach to solving the optimal control problem, the optimality system

(5.3.24) was constructed and solved over a range of q values. Figure 5.2 provides the

convergence behavior of the relative error in the L2-norm of the state and control for

the strong four leaf formulation applied to the test problem. Note the relative errors

are defined as in (4.4.1b).

The strong form discretization does not converge to the exact solution for either the

state or the control. To determine what is inhibiting the rapid convergence behavior

expected of the strong form discretization, I examine the discretized optimal control

problem.

Solving (5.3.21) is equivalent to choosing the vector ũ that minimizes the objective

function from the set vectors that satisfy the linear constraint (Ãỹ + B̃ũ− c̃ = 0). It

has already been shown that the exact solution evaluated at the collocation points sat-

isfies the linear constraint (see Section 4.4). This suggests that the objective function

is penalizing the exact control ũex more than some other vector that also satisfies

the linear constraint. Rewriting the objective function as a sum of the individual

79

5 10 15 20

10−2

10−1

q

R
el

at
iv

e
E

rr
or

State

strong L2 error

5 10 15 20

10−0.8

10−0.6

10−0.4

q

R
el

at
iv

e
E

rr
or

Control

strong L2 error

Figure 5.2: The relative L2 error vs. q for the state and control for the strong form

four leaf discretization applied to the test problem under the discretize-then-optimize

approach. Both the state and control errors exhibit very poor convergence compared

to the optimize-then-discretize approach (compare to Figure 5.1) and do not achieve

errors on the order of machine precision.

80

components of the vectors ỹ, d̃, and ũ yields

J̃(ỹ, ũ) =
∑
µ∈|J̃ |

1

2
wµỹ

2
µ −wµỹµz̃µ +

α

2
wµũ

2
µ. (5.3.25)

Temporarily consider minimizing the objective function (5.3.25) without any con-

straints relating the state ỹ and the control ũ. Then the control ũ must be equal

to zero or the objective function has not been minimized. Now again consider the

discretized optimal control problem with the equality constraint given by the strong

form discretization of the state equation (5.3.21b). As observed in Remark 4.3.6, the

control along the subdomain interfaces does not enter the discretization. In other

words, the control values at collocation points on the subdomain interfaces are un-

constrained and must be set equal to zero in order to minimize the objective function

(5.3.25).

Specifically, let µ ∈ J̃M(k,`). Then in the strong form discretization of the state

equation the value of the control at the µ-th collocation point is unconstrained (i.e.

B̃ẽµ = 0).

Examining the µ-th row equation from the gradient condition in the optimality

system yields

αeTµW̃ũ + eTµ B̃T λ̃ = 0,

αw̃µũµ + 0T λ̃ = 0,

ũµ = 0.

Since ũµ is unconstrained by the strong form discretization of the state equation,

regardless of the value of the exact solution, the value of ũµ must equal zero to

minimize the discretized objective function.

Indeed examining the computed control from the test problem, the numerical

experiment supports these findings as the computed control solution is equal to zero

at each collocation node on a subdomain interface.

81

5.3.3 Modifications to the Discretization to Improve Conver-

gence Behavior

Modification I. As observed in Section 5.3.2, under the discretize-then-optimize

approach, the strong form discretization leading to the linear system (5.3.24) does not

converge at a similar rate compared to solving a boundary value problem as in Section

4.4. A natural question is if it is possible to modify the strong form discretization

in some way to regain the high order converge observed for solving boundary value

problems.

Upon closer examination of (5.3.24) it was observed that the control on the sub-

domain interfaces is unconstrained by the strong form discretization of the state

equation. To correct this, consider adding an addition equality constraint to the dis-

cretized optimization problem that requires the control values on the merge interfaces

to satisfy the differential equation. This can be thought of as post-processing the state

solve in the following sense. From the discretization of the state equation, given the

control values at the interior collocation points on each subdomain uniquely deter-

mines the state at each collocation point. Once the state is known, the control values

on the merge interface can be solved for by requiring that the differential equation is

satisfied at the collocation points on the merge interface.

Enforcing the differential equation on the merge interface is given by the following

equations.

For µ ∈ J̃M(k,`)

1

2
ẽTρ̃(µ,k)L̃

(k)ỹπ̃(1:q2−4,k) +
1

2
ẽTρ̃(µ,`)L̃

(`)ỹπ̃(1:q2−4,`) = ẽTµ ũ + fµ (5.3.26)

Collecting these equations for each merge interface in the four leaf problem leads

to the linear system

Eỹ + Fũ = a. (5.3.27)

Adding this equality constraint to the formulation of the discretized optimization

82

problem yields

Minimize
ũ

1

2
(ỹ − z̃)TW̃(ỹ − z̃) +

α

2
ũTW̃ũ (5.3.28a)

s.t. Ãỹ + B̃ũ− c̃ = 0 (5.3.28b)

Eỹ + Fũ− a = 0. (5.3.28c)

Introducing the vectors of Lagrange multipliers λ̃ and ν̃ with the equality con-

straints, form the Lagrangian function

L̃(ỹ, ũ, λ̃, ν̃) = J̃(ỹ, ũ) + λ̃T (Ãỹ + B̃ũ− c̃) + ν̃T (Eỹ + Fũ− a). (5.3.29)

Then the system of optimality conditions is given by
W̃ 0 ÃT ET

0 αW̃ B̃T FT

Ã B̃ 0 0

E F 0 0




ỹ

ũ

λ̃

ν̃

 =


W̃z̃

0

c̃

a

 . (5.3.30)

Modification II. A second modification to the strong form discretization under

the discretize-then-optimize approach that has potential to improve the convergence

behavior is to discretize the control such that it does not have collocation points

located on the merge interfaces. Intuitively, this removes the issue of control variables

being set equal to zero along the merge interface.

To accomplish this, place a tensor product grid of (q − 2)2 Legendre-Gauss (LG)

quadrature points on each subdomain. Figure 5.3 compares the Legendre-Gauss

quadrature points with the LGL points less corners for the four leaf problem.

Let ψ̂µ and ŵµ be the 2D Lagrange basis polynomial and 2D quadrature weight

corresponding to the collocation point x̂µ. Then the 2D composite polynomial ap-

proximation of the function u is given by

u(x) ≈
|Ĵ |∑
µ=1

u(x̂µ)ψ̂µ(x). (5.3.31)

83

Figure 5.3: Comparison of the LG points (blue circles) and the LGL points less

corners (black crosses) for the four leaf problem. Observe that the LG points do not

lie on the boundary of any of the subdomains.

As before, define the vector

û = (u(x̂1), . . . , x̂(q−2)2)
T , (5.3.32)

and let

Ŵ = diag(ŵ1, . . . , ŵ(q−2)2) (5.3.33)

be the diagonal matrix of Legendre-Gauss quadrature weights. Next define the 2D

interpolation matrix Q such that

x̃ = Qx̂. (5.3.34)

Finally, let

B̂ = B̃Q (5.3.35)

so that the discretization of the state equation is given by

Ãỹ + B̂û = c̃. (5.3.36)

84

Then the discretized optimization problem is given by

Minimize
û

1

2
(ỹ − z̃)TW̃(ỹ − z̃) +

α

2
ûTŴû (5.3.37a)

s.t. Ãỹ + B̂û− c̃ = 0, (5.3.37b)

which corresponds to the optimality system
W̃ 0 ÃT

0 αŴ B̂T

Ã B̂ 0




ỹ

û

λ̃

 =


W̃z̃

0

c̃

 . (5.3.38)

5.3.4 Numerical Experiment

Again consider the test problem from Section 5.2.3. To examine the performance of

the weak form discretization, the linear system (5.3.5) was solved for the test problem.

Define the relative errors for the weak form discretization to be

EL2(yq) =
yTWy

maxj |y(xj)|
, EL2(uq) =

uTWu

maxj |u(xj)|

where y and u are the state and control components of the solution to (5.3.5).

The relative errors for the (unmodified) strong form discretization are given by

EL2(ỹq) =
ỹTW̃ỹ

maxj |y(xj)|
, EL2(ũq) =

ũTW̃ũ

maxj |u(xj)|

where ỹ and ũ are the state and control components of the solution to (5.3.24).

The relative errors for the strong form discretization with the additional constraint

are given by

EL2,ν(ỹq) =
ỹTW̃ỹ

maxj |y(xj)|
, EL2,ν(ũq) =

ũTW̃ũ

maxj |u(xj)|

where ỹ and ũ are the state and control components of the solution to (5.3.30).

Finally, the relative errors for the strong form discretization with the control

discretized on Legendre-Gauss points are given by

EL2,û(ỹq) =
ỹTW̃ỹ

maxj |y(x̃j)|
, EL2,û(ûq) =

ûTŴû

maxj |u(x̂j)|

85

where ỹ and û are the state and control components of the solution to (5.3.38).

Figure 5.4 compares the relative errors for the various discretizations under the

discretize-then-optimize approach applied to the test problem. Each of the proposed

modifications to the strong form discretization improves the convergence behavior

with the discretize-then-optimize approach relative to the strong form discretization.

However, both the state and control errors do not exhibit the high order convergence

behavior expected.

In contrast, the weak form discretization under the discretize-then-optimize ap-

proach exhibits the expected desirable convergence behavior. This indicates that only

the weak form discretization as presented in Section 4.3.3 should be used with the

discretize-then-optimize approach. The standard HPS method must be modified to

use the weak form discretization in order to accelerate the solution of PDE constrained

optimization problems under the discretize-then-optimize approach.

5.4 Error Estimate for the Weak Discretization

In this section I present error analysis for the discretize-then-optimize approach based

on the weak form multidomain discretization presented in Section 4.3.3. As noted in

Section 5.3.1 the discretize-then-optimize approach is equivalent to the optimize-then-

discretize approach when the weak form discretization used. So the error estimate

holds for either approach. For simplicity I present results for the 1D case,

Ω = (−1, 1),

but the results can be generalized to higher dimensions.

Let V = H1
0 (Ω). Let the state space Y = V and the control space U = L2(Ω) so

that the model optimization problem is given by

Minimize
u ∈ L2(Ω)

J(u)
def
=

1

2

∫
Ω

(y(u;x)− z(x))2 dx+
α

2

∫
Ω

u(x)2dx (5.4.1a)

86

5 10 15 20
10−15

10−11

10−7

10−3

q

R
el

at
iv

e
E

rr
or

State

EL2(yq)
EL2(ỹq)
EL2,ν(ỹq)
EL2,û(ỹq)

5 10 15 20
10−16

10−12

10−8

10−4

100

q

R
el

at
iv

e
E

rr
or

Control

EL2(uq)
EL2(ũq)
EL2,ν(ũq)
EL2,û(ûq)

Figure 5.4: The L2 errors for the state and control for the discretize-then-optimize

approach to solving the test problem. Each attempt to restore the convergence for

the strong form improves the error, but only the weak form discretization obtains the

desired convergence behavior (as seen in the optimize-then-discretize approach). The

weak formulation should be used for the discretize-then-optimize approach.

87

where y(u; ·) ∈ V solves

a(y, v) = b(u+ f, v), ∀v ∈ V (5.4.1b)

where

a(y, u)
def
=

∫
Ω

d

dx
y(x)

d

dx
v(x)dx, b(u+ f, v)

def
=

∫
Ω

(u(x) + f(x))v(x)dx.

Define the finite dimensional subspaces Vq ⊂ V , Uq ⊂ U by

Vq = PKq (−1, 1) ∩H1
0 (−1, 1), Uq = PKq (−1, 1)

as in (4.3.6). The discretized optimization problem is then given by replacing the

state space and the control space by the finite dimensional subspace Vq.

Minimize
uq ∈ Uq

Jq(uq)
def
=

1

2

∫
Ω

(yq(uq;x)− z(x))2 dx+
α

2

∫
Ω

uq(x)2dx (5.4.2a)

where yq(uq; ·) ∈ Vq solves

a(yq, v) = b(uq + f, v), ∀v ∈ Vq. (5.4.2b)

Theorem 5.4.1 Let u be the solution to the continuous optimization problem (5.4.1)

and uq be the solution to the discretized optimization problem (5.4.2). Furthermore,

let p(uq) ∈ V be the solution of

a(p(uq), v) = −
∫

Ω

(yq(uq;x)− z(x))v(x)dx ∀ v ∈ V (5.4.3)

and let y(uq) ∈ V be the solution of the state equation (5.4.1b) with u replaced by uq.

If y(uq), p(uq) ∈ Hm(Ω) with m > 3/2. Then

‖u− uq‖L2(Ω) ≤ C(q − 1)1−m(‖p(uq)‖Hm(Ω) + ‖y(uq)‖Hm(Ω)

)
.

Proof: The gradients of the infinite dimensional and the discretized problem are

given by

∇J(u) = αu+ p, ∇Jq(uq) = αuq + pq,

88

where p, pq solve the weak form of the adjoint equations

a(v, p) = −
∫

Ω

(y(u;x)− z(x))v(x)dx, ∀ v ∈ V ,

a(vq, pq) = −
∫

Ω

(yq(uq;x)− z(x))vq(x)dx, ∀ vq ∈ Vq.

At the solutions u and uq of the infinite dimensional and the discretized problem,

∇J(u) = αu+ p = 0, ∇Jq(uq) = αuq + pq = 0.

Since the map u→ J(u) is strongly convex with parameter α > 0

α‖u− w‖2
L2(Ω) ≤ 〈∇J(u)−∇J(w), u− w〉L2(Ω) (5.4.4)

for all u,w ∈ L2(Ω). Choosing w = uq and using the optimality conditions ∇J(u) = 0

and ∇Jq(uq) = 0 gives

α‖u− uq‖2
L2(Ω) ≤ 〈∇J(u)−∇J(uq), u− uq〉L2(Ω)

≤ 〈∇Jq(uq)−∇J(uq), u− uq〉L2(Ω)

≤ ‖∇Jq(uq)−∇J(uq)‖L2(Ω)‖u− uq‖L2(Ω). (5.4.5)

Using the definition of the gradients gives

〈∇Jq(uq)−∇J(uq), w〉L2(Ω)

=

∫
Ω

(
αuq(x) + pq(uq;x)

)
w(x)−

(
αuq(x) + p(uq;x)

)
w(x)dx

≤ ‖w‖L2(Ω)‖pq(uq)− p(uq)‖L2(Ω), (5.4.6)

where pq(uq) solves

a(pq(uq), vq) = −
∫

Ω

(yq(uq;x)− z(x))vq(x)dx ∀ vq ∈ Vq, (5.4.7)

and p(uq) solves

a(p(uq), v) = −
∫

Ω

(y(uq;x)− z(x))v(x)dx ∀ v ∈ V .

89

Combining equations (5.4.5) and (5.4.6) gives

‖u− uq‖L2(Ω) ≤ α−1‖pq(uq)− p(uq)‖L2(Ω).

Introduce p(uq) as the solution to (5.4.3). By the triangle inequality,

‖u− uq‖L2 ≤ α−1‖pq(uq)− p(uq)‖L2(Ω)

≤ α−1
(
‖pq(uq)− p(uq)‖L2(Ω) + ‖p(uq)− p(uq)‖L2(Ω)

)
≤ α−1

(
‖pq(uq)− p(uq)‖H1(Ω) + ‖p(uq)− p(uq)‖H1(Ω)

)
. (5.4.8)

The first term on the right hand side in (5.4.8) is bounded by the discretization error

for the adjoint equation (5.4.3) and its discretization (5.4.7). The second term on the

right hand side in (5.4.8) is bounded as follows. By definition of p(uq) and p(uq),

a(p(uq)− p(uq), v) =

∫
Ω

(yq(uq)− y(uq))vdx

≤ ‖yq(uq)− y(uq)‖L2(Ω)‖v‖L2(Ω)

≤ ‖yq(uq)− y(uq)‖H1(Ω)‖v‖H1(Ω) ∀v ∈ V .

The choice of v = p(uq)− p(uq) and the ellipticity f the bilinear form a give

β2‖p(uq)− p(uq)‖2
H1(Ω) ≤ a(p(uq)− p(uq), p(uq)− p(uq))

≤ ‖yq(uq)− y(uq)‖H1(Ω)‖p(uq)− p(uq)‖H1(Ω),

i.e.,

‖p(uq)− p(uq)‖H1(Ω) ≤ β−1
2 ‖yq(uq)− y(uq)‖H1(Ω).

Inserting this bound into (5.4.8) gives

‖u− uq‖L2(Ω) ≤ C
(
‖pq(uq)− p(uq)‖H1(Ω) + ‖yq(uq)− y(uq)‖H1(Ω)

)
for some C > 0/ Applying the discretization error estimate from Lemma 4.3.3 for

both the adjoint equation discretization error ‖pq(uq) − p(uq)‖H1(Ω) and the state

equation discretization error ‖yq(uq)− y(uq)‖H1(Ω) yields the desired result. 2

90

Now that the performance of the multidomain discretizations is understood in

the context of the optimization problem, the remaining chapters focus on using the

efficient direct solver that comes with the HPS method to accelerate the solution

of optimization problems of the form (1.1.1). For simplicity, attention is restricted

to the optimize-then-discretize approach and the strong form discretization is used.

Chapter 6 presents the direct solver that comes with the HPS discretization method

and provides algorithms for computing solutions to the optimization problem. Then

in Section 6.3 a simple numerical example illustrates the performance benefit of using

an efficient direct solver in the optimization setting.

Chapter 6

The Hierarchical Poincaré-Steklov

Method

This chapter presents the efficient direct solver that comes with the HPS discretization

method that will be used to accelerate the solutino of PDE constrained optimization

problems. Section 6.1 presents the direct solver for solving a boundary value problem

(i.e. the state equation (1.1.1b)). Then Section 6.2 provides algorithms for using

the direct solver to solve the optimize-then-discretize formulation of the optimization

model problem (1.1.1). Section 6.3 uses a simple numerical example to illustrates the

performance benefit of using an efficient direct solver in the optimization setting.

6.1 Solving a Differential Equation

6.1.1 Overview of the Direct Solver

Consider the boundary value problem

−∆y(x) = u(x) + f(x), x ∈ Ω = (0, 1)2, (6.1.1a)

y(x) = g(x), x ∈ ∂Ω. (6.1.1b)

91

92

The direct solver that comes with the Hierarchical Poincaré-Steklov method con-

structs an approximation to the solution operator of (6.1.1). The domain is parti-

tioned hierarchically via a binary space partitioning tree (refer to Figures 2.1 and

2.2). Once the hierarchical tree has been constructed, the solver consists of a build

stage, which constructs the approximation to the solution operator for the differential

equation (6.1.1), and a solve stage, which applies the approximation solution operator

for a given boundary condition and body load to obtain the solution to the differential

equation (6.1.1). The build stage consists of a single upward sweep through the tree

from the leaves to the root (from the smallest boxes to the largest box, see Figures

2.1 and 2.2) as described in Algorithm 6.1.1. On each leaf box, a q× q tensor product

grid of collocation points is placed, and the restriction of (6.1.1) to the leaf box is

discretized by the standard spectral collocation approach based on the strong form

as in Section 4.3.4. See also Boyd [5], or Trefethen [23]. By performing dense linear

algebra on matrices of at most size q2 × q2 a local solution operator and local DtN

operator is formed for each leaf as described in Section 6.1.2. Then beginning the

upward sweep, a local solution operator and DtN operator is constructed for each

parent in the tree by “merging” the DtN operators from each child as described in

Section 6.1.3. This results in a hierarchical representation for approximate solution

operator of (6.1.1) and ends the build stage.

Once the solution operator is available the solve stage takes in the bodyload u+f

and the boundary data g and returns the approximate solution y. The solve stage

consists of an upward sweep and then a downward sweep through the hierarchical tree

as described in Algorithm 6.1.2. Given the bodyload u+f , precomputed operators are

applied on each leaf to evaluate the contribution to the local Neumann data due to the

particular solution. Then during the upward sweep through the tree, precomputed

operators are applied to evaluate the contribution to the local Neumann data on the

parent due to the local Neumann data on each child. Then starting at the root of

the tree and sweeping down to the leaves, precomputed operators map the boundary

93

data g to the boundary data for each child. Finally, at the leaf level, the precomputed

local solution operators are applied to obtain the solution everywhere in the domain.

6.1.2 Leaf Computations

On a leaf box Ωτ , consider the local boundary value problem

−∆yτ (x) = u(x) + f(x), x ∈ Ωτ , (6.1.2a)

yτ (x) = g(x), x ∈ ∂Ωτ . (6.1.2b)

Observe that for this local problem, the body load (u + f) is known, but the local

Dirichlet boundary condition g is an unknown that must also be solved for. This

is done by finding g such that the normal derivatives ∂yτ/∂nτ , where nτ is the unit

outward normal of leaf box Ωτ match the normal derivatives of solution on neighboring

boxes on the interface between the boxes.

Let rτ be the homogeneous solution which satisfies

−∆rτ (x) = 0, x ∈ Ωτ , (6.1.3a)

rτ (x) = g(x), x ∈ ∂Ωτ , (6.1.3b)

and tτ be the particular solution which satisfies

−∆tτ (x) = u(x) + f(x), x ∈ Ωτ , (6.1.4a)

tτ (x) = 0, x ∈ ∂Ωτ . (6.1.4b)

Then it is clear that yτ = rτ + tτ solves (6.1.2a).

As indicated before, it is necessary to find the normal derivative ∂rτ/∂nτ or more

precisely the Dirichlet-to-Neumann (DtN) map

g 7→ ∂rτ/∂nτ

that maps the Dirichlet boundary data g into the normal derivative of the solution

rτ of (6.1.3), as well as the normal derivative ∂tτ/∂nτ of the solution of (6.1.4) for

given body loads u+ f .

94

As in Section 4.2.3, to discretize place a tensor product grid of LGL quadrature

points less corners on Ωτ (refer to Figure 4.4. As before, let x̃τj denote the j-th

quadrature point, and define the vectors

ỹτ = (y(x̃τ1), . . . , y(x̃τq2−4))T ,

ũτ = (u(x̃τ1), . . . , u(x̃τq2−4))T ,

f̃ τ = (f(x̃τ1), . . . , f(x̃τq2−4))T ,

g̃τ = (g(x̃τ1), . . . , g(x̃τq2−4))T .

Approximate the homogeneous and particular solutions by the poloynomial represen-

tations

rτ (x) ≈ rτq (x) =

q2−4∑
j=1

r(x̃τj)ψ̃
τ
j (x),

tτ (x) ≈ tτq (x) =

q2−4∑
j=1

t(x̃τj)ψ̃
τ
j (x),

and define the coefficient vectors

r̃τ = (r(x̃τ1), . . . , r(x̃τq2−4))T ,

t̃τ = (t(x̃τ1), . . . , t(x̃τq2−4))T .

Next, define the partial differentiation matrices D̃1
τ
, D̃1

τ
, and L̃τ as in Section

4.2.3.

Finally, introduce the index sets

I = {j | x̃τj ∈ Ωτ},

B = {j | x̃τj ∈ ∂Ωτ}.

Then the discretization of the local homogeneous boundary value problem (6.1.3) is

given by IBB 0

L̃τ
IB L̃τ

II

r̃τB

r̃τI

 =

g̃τB

0



95

Ωτ

Figure 6.1: Illustration of indexed collocation points on Ωτ . The blue circles denote

collocation points where the Dirichlet boundary condition will be applied. The red

triangles denote the interior collocation points where the PDE will be enforced.

Then immediately,

r̃τB = g̃τB (6.1.5)

and solving for r̃τI yields

r̃τI = −
(
L̃τ
II

)−1

L̃τ
IB g̃τB. (6.1.6)

Define the local homogeneous solution operator as the operator that acts on the

boundary data g̃τB and returns the local homogeneous solution rτ . From (6.1.5) and

(6.1.6) the local homgeneous solution operator is given by

Sτ =

 IBB

−
(
L̃τ
II

)−1

L̃τ
IB

 (6.1.7)

so that

rτ = Sτ g̃τB.

Similarly, the discretization of the local particular boundary value problem (6.1.4)

is given by IBB 0

L̃τ
IB L̃τ

II

t̃τB

t̃τI

 =

 0

ũτB + f̃ τB



96

Immediately, t̃τB = 0 and solving for t̃τI yields

t̃τI =
(
L̃τ
II

)−1

(ũτI + f̃ τI). (6.1.8)

Define the particular solution operator as the operator that acts on the source data

ũτI + f̃ τI and returns the local particular solution t̃τ . Then from (6.1.8) the particular

solution operator is given by

Fτ =

 0(
L̃τ
II

)−1

 . (6.1.9)

Then the total local solution yτ is given by

yτ = Sτ g̃τB + Fτ (ũτI + f̃ τI). (6.1.10)

Note that after the construction of the local particular and homogeneous solution

operators, all of the unknowns live on the boundary of Ωτ . That is, given the local

boundary data on Ωτ then simply applying the solution operators yields the solution

on the interior of Ωτ .

Next construct the local DtN operator for Ωτ . Begin by partitioning the index set

B into the subsets S,E,N , and W that correspond to the collocation points on the

north, east, south, and west boundaries respectively. Then define the operator Dτ

Dτ =


−D̃2

τ

S,(B,I)

D̃1

τ

E,(B,I)

D̃2

τ

N,(B,I)

−D̃1

τ

W,(B,I)

 .

The local homogeneous DtN operator is given by

Tτ = DτSτ , (6.1.11)

and similarly the local particular DtN operator is given by

Hτ = DτFτ . (6.1.12)

97

Finally, denote the contribution of the particular solution to the Neumann data by

hτB = Hτ (ũτI + f̃ τI)

(this is the discretization of ∂tτ/∂nτ), so that

ṽτB = Tτ g̃τB + hτB. (6.1.13)

(Tτ g̃τB is the discretization of g 7→ ∂rτ/∂nτ .)

Note that going forward I will drop the subscript B as each vector corresponds to

points on the boundary.

6.1.3 Merge Operations

Consider a parent box Ωτ with child boxes Ωβ and Ωγ such that Ωτ = Ωβ ∪ Ωγ.

Suppose that the interior unknowns on the child boxes have already been eliminated

and the DtN operators on the child boxes are given by

ṽβ = Tβg̃β + hβ, ṽγ = Tγg̃γ + hγ.

Let xj be the j-th collocation point on the interface ∂Ωβ ∪ ∂Ωγ and introduce the

index sets

J1 = {j | xj ∈ ∂Ωβ ∪ ∂Ωτ},

J2 = {j | xj ∈ ∂Ωγ ∪ ∂Ωτ},

J3 = {j | xj ∈ ∂Ωβ ∪ ∂Ωγ},

which are illustrated in Figure 6.2.

Then the DtN operators on the child boxes can be written asṽβ1

ṽβ3

 =

Tβ
11 Tβ

13

Tβ
31 Tβ

33

g̃β1

g̃β3

+

hβ1

hβ3

 ,
ṽγ2

ṽγ3

 =

Tγ
22 Tγ

23

Tγ
32 Tγ

33

g̃γ2

g̃γ3

+

hγ2

hγ3

 .

98

Ωβ ΩγJ1 J2J3

Figure 6.2: Illustration of the indexed points for the merge. The goal of the merge is

to eliminate unknowns on the interior edge indexed by J3.

To enforce that the solution on each subdomain has consistent Dirichlet and Neumann

boundary data on the shared edge (i.e. at collocation points in the index set J3), it

is required that g̃β3 = g̃γ3 = g̃3 and ṽβ3 + ṽγ3 = 0. Then write the combined equation
ṽβ1

ṽγ2

0

 =


Tβ

11 0 Tβ
13

0 Tγ
22 Tγ

23

Tβ
13 Tγ

23

(
Tβ

33 + Tγ
33

)



g̃β1

g̃γ2

g̃3

+


hβ1

hγ2

hβ3 + hγ3

 . (6.1.14)

To eliminate the unknowns on the interior edge, solve for g̃3 from the bottom row

equation in (6.1.14). Define Kτ =
(
Tβ

33 + Tγ
33

)−1
. Then the unknowns on the interior

edge are given by

g̃3 = −Kτ
[
Tβ

31 Tγ
32

]g̃β1

g̃γ2

−Kτ
(
hβ3 + hγ3

)
. (6.1.15)

Observe that the first term yields the homogeneous solution on the interior edge.

That is, define the local homogeneous solution operator for Ωτ by

Sτ = −Kτ
[
Tβ

31 Tγ
32

]
, (6.1.16)

so that

rβ3 = rγ3 = Sτ

g̃β1

g̃γ2

 . (6.1.17)

99

Similarly, the particular solution on the interior edge is given by the second term.

That is

tβ3 = tγ3 = −Kτ
(
hβ3 + hγ3

)
. (6.1.18)

Since the total solution on the interior edge of the parent box is known, the unknowns

on the interior edge are now eliminated.

Ωβ ΩγJ1 J2

Figure 6.3: Illustration of the indexed points for the merge after the elimination of the

unknowns on the interior edge. Observe that the unknowns now lie on the boundary

of the parent box Ωτ .

Then the DtN operators for the parent box Ωτ is obtained by eliminting g̃3 from the

first two row equations in (6.1.14) via (6.1.15)ṽβ1

ṽγ2


︸ ︷︷ ︸

ṽτ

=

Tβ
11 0

0 Tγ
22

+

Tβ
13

Tγ
23

Sτ


︸ ︷︷ ︸

Tτ

g̃β1

g̃γ2


︸ ︷︷ ︸

g̃τ

+

hβ1

hγ2

−
Tβ

13

Tγ
23

Kτ
(
hβ3 + hγ3

)
︸ ︷︷ ︸

hτ

.

(6.1.19)

so that the DtN map for the parent box Ωτ is given by

ṽτ = Tτ g̃τ + hτ . (6.1.20)

6.1.4 The Full Solver on a Uniform Grid

Once the domain has been partitioned via the binary space paritioning tree, a pre-

computation or build stage is performed. The build stage consists of a single upward

100

sweep through the tree (from the smallest boxes to the largest boxes). For the build

stage, any ordering may be used as long as the child nodes in the tree are processed

before their parent node.

On each leaf box, solution operators and DtN operators are approximated for the

homogeneous and particular solutions by the method described in Section 6.1.2. For

a leaf box Ωτ , the following operators are computed:

Fτ The local particular solution operator maps the evaluation of the

source term at the interior collocation points to the values of the lo-

cal particular solution at each the collocation point. In other words

t̃τ = Fτ (ũτI + f̃ τI).

Sτ The local homogeneous solution operator maps the values of the local

Dirichlet boundary data to the local homogeneous solution at each

collocation point. In other words r̃τ = Sτ g̃τB.

Hτ The local particular DtN operator maps the evaluation of the source

term at the interior collocation points to the boundary flux due to the

local particular solution at each boundary collocation point. In other

words hτB = Hτ (ũτI + f̃ τI).

Tτ The local homogeneous DtN operator maps the values of the local

Dirichlet boundary data to the boundary flux due to the local homo-

geneous solution. In other words ṽτB = Tτ g̃τB + hτB.

Then on each parent box, the boundary data maps and DtN operators are constructed

as described in Section 6.1.3. For each parent node τ with child nodes β and γ, the

following operators are computed:

101

Kτ The particular contribution to the boundary data map acts on the

flux in the particular solutions on each child at the interior nodes of

the parent and returns the particular solution on the interior of the

parent. In other words t̃β3 = t̃γ3 = −Kτ (hβ3 + hγ3).

Sτ The homogeneous contribution to the boundary data map acts on the

Dirichlet boundary data on the parent and returns the homogeneous

solution on the interior of the parent. In other words r̃β3 = r̃γ3 = Sτ g̃τ .

Tτ The homogeneous DtN operator for the parent maps the local Dirichlet

boundary data on the parent to the boundary flux on the parent due

to the local homogeneous soloution. In other words ṽτ = Tτ g̃τ + hτ .

An outline for the build stage is provided in Algorithm 6.1.1. Since the algorithm is

potentially applied to different PDEs and associated discretizations, the discretized

differential operator Ã is used as an input. However, Ã is not needed explicitly.

Algorithm 6.1.1

Input: discretized differential operator Ã

for τ = Nboxes, Nboxes − 1, . . . , 1

if (τ is a leaf)

Fτ =

 0(
L̃τ
II

)−1


Sτ =

 I

−
(
L̃τ
II

)−1

L̃τ
IB


Hτ = NτFτ

Tτ = NτSτ

else

Let β and γ be children of τ .

Partition into vectors J1, J2, and J3 as shown in Figure 6.2.

Kτ = (Tβ
33 + Tγ

33)−1

Sτ = −Kτ
[
Tβ

31 Tγ
32

]

102

Tτ =

Tβ
11 0

0 Tγ
22

+

Tβ
13

Tγ
23

Sτ

end if

end for

Output: HPS solution operator needed to apply Ã−1 (input for Algorithm 6.1.2)

After the executing Algorithm 6.1.1, given a specific Dirichlet boundary condition and

source term the solution to the boundary value problem may be evaluated rapidly by

the solve stage of the HPS method. The solve stage consists of a single upward sweep

followed by a single downward sweep of the tree. In the upward sweep (from smallest

to largest boxes) the particular solutions and boundary fluxes due to the particular

solutions are computed. At the root of the tree (the largest box) the solution on the

boundary of the domain is then given by the provided Dirichlet boundary condition.

During the downward sweep (from largest to smallest boxes) the boundary data maps

computed during the build phase are applied to map the boundary data from the root

box to the leaf boxes, and finally the local solution operators on each leaf box are

applied to obtain the approximate solution. The outline for the solve stage is given

by Algorithm 6.1.2.

Algorithm 6.1.2 : ỹ = hps solve(Ã−1, ũ, f̃ , g̃)

Input: HPS solution operator needed to apply Ã−1 (output of Algorithm 6.1.1),

ũ - control evaluated at collocation points,

f̃ - body load component evaluated at collocation points,

g̃ - Dirichlet data evaluated at collocation points.

Upward sweep – construct all particular solutions:

for τ = Nboxes, Nboxes − 1, . . . , 1

if (τ is a leaf)

Compute boundary flux due to local particular solution

hτ = Hτ (ũτI + f̃ τI)

else

103

Let β and γ be children of τ .

Compute the local particular solution

t̃τI = −Kτ (hβ3 + hγ3)

Compute the boundary flux due to the particular solution

hτ =

hβ1

hγ2

+

Tβ
13

Tγ
23

 t̃τI

end if

end for

Downward sweep – construct all potentials:

Use the provided Dirichlet data to set solution on the boundary of the root

ỹ1
B = g̃1

B

for τ = 1, 2, . . . , Nboxes

if (τ is a parent)

Add the homogeneous term and the particular term

ỹτI = Sτ ỹτB + t̃τI .

else

Add the homogeneous term and the particular term

ỹτ = Sτ ỹτB + Fτ (ũτI + f̃ τI).

end if

end for

Output: ỹ - computed solution evaluated at collocation points

6.1.5 Direct Solver Complexity

Let N denote the total number of discretization points in Ω ⊂ Rd. Let q be the

number of collocation points per linear dimension across a leaf box so that the tensor

product grid has qd collocation points per leaf box. Finally let L be the total number

of levels in the binary space partitioning tree. Then there are 2L leaf boxes and

104

N ∼ 2Lqd discretization points.

The build stage of the algorithm can be broken into two primary steps, construct-

ing operators on the leaf boxes, and constructing operators for the merge operations.

The computational complexity for constructing operators on the leaf boxes is domi-

nated by inverting the dense matrices L̃τ
II of size O(qd) × O(qd) on each leaf. Since

there 2L leaf boxes, the total cost for the leaf computations is approximately

2L × q3d ∼ Nq2d. (6.1.21)

During the merge operations, on each level ` in the tree, operators are con-

structed by inverting the dense matrices (Tβ
33+Tγ

33) of the size O(2−(d−1)`/dN (d−1)/d)×

O(2−(d−1)`/dN (d−1)/d). To understand this formula, N (d−1)/d is the number of colloca-

tion points along one face of the domain. In 2D this corresponds to N1/2 which is the

number of nodes along a single edge of the domain. The 2−(d−1)`/d factor represents

the ratio of the size of a merge interface on level ` of the binary tree to the size of

a face of the domain. For example, for a 2D problem on level ` = 2 of the tree, the

size of a merge interface is one half of the size of a face of the total domain. Similarly

on level ` = 4 the merge interface is one fourth of the size of a face of the total

domain. Since on level ` there are 2` boxes, the total cost for the merge operations is

approximately

L∑
`=1

2` × 2−3(d−1)`/dN3(d−1)/d ∼ N3(d−1)/d

L∑
`=1

2(−2d`+3`)/d. (6.1.22)

For the case d = 2 the approximate cost is given by

N3/2

L∑
`=1

2−`/2 ∼ N3/2. (6.1.23)

Summing the contributions of the leaf and merge operations gives the computational

complexity for the build stage of the algorithm as O(N3/2) for 2D problems.

For the upward sweep of the solve stage, on each of the leaf boxes the operator Hτ

of size O(2dqd−1) × O(qd) is applied to compute the boundary flux due to the local

105

particular solution. Thus the complexity of applying the operator on each of the 2L

leaf boxes is given by

2L × 2dq(d−1)d ∼ Nqd−1. (6.1.24)

Then on level ` in the tree, the matrix Kτ of size O(2−(d−1)`/dN (d−1)/d) ×

O(2−(d−1)`/dN (d−1)/d) is applied on each of the 2` boxes in the level. This gives the

approximate cost

L∑
`=1

2` × 2−2(d−1)`/dN2(d−1)/d ∼ N2(d−1)/d

L∑
`=1

2(−d`+2`)/d (6.1.25)

For the case d = 2 the approximate cost is given by

N
L∑
`=1

1 ∼ NL ∼ N log(N). (6.1.26)

For the downward sweep, on level ` in the tree, the matrices Sτ of size

O(2−(d−1)`/dN (d−1)/d) ×O(2−(d−1)`/dN (d−1)/d) are applied on the 2` boxes, leading to

the same computational complexity as for the upward sweep of the tree. Finally, on

the leaf boxes, the homogeneous and particular solution operators Sτ and Fτ are ap-

plied to obtain the total solution. This cost is dominated by applying the particular

solution operators, which are matrices of size O(qd) × O(qd) on the 2L leaf boxes.

This yields the cost

2L × q2d ∼ Nqd. (6.1.27)

Summing the contributions from each step in the solve algorithm yields the asymptotic

complexity of O(N log(N)) for 2D problems.

Finally, note that for non-highly oscillatory problems, the asymptotic complexity

of the build stage and the solve stage may each be improved by exploiting accelerated

linear algebra as by Babb et al. [1]. However, this acceleration is not considered in

the present work.

106

6.2 Solving the Optimal Control Problem

Recall the optimality system
−B̃ 0 Ã

0 αĨ −Ĩ

Ã B̃ 0




ỹ

ũ

p̃

 =


c̃

0

d̃

 (6.2.1)

for the optimize then discretize approach to the model problem, cf. (5.2.8). Note

that the discretized differential operator Ã appears twice in (6.2.1). This is due to

the fact to the fact that the differential operator in the state equation of the model

problem (1.1.1b) is self-adjoint. In general, Ã in the first block row equation will be

the discretization of the adjoint of the differential operator in the state equation. The

third and first block can be used to express ỹ and p̃ in terms of ũ. This gives

ỹ = Ã−1
(
−B̃ũ + c̃

)
and

p̃ = Ã−1
(
B̃ỹ + d̃

)
,

= Ã−1
(
B̃Ã−1

(
−B̃ũ + c̃

)
+ d̃

)
.

Substituting p̃ into the remaining second block of the optimality system yields

0 = αũ− p̃,

= αũ− Ã−1
(
B̃Ã−1

(
−B̃ũ + c̃

)
+ d̃

)
,

= αũ− Ã−1
(
−B̃Ã−1B̃ũ + B̃Ã−1c̃ + d̃

)
,

=
(
αĨ + Ã−1B̃Ã−1B̃

)
ũ− Ã−1

(
B̃Ã−1c̃ + d̃

)
.

This is a linear sytem(
αĨ + Ã−1B̃Ã−1B̃

)
︸ ︷︷ ︸

def
= M

ũ = Ã−1
(
B̃Ã−1c̃ + d̃

)
︸ ︷︷ ︸

def
= b

. (6.2.2)

107

in discretized controls ũ.

For problems of interest, the matrix M may be too large to store and compute with

directly. Instead, ones applies an iterative scheme that only requires the matrix vector

product M s for a given vector s instead of an explicit representation of M. If M is

symmetric the conjugate gradient (CG) method [10] can be used. For nonsymmetric

M, which is the case in (6.2.2), the generalized minimal residual (GMRES) method

[21] can be used.

To take advantage of the efficient direct solver presented in Section 6.1.4 when

solving the reduced ptimality system (6.2.2), the direct solver can be used to compute

the residual Ms− b or the matrix vector product M s. The residual is computed by

Algorithm 6.2.1.

Algorithm 6.2.1 : r = optsys res(Ã−1, s, f̃ , z̃, g̃)

Input: HPS state (and adjoint) solution operator (output of Algorithm 6.1.1),

s - trial control vector,

f̃ - state equation body load component,

z̃ - desired state,

g̃ - state equation Dirichlet boundary condition.

ỹ = hps solve(Ã−1, s, f̃ , g̃).

p̃ = hps solve(Ã−1,−ỹ, z̃,0).

Output: r = αs− p̃ - residual of reduced optimality system (r = Ms− b).

Note that the matrix vector product M s can be evaluated by (6.2.2) with c̃ =

d̃ = 0 (which is equivalent to setting g̃ = f̃ = z̃ = 0). Thus the matrix vector product

is evaluated by Algorithm 6.2.2.

Algorithm 6.2.2 : v = optsys matvec(Ã−1, s)

Input: HPS state (and adjoint) solution operator (output of Algorithm 6.1.1),

s - trial control vector.

ỹ = hps solve(Ã−1, s,0,0).

108

p̃ = hps solve(Ã−1,−ỹ,0,0).

Output: v = αs− p̃ - reduced optimality system matrix-vector product (v = Ms).

6.3 The Benefit of Using a Direct Solver in Opti-

mization

So far, this work has illustrated how to use the HPS discretization and the direct

solver in the optimization setting. However, the goal of this work is to reduce cost

and thus extend the range of practical optimization problems that can be solved. It

remains to be shown that the direct solver does in fact reduce the cost of solving the

PDE constrained optimization problem. This section illustrates the benefit of using

the efficient direct solver that comes with the HPS method for solving an optimization

problem of the form of the model problem (1.1.1).

Let Ω = (0, 1)2, α = 0.1, and define the functions

z(x) = 10π2 sin(3πx1) sin(πx2),

f(x) = 10π2 sin(πx1) sin(3πx2)− 1

α
sin(3πx1) sin(πx2).

Then consider the optimal control problem

Minimize
u

J(u)
def
=

1

2

∫
Ω

(y(x;u)− z(x))2 dx+
α

2

∫
Ω

u2(x)dx

where y(· ;u) ∈ H1
0 (Ω) is the solution of−∆y(x) = u(x) + f(x), x ∈ Ω,

y(x) = 0, x ∈ ∂Ω,

for a given control u. The optimal control uex and the corresponding state yex and

adjoint pex are given by

uex(x) = 10 sin(3πx1) sin(πx2),

yex(x) = sin(πx1) sin(3πx2),

pex(x) = sin(3πx1) sin(πx2).

109

Let the strong form four leaf discretization of the state equation be given by

Ãỹ + B̃ũ = c̃.

Then under the optimize-then-discretize approach, the solution to the test problem

is the solution to 
−B̃ 0 Ã

0 αĨ −Ĩ

Ã B̃ 0




ỹ

ũ

p̃

 =


W̃z̃

0

c̃


Finally, consider applying GMRES to the reduced optimality system

Mũ = b

as defined in (6.2.2).

In each GMRES iteration, the matrix vector product M applied to a vector is

computed by solving the state equation and then the adjoint equation as described

in Algorithm 6.2.2.

To determine if using the direct solver reduces the cost for this simple test problem,

compare run times for two vwersions. In one version solving the state and adjoint

solves needed to apply M to a vector are performed by precomputing the HPS solution

operators. In the other version solving the state and adjoint solves needed to apply

M to a vector are performed by applying GMRES. The Matlab gmres function was

used as the iterative solver to obtain solutions to the state and adjoint equations.

Table 6.1 reports the timings results for the experiment applied to the test problem

with the strong form four leaf discretization.

The subscript “gm” refers to the results for which gmres was used to compute

the solution to the state and adjoint equations and the subscript “hps” refers tot he

results for which the HPS solution operator was applied to solve the state and adjoint

equations.

110

Table 6.1: Timing Results for Four Leaf Test Problem

q Egm(u) Ehps(u) kgm khps tgm thps tratio

6 4.93e-02 4.93e-02 4 4 0.133 0.026 5.20

8 2.86e-03 2.86e-03 3 3 0.375 0.024 15.4

10 7.41e-05 7.41e-05 3 3 1.12 0.015 74.6

12 1.13e-06 1.14e-06 3 3 2.91 0.029 99.2

14 7.64e-09 1.17e-08 3 2 6.40 0.026 245

16 2.05e-08 8.72e-11 3 2 12.3 0.030 414

Define the relative error

E(u) =
maxj |ũj − uex(x̃j)|

maxj |uex(x̃j)|
.

Define k as the number of GMRES iterations required to solve the reduced optimality

system. Finally, tgm gives the total time to solve the reduced optimality system, thps

gives the total time to precompute the state and adjoint HPS solution operators plus

the time to solve the reduced optimality system, and

tratio =
tgm
thps

.

As the polynomial order increases, using the direct solver is much more efficient

than applying an iterative solver each time a PDE solution is required. While this is

an encouraging first result, it is necessary to compare the performance of using the

direct solver vs. leading methods in PDE constrained optimization on a more realistic

problem to quantify the reduction in cost.

Chapter 7

Conclusion

This thesis developed a framework for using the HPS method in the context of PDE

constrained optimization. In Chapter 5 the HPS discretization was examined in

the optimization setting under both the optimize-then-discretize and discretize-then-

optimize approaches.

In the optimize-then-discretize approach, optimization theory was used to derive

the continuous optimality conditions which consisted of the state equation, the adjoint

equation, and a relationship between the control and the adjoint variables. Then the

continuous optimality system was discretized to provide a finite dimensional linear

system to be solved. Discretizing the state and adjoint equations by the strong form of

the HPS method provided the expected convergence behavior for the optimal control

problem.

In the discretize-then-optimize approach, the objective function and constraint

(state equation) were immediately discretized, resulting in a finite dimensional op-

timization problem. The finite dimensional optimality conditions were derived con-

sisting of the discretized state equation, an equation involving the transpose of the

discretized differential operator from the state equation, and a relationship between

the control and the adjoint.

Discretization of the state equation by the strong form of the HPS method set all

111

112

of the control variables along merge interfaces equal to zero since the strong form of

the Neumann condition does not touch the body load on a leaf box boundary. This

prevents convergence to the exact solution for the optimization problem.

Several methods were examined to attempt to restore the convergence behav-

ior under the discretize-then-optimize approach. First, an additional constraint was

added to the finite dimensional optimization problem to explicitly require that the

control along the merge interfaces satisfy the differential equation. Second, a mod-

ified discretization of the state equation was considered that discretized the control

via a tensor product grid of Legendre-Gauss points on each leaf box (which only

live on the interior of the domain). Each of these methods improved the errors, but

did not restore the convergence to the desired behavior. Finally, the state equation

was discretized by the weak form of the HPS method discretization, which restored

the convergence behavior to the same rate observed in the optimize-then-discretize

approach.

After establishing the performance of the HPS discretization in the optimization

setting, a simple numerical test was used to examine the cost reduction by using the

direct solver from the HPS method. Under the optimize-then-discretize approach, the

reduced optimality system was solved iteratively by GMRES where the application

of the matrix-vector product was computed on one hand by calling an inner loop

of GMRES to solve the state and adjoint equations, and on the other hand using

the direct solver from the HPS method to solve the state and adjoint equations.

Timing results for the numerical experiment indicate that applying the direct solver

significantly reduces the cost of solving the reduced optimality system.

However, to understand the cost reduction in a realistic scenario, a practical op-

timization problem should be considered, and computing solutions to the state and

adjoint equations via the HPS direct solver should be compared to solving the state

and adjoint equations by a problem-specific preconditioned iterative scheme. Com-

paring the performance of the HPS method in the optimization setting against a state

113

of the art method for PDE constrained optimization will illuminate cost reduction

achieved by using the efficient direct solver.

Other areas for future work include implemented the accelerated O(N) version

of the HPS method for non-oscillatory problems to obtain further efficiency from

the direct solver. Additionally, when localized phenomena are expected, using the

adaptive refinement version of the HPS method will lead to further cost reduction.

Finally, as many real applications have additional constraints, for example bounds on

the state or control variables, the model problem should be generalized to consider

additional constraints as well as variable coefficient PDEs.

Bibliography

[1] T. Babb, A. Gillman, S. Hao, and P.-G. Martinsson. An accelerated Poisson

solver based on multidomain spectral discretization. arXiv:1612.02736v1, 2016.

[2] P. Benner, E. Sachs, and S. Volkwein. Model order reduction for PDE con-

strained optimization. In G. Leugering, P. Benner, S. Engell, A. Griewank,

H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, editors, Trends in PDE

constrained optimization, volume 165 of Internat. Ser. Numer. Math., pages 303–

326. Birkhäuser/Springer, Cham, 2014.

[3] C. Bernardi and Y. Maday. Spectral methods. In P. G. Ciarlet and J. L. Li-

ons, editors, Handbook of numerical analysis, Vol. V. Techniques of scientific

computing. Part 2, Handb. Numer. Anal., V, pages 209–486. North-Holland,

Amsterdam, 1997.

[4] C. Borges, A. Gillman, and L. Greengard. High resolution inverse scattering in

two dimensions using recursive linearization. SIAM J. Imaging Sci., 10(2):641–

664, 2017.

[5] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, New York, 2000.

[6] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zhang. Spectral meth-

ods. Fundamentals in single domains. Scientific Computation. Springer-Verlag,

Berlin, 2006.

114

115

[7] C. Canuto and A. Quarteroni. Approximation results for orthogonal polynomials

in Sobolev spaces. Math. Comp., 38(157):67–86, 1982.

[8] A. Gillman and P.-G. Martinsson. A direct solver with O(N) complexity for

variable coefficient elliptic PDEs discretized via a high-order composite spectral

collocation method. SIAM J. Sci. Comput., 36(4):A2023–A2046, 2014.

[9] M. Heinkenschloss. Numerical solution of implicitly constrained optimization

problems. Technical Report TR08–05, Department of Computational and Ap-

plied Mathematics, Rice University, Houston, TX 77005–1892, 2008.

[10] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. J. of Research National Bureau of Standards, 49:409–436, 1952.

[11] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE

Constraints, volume 23 of Mathematical Modelling, Theory and Applications.

Springer Verlag, Heidelberg, New York, Berlin, 2009.

[12] J.-L. Lions. Optimal Control of Systems Governed by Partial Differential Equa-

tions. Springer Verlag, Berlin, Heidelberg, New York, 1971.

[13] Y. Maday and E. M. Rønquist. Optimal error analysis of spectral methods with

emphasis on nonconstant coefficients and deformed geometries. Comput. Methods

Appl. Mech. Engrg., 80(1-3):91–115, 1990. Spectral and high order methods for

partial differential equations (Como, 1989).

[14] P.-G. Martinsson. A direct solver for variable coefficient elliptic PDEs discretized

via a composite spectral collocation method. J. Comput. Phys., 242:460–479,

2013.

[15] S. A. Orszag. Spectral methods for problems in complex geometries. J. Comput.

Phys., 37(1):70–92, 1980.

116

[16] B. Peherstorfer, K. Willcox, and M. D. Gunzburger. Survey of multifidelity meth-

ods in uncertainty propagation, inference, and optimization. Technical Report

ACDL TR16-1, Department of Aeronautics & Astronautics, MIT, Cambridge,

MA 02139, 2016.

[17] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A. Teukolsky. A multido-

main spectral method for solving elliptic equations. Comput. Phys. Comm.,

152(3):253–273, 2003.

[18] A. Quarteroni. Numerical models for differential problems, volume 2 of MS&A.

Modeling, Simulation and Applications. Springer-Verlag Italia, Milan, 2009.

Translated from the 4th (2008) Italian edition by Silvia Quarteroni.

[19] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Texts in Applied

Mathematics, Vol. 37. Springer, Berlin, Heidelberg, New York, 2000.

[20] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential

Equations. Springer, Berlin, Heidelberg, New York, 1994. First softcover printing

2008.

[21] Y. Saad and M. H. Schultz. GMRES a generalized minimal residual algorithm

for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869,

1986.

[22] E. W. Sachs and S. Volkwein. POD-Galerkin approximations in PDE-constrained

optimization. GAMM-Mitteilungen, 33(2):194–208, 2010.

[23] L. N. Trefethen. Spectral Methods in Matlab. SIAM, Philadelphia, 2000.

[24] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods

and Applications, volume 112 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2010.

117

[25] B. D. Welfert. Generation of pseudospectral differentiation matrices I. SIAM J.

Numer. Anal., 34:1640–1657, 1997.

