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ABSTRACT

Discrete Morse Theory and the Geometry of

Nonpositively Curved Simplicial Complexes

by

Katherine Crowley

Understanding the conditions under which a simplicial complex collapses is a
central issue in many problems in topology and combinatorics. Let A be a simplicial
complex endowed with the piecewise Euclidean geometry given by declaring edges to
have unit length, and satisfving the property that every 2-simplex is a face of at most
two 3-simplices in K. Our main theorem is that if | A’] is nonpositively curved (in the
sense of CAT(0)) then A" simplicially collapses to a point. The main tool used in the
proof is Forman's discrete Morse theorv (see section 2.2). a combinatorial version of
the classical smooth theory. A key ingredient in our proof is a combinatorial analog of
the fact that a minimal surface in R® has nonpositive Gauss curvature (see theorem
28). We also investigate another combinatorial question related to curvature. We
prove a combinatorial isoperimetric inequality by finding an exact answer for the
largest possible number of interior vertices in a triangulated n-gon satisfving the

property that every interior vertex has degree at least six.
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Chapter 1

Introduction

One of the fundamental problems in mathematics is understanding the relationship
between geometry and topology. In this thesis we investigate the relationship between
these two fields in a combinatorial setting. There are many questions in geometry.
topology, and other areas for which a combinatorial approach is more suitable than a
continuous one. Understanding the relationship between geometry and topology from
a combinatorial point of view is a powerful vantage point from which to approach
many problems in a new light. One important classical link between geometry and
topology is the Hadamard theorem. which states that a complete. simply connected.
nonpositively curved manifold is contractible [Do]. The main result of this thesis
is to establish analogous results in a combinatorial setting. In addition to being
of significant independent interest, these results provide a foundation from which
to further study the connections between combinatorial geometry and combinatorial

topology.
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In the late 1930s, J.H.C. Whitehead introduced the definition of simplicial col-
lapse in an attempt to formulate homotopy theory in a purely combinatorial way
[Wh]. Simplicial collapsibility is a combinatorial analog of contractibility for smooth
spaces, but the two ideas are not equivalent. For example. every simplicial complex
which collapses is contractible. However. the converse is not true: while the 3-ball
is contractible. there are triangulated 3-balls that do not simplicially collapse to a
point. For example, see example 3 in [Bi]. Understanding when a simplicial complex
collapses is a central issue in a number of problems in topology and combinatorics,
including the Poincaré conjecture. For example. if M is a combinatorial n-manifold
with boundary which simplicially collapses to a point. Whitehead's theorem on reg-
ular neighborhoods then implies that M is combinatorially equivalent (and hence
homeomorphic) to an n-ball {Wh].

In the study of combinatorial geometry, one has to make sense of the word cur-
vature in a combinatorial space. The notion of nonpositive curvature we use is that
given by the CAT(0) inequality, first introduced by A.D. Alexandrov [Al] and recently
applied by M. Gromov to the study of hyperbolic groups [Gr]. A geodesic metric space
is said to be CAT(0) if geodesic triangles are thinner than comparison triangles in
Euclidean space. in the same way that triangles in hyperbolic space are thinner than
in Euclidean space. CAT(0) spaces are necessarily contractible. and hence simply
connected.

Our goal is to find geometric conditions that imply that a simplicial complex

collapses. One set of geometric conditions is provided by Chillingworth in [Chi], where
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he proves that a triangulated 3-ball, embedded rectilinearly as a convex subset of R",
simplicially collapses. Here, we take a different approach and present a combinatorial
analog of Hadamard’s theorem.

The main tool we use in the proof is combinatorial Morse theory [Fol], a discrete
analog of classical, smooth Morse theory. In smooth Morse theory, one assigns a
smooth function to a smooth manifold, and we know that level submanifolds defor-
mation retract onto lower level submanifolds as long as one does not pass through a
critical value. In discrete Morse theory. one assigns a real number to each simplex
according to certain rules. In this case level subcomplexes simplicially collapse (and
hence deformation retract) onto lower level subcomplexes as long as one does not pass
through a critical value. (All of this is explained in section 2.2.) This makes discrete
Morse theory a convenient tool for questions about simplicial collapse.

A discrete Morse function models a smooth Morse function in the sense that a
noncritical simplex has a unique direction in which to “flow”. while a critical simplex
does not. Combinatorial versions of the main theorems of smooth Morse theory relate
the topology of the simplicial complex to the critical points of the discrete Morse
function. While the theories parallel each other closely, the lack of any smoothness
requirement in combinatorial Morse theory makes it suitable for solving a different
array of problems. Discrete Morse theory has been used to analyze a number of
interesting questions in topology, graph theory, combinatorics. and complexity theory.
For references, see [Fol]. In particular, the methods developed by Forman can be

used to give a combinatorial proof of the Poincaré Conjecture in dimensions five
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and higher, along the lines of the Morse theoretic proof presented by Milnor in the
smooth category. The Poincaré Conjecture in dimension three, one of the biggest
open problems in topology, can be restated in terms of combinatorial Morse theory
as, “Every combinatorial 3-manifold M with boundary which is a homotopy 3-ball
has a triangulation that admits a discrete Morse function with exactly one critical
point.” (A combinatorial manifold with boundary which has a discrete Morse function
with exactly one critical point simplicially collapses. By Whitehead’s theorem. M is
a combinatorial 3-ball.) We will show that in a 3-complex where every 2-simplex is
a face of at most two 3-simplices. to construct a Morse function with exactly one
critical point. it is enough to show the complex has a discrete Morse function with
exactly one critical vertex and no critical edges. A cancellation theorem allows us to
cancel out in pairs the remaining critical 2- and 3-simplices.

The main idea of the proof is to fix a vertex v of our complex A" and apply
discrete Morse theory to the function “distance from v". (Note that this is essentially
the main point of the proof of the Hadamard theorem.) The hypothesis that |A|
is CAT(0) is a restriction on the continuous distance function (resulting from the
piecewise Euclidean structure on |K|. However, for simplicial collapse we are led to
consider the cornbinatorial distance function on vertices obtained by only considering
paths along edges. The critical issue in the proof of the theorem is understanding the
relationship between these two distance functions. The more the edge lengths vary,
the more tenuous the relationship between these two concepts of distance becomes.

When the edges lengths are all unit length, we understand the relationship between
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the two notions of distance well enough to show the complex collapses.

Understanding the geometry of CAT(0) disks turns out to be the crucial step
in the proof of the main theorem of the thesis. In section 3.1, we investigate the
geometry of a CAT(0) triangulated disk. and in section 3.2 we outline a proof of
how to simplicially collapse any triangulated disk D. One can present a proof which
does not depend on any curvature hypothesis. However. we give a more complicated
proof than needed. using what we have learned about the geometry of a CAT(0)
disk. The proof we give serves as a preview for how the proof will be carried out in
the three-dimensional case. The main point is that. given a simple closed curve in
a disk formed by a union of edges. if e is an edge on the curve, it makes sense to
speak of the 2-simplex incident to e which is “inside” the curve. In extending such
ideas to a three-dimensional CAT(0) complex A". we need to have a notion of pointing
“inside” a curve of which is a union of edges. The main result of section 3.3 is to show
that in a three-dimensional complex A'. any closed curve which is a union of edges
bounds an immersed simplicial disk in A which is itself CAT(0). In fact we show that
the simplicial disk of minimal area spanning the closed curve is CAT(0). This is a
combinatorial analog of the fact that a minimal surface in R® has nonpositive Gauss
curvature (see theorem 27). The main theorem. that the three-dimensional CAT(0)
complex K simplicially collapses. is proved in section 3.4.

In the final chapter we prove a combinatorial isoperimetric problem. The classical
isoperimetric problem is to determine the largest area that can be enclosed in the

plane by a curve with fixed perimeter. The calculus of variations evolved in part
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from attempts to solve this problem. For a history of the problem, see [HHM] and
[Po]. In a triangulated disk, one notion of nonpositive curvature is to require that
the sum of the angles around vertex be at least 2x. If the edges have unit length.
this translates into the nice combinatorial description that every interior vertex has
degree at least six. We use a combinatorial version of the Gauss-Bonnet theorem to
find the maximum possible number of interior vertices of a triangulated n-gon. all of
whose interior vertices have degree at least six. The question can also be viewed as a
type of combinatorial packing problem. Isoperimetric inequalities play a substantial
role in analysis of smooth spaces., and provide vet another important link between

combinatorial geometry and combinatorial topology.



Chapter 2

Notation and Basic Definitions

2.1 Simplicial Complexes

A set {aq..... an} of points in RY is said to be geometrically independent if for any

real scalars ¢;, the equations

n

Zt,=0 and it,a,=0

1=0 1=0
imply that tp = ¢, = --- = t, = 0. It is easy to verifvy that {a,..... a,} is a
geometrically independent set if and only if the vectors a; —ay, . . ..a, —ag are linearly

independent vectors, as in linear algebra. A one-point set is always geometrically
independent. Two distinct points in RY form a geometrically independent set. as do

three non-collinear points. four coplanar points, and so on.

=~



span the set of points r € RY such that

n
J:=Zt,a,

=0

for some to,t),....t, > 0 and Y. _ ¢, = 1. We define this set of points to be the
n-simplez spanned by {ao.....a.} and we define the dimension of o to be n. Any sim-
plex spanned by a subset of {a..... a, } is called a face of 0. We denote that o is a face
of 3 by writing 0 < 3. If 6" is an n-simplex spanned by the n+1 vertices vg. v,.. ... Un,
we say that the face of o spanned by the n vertices vg.v..... Urge Uy e e e s Un iS
the face opposite v,. Similarly. v, is called the vertex opposite the face spanned by
Vgy Ul v v v« Ui—1s Vi+1.--- - U'n. Lhe faces of o different from o itself are called the proper
faces of 0. Their union is the boundary of o, denoted Bd o. The interior of o is
defined by the equation Int 0 = 0 — Bd ¢. The set Int ¢ is called an open simplez.

A simplicial complez K in RV is a collection of simplices in RY such that evervy
face of a simplex of A" is in A" and the intersection of any two simplices of A is a
face of each of them. The dimension of K is defined to be the largest dimension
of the simplices of K. If A" has a finite number of simplices. we sav that A is a
finite simplicial complex. A subcomplez L of K is a subcollection of A that contains
all faces of its elements. Let K” denote the subcollection of A" which consists of all
p-simplices of K. Elements of K® are also called vertices of A and elements of A’
are also called edges of K.

Let [K| be the subset of RV that is the union of the simplices of K. Giving each
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simplex its natural topology as a subspace of RY, we topologize |A’| by declaring a
subset A of |K| to be closed in |K| if and only if AN ¢ is closed in o. for each ¢ in
K. The space |K| is called the underlying space of K. In general, the topology of | K|
is finer than the topology | K| inherits as a subspace of R¥. However, the topologies
agree if K is finite.

For any vertex v of A", the starof v in K, denoted St v, is the union of the interiors
of the simplices of A" that have v as a vertex. The closed star of v in A". denoted St v.
is the closure of St v. or the union of all simplices of A" that have v as a vertex. The
set St v-St v is called the link of v in A" and is denoted Lk v.

A triangulation of a topological space X is a simplicial complex A" and a home-
omorphism A : |[K| — X. If there exists a triangulation of X. we say that X is a
polyhedron.

Let A" be a simplicial complex. Suppose that « is a p-dimensional simplex of A
and a is not a proper face of any simplex in A". Suppose that J is a (p— 1)-dimensional
face of a but not of any other simplex in A'. Then we say that A" simplicially collapses
onto K — {a U 3}.

Let K| and K, be simplicial complexes and let 0 : K? — A be a vertex map
such that whenever the vertices vp,...,v, of K span a simplex of A’,. the vertices
f(v).. ... f(va) span a simplex of A,. Then ¢ can be extended uniquely to a contin-

uous map |¢| : |K,| — |A%| such that

T=) to, = |6l(z) =Y tid(v;).
1=0

=0
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The map |¢| is called the (linear) simplicial map induced by the the vertex map ¢.
Let K be a simplicial complex. A combinatorial path in K from vertex v to vertex
v’ is a sequence

’
U= U0,€,Ux€... Vg€, Ug+} =V

such that
Lo fori=1..... k.
2. 0,<efori=1..... k and
. vy<e_ fori=2..... k+ 1.

We say that such a path has length k. If v = v’ we say the path is closed.

[f there exists a combinatorial path from v to ¢’ of length k. but there does not exist
a combinatorial path from v to v’ of length less than k. then any combinatorial path
of length k is called a combinatorial geodesic from v to v’. Define the combinatorial
distance dc(v.v') from v to ¢’ to be the length of any combinatorial geodesic from v
to v'.

We say that vertices v and v’ are neighbors if dc(v. ') = 1. We say that an interior
vertex v € K is a boundary neighbor of K if there exists an exterior vertex v’ € A
such that dc(v,v’) = 1. We define the degree of a vertex v in A". denoted deg v. to
be the number of distinct neighbors of v in A. When any confusion may result. we

write deg, v to denote the degree of the vertex v when considered as a vertex in the

simplicial complex K.
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A simplex o of a simplicial complex K’ is an ezterior simplexof K if {o} C Bd |K]|.
A simplex o of A" is an interior simplex if it is not an exterior simplex. A triangulated
disk with n > 3 distinct exterior vertices is called a triangulated n-gon.

Let X be a polyhedron and U an open covering of X. A triangulation (A" h) is
said to be finer than U if for every vertex v € K, there exists a U € U such that
St h(v) C U. A simplicial complex A’ is said to be finer than an open covering U of
| K| if for each vertex v € K there is a U € U such that St v € U.

Theorems 1 through 4 on the theory of simplicial approximations are taken from

sections 1 through 1 in chapter 3 of Spanier’s Algebraic Topology [Sp].

Theorem 1. Let U be an open covering of a polyhedron X. Then there erists a

triangulation (K. h) of \' that is finer than U.

Let A, and R’; be simplicial complexes and let f : [A | — |K"5| be continuous. If
[8] : |[Ki| = |A>| is a simplicial map such that for all r € |K| and 0 € R,. f(r) € o
implies |@|(z) € 0. we say |o| is a simplicial approzimation to f. (In the next theorem.

we write |¢| >~ f to denote that |¢| is homotopic to f.)

Theorem 2. Let || : |K | = || be a simplicial approzimation to a map f : |K,| —
|K,|. Then |p| ~ f.

Theorem 3. A map |¢| : |K)| — |K,| is a simplicial approrimation to f : |K| —
| K| if and only if for every vertez v € K|, f(St v) C St o(v).

Theorem 4. A map f : |R|| — |K;| admits simplicial approzimations |o| : |R}| —

|K2| if and only if K, is finer than the open covering { f ~'(St v) | v is a verter of K»}.



2.2 Discrete Morse Theory

In this section we present an overview of discrete Morse theory for simplicial com-
plexes. All definitions and results in this section are from the paper Combinatorial
Differential Topology and Geometry by Forman [Fo2]. For a nice introduction. see
also [Fol]. We begin by defining the concepts of a discrete Morse function and a

critical point.

Definition 5. A function

f:RK ->R
is a discrete Morse function if for every a'?) € A
L #{3%*Y > a | f(3) < f(a)} < 1. and

2. #{vPV<a | f(v) 2 fla)} < 1.

We see from the definition that. generally speaking, f assigns higher values to

higher dimensional simplices. locally. with at most one exception at each simplex.
Definition 6. A simplex ao'?) is critical if
1. #{37"Y > a | f(3) < f(a)} =0, and

2. #{7* Y <a | f(7v) 2 f(@)} = 0.

We next define a combinatorial notion of a level set for a simplicial complex. If

f is a discrete Morse function on a simplicial complex K, then for any real number
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c, we define the level subcompler K(c) to be the subcomplex of A consisting of all

simplices 3 such that f3 < c, and all of their faces. That is,

Ko=UJ Ue

f)<e a<s

In analogy with smooth Morse theory, the following two theorems relate the topol-
ogy of a simplicial complex A" to the critical points of a discrete Morse function on
R.

Theorem 7. Suppose the interval (a.b] contains no critical values of f. Then K(a)

is a deformation retract of K(b). Moreover, K (b) simplicially collapses onto K (a).

Theorem 8. Suppose a'P' is a critical simplex with f(a) € (a.b|, and there are
no other critical simplices with values in (a.b]. Then K (b) is (simple-)homotopy

equivalent to

K(a)| Je®

e(p)

where eP) is a p-cell, and it is glued to K (a) along its entire boundary éP.

Corollary 9. Suppose K is a simplicial compler with a discrete Morse function.
Then K is (simple- Jhomotopy equivalent to a CW compler with eractly one cell of

dimension p for each critical simplez of dimension p.

For a simplicial complex with a discrete Morse function. let m, denote the number
of critical simplices of dimension p. Let F be any field, and b, = dimH,(K,F) the p**

Betti number with respect to F. Then we have the following inequalities.
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Corollary 10. I. The Weak Morse Inequalities.

1. For eachp =0,1,2....,n (where n is the dimension of K')
my 2 by
2 mp—my+my—---+(=D)"mpy=bp — by + b2 —--- + (=1)"b, = ¢(K).

II. The Strong Morse Inequalities.

Foreachp=0.1.2,....n.n+ 1.

My —Mp_y +---Fmg>b, —by_y +--- % by

Discrete Morse theory is defined for general simplicial complexes. However. in
the case that the complex is a combinatorial manifold. we can often say more. One

example is the following theorem.

Corollary 11. Suppose K is a combinatorial n-manifold with boundary with a Morse

SJunction with exactly one critical point. Then K is a combinatorial n-ball.

This is a consequence of Whitehead’s theorem on regular neighborhoods. which
says that a collapsible combinatorial n-manifold with boundary is a combinatorial
n-ball. If K is a complex with only one critical point. the critical point must be a
vertex. Theorem 7 implies the complex collapses to that vertex. and Whitehhead's

theorem then implies that K is a combinatorial n-ball.
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We will now define a combinatorial notion of vector field, which we call a gradient

vector field, associated to any discrete Morse function on a simplicial complex A". The

gradient vector field is a function V" : A — K'U{0} defined as follows. If 3+1) > o(P)

are simplices that satisfy f(3) < f(a) then we set V'(a) = 3. Define V'(a) to be 0
for all simplices a for which there is no such 3.

Let a and & be p-simplices. A gradient path from & to a is a sequence of simplices

& =al 3P o 3P o) 3P o) = a

such that for each i = 1..... r. fla,) 2 f(3) > f(e,«1). Equivalently. V(a,) = 3,,
and 3, > a1 # «a;.

We will see that the gradient vector field V' is often easier to work with than the
actual Morse function. For this reason, it is useful to have a characterization of which
vector fields are gradient vector fields of discrete Morse functions. We define a general
discrete vector field and then give a necessary and sufficient condition for a discrete

vector field to be the gradient vector field of a discrete Morse function.

Definition 12. A discrete vector field is any map

U:K - Ku {0}

satisfying for each a!P)

1. U(a) =0 or a is a codimension-one face of U(a).
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2. If a'® € Image(U) then U(a) = 0.

3. If o € Image(U) then there exists exactly one simplex v € A’ with U(v) = a.

I[f U is a discrete vector field, we define a U-path to be a sequence of simplices

(p) gp+1) () p+1) (p) +1) (P}
ay .3y lay 37 ey 3E*D P

such that foreach i = 1.....r. 3, = U(y) and 3, > a,;; # a;. We say such a path

is a non-trivial closed path if r > 0 and a9 = a,4;.

Theorem 13. A discrete vector field U is the gradient vector field of a discrete Morse

function if and only if there are no non-trivial closed U -paths.

The critical simplices of the discrete Morse function corresponding to a discrete
vector field on A" are precisely the simplices & € A" such that « is not in the image
of U and U(a) = 0.

In [Fo2] Forman shows how to develop a chain complex K. called the Morse

compler,

K: 0Ky 5Kt -5 5K, 5K —0

which has the same homology as the underlying space |A’|, and from which one can
obtain a more complete description of the relationship between the critical simplices
of a discrete Morse function. The p** chain group K, is generated by the critical

simplices of dimension p. If 3 is a critical p-simplex and « is a critical (p — 1)-simplex,
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the value of 93 on a is the number of gradient paths (counted with orientation) from
8 to a. (For the proof of the main theorem we will not need to be concerned about
the orientation of simplices.) For a complete description of the Morse complex. refer
to [Fo2].

Finally, we note the following theorem which shows that, under certain conditions.

we can simplify a discrete Morse function by “canceling” out critical simplices.

Theorem 14. Suppose f is a discrete Morse function on K such that 3™V and
a'P) are critical, and there is exactly one gradient path from 93 to a. Then there is
another Morse function g on K with the same critical simplices except that a and 3
are no longer critical. Moreover. the gradient vector field associated to g is equal to
the gradient vector field associated to f ercept along the unique gradient path from

a3 to a.

2.3 CAT(0) Spaces

Let (.X,d) be a metric space. The closed ball with center r and radius r is denoted
by B.(z). A pathin X is a continuous map [ : {0.1] - X. A geodesic between two
points z and y in .X is a path g : [0.1] — X such that g(0) = r. g(1) = y. and
d(g(s), g(t)) = |s — t| for all s,t € [0.1]. A geodesic segment in .X' is the subset of X’
that is the image of a geodesic. A geodesic metric space is a metric space in which
every pair of points can be joined by a geodesic segment.

Suppose that K C R¥ is a simplicial complex endowed with the piecewise Eu-
PP
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clidean geometry given by declaring edges to have unit length. We obtain a metric
on [K| by taking the distance between two points z and y in |K’| to be the infimum
over all paths in |K]| from r to y.

A geodesic triangle A = (r,,1,,13) in a geodesic metric space (.X.d) consists of
three points (vertices) r,. ry, and z; in .X and a geodesic segment (edge) between each
pair of vertices. A comparison triangle for the geodesic triangle A = (r,, £y, r3) is a
geodesic triangle A" = (.1}, x}) in R? such that d(s,,z,) = dx2(r;, r}) for all i. .
If a is a point on the geodesic segment of A from r, to r,. i # j. then the point @’ on
the comparison triangle A’ satisfving dg:(z},d') = d(r,,a) and dg:(r}.d') = d(z,.a)
is called the point corresponding to a. .X is a CAT(0) space if all geodesic triangles
satisfy the following comparison axiom of Alexandrov and Toponogov:

Let a and b be any two points of A. and let a’ and ¥ be the points of A’ corre-

sponding to a and b. Then d(a,b) < dx:(d’. V).



Chapter 3

Collapsing Simplicial Compiexes

Recall the definition of simplicial collapse from page 9: If A is a simplicial complex.
a a p-dimensional simplex of K which is not a proper face of any simplex in A". and
J a (p - 1)-dimensional face of a but not of any other simplex in A". then we say that
K simplicially collapses onto K — {a U 3}.

The goal of this chapter is to prove a theorem that gives geometric conditions
which guarantee that a three-dimensional simplicial complex collapses to a point. We
begin the chapter with a discussion of the geometry of CAT(0) disks and then prove
that every triangulated disk collapses. The ideas of the proof will be applied to prove
the main result of the chapter. which is that a three-dimensional nonpositively curved
simplicial complex collapses to a point. More precisely. the theorem we prove is the

following;:

Theorem. Let K be a finite 3-dimensional simplicial compler endowed with the piece-

wise Euclidean geometry given by declaring edges to have unit length, and satisfying

19
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the additional property that every 2-simplez of K is a face of at most two 3-simplices

of K. If |K| is CAT(0) then K simplicially collapses to a point.

The chapter is divided into four sections. The first section focuses on the geometry
of triangulated disks which are CAT(0). In the second section we will see how to put
a discrete Morse function on a triangulated disk that shows it simplicially collapses
to a vertex. As we will see in sections 3 and 4, a fundamental understanding of the
problem in dimension two provides great insight into how to define a Morse function
on the edges of a 3-dimensional complex. In section 3 we investigate the structure of
CAT(0) simplicial disks immersed in a 3-complex. Section 4 is a proof of the theorem

above.

3.1 The Geometry of CAT(0) Triangulated Disks

One of the most challenging steps in many topological problems is making the jump
from two dimensions to three. The crucial point in the proof of the theorem stated at
the beginning of the chapter makes use of two-dimensional CAT(0) disks immersed
simplicially in the three-dimensional complex K. Therefore we begin the chapter
with a section devoted to understanding the geometry of a CAT(0) triangulated disk.
In particular we wish to understand the distance between vertices. measured along
edges of the triangulation. We will see that the properties of such a distance function
depend on the lengths of the edges of the triangulation.

Let D be triangulated disk. Choose a length for each edge satisfving the triangle
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Figure 3.1: Distance from v is maximized in the interior of the positively curved disk.

inequality and endow D with the corresponding piecewise Euclidean metric. Then D
is CAT(0) if and only if the sum of the angles around each interior vertex is at least
27 [Gr]. Choose a distinguished exterior vertex v of D. and define the combinatorial
distance from each vertex to v to be the sum of the lengths of the edges in the shortest
edge-path between them. Our goal is to study this distance function. In particular, we
will show that if all edges are assigned the length 1 and the corresponding piecewise
Euclidean metric is CAT(0). this distance function attains its maximum only on
the boundary of the disk (see corollary 18). Note that without some assumption on
curvature. it is not to be expected that a combinatorial distance function is maximized
on the boundary of D (see figure 3.1).

In addition, if we do not put any restrictions on the edge lengths of D. then it is
still not necessarily true that the combinatorial distance function is maximized on the
boundary of D, as shown by the triangulated disk in figure 3.2. where edge lengths
are taken to be their Euclidean distances as drawn in the plane. It is in the case of
unit length edges that we understand the relationship between the continuous notion
of distance in a CAT(0) space and the combinatorial notion of distance obtained by

measuring along edges of the complex well enough to show that the complex collapses.
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Figure 3.2: Vertex w is further from v than any other vertex. with distance measured
along edges of the triangulation.

At the end of the section we give a preview of the proof of the collapsibility of
CAT(0) 3-dimensional complexes by defining a Morse function on a triangulated disk
where none of the simplices is critical except for one vertex. Theorem 7. one of
the main theorems of discrete Morse theory, then implies that the disk simplicially
collapses to a vertex. In dimension 2. the proof in fact works for any triangulated
disk, regardless of the curvature.

We begin the section by presenting a well-known combinatorial formulation of the
Gauss-Bonnet theorem relating curvature to the Euler characteristic of a triangulated

disk.

Lemma 15. Let D be a triangulated disk. Then the following combinatorial Gauss-



Bonnet formula holds:

6 = Z(G—dag u)+2(4—deg v)

int v ezt v

Proof. Let V" be the number of vertices of D, V},, the number of interior vertices. 1.,
the number of exterior vertices. E the number of edges, E,,, the number of interior
edges. E.;, the number of exterior edges. and F the number of 2-simplices of D. For

any triangulation of the disk we have the following equations: V" — F + F =1 (Euler

characteristic). 3F = 2E — Eez. Very = Eeny, and Y, ,deg v + 3, .,  deg v = 2E
for vertices v € D Using these equations we derive the formula:
6 = 61" —6F +6F
. 2 1
= 6V -6F+6 (gE - EE,,;“)
= 6V -2FE,,—-2F
= 6V -2V — ) degr— Y degv
int v ext v
= 6Vie +4Vope — Z deg v — Z deg v
int v ext v
= 2(6 — deg v) + Z(-l — deg v).
int v ert v
a

Note that if every interior vertex of D has degree at least six. then lemma 15
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Figure 3.3: The disk on the left is a geodesic disk of type . The disk on the right is
a geodesic disk of type II.
implies

> (4 —deg v) 2 6. (3.1)

ert v
This is a fact to which we will refer continually.
Let D be a triangulated disk whose exterior vertices are the vertices of the com-
binatorial geodesics v,.€,. Un_1,....v1. €1, 09 and Uy, En, Tnoy.-... Ty.%1. g such that
deg v > 6 for all interior vertices v. If v, = T, then D is called a geodesic disk of type

L If v, is a neighbor of T, then D is called a geodesic disk of type II.

Lemma 16. If D is a geodesic disk of type I then there exists an exrterior verter v of
D with v & {vg, vn} satisfying deg v = 3. If D is a geodesic disk of type [I then there

ezists an erterior verter v of D with v € {vq, tn.Un} satisfying deg v = 3.

Proof. By definition. deg v > 2 for all exterior vertices v of D. First we will show
that deg v > 3 for v € {vy,T),....tn-1,Tn-1}- Suppose deg v = 2 where 0 < k < n.
Then vi_,, vk, and vg+, span a 2-simplex in D, which implies dc(vksy, vk-1) = 1. But

Un:€n,Un—-1,---,V1,€1, U is a combinatorial geodesic so dc(vks1, Uk—1) = 2. and we
+
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reach a contradiction. Thus deg vy > 3. The argument is the same for 7.
Now consider a geodesic disk of either type I or type II. deg v > 6 for all interior

vertices v so the combinatorial Gauss-Bonnet formula implies 5", , (4 — deg v) > 6.

Then for a geodesic disk of type | we have

6 < Z(4-deg v)

ert v

= (4 —deg vy) + (4 — deg v,) + Z (4 — deg v)

exrt vEvg,tn

< 242+ ) (4-degu)

ext vEvg.Un

= 4+ Z (4 — deg v)

ert v#vo,un

Thus

ext vEvg.va (3 — deg v) > 2. which means there must be an exterior vertex
v & {vg. tn} with deg v < 1. deg v > 3 so deg v = 3. as desired.

The proof is similar for a geodesic disk of type II. Observe that if deg v, = 2
then v,_; and T, span an edge in D. so deg T, > 3. Thus it can't be true that both

deg v, = 2 and deg v, = 2. Without loss of generality we assume that deg 7, > 3.

Then



6 < D (4-degv)

ext v

= (4-degup) + (4 —degvn) +(4—degTp) + > (4 —degr)

ert v#ug,Un,iUn

< 24241+ Y (4—degu)

ert v#vg.vn,Un

= 5+ Y (4—degv)

exrt vEUY.Un.Un

Thus y_,,, v#vo.on.i, (1 — deg v) > 1. which means D must have an exterior vertex

v & {vo. tn.Tn} with deg v < 4. Again. deg v > 3 so deg v = 3. as desired. a

Let J be a simplicial complex whose underlying space is homeomorphic to R?
such that deg v > 6 for all v in J. Let S be any subcomplex of .J which is simply
connected and whose exterior vertices are the (not necessarily distinct) vertices of
the combinatorial geodesics v,.en, tn_1,.... 01, €. 9 and Tp.8n.Tpny.....T1. €. Tp in
J with vy = Tg. If v, = T, the subcomplex is called a string of pearls of type I. If v,
is a neighbor of T, the subcomplex is called a string of pearls of type II. Note that a
geodesic disk of type [ is a special case of a string of pearls of tvpe I and a geodesic
disk of type II is a special case of a string of pearls of tvpe II.

Consider a string of pearls S either of type I or type II. with exterior vertices as
described above. Suppose that the vertices v,, 7;, v; and T, satisfy i < j, v; = T,, and
ur # Tk for any ¢ < k < j. The first case we consider is when v; = T,. In this case.
Uys €5y Ujmls - - - » Vit 1, €k Vs = Ty, Eig), Tigly---.Uj-1, €, U, is a closed combinatorial

path which bounds a disk D;; in S. It is easy to verify that v;.e;, vj_1..... Vis1. €ix1, U
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Figure 3.4: The figure on the left is a string of pearls of type I. The figure on the
right is a string of pearls of type II.

and T,,€,,T,_1.....Ti+1.8+1. T, are combinatorial geodesics in D,, from v, to v,.
To see this, suppose that the combinatorial path v,.e,. Uyo1-€51e.n.. Uigy. €.ty Of
length j — ¢ is not a combinatorial geodesic from v, to v,. Then there is a combina-
torial path v;,€,, 0, y,....0)_rs1.€;_r41. t; from v; to v; of length r < j — i. There-
fore vy, eq, tpoy, ... Uy, 6, 0 ... Uymrt1:€jrsls Uis €40 Ui e v o ry. €1, g is a combi-
natorial path from v, to vg of length n — (j — i) + r < n since r < j — i. This
is a contradiction since dc(vn,v9) = n. Thus v,.e,.v,_1.€,_4..... Visl. €. Uy 1S
a combinatorial geodesic from v, to v,. Similarly. 7,.€,.7,_1.€,_\.....T\y1. €11, T;
is a combinatorial geodesic from 7T; to T;,. The second case we consider is when
v; and T; are neighbors. Let e denote the edge spanned by v, and 7,. Then
Ujs €5y Ujmly « -+ s Vil s €ige s Ui = Uy, €1y Uiy - -+, U1, €5, Tj, €, 05 is a closed combina-

torial path which bounds a disk D;; in S. The same argument as before shows
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that v;,e,,v,_1,..., V41,641, v; and U;,€,,0,—t,...,Ui+1,E41,U, are combinatorial
geodesics from v, to v, and from U, to U,, respectively. In both cases., the inte-
rior vertices of D,; are interior vertices of S, all of which have degree at least six.
Therefore in the first case, D,; is a geodesic disk of type I, and in the second case.
D;, is a geodesic disk of type II.

This brings us to the main result of the section.

Theorem 17. If S is a string of pearls of type I then every verter v of S lies on a
combinatorial geodesic from v, to vg. If S is a string of pearls of type II then every

vertez v of S lies on a combinatorial geodesic either from v, to vq or from T, to vy.

Proof. The proof is by induction on the number of 2-simplices F. If F = 1 then
S must be a string of pearls of type II with vy = T for k = 0..... n — 1. These
vertices together with v, and T, are the only vertices of S. and each of them is on a
combinatorial geodesic by definition. If F' = 2 then D must be a string of pearls of
type I with vy # Ui for exactly one & € {0.1..... n}. There are no interior vertices
and each of the vertices is on a combinatorial geodesic by definition.

For general F, suppose first that S is a string of pearls of tvpe I with at least three
2-simplices. Since v, = T, and vg = Ty, there exist i and j with i < j. v; = T,, v, =T,.
and vx # Ty for i < k < j. Hence S must contain a subcomplex D;; which is a geodesic
disk of type I bounded by the combinatorial geodesics v;. €;, v;_1, €jmlee s Uigl. €41 Uy
and U;,€;,0;-1.€-1,- - - Ui+1, €i+1. U; and such that the exterior vertices of D,; are

exterior vertices of S. By lemma 16, D;; has an exterior vertex v ¢ {v;,v,} that



satisfies deg v = 3, and this vertex is also an exterior vertex of S.

Second, suppose S is a string of pearls of type II with at least three 2-simplices.
Let e denote the edge spanned by v, and 7,. Either S contains a subcomplex D;,
with at least three 2-simplices which is a geodesic disk of type II bounded by the
edge e together with the combinatorial geodesics vy, en, Un_y..... 001,64 v, and
Up,€nyUnoyy.. .. Uys1,E4+1. Uy Where v; = T,, or S has a subcomplex D,;, which is a
geodesic disk of type I as in the previous case. If D,, is type [ then D,;. and therefore
S, has an exterior vertex v of degree 3 as described in the previous paragraph. If
D, is type II, then lemma 16 implies D,, has an exterior vertex v € {v,. vn, Tpn} that
satisfies deg v = 3, and this vertex is also an exterior vertex of S. Therefore. whether
S is a string of pearls of type I or type II. S has an exterior vertex v of degree exactly
three.

Without loss of generality assume v = v, for some k& € {1..... n— 1} Let v}
denote the unique neighbor of vy different from vx_; and vx,,. Let e} denote the
edge spanned by vi-; and v;. e, denote the edge spanned by t,.; and t}. and €’
denote the edge spanned by vx and v;. Let a, denote the 2-simplex in S spanned
by vk, i, and vgs, and ap the 2-simplex spanned by vk.vj. and vx_;. Consider the
subcomplex S’ = S — {vk.€' . ek, €k41. 1. a2} of S. v} is a neighbor of both v;_,
and vg4;, which are distances £ — 1 and k& + 1, respectively, from vq. Thus it must
be the case that d(v,ve) = k. Therefore the exterior vertices of S’ are the vertices
of the combinatorial geodesics vn, €n, Un-1.. ... Vks1. €5,y Uy €ks Uk—1.- - - . U1. €], Lo and

Tp,€ny Un_1,.... U1, €1, Ug from v, to vg. The interior vertices of S’ are interior vertices



30

of S and thus all have degree at least 6. Therefore if S is a string of pearls of type I,
then S’ is again a string of pearls of type I and if S is a string of pearls of type II. then
S’ is again a string of pearls of type II. In either case. S’ has two fewer 2-simplices
than S. By induction. every interior vertex of S’ lies on a geodesic from v, to vp.
The only interior vertex of S not in S’ is v}, which we have already seen lies on a

combinatorial geodesic from v, to vy, and the proof is complete. a

In particular, theorem 17 applies to every geodesic disk. This brings us to the
main result of this section. Every vertex on a combinatorial geodesic from v, to
vo must be closer to v¢ than v,. so an immediate corollary of theorem 17 is that

combinatorial distance in D. measured from ty. is maximized on the boundarv of D.

Corollary 18. If S is a string of pearls of type either I or II. bounded by combinatorial
geodesics Un, €pn, Up_1,....L1.€1.Ug GNd Tp, €n. Tnele-- .. T).8. g, then d(v.g) < n for

every interior vertex v of S.

If v and v’ are neighbors in S then d(v. vg) and d(¢'. vg) differ by at most one. In
particular. corollary 18 implies that any neighbor v of v, or T, in the interior of a

geodesic disk satisfies d(v.vg) = n — 1.

Lemma 19. Let J be a simplicial compler whose underlying space is homeomorphic
to R? such that deg v > 6 for all v € J. Let v* be a distinguished verter of J. Then if

d(v.v") = n, v has at most two neighbors that are combinatorial distance n — 1 from

v,
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Proof. The proof is by induction on d(v, v*). Suppose d(v,v*) = 1. Then v* is the
only neighbor of v that is combinatorial distance 0 from v°*.

For the general case. suppose d(v, v*) = n, and that v has more than two neighbors
of combinatorial distance n — 1 from v*. Let u,,...,u; be the neighbors of v that
are distance n — 1 from v* and consider a combinatorial geodesic v.e. u,....v* for
each k € {1....,l}. Together these combinatorial geodesics determine a subcomplex
D of J which is a geodesic disk of type I and which contains all of u;..... w. By
theorem 17 and corollary 18. interior vertices of D are distance at most n — 1 from v*

and every interior vertex of D lies on a combinatorial geodesic from v to v*. Therefore

neighbors of v in J are combinatorial distance n — 1 from v* if and only if they are in

St v N D. Hence we may assume that u,,....u are labeled so that u, and u,., are
neighborsin St vfori =1..... [ —1. Denote the combinatorial geodesics bounding D
by UV.€pyUp—1s€p—ts--.. U'y.€;. v* and v. Enwvn-—h En—lv cees F[. €. v*. where Un—1 = U

and U,_; = u,.

We will show that if u, and u; are neighbors in D then u, and u, are neighbors in
St v. If u; and u, are neighbors in D, denote the edge they span by e, ,. Assume: < j,
and suppose that u; and u, are not neighbors in St ¢, so that j —: > 2. Consider
the subcomplex A of D that is homeomorphic to a disk. bounded by the closed
combinatorial path u;.e; 1, Uis1, ... . u;-1,€;-1,. U,, €,,, u;. Every exterior vertex of
A except possibly u; and u, is an interior vertex of D and thus must have degree at

least six in D. Since the only neighbor of ux in D — 4 is v for i < k < j, ux must

have degree at least five in A for ¢ < k < j. In particular, 4 — deg u; < 0 for exterior
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vertices ux of A, { < k < j. The vertices u, and u; have degree at least two in A.
Every interior vertex of 4 must have degree at least six since it is also an interior

vertex of D. Equation 3.1 then implies

J
6 < D (4-degu)
k=1
-1

= (4-deg u,)+ (4 —deg u,) + > (4 - deg ux)

k=1+1
71-1
< 2+2+ Z (4 — deg uy)
k=141
-1
= 4+ z (4 —deg ux)
k=1+1
< 4

and we reach a contradiction. Thus if u, and u, are neighbors in D. the edge they span
is in St v. as desired. This implies that u has at most two neighbors of combinatorial
distance n — 1 from v°. For i < k < j. ux is an interior vertex of D that has exactly
three neighbors in St v. so u; must have at least three neighbors in D that are not
in St v. Thus u; must have at least three neighbors that are combinatorial distance
n—2 from v*. This is a contradiction, since by induction u, has at most two neighbors
that are combinatorial distance n —2 from v*. Therefore v has at most two neighbors

of combinatorial distance n — 1 from v*. O

In particular, this implies that if D is a geodesic disk of type I bounded by com-

binatorial geodesics vp, €n. Un-1.€n-1,- .., V1, €1, Vg and vy, €n, Un—i1.€n—1--- .. 1. €1. Vg,
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Figure 3.5: vy.tn_1. and T,_, span a face in a geodesic disk of tvpe I.

then any interior vertex v of D satisfies de(v.vg) < n — 2.

Corollary 20. If D is a geodesic disk of type I. bounded by combinatorial geodesics
Uny€ns Un— s Ep—po .- oo ry.e1.tg and Up.€p,Tn-y.€n-1.....T1.€1. Ly from v, to vy. then

Un, Un—1, and Tp_ span a 2-simplez in D.

Proof. By the previous lemma. D has no interior vertices of combinatorial distance n—
1 from vp, implying v, must have degree 2. which then implies v, and T,,_; are neigh-
bors. Let € denote the edge spanned by v,_; and T,_;. Then vn.€,, tn_1.€.Tu_1.€p, Un
is a closed combinatorial path that bounds a disk in D. all of whose interior ver-
tices must have degree at least six. By the combinatorial Gauss-Bonnet formula.
(4 —deg v,) + (4 —deg vy—1) + (4 — deg Tpn—,) > 6. Thus vy, vn_;. and T,_; must all

have degree 2, which implies they span a 2-simplex in D. O
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3.2 Collapsing a Triangulated Disk

Let D be any triangulated disk. We will now outline a proof that D simplicially
collapses to a vertex by defining a discrete Morse function on D that has exactly one
critical point. We will accomplish this by defining a discrete vector field " on D with
no nontrivial closed V’-paths. By theorem 13, V" is then the gradient vector field of a
discrete Morse function f. We will verify that f has exactly one critical point. and
hence, by theorem 7. D simplicially collapses to a point.

Let v* be a distinguished vertex of D. Define V(v*) = 0. For v # v* define
V(v) = e where v.e..... v® is any combinatorial geodesic from v to v*. Now if an
edge e is in the image of |". define V’(e) = 0. If e is not in the image of 1" then
consider the string of pearls bounded by e and the combinatorial geodesics from the
endpoints of e to v*. Define V'(e) = o where o is the unique 2-simplex in the interior
of the geodesic disk and containing e as a face.

To see that V' is a discrete vector field we need to verify that for any edge e and
o. if V'(e) = o then there is no other edge ¢’ with V'(¢) = 0. If the geodesic disk
bounded by e and the combinatorial geodesics from the endpoints of e to ¢* is a
geodesic disk of type I then one endpoint v, of e is combinatorial distance n from
v* and the other endpoint v,_; is combinatorial distance n — 1 from v*. Lemma 19
implies that 1"(v,) is an edge which is a face of o, and therefore this edge does not
map to o. By lemma 20 the edge in o different from e and V'(v,) has endpoints that

are both distance n — 1 from v* and opposite vertex v, in 0. By lemma 18, this edge
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can not map to o. Therefore e is the unique edge mapping to o. If the geodesic
disk bounded by e and the combinatorial geodesics from the endpoints of e to v*
is a geodesic disk of type II then by lemma 18, neither of the edges in o different
from e can map to o since each of these two edges has an endpoint combinatorial
distance n — 1 from v* and an opposite vertex in ¢ combinatorial distance n from v*.
Again, e is the unique edge mapping to o. Therefore V" is a discrete vector field on D.
Furthermore, there are no nontrivial closed V'-paths since arrows of the vector field
point to vertices closer to v*. (A formal proof of this fact will be given in section 3.)
Theorem 13 implies that 1" is the gradient vector field of a discrete Morse function.
Recall that the critical simplices of the discrete Morse function corresponding to a
discrete vector field on R are precisely the simplices a € A  such that a is not in the
image of U and U(a) = 0. In figure 3.6 we indicate that V’(a) = 3 with an arrow
pointing from a to 3. By definition then. the critical simplices of D are the simplices
that are neither the head nor the tail or an arrow. Thus v* is the only critical vertex
of D. and D has no critical edges. In section 2.2 we defined m, to be the number of
critical simplices of dimension p. Referring to the weak Morse inequalities on page 14
we see that

l=x(D)=mg—m;+my;=1-0+ mo,

which implies that m, = 0 and therefore D has no critical 2-simplices. Thus the
discrete Morse function has exactly one critical point. By theorem 7. D simplicially

collapses to v*.
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Figure 3.6: The gradient vector field corresponding to a discrete Morse function on
D.

3.3 The Geometry of a 3-Dimensional CAT(0) Sim-

plicial Complex

The method described in section 3.2 for defining a discrete Morse function will be
our guide in creating a Morse function on a three-dimensional complex. Motivated
by the need to find a clear direction in which to flow from a noncritical simplex.
we again create a Morse function that is also a distance function in a combinatorial
sense. In order to find a good direction in which to flow from an edge. we consider
knots in A" formed by combinatorial geodesics. Because CAT(0) implies that A is
simply connected, for each knot there exists a simplicial map of a triangulated disk

into K which maps the boundary of the disk to the knot (see section 2.1. The pivotal
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step is showing that any such disk, which is minimal with respect to the number of
triangles, must also be CAT(0). This is a combinatorial analog of the fact that a
minimal surface in R* must be nonpositively curved. For each edge, the associated
minimal disk provides a direction in which to flow. The problem is thus reduced to
two dimensional CAT(0) disks, which we understand.

We begin with some elementary Euclidean geometry that will be used to compare
geodesic triangles in the CAT(0) space to comparison triangles in R? in the proofs to

follow.

Lemma 21. Consider two Euclidean triangles. The first triangle has side lengths

A.B. and C, and the second triangle has side lengths A'. B. and C. Let a and o'

denote the angles opposite the sides of lengths A and A'. respectively. Then A’ > A

if and only if &' > a.

Proof. By the law of cosines. A* = B?+(C? - 2BC cos a. Differentiating with respect
da

i 24 =2 inade da _ __A i ~ i
to A yields 24 = 2BCsina g3, or 33 = 55— > 0since 0 < a < 7. Thus « increases

if and only if A increases. Equivalently. 4’ > 4 if and only if o’ > a. a

Corollary 22. Consider two Euclidean triangles. A, = (a.b.c) and A, = (@.b. ).
Suppose A, B. and C are the lengths of the sides in A\, opposite a.b.and c. respectively.
and A, D, and D are the lengths of the sides in [\, opposite @.b, and €. respectively.

Let a denote the angle at a and @ the angle ata. If B> D and C > D then a < a@.

Proof. Without loss of generality, assume C > B. Let p; and g be the points on

the edge between a and b satisfying d(a,p;) = D and d(a.q) = B. and let p, be the
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point on the edge between a and c satisfying d(a,p;) = D. Then triangle (a,c.q) is
isosceles and d(p1, p2) < d(c.q). Let 3 denote the angle at ¢ in triangle (a.c.q). + the
angle at ¢ in triangle (b, c.¢), and & the angle at b in triangle (a, b, c). Since triangle
(a,c,q) is isosceles we have J = Z32 and thus v = 22 Then 4 must be less than v:
otherwise the sum of the interior angles of triangle (b.c,q) would be greater than .
Then ¢ < v implies d(c.q) < A. Thus d(p,.p2) < d{c.q) < A. and the lemma applied

to triangles (a. p;.p2) and 4, implies a < @. a

Lemma 23. Let K be a 3-dimensional simplicial compler endowed with the piecewise
Euclidean geometry given by declaring edges to have unit length. Then each of the

follouning holds:
1. If w is a verter of K then B\/g(w) C St w.
3

2. Let w be a vertex of R and p the midpoint of an edge in K. Then d(p. w) < %—5

if and only if p € St w.
3. Let w and w' be distinct vertices of K. If d(w.u') < \/g then d(w.uw')=1.

Proof. 1. The distances from a vertex to the baryvcenter of its opposite face in a
1-, 2-. and 3-simplex are. respectively. 1. ? and \/g Therefore in a three-
dimensional simplicial complex. the distance from a vertex to the boundary of

its star is at least \/_%- and hence B x(w) C St w.
k]

2. To prove the forward direction. suppose that p ¢ St w. Let v’ be a vertex of

K such that p € St w’. Then St wNSt w’ = @ and d(p. Bd(St vw')) = ﬁ. Also,
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by part 1 of the proof, d(w, Bd(St w)) = \/g The geodesic from p to w must
leave the star of u’ and enter the star of w, so d(p, w) > 715 + \/g > ‘/Ti which
is a contradiction. Therefore p € St w. Now we prove the other direction. If

p € St w then either p € St w or p € Lk w. If p € St w then d(p.w) = L. If

o |—

p € Lk w then d(p.w) = 4.

3. By part 1 of the proof, d(w.Bd(St w)) = d(u’. Bd(St v')) = 2 Ifu' ¢ St w
then St w N St v’ = (. so the geodesic from w to w’ must leave the star of w'

and enter the star of w. Thus d(w.w’) > '2\/_— = \/g. a contradiction. Thus

W1

w' € St w. which implies d(w. w’) = 1.

O

The following lemma begins our investigation of immersed CAT(0) disks in a

3-dimensional CAT(0) complex.

Lemma 24. Suppose R is a simplicial compler whose underlying space |K’| is simply
connected and wy, €y, . ... Wk. €k, Wk+1 = W) 15 a closed combinatorial path in K. There

erists a triangulated k-gon D with exterior vertices vy.....uUk. Uksey = Uy, labeled so

that v,y is a neighbor of v; for i = 1..... k. and a simplicial map |0| : |[D| = |K]|

satisfying o(v;) = w; fori=1,.... k.

Proof. Let 4 C R? be any triangulated k-gon with distinct exterior vertices
Uls..., Uk, Ugsy = Uy, labeled so that v,,; is a neighbor of v; for i = 1..... k. Let
¥ : Bd4A° — K?° be the vertex map v(v;) = w; fori = 1..... k. Recall the definition

of a combinatorial path which says that two consecutive vertices in a combinatorial
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Uz = Us

vy = Uy U3 3

Figure 3.7: An example for k£ = 6. The dashed lines indicate the subdivision A’.

path must be distinct. Therefore the induced simplicial map |v| : Bd|4| — |A]
maps exterior edges of 1 to edges of A. Because |A'| is simply connected. ||
extends to a continuous map f : |4] — [K| [Mul]. Consider the open covering
U= {f"Stw)| we R} of A. By results from Spanier. there exists a subdivi-
sion A’ of 4 that is finer than . Then for every vertex a € A’. St a C f~(St w)
for some w € K, so the vertex map given by ¢’'(a) = w induces a simplicial map
|| : |A'] = |K]|. Since for each a € A’. f(St a) C St w for some w € RA. |0} is a
simplicial approximation to f.

Let c; denote the 1l-simplex spanned by the exterior vertices t; and v,,, of A.
If ¢; is not a simplex of A’ then let v; = v;),....vim = vy denote the vertices
of A’ that are points of c,, labeled as in figure 3.3. so that v, is a neighbor of
Uij+1,.J = 1,...,m—1. Since f~!(St w,) and f~'(St w;,) are the only sets in &/ that
containv;; for j = 2..... m— 1, we may assume that the subdivision ' is fine enough

so that St v;; C f~'(St w;) and thus assume that ¢'(v;;) = w;, j=2,....m — L.
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Figure 3.8: The k-gon D

Now we define a simplicial complex D that contains A’ as a subcomplex and
has the desired properties. The vertices of D are the vertices of 4’ together with
the vertices 7, for each i such that ¢; is not a simplex of A’. The 2-simplices of D
are the 2-simplices of A’ together with the simplices spanned by the sets of vertices
{T.. vi, vis1 } and {Ti,v,,.vi,+1} for each i such that c, is not a simplex of 4’ and
j=1....m-1.

Now the exterior vertices of D are v;.. ... Uk. Uk+1 = 7 and v, is a neighbor of r,
fori = 1....,k. Weextend the map v’ to a map o : D° — KR by defining o(7;) = w,.
Then each 2-simplex of D that is not a 2-simplex of A’ is spanned by three vertices all

of which map to at most two (neighboring) vertices in A. Therefore |o|: |D| — |A’|

is a simplicial map, as desired. d

In the next lemma we prove some properties of any triangulated disk as described
in lemma 24, which is minimal in the sense that it has the smallest possible number

of 2-simplices. Such a disk exists since K has a finite number of simplices. For the
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lemma we make a new definition. Say that two 2-simplices 3; and 3, are neighbors if

there exists an edge e with e < 3} and e < 3.

Lemma 25. If D is a simplicial compler as described in lemma 24. which is minimal

with respect to the number of 2-simplices, then

1. |¢| : [D| — |K| maps 0-,1-, and 2-simplices to 0-.1-, and 2-simplices. respec-

tively.
2. 3 and 3 are neighbors in D implies |0|(3;) # |0l(32).

Proof. 1. Suppose that |¢| maps a 2-simplex to an edge. a 2-simplex to a vertex.
or an edge to a vertex. In each case. |¢| maps an interior edge to a vertex.
We will show that this can not occur. Suppose that vertices a and b are neigh-
bors and that o(a) = ¢(b). Then the edge spanned by a and b must be an
interior edge. Let ¢ and d be the vertices of D such that a.b. and ¢ span
a 2-simplex and a.b. and d span a 2-simplex. Let U" be the set of vertices
{a.b} U {u | u is a neighbor of both a and b} in D and let L, be the subcom-
plex of D consisting of all simplices spanned by vertices from the set {". Define
L, to be the subcomplex of D consisting of all simplices in D — L, that do not
contain b as a face. Finally, define L; to be the set of 2-simplices spanned by
the set {u.v.a | u.v.and b span a 2-simplex in D — L,} along with all of their
faces. Then (D — L,)U L,U L3 gives a simplicial complex that also satisfies the
properties of the previous lemma but that has at least two fewer triangles than

D, a contradiction. Therefore |@| maps simplices of dimension p to simplices of
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dimension p.

o

Suppose that a,b.c. and d are vertices in D such that a,b. and ¢ span a 2-
simplex 3, and b,c, and d span a 2-simplex 3,. Then [¢|(3)) = |o|(3) if
and only if ¢(a) = o(d). Suppose &(a) = ¢(d). Let U be the set of vertices
{a,d} U {u | u is a neighbor of both a and d} and let L, be the subcomplex
of D consisting of simplices spanned by vertices from the set U'. Define L,
to be the subcomplex of D consisting of all simplices in D — L, that do not
contain d as a face. Finally, define L3 to be the set of 2-simplices spanned by
the set {u.v.a | u.v.and d span a 2-simplex in D — L,} along with all of their
faces. Then (D — L,)U L, U L3 gives a simplicial complex that also satisfies the
properties of the previous lemma but that has at least two fewer triangles than
D, a contradiction. Therefore |0|(3,) # |o|(32)-

a

Suppose that D is a triangulated disk that maps into A" as described in lemma 24
and which is minimal with respect to the number of 2-simplices. Endow D with
the piecewise Euclidean geometry given by declaring edges to have unit length. Our
current goal is to prove that D must be a CAT(0) disk. We will do this by showing
that D has no interior vertices of degree 3. 4. or 3. The first step is to show that any

three neighbors in A" must span a 2-simplex.

Lemma 26. If w), w;, and w; are vertices in K with w; a neighbor of w; for i # j,

then wy, wo, and wy span a 2-simplez in K.



44
Proof. Let e be the edge spanned by w, and wj, and m the unique point on e such that
d(wy, m) = d(ws, m). If m € St w, then e € St w, and therefore wy, Wy, and wy span
a 2-simplex in St w,. To see that m € St wy, let A’ = (w}, wh, wy) be a comparison
triangle for A, and m’ the point in A’ satisfying dg:(w}, m') = dgz(w}, m’). The
CAT(0) inequality implies d(w,, m) < dg:(w}, m’') = 3? Now m is the midpoint of

an edge and contained in B ;(w;). By lemma 23, m € St w,. as desired. a
We are now ready to prove that |D| is CAT(0).

Theorem 27. Let D be a triangulated disk as in lemmma 24 that is minimal with
respect to the number of 2-simplices. If D has the piecewise Euclidean geometry

endowed by declaring edges to have unit length then |D| is a CAT(0) space.

Proof. It suffices to show that D has no interior vertices of degree 3. 4. or 5.
Suppose v is an interior vertex of D with deg v = 3. Let v,.vs. and v3 be the
three distinct neighbors of v. and 0,,0,. and o3 the three distinct 2-simplices in D
that contain v as a face. By lemma 25. |o| : |D| — |K| preserves the dimension of
each simplex. so the vertices o(v,), d(v2). and o(v;) are distinct, neighboring vertices
in K. and thus, by lemma 26 span a 2-simplex J in A". Let L, be the subcomplex
of D that consists of the 2-simplices 7,, 0>, and o3 and all their faces. Let L, be the
subcomplex of D consisting of the simplices of D — L, and all their faces. Let a be a
2-simplex spanned by the vertices vy, v2. and v3. Then D' = L, U {a} is a simplicial
complex whose underlying space is a disk and the vertex map ¢ restricted to the

vertices of D’ induces a simplicial map from |D’| to | K| satisfving the hypotheses of
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corollary 24. But D’ has two fewer 2-simplices than D, a contradiction since D is
minimal with respect to the number of 2-simplices. Therefore D has no vertices of
degree 3.

Suppose v is an interior vertex of D with deg v=4. Let v, vy, v3, and vy be the
four distinct neighbors of v. with v, a neighbor of v,,;, i = 1.2,3. Let 0,,05.03, and
a4 be the four distinct 2-simplices in D that contain v as a face. Denote the image
of o(v;) by w; for i = 1.2,3,4. By lemma 25, the vertices w,. w,, w3, and w, are all

distinct vertices in A. We will show that either d(w;. w3) < V2 or d(w», wy) < V2.

Since v2 < \/E, lemma 23. part 3 then implies that one of these distances is equal
to 1. Let 24 = d(w),ws3). Geodesics between two points in a CAT(0) space are
unique so let s be the unique point in |A| satisfving d(w;,s) = d(wj.s) = 4. Let
d(w2,s) = B and d(wy,s) = C. Let A" = (w}, w), w}) be a comparison triangle in R?
for the geodesic triangle & = (w,, w», w3) in |A|, s’ the point on the edge spanned by
wy and wj satisfying dgz(w).s’) = dg2(wj},s’) = A. and D the distance from w/ to s'.
A\’ is isosceles, so A2+ D?* =1. [f A < 7‘5 then d(w,, w3) =24 < V2. If 4 > -\}5— then
since |A'| is CAT(0) we have B< D =1 - 42 < /1 - (7‘5)2 = 71,5 and similarly.,
C < J5. Hence d(wy, wy) < V2. Soeither d(wy, w3) < v or d(ws, wy) < V2. We will
assume without loss of generality that d(w;, w3) < V2. By lemma 23, d(w,. w3) = 1.
Lemma 26 then implies that w,,w,, and w; span a 2-simplex J, and w,.w;, and
wy span a 2-simplex 3, in K. Let L; be the subcomplex of D that consists of

the 2-simplices oy, 04, 03, and o4 and all their faces. Let L, be the subcomplex of D

consisting of the simplices of D — L, and all their faces. Let a; be a 2-simplex spanned
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by the vertices vy, v2, and v; and let a; be a 2-simplex spanned by the vertices vy, v3,
and vy. Then D' = L, U {a,. a,} is a simplicial complex whose underlying space is
a disk satisfying the conditions of corollary 24, and with two fewer 2-simplices than
D, a contradiction since D is minimal with respect to the number of 2-simplices.
Therefore D has no vertices of degree .

Suppose v is an interior vertex of D with deg v=5. Let vy, vy, v3, vy, and vs be
the five distinct neighbors of v, with v; a neighbor of v;. for : = 1.2.3.4. Again
by lemma 25, the vertices w;, ws, w3. wy, and ws are all distinct vertices in A". Let
0\.02,03. g4, and o5 be the five distinct 2-simplices in D that contain u as a face.
Denote the image of o(v,) by w, for i = 1.2.3.4.5. Let L = 2sin(3%). Again using
lemma 23, we will show that d(w;, w;) = 1 in A for some non-neighboring vertices w;,
and w, by showing that d(w,,w,) < L < \/g. Lemma 23 then implies d(w,, w,) = 1.
Without loss of generality. we will show that if both d(w, w3) > L and d(w;3. ws) > L.
then d(w,, wy) < L.

Let a be the point on the geodesic segment from w; to w; that satisfies d(ws.a) =
L — 1 and b the point on the geodesic segment from w; to ws that satisfies d(ws.b) =
L — 1. Consider the geodesic triangle A = (w;,w,, w3) in |A], and let A’ =
(w}, wy, w3) be a comparison triangle for A in R?. Let ' be the angle at vertex w)
and v’ the angle at w] and wj. Let @' be the point on A’ satisfving dg=(w},a’) = L—-1.
By the CAT(0) inequality. d(w,, a) < d(uw},a’).

Consider a Euclidean triangle A" with vertices w{, w3, and wj satisfying d(w}. u}) =

d(w3,w3) = 1 and d(w},wj) = L. Let a" be the angle at wj and +" the an-
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gle at wy and wy. Let a” be the point on the edge between w] and wj satisfving
d(wz,a") = L — 1. Then d(w3,a") = L — 1. By lemma 21, d(w}, w}) > d(w}, w?)
implies ' > «”. Therefore v' < 4", which implies, again by lemma 21, that
d(w3, a’) < d(wj,a"). Therefore we have d(w,, a) < d(w}, @') < d(wh,a") =L - 1.

Similarly we can show that d(wy,b) < L — 1.

Now we consider d(a.b). Consider the geodesic triangle A = (w,. ws, w s) in K,
and let &' = (W), @4, ws) be a comparison triangle for A in R?. Let J' be the angle
at vertex wj. Let a' be the point on the edge spanned by w| and W) satisfving
dg:(W3,a’) = L — 1 and & the point on the edge spanned by T} and T; satisfving
dr2(w5,4') = L — 1. By the CAT(0) inequality. d(a.b) < d(a’.V').

Now consider a Euclidean triangle A with vertices w,.wy. and @y satisfying

wY.W3) = d(W3,0;) = L and d(@].w;) = 1. Let 3" be the angle at w}. Let a”
be the point on the edge spanned by @/ and @4 such that d(@}.4") = L — 1 and
let " be the point on the edge spanned by w3 and w{ such that d(@},b") = L — 1.
Then d(a".4") = 2 — L. By corollary 22. 3’ < J”. Lemma 21 then implies that
d(d'.b') < d(a”".b"). Therefore d(a.b) < d(d'.¥') < d(a". ") =2~ L.

Now the geodesic segments in [K| from w, to a. a to b. and b to w, give a path
from ws to wy. Thus we have d(w,. wy) < d(ws,a) +d(a.b) +d(b.wy) < (L—-1)+(2-
L)+ (L—-1)=L =2sin(3 o) < \/_ By lemma 23 d(w,, wy) = 1. which implies that
wp, w3, and wy span a 2-simplex 3, in K. By the preceding argument for vertices of
degree 4, either d(w, wy) = 1 or d(w,, ws) = 1. Without loss of generality we assume

that d(wy, wy) = 1, so wy, wo, and w, span a 2-simplex 3, and w,, w;, and ws span a
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2-simplex 33 in K.

Let L, be the subcomplex of D that consists of the 2-simplices o, 02, 73, 04, and
gs and all their faces. Let L, be the subcomplex of D consisting of the simplices
of D — L, and all their faces. Let a; be a 2-simplex spanned by the vertices v.. v3,
and vy, o2 a 2-simplex spanned by the vertices v, 2, and vy, and a; a 2-simplex
spanned by the vertices v,.v;. and vs. Then D' = L, U {a;1. a3, a3} is a simplicial
complex whose underlying space is a disk satisfving the conditions of corollary 24
with two fewer 2-simplices than D, a contradiction since D is minimal with respect

to the number of 2-simplices. Therefore D has no vertices of degree 5. a

Lemma 28. Suppose that wn,ep, wn_1,....wy, e, wg and T &m. Tm—i. - . - - . €1. Wy
are combinatorial geodesics in K, and w, and W, are neighbors. Let D be any sim-
plicial disk mapping to K via the map |0| as in lemma 24 that is minimal with respect
to the number of 2-simplices. Suppose v, and T, are the two esterior vertices of D
mapping to w, and W,,. respectively. Let 3 denote the unique 2-simpler of D con-
taining the vertices v, and Uy, and let w be the vertez of |o|(3) different from w, and

Wy. Then de(w,wy) = n — 1.

Proof. w is a neighbor of w, so d(w.w*) > n — 1. Let v be the vertex of 3 different
from v, and U,,,. We have seen that d(v.vg) = n—1. Let v.é,_,. tn_s,.... 0. 6;. g be
any combinatorial geodesic in D from v to vg. Since the simplicial map |o| preserves
the dimension of each simplex, |@|(v). |d|(€n=1). [0|(Tn=2), - - -.|8](F1). |0|(€1), |O|(v0) is

a combinatorial path of length n—1 from w to w* in K, which implies d(w.w") < n—1.
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Therefore d(w, w*) =n — 1. a
Lemma 28 shows us that at least some of the distance function information carries

over from D to K. This will be exactly what we need in the next section to prove

the main result of the chapter.

3.4 Proof of the Main Theorem

In this section we give a proof of the main theorem. stated on page 49. and written

here again for easy reference.

Theorem 29. Let R be a finite 3-dimensional simplicial compler endowed with the
piecewise Euclidean geometry given by declaring edges to have unit length. and sat-
isfying the additional property that every 2-simplez of K is a face of at most two

3-simplices of K. If |K'| is CAT(0) then K simplicially collapses to a point.

We begin as we did in section 3.2. when showing that every triangulated disk
simplicially collapses to a point. We first define a discrete vector field 11" on A  such
that every edge and all but one vertex either maps to another simplex of A™ or is
in the image of IV'. We then show that there are no nontrivial closed 1§ -paths. and
hence, by theorem 13. the discrete vector field is the gradient vector field of a discrete
Morse function f. By the definition of 1. f has no critical edges and exactly one
critical vertex.

In the two-dimensional case, we were able to immediately conclude that there

were no critical 2-simplices and therefore, the disk collapsed to a point. In the three-
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dimensional case we are left with critical 2- and 3-dimensional simplices that we must
still deal with. A similar Euler characteristic argument indicates that the number of
critical 2-simplices is equal to the number of critical 3-simplices. We then show how
to use theorem 14 to “cancel” out these critical simplices in pairs.

As before, we start by defining a function W : K — R U{0} by arbitrarily choosing
one vertex of the complex to be a distinguished vertex. We denote this vertex by w*.
W is defined on vertices as follows. For each vertex w # w". choose any e such that
w,e,...,w" is a combinatorial geodesic from w to w", (such a path exists because |A|
is connected) and let W' (w) = e. Define W (w*) = 0.

Now we define 1™ on edges as follows. Let e be an edge in A". If there exists w € A’
with W (w) = e then define 11"(e) = 0. If there does not exist w € A" with IV () = e
then let w, and w,, denote the endpoints of e. and let w,.e,, wn_;.....w . e,. w"
and Wm,&m, Wimn-1,--..T1. €, " be the combinatorial paths from w, to w* and T,
to w*, respectively. satisfving W (w,) = e; and W(&,) = €, for all ;. By lemma 24.
there exists a minimal (in the sense of lemma 23) triangulated disk D with n +m + 1
distinct exterior vertices v*. vy,.... Un.Tl.....Um, and a simplicial map |o| : D - R
that satisfies ¢(v*) = w*.o(v;) = wy, and o(7;) = w; for all i. There is a unique 2-
simplex 3 in D such that v, < 3 and T, < 3 and by lemma 25. |6|(3) is a 2-simplex
of K that contains the edge e as a face. Define W (e) = |¢|(3). Define ¥ (a) = 0 for

all simplices a of dimension greater than or equal to two.

Theorem 30. The function W : K — KU {0} is the gradient vector field of a Morse

Sfunction with ezactly one critical vertex and no critical edges.
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Figure 3.9: 77

A proof of this claim will establish the main theorem. We first show that 11" is a
discrete vector field.

We have defined 11" so that if W (w) = e then W (e) = 0. W maps simplices
of dimension two and higher to 0 so 11" satisfies the property that if a € Im(1)
then W(a) = 0 for all @ € K. Also by definition either W(a) = 0 or V(a) is a
codimension-1 face of « for all @ € A". To verify that IV is a discrete vector field.
all that remains to show is that for all @ € K. if & € Im(1¥") then there is a unique
simplex v with W (v) = a. We recall that if W (a) = J then a must be in the
boundary of 3. Consider an edge e € Im(}V") and let w and w’ denote the endpoints
of e. If W(w) = e then there exists a combinatorial geodesic w.e.u'..... w*in A
from w to w*®, which implies do(w’, w*) < dc(w.w*). Thus there does not exist
a combinatorial geodesic w'.e, w,....w*. and W (w') # e. Therefore for each edge
e € Im(W) there is a unique vertex w with W(w) = e. Next we need to show that if
o is a 2-simplex in Im(¥1") then there is a unique edge e with 1} '(e) = 0.

Suppose that e is an edge and o is a 2-simplex with W (e) = ¢. By lemma 28

the vertex opposite e is combinatorial distance n — 1 from w*. If m = n then two
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vertices of o are combinatorial distance n from w* and one vertex of o is combinatorial
distance n — 1 from w*. Lemma 28 then implies that e is the only face of o satisfying
W(e) =o. If m = n—1, as in figure 3.4, then by corollary 20 ¢ is spanned by the three
vertices wy, Wn_y, and W,_,, so ¢ has two vertices w,_, and @,_, of combinatorial
distance n — 1 from w*. w,_, is opposite e in o and W,_, is opposite the edge ¢’
spanned by wy, and w,.;. But W(w,) = € so W(e’) = 0. In particular, W (e') # o.
By lemma 28, the edge " of ¢ different from e and e’ can not map to o since the
vertex opposite € in A" is combinatorially further from w* than the endpoints of e”.
Therefore there is exactly one edge e in A" that satisfies IV (e) = 0. We have proved
that IV is a discrete vector field on A.

By theorem 13, if I¥" has no non-trivial closed 1¥'-paths then 11" is the gradient
vector field of a discrete Morse function. Suppose o, 33.af.. ... al 3lal, =adisa
non-trivial closed W -path of vertices and edges in A". Then dc(a,, w*) < de(a, 1. w*).

But then de(ar+. w*) < de(ag, w®) = de(ay4y, w*), a contradiction. Therefore there

are no non-trivial closed H'-paths of vertices and edges.

Lemma 31. Suppose W is a discrete vector field on the simplicial compler K. w*
a distinguished verter of K. and o}, 33.al.....a}, 3%.a},, a W-path of edges and
2-simplices. For each edge o, denote its endpoints by y; and y!, and denote by r, the

verter opposite a; in 3;. Ifdc(yi, w*) =k anddc(yl,w*) =k — 1 thendeo(ziey. w*) =

k=2 Ifdc(yi,w*) =dc(y. w*) =k then dc(zi4q, w*) = k — 2.

Proof. Ifdc(yi, w*) = kand do(y], w*) = k—1 then by lemmas 20 and 28, d¢(z;, w*) =
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Figure 3.10: The two possibilities described in the proof of lemma 31

k—1and W maps y, to the edge spanned by y; and r;, implying that a,., must be the
edge spanned by y; and r,. both of which are distance £ — 1 from w*. By lemma 28.
de(ziv . w*) =k - 2.

If de(yi, w*) = de(y;. w*) = k then by lemma 28. de(r,, w®) = k — 1. Therefore
a;+,; is spanned by vertices that are combinatorial distances k¥ and k£ — 1 from w".

The previous case implies that do(z;.2. w*) = k — 2. |

Note that because the intersection of any two simplices must be a face of each
of them, any closed IV-path of edges and 2-simplices must contain at least three 2-
simplices. Suppose that 1" has a non-trivial closed W-path o}, 32.a!l... .. al. 2.al,,
ag of edges and 2-simplices in K. Then z, is equal to one of yy or y), and either

de(yi, w*) = k and de(yl. w*) = k — 1 or de(yi, w*) = dc(yl, w*) = k. In either case



we have

k < dc(rr, w') < de(zr-z, w') < de(ro, w*) =k — 1.

which is a contradiction. Therefore IV has no nontrivial closed W -paths of edges and
2-simplices. Since W is only nonzero on vertices and edges. the discrete vector field
W has no non-trivial closed I/"-paths and therefore by theorem 13. ¥ is the gradient
vector field of a discrete Morse function f.

The critical simplices of f are the simplices @ € W such that both W (a) = 0 and
W & Im(W). W is nonzero on every vertex of A” except w*. so w* is the only critical
vertex of K. W was defined so that every edge either maps to a 2-simplex or is in
the image of W'. Thus f is a discrete Morse function with exactly one critical vertex
and no critical edges.

By the Morse inequalities on page 14 we have Y(A) = mg — m, + my — m3 =
1 -0+ my —my =14 my — m3. On the other hand. A" is contractible so y(A) = 1
which means m; = mj, or the number of critical 2-simplices equals the number of
critical 3-simplices. The Morse complex for the Morse function V" with coefficients in
any field F' is

a3 0o M B M Boos<e >0

Since K is contractible. 0 = Hy(K.F) = % = %g;, which implies that the
image of 03 is M2. Thus 35 is onto with coefficients in any field F. 11" is the gradient

vector field associated to some discrete Morse function f. By theorem 14 from the

section on Morse theory, if there exists a critical 3-simplex 3 and a critical 2-simplex
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a with a unique gradient path from 3 to a, then K has a new Morse function which

has the same critical simplices as f except that 3 and a are no longer critical.

Lemma 32. If K is an n-complez satisfying the property that every (n — 1)-simpler
is a face of at most two n-simplices. then there are at most two gradient paths from

any critical n-simpler to any critical (n - 1)-simplez.

Proof. Consider a combinatorial gradient path of ' 33.a}"!.. ... af~l. 3" el in
K. Observe that 3; # J,. fori = 0.....r — L since f(3,) > fla,+1) > f(Fis1)-
a:‘" is the face of exactly two n-dimensional simplices. so if 1} (,) = 37 then 3,_,
is uniquely determined in a pseudomanifold. For each J3,. a, is uniquely determined
since there exists at most (n — 1)-simplex a; with W (q,) = 3;. Thus given a,,,

and 3, the gradient path is uniquely determined. Since a is the face of exactly two

n-simplices. there are at most two gradient paths from 33 to a. 0

We will show that there exists a critial 3-simplex 3 and a critical 2-simplex a with
a unique gradient path from 3 to a. Let a be any critical 2-simplex. J; is onto with
coefficients in any field F. Computing with F = Z,, there exists a critical 3-simplex
3 with < d38,a >= 1 mod?2. That is. mod2 there is one gradient path from 3 to
a. Computing with coefficients in Z, this implies there is an odd number of gradient
paths from 3 to a. By the previous lemma, the number of gradient paths from 3 to
a is at most 2. Therefore there is a unique gradient path from 3 to a. and hence A
has a new discrete Morse function which has the same critical simlices as f except

that 3 and a are no longer critical. Continuing inductively, we conclude that there
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exists a discrete Morse function on K with exactly one critical vertex and no critical
simplices of dimensions 1, 2, and 3. By theorem 7, K simplicially collapses to w*,

and theorem 29 is proved.



Chapter 4

A Combinatorial Isoperimetric

Inequality

If every interior vertex v of a triangulated n-gon D satisfies deg v > 6 we say that
D is an admissible n-gon. For n > 3 define 1}, to be the maximum possible number
of interior vertices of an admissible n-gon. Throughout this section. we write |r|
to denote the greatest integer that is less than or equal to r. and [r] to denote the
smallest integer that is greater than or equal to r. The goal of this chapter is to prove

the following combinatorial isoperimetric inequality.

Theorem 33 (Combinatorial Isoperimetric Inequality). Let ;, denote the maz-
imum possible number of interior vertices of any triangulated n-gon D satisfying
deg v > 6 for all interior vertices v of D. Then V, < > and \;, is given by the

generating function

= .. n_ I +(1-1x)?
ZOL"I T -0 -2%)

a7



An explicit formula for V, is

Vo= n? —6n+12

Recall equation 3.1 for a triangulated n-gon all of whose interior vertices have

degree at least six: ) __, (4 — deg v) > 6.

ext

We will establish a recurrence relation for V5, from which we obtain the generating

function in the theorem. The first lemma establishes the smallest cases.
Lemma 34. \3 =1, =1; =0.

Proof. Equation 3.1 implies that every exterior vertex of an admissible 3-gon must
have degree exactly two. Therefore an admissible 3-gon must be a triangle with no
interior vertices, and V3 = 0. Equation 3.1 implies that an admissible 4-gon must
have at least one exterior vertex of degree two. This. together with the fact that
V3 = 0. implies that an admissible 4-gon must be two 2-simplices identified along an
edge and hence can have no interior vertices. Therefore 1} = 0. Again, equation 3.1
implies that an admissible 5-gon must have at least one exterior vertex of degree two.
This implies that an admissible 3-gon must be a 2-simplex and a 4-gon identified
along one exterior edge of each. 1 = 0 then implies that an admissible 5-gon has no

interior vertices, and therefore V5 = 0. d
Lemma 35. Let n > 3. Then V. > V;.

Proof. An admissible n-gon with k interior vertices identified along an exterior edge
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with a 2-simplex forms an admissible (n + 1)-gon with k interior vertices. This shows

that Vi, > V;. O
Lemma 36. Let n > 4. IfV, < o0 then Vo > V.

Proof. Suppose that V}, is finite and consider any admissible n-gon D with 1, interior
vertices. We know from lemma 16 that D has an exterior vertex v with degree exactly
3. We will define a triangulated (n + 2)-gon A" that contains D as a subcomplex and
such that v is an interior vertex of A. Let u, and us5 be the two neighbors of ¢ that
are exterior vertices of D and let u,, u3, and u; be three distinct vertices not in D.
Let o, be the 2-simplex spanned by u;,u,.;. and v for i = 1.2.3.4. Let L be the
simplicial complex consisting of ¢,.0, 03, and o, along with all of their faces. Then
K = DU L is a triangulated (n + 2)-gon and every interior vertex of D is an interior
vertex of A". Moreover. v is an interior vertex of A and a neighbor of u,. u3, and u, in
L. degpv = 3. hence v has degree 6 in A". Therefore A  is an admissible (n + 2)-gon

with 1, + 1 interior vertices. which implies that V., > V;,. .|

We will need to establish a few more base cases before we can proceed with
formulating the recurrence relation for 17,. Before doing this. however. we present the

following three lemmas.

Lemma 37. Suppose V, < oc and let D be any admissible n-gon with V;, interior

vertices. Then every exterior vertez v of D satisfies deg v < 4.

Proof. Suppose that v is an exterior vertex of D with deg v > 5. Let u and «’ be the

exterior vertices of D that are neighbors of v and let v’ be a point not in |D|. Let
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oy be the 2-simplex spanned by v, v/, and u, o, the 2-simplex spanned by v.v'. and
u’, and L the simplicial complex consisting of o, and o, and all of their faces. The
interior vertices of the triangulated n-gon K" = D U L are the interior vertices of D
and v. v has degree at least six in K so A is an admissible n-gon. But then K is an

admissible n-gon with 17, + 1 interior vertices, a contradiction since V;, is finite. [

Lemma 38. Let D be an admissible n-gon. If D has n — 4 consecutive erterior

vertices of degree 3 then D has at most one interior verter.

Proof. Let vy..... v be the exterior vertices of D. labeled so that v, is a neighbor of
vis1 fori = 1,....n—1. Suppose that the n — 1 vertices t;. . ... tn-4 €ach have degree
3. This implies that v,.v,. and v,_3 all have a common neighbor u ¢ {v,_;. tn}.
Thus if u is an exterior vertex it must be either v,_; or v,_». Then 13 = 0 implies
that D has no interior vertices. If u is an interior vertex then v,_3. tn_2, tn_1. ', and
u are the exterior vertices of a 5-gon which is a subcomplex of D. By lemma 34 the

3-gon has no interior vertices so u is the only interior vertex of D. a

We are now ready to prove the remaining three base cases for the induction proofs

to follow.
Lemma 39. Vg =17 =1. and V3 = 2.

Proof. Let D be any admissible 6-gon. If D has an exterior vertex of degree 2. then
V5 = 0 implies that D has no interior vertices. If D has no exterior vertices of degree
2 then equation 3.1 implies that all six exterior vertices of D must have degree exactly

3, resulting in one interior vertex. Hence V¢ = 1.
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Let D be any admissible 7-gon. If D has an exterior vertex of degree 2. then
Vs = 1 implies that D has at most one interior vertex. If D has no exterior vertices of
degree 2 then equation 3.1 again implies D must have at least six exterior vertices of
degree 3. Six exterior vertices of degree 3 in a 7-gon means they are all consecutive.
so by lemma 38, D has at most one interior vertex. A 7-gon where all seven exterior
vertices have degree three shows that 17 = |.

Let D be any admissible 8-gon. Again, if D has an exterior vertex of degree 2
then V5 = 1 implies that D has at most one interior vertex. If D has no exterior
vertices of degree 2, then equation 3.1 implies that D has at least six exterior vertices
of degree 3. If D has either seven or eight vertices of degree three then lemma 38
implies D has at most one interior vertex. However. we know that 1} is at least two
since by lemma 36. V3 > 15 = 1. The only remaining possibility is that the 8-gon
has 6 exterior vertices of degree 3 and two exterior vertices of degree 4. Since V3 > 2.
lemma 38 implies an admissible 8-gon cannot have four consecutive exterior vertices
of degree 3. Therefore there must be two groups of three consecutive exterior vertices
of degree 3. separated by the two exterior vertices of degree 4. There is a unique
admissible triangulation with this property. vielding an admissible 8-gon with two

interior vertices. Therefore V3 = 2. d

The next goal is to give an upper bound for V,. We will do this by first finding
an upper bound on the number of boundary neighbors of an admissible n-gon D. We

can then look at the subcomplex of D whose exterior vertices are boundary neighbors
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of D and, using the following lemma, relate V}, to the number of vertices of this

subcomplex.

Lemma 40. Suppose ny, n,, ..., ny, > 3 andm > 2 are integers. Ifn,+na+- - +ny, =

N and V,,, is finite fori=1...., m, then Vo, + Vo, +---+ 1, < ly.

Proof. The proof is by induction on m. Suppose m = 2. Let D, be an admissible n,-
gon and D, an admissible n;-gon, containing V3, and V;,, interior vertices, respectively.
[dentifying one exterior edge of D, with one exterior edge of D, vields a triangulated
(ni + nz — 2)-gon with 1, + 17, interior vertices. implying 1}, + 1}, < Vai+na—2. By
lemma 36 implies that V5, .n,—2 < V4, +n,. Therefore 1, + 1}, < V5, 0, = Vv,

-

For general m, by induction V;, + V5, +---+ V5 <V, inyten,.,. Therefore
there exists an admissible (n,+na+- - -+nm_y)-gon D, containing V5, +V,,+- - -+V;
interior vertices. Let D, be an admissible n,,-gon containing 1}, interior vertices.
Identifying one exterior edge of D, with one exterior edge of D, vields an admissible
(ny +ng + -+ + nyp — 2)-gon with 15, + V5, +--- + 1, interior vertices. implying

Vit Vit +Va, < Vatsnasosnmo2. BY lemma36. Vi, cnyronn -2 < Vi origeooms

Therefore Vi, + Vo, +-- -+ Vo < Viisngsenn = V. d

Lemma 41. For n > 7. let D be an admissible n-gon with m distinct boundary

neighbors. Then m < n — 6.

Proof. Let vy, ..., v, be the exterior vertices of D. Each exterior vertex v; of D has at

least two neighbors that are exterior vertices and at most deg v; —2 neighbors that are

boundary neighbors of D. Each of the n pairs of neighboring exterior vertices has one
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common neighbor, which may or may not be a boundary neighbor of D, and is counted
twice in the sum )7 (deg v,—2). Therefore m < 3"  (deg v,—2)-n or equivalently,
>-"_deg v, > m+3n. Equation 3.1 is equivalent to Yo deg v, < 4n—6. Combining

these two statements yields m < n - 6. ]
Corollary 42. 1}, < x.

Proof. The proof is by induction on n. We have seen that 1}, is finite for n =
3,4.....8. For the general case. suppose n > 3 and let D be any admissible triangu-
lated (n + 6)-gon. By lemma 41. the number of boundary neighbors of D is at most
n. Let L be the set of simplices that contain an exterior vertex of D. The boundary
neighbors of D are precisely the m exterior vertices of the simplicial complex D — L.
The complex D — L is a union of triangulated disks. By induction and lemma 40. the
complex D — L has at most 1;, < > interior vertices. and hence a total of at most

Va + n vertices. Therefore D contains at most 1, + n < ~ interior vertices. |
In the proof of the preceeding corollary. we also proved the following statement.
Corollary 43. V.6 <V, +n forn > 3.

The corollary gives an upper bound for V;,. To establish that V; +n is also a lower
bound for V5,6, we will give an example for each n > 3 of an admissible (n + 6)-gon
containing V, + n interior vertices. We define a sequence {D,},>3 of triangulated
n-gons as follows. With the exception of D;, the triangulated disks Ds,.... D,

pictured in figure 4, are the triangulated disks that we have described in the proofs

of lemmas 34 and 39.
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/\
X

Figure 4.1: D3, D, D5, Ds. D;. and Dy

For 3 < n < 8. D, is an admissible n-gon with 1}, interior vertices. so D, satisfies
deg v < { for each exterior vertex v. Also note that in each of these cases deg v = 6

for every interior vertex v. We define the remaining terms of the sequence inductively.

neighbor of v;;; for i = 1.....n. Consider a triangulated {-gon D; that contains D,
as a subcomplex, where the ! exterior vertices of D, are precisely the vertices of D,
that are not vertices of D, and [ is chosen to be the appropriate number so that ¢, is
a neighbor of 6 — deg,_v, consecutive exterior vertices of D;, with the last neighbor
of v; equal to the first neighbor of v, for each i. and the last neighbor of v, is the
first neighbor of u,.

If 3 < n < 8 this is possible since every exterior vertex of D, has degree at most 4.

If n > 9 this is possible because this construction process produces exterior vertices

of degrees three and four. Also by construction, each interior vertex of D; has degree



Figure 4.2: Constructing D; from D,
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exactly 6 so equation 3.1 applies to give ) .| (4—degp_v;) = 6. Since two neighboring

exterior vertices of D, are joined to a common exterior vertex of D; we have

I = > (6-degp,u)—n
=1

= n+ Z(-l — degp v,)

=1

= n+6.

Thus Dy is a triangulated (n + 6)-gon. Define D,.¢s to be the (n + 6)-gon obtained

from D, in this manner.
Lemma 44. Forn > 3. D,.¢ has V, + n interior vertices.

Proof. By referring to lemmas 34 and 39 we can verify that for 3 < n < 8. D,
contains V,, + n interior vertices. If n > 9, then by induction D, has V,_s + (n — 6)
interior vertices. By corollary 43. 1, < V,,_¢ + (n — 6). so the existence of D,, implies
Vo = Va_6 + (n — 6). Therefore D, contains ¥}, interior vertices. By construction.
the interior vertices of D, . are the V;, + n vertices of D,. Therefore D, _¢ contains

V% + n interior vertices. g
Corollary 45. For n > 0. V), satisfies the recurrence relation V. ¢ =V}, + n with the
convention that Vo =1 and V; =15 =0.

Proof. For n > 3 we have already seen that V;.¢ < 1, + n. The previous lemma
shows that Vi1 > V,, + n. establishing the corollary for n > 3. The lemma is easily

verified for n = 0,1, 2. a
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To solve this recurrence relation, we let G(z) = Y o, Voz". Taking sums of each

: H : : o . n _ oc © pn oc s
quantity in the recurrence relation we obtain ) 27 ( Viiexz” =5 00 (V" + 32 nz”.

Then
G(r) = > VI

n=0

= Zl},+6;£"-2nx"

= I_];Z‘;‘_rsxn-rﬁ_rznln—l

n= n=0

1 - 5

= < [Gx)-Vo-Vr—--=V5r*] -
1 d 1

= F[G(I)—I]—I'El_r
1 I

Solving for G(zx) vields
'+ (1 -1r)?

) = T =y

which is the generating function in theorem 33.

In order to find an explicit formula for V,, we write

1 - 1
G(J:) = L = 25 (1+I‘m)
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The sequences

{e,} = {1.0.0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1.0.0.... and

{bn} {1,0.0.0,0,0,0,1,2,3,4,5.6,7,8.9.10,11,12. ..

are the sequences of the coefficients for the generating functions A(x) = 3_°0  z%"

and B(z) = 1+ 3 oo, nc""% Thus the sequence {V,} is obtained by convolution of
{an} and {b,}. From these sequences we see that 1}, is the sum of every sixth term
of {b, }. beginning with b, and moving backwards in the sequence. b; = 1 contributes
an extra | whenever n is a multiple of 6. Therefore.

ZL_EJ (n - 61) if n is not a multiple of 6

Vo=
Z (n —6i) +1 if nis a multiple of 6

Simplifving gives ZEA (n—6i)=|2] (n—3-3|2]). Therefore

i 2] (n-3-3 12) if n is not a multiple of 6 12)
n= 4.2
|2] (n-3-3[2]) +1 ifnisa multiple of 6

Lemma 46.

le if n is not a multiple of 6

3] (-a-olzh - 0B

"'11;25" if n is a multiple of 6
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Proof. First suppose that n is a multiple of 6. Then |2| = 2 so we have

(n—3—3'2)

(3-8 - 5033

as desired.
Now suppose that n is not a multiple of 6. Then 6m < n < 6(m + 1) for some
integer m. Observe that for any two integers r and s. 6r < 5 < 6(r + 1) if and only

if [éJ = r and [f;] =r + 1. Hence L%J = m. In addition.

3] =903 - [“52] 4

if and only if

(2] (n-3-3[2) 1) < 5% <o (2] (r-a-3[2])) o

Let a be any real number and consider the function f : R — R given by f(r) =
12— (6+ 12a)z +36a+36a*. f is concave up and has roots 6a and 6(a+ 1). Therefore
f(z) <0 if and only if 6a < r < 6(a + 1).

Now because 6m < n < 6(m+1), this implies that n®>— (6 +12m)n+36m+36m? <



0. Equivalently,

n?—6n < 12mn — 36m — 36m?*

= 12m(n -3 - 3m)

2(|5] (»-3-3[5]))

and hence

[t remains to show that

o(l5] (-2-3(5]) - 1) <=5

70

Consider the function g(r) = f(r) + 12. ¢ has no real roots and ¢(0) = 36a +

36a2 + 12 > 0 since the polynomial p(r) = 36x* + 36z + 12 has no real roots and is

positive at r = 0. Thus g(r) > 0 for all r. Setting a = m gives g(n) = n® — (6 +

12m)n + 36m + 36m? + 12 > 0. Equivalently.

n-6n > 12mn - 36m — 36m* — 12

= 12(m(n—-3—-3m)—-1)

= 22 (n-s-3[2)) ).



and hence

n- - 6n n n
a2 (r-3-3[2)) - ).
as desired. Thus we have shown equation 4.4 to be true, which implies that equa-

tion 4.3 holds.

In order to prove lemma 46, it remains to show that in the case that n is not a

n® - 6n _ n®—-6n+ 12
12 - 12 '

Observe that if n is not a multiple of 6 then n(n — 6) can not be a multiple of 12.

multiple of 6. we have

To see this. suppose that n is not a multiple of 6. Then either 2 does not divide n
or 3 does not divide n. If 2 does not divide n then n(n — 6) is odd and hence not a
multiple of 12. If 3 does not divide n then 3 also does not divide n — 6. and again
n(n — 6) can not be a multiple of 12. Note that if r is a real number then r is not an

integer if and only if [r] = [r + 1]. Since n not a multiple of 6 implies n(n ~ 6) not

n?—6n
12

n*—6n] [n?-6n 1 = n®-6n+12
2 |T | T~ 2

and the proof is complete. O

a multiple of 12, l J is not an integer and therefore

Therefore

Finally, note that if n is a multiple of 6 then

n2—6n+1_ n'2—6n_+_1 | n*-6n+12
- 12 - 12 :



Putting this together with equation 4.1 and lemma 46 yields the final expression for
Vp forall n > 3:

Vo n® —6n + 12
n— _1,)_ ’

and the proof of the theorem is complete.
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