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Abstract A robust time integration scheme for snap-

through buckling of shallow arches is proposed. The al-

gorithm is a composite method that consists of three

sub-steps. Numerical damping is introduced to the sys-

tem by employing an algorithm similar to the backward

differentiation formulas (BDF) method in the last sub-

step. Optimal algorithmic parameters are established

based on stability criteria and minimization of numer-

ical damping. The proposed method is accurate, nu-

merically stable, and efficient as demonstrated through

several examples involving loss of stability, large defor-

mation, large displacements and large rotations.

1 Introduction

Dynamic snap-through buckling is a particular concern

for many thin curved structures as it can exacerbate

the fatigue failure [44,46,20,21]. In the context of fa-

tigue life, being able to determine whether the system

will continually snap between remote configurations or

oscillate locally about a snapped configuration is im-

portant and constitutes the motivation for this work.

However, the transient simulation of such highly non-

linear phenomena involving large deformations is very
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challenging, in many cases leading to inaccurate pre-

dictions [19,17,18]. With the goal of predicting post-

snapped behavior, the focus is on developing a robust

time integration scheme with reliable numerical dissipa-

tion for spurious high order modes to resolve numerical

issues encountered in the simulation of structures un-

dergoing snap-through.

Classical time-stepping schemes that are uncondi-

tionally stable in the linear range can lead to unstable

solutions for nonlinear problems. The numerical insta-

bility is often accompanied by an uncontrolled growth

of energy. Such observation has motivated the develop-

ment of energy conserving schemes. Following the pio-

neering work by Simo and Tarnow [40], many studies

extended this conserving algorithm to general hyper-

elastic materials [24,33,35,16] and arbitrary geomet-

ric nonlinearities [38,39]. Other work focused on ap-

plying these algorithms to specific finite element for-

mulations (beam and shell elements) [41,42,15,48] and

multi-body systems [7,10,28]. Despite the achievement

of unconditional stability, the energy conserving schemes

still show difficulties for numerically stiff nonlinear prob-

lems [7,1,2], and especially for snap-through buckling

problems [31,32]. The energy conserving schemes fail

to converge in the post-snap range with an acceptable

time step, due to the lack of numerical dissipation for

spurious high-frequency oscillations. In the study of this

class of problems, the analyst generally prefers time

integration algorithms that are unconditionally stable

with quantifiable numerical dissipation to suppress spu-

rious high frequency components while minimizing the

effects on accuracy.

Time stepping schemes with effective numerical dis-
sipation were first developed for linear problems [34,25,

47,22]. However, when used for nonlinear problems the

characteristics of the numerical dissipation will change

allowing the spurious high frequency oscillations to pol-

lute the computation. Energy decaying schemes were

proposed as a way to achieve more reliable numeri-

cal dissipation for nonlinear problems. Energy decaying

schemes can be generally divided into two approaches.

In the first approach, the time-discontinuous Galerkin

formulation was utilized to predict the behavior of non-

linear beams [8,12,13] and multi-body systems [9,10,

11,14]. These algorithms involve a multistage computa-

tion per time step and require solving a larger system

than those solved with classical schemes, due to the

coupling between the displacement and velocity. An-

other approach is to construct the algorithm from an

energy conserving integrator [32,30,1,2,36,27]. These

algorithms are designed using a specialized approxima-

tion of the element stress tensor and the velocity to en-

sure a positive numerical damping. Like many energy
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conserving schemes, an energy decaying method cannot

be generalized across different finite element formula-

tions (e.g., different shell elements). Moreover, the re-

sultant tangent stiffness matrix is usually non-symmetric,

leading to increased computational costs.

An alternate method to construct time integration

methods with reliable numerical dissipation for nonlin-

ear problems is the use of a composite algorithm as pre-

sented by Bathe and coworkers [5,3,4,6]. The main idea

of this approach is to combine a non-dissipative method

and a dissipative method into a one-step but multistage

composite scheme. Bathe and coworkers combined the

trapezoidal rule and the three-point backward Euler

formula into a one step two-stage composite scheme. Al-

though the composite algorithm requires roughly twice

the computational cost as the trapezoidal rule per time

step, much larger time steps can be used for large de-

formations nonlinear dynamics. Following a similar line

of thought, Dong [23] proposed two generalized back-

ward differentiation formulas to build a composite time

integrator consisting of the trapezoidal rule and a gen-

eralized backward differentiation formula.

Motivated by introducing reliable numerical damp-

ing in simulating snap-through problems, and in partic-

ular to obtain accurate post-snap predictions, the ideas

from Bathe [5,3,4,6] and Dong [23] were extended to

develop a new composite time-stepping scheme with im-

proved numerical dissipation characteristics. The new

composite algorithm consists of three sub-steps where

the trapezoidal rule is used to perform the first and sec-

ond sub-steps, while a GBDF method [23], is employed

in the third sub-step to introduce numerical dissipation.

This new method is self-starting and does not require a

special modification of element stress tensor. Its imple-

mentation is quite straightforward, remains the same

for different finite element formulations, and preserves

the symmetry of the tangent stiffness matrix. The pro-

posed scheme has two algorithmic parameters to control

the numerical dissipation and their optimized values to

minimize numerical damping are determined. For the

rest of this paper, the new composite scheme will be

referred to as the TTBDF (Trapezoidal-Trapezoidal-

Backward-Difference-Formula) method.

The improved numerical dissipation of the TTBDF

method over other composite schemes from Bathe and

Dong is first demonstrated analytically by the compar-

ison of spectral radii, algorithmic damping ratios, and

relative period elongations. Although the stability and

dissipation analysis is limited to the linear range, nu-

merical simulations of curved beams undergoing snap-

through confirm that the TTBDF method has better

numerical dissipation properties than other existing com-

posite schemes. The TTBDF method leads to more ac-

curate solutions for long-time record simulations using

amplitude decay and period elongation as a metric. Fur-

ther, the total cost of the computation can be reduced

using the TTBDF method through the use of larger

time steps for the same accuracy as compared to other

composite methods. It is also shown that the TTBDF

method has better numerical dissipation when applied

to other nonlinear dynamic problems having large de-

formations and rotations. The examples include a rigid

and a deformable pendulum, a free moving cylindrical

shell and a three dimensional L-shaped block, which

were used as benchmark problems in [23,40,30,4,7,37]

to evaluate the time integrators proposed in the respec-

tive papers.

This paper is organized as follows. In Section 2, the

proposed numerical scheme is described, including the

approach to determine optimal values for the algorith-

mic parameters. Section 3 demonstrates the robustness

of the proposed method through several examples. Con-

cluding remarks are presented in the last section.

2 TTBDF time integration scheme

Consider the nonlinear undamped equations of struc-

tural dynamics

Mü + N(u, t) = R(t) (1)

with appropriate initial conditions. M is the mass ma-

trix, N is the vector of internal forces, R is the vector

of external forces, u is the displacement vector, t is

time, and superposed dot indicates differentiation with

respect to time. Approximate solutions of Eq. 1 at dis-

crete time points are obtained using the time discretized

equation given by

Mün + Nn = Rn (2)

where n is the time step index.

A three-stage composite time-stepping scheme is used

to solve Eq. 2 using the trapezoidal rule for the first and

second sub-steps and a BDF-like algorithm in the third

sub-step . Let ∆t be the time step size; the time step

for each sub-step is δt = ∆t
3 . In the first and second

sub-steps of the (n + 1)-th time step, the discretized

equation is enforced at n+ 1
3 and n+ 2

3 . Thus, the up-

dates for the first sub-step (n+ 1
3 ) are given by

un+ 1
3

= un + ∆t
6 (u̇n + u̇n+ 1

3
)

u̇n+ 1
3

= u̇n + ∆t
6 (ün + ün+ 1

3
)

(3)

Similar with the first sub-step, by applying the the

trapezoidal rule, the updates for the second sub-step

(n+ 2
3 ) are as follows

un+ 2
3

= un+ 1
3

+ ∆t
6 (u̇n+ 1

3
+ u̇n+ 2

3
)

u̇n+ 2
3

= u̇n+ 1
3

+ ∆t
6 (ün+ 1

3
+ ün+ 2

3
)

(4)
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In the third sub-step, the GBDF-A algorithm proposed

by Dong is employed [23] and the updates for the GBDF-

A algorithm are as follows

u̇n+1 = A(θ1)
∆t/3 un+1 + B(θ1)

∆t/3 un+ 2
3

+ C(θ1)
∆t/3 un+ 1

3

+D(θ1)
∆t/3 un

ün+1 = A(θ2)
∆t/3 u̇n+1 + B(θ2)

∆t/3 u̇n+ 2
3

+ C(θ2)
∆t/3 u̇n+ 1

3

+D(θ2)
∆t/3 u̇n,

(5)

where

A(θ) = 11
6 −

θ
3

B(θ) = θ − 3

C(θ) = 3
2 − θ

D(θ) = − 1
3 + θ

3

(6)

For analysis and comparison purposes, linear sta-

bility analysis is used and the orthogonality property

is invoked to reduce the coupled equations of motion

and the algorithmic equations to a series of uncou-

pled single-degree-of freedom systems [26]. The single-

degree-of-freedom problem is given by

ü+ ω2u = 0 (7)

and initial conditions u(0) = 1, u̇(0) = 0, where u is

the unknown variable and ω is the angular frequency

of oscillation. Eq. (7) is discretized by employing the

TTBDF scheme resulting in an iterative relation as fol-

lows.

[un+1, u̇n+1]T = G[un, u̇n]T , (8)

where G, the amplification matrix, is given by

G =

[
G11 G12∆t

G21
1
∆t G22

]
(9)

with

G11 = 1
M (2θ1(−11 + 2θ2)(1296− 576(ω∆t)2 + 7(ω∆t)4)

+156816− 64512(ω∆t)2 + 1399(ω∆t)4

−2θ2
(
14256− 6336(ω∆t)2 + 245(ω∆t)4

)
G12 = 2

M (78408− 6714(ω∆t)2 + 29(ω∆t)4

−108θ1(−11 + 2θ2)(−12 + (ω∆t)2)

−2θ2(7128− 846(ω∆t)2 + 7(ω∆t)4))

G21 = 2(ω∆t)2

M (−78408 + 6714(ω∆t)2 − 29(ω∆t)4

+(216θ1θ2 − 1188θ2)(−12 + (ω∆t)2)

+2θ1(7128− 846(ω∆t)2 + 7(ω∆t)4))

G22 = 1
M (156816− 64512(ω∆t)2 + 1399(ω∆t)4

+(4θ1θ2 − 22θ2)(1296− 576(ω∆t)2 + 7(ω∆t)4)

+2θ1(−14256 + 6336(ω∆t)2 − 245(ω∆t)4))

M = (36 + (ω∆t)2)2(121− 22θ2 + θ1(−22 + 4θ2)

+4(ω∆t)2).

Let ρG(θ1, θ2, ω∆t) be the spectral radius of the am-

plification matrix for a specific ω∆t. The maximum

spectral radius is defined as

ρmax(θ1, θ2) = max
06ω∆t6∞

ρG(θ1, θ2, ω∆t). (10)

An algorithm is unconditionally stable for linear prob-

lems if ρmax 6 1 for any time step size 0 6 ∆t
T 6 ∞,

where T is the period of oscillation, T = 2π
ω . The un-

shaded region in Fig. 1a shows the region where ρmax 6
1.

Next the effect of θ1 and θ2 on the dissipativity of

the TTBDF algorithm is investigated by evaluating the

energy loss over time. The total energy of the linear vi-

bration is defined by Et = 1
2ω

2u2+ 1
2 u̇

2. If the initial en-

ergy is denoted by E0, the decay over time is defined by

the function, Et = E0e
−γt/T . The constant γ depends

on θ1, θ2 and ∆t/T . The fraction of energy loss per pe-

riod E0−E(t)|t=T

E0
= 1 − e−γ is then used as a measure

of the dissipativity of the algorithm. The contour plot

of the fraction of energy loss shows that the algorithm

becomes more dissipative as (θ1, θ2) increase in the do-

main of unconditional stability (Fig. 1b). In Section 3,

the simulations are performed with θ1 = θ2 = 0.75;

these values are among the least dissipative of this class

of schemes and therefore, they are preferred, as shown

in Fig. 2a. The fraction of energy loss as a function of
∆t
T for this case is shown in Fig. 2b. As expected, the

amount of dissipation increases as ∆t increases. It is ex-

pected that the algorithm will show increased damping

with increased time step in nonlinear problems.

Finally, the properties of the proposed algorithm are

compared with those of other schemes from the BDF

class and with composite schemes that have a member

of BDF class as a sub-step. Specifically Bathe’s method

[5,3,4,6] and the algorithms proposed by Dong [23], the

GBDF-A, GBDF-B, and GBDF-TR methods are cho-

sen for comparison since they possess numerical dissi-

pation while maintaining accuracy. Bathe’s algorithm

is a two-stage composite method with trapezoidal and

backward-difference used as sub-steps. The GBDF-A is

a four-point BDF-like scheme and the GBDF-B is a five

point BDF-like method. The GBDF-TR is a compos-

ite two-stage algorithm that consists of sub-steps using

the trapezoidal rule and the GBDF-B method. Bathe’s

method has no algorithmic parameters. The GBDF-A,

GBDF-B, and GBDF-TR have two algorithmic param-

eters each; their values (as recommended by Dong [23])

are listed in Table 1. These parameters lead to minimal

damping in linear vibration analysis and to uncondi-

tional stability based on linear stability analysis.

The algorithmic properties compared are quanti-

ties used as measures of the accuracy: the spectral ra-

dius, the algorithmic damping ratio, and the relative
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Fig. 1: TTBDF algorithm: (a) region of unconditional stability and (b) contours of fraction energy loss per period

at ∆t
T = 0.1.
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Fig. 2: TTBDF algorithm: (a) area of unconditional stability superposed with contours of energy loss with

θ1 = θ2 = 3/4 (red dot) used in the simulations, (b) fraction of energy loss for θ1 = θ2 = 3/4.

Table 1: Algorithmic Parameters

Algorithms θ1 θ2
GBDF-A 1 0
GBDF-B 1/2 4/5
GBDF-TR 7/9 9/10
TTBDF 3/4 3/4

period error. The spectral radius is an important mea-

sure of numerical dissipation. It is often necessary to

have numerical dissipation in order to eliminate the

high-frequency behavior due to the discretization pro-

cess while maintaining good accuracy in the low fre-

quency region. Therefore, a preferred spectral radius

has a value close to unity in the low frequency domain,

but approaching zero in the high-frequency range. The

proposed method (TTBDF) has a better spectral radius

than other algorithms since its spectral radius main-

tains closer to one for larger range of ∆t/T when ∆t/T
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is small, and goes to zero when ∆t/T is large, as shown

in Fig. 3a. The improved performance can be seen more

clearly when comparing the algorithmic damping ratio

and relative period error. The algorithmic damping ra-

tio is a measure of the numerical dissipation, while the

relative period error is a measure of the numerical dis-

persion. According to [25,22], one pair of complex con-

jugate eigenvalues λa,b of the amplification matrix can

be expressed as

λa,b = exp[ω̄∆t(−ξ̄ ± i)] (11)

ξ is the algorithmic damping ratio and (T −T )/T with

T = 2π/ω̄ the relative period error. The algorithmic

damping ratios and the relative period errors of the

algorithms investigated are shown in Figs. 3b and 3c,

respectively. The TTBDF method has less numerical

dissipation and smaller period error in low-frequency

range compared to the other algorithms.

The primary motivation for developing the TTBDF

integrator came from the relatively poor performance

in snap-through analyses of methods that were other-

wise performing very well on standard problems. For

such systems whose (physical) response can be unsta-

ble, one should not consider unconditional stability as

the sole measure of algorithmic stability performance.

Instead, consistent stability should be the goal. It is

possible that the real response is divergent and yet the

integrator produces a stable oscillation (shown in [29]).

From an engineering perspective, this case, that was so

far ignored, leads to an under-conservative prediction

of the response. Even though it leads to retrieving the

correct stability in the case of stable systems, uncondi-

tional stability does not necessarily imply that the pre-

diction is a good approximation of the true solution,

but only that it remains bounded. Unconditionally sta-

ble integrators may, when applied to complex systems

with multiple equilibria, predict trajectories that are

non-physical and/or greatly underestimate the sever-

ity of the response [45]. Following similar methods with

those used in [29,45], a bound on the time step size can

be determined to enforce the condition that the algo-

rithm will not predict a stable response for an unstable

linear system. The maximal time steps for the meth-

ods compared in this paper are shown in Fig. 3d and

demonstrate the good performance of TTBDF for this

criterion as well.

Since the TTBDF method is a three-stage method

while the other methods compared are either a one-

stage (the GBDF-A and the GBDF-B methods) or two-

stage (the GBDF-TR and Bathe’s methods) methods,

each time step of the TTBDF method is more expen-

sive. However, often times a larger time step can be

used with the TTBDF method as can be seen in the

snap-through example given in Section 3.1 and the free

moving shell example in Section 3.3.

3 Representative numerical examples

Systems undergoing snap-through are the main moti-

vation of the development of this algorithm and are the

first examples in this section that demonstrate the ro-

bustness of the TTBDF method. In addition, several

other examples are presented to evaluate the perfor-

mance of the proposed time integration scheme in solv-

ing other numerically challenging problems involving

large deformation, large displacements, and large ro-

tations. The numerical simulations are performed with

Matlab and the Finite Element Analysis Program (FEAP),

a research code developed at UC Berkeley. FEAP in-

cludes most commonly used finite elements and solvers

and provides a reliable framework for developing and

implementing new user formulations [43].

3.1 Curved arches

Circular arches with clamped supports are investigated

to demonstrate the capability of the proposed integra-

tor in simulating systems undergoing snap-through. The

arch is a thin curved beam, symmetrical, with an angle

θ at the supports, and horizontal projection L (Fig. 4).

The cross section is rectangular with depth d much

larger than the thickness t.

Table 2: Geometry of Curved Beams

Beam Radius R Initial Rise M Curvature κ θ

[mm.] [mm] [1/mm] [rad]
1 762 15.39553 1.312e-3 0.2014
2 3048 3.8124 0.328e-3 0.0500

Table 3: Material properties

Properties Values
Young’s Modulus [N/mm2] 206843
Poisson’s Ratio 0.28
Density [N s2/mm4] 7.83×10−9

Two angles θ are considered; the geometry of the

two beams is described in Table 2, where M is the ini-

tial height of the arch at the midpoint, κ = 1/R is the

curvature of the beam, and θ is the angle at the sup-

ports. The projection length is L = 12 in. (304.8 mm)

for all beams, and the thickness is t = 0.024 in. (0.6096
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mm). A transverse depth d = 0.5 in. (12.7 mm) is used.

Material properties are those of steel, given in Table 3.

The comparison of the beams’ curvatures is shown in

Fig. 5.

For discretization, 2D straight beam elements are

used. The beam elements utilized are beam elements

without shear deformation with large displacement and

small rotation (2nd order theory) with cubic interpola-

tion [43]. A study on the performance of other elements

(2D beam element with shear deformation, 3D linear

displacement formulation, B-bar, and enhanced formu-

lations, and 3D quadratic element) is presented in [19,

17].

The load is a ramp load applied at the midpoint of

the arch. It initially increases to some value above the

snap-through limit, with a loading rate of 1 N/s and

then is kept constant for a certain time. The applied

load is as follows:

For beam1, F =

{
t 0 6 t 6 8

8 8 < t
(12)

For beam2, F =

{
t 0 6 t 6 2

2 2 < t
(13)

Fig. 6 shows the solutions of Beams 1 and 2 ob-

tained with ∆t = 10−3 s and ∆t = 2× 10−4 s, respec-

tively. These time steps are chosen such that the true

solution is obtained [19,17,18]. The figure shows that

the systems oscillate about their snapped configuration

starting immediately after the snap-through event; the

amplitude of the oscillations decreases over the time in-

terval where the load continues to ramp up, but then

remains constant when the external load is constant.

The deformed configurations of Beams 1 and 2 ob-

tained by the TTBDF algorithm at several different

time instances are shown in Figs. 7a and 7b respec-

tively. It can be clearly observed that both beams dis-

play severe curvature reversals when experiencing dy-

namic snap-through buckling.

The variations of total energy of Beam 1 obtained

using the GBDF-A, GBDF-B, GBDF-TR, Bathe’s method,

and the TTBDF, are presented in Fig. 8. Fig. 8a shows

the total energy when ∆t = 10−3 s is used. For all

algorithms, the energy decreases when the arch snaps-

through; the TTBDF method gives the smallest dissipa-

tion. The total energy for the TTBDF method decreases

slightly at the snap-through point and then stays con-

stant in the region where the external load remains con-

stant. The GBDF-A, GBDF-B, GBDF-TR and Bathe’s

method result in a similar amount of decrease in to-

tal energy due to the numerical damping although the

GBDF-TR damps at a slower rate in the beginning.

The amount of damping in these four methods is much

larger than that of the TTBDF method.

The TTBDF method consists of three sub-steps,

while the other methods only have one (the GBDF-A

and GBDF-B methods) or two sub-steps (the GBDF-

TR and Bathe’s methods). Thus, it might be argued

that the TTBDF method results in the smallest dissi-

pation due to a smaller time step size of each sub-step.

Therefore, the performance of these integrators is com-

pared for equal sub-step size (same total number of sys-

tem solves or matrix inversions). Each sub-step in the

TTBDF method is performed with δt = ∆t/3 =1/3× 10−3 s.

To ensure a fair comparison, the GBDF-A and GBDF-B

methods (one sub-step), will use ∆t = δt. The GBDF-

TR and Bathe’s methods (two sub-steps), are performed

with ∆t = 2δt = 2/3×10−3 s. The total energy of these

algorithms is shown in Fig. 8b. The figure indicates a

slower rate in the decrease of energy for one sub-step

and two sub-steps methods than that shown in Fig. 8a.

Bathe’s method results in the fastest and largest de-

crease of energy, followed by the GBDF-A, GBDF-TR,

GBDF-B, and the TTBDF method.

The amplitude decay of the response presented in

Fig. 9 show the effect of the algorithmic damping for

each algorithm. The response obtained using the TTBDF

method is constant during the period of constant load

while responses obtained with other algorithms show

a significant amount of damping. It can be concluded

that the proposed method has the best performance

compared with other algorithms for this problem as it

has the smallest dissipation, therefore the accuracy is

not compromised.

Similar analysis is performed for Beam 2, a shal-

lower arch than Beam 1. In Fig. 10a, the total energy

obtained with ∆t = 2 × 10−4 s for various algorithms

is presented. For this beam, the GBDF-A shows the

largest dissipation initially, followed by the GBDF-B

method. Bathe’s method shows a large jump in dissipa-

tion at around t = 18 s. The GBDF-A and the GBDF-B

have similar dissipation right after snap-through, how-

ever, the energy of the GBDF-A method decreases at a

faster rate. The TTBDF and the GBDF-TR methods

have the best performance.

Fig. 10b compares the total energy when each sub-

step of all the methods is performed with δt = 2/3 ×
10−4 s for a fair comparison of computational effort.

Bathe’s method shows the largest amount of dissipa-

tion, while the GBDF-B, GBDF-TR, GBDF-A and TTBDF

methods are fairly similar in performance. Overall, the

dissipation is quite small for this shallower arch.

The dissipation can be seen in the amplitude decay

of the response presented in Fig. 11. For∆t = 2×10−4 s,

the responses obtained using the TTBDF method and



A robust composite time integration scheme for snap-through problems 7

the GBDF-TR method show the least amount of am-

plitude decay. For simulations with δt = 2/3 × 10−4,

all algorithms except Bathe’s method have a very small

dissipation.

This example shows that the proposed method is

capable of simulating arches undergoing snap-through.

The simulations are stable and for taller arches, this

method results in smaller dissipation than all the other

methods investigated here. This advantage is not only

shown when the same time step size in each step ∆t is

used but also when the same time step size for each

sub-step δt is used. For shallower arches, the differ-

ences between methods are less significant. Therefore, it

can be concluded that the TTBDF algorithm is robust

and introduces minimal dissipation in the simulations

of curved beams in general and is the most efficient

among the algorithms examined in the case of taller

arches.

3.2 Pendulums

Numerical examples of a rigid and a deformable pen-

dulum are considered here to demonstrate the capabil-

ity of the TTBDF method in the transient analysis of

2D nonlinear dynamic systems with large deformations.

These two examples were considered in [4] to show the

effectiveness of Bathe’s composite method.

3.2.1 Rigid pendulum

A vertical pendulum pined at the upper end, with ax-

ial stiffness EA0 = 1010 N, density ρA0 = 6.57 kg/m,

and length l0 = 3.0443 m, is subjected to an initial hor-

izontal velocity (v0 = 7.72 m/s) and radial acceleration

(a0 = 19.6m/s
2
) at its free end. The pendulum displays

an almost rigid-body rotation due to the large axial

stiffness.

The performance of the TTBDF and Bathe’s method

is evaluated by comparing the amplitude and period er-

rors of the vertical displacement and velocity for four

different time steps (∆t = 0.05 s, 0.1 s, 0.2 s, and 0.4

s) at t = 50 s. Solutions obtained with a very small

time step ∆t = 0.01 s are used as reference values to

calculate these errors.

The amplitude errors of the vertical displacement,

resulting from using these two methods are very small,

less than 0.6% for the largest time step (Fig. 12a). How-

ever, Bathe’s method produces much larger period er-

rors than the TTBDF method (Fig 12b). The period

errors of Bathe’s method become unreasonably large

(47.15% for ∆t = 0.4 s) at large time steps, while the

errors of the TTBDF method are still very small (less

than 1.5% for ∆t = 0.4 s). An obvious period elonga-

tion for Bathe’s method over the TTBDF method at

∆t = 0.4 s can be clearly observed in Fig. 13a.

The amplitude errors of Bathe’s method in evaluat-

ing the vertical velocity become much larger than those

of the TTBDF method (Fig. 14a). For large time steps,

the amplitude errors of Bathe’s method are unaccept-

ably large (29.93% for ∆t = 0.4 s), while the TTBDF

method still results in very small amplitude errors (less

than 0.36% for ∆t = 0.4 s). A significant amplitude de-

cay for Bathe’s method over the TTBDF method can

be identified at ∆t = 0.4 s in Fig. 13b. The period er-

rors of the velocity (Fig 14b) are similar to those errors

of the displacement (Fig 12b).

3.2.2 Elastic pendulum

The elastic pendulum has the same initial length and

density as the rigid one, but different axial stiffness

(EA0 = 104 N). The initial horizontal velocity of the

elastic beam is v0 = 7.72 m/s and its initial vertical

acceleration is a0 = 0 m/s2.

The displacement and velocity amplitude and pe-

riod errors of both methods for the elastic pendulum

(Figs. 15 and 16) have similar patterns to those ob-

served in the analysis of the rigid pendulum (Figs. 12

and 14).

The examples on rigid and elastic pendulums show

that the TTBDF method produces stable and accu-

rate solutions in simulating 2D nonlinear dynamic sys-

tems with either large rigid-body rotations or elastic

displacements. Although Bathe’s method leads to sta-

ble solutions, it introduces too much numerical damp-

ing at large time steps leading to inaccurate results.

3.3 Structures with large 3D rotations

To evaluate the performance of the TTBDF method

in simulating nonlinear dynamic systems with large 3D

rotations, a free moving cylindrical panel, and a rigid

and a deformable 3D L-shaped blocks are investigated

in this section. The free moving panel was utilized by

Sansour et al. [37] to illustrate the performance of the

energy-momentum time integrator they proposed and

the L-shaped blocks were adopted by Dong [23] to demon-

strate the capabilities of the GBDF-A, GBDF-B, and

GBDF-TR algorithms.

3.3.1 Free moving cylindrical panel

A cylindrical panel subjected to two equal forces that

are in positive y and z directions is considered (Fig. 17).
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The applied force F (t) varies as follow:

F (t) =


2× 105t 0 6 t < 0.005,

2000− 2× 105t 0.005 6 t < 0.01,

0 0.01 6 t.

(14)

Fig 18 shows the total energy of the panel for 0 6
t 6 0.1. The total energy of the system conserves well

after the external force becomes zero. The solid line

represents the solution calculated by the TTBDF al-

gorithm with ∆t = 2 × 10−4, while the cross markers

denote the results calculated by the energy-momentum

method in [37] but with a much smaller time step ∆t =

1× 10−5. Although the TTBDF has three sub-steps in

one time step, the time step that can be used by the

TTBDF scheme is 20 times larger than the one for the

energy-momentum method in [37] leading to a lower to-

tal computational cost of the TTBDF algorithm.

The snapshots of the panel configurations obtained

by the TTBDF scheme at six different time sequences

are shown in Fig. 19. This panel displays large over-

all 3D translations and rotations; the TTBDF method

performs very well for this problem.

E = 31027.5
v = 0.3
a = 30
θ = 0.1rad
R = 150
 t = 1

a

R

t

x

y
zθ

F(t) F(t)

Fig. 17: Geometry and material properties of the cylin-

drical panel
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Fig. 18: Total energy of the cylindrical panel
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Fig. 6: Solutions of Beams 1 and 2 obtained using the TTBDF scheme.
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Fig. 8: Total energy of Beam 1 obtained using the TTBDF scheme, the GBDF-A, GBDF-B, GBDF-TR, and

Bathe’s method.
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(a) ∆t = 1× 10−3 s
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(b) δt = 1/3× 10−3 s

Fig. 9: Amplitude decay of Beam 1 obtained using the TTBDF scheme, the GBDF-A, GBDF-B, GBDF-TR, and

Bathe’s method.
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0 10 20 30 40 50
-1

-0.5

0

0.5

1
x 10

-3

Time [s]

T
ot

al
 E

ne
rg

y 
[J

]

 

 

TTBDF
GBDF-A
GBDF-B
GBDF-TR
Bathe’s method

(b) δt = 2/3× 10−4 s

Fig. 10: Total energy of Beam 2 obtained using the TTBDF scheme, the GBDF-A, GBDF-B, GBDF-TR, and

Bathe’s method.
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(a) ∆t = 2× 10−4 s
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Fig. 11: Amplitude decay of Beam 2 obtained using the TTBDF scheme, the GBDF-A, GBDF-B, GBDF-TR, and

Bathe’s method.
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(b) Period errors

Fig. 12: Amplitude and period errors of the vertical displacement of the rigid pendulum.
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(a) Vertical displacement responses
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Fig. 13: Vertical displacement and velocity responses of the rigid pendulum for ∆t = 0.4 s.
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(b) Period errors

Fig. 14: Amplitude and period errors of the vertical velocity of the rigid pendulum.

10
-2

10
-1

10
010

-2

10
-1

10
0

10
1

Time step [s]

A
m

pl
itu

de
 e

rr
or

s 
of

ve
rti

ca
l d

is
pl

ac
em

en
t [

%
]

 

 

TTBDF
Bathe’s method

(a) amplitude errors

10
-2

10
-1

10
010

-2

10
-1

10
0

10
1

10
2

Time step [s]

P
er

io
d 

er
ro

rs
 o

f
ve

rti
ca

l d
is

pl
ac

em
en

t [
%

]

 

 

TTBDF
Bathe’s method

(b) period errors

Fig. 15: Amplitude and period errors of the vertical displacement of the elastic pendulum.
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(b) period errors

Fig. 16: Amplitude and period errors of the vertical velocity of the elastic pendulum.
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Fig. 19: Snapshots of the cylindrical panel obtained by TTBDF with ∆t = 2× 10−4.
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3.3.2 Rigid L-shaped block

The initial undeformed configuration, dimensions and

loading conditions of the L-shaped block are shown in

Fig. 20. Two transient traction forces defined by Eq. 15

are applied at the two end faces of the block.

F1(t) = −F2(t) = (150, 300, 450)p(t)

p(t) =


t 0 6 t < 2.5,

5− t 2.5 6 t < 5,

0 5 6 t.

(15)

Since the total applied force is zero, the block will

simply tumble in space with no net displacement of its

center of mass. Like in [23], the units of all model pa-

rameters are disregarded (they are assumed to be con-

sistent). Four 27-node continuum elements are used for

the spatial discretization of this L-shaped block. The

material of the rigid block is described by the Neo-

Hookean law with Young’s modulus E = 5×1010, Pois-

son’s ratio ν = 0.3, and density ρ = 1000.

For each time step, long-time (up to t = 1000) sim-

ulations are conducted for all methods. A very small

time step ∆t = 0.01 is used in the initial loading stage

(0 6 t 6 5) for all simulations so that the total energy

levels of all five algorithms are very close at the end

of the loading stage. For a small time step ∆t = 0.25,

the total energy curves of all algorithms are very simi-

lar over the entire simulation time (Fig. 21a). When a

much larger time step ∆t = 1.5 is used, the GBDF-TR

and Bathe’s methods become unstable, while the other

three methods are still stable and the TTBDF method

has the least energy decay (Fig. 21b).

Fig. 22 shows snapshots of the rigid 3D block, which

are obtained by the TTBDF method (∆t = 1.5) at six

different time sequences t = 0 , 9 , 18 , 27 , 36 and 45. It

can be seen that this rigid L-shaped block has large

three-dimensional rotations. The TTBDF method per-

forms well for this problem even at large time steps.

3.3.3 Deformable L-shaped block

The deformable block has Young’s modulus E = 5×104,

Poisson’s ratio ν = 0.3, and density ρ = 1000. Similar

to the rigid block, a very small time step ∆t = 0.01

is used in the initial loading stage to guarantee similar

total energy levels at the end of loading stage.

For a small time step∆t = 0.25, the TTBDF method

has the least energy decay, closely followed by the GBDF-

TR method (Fig. 23a). For a larger time step ∆t = 1.0,

the TTBDF method has significantly less energy dissi-

pation than all other methods (Fig. 23b).

Some snapshots of the deformable 3D block are shown

in Fig. 24. These snapshots are obtained by the TTBDF

method with ∆t = 1.0 at six different time instances

t = 0 , 10 , 20 , 30 , 40 and 50. One can observe that this

deformable L-shaped block has large overall 3D defor-

mations and rotations.

It can be concluded that at large time steps, the

TTBDF method not only results in stable solutions

but has much less energy dissipation than the three

GBDF algorithms and Bathe’s method, when simulat-

ing the 3D nonlinear dynamic systems involving either

large rigid-body motions or elastic displacements. The

improved numerical dissipation of the TTBDF method

over these composite algorithms is clearly demonstrated.

4 Conclusions

Motivated by the numerical difficulties in simulating

snap-through buckling problems, we proposed a new

composite scheme, the TTBDF method, that employs

a similar strategy to that of Bathe’s methods [5,3,4,

6]. The algorithm has three equal sub-steps with the

first and second sub-steps using the trapezoidal rule and

the last sub-step using a three-point BDF-like scheme

[23]. The proposed method significantly improves accu-

racy and computational efficiency in simulating struc-

tures undergoing snap-through when compared to other

methods with similar approach, as shown through the

examples in this paper.

The performance of the proposed method on free

moving shells and rigid and deformable L-shaped blocks

and on pendulum problems was also tested. The ex-

amples presented show the reliability and effectiveness

of the TTBDF method in solving large deformation,

large displacement and rotation problems. Comparison

with other schemes from the BDF class and composite

schemes that have a member of BDF class as a sub-

step show that TTBDF method is numerically stable

and often more efficient.
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Fig. 21: Total energy of the rigid L-shaped block.
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