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ABSTRACT

VITURBO: A Reconfigurable Architecture for Ubiquitous Wireless Networks

by

Mani Bhadra Vaya

A run-time reconfigurable architecture for ubiquitous wireless networks has been
designed and implemented. Reconfigurable architectures have the ability to change
themselves dynamically thus presenting a viable proposition for handset design for
ubiquitous networks, where a key requirement is the flexibility to switch across differ-
ent standards in different environments, examples of which are Orthogonal Frequency
Division Multiplexing based IEEE802.11a Wireless Local Area Networks (WLAN)
and Code Division Multiple Access based 3" Generation (3G) cellular networks.
Channel encoding and decoding are essential components of these communication
systems and different forms of convolutional encoders and decoders are used. We
present the design and implementation of a novel reconfigurable architecture that
can decode a range of convolutionally coded data (constraint lengths 3-9); and Turbo
coded data (constraint length 4). Our architecture can support channel decoding for
most of the current communication systems like WLAN, 3G, and Global System for

Mobile Communications.
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Chapter 1

Introduction

1.1 Motivation

Ubiquitous wireless networks, nascent as they are, would in the future be able to
provide seamless wireless communications, with no strings attached [5]. Users would
be able to access the network at almost any place and at any time. Different commu-
nication systems would be needed to support communications in outdoor and indoor
environments, and these would have to be integrated strongly, in order to provide a
seamless network. OFDM based systems like WLAN provide high speed local area
network access up to 54 Mbps. 3" generation cellular communication systems, based
on CDMA provide outdoor network access at data rates up to 2 Mbps. A receiver
architecture with the ability to seamlessly transfer between such high speed local area
networks and outdoor cellular networks would provide the backbone for the realiza-
tion of such ubiquitous networks. Numerous issues on different layers of networks
would have to be dealt with, in order to realize such an architecture. This thesis
deals with issues in design of physical layer architectures for receiver structures of
such ubiquitous networks. A simple solution would be to have architectures for all
possible standards, and to switch between different architectures, as and when re-
quired. Though simple in conception, such a receiver would be extremely bulky, and
would hardly be classified as handset. A more elegant solution, as proposed in this

thesis, is the design of reconfigurable architectures, which can provide the flexibility



to switch across standards with the same piece of hardware, hence saving area and
cost.

We have narrowed down the problem to design of reconfigurable architectures
for baseband processing, and more specifically, forward error correction techniques in
various standards. Forward error correction techniques, though computationally some
of the most intensive, are a necessary component of wireless communication systems as
seen today. 3G Cellular systems, WLAN systems, GSM, General Packet Radio Service
(GPRS), and many other systems have accepted various forms of convolutional coding
as key components in their respective error correction schemes. Such a study would
give a greater insight into the operation of different standards, and how reconfigurable

architectures could prove beneficial.

1.2 Contributions

A high speed reconfigurable channel decoding architecture for multiple standards is
the core contribution of this work. The architecture is capable of Turbo and Viterbi
decoding for a wide range of code parameters, varying from constraint lengths 3 to
9 and rate 1/2 and 1/3, and any generator polynomial. The architecture has been
designed and implemented on a Field Programmable Gate array (FPGA).

Earlier work as proposed by Bickerstaff et. al. [8], was limited to unified Viterbi
and Turbo decoding for 3" generation cellular systems (3G), where data rates of the
order of 2 Mbps are required. In the work proposed by Chadha et. al. [13], hard
input reconfigurable Viterbi decoding using Hamming distances for WLAN and 3G
was proposed, with 26 Mbps as the achievable data rates. However, the proposed
architecture can achieve and beat the data rates recommended in WLAN and 3G

standards.



Our proposed architecture can achieve data rates up to 60 Mbps for soft input,
Euclidean distance based Viterbi decoding for both WLAN and 3G, while up to 3.5
Mbps is achievable for Turbo decoding for 3G. The area consumed for this architecture
is much smaller than the combined area of the three different decoders which have
been proposed in WLAN and 3G. This implies a significant saving in area as well as
cost.

The proposed architecture uses a completely parallel decoding for all the possi-
ble constraint lengths. Smaller constraint length (< 9) decoders use parts of the
constraint length 9 decoder, and the data routing in the entrails is realized through
multiplexer banks.

Architectural power saving schemes have been employed in order to shut down
parts of the circuit that may not be needed for a particular decoding type. This
ensures that while maintaining its flexibility, the architecture does not compromise
on the power consumption, unlike some earlier works [13].

This unique blend of flexibility achieved, area and power consumed, and through-
put delivered make this architecture a powerful proposition for future communication

devices.

1.3 Organization

Following is a brief overview and organization of the thesis. Chapter 2 details the
physical layers of OFDM and CDMA systems and the different channel encoding and
decoding algorithms used in these systems. Chapter 3 has been used to elucidate the
architectures for Viterbi and Turbo decoding. The complete decoder architectures
are broken down into smaller sub units and analyzed. The crux of our contribution

is expounded in Chapter 4. In chapter 5, we present the design methodology used



to realize this architecture. We also present the results of simulations, and analyze
them critically. The thesis is concluded in Chapter 6 and future work forms chapter

7.



Chapter 2

Communication Systems and Error Correction
Techniques

A wireless communication system, like many other communication systems comprises
of various layers of network. Physical layer computations for wireless communication
systems are extremely expensive, and architectures for such computations have been
the subject of intensive research over the past few decades. In this chapter we shall
study the physical layer processing of OFDM and CDMA systems. We shall also gain
an understanding of the different channel encoding and decoding algorithms used in

these systems. This shall enable us to understand the need for flexible processors.

2.1 Code Division Multiple Access for Cellular Systems

The precipitous growth of cellular communication systems can be traced back to early
1980’s, when the first generation of cellular systems, using analog transmissions were
brought to life. In the late 1980’s, the second generation cellular systems started
taking form. These digital systems offered higher spectrum efficiency and better data
services than their predecessor system. Some examples of these systems are GSM,
a Time Division Multiple Access (TDMA) based system, and IS-95, a CDMA based
system.

CDMA is the protocol for the emerging 3"¢ generation cellular systems, and
promises to deliver high data rates, multimedia communications, multi-rate services,

and Quality of Service in the wireless framework. In CDMA, access is provided to



different users by assigning a signature waveform to each user. A spreading sequence
consists of a combination of +1/-1, which is specific to the given user and has some
unique correlation properties such that the spreading sequence of different users are

orthogonal to each other.
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Figure 2.1 : CDMA System physical layer

A typical CDMA transmitter and receiver system is shown in Figure 2.1. At
the transmission end, the data is first source encoded in order to compress it, and
remove redundancies. In the next step the data is channel encoded, where deliberate
redundancy is introduced in order to provide robustness again channel. Voice is
encoded using convolutional codes, because of the streaming nature of these codes

(section 2.3.1), while data is encoded using Turbo codes. The channel encoded data



is then passed through a spreading mechanism as described earlier. Upon spreading,
the chips so obtained from the information bits are modulated by RF carrier using a
digital modulation technique, and transmitted across the channel.

The channel adds noise to the signal, and introduces various effects like atten-
uation, multi-path, and fading. This degraded signal is processed by the receiver,
which endeavors to restore the original data bits. The baseband signal is extracted
from the radio signal using the demodulator, which is sent to the chip matched filter.
The continuous time signal from the channel is converted to discrete time signal by
sampling the output of a matched filter to the chip waveform. Channel estimation
and detection make use of the pilot bits in order to estimate the channel and detect
the data bits. Once detected, the data is passed through a channel decoder, which
could either be a Viterbi decoder for convolutionally encoded data or Turbo decoder
for Turbo encoded data. Finally source decoding un-compresses the bits, and outputs

the original bit stream.

2.2 Orthogonal Frequency Division Multiplexing for WLAN

The very basic principle of OFDM system is to split a high rate datastream into a
number of lower rate datastreams that are transmitted simultaneously over a number
of subcarriers, each of a different frequency. The null of the frequency of one sub
carrier is at the peak of an adjacent frequency, hence giving the prefix orthogonal.
Even though this results in overlap of carriers, it also ensures that the signals at
different frequencies are received at the receiver without mutual interference.
[FFT/FFT is used to digitally modulate /demodulate the data over a large number
of carriers. Figure 2.2 shows the various components of an OFDM transmitter and

receiver system. At the transmitter side, the data is channel encoded to introduce
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Figure 2.2 : OFDM System physical layer

redundancies and increase robustness. The data is then passed through an interleaver,
where it is decorrelated, and spread over many tones. PSK (Phase Shift Keyed) or
QAM (Quadrature Amplitude Modulation) based modulators are used to modulate
the data which is then converted from Serial to Parallel form to be fed into IFFT.
In this way, complex frequency domain data is transformed into time domain. To
reduce intersymbol interference, the time varying data is cyclically extended with
cyclic prefix. This data is ready for transmission by the R/F transmitter.

At the receiver, the cyclic prefix is removed and data is converted from serial to
parallel in order to be processed through a FFT demodulator. In an OFDM symbol,

training symbols are embedded in order to help in the estimation of the channel



transfer function. The channel transfer function is obtained by interpolation between
coefficient values obtained upon the use of training symbols. For the frequencies where
channel transfer function was relatively small, noise may be amplified upon division
by a small value, and hence render the equalization scheme useless. However, since
the data was channel encoded we can still retrieve the symbols that experienced a
bad channel with the help of those that encountered a relatively better channel. The
equalizer is followed by channel decoder, which is the Viterbi decoder for convolutional
codes. The output of channel decoder is the original data stream.

As seen from the discussion above, channel encoding and decoding form an impor-
tant part of both the communication systems. While Viterbi and Turbo decoder are
needed for 3rd generation CDMA systems, only Viterbi decoding is needed for OFDM
based WLAN systems. In the following sections we shall give a detailed exposition

of the channel encoders and decoders mentioned above.

2.3 Channel Encoding Algorithms

In this section we shall give a brief overview of the channel encoding schemes used
in the systems discussed above: simple convolutional coding, which was proposed by
Elias in 1955 [10] and parallely concatenated convolutional coding (Turbo coding),

proposed recently by Berrou [1] in 1993.

2.3.1 Convolutional Encoding

Convolutional codes are generated when the information sequence to be encoded is
transmitted through a linear finite-state shift register. K,k — bit stages and n linear
algebraic function generators constitute such a linear shift register [14]. The input

data is shifted along the registers at a rate of £ bits at a time, and the number of
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output bits for each k — bit input sequence is n bits. This predicates a code rate of
k/n, where code rate is defined as: number of input bits/ number of output bits.
The constraint length of such an encoder is defined as the number of memory elements
in the shift register plus one, which is K.

The state of a given encoder is defined by the values of the binary data in the shift
registers. The number of states possible for a given convolutional encoder is contingent
upon the number of permutations possible for the binary values in the shift registers,
which is obviously dependent upon the number of shift registers. As discussed earlier,
for the case of constraint length K, there are K — 1 shift registers, and hence the
number of possible permutations is 25!, which gives the number of possible states.
For the case of K=3, the number of possible states is hence 2>°! = 4. It may be
noted here that not only do the number of states increase exponentially with the
constraint length K, the complexity of the decoder also increases exponentially with
K. The error protection capability of convolutional codes increases with constraint
length and the inverse of code rate.

The generator polynomials correspond to the shift register connections to the
function generator, where a 1 corresponds to the output of the shift register being
connected, and 0 corresponds to the opposite. For the case shown in the Figure
2.3, the output sequence 1 corresponds to generator polynomial g1, and the output
sequence 2 corresponds to generator polynomial ¢2. Since, for the first function

generator all the three stages are connected, the generator polynomial is :
g1 = [111] (2.1)
For the second function generator, stages 1 and 3 are connected and hence,

g2 = [101]. (2.2)
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These generators are usually expressed in octal form, and for this case are G = [7, 5].
The three parameters discussed above: Rate (k/n), constraint length (K), and

generator polynomial (G) form a particular type of convolutional codeword.

Y

Y
>N
y

Y

Figure 2.3 : K=3 [7,5] Convolutional Encoder

Trellis representation of convolutional coding is a key to understanding the behav-
ior of convolutional coding. A brief discussion follows. The encoder (K = 3,[7,5]),
as discussed earlier, has 4 possible states. Let’s give the left shift register(Figure
2.3) a binary weight of 2!, and the right shift register a binary weight of 2°. Tt is
usually assumed that the encoder starts in an all zero state. If the first input bit
is a zero, zero is shifted across the shift registers , and the encoder stays in the all
zeroes state at the next clock edge. However, when the input is one, the encoder
transitions to the 105 state at the next clock edge. If the next input bit is one, the
encoder transitions to the 11, state, otherwise, it transitions to the 01, state. The

following trellis structure in Figure 2.4 shows all the possible transitions for the given
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encoder. While the horizontal axis represents the stages (advancement in time), the
vertical axis represents the possible states. In the figure, the dotted lines represent
the transitions when 0 is the input. Also, worth noticing is the fact that the set of
bold lines , and feeble lines form a butterfly structure each, as shown in the adjacent
boxes in Figure 2.4. The numbers on top of each transition arrow give the output

data for that transition.

/
y 1610 Seu

>

Stages

Figure 2.4 : K=3 [7,5] State transitions and the two possible butterflies

2.3.2 Turbo Encoding

In 1993, Berrou et. al [1] introduced a new coding technique referred to as Turbo
coding, which represents a significant advance in information theory, by approaching
very close to Shannon’s channel capacity limit. Turbo coding [12], [15] is a relatively
new invention in the world of information theory, but due to its superlative and un-

matched performance, much research has gone into its analysis [21]. As shown in
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Figure 2.5, a Turbo encoder consists of two parallel binary, rate 1/2 recursive sys-
tematic convolutional (RSC) encoders separated by an N-bit interleaver or permuter.
A coding rate of 1/3 is obvious from the figure, as for every bit going in, there are 3

bits being outputted.

XS

RSC1 >

X%
RSC 2 —

Figure 2.5 : Turbo Encoder

Recursive Systematic Convolutional(RSC) Encoder

Standard feed-forward convolutional encoders are not used for Turbo coding. In any
non-recursive convolutional codes, an input string of all zeros except a one at one
position results in an encoded stream with a very low weight. The output of the
interleaver would also contain a one in a single position, leading to a low weight
output from the other encoder. However to improve the performance of Turbo codes,
the number of low weight code words needs to be kept to the minimum. To this end,
recursive systematic convolutional codes are employed. Here, systematic refers to the
fact that one of the output streams is a replica of the input stream. As can be seen in
the Figure 2.6 this code is recursive because a set of outputs is fed back to the input.

Due to the feedback nature of RSC, an input containing a single one would result
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in a semi-infinite weight code word. The interleavers thus have a high probability of

causing a high weight at the output of the second encoder.

NP

Figure 2.6 : Recursive Systematic Convolutional (RSC) Encoder

Interleaver

Interleaver design has been focus of much attention in the past, as it is an important
issue in design of a Turbo coding system. The interleavers are required to perform
in such a way that if the output of one encoder is a low-weight codeword, the second
encoder should produce a high weight codeword. Random interleavers have proven to
be a good choice for interleavers, in terms of performance, but their implementation
is costly compared to other interleaver forms [16]. For a random interleaver, the
information bits are stored in a vector and read out in a random fashion. This
random order should however be known at the receiver in order to decode the data.
A simpler interleaver is a block interleaver in which data is written to a matrix of n
rows and m columns, and read out by columns.

Rate, constraint length, and generator polynomials are the three parameters that
define a convolutional code. 3G systems use convolutional codes with rate 1/2, con-

straint length 9 and generator polynomial {561, 753} for Data channel, rate 1/3, K=9,
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generator polynomial {557, 663, 711} codes are used for Control channel. Turbo cod-
ing with rate 1/3, and constituent encoders of constraint length 4 as shown in Figures
2.5 and 2.6 is used in 3G. WLAN systems use rate 1/2 constraint length 7 convo-
lutional codes with generator polynomials as {133,171}. The difference in the types
of codes being used signifies the differences in the environments to which the signals
are subjected. Ideally, an outdoor cellular environment is harsher than WLAN and

hence the coding used is more robust.

2.4 Channel Decoding Algorithms

Channel encoding is an extremely simple task when compared to channel decoding.
In the following subsections is a description of the different channel decoding algo-
rithms that are used in the different standards. While only Viterbi decoding is used
in WLAN, both Viterbi and Turbo decoding are required for 3G. In section 2.4.1, the
basic Viterbi algorithm is discussed, which is used for decoding convolutionaly coded
data. Two different algorithms for Turbo decoding, namely the Maximum a posteri-
ori probability(MAP) algorithm and the Soft Output Viterbi Algorithm(SOVA) are
discussed in later sub-sections. One of the key differences between Turbo decoding
(SOVA/MAP) and Viterbi decoding is that while for Viterbi decoding, only hard
decisions(+/- 1) are needed to be calculated, for Turbo decoding, reliability of the
decisions (also known as soft decisions) are also needed to be computed, and these
soft decisions are iterated over many cycles in order to obtain the best results. While
MAP algorithm gives a better bit error rate, SOVA offers simpler implementation,
implying lesser area and power. Also, SOVA shares many common features with the
Viterbi algorithm and hence is a better candidate for our proposed reconfigurable

architecture.
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2.4.1 The Viterbi Algorithm

In 1967 A. J. Viterbi proposed an algorithm for optimal decoding of convolutionally
coded data. The Viterbi algorithm (henceforth referred to as VA), as it is known,
finds the most likely sequence of state transitions through a finite state trellis.

The Viterbi decoder, upon reception of a received vector r, generates the estimate
z of the transmitted code word, that maximizes the probability p(r|z). The well

known Baye’s rule for probability is:

p(r|2)p(z) = p(z|r)p(r) (2.3)

The maximum a posteriori probability(MAP) selects the estimate that maximizes
p(z|r), and is equivalent to the Viterbi decoder if the distribution of source word is
uniform. The input sequence z, that was presented to the encoder may be represented
as: o = (x, b, xb ™ 20 w20 2 a7 where L is the number of
k bit blocks that together form the information sequence x. As this is a rate k/n code,
this input sequence generates an output sequence y, of L n-bit blocks and additional
m blocks, where m is the length of longest shift register in the encoder. The output
sequence y is given asy = (4, U8, - Uf v U Uty U Y s 1 Vb 15 Y b 1)

However, upon transmission through the channel, noise is added to the data and the

received data r can be represented as:

r=(rd,rdy g Ll et Y )
From the basic rules of probability, we know that
L+m—1n—-1 ) .
p(rlz)= [ TIr¢712D), (2.4)
i=0  j=0

where the subscript corresponds to the block number and the superscript corresponds

to the bit number inside the block. Equation 2.4 is also referred to as the likelihood
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function of z. By taking the log of both sides we have the log likelihood equation:

L4+m—1n—1
log(p(r|z Z Zlog r7|2])) (2.5)
=0 7=0

The term log(p(r?|2])) is converted to an easier form called the bit metrics which can
be denoted as: M(r!|z!). The term path metric refers to the sum of these terms and

is given by:
L4+m—1n—1

> > M), (2.6)
i=0  j=0
Another way to express the path metrics is using the branch metrics, where the £

branch metric is defined as the sum of the bit metrics for the £ block of r given z,
n—1
M(rylz) = Y M(r]|2). (2.7)
i=0
The k' partial path metric is obtained by summing the branch metrics for the first
k branches traversed by the path.

Following is a brief description of how the algorithm proceeds to evaluate the
output data. In the first step, Euclidean distances are used to evaluate branch metrics
for all possible state transitions. Subsequently, from the two paths that end in the
same state (for rate 1/n code), the path associated with the best path metric is
selected as most likely, and a decision corresponding to this is calculated. A trellis
structure is built along the way, where each state transition is noted with all the
relevant information like path metric and the decision bit. When all the data bits
have been received, and the trellis has been completed, the last stage of trellis is used

as the starting point for tracing back. The traceback operation outputs the decoded

data, as it traces back along the maximum likelihood path.
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2.4.2 Maximum A posteriori Probability (M AP) decoding for Turbo codes

The MAP algorithm was proposed by Berrou et. al in 1972 [2]. A detailed and lucid
exposition of MAP and SOVA algorithms for Turbo decoding was published by Hage-
nauer [4], and is a useful reference. The trellis structure of a binary feedback convolu-
tional encoder has the structure shown in Figure 2.7. Sy is the encoder state at time
k, uy is bit associated with the transition from time £ — 1 to k, and the trellis states
at level £ — 1 and at level k, have been indexed by the integers s’ and s respectively.
In this algorithm, the decoder decides u, = +1 if P(u; = +1|y) > P(u; = —1|y), and
it decides u, =-1, otherwise, where y is the received noisy sequence. In the logarithm

domain, the decision wuy is given by:
uy = sign[L(uy)], (2.8)

where L(uy) is log a posteriori probability ratio defined as:

Z p(sl, 87 y)

(s',5)
up=+1
] = log[“=" ] (2.9)
p(s',5,y)

(s',s)
up=—1

P(u, = +1|y)

L(uy) = log[m

Using Bayes rule, Eqn 2.9 may be expressed as :

] (2.10)

determines the information bit u; and the coded bits zy,, for v = 2,.....,n. The
sum of the probabilities p(s, s,y) in the denominator or numerator of equation 2.9 is
taken over all existing transitions from state s’ to state s labeled with the information

bit uy = —1 or with u, = +1, respectively. The joint probability p(s’, s,y) can be
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Figure 2.7 : Trellis structure for systematic feedback convolutional encoders

expressed as a product of three independent probabilities:

p(s', s,y) = p(s' yj<n) (s, yils') -p(yj>kls), (2.11)
or
p(s's5,y) = p(s' yj<i)-P(sls').p(ykls"-5) -p(yjskl5), (2.12)
which can be expressed as:
(s, s,y) = ap_1(s"). (s, ). 0k(s). (2.13)

Here y,«1 denotes the sequence of received symbols y; from the beginning of the trellis
up to time k — 1 and y;> is the corresponding sequence from time £ + 1 up to the

end of trellis. The forward recursion of the MAP algorithm yields,

ag(s) = Z’yk(s',s).ak,l(s'). (2.14)

The backward recursion yields,

Br_1(s") = Z%(s',s).ﬁk_l(s). (2.15)
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In order to perform the optimum ’symbol-by-symbol’ MAP rule, the trellis has to be
finite. Its assumed that at the start and at the end of the observed sequence all paths
merge at the zero state. Thus, the forward and backward recursion are initialized
with @er¢(0) = 1 and Sepng(0) = 1. Upon a transition between s’ and s, the branch

transition probabilities are given by :

(8", 8) = pyr|ur).P(up). (2.16)

Using the log-likelihood ratios, the a priori probability P(u;) can be expressed as:

e+/7L(uk) eiL(uk)/2
P(uk = —|—/ - 1) =

T 14 et/ L) (1 n e—L(uk)/2)'eL(uk)uk/2 = Ay.ePmw/2 (9 17)

Similarly p(yx|ux) for systematic convolutional codes can be written as:

1 IR
p(yklur) = Bkefp(iLcyk,luk +3 > Leyipmry). (2.18)

v=2

The terms A, and B, are equal for all transitions from k£ — 1 to k& and will cancel
out in the ratio in equation 2.9. Hence, the branch transition operation to be used in

equations 2.14 and 2.15 reduces to :

1 e
exp(un(Leyss + L(ux))) 7,7 (', 5). (2.19)
where
IR -
7 (s, 8) = 63720(5 ; LeykvThp)- (2.20)

The first exponential in equation 2.19 is common in all terms in the sums of equation
2.9, and hence we can divide all terms by these and obtain the soft output of MAP

algorithm as:

> il s)an 1 () Bils)
(s',9)
L(ug) = Leugy + L(ug) + log(u§-1 YRR (8)) (2.21)

(s'58)
uk:—l




21

2.4.3 Soft Output Viterbi Algorithm

The Viterbi algorithm as proposed by Andrew J. Viterbi is of the soft input hard
output type (STHO). For decoding turbo codes, soft outputs are required for reliability
information that is passed between the decoders. Therefore the Viterbi algorithm was
modified [3], to give soft outputs, as in the MAP algorithm. Forney described the
VA in its MAP format [17]. Tt searches for the i state sequence S and thus the

desired information sequence u(Y by maximizing over i, the a-posteriori probability:

. ) p(g(i))
P(SDy) = p(y|S® 2.22
(5™y) = p(y|S™) ) (2.22)
Given that y is fixed, we can equivalently maximize:
p(y|SY)P(SY). (2.23)

This maximization is obtained when for each state s and each time k the path with
the largest probability p(SJ(.;)k,ijk) is selected. This probability can be calculated
by multiplying the branch transition probabilities associated with path i. They are
defined in equation 2.16. Since logarithm is monotonically increasing, the maximum is
not altered upon a log operation and hence we perform the same metric computation
as in the forward recursion of log-MAP in previous section. In equations 2.17 & 2.18

logA, and logBy, are the same for all paths and hence irrelevant. For the i** path at

time k& we obtain the path metric as
Mip(s) = My_1(s' D) + (1/2) Llup)u) + (1/2) Y Leye-zi, (2.24)
v=1

Here s) denotes the state of the path i at time £, ugf) is the information bit, and x,(;)v

are the coded bits of path ¢ at time k. For systematic codes we have

Mip(s%) = My_i (5 D)+ (1/2) Loy pu) +(1/2) Y Lo, +(1/2) L(ug)ul)) . (2.25)
v=2
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Figure 2.8 : Derivation of the metric difference Al

This modification of the metric for the Viterbi algorithm (VA) incorporates the
apriort information about the probability of the information bits. If we have a good
channel, |L.y| will be larger than |L(u)| and the decoding relies on the received
channel values. If the channel is bad, decoding relies on the aprior: information
L(u). In iterative decoding this is the extrinsic value from the previous decoding
step.

The joint probability of the path i and of the received sequence y;<; at time £,

and the metric in equation 2.25 are related by:

k
p(path, i, yj<k) = p(Sicp vi<k) = (] [ A;j-By)-exp(M(s?). (2.26)

j=1

We wish to obtain the soft output for bit uy, which the VA decides after a delay ¢.
Figure 2.8 shows the computation of this soft ouput.
The VA proceeds in the usual way be calculating the metrics for path ¢ using

equation 2.25. For each state it selects the path with the largest metric Mj,(s®). At
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time k£ + § the VA has selected the maximum likelihood (ML) path with index is
and discarded the other path. Along the ML path is which decides the bit iy, d + 1
nonsurviving paths with indices [ = 0...0 have been discarded. The metric difference

is defined as

AL =M = M >0, (2.27)

Then, it can be shown that the probability P(correct) that the path decision of

the survivor was correct at time k + [ given y;<;4 is, using equation 2.26

p(pathiy, yj<k+i)

P(correct) = - - , 2.28
( ) p(pathis, yj<i+1) + p(pathiy, yj<u+i) (2:28)
or
M (i)
P(correct) = exp( ert(™) L (2.29)
exp(My11(s))) + exp( My (s()))
which implies,
exp(A)
P t) = —————. 2.30
(correct) T+ cap(AL) (2.30)
Hence, the likelihood ratio of this path decision is AL, because
P(correct) |
log =A,. (2.31)

1 — P(correct)

The soft output of the VA is the decision 1y times the Al values of the errors and

can be approximated as

L(tiy) & 1i, » . A} ~ . min Aj (2.32)

The sum and the minimum is only over those nonsurviving paths which would have
led to a different decision . Thus we have the same hard decisions as the classical
VA, and the reliability of the decisions is found by taking the minimum of the relevant

metric differences along the ML path.
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The soft output in its approximate version of eqn 2.32, using equations 2.25 and

2.27 has the following format
Lsoval(tg) = Leyky + L(ug) + tg.(first 3 terms in eqn.2.24). (2.33)

However, in the proposed architecture, a slightly different approach [7] is used.
No hard decisions are made until £ = frame size. Once k reaches frame size, the path
ending at the state with the highest metric is selected as the survivor path. The ML
path is traced back to obtain the hard decisions 1, and the corresponding A,. We
define another parameter called the reliability depth as §. The reliability value Aj is
obtained by taking the minimum over the nonsurviving path within the time window
[k, k + d], that would have led to a different decision. The soft output for bit uy is
approximated by Loy, = (tg).Af. A safe estimate of reliability depth is nearly 3 x K

(where K is constraint length).
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Chapter 3

Viterbi and Turbo Decoding Architectures

While the last chapter detailed the various decoding algorithms, this chapter shall
delve into the architectures for these algorithms. We shall break up the Viterbi and
Turbo decoding architectures into smaller sub units and analyze the workings of each
unit.

Four major components of a Viterbi decoder as shown in Figure 3.1 are: Branch
Metric Unit, Add Compare Select Unit, Survivor Management Unit, and Control
Unit. A complete Turbo decoder, as shown in Figure 3.2 comprises of two main
processing elements: the Soft Input Soft Output block, implementing the SOVA or
MAP algorithm and the Interleavers/Deinterleavers which scramble/descramble the
data according to the interleaving algorithm used on the encoding side. For the case
of SOVA based Turbo decoding system, the four units that form a Soft Input Soft
Output block (shown in the blowup of Figure 3.2) are similar to the constituents of
a Viterbi decoder, but the complexity of these units is higher for Turbo decoding.
Especially, the Survivor Management unit for Turbo decoding is extremely complex

compared to Viterbi decoding, as it also generates the soft outputs.

3.1 Branch Metric Unit (BMU)

An integral component of Viterbi and Turbo decoding, the BMU computes the branch

metrics for each state and stage of the trellis. As discussed in the previous chapter,
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Viterbi CONTROL
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Coded Data —_— o ' Decoded Data (+/- 1)
| Viterbi | Viterhi ~ : S
> BMU A~ Acs > MU

Figure 3.1 : Viterbi decoder

there are 261 states and 2* branches that go into each state at each stage of the
trellis, and hence (25~1) % (2%) branch metrics are required to be calculated for each
stage. However, for an n bit codeword, there are 2" unique codewords and hence
as many unique branch metrics need to be computed. Branch metric computations
are contingent upon the rate of the code (factor n) used, constraint length, and the
generator polynomial used to derive the code.

Various different metrics are used for computation of the branch Metrics. For
the case of SOVA based Turbo decoding, the branch metric is computed as shown
in Equation 2.25. This computation involves the use of multipliers and adders, as is
obvious from the equation. However, various implementations use look up tables in-
stead of multipliers to evaluate the metrics in order to save computational complexity
and power consumption.

For the case of Viterbi decoding, Hamming distance and Euclidean distance are
two very popular metrics. While Hamming distance computations are fairly simple, in

the fact that only single bit Exclusive Or operations are required, they do not provide
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the computational accuracy of Euclidean distances metrics. In the case of Euclidean
distances, multipliers are required for evaluating the squares of distances, and adders
are required for subsequent processing. Also, in various architectures, LUTs are used
for computation of branch metrics, as they offer a compromise between the very
precise Euclidean and the very simple Hamming distances metrics. As discussed in
the previous chapter, the branch metrics contribute to the path metric computations.
The branch metrics generated by the BMUs are passed on to the ACS units according

to the code configuration, for the subsequent computations.

3.2 Add Compare Select (ACS) Unit

Computationally, one of the most intensive, this unit uses the accumulated path
metrics and the current branch metrics to compute the survivor path metrics at
every state and stage of the trellis. These survivor path metrics are again fed back
to the (same/other) ACS units for further processing. Therefore, as we advance in
time and build up the trellis, the same set of ACS units is used for processing the
ever changing path metrics.

As shown in Figure 3.3, along with the new surviving path metrics, the decision
bits required for survivor management are also evaluated in case of Viterbi decoding.
For Turbo decoding, the difference between the path metrics of the competing paths
is also required, as it is used for the computation of soft information, which is passed
between different iterations. It may be noted here that the computation of survivor
path metric and decision bits is dependent upon the type of metrics used for branch
metric computation. Therefore, while the maximum of two path metrics is selected as
survivor in case of Turbo decoding as described earlier, the minimum of two competing

path metrics may be used as survivor in Euclidean distance based Viterbi decoding.
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It is worth noting here, how the butterfly structures in the trellis are exploited for
ACS computation. As shown in the Figure 4.5, a certain butterfly has a fixed pair of
starting and ending stages, for a given constraint length K. 25=2 butterfly structures
make up a single stage of the trellis. For a rate k/n code there are 2¥ competing

paths entering each node of the trellis.

Survivor PM (- Viterbi /Turbo)

>

Y

PMO"

PMO

Y

BMO' +

Y

PM Difference
(Turbo)

103713S

PM1'

. +
BM1 PM1

Y

g
>

>
Decision Bit ( Viterbi /Turbo)

Figure 3.3 : Add Compare Select Unit for Turbo Decoding

3.2.1 Metric Normalization

As finite number of bits are used for storing path metrics and these path metrics
accumulate over time, there is a need to normalize the path metrics in order to avoid
overflow. Every path metric computed is compared against a threshold at every stage

of the computation. If, in any case any path metric exceeds this threshold, a flag is
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set, and a certain constant value is subtracted from all path metrics, hence providing

a mechanism against overflow.

3.3 Survivor Management Unit

This unit uses the decision bits obtained from the ACS unit to compute the decoded
data bits. There are two competing algorithms for survivor management, namely
register exchange and traceback. The register exchange implementations are superior
in terms of regularity of design and decoding latency, but traceback implementations

achieve higher implementation efficiency and lower power consumption.

3.3.1 Register Exchange

The register exchange algorithm computes the symbol sequence of survivor paths as-
sociated with all trellis states based on the decisions on the paths that merge in a
specific state. A shift register is associated with every node in the decoding operation,
and contains the information regarding the surviving partial path that terminates at
that node. Such registers must be able to send and receive data to and from regis-
ters, and all of this information exchange must take place simultaneously, for high
speed. As the decoding operation proceeds, information is updated and exchanged,
contingent upon the survivor branches. Due to the high access bandwidth, power
consumption becomes a very critical issue in this implementation. Computation-
ally expensive but conceptually lucid, this operation is pitted against the traceback

operation as described below.



31
3.3.2 Traceback

A history of surviving branches at each node is stored for traceback operation. Note-
worthy is the fact that the contents of registers associated with each state are not
exchanged with each other, but only updated by one bit with each successive stage of
decoding. Such an implementation is significantly faster than register exchange, and
is usually preferred when hardware implementation is the ultimate goal. An impor-
tant property of the traceback operation is that if every state from a current time is
followed backwards through its ML path, all the paths converge at a point somewhere
previous in time. The number of stages required to be traced back, for convergence
of paths is known as the decoding depth and is a linear function of constraint length.
Five times the constraint length has been proven to a be a good estimate for de-
coding depth. The traceback for VA is relatively simple in the sense that only one
ML path needs to be traced back for the computation of decoded data. However
for computation of soft decisions, traceback becomes very intensive, details of which

follow.

Soft Information for Turbo Decoding

The Soft Output Viterbi Algorithm uses the difference of incoming path metrics to a
state, as a measure of the reliability of a particular decision at that state. While, the
Viterbi algorithm traces back over one path, the SOVA traces back over the Maximum
Likelihood(ML) path and its next competitor, in order to establish the reliability of
a decision. This is based on the idea that all the decision bits along the traceback
path are based on correctly choosing the ML path, and if the competitor path has a
different decision, it can only be as confident as the decision to choose the competitor

over the ML path. In the original form, as many tracebacks as the number of states



32
were performed, because at that point the ML path was unknown. A more elegant
approach was suggested by Meyr et. al. [6], named as Two Step SOVA-SMU.

Competin Possible
ML path peing All Paths Survivors

Path
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® ® « ® () @ ® ®
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< |
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Figure 3.4 : Two Step SOVA decoding

Two Step SOVA-SMU Architecture

One of the most popular techniques for traceback for Soft Output Viterbi Algorithm
was proposed [6] before the advent of Turbo Codes. The proposed algorithm split
the required traceback operations for soft decision computation into two steps. As
a first step, hard deciding Traceback Unit is employed to compute the final survivor
sequence while the update operation is postponed for the next step. Once the final
survivor is found, only the likelihood values associated with this survivor sequence
are updates with respect to the competing paths that are traced back starting from
the known survivor states at the survivor depth D. In Figure 3.4 the right hand side

shows the hard decision traceback, where the final survivor is determined. The left
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hand side shows that in each decoding step, a comparison between the final survivor
path and a competing path is mandatory. The starting point for the comparison
is the final survivor state at depth D, and a depth of U is traced back in order to
compute the soft decisions. The number U is known as the reliability depth and is
about 3 times the constraint length.

A high level block diagram of the update processing unit is shown in Figure 3.5.
In each decoding step, one new path comparison is started, which finishes the soft
decision computation after U cycles. Here decy corresponds to the decision bit, s;_p
corresponds to the starting state of the path comparison, Dely , (Aj ) corresponds
to the difference between the path metrics at the states s and time k, and L,_p_y is

the soft decision or the likelihood.

Path Comparison Unit
Oec s,k Hard Deciding bol
—_—> mbo
SMU Sk-D >
—> Delay > o ® 0
/ D’ \L \L \L \L \L \L \L relevance hits
Dell S k S,k'D L

E— Delay % Update Unit AMU

Likelihood

Figure 3.5 : Two Step SOVA Soft Decision Traceback Unit
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3.4 Interleaver

Interleavers, are in effect address generation units, where the address is generated
according to a certain mathematical formula. For example in the case of block inter-
leavers, data is written row-wise, using an address generation unit, in n rows and m
columns. When reading out, the data is read out column-wise, by another address
generation unit, hence interleaving the data.

By its very nature, decoding Turbo coded data is an iterative process. However
this iterative decoding can be realized with a single processor that performs all the
computations or with a pipelined architecture that allows data to flow through a series
of computational elements. The choice of a particular architecture is contingent upon
the requirements of a given system. Various implementations of Turbo decoders on
Digital Signal Processors [18], Field Programmable Gate Arrays [22], and Application

Specific Integrated Circuits [11] have been proposed so far.
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Chapter 4

VITURBO : The Reconfigurable Architecture

In this work, we have presented a reconfigurable architecture for future wireless sys-
tems. The crux of the contribution comes in terms of reconfigurable architecture
for Viterbi and Turbo decoding for varying code configurations. Flexibility is a key
to this work, and has been realized in hardware using various control and routing
structures. Figure 4.1 shows a complete block diagram of the proposed architecture,
with the components critical to reconfigurability, shaded. As we have seen and shall
see, the different decoding algorithms share various common units, but the number of
units used and the connections of these units are highly variable and change upon any
change in the coding parameters. For instance, the path metrics computed from one
ACS unit might need to be routed back to any of a number of ACS units that need the
updated path metrics for their computation. With the change of constraint length or
coding rate or decoding type, the data routes are altered by the multiplexers, and the
operations being performed inside a unit are changed accordingly. Considering the
fact that we can decode constraint length 3 to 9 and rate 1/2 or 1/3 convolutional
codes, we have 14 different configurations that can be handled by this system. Adding
to this number is the Turbo decoder, bringing the total possible configurations to 15.
On top of this, our system can decode codes generated with any generator polyno-
mial possible. Though all the different possible generator polynomials are not used
in practice, the number of possible generator polynomials for K=9 and rate 1/2 alone

is a whopping 2 * 2° = 1024.
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4.1 Related Work

Reconfigurable/Flexible decoding architectures have been actively researched in the
last decade. While some work has been done on flexible Viterbi decoding architec-
tures, the idea of reconfiguration between Turbo and Viterbi decoding is nascent.
Most related works have been limited to certain specific standards or applications,
VITURBO has taken a step away from it, as the ultimate motivation for our sys-
tem is ubiquitous communications, where any code configuration may be supported,
depending upon the environment.

A unified Viterbi and Turbo decoder for 3GPP [8] has been proposed recently. In
this work, log-MAP algorithm is used for Turbo decoding, and the maximum data
rate for Turbo decoding is 2 Mbps. Also, the Viterbi decoder is mainly aimed at low
data rate(12 Kbps) voice channels. The ACS processing is done by 4 Viterbi/log-
MAP butterfly units, which is sufficient for 3G data rates, but can not support the
extremely high data rates demanded by systems like WLAN. Such a system might
be useful for a certain specific standard like 3G, but is hardly useful when multiple
standards/systems are in question.

Texas Instruments’ flexible Viterbi decoder [9], which operates within a pro-
grammable Digital Signal Processor (DSP) is another such system. Though a flexible
system with variable constraint lengths and code rates, the throughput is limited to
2.5 Mbps. The coprocessor is extremely dependent on the DSP, and can not work as
a standalone processor. Such a decoder is again limited to only certain applications,
and is dependent on the processor type being used with it.

Another interesting reconfigurable Viterbi decoding architecture was proposed by
Chadha et. al. [13]. This system uses single bit Hamming distance metrics which

is hardly usable in a practical scenario. Also, the decoder can only perform Viterbi
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decoding, hence limiting flexibility. Though aggressively designed with a fully parallel
ACS architecture, a major drawback is that even when the decoder is decoding a
constraint length 3 code, it is consuming as much power as required for constraint
length 9 decoding. It may be noted here that the number of ACS units required for
constraint length 9, fully parallel decoding is 64 times that required for constraint
length 3, fully parallel decoding.

A foldable state scheduling scheme for processing a wide range of constraint
lengths, with a fixed set of hardware was another flavor of reconfigurable/flexible
Viterbi decoding. According to the proposed work [19], configuration data needs
to loaded into the hardware every time there is a need to switch between different
configuration. This loading of configuration data is a slow process compared to the
‘click of a button’ reconfigurability offered by our system. Also, Turbo decoding is
not available with this decoder. However, the proposed architecture has a utilization

of 100% for almost all configurations, which means that area used has been minimal.

4.2 VITURBO : Salient Features

In this thesis, three important issues have been dealt with. First and foremost is the
issue of support for Viterbi as well as Turbo decoding. Using the SOVA algorithm for
Turbo decoding and Viterbi algorithm for Viterbi decoding was one strategy that paid
rich dividends . Even though SOVA is much more complicated than the simple Viterbi
algorithm, there are many similarities which have been exploited. For example, the
ACS operation is inherently similar, even though the branch metrics feeding the
ACS are computed differently, and the trellis structures are different. Similarities in
Traceback operations of the two decoding techniques have also been exploited.

Another important issue is the reconfiguration between different constraint lengths
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and rates, on top of the two different decoding techniques. A fully parallel architec-
ture (Figure 4.4), for the highest constraint length is employed in order to provide
the high data rates as made mandatory by the different standards (802.11a WLAN
systems support up to 54Mbps, 3G systems support up to 2 Mbps). The fully par-
allel architecture also provides flexibility for decoding not only constraint length 9
codes, but also constraint length 3 codes, where the latter uses parts of the former.
Multiplexers have been employed for routing the path metric, and the path metric
differences to and from the ACS units in order to provide this reconfigurability. Also,
the decision bits are passed through multiplexers, so as to reorder the data going to
the memory.

Limited power consumption is another feature of this reconfigurable architecture.
As mentioned earlier, a fully parallel architecture has been employed for this decoder.
However, not all the units are used for all the different decoding techniques, that are
possible with this architecture. For example, while the constraint length 9 decoder
uses all the ACS units in the decoder, constraint length 7 decoder uses a quarter of the
ACS units available. Also, various parts of circuit are not used for Viterbi decoding,
but are needed for Turbo decoding. Hence, schemes have been devised to power down
parts of the circuit that are not being used for the decoding type in progress.

The complete architecture has some very important computational units, which
play a significant role in the reconfiguration of the system. These are the Branch
Metric Unit, Add Compare Select Unit , Multiplexer Bank, and Survivor Management
Unit, as shown in Figure 4.4. As mentioned earlier, the architecture is completely
parallel, and hence for the case of constraint length 3-9, we have as many as 128
(2Kma==2) ACS units, each of which caters to a single butterfly structure, as shown in

Figure 4.5. A detailed explanation follows.
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4.3 Branch Metric Unit (BMU)

In order to provide enhanced flexibility, the Branch Metric Unit has been divided
into three different computational units: BMcompute unit, a C'odeword Look — Up

Table, and 25me==2 B Mmuzes, as shown in Figure 4.2

4.3.1 BMcompute

The 'BMcompute’ unit computes all the possible branch metrics for a given decoder
type with inputs being, the received data, the decoder type(Turbo/Viterbi), and the
code rate. It must be noted here that the number of possible branch metrics is
equal to 2", where n is the denominator in the code rate formula (k/n). Depending
on the decoder type, branch metrics for either Viterbi or Turbo decoding are com-
puted. Multipliers and adders form this unit, and the process has been pipelined,
with multiplication and addition/subtraction being processed in two different steps.
For Viterbi decoding , Euclidean distances are calculated(which are reduced to dot
products). The branch metrics for Turbo decoding are obtained as in equation 2.24.

These branch metrics are fed to the ACS units using BMmuzes, as described below.

4.3.2 BMmux and Codeword Look-Up Table

Each ACS unit needs a specific pair of branch metrics, which is obtained using a
multiplexer, named BMmux. This multiplexer plays a critical role in the reconfigu-
ration, as it has to select the pair of branch metrics depending upon the constraint
length, rate, coding type and the index of the ACS unit in question. The BMmux
uses the C'odeword Look — Up Table to implement this.

The Codeword Look — Up Table provides the codeword for each possible tran-

sition in the trellis for all the possible generator polynomials used in 802.11a and
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Figure 4.2 : Branch Metric Unit (BMU)

3G. Additional generator polynomials for constraint lengths 3-9 not mentioned in

the two standards above have also been provided. Herein lies a very critical idea for

reconfiguration of the system. A unique feature of this Codeword Look — Up Table

is that new codewords can be written to it, hence providing support for almost any

generator polynomial in the constraint length range of 3 to 9. This feature could be

used for enhanced security, though is not applicable to the scenario under review.

In order to better understand the workings of the BMU, we shall now delve deeper

into the workings of the Codeword Look —Up Table. An example C'odeword Look —
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Initial Final
State State

000 000
001 001
010 010 Index LUT Data
0 00
011 011 1 10
2 01
100 100 3 11
Codeword Look-Up Table
101 101
110 110
111 111

Figure 4.3 : 3G Turbo state transitions and the correponding codeword LUT

Up Table for 3G Turbo decoder (discussed earlier in Section 2.3.2). is shown in
Figure 4.3. The number of elements in the LUT is contingent upon the constraint
length and rate of coding. Equation 2.25 shows the computation of path metrics using
the previous path metrics and branch metrics. The last three terms in the Eqn. 2.25,
which form the branch metrics are dependent upon the values of v and x, which are in
turn dependent upon the constraint length and generator polynomial as shown in the
Figure 4.3. The encircled numbers are critical to each butterfly and the knowledge of
these allows us to compute the branch metrics for all the transitions in a particular

butterfly. The Codeword Look —Up Table is organized such that a certain BMmux
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can obtain the relevant data from it using its index, as shown in Figures 4.3 and

4.4 Add Compare Select Unit

Once the requisite path metrics and branch metrics have been obtained, the ACS
unit does the addition, comparision and selection of path metrics. The ACS unit
takes in as inputs, the concerned path metrics, the concerned branch metrics, and
outputs the survivor path metrics for Viterbi and Turbo decoding, and the decision
bits for Viterbi and Turbo decoding. For the case of Turbo decoding, the difference
between the path metrics as in Eqn. 2.27 is also outputed.

It is worth noting that for the case of traditional Viterbi decoding, the minimum of
two path metrics is the survivor path metric. However, for the case of SOV A based
Turbo decoding (Section 2.4.3), the maximum of the two competing path metrics
forms the survivor path metric. Simply enough, if a maximum of two numbers is
computed, the minimum is also available. The decision bit is evaluated according to
the index of the state from which the survivor path metric originated.

It may be noted here that since K=4 for constituent Turbo encoders, four (2%-2)
ACS Units, specifically with indices from 0 to 3 have been programmed to do the
ACS computations for both Viterbi and Turbo decoding, while the remaining ACS
units(4 -127) are only used for computing Path Metrics and decision bits for Viterbi

decoding, as shown in Figure 4.4.

4.4.1 Thresholder

The Thresholder is used to limit the ever accumulating path metrics that are increas-
ing over time. This unit gets the path metrics outputted from the ACS unit, and

compares all of them to a given threshold. Whenever, any path metric reaches a
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2

2j+1

j+2N(K-2)

Figure 4.5 : j Butterfly for constraint length K

threshold, this unit sends a control signal to the ACS unit to truncate all the path

metrics, hence providing protection against overflow.

4.5 Multiplexer Banks
4.5.1 Muxpathmetric

Figure 4.5 shows the butterfly structure for any given constraint length K code. Here,
j corresponds to the index of butterfly unit. The j* ACS unit operates on the jth
butterfly structure. As is evident from the figure, the survivor path metrics computed
from the j® ACS unit, are fed back to a range of ACS Units (as shown by the ter-
mination states of the Butterflies) depending upon the constraint length in question.
Interestingly, this problem is solved by using a bank of multiplexers, each multiplexer
getting inputs from the outputs of different ACS units, and feeding an input of a

particular ACS unit. It may be remembered that two path metrics are fed to ACS
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25=1 multiplexers, also referred to as Muxpathmetric. The

unit and hence, there are
multiplexers have inbuilt logic to route the path metrics according to their indices,
decoding type, and constraint length being decoded. While 2 input multiplexers are
sufficient for Viterbi decoding, 4 input multiplexers are used for Viterbi/Turbo decod-

ing. This is another unit that is critical to the reconfigurability of the architecture,

as it provides the flexibility to migrate from one constraint length to another.
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4.5.2 Memory Mux

These multiplexers are similar to the Multiplexers for path metrics as defined earlier,
but instead of feeding data to ACS units, they are used to reorder the decision bits

that are being written to the memory.

4.6 Survivor Management
4.6.1 Flexible Traceback Unit for Viturbo

A block based approach is used for both Viterbi and Turbo decoding. In the case
of Viterbi decoding, it is assumed that the trellis has been terminated at state zero,
and hence traceback starts from the zeroth state, once the whole data block has been
received. The flexible Traceback unit is another instance of the inherent flexibility in
the proposed architecture. A very simple approach is used for this purpose. Consider
the case of constraint length K code, where 25! is the maximum number of states
possible. Let us assume that the current state is C', the decision bit stored at this
state is decbit, the state achieved on tracing back is P, and the decoded bit on Viterbi
decoding is xv. Decision-LUT is a Look-Up table for various possible decisions for
Turbo Decoding (for the case of 3G Turbo encoder), and zt is the Turbo decoded bit.

Then

If 2% L > 25-! then
P=2xC + dechit - 251
zv=1

else
P =2xC + dechit

xv=0
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end if

xt = Decision-LUT(2 * C + decbhit)

4.6.2 Soft Decision Computation for Turbo Decoding

As mentioned earlier, traceback does not start until the whole block of data has
been received. In the case of Turbo decoding, once the data has been received,
the maximum path metric among all ending states is evaluated, and traceback starts
from the state with the maximum path metric, and the path followed is the maximum
likelihood path. This approach simplifies the memory management issues, at the cost
of increased number of traceback logic units. Once the traceback starts, one soft

decision per clock cycle is outputted.

4.6.3 Interleaving

A block based interleaver was implemented for Turbo decoding. Data is written in
a matrix format, and the transpose of the matrix is the outputted as the interleaved

data.

4.7 Architectural Power Control

Power consumption in an FPGA is given by the sum of the Quiescent power and
the power consumed by all the switching elements. The power consumed by each
switching element of the design is given by: P = C « V2« E x F

where
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P = Power Consumption in mW,

C= Capacitance in Farads,

V= Volts,

E= Switching activity(number of transitions per clock cycle), and

F'= Frequency in Hz.

In the above formula, the product F * F'is the most variable element and is under
the designer’s control up to a certain extent. In our design, most of the computations
are pipelined, and triggered by the rising edge of the clock. When the clock input
to a certain unit is reduced to zero frequency, that particular unit is effectively shut

down. Also, if a signal is not allowed to toggle, it is effectively consuming no power.

Index ( ) | .
- acsON (j) Power Controlled Clock
5(K-2) >
clock Y
H
> .
. (@)
' . S
inputs: ACS(j) 2
' i’z
K: Congtraint length > >
j: Index of the  ACS unit

Figure 4.7 : Power control architecture for j* ACS unit

As discussed earlier, we have a fully parallel architecture for constraint length 9.
For the case of constraint length 7, not all the units of the circuit are being utilized.

For example only 1/4 of the ACS units are being actively used for constraint length
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7 computation. In the proposed architecture, a power control mechanism has been
devised in order to limit power consumption to only those units that are in operation.
The ACS units’ power control mechanism is shown in the Figure 4.7. The mechanism

works as follows:

IF j < 2K-2 then

acsON(j) =1
else
acsON(j) =1
end IF

The acsON(j) signal ANDs with the global clock, and as it is obvious, if the
acsON(j) is equal to 0, the ACS is turned off. Similarly, the BMmuxes also are power
controlled, and hence the input to a certain ACS unit that is not in use is not allowed
to toggle. Thus, neither the inputs, nor the outputs of the unit can toggle, and
hence cant consume power. Similarly, several other units, for example the Survivor

management unit for Turbo decoding, are powered down when not in use.
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Chapter 5

Implementation and Results

Field Programmable Gate Arrays(FPGA) provide a very comprehensive and flexible
prototyping environment for hardware design. For this reason, VITURBO was imple-
mented on a Xilinx Virtex-IT 2000K gate FPGA. Very High Speed Integrated Circuits

Hardware Description Language (VHDL) was used to describe the architecture.

5.1 FPGA Architecture

A typical FPGA consists of three major components: Configurable Logic, Programmable
Interconnect, and Input/Output Blocks (IOBs). In the case of Xilinx Virtex II FP-
G As, the internal Configurable logic includes four major elements: Configurable Logic
Blocks, Block SelectRAM, Multiplier blocks, and Digital Clock Manager. The Con-
figurable Logic Blocks provide functional elements for combinatorial and synchronous
logic, including storage elements. Block SelectRAM memory modules provide large
18 Kbit dual-port Random Access Memories. 18x18 bit dedicated multipliers form
the multiplier blocks. A self calibrating, fully digital solution for clock distribution
delay compensation, clock multiplication and division is integrated in the Digital
Clock Managers. Programmable Routing resources interconnect all these elements.
Every programmable element is tied to a switch matrix, which allows multiple con-
nections to the general routing matrix, where the General Routing Matrix is an array

of routing switches. All the programmable elements including the Programmable In-



52

terconnect, are controlled by values stored in Static Memory cells. These values are
loaded into the memory cells during configuration and can be reloaded to change the
configuration of programmable elements as many times as required.

The XC2V2000 FPGA has an array of 56X48 CLBs, (where each CLB is made
up of 4 slices) 56 eighteen bit multiplier blocks, and 56 X 18000 bits of SelectRAM
memory. Up to 624 I/O pads are possible for XC2V2000 FPGA, which on the whole

is made up of 2 million system gates.

5.2 Development Environment

Xilinx’s Integrated Software Environment (ISE) was chosen for the design and imple-
mentation of the proposed architecture. The first step in the design was the use of
VHDL for the description of the architecture. Synopsis’ Synplicity was used to com-
pile and synthesize the design. RTL level schematics were analyzed after compilation,
using the graphical interface provided by Synplicity. Behavioral level simulations were
then performed using Modelsim, provided by Mentor Graphics. Upon completion, the
design goes through the different steps of implementation which include Translation,
Map, Place and Route, and finally generation of Programming file, which can be
downloaded to the FPGA. Power simulations and analysis were done using Xilinx’s
Xpower tool, which uses the Value Change Dump (*.ved) files generated by ModelSim

simulator during the Post-Place& Route VHDL model simulation.

5.3 VITURBO Implementation Issues

The implemented architecture can decode constraint length 3-9 convolutional codes,
and also constraint length 4 Turbo codes. VHDL was used to describe the archi-

tecture, and it was implemented on Xilinx Virtex-2 FPGAs. It must be noted here
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that the gate count and maximum clocking frequency of a circuit implemented on
an FPGA, are inferior, when compared to an Application Specific Integrated Circuit
(ASIC) implementation, and hence care must be taken to evaluate the given data, in

comparison with ASICs.

5.3.1 Area-Time Analysis

Table 5.1 shows the various area- time- decoder type tradeoffs involved in the proposed
reconfigurable design. The gate counts for Logic and Memory have been separated
in order to give an in-depth analysis of the architecture. Each of the architectures
listed in the table was implemented independently on an FPGA. As expected, the last
architecture with the maximum decoding capability is the largest in area. One thing
to note is that the area does not increase as an exponential function of the constraint
length. The reason is that even though the number of ACS units(and hence the area
associated with them) increases exponentially (as a power of two) with the constraint
length, the area required by other units like BMU, SMU and Control Unit are not
dramatically affected by the constraint length. Also, the number of Input/Output
pads used by the architecture does not change.

The maximum operating frequency (Figure 5.1) of the circuit decreases with in-
creasing constraint lengths for Viterbi decoding. The ACS computations and routing
of path metrics form the critical path and as the constraint length increases, the path
metrics have to be routed across more complicated and longer paths. For constraint
length 3, data transfer takes place between only 2 ACS units. However for constraint
length 9, internal data transfer takes place between 128 ACS units.

Another interesting observation that can be made from Table 5.1 is that the

maximum operating frequencies for standalone constraint length 9 Viterbi decoder
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and constraint length 4 Turbo decoder are higher, compared to the reconfigurable
VITURBO decoder comprising of constraint length 3-9 Viterbi and constraint length
4 Turbo decoder. This difference in the maximum operating frequency is mainly
due to the addition multiplexer banks to the critical path of ACS for VITURBO.

These multiplexers make the reconfiguration possible, at the cost of increased design

complexity.
. Gates(Memor Max.
Decoder Type Gates(Logic) 128 lgit framey) Frequency
Viterbi (7) 62,987 65536 71.3 MHz
Viterbi (9) 166,348 262,146 68.4MHz
Turbo 37,812 65536 67.7 MHz
Viterbi (3-5) 33,487 16,384 64.6 MHz
Viterbi (3-5)+ Turbo(4) 42,385 81,812 63.3 MHz
Viterbi (3-7) 67,042 65,536 62.8 MHz
Viterbi (3-7)+ Turbo(4) 76,037 131,072 62.1 MHz
Viterbi (3-9) 181,560 262,146 61.9 MHz
VITURBGO: Viterbi (3-9)+Turbo(4) 190,288 327,680 60.5 MHz

Table 5.1 : Architectural Tradeoffs (Area/ Frequency)

As seen in Table 5.1, the logic area requirement for a reconfigurable VITURBO
decoder (constraint length 3 -9 Viterbi decoding and Turbo decoding) is nearly 23,940
gates (14% gates) more than a standalone constraint length 9 Viterbi decoder. Com-
paring a reconfigurable constraint length 3-9 Viterbi decoder with a reconfigurable
decoder with constraint length 3-9 Viterbi decoding and constraint length 4 Turbo
decoding capabilities, we see that the area overhead of the latter from the former is

only 8,728 gates (5% gates). This demonstrates how the common aspects of the the
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various decoders have been exploited to design the proposed reconfigurable architec-
ture.

The memory area requirements, as seen in the Table 5.1 are directly proportional
to frame length being used, which in our case is 128. Also, the requirements increase
exponentially with the constraint length (as a power of two). This trend is visible
from the memory requirements for different Viterbi decoder realizations. However,
for a given constraint length, Turbo decoding memory requirements are larger than

Viterbi decoding, because of the soft decision computation requirements.

Viterbi(7)  Viterbi(9)  Turbo(4) Viterbi(3-7) Viterbi(3- Viterbi(3-9) Viterbi(3-
7)+ Turbo 9)+Turbo

Table 5.2 : Maximum clocking frequencies for different decoder realizations

5.3.2 Throughput Analysis

With the architecture described above, the throughput of Viterbi decoding is limited
by the fact that we have used a block based approach. However, a way past this

bottleneck is a pipelined decoding architecture as shown in Figure 7. In this case,
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two memory banks are used for Survivor memory and two memory banks are used
for Order Inversion memory. It may be recalled that output is initially produced in
the inverted order when using the block based approach, and hence Order Inversion
memory is required to buffer the output data, and output in correct order. The two
additional memory banks increase the throughput of the circuit, as data is written
in alternate memory , on every new input block. Throughput up to 1bit/clock cycle
is obtained, with an initial latency of 2 x N + 3 clock cycles, where N is the block
length.

However, in the case of Turbo decoding, 4 iterations are usually performed for
reliable performance. In the given architecture, only one SOVA decoder has been
implemented, and hence the throughput is limited by the fact that the decoder will
be used for up to 8 times in order to do 4 complete iterations of Turbo decoding, as
each iteration involves the usage of the decoder twice. For each iteration, the given
SOVA based decoder has a latency of 2 x N + 8 clock cycles, where N is the block
size. Hence, a hefty 8 x (2% N 4 8) cycles are required for complete Turbo decoding.
For a frame of length 100 or greater, this data rate is nearly 3.5 Mbps (Table 5.3),

well above the current 3G standards.

5.3.3 Power Consumption Analysis

Table 5.3 shows the power consumption of the different configurations of the VI-
TURBO architecture. It is clear from the data that while reconfigurable architectures
provide enhanced flexibility, the power consumption of the circuit is not compromised.
Different configurations of the circuit are capable of powering down units which are
not used for those configurations. We have introduced a new metric for power con-

sumption, Joules/bit which gives the power consumed for each bit processed. This



Decoder Clock Data ConFs‘?Jvr\rlegtion Energy/Bit Quiescent

Type Frequency Rate | (sans Quiescent | (Joules/bit) Power
Power)

Viterbi (K=5) 54 MHz 54 Mbps 138.06 mw 2.55 nJ 225 mW
Viterbi (K=5) 2 MHz 2 Mbps 5.11 mw 2.55nd 225 mW
Viterbi (K=7) 54 MHz 54 Mbps 501.3 mw 9.27 nJ 225 mW
Viterbi (K=7) 2 MHz 2 Mbps 18.5 mw 9.27 nJ 225 mW
Viterbi (K=9) 54 MHz 54 Mbps 142 w 26.96 nJ 225 mwW
Viterbi (K=9) 2 MHz 2 Mbps 59.54 mw 26.96 nJ 225 mW
Turbo(K=4) 54 MHz 3.15 Mbps 165.02 mw 52.38 225 mW
Turbo(K=4) 34.3 MHz 2 Mbps 104.76 mw 52.38 225 mW

Table 5.3 : Power Consumption for different configurations of VITURBO

S7

enables us to get a more accurate look at the relative computational complexity of
each decoding algorithm. Turbo decoding is computationally very intensive, as is

obvious from the table.
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Chapter 6

Conclusions

Reconfigurable architectures have the potential to provide the speed and versatility
required to realize receiver structures for future ubiquitous wireless networks. Versa-
tility is a key word in the design of such receivers, as different wireless communication
standards would require completely different receivers, if reconfiguration was not pos-
sible. This work demonstrates the idea of reconfigurable architectures with reference
to channel decoding algorithms in various wireless communication standards.

The proposed reconfigurable architecture has the flexibility to decode a very wide
range of convolutionally coded data, with the capability to reconfigure at run-time.
Viterbi decoding and SOVA based Turbo decoding can be realized with this archi-
tecture, which has been aptly named ’Viturbo’. Constraint length 3-9, rate 1/2 -1/3
convolutionally coded data and constraint length 4, rate 1/3 Turbo coded data can
be decoded with this architecture. The generator polynomials used are the ones that
maximize the free distance in each case. However, this architecture provides a unique
feature for decoding data coded using any other generator polynomials, via the use
of a programmable Codeword Look Up Table.

We have employed a completely parallel approach which has led to a high speed ar-
chitecture that can provide throughputs in the range of 60 Mbps for constraint length
3-9 Viterbi decoding and 3.5 Mbps for SOVA based Turbo decoding (4 iterations). It
has been demonstrated in this architecture that with a 5% overhead in area (exclud-

ing memory), a constraint length 3-9 Viterbi decoder can support Turbo decoding.
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Thus, even while providing extreme flexibility, this architecture does not compromise
on the area consumption. The system has various architectural power control units
that contribute to huge power savings by shutting down parts of the circuit that
may not be useful for a certain decoding type in progress. Overall, this architecture
provides a completely flexible decoding architecture with very high throughputs and

hence can be used in most contemporary wireless communication systems.
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Chapter 7

Future Work

Viturbo has immense applications in the field of ubiquitous wireless networks, which
are yet to take shape. An improvement over this system would be the use of log-
MAP decoding algorithm for Turbo decoding, which has been shown to be superior
to SOVA decoding algorithm. In order to lower the power consumption, termina-
tion algorithms for Turbo decoding can be used. The proposed architecture with its
immense parallelism has the potential to support higher data rate Turbo decoding,
by providing more Survivor Management units. Only 4 out of 128 ACS units have
been employed for Turbo decoding, but potentially all of them could be used. This
would mean an immensely parallel architecture, with throughputs up to one output
per clock cycle (nearly 60 Mbps with current technology) Such a decoder could find
use in some recently proposed modifications of WLAN, which support data rates of
up to 54 Mbps using Turbo coding as the channel coding algorithm. Potentially, the
proposed architecture could also be modified to support both data and voice commu-
nications for 3G system simultaneously, by multiplexing the processing in time. Also,
an ASIC implementation of the proposed architecture would give us more specific
area, time, and power data for a given fabrication technology.

While this reconfigurable architecture has been proposed for channel decoding
algorithms, commonalities in other baseband algorithms need to be exploited in order

to design a complete reconfigurable architecture for wireless networks.
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