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Abstract
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this scheme, we derive optimal single- and multi-neuron rate codes for homogeneous populations
using several statistical models frequently used to describe neural data. We show that each neuron’s
discharge rate should increase quadratically with the stimulus and that statistically independent
neural outputs provides optimal coding. Only cooperative populations can achieve this condition in
an informationally effective way.
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1 Introduction

Recordings from populations have, in some cases, shown statistical dependence among the constituent

neuron’s responses (Dan et al., 1998; deCharms and Merzenich, 1996; Gerstein et al., 1989; Perkel

and Bullock, 1968; Nirenberg et al., 2001) and little or no dependence in others (Gawne and Rich-

mond, 1993; Johnson and Kiang, 1976; Reich et al., 2001; Zohary et al., 1994). Because a population

code presumes that neurons jointly represent information (figure 1), statistical dependence would be

expected. Statistical dependence among individual responses is usually categorized into two classes.

Stimulus-induced dependence arises because each neuron receives the same input as the others (fig-

ure 1), while connection-induced correlation arises when neurons are interconnected somehow. Con-

sequently, studies that find little dependence are surprising. Using a variety of theoretical approaches,

many researchers have shown that the effectiveness of neural population coding can be enhanced by

statistical dependence among the individual responses (Abbott and Dayan, 1999; Jenison, 2000; John-

son, 2003; Panzeri et al., 1999; Pola et al., 2003; Seung and Sompolinsky, 1993; Shamir and Som-

polinsky, 2001; Sompolinksy et al., 2001; Wilke and Eurich, 2002; Wu et al., 2002), while some of

these (Abbott and Dayan, 1999; Panzeri et al., 1999; Sompolinksy et al., 2001) and others (Gawne

and Richmond, 1993; Zohary et al., 1994) have shown that dependence can hinder population coding.

These studies judged the efficacy of population coding using either Fisher information or mutual in-

formation, and assumed a specific parametric form for individual and population coding (Seung and

Sompolinsky, 1993; Shamir and Sompolinsky, 2001) or examined performance for a specific value of

the stimulus (Johnson, 2003; Abbott and Dayan, 1999). One recent study explicitly decomposed the

mutual information between stimulus and population response into independent and stimulus-induced

and connection-induced dependence terms (Pola et al., 2003).

This report takes a different approach: regardless of how dependence might arise, what is the op-

timal population code? Here, we develop an approach to deriving the optimal code for populations

faced with effectively representing a stimulus attribute over its entire range. A single stimulus attribute,

denoted here by �, is to be encoded by neural discharge patterns as the attribute varies over the nor-

malized range of ��� ��. We ask, in the case of single neurons, how should discharge rate vary with

the stimulus attribute and, in the case of a population, how should individual discharge rates and sta-

tistical dependence vary to achieve the most effective neural code. In both cases, we seek the coding

function the way discharge rate or dependence vary with the stimulus that maximizes the ability of

the optimal processing system to extract the value of the stimulus attribute throughout its range. We

could not solve this problem without focusing on a particular coding mechanism the rate code and

on specific statistical models that describe small (three or fewer neurons) populations.
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2 Methods

The notation we use here is the same as in Johnson (2003). We use the symbols � and � to denote

a neuron’s input and output, respectively (figure 1). The population output is designated by � �

���� � � � � ���, where � denotes the number of neurons in the population. How stimuli are encoded

in the population’s output is expressed by the joint probability function �������, with � denoting the

stimulus attribute being coded.

������� �

�
���������������� �� (1)

The quantity ��������� describes how the population processes its input to produce its output. Ideally,

we would seek the optimal form this conditional probability function should take for a specific input

probability function. We found this problem too difficult. Our approach is to find the optimal form for

the output’s joint probability function ������� when we assume a specific model for the individual

neuron’s output probability function. For the various models considered here, we found a similarity of

results. Based on this similarity, we infer what form the optimal population code might be regardless of

model.

Optimal response criterion. We assume the stimulus attribute is a scalar, and that one population

code is better than another if it could lead to a smaller error in estimating the attribute from the popula-

tion response. Our optimization criterion is to minimize the mean-squared estimation error � ���������,
where �� denotes the estimate of �. To approach this problem, we use Fisher information. Fisher

information is important because of the Cramér-Rao bound, which states that the mean-squared er-

ror for any unbiased estimator of a parameter’s value cannot be smaller than the reciprocal of the

Fisher information evaluated at that value (Johnson et al., 2001): � ���� � ���� � �	
����, where


���� � ��
�
��

���
�	 �������

�
. � ��� denotes expected value with respect to the probability function

�������. By using the Cramér-Rao bound, we need not specify how the attribute is decoded from

the population response to determine how well the decoder could work. Information theoretic meth-

ods boil down to Fisher information when attribute values must be estimated (Sinanović and Johnson,

2003). Note that, in general, the Fisher information varies with the value of �, which means that the

best possible mean-squared error that any estimator can achieve depends on the stimulus attribute’s

value. By maximizing the Fisher information, we minimize the smallest value the mean-squared er-

ror can achieve for a given parameter value. As the amount of data increases, the Cramér-Rao bound

can be achieved with equality with a maximum-likelihood estimator (Cramér, 1946). Consequently, by

calculating the Fisher information, we can assess how well a stimulus attribute can be measured from

a population response. Even though reliance on mean-squared error is limiting, it is well-understood
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and gives us more analytic freedom. An important property of Fisher information exploited here is

additivity: when � consists of statistically independent components, the population’s Fisher infor-

mation equals the sum of the individual neuron’s Fisher information. Stated mathematically, when

������� � ��������� � ��������� � � ���� ��� ���, 
���� �
�

� 
�����.

We assume that the probability function governing the homogeneous population’s collective re-

sponse can be described by the parameter vector �. For example, consider a Bernoulli model for the

number of spikes occurring in a time bin. This model merely says that no more than one spike can occur

in a bin and that the probability of a spike in a bin is �, which equals the product of discharge rate and

binwidth.


��� spikes in a bin� �

�����
� � � �

�� � � � �

� � 
 �

(2)

This model is parameterized by the spike probability �; thus, � � ���. How a probability function’s

parameters vary with the stimulus define what we call coding functions ����: an analytic description of

how a one-dimensional stimulus attribute is encoded by a single neuron or by a population as a whole.

Using its definition and the chain rule, the Fisher information that results when all of the components

of � varying in concert with a single stimulus attribute � is given by the quadratic form


���� �
���

��
��
	
����

��
��

� (3)

where �
� denotes the transpose of �. The Fisher information �� is a matrix that depends solely on

the population’s statistical model and how this model depends on its parameters. �� does not depend

on the stimulus; rather, it depends only on the probabilistic model and how the parameters influence

the model. For example, in a two-neuron Bernoulli model, which will be detailed later, this matrix

varies with two parameters: spike discharge probability and inter-neuron correlation coefficient. The

quantity 
���� indicates how the population’s Fisher information varies with the stimulus attribute,

which means, in the context of the Bernoulli model, the result of how spike probability and inter-

neuron correlation vary together with the stimulus according to some coding function ����. From an

information coding viewpoint, it is 
���� that determines how well the stimulus attribute is coded. We

seek the “best” coding function by establishing a criterion for how the mean-squared error should vary

with the stimulus and solving this differential equation.

Many choices could be made for how the mean-squared error varies with the stimulus. The most

general specification is to demand the mean-squared error vary as ������, with ����� a specification

of how the optimal estimator’s mean-squared error should vary with the attribute’s value and with the

proportionality constant � chosen as small as possible for optimality. We equate ������ with the
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reciprocal of the Fisher information. The Fisher information transformation equation becomes

���

��
��
	
����

��
��

�
�

������
� with � as small as possible. (4)

The population size directly affects the Fisher information because it depends on the population’s joint

response statistics. We want to apply this criterion for a given population and investigate the optimal

coding strategy for it. By merging the square-root of the mean-squared error criterion with the derivative
��
�� , we obtain a much simpler way of finding the optimal coding function.��

�����
��

��


�
��
	
����

��

�����
��

��



�

�

�
� with � as small as possible.

For each value of �, the left side is a quadratic form we seek to maximize. The maximum value of

����� occurs when � is proportional to ����, the eigenvector of �� having the largest eigenvalue

����. This optimality criterion means that
�
����� ���� is proportional to the eigenvector ������� corre-

sponding to largest eigenvalue ������� for each value of �. The differential equation that would need

to be solved is
��

��
� �
�

�

�������������
������� (5)

Although complicated, this equation can be solved numerically. We solved this equation for the plus

and minus signs separately, and took the one yielding the smallest meaningful value of �.1

Perhaps the simplest choice for the mean-squared error criterion ����� derives from the assumptions

that the population strives to represent the attribute uniformly well over the attribute’s entire range. With

this choice, optimal decoders observing the population’s response would yield constant mean-squared

error for any attribute value. We thus seek the coding function that yields the largest possible con-

stant Fisher information: 
���� � �
� � 
 �

�
. Estimators achieving constant mean-squared error are

termed equivariance estimators and have the property that they minimize the maximal estimation er-

ror (Lehmann and Casella, 1998). Assuming that the stimulus attribute � is defined over the normalized

range ��� ��, the differential equation (5) becomes

��

��
� �
�


 �
�

�������
�������� � � � � �� 
 �

� as large as possible (6)

Solving this differential equation yields equivariance coding functions for each assumed value of 
 �
�

;

boundary conditions described below determine 
 �
�

.

The standard statistical model for a single neuron’s response is the point process (Johnson, 1996).

Because correlating point processes in general presents analytic difficulties, we focus on two simpler

1We found that if � is chosen too small, negative probabilities or probabilities greater than one resulted.
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models frequently used to describe neural data: Bernoulli and Poisson descriptions. Using these essen-

tially means we focus on rate codes. For each model, we use � to denote all of the parameters governing

the joint probability distribution that describes the population’s output. Because sequences of Bernoulli

random variables are statistically independent from bin to bin, this model does not take into account

temporal statistical correlations that may be present in the response. Because of this independence, the

Fisher information accumulated over a time interval is simply the sum of each bin’s contribution and

we only need to consider a single bin. We also derived results for the Poisson and deadtime-modified

Poisson counting models, the latter of which incorporates a simple description of refractory phenomena.

3 Results

Optimal single-neuron rate codes. We first derive the optimal coding function for the single-neuron

Bernoulli model (equation (2)). With the probability function’s parameter vector consisting only of the

discharge probability �, the differential equation (6) becomes

��

��
�
�

 �
� ���� ��

because in a one-dimensional problem the largest eigenvalue corresponds to the Fisher information

of the neuron’s statistical model, which in this case equals �	��� � ��. This differential equation’s

solution describes how the discharge probability should vary with the stimulus attribute so that the

smallest possible constant estimation error would result. In other words, the solution is the optimal

way (according to the equivariance criterion) to encode the stimulus in a single neuron’s discharge

probability. With the initial condition that ���� � �, this equation has the closed form solution

���� �
�

�

�
�� 
��

�

 �
� �



�

Solving for 
 �
� , we find that this quantity depends on the discharge probability at the largest value of

the stimulus attribute: 
 �
� �
�

����
	
�� �����


��. The specification of the discharge probability at the

extreme values of the stimulus attribute comprise the boundary conditions mentioned after equation (6).

Requiring that ���� � �
� , for example, results in a Fisher information value of 
 �

� � ��	��� � ����,

which is equivalent to a root-mean-squared error bound of ����/bin. Figure 2 compares the Fisher

information for this equivariance coding with several suboptimal (i.e., non-constant Fisher information)

choices. By considering the mean-squared error of these alternative rate coding schemes, we found that

the equivariance criterion yields a well-behaved variation of the error with the stimulus.

For the Poisson case, wherein the discharge rate � is constant and the number of spikes occurring

in an interval of duration � has a Poisson probability function, the Fisher information is 
� ��� � �	�.

The optimal coding function found by solving (6) is

���� �
���

���� �
�
����

�
��
�
����

��
�
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where ����, ���� are the maximum and minimum rates, respectively, achieved as � varies. This

coding function differs mathematically from the Bernoulli coding function found previously, but

both have similar forms (see figure 3). The Fisher information for the optimal coding function is


 �
� � ��

		
���� �

	
����

�

.

We were also able to find the optimal coding function when an absolute refractory interval � was

included in the Poisson model with rate being the only parameter optimized. The Fisher information is


� ��� �
�

	��		
� , and solving (6) for the optimal coding function yields

���� �

�
����� �

����
�

��	�

��

 �
� �

�
�

�
�

�
���� �

�

��




���

��

 �
��

�
�

�
� �

��


 �
� �

�

�

���	
�������

�
�
 �
�
������

	���




�����
�
�
 �
�
������

	���




�����

Despite its complexity, this coding function differed little from that found in the Poisson case when

����� 
 �. The expression for the equivariance Fisher information is also complicated, but in the

small refractory-interval case, 
 �
� � ��

		
�����

	
����


� �
�� 


�

	
�����

	
�������� � ����


�
.

Thus, refractoriness reduces the Fisher information.

Optimal population rate codes. We elaborated these statistical models to describe small populations

by correlating the occurrence of events in each model neuron. In addition to finding the optimal value

of Fisher information according to the equivariance principle, we need compare that value with that of

an independent neural population, which equals the sum of Fisher information values contributed by

each neuron. For example, this baseline value for two independent neurons described by the Bernoulli

model described above will be �� ���� � ����.

Bernoulli models for the two-neuron population are specified by the correlation coefficient � and

the spike probabilities for each neuron.2


���� � ��� �� � ��� �

�����������
�
�
����� �������� ��� � ���� �� � �� �� � �

�� � 
���� � �� �� � �� �� � �� �� � �

�� � 
���� � �� �� � �� �� � �� �� � �

�� �� � �� � 
���� � �� �� � �� �� � �� �� � �

(7)

We assume that the spike probabilities and the correlation coefficient �, defined in the usual way to

be �� ������ � � ����� �����	������ , could vary with stimulus attribute. An independent population

occurs when � � � (which corresponds to the baseline situation). A noncooperative population, such

2Note that some combinations of correlation coefficient � and spike probabilities ��, �� are not permitted as they would

yield negative probabilities for the population’s probability function.
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as shown in figure 1 and expresses stimulus-induced dependence, can only yield positive values for

� (Johnson, 2003). Negative and positive values of � can arise from a cooperative population, which

expresses both stimulus- and connection-induced dependence. Consequently, we can only generally

determine population structure from the correlation coefficient. If � is negative, the structure must

be cooperative; if � is zero, the optimal structure could be the independent structure or a cooperative

one; and if positive, the structure could be cooperative or noncooperative. To make the population

homogeneous, we set the spike probabilities equal: �� � �� � �. Thus, the two-neuron Bernoulli

model is parameterized as � � ��� ��. For three-neuron populations, � � ��� �� ���, with �� being

a correlation-like quantity related to the joint probability of all neurons responding during a bin. No

analytic results for the population models could be derived; we relied on numerical solution of the

differential equation (6).

Before considering the general case wherein both spike probability and correlation parameters

vary with the stimulus, we can examine the special case of pure correlation coding (deCharms and

Merzenich, 1996) for a two-neuron population, in which the population encodes � by varying the cor-

relation � between neurons while keeping spike probability � fixed. Allowing the correlation to range

between 0 and 1 in solving (6) yields a Fisher information of ���� with � � ��� and ��� with � � ���.

Thus, the Fisher information resulting from pure correlation coding depends on the sustained discharge

probability. Negative correlation coding generally yields smaller Fisher information: ���� for � � ���

and ��� for � � ���. Thus, correlation coding is maximally efficient when high spike probabilities

occur, and negative and positive correlations are equally effective at this extreme. Even so, correlation

coding yields a Fisher information roughly a factor of two smaller than the baseline value of ����.

Figure 3 shows optimal coding functions for the general case when both spike discharge proba-

bility and inter-neuron correlation vary with the stimulus for both two- and three-neuron populations

described by a Bernoulli model. The most striking aspect of these results is that optimal population

encoding required very small correlation values. The greatest value of � achieved was ����� in the two-

neuron case and zero in the three-neuron case. Furthermore, positive correlation resulted in a larger

Fisher information (����) than negative correlation (����) for the two-neuron case. Only positive cor-

relation coding resulted in a Fisher information greater than the baseline, but the Fisher information

increase is small (���� or ����). Thus, statistically independent population outputs are essentially op-

timal. For the three-neuron model, optimal choices for � and �� were identically zero. Based on these

two- and three-neuron Bernoulli models, we infer that independent populations are optimal according

to the equivariance criterion. Furthermore, pure correlation coding is inferior, at least in the context of

Bernoulli models.

In the Poisson model for correlated activity between two neurons, the output spike count �� over
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some time interval � equals �� � �, where �� is the Poisson-distributed spike count in the �th neuron

and � is a common spike count that each neuron produces (Holgate, 1964). These spike counts are

statistically independent of each other and of �. All counts �� are Poisson random variables having

the same rate parameter � and the common count � is also Poisson with rate ��. The common count

� among all neurons means the outputs are statistically dependent with positive correlation unless

the common-count rate �� equals zero. For the two-neuron case, solving equation (6) resulted in a

decreasing rate for the common count component (figure 3). Larger values of the Fisher information


 �
�

were found here (61.8 compared to the baseline value of 48.2). However, if the common rate

was constrained to be zero at � � �, which corresponds to a nominally independent population, the

common-count rate was zero over the entire range. Again, the independent population is found to be

optimal.

Population structures exhibiting optimal rate coding. These results create a quandary. From the

viewpoint of a population endeavoring to code a continuous stimulus attribute as well as possible, the

most effective rate coding scheme, as quantified by the smallest Fisher information, occurs when the

population outputs are statistically independent. A population having a common input should result in

stimulus-induced correlation, which is always positive (Johnson, 2003). An independent population,

wherein each neuron in the population receives input statistically independent of the others, results in

statistically independent outputs but provides no information gain beyond that of a single neuron (John-

son, 2003).

One possible role for cooperation among neurons is to create connection-induced correlation that

decorrelates the stimulus-induced correlation produced by a noncooperative structure. We envision the

structure shown in figure 4, where a lateral connection network interacts the outputs of a noncoop-

erative population to produce a cooperative one. If this kind of cooperation has the right properties,

it will be lossless from an information processing viewpoint, and the output would have theoretically

ideal properties: statistically independent outputs (thereby producing optimal coding properties from

an equivariance viewpoint) while exhibiting the information processing properties of a noncoopera-

tive population. We showed in our companion paper (Johnson, 2003) that noncooperative populations

always yield maximal processing fidelity as the population size increases.

Complicating the creation of the decorrelation transformation is that it would need to apply over the

range of possible joint probability functions ������� produced by the cooperative population without

depending on�. An adaptive cooperative structure could be envisioned wherein the network changes the

way the population’s outputs interact as stimulus conditions vary. In this paper, we take the analytically

simpler tact of exploring a fixed structure that would make the noncooperative outputs as uncorrelated as

9



Johnson & Ray Optimal Stimulus Coding

possible and would exploit population size to create a transformation that would not depend on discharge

rates or inter-neuron correlation. We constructed an interconnection network function � � 
 ��� that

has the following properties.

� The transformation is invertible.

Mathematically, � � 
����� must be defined for all possible inputs � and outputs � of the

interconnection network. Invertibility requires that the number of outputs be no smaller than

the population’s size. The reason for this condition is that invertible transformations are, from an

information processing viewpoint, lossless (Sinanović and Johnson, 2003). Hence the cooperative

population’s information transfer ratio equals that of the noncooperative population and would

thus have all of its asymptotic properties.

� The transformation decorrelates the population’s output regardless of �.

A transformation that yields statistically independent outputs would depend greatly on the joint

probability function �������. However, by decorrelating, which makes the pairwise correlation

coefficients zero, we can find a interconnection network without needing to know the details of

the output probability function. In addition, we need the transformation to not depend on the

stimulus-induced correlation that the noncooperative structure yields.

As shown in the appendix, if the population outputs are scalar quantities (spike counts, for example), a

transformation having these properties has the form

�� � �� �
���� ��

� � �

��


��� (8)

Here, � is the average of the population outputs: � � �
�

��
�
� ��. In words, each output �� equals

an input �� minus a constant times the average value of all inputs. Note that as the population size

grows, the weighting constant tends to be independent of � and �. The threshold population size

needed to achieve this insensitivity is � � �����	�. Curiously, insensitivity is easier to achieve when

the correlation among population outputs is strong (when � � �); weaker correlation demands larger

populations. In this way, uncorrelated population outputs can be obtained so that optimal encoding can

be achieved while maintaining the information transfer properties of a noncooperative population.

4 Conclusions

Our theory for finding the optimal coding strategy can be generalized to other statistical models, includ-

ing ones other than rate codes, and to mean-squared error criteria other than the equivariance principle.

To use this approach, the statistical model and the mean-squared error criterion would need to be de-
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fined, model parameterized, the Fisher information with respect to that parameter set computed, and

equation (5) solved.

Our choice of constant mean-squared error for the performance criterion was not without considera-

tion. Figure 2 shows the optimal mean-square error profiles that various rate functions would yield. For

example, a linear increase in discharge rate will result in an error in determining the stimulus attribute

that increases as the attribute’s value increases. While choosing the equivariance principle is arbitrary,

it seems reasonable. We do not know how robust our results are to other choices for the variation of

mean-squared error with the stimulus.

We found that the discharge rate should increase as the square of the stimulus attribute and that the

population outputs should be statistically independent. The attribute � is intentionally abstract, does

not refer to any specific stimulus parameter, such as amplitude. Note that � need not be proportional

to stimulus parameters. Instead, � could be proportional to that stimulus aspect the sensory system

is trying to code efficiently. For example, � could be related to the logarithm of stimulus amplitude.

Unfortunately, because these results are tied to specific statistical models, our optimal coding results

may not be a general principle, even for all rate codes. That said, the parabolic behavior we found

mimics what was found from other coding viewpoints (Miller and Troyer, 2002; Stein, 1967). Although

our derivations were limited to three models Bernoulli, Poisson, and Poisson with deadtime and to

small populations, this parabolic input-output behavior seems to be an efficient way to encode a scalar

stimulus feature in a neuron’s discharge rate from an equivariance viewpoint (constant mean-squared

error regardless of the stimulus attribute’s value). The similarity of the results for the various models

is striking, and leads to the speculation that the square-law/independent-output population behavior

applies generally for individual and population rate codes.

Our conclusion that independent coding is optimal would seem to mean that no collective popula-

tion coding should occur because stimulus-induced dependence is not present. We have showed that

regardless of the neural code employed, noncooperative populations can represent the stimulus increas-

ingly well as the population size increases, with no information loss occurring asymptotically (Johnson,

2003). Connection-induced dependence resulting from cooperation among the neurons can enhance, di-

minish, or leave unchanged the efficacy of the population’s code relative to the baseline performance of

the noncooperative population. We have shown here that cooperation, which causes connection-induced

dependence, can cancel stimulus-induced correlation to yield a population output having optimal cod-

ing properties from the equivariance viewpoint. One consequence of this structure is that inferring

population structure from population response statistics can’t be done uniquely: an uncorrelated output

results from both the structure shown in figure 4 and the independent population. Also, the cooperative

decorrelation structure is relatively insensitive to neuron loss. Two factors make it less robust than the
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noncooperative structure. First of all, achieving perfect decorrelation without knowing the stimulus-

induced correlation requires a sufficiently large population. Losing neurons would eventually comprise

the large-population assumption. Secondly, the average of responses also depends on the population

size; a robust average would need to be obtained.

Many researchers have recorded population responses, looking for population codes that collec-

tively express the stimulus better than the individual neurons do. Several have concluded that depen-

dence can enhance coding efficacy (Abbott and Dayan, 1999; deCharms and Merzenich, 1996; Jenison,

2000; Wu et al., 2002) while others have concluded it impairs population coding (Gawne and Richmond,

1993). This study finds that independent rate codes are optimal for a population that must represent a

stimulus parameter well over its entire range. In the companion paper (Johnson, 2003), we found using

the Bernoulli model that if a binary-valued stimulus attribute is to be encoded (for example, coding

whether the light is on or off), correlated population responses provide optimal coding. Thus, the find-

ings that dependence can be detrimental or beneficial are both correct: no single population coding

strategy exists that applies universally. Optimal population coding strategies depend at least on what is

to be encoded.
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Figure Captions

Figure 1. Each neuron in a noncooperative population has the same input as the others. Otherwise,

the individual neurons do not interact. Here, � represents this common input and �� the �th neuron’s

output. The joint probability distribution of a homogeneous noncooperative population is given by

��������� �
�

� �� ��������, with� denoting the collective output.

Figure 2. The left panel shows coding functions and the right shows the corresponding reciprocal-

square root of the resulting Fisher information, which equals the smallest attainable root-mean-squared

error. The dotted line in each panel corresponds to the equivariance single-neuron coding function.

Arbitrarily, ���� was set equal to �
� .

Figure 3. We computed the optimal encoding (constant Fisher information) of the stimulus attribute �

by analytically manageable two- and three-neuron populations. In each panel, the solid line indicates

how the rate-related parameter should vary with the stimulus attribute to achieve equivariance. These

quantities were indistinguishable from their noncooperative counterparts for which we have analytic

formulas. The left panel shows the coding functions for spike probability � (solid line) and interneuron

correlation � (dashed line) for a two-neuron Bernoulli model. The middle panel shows these quantities

and ��, a third-order correlation quantity, for the three-neuron Bernoulli model. The right panel illus-

trates the optimal coding functions for the Poisson counting model, with the total rate corresponding to

the solid line and the common rate to the dashed line.

Figure 4. One possible theoretical structure of a cooperative population is a noncooperative population

followed by a lateral connection network that produces as close to a statistically independent output

as possible. If this network is informationally lossless and does not depend on the details of the joint

probability function �����, this structure would have ideal properties: it would have the information

processing properties of the noncooperative structure and Fisher information would be maximized from

an equivariance coding perspective.
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Appendix

When the neural outputs of a noncooperative population are random variables, the covariance matrix �

of the population output must have the form

� � ����� ���� ������ �

where �� is the variance of each output ��, � is the correlation coefficient between any pair of outputs,

� is the identity matrix, and � � col��� �� � � � � �� is a vector of ones. We specialize the decorrelating

transformation we seek to be multiplication by a matrix: � � 
 ��� � ��. The matrix � that

decorrelates the random vector � is not unique. So long as the correlation coefficient is strictly less

than one, a matrix that will decorrelate and produce an output of identically distributed random variables

is �����, the square root of the inverse of the covariance matrix. Thus, the covariance matrix of

� � ������ equals the identity matrix. This decorrelating matrix has the following form.

����� �
��

����� ��

����
���� ��

� � �

��


�� ���
�

��
Consequently, each component �� is calculated according to

�� �
��

����� ��

���� �
���� ��

� � �

��


�� �

�

� 
�
�

��

��
Furthermore, the decorrelating matrix is always invertible, which means from an information processing

viewpoint that it is lossless.

18


