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Abstract

The Hurty/Craig-Bampton method in structural dynamics represents the interior dynamics of each subcomponent in
a substructured system with a truncated set of normal modes and retains all of the physical degrees of freedom at the
substructure interfaces. This makes the assembly of substructures into a reduced-order system model relatively simple,
but means that the reduced-order assembly will have as many interface degrees of freedom as the full model. When
the full-model mesh is highly refined, and/or when the system is divided into many subcomponents, this can lead to
an unacceptably large system of equations of motion. To overcome this, interface reduction methods aim to reduce
the size of the Hurty/Craig-Bampton model by reducing the number of interface degrees of freedom. This research
presents a survey of interface reduction methods for Hurty/Craig-Bampton models, and proposes improvements and
generalizations to some of the methods. Some of these interface reductions operate on the assembled system-level
matrices while others perform reduction locally by considering the uncoupled substructures. The advantages and
disadvantages of these methods are highlighted and assessed through comparisons of results obtained from a variety
of representative linear FE models.

Keywords: Component Mode Synthesis, Substructuring, Hurty/Craig-Bampton Method, Interface Reduction,
Characteristic Constraint Modes

1. Introduction

Large and complex structures often consist of multiple components and therefore can be decomposed into an
assembly of relatively simple subsystems. Component mode synthesis (CMS), also referred to as dynamic substruc-
turing, is widely used to assemble the reduced models of substructures and form a global system. Comprehensive
reviews of CMS methods are found in [6, 7, 16]. Substructuring techniques were applied to multi-component systems
as early as the 1960s by Hurty [13]. He also proposed the first CMS technique based on fixed-interface modes, rigid
body modes, and constraint modes (CMs) [14]. Hurty’s approach was simplified later by Craig and Bampton who
realized that the rigid body modes need not be considered separately if all interface degrees of freedom (DOF) are
included in the CMs [4]. To this day, the Hurty/Craig-Bampton (HCB) approach is one of the most popular CMS
techniques in industry and academia. The HCB transformation matrix uses a truncated set of fixed-interface modes
and a set of constraint modes to reduce the partitioned system of equations. Each constraint mode shape is the static
deformation of the structure obtained by applying a unit displacement to one interface DOF while all the other in-
terface DOF are held fixed. The fixed-interface mode shapes are computed from an eigenvalue analysis while fixing
each interface DOF of the subcomponent. Another class of CMS methods uses free-interface modes to represent the
internal dynamics of the substructures and attachment modes to represent the interface dynamics [20, 23, 8]. More
recently, Rixen [22] proposed a dual Craig-Bampton method where weak interface compatibility is used to avoid
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interface locking when the reduction basis contains very few modes. Weak compatibility refers to an interface cou-
pling strategy that allows for non-matching bases at the interfaces, and allows for (typically small) discontinuities in
displacement across the interfaces. Requiring the discontinuities to be too small (or zero) results in an overly stiff
or locked interface. CMS techniques work well for finding the low frequency modes of a system but do not perform
well for mid- to high-frequency modes. A few methods have been developed to extend CMS to higher frequencies by
replacing the static CMs with quasi-static CMs and by applying shifting around a central frequency [18, 25, 24].

CMS techniques commonly focus on reduction of the interior DOF of each substructure but retain all physical
DOF at the interfaces, making the assembly straightforward. In many cases, the size of the CMS model is dominated
by the interface DOF, for example when the finite-element (FE) mesh is fine and/or the number of subcomponents is
large. Efficient interface reduction techniques have been developed to address this issue. In 1977, Craig and Chang
[9] first proposed three methods to reduce the interface DOF by applying either Guyan, Ritz, or modal reduction.
However, these methods do not appear to have been widely adopted as they are neither subsequently mentioned in the
literature nor are they available in commercial codes that implement the HCB method. Castanier et al. [5] rediscovered
the modal method by applying a secondary eigenvalue analysis on the interface partition of the assembled CMS model
to obtain the characteristic constraint (CC) modes. The use of a truncated set of CC modes results in a highly reduced
system model, however these modes must be calculated only after the substructures have been assembled and the
system-level HCB matrices are available. For this reason, the method is referred to as the system-level characteristic
constraint (S-CC) mode method. The need to assemble the system before reduction limits the versatility of the S-
CC method and has inspired the investigation of other interface reduction methods that perform the reduction before
assembling the substructure models.

Hong et al. [12] proposed an interface reduction technique that performs an eigenvalue analysis on the HCB
interface DOF at the substructure level prior to assembly. They enforce exact interface compatibility by concatenating
these local-level characteristic constraint (L-CC) modes from each interface and use this augmented mode set to reduce
the number of DOF at each of the interfaces. Alternatively, Kuether et al. [17] proposed a weak interface compatibility
method where the L-CC modes of each substructure remain separate but are linearly combined to minimize the
compatibility error between connecting substructure interfaces. Lindberg et al. [19] proposed a CMS approach using
undeformed coupling interface modes which constrain the interfaces to three displacement and three rotational DOF.
This technique is valid for specific systems where the connection occurs between a soft and stiff subcomponent such
that the deformation at the interface is governed by the stiffer structure. Aoyama et al. [2] presented a method similar
to S-CC except that each interface is assembled and then reduced separately. The hybrid-level characteristic constraint
(H-CC) mode method presented subsequently is an extension of this. Using their approach, the modes used at every
interface depend only on the adjacent substructures and can be quickly updated if substructures are added, removed,
or changed. Holzwarth et al. [11] recently demonstrated the use of Legendre Polynomials as basis functions for local
interface reduction and compared the performance to S-CC interface reduction. The work by Balmès [3] explored a
CMS basis that defined arbitrary interface deformations to describe a set of generalized DOF along an interface.

Due to its popularity for CMS problems, most interface reduction approaches are developed for HCB models. Tran
[26, 27] showed that S-CC interface reduction can be extended to free and hybrid interface methods by first describing
the attachment modes in terms of CMs and then proceeding as before. Rixen [21] proposed an interface reduction
approach for the Dual Craig Bampton method, where the interface force modes are applied based on the dual nature of
the connection between substructures. Interface reduction methods have also been applied to fluid-structure coupling
systems using appropriate Ritz vectors [10].

The goal of this paper is to provide an overview of a variety of interface reduction techniques as applied to HCB
substructure models coupled using primal assembly. The six different interface reduction strategies that are considered
in this paper are the S-CC method [5], the exact-compatibility (EC) [12], weak-compatibility (WC), and uncoupled
weak-compatibility (UWC) L-CC methods, the virtual node (VN) method [19], and a hybrid method that is dubbed
the H-CC method. The WC L-CC and UWC L-CC techniques presented here are both generalizations of the approach
presented for single interface systems in [17] to accommodate systems with multiple interfaces. The H-CC method
is a modification of the method presented in [2] to allow for the calculation of rigid-body modes when a system is
free. The VN method generalizes the approach in [19] to allow for multiple virtual nodes per interface. The schematic
in Figure 1 classifies the various interface reduction techniques as either system-level, local-level, or hybrid-level.
The phrase “system-level” indicates that interface reduction is applied to the fully assembled HCB model, whereas
“local-level” indicates that interface reduction calculations are performed on the individual substructures before they
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Figure 1: Schematic of the different interface reduction methods considered in this paper, and their classification as system-, local-, or hybrid-
level. The thumbnail illustrations show whether interface modes are coupled (single color) or uncoupled (different colors), the level of substructure
assembly when the interface modes are computed, and for the local methods, whether modes match at the interface (indicating exact compatibility)
or not (indicating weak compatibility).

are assembled. “Hybrid-level” falls somewhere in between because only the substructures connecting to a particular
interface need to be assembled to compute the reduction of that individual interface.

As all of the cited methods were compared, similarities and differences were noted that led to the new methods,
generalizations and improvements that are presented in this paper. Furthermore, every effort will be taken in the fol-
lowing to clarify the exposition of the methods, highlight the similarities and differences, and explore the effect of the
parameters that the user must define such as, for instance, singular value tolerances or the number of interface modes
to be retained. Even then, the interface reduction method that best suits a specific engineering analysis will depend on
the problem of interest, and one of the goals of this paper is to help the reader better understand the scenarios in which
each method works best. The methods are investigated with linear example systems, but one of the motivations of this
work is the eventual extension to model-order reduction for nonlinear systems. Section 2 of this paper reviews the
classic HCB method and presents the theory for the six different interface reduction techniques. In Section 3, the per-
formance of reduced interface models are demonstrated using three numerical examples. Conclusions are presented
in Section 4.

2. Interface Reduction Techniques

This section presents the formulation of the six different interface reduction strategies that are considered in this
paper. As the methods are all applied to HCB reduced-order models, a brief discussion of the theory is also included.
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Figure 2: Exploded view of the W-bracket system, inspired by the model in [12], consisting of five plate substructures arranged in a “W” configu-
ration with three interface sets; the interface sets Γi, i = 1, 2, 3 are highlighted and labeled.

Throughout this section, the model in Fig. 2 is used to support the theoretical discussion of each interface reduction
method.

2.1. Hurty/Craig-Bampton Method
The FE discretized system of equations of motion for a substructure reads

M jü j + K ju j = f j, (1)

where M j and K j are the mass and stiffness matrices, respectively, u j is the displacement vector, f j is the forcing
vector and the subscript j denotes the jth substructure. The substructure equations of motion are partitioned into
interior and interface DOF (denoted by subscripts i and b respectively), as[

Mii, j Mib, j

Mbi, j Mbb, j

] {
üi, j

üb, j

}
+

[
Kii, j Kib, j

Kbi, j Kbb, j

] {
ui, j

ub, j

}
=

{
0

fb, j

}
(2)

where the subscripts b and i are indexes referring to the boundary and internal component of the matrices and vectors.
The CMs are formed by computing the static response of the interior of the substructure when one interface DOF

is given a unit displacement and all the other DOF are held fixed. The CM set for the entire interface is expressed as

Ψ j =

[
−K−1

ii, jKib, j

I

]
. (3)

Static condensation is a technique that removes a subset of the DOF that experience no external forcing from a model.
This is accomplished by approximating the displacement of the removed set with the static response that those DOF
experience due to displacement of the retained DOF set. The statically reduced model exactly reproduces the full
model solutions when the system experiences only static deformation, or if the removed DOF have zero mass. Since
mass terms are rarely zero, the accuracy of a statically reduced model quickly deteriorates as the frequency of vibration
increases. The CMs shown above provide a basis that can be used to perform a static condensation that retains all
interface DOF and eliminates all interior DOF from the model. This is powerful when applied to a substructure
because the original physical interface DOF are retained, so the system can still be reassembled directly. The CMs
alone cannot accurately capture the dynamic behavior of the internal DOF. This is addressed by augmenting the CMs
with a set of dynamic modes that are obtained by fixing the interface DOF and assuming a harmonic solution as(

Kii, j − ω
2
r Mii, j

) {
φi, j

}
r

= 0. (4)

The eigenvectors obtained from this equation are referred to as fixed-interface modes. A truncated set of these mass
normalized eigenvectors are collected into a fixed-interface mode matrix,

Φ j =

{φi, j

}
1
, . . . ,

{
φi, j

}
n

0

 =

[
Φi, j

0

]
. (5)
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These modes provide a normal basis for the interior DOF of the substructure. The fixed-interface modes and the CMs
are combined to form the HCB reduction matrix as

THCB
j =

[
Φ j Ψ j

]
, (6)

which provides a transformation from the HCB generalized DOF to the substructure physical DOF,{
ui, j

ub, j

}
≈ THCB

j

{
qi, j

ub, j

}
, (7)

where qi, j represents the modal coordinate vector associated with the fixed-interface modes. The uncoupled sub-
structure reduced mass and stiffness matrices are now formed by applying the HCB transformation to these matrices
as

MHCB
j =

(
THCB

j

)T
M jTHCB

j , KHCB
j =

(
THCB

j

)T
K jTHCB

j . (8)

The HCB component-level reduced-order models are coupled using a primal assembly by defining a transforma-
tion between the uncoupled and coupled DOF to eliminate the constraint equations. For the W-bracket system in Fig.
2, the coupling matrix is built directly as

qi,1

uΓ1,1

uΓ2,1

qi,2

uΓ2,2

uΓ3,2

qi,3

uΓ1,3

qi,4

uΓ2,4

qi,5

uΓ3,5



=



I 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I

︸                                    ︷︷                                    ︸
LHCB



qi,1

qi,2

qi,3

qi,4

qi,5

uΓ1

uΓ2

uΓ3



, (9)

where the boundary DOF of each substructure are further partitioned according to the interface sets Γ1, Γ2, and
Γ3 shown in Figure 2. Finally, the assembled HCB mass and stiffness matrices are formed by adding the coupled
contribution from each substructure as

MHCB =

n∑
j=1

(
LHCB

j

)T
MHCB

j LHCB
j , KHCB =

n∑
j=1

(
LHCB

j

)T
KHCB

j LHCB
j , (10)

where the jth substructure coupling matrix, LHCB
j , is formed by extracting the corresponding rows of LHCB. In this

and all following cases, the same transformation is applied to both the mass and stiffness matrices; from this point
forward only the transformation for the mass matrix will be shown for brevity.

2.2. System-Level Reduction
Craig and Chang [9], and later Castanier et al. [5], presented the characteristic constraint mode reduction as a

system-level approach to reduce the size of the interface DOF of the assembled HCB model. This technique utilizes
a secondary eigenvalue analysis on the interface partition of the assembled system(

KHCB
bb − ω2

r MHCB
bb

)
φS-CC

r = 0. (11)
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The eigenvectors resulting from Eq. (11) are referred to as S-CC modes. A truncated set of these mass normalized
S-CC modes are collected into a mode shape matrix,

ΦS-CC =
[
φS-CC

1 , . . . ,φS-CC
n

]
. (12)

The truncated modal matrix ΦS-CC is used to transform the HCB interface DOF onto the S-CC generalized interface
DOF,

ub ≈ Φ
S-CCqb. (13)

Pre- and post- multiplication of the assembled HCB matrices in Eq. (10) with an S-CC transformation matrix
leads to the S-CC reduced mass and stiffness matrices

MS-CC =

[
I 0
0 ΦS-CC

]T [
MHCB

ii MHCB
ib

MHCB
bi MHCB

bb

] [
I 0
0 ΦS-CC

]
︸        ︷︷        ︸

TS-CC

. (14)

The size of the system interface partition is reduced from the number of physical DOF on the interface to the
number of S-CC modes in the truncated eigenvector set, nΦb .

2.3. Local-Level Reduction
The system-level reduction introduced in Section 2.2 performs a secondary eigenvalue analysis on the interface

partition of the assembled stiffness and mass matrices. In this section, four local-level interface reduction techniques
are described, where all the interface reduction steps are taken before the assembly of subsystems.

2.3.1. Exact Compatibility [12]
The EC L-CC interface reduction proposed by Hong et al. [12] is based on a secondary eigenvalue analysis of

the subcomponent HCB model’s interface. Unlike the S-CC reduction, this is performed locally for each individual
substructure rather than on the assembled matrices. For the jth subcomponent, the secondary eigenvalue analysis on
the interface DOF is written as (

KHCB
bb, j − ω

2
r MHCB

bb, j

) {
φL-CC

j

}
r

= 0, (15)

A truncated set of mass normalized eigenvector solutions collected in ΦL-CC
j denote the L-CC modes of the jth sub-

structure. The truncation is performed using frequency-based mode selection. The L-CC modes for each substructure
are then used to reduce the interface DOF for each interface set locally.

The W-bracket system in Fig. 2 is used to illustrate the local interface reduction technique, as done by Hong et al.
[12]. The L-CC modes in ΦL-CC

1 from Eq. (15) have interface DOF for boundary sets Γ1 and Γ2, while the modes in
ΦL-CC

2 have interface DOF for boundary sets Γ2 and Γ3. Substructures 3, 4 and 5 only have one interface Γ1, Γ2 and
Γ3, respectively. The L-CC modes for each subcomponent (1 through 5) are expressed then as

ΦL-CC
1 =

[
ΦL-CC

Γ1,1
ΦL-CC

Γ2,1

]
, ΦL-CC

2 =

[
ΦL-CC

Γ2,2
ΦL-CC

Γ3,2

]
,

ΦL-CC
3 = ΦL-CC

Γ1,3 , ΦL-CC
4 = ΦL-CC

Γ2,4 , ΦL-CC
5 = ΦL-CC

Γ3,5 .

(16)

The substructure interface modes are computed in Eq. (15) for the entire interface set simultaneously even if the
interface is made up of multiple distinct interfaces. For each distinct interface, an augmented set of L-CC modes
is established by collecting the modal components from every substructure along that interface. For the W-bracket
system in Fig. 2, it holds that

Φ
aug
Γ1

=
[
ΦL-CC

Γ1,1 ΦL-CC
Γ1,3

]
, Φ

aug
Γ2

=
[
ΦL-CC

Γ2,1 ΦL-CC
Γ2,2 ΦL-CC

Γ2,4

]
,

Φ
aug
Γ3

=
[
ΦL-CC

Γ3,2 ΦL-CC
Γ3,5

]
.

(17)

The augmented modes for a particular interface can represent the interface dynamics of the assembled system quite
well, even though they are obtained from the eigenvectors of the uncoupled systems. The augmented interface L-CC
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modes for each interface may lead to a set of vectors that are not necessarily linearly independent. To prevent ill
conditioning, singular value decomposition (SVD) reformulates the L-CC modes and guarantees orthogonality,

Uaug
Γ j

Saug
Γ j

(
Vaug

Γ j

)T
= Φ

aug
Γ j
, (18)

where Uaug
Γ j

and Saug
Γ j

are the left singular vectors and diagonal singular value matrix for the jth interface set. The
singular values describe how important each left singular vector is in describing the original basis. So if some singular
values are very small, the corresponding left singular vectors can be truncated without significantly affecting the basis.
A range-space truncation tolerance, σR, may be specified to determine the singular value cutoff as a fraction of the
maximum singular value. In Hong’s analysis [12], the truncation tolerance used was σR = 1 × 10−4 = 0.01%. This
means that only the left singular vectors corresponding to singular values larger than 0.01% of the maximum singular
value are kept for each interface set, and placed in UΓ j . Using an optimal value for σR will produce smaller model
sizes without significantly affecting the accuracy of the solution. Setting σR too large will truncate too many modes
and increase model error, while a small σR will result in more interface DOF than necessary to achieve practically the
same accuracy. Appendix A.1 examines the effect of σR on the model performance.

The resorted matrices UΓ j are then grouped for each subsystem j to form a block-diagonal matrix that contains all
the interface sets for substructure j. Take substructures 1 and 3 as examples. The orthogonal L-CC basis is expressed
as

U1 =

[
UΓ1 0
0 UΓ2

]
, U3 = UΓ1 . (19)

Then, the reduced mass matrix is given for each subcomponent j as

MEC L-CC
j =

[
I 0
0 U j

]T [
MHCB

ii, j MHCB
ib, j

MHCB
bi, j MHCB

bb, j

] [
I 0
0 U j

]
, (20)

where the superscript EC L-CC indicates that the matrices are constructed using the local interface reduction technique
with exact compatibility, as in [12].

Geometric compatibility conditions are enforced by relating the substructure interface DOF to a set of system
interface DOF through a coupling matrix. The coupling matrix for the W-bracket system is written as,

qi,1

qΓ1,1

qΓ2,1

qi,2

qΓ2,2

qΓ3,2

qi,3

qΓ1,3

qi,4

qΓ2,4

qi,5

qΓ3,5



=



I 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I

︸                                    ︷︷                                    ︸
LEC L-CC



qi,1

qi,2

qi,3

qi,4

qi,5

qΓ1

qΓ2

qΓ3



. (21)

Finally, the reduced-order system is assembled by summing over the substructures as,

MEC L-CC =

n∑
j=1

(
LEC L-CC

j

)T
MEC L-CC

j LEC L-CC
j , (22)
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where LEC L-CC
j denotes the rows of the coupling matrix corresponding to the jth substructure.

2.3.2. Weak Compatibility
Similar to the EC L-CC method, the WC L-CC method begins by computing local interface modes for each

substructure using Eq. (15). This transformation expresses the physical interface DOF as a linear combination of the
interface modes,

ub, j ≈ Φ
L-CC
j qb, j. (23)

Then the reduced-order substructure mass matrix for each substructure is formed as

MWC L-CC
j =

[
I 0
0 ΦL-CC

j

]T [
MHCB

ii, j MHCB
ib, j

MHCB
bi, j MHCB

bb, j

] [
I 0
0 ΦL-CC

j

]
. (24)

The resulting reduced substructures can no longer be coupled directly because, in general, the interface modes
from one substructure will not match the interface modes from adjacent substructures. In fact, the interface mode
sets of each substructure typically will not even span the same space. Traditional primal coupling of substructures is
simple because each interface that must be joined has the exact same basis. This allows a direct assembly approach
using coupling matrices, L, that are trivial to derive, as seen in Eq. (9) and (21). When the primal coupling is not
trivial, L can be obtained by first expressing constraint equations at the interface,

Bqcat = 0 (25)

where qcat is a concatenated vector of generalized interface coordinates from the uncoupled substructures. The trans-
formation from assembled interface coordinates, qcat = Lbqasm, satisfies the constraint equations as long as Lb lies
in the null space of B. Note that the subscript b denotes that only the boundary partition of the coupling matrix is
considered because the interior partition requires no coupling and thus consists simply of identity blocks. The general
approach to finding the coupling matrix is to form B and compute its null space.

For the W-bracket example, the constraint equations to be satisfied are as follows,

uΓ1,1 = uΓ1,3, uΓ2,1 = uΓ2,2, uΓ2,1 = uΓ2,4, uΓ3,2 = uΓ3,5. (26)

Collecting all of the constraint equations into a single matrix and expressing them in modal coordinates gives,



ΦL-CC
Γ1,1 0 −ΦL-CC

Γ1,3 0 0

ΦL-CC
Γ2,1 −ΦL-CC

Γ2,2 0 0 0

ΦL-CC
Γ2,1 0 0 −ΦL-CC

Γ2,4 0

0 ΦL-CC
Γ3,2 0 0 −ΦL-CC

Γ3,5

︸                                                               ︷︷                                                               ︸
B



qb,1

qb,2

qb,3

qb,4

qb,5


= 0. (27)

If the bases at interfaces match, then B will have a clear null space, however in the WC L-CC method this typically
is not the case. It is still possible to form an approximate null space using the SVD, B = UBSBVT

B. The approximate
null space, N, is computed by collecting the columns of VB whose singular values are less than a null space tolerance,
σN . Each column of N can be thought of as a linear combination of the original interface modes that approximately
satisfies compatibility, or a “compatible vector.” As long as the singular values associated with each compatible vector
are small, the compatibility will be good (though typically not exact). Each compatible vector will be governed by
a generalized coordinate in the coupled system, while the portion of the local interface modes in the subspace not
spanned by the compatible vectors is discarded. A high value of σN gives a large number of vectors that are deemed
compatible and hence a large number of generalized coordinates to represent the interface dynamics very well, but
the quality of the interface compatibility suffers because some of these vectors may be associated with relatively large
singular values. Conversely, a low value of σN gives good interface compatibility but may reduce the number of
generalized coordinates at the interface such that the dynamics can no longer be captured. Appendix A.2 investigates
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the effect of the approximate null space tolerance on the performance of the reduction. Once an approximate null
space has been obtained, it is placed into the boundary partitions of the overall coupling matrix. For the W-bracket
model, this gives: 

qi,1

qb,1

qi,2

qb,2

qi,3

qb,3

qi,4

qb,4

qi,5

qb,5



=



I 0 0 0 0 0

0 0 0 0 0 N1

0 I 0 0 0 0

0 0 0 0 0 N2

0 0 I 0 0 0

0 0 0 0 0 N3

0 0 0 I 0 0

0 0 0 0 0 N4

0 0 0 0 I 0

0 0 0 0 0 N5

︸                           ︷︷                           ︸
LWC L-CC



qi,1

qi,2

qi,3

qi,4

qi,5

qb


. (28)

where N j denotes the rows of N corresponding to the interface DOF of the jth substructure. Finally, the reduced-order
system is assembled by summing over the substructures.

MWC L-CC =

n∑
j=1

(
LWC L-CC

j

)T
MWC L-CC

j LWC L-CC
j , (29)

where LWC L-CC
j contains the rows of LWC L-CC corresponding to the jth uncoupled substructure.

2.3.3. Uncoupled Weak Compatibility
The weak compatibility technique described in the previous section results in a single coupled set of interface

DOF for the system. This means that the different interface sets cannot move independently. Another approach to
weak compatibility interface reduction is to decouple the interface modes before enforcing weak compatibility so
that the interface sets can move independently. This increases the number of interface DOF in the system but can
make the interface reduction easier to apply in some cases. The local interface modes are split up by interface set as
shown in Eq. (16). By doing so, the interface modes may lose their linear independence so a QR orthonormalization
is performed on the modes before they are used further. The (now orthogonal) interface modes are decoupled by
arranging the components corresponding to each interface set on the block diagonals,

ΦUWC L-CC
1 =

[
ΦL-CC

Γ1,1 0
0 ΦL-CC

Γ2,1

]
; ΦUWC L-CC

2 =

[
ΦL-CC

Γ2,2 0
0 ΦL-CC

Γ3,2

]
,

ΦUWC L-CC
3 = ΦL-CC

Γ1,3 , ΦUWC L-CC
4 = ΦL-CC

Γ2,4 , ΦUWC L-CC
5 = ΦL-CC

Γ3,5 ,

(30)

Then, the reduced-order substructure mass matrix can be formed as they were in the previous sections,

MUWC L-CC
j =

[
I 0
0 ΦUWC L-CC

j

]T [
MHCB

ii, j MHCB
ib, j

MHCB
bi, j MHCB

bb, j

] [
I 0
0 ΦUWC L-CC

j

]
. (31)

Weak compatibility must now be enforced separately at every interface set. For the W-bracket model, the constraint
equations for the three interfaces are as follows,

[
ΦL-CC

Γ1,1 −ΦL-CC
Γ1,3

]
︸                    ︷︷                    ︸

BΓ1

qb,1

qb,3

 = 0, (32)
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 ΦL-CC
Γ2,1 −ΦL-CC

Γ2,2 0

ΦL-CC
Γ2,1 0 −ΦL-CC

Γ2,4

︸                                   ︷︷                                   ︸
BΓ2


qb,1

qb,2

qb,4

 = 0, (33)

[
ΦL-CC

Γ3,2 −ΦL-CC
Γ3,5

]
︸                    ︷︷                    ︸

BΓ3

qb,2

qb,5

 = 0. (34)

Compatibility is enforced by computing the approximate null space of each compatibility matrix. Once again this
requires an approximate null space tolerance, σN , to be defined. Appendix A.3 investigates the effect of varying this
tolerance on the performance of the UWC L-CC method for the W-bracket model. The approximate null spaces from
every interface are placed into the coupling transformation matrix,

qi,1

qΓ1,1

qΓ2,1

qi,2

qΓ2,2

qΓ3,2

qi,3

qΓ1,3

qi,4

qΓ2,4

qi,5

qΓ3,5



=



I 0 0 0 0 0 0 0

0 0 0 0 0 NΓ1,1 0 0

0 0 0 0 0 0 NΓ2,1 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 NΓ2,2 0

0 0 0 0 0 0 0 NΓ3,2

0 0 I 0 0 0 0 0

0 0 0 0 0 NΓ1,3 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 NΓ2,4 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 NΓ3,5

︸                                                   ︷︷                                                   ︸
LUWC L-CC



qi,1

qi,2

qi,3

qi,4

qi,5

qΓ1

qΓ2

qΓ3



. (35)

where NΓ j,i denotes the rows of jth interface’s approximate null space corresponding to the ith substructure’s interface
DOF. The reduced-order system is assembled by summing over the substructures,

MUWC L-CC =

n∑
j=1

(
LUWC L-CC

j

)T
MUWC L-CC

j LUWC L-CC
j . (36)

2.3.4. Virtual Node
Another local-level reduction technique was proposed by Lindberg et al. [19] where the interface DOF at the

substructure are reduced with a set of undeformed coupling interface modes. This method was proposed as a way to
connect stiff and soft substructures at a single VN having six DOF. This subsection reviews the interface reduction
technique and generalizes the approach to allow n virtual nodes along an interface.

When a group of nodes along an interface are tied to a VN with multi-point constraints, the node set can collec-
tively move in six shapes defined by three orthogonal translations and three rotations around the position of the VN.
To define the transformation from physical DOF to the VN DOF, first consider the transformation to the lth interface
node from the VN to which it is being tied as,
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

ul

vl

wl

θx,l

θy,l

θz,l


=



1 0 0 0 ∆Z −∆Y
0 1 0 −∆Z 0 ∆X
0 0 1 ∆Y −∆X 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

︸                                     ︷︷                                     ︸
θΓ,l



uVN

vVN

wVN

θVN
x
θVN

y
θVN

z


, (37)

where
∆X = xl − xVN, ∆Y = yl − yVN, ∆Z = zl − zVN, (38)

l is an index over all physical boundary nodes being tied to the current VN, and x, y, z are the nodal coordinates. Note
that if the original set of interface DOF do not feature some rotational or translational DOF (as for instance in solid
elements), then the corresponding rows of θΓ,l can simply be removed.

A transformation for the entire set of interface DOF is generated by concatenating the transformations formed for
each node as

θΓ =


θΓ,1
...

θΓ,nb

 , (39)

where nb is the number of nodes that are being tied to the current virtual node.
An analogous transformation is formed for every VN defined along an interface. Then, an overall transformation

is formed for each substructure by collecting the transformations from each virtual node in a block diagonal matrix.
This is most clearly demonstrated using the W-bracket example. Assume that for this example, each interface set is
represented with a single VN, for a total of three VNs in the system as

Θ1 =

[
θΓ1 0
0 θΓ2

]
, Θ2 =

[
θΓ2 0
0 θΓ3

]
, Θ3 = θΓ1 , Θ4 = θΓ2 , Θ5 = θΓ3 . (40)

Then, the reduced-order substructure mass matrix can be formed once again as they were in the previous sections,

MVN
j =

[
I 0
0 Θ j

]T [
MHCB

ii, j MHCB
ib, j

MHCB
bi, j MHCB

bb, j

] [
I 0
0 Θ j

]
. (41)

The coupling matrix for the W-bracket system is as follows,

qi,1

uVN
Γ1,1

uVN
Γ2,1

qi,2

uVN
Γ2,2

uVN
Γ3,2

qi,3

uVN
Γ1,3

qi,4

uVN
Γ2,4

qi,5

uVN
Γ3,5



=



I 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 I 0 0 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 0 I 0 0 0 0 0

0 0 0 0 0 I 0 0

0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I

︸                                    ︷︷                                    ︸
LVN



qi,1

qi,2

qi,3

qi,4

qi,5

uVN
Γ1

uVN
Γ2

uVN
Γ3



. (42)
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The jth substructure coupling matrix, LVN
j , is formed by extracting the corresponding rows of LVN. Finally, the

coupled VN mass matrix is formed by adding the contribution from each substructure,

MVN =

n∑
j=1

(
LVN

j

)T
MVN

j LVN
j . (43)

The selection of VN positions can be performed manually but in this work it is automated using the k-means node
clustering algorithm to produce groups of nodes that are closely spaced. This enabled the number of VNs, k, to be
varied easily so that accuracy with respect to k could be investigated. There is no general guideline for selecting k, but
for certain problems, physical intuition may be used to determine groups of interface nodes that will behave nearly
rigidly, and can thus be represented by VNs. In the can-beam problem shown in section 3.3 for example, each bolted
connection is represented with a single VN. If it is not possible to manually identify rigid node groups, then the VN
method is likely not the best choice of interface reduction anyway.

Once interface nodes are grouped, the VN for each group is computed by averaging the nodal coordinates for
all nodes in that group. The k-means algorithm uses an optimization strategy that can get stuck in local minima, so
several restarts may be necessary. In this work, 100 restarts are used in selecting the groups and the k-means algorithm
is applied to the nodes from a single interface at a time to ensure that one VN will not be tied to nodes from different
interfaces.

2.4. Hybrid Reduction

As shown later in Section 3, the S-CC interface reduction in Section 2.2 produces the most accurate results since
the secondary eigenvalue analysis accounts for all the mass and stiffness of the interface DOF. Unfortunately, the
advantage of local modal analysis is lost with this substructuring technique. The local-level interface reductions
presented in Section 2.3 retain this advantage, however the accuracy of the global reduced-order model suffers and
requires more modes to match the system-level approach. This is due to the fact that the mass and stiffness coupling
between different substructures is totally neglected during the local modal analysis and must be enforced approxi-
mately.

A novel hybrid interface reduction technique is proposed here where the secondary eigenvalue analysis is per-
formed on a single interface shared by a set of substructures. By doing so, the coupling between neighboring sub-
structures, which is of great significance, can be taken into consideration, but the size of the eigenvalue problem is
reduced to only the size of each individual interface. In the limiting case of two substructures being assembled at
one common interface (e.g. the Cantilever-Plate Model in Section 3.1), this method is exactly the same as the S-CC
interface reduction.

The W-bracket example shows how the hybrid-level interface reduction is applied at an individual interface. The
secondary modal analysis for all the substructures connecting to the jth interface Γ j is written as(

KHCB,Γ j

bb − ω2
r MHCB,Γ j

bb

)
φ

H-CC,Γ j
r = 0 (44)

where the mass matrix is assembled only for the substructures connecting to interface Γ j,

MHCB,Γ j =
∑
k∈Γ j

(
LHCB

k

)T
MHCB

k LHCB
k , (45)

Note that Eq. (44) specifies that the entire boundary partition of the partially assembled mass and stiffness matri-
ces, MHCB,Γ j and KHCB,Γ j , be used in computing the eigenvectors. Thus, the mass normalized matrixΦH-CC,Γ j , referred
to as the hybrid characteristic constraint modes, contains DOF for all interface sets that are attached to substructures
adjacent to Γ j. Including these “extra” interface sets allows the free-interface modes of the subassembly to be com-
puted. This is particularly important when rigid-body interface motion is present in the system modes. The interface
modes computed in Eq. (44) for Γ j may contain terms corresponding to other interfaces as well but can simply be
discarded. For the W-bracket model, the H-CC modes then become
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ΦH-CC,Γ1 =

ΦH-CC,Γ1
Γ1

�
��
�H

HHH
Φ

H-CC,Γ1
Γ2

 , ΦH-CC,Γ2 =


��

��H
HHH
Φ

H-CC,Γ2
Γ1

Φ
H-CC,Γ2
Γ2

��
��H

HHH
Φ

H-CC,Γ2
Γ3

 , ΦH-CC,Γ3 =

����HHHH
Φ

H-CC,Γ3
Γ2

Φ
H-CC,Γ3
Γ3

 . (46)

Discarding part of a mode shape can cause the remaining component to lose its linear dependence, so the retained
portions are orthonormalized with a QR decomposition to avoid ill-conditioning. The transformation from the HCB
coordinates to the H-CC generalized coordinates is

qi,1

qi,2

qi,3

qi,4

qi,5

uΓ1
b

uΓ2
b

uΓ3
b



=



I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 Φ
H-CC,Γ1
Γ1

0 0

0 0 0 0 0 0 Φ
H-CC,Γ2
Γ2

0

0 0 0 0 0 0 0 Φ
H-CC,Γ3
Γ3

︸                                                               ︷︷                                                               ︸
TH-CC



qi,1

qi,2

qi,3

qi,4

qi,5

qΓ1

qΓ2

qΓ3



. (47)

The H-CC reduced mass matrix reduces to

MH-CC =
(
TH-CC

)T
MHCBTH-CC. (48)

This hybrid interface reduction technique is most suitable for systems with numerous interface sets. When few
substructures are added, removed or modified around a specified interface set, the secondary eigenvalue analysis
and the coupling matrix need to be recalculated only for related substructures connecting to this interface. This is
more efficient than the system-level approach and can reduce the computational cost without largely compromising
accuracy.

3. Numerical Examples and Discussion

Three numerical examples are explored in the following subsections to evaluate the accuracy and efficiency of the
interface reduction methods. Since all these methods operate on a nominal HCB substructured model, the number
of fixed-interface modes for each case are chosen such that the maximum frequency error relative to the full fidelity
model is less than 0.1% for the frequency range of interest. Furthermore, the SVD tolerance values used in all the
examples are those recommended in the Appendix, namely σR = 1 × 10−4 for EC L-CC, and σN = 1 × 10−1 for WC
and UWC L-CC.

Timing results are also included for each example. Note that the relative performance of the methods will depend
on the model, the computing architecture, and the implementation of the reductions. The results are included to give
the reader a sense of the computation times, but do not necessarily show the computational advantage of the reductions.
The accuracy of the methods is investigated by using an eigenvalue solution to compute natural frequencies and mode
shapes of each structure, but computationally this task is typically accomplished more quickly without resorting to
model-order reduction. HCB reduced-order models are most effective at reducing large-scale, memory intensive
problems and for accelerating different types of analyses, such as time simulations, nonlinear modal solutions, and
cases where multiple configurations of substructures and boundary conditions must be considered. Showing timing
results for these cases however is beyond the scope of this paper.
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3.1. Cantilevered-Plate Model

The first numerical example under consideration is a cantilever-plate model consisting of two plates that share one
interface as shown in Fig. 3a. The nodes along the long edge nearest to the viewer are fixed creating a cantilever
boundary condition. The model features 1152 four-node shell elements, with three translational and three rotational
DOF per node. After removing the DOF associated with the fixed nodes, the FE model has 7056 DOF. The dimensions
and materials are the same as in [4, 5].
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Figure 3: FE mesh (a), natural-frequency comparison (b), frequency-error comparison (c), and mode-error comparison (d) for the cantilever-plate
model.

An HCB model of the cantilevered plate is created with a total of 27 fixed-interface modes, as summarized in
Table 1, and 144 interface DOF. Each interface reduction is applied to the same base HCB model and then the modal
solutions are computed from the assembled reduced-order models. The 11 natural frequencies below 500 Hz are
plotted in Fig. 3b for all six interface reduction methods as well as for the reference HCB model. For this example,
each interface-reduction method has a total of 18 interface DOF in its respective assembled model in order to make a
fair comparison of error between the different methods. The number of interface modes and corresponding maximum
frequency CC mode (where applicable) is shown in Table 2 for all the approaches under consideration. Note that
because the cantilevered plate has just a single interface set, the H-CC method is identical to the S-CC method, and
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the WC L-CC method becomes identical to the UWC L-CC method.

Table 1: The number of fixed-interface modes retained in each substructure in the cantilevered-plate model

Number of Internal Vibration Modes
(Maximum Frequency, Hz)

Sub. 1 Sub. 2 Total

18 9 27
(1440) (1380) (1440)

Table 2: The number (and maximum frequency where applicable) of interface modes used by each method in reducing the cantilevered-plate model

Method

Number of CC Modes
Calculated per Substructure Number of Interface DOF
(Maximum Frequency, Hz) (Maximum Frequency, Hz)

Sub. 1 Sub. 2

HCB - - 144

S-CC / H-CC - - 18
(7600)

EC L-CC
9 10

18(2540) (3110)

WC L-CC / UWC L-CC
28 28

18(19220) (19030)

VN - - 3×6 = 18

Figures 3c and 3d show the error in natural frequencies and mode shapes, respectively, with respect to the HCB
model. The mode error is defined as the deviation from unity of the diagonal components of the modal assurance
criterion (MAC) matrix [1]. The two error plots reveal that some interface reduction methods provide better accuracy
for the same (assembled) model size. The S-CC / H-CC methods show the lowest error, followed by the EC L-
CC method, then the WC L-CC / UWC L-CC methods, and finally the VN method. Aside from VN, all methods
comfortably achieve frequency errors below 0.1% for this example.

The computation times for the cantilevered plate model are summarized in Table 3. The model reduction time
reported for each interface reduction is the time needed just to perform the interface reduction, and does not include
the time needed to obtain the HCB model. The eigenvalue solution times are roughly equivalent for all of the interface
reductions, which is expected because the final reduced-order model sizes are the same. Even though the reduced-
order models obtained with the S-CC and H-CC methods are the same, the timing results are different because the
codes have different amounts of overhead and there are also natural variations in timing data. The same observation
can be made with the WC and UWC L-CC methods.

The timing results show that it is faster to simply perform the full model eigenvalue solution than it is to reduce
the model and then compute a reduced-order eigenvalue solution. As mentioned earlier, this is expected because the
eigenvalue analysis often does not expose the computational benefits of model-order reduction.

To gain more insight into the performance of each method (i.e., model size versus error), the frequency cut off

value is incrementally increased to show the convergence of the maximum frequency error of the first 11 modes. The
performance curves for each interface reduction method are shown in Fig. 4. These plots show how many interface
DOF are required to obtain a given level of accuracy. For example, Table 4 gives the minimum number of interface
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Table 3: Computation times needed to create each reduced-order model for the cantilever plate, and the computation time needed to solve for
each reduce-order model’s eigenvalues. (Note that the reduced-order modeling times for each interface reduction only include the time needed to
compute the interface reduction and do not include the HCB modeling time.)

Method
Model

Reduction
Time (ms)

Eigenvalue
Solution

Time (ms)

Full FE - 363
HCB 354 14
S-CC 18 8
H-CC 39 8
EC L-CC 71 9
WC L-CC 64 9
UWC L-CC 57 8
VN 109 8

DOF in the assembly and corresponding frequency cut off to get a maximum frequency error less than 0.1%. The
frequency cut off is somewhat misleading when considering the EC L-CC, WC L-CC, and UWC L-CC methods
because the modes are truncated at the substructure level and subsequently the modes are further operated on using an
SVD. In most cases, the SVD discards some information from the mode set so that many or all of the modes below the
frequency cut off are no longer exactly represented. Nevertheless, the underlying frequency cut off is given in Table 4
to provide readers with a sense of the differences between the methods.
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Figure 4: Study of maximum frequency error with increasing number of interface DOF for various interface reduction methods using the
cantilevered-plate model

3.2. W-Bracket Model

The second numerical example considers the W-bracket model that was introduced previously. This model consists
of five plates that are coupled together, as shown in Fig. 5a. The FE mesh consists of 2304 four-node shell elements
with three displacements and three rotations per node, resulting in 14550 DOF for the whole model. The model has
free-free boundary conditions allowing six rigid body modes.
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Figure 5: FE mesh (a), natural-frequency comparison (b), frequency-error comparison (c), and mode-error comparison (d) for the W-bracket model.
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Table 4: Minimum interface size to achieve 0.1% frequency error for the cantilevered-plate model. *Note that the EC L-CC method uses 7 modes
per substructure for a total of 14, and hence the maximum frequency of those L-CC modes is much lower than for the WC and UWC methods.

S-CC /

H-CC EC L-CC WC L-CC /

UWC L-CC VN

Number of CC Modes 5 14* 18 >60
Maximum Frequency, Hz 630 2030 19220 -

An HCB model of the W-bracket is formed with a total of 53 fixed-interface modes, as summarized in Table 5.
Each of the three interfaces contains 150 DOF for a total of 450 interface DOF in the HCB model. The W-bracket
has 32 vibration modes with frequencies below 500 Hz, including the six rigid-body modes. Figure 5b shows the
computed natural frequencies of each interface reduction method along with the reference HCB model. For this
example, each model has 54 interface DOF except for the EC L-CC method, which has 53. The number of DOF
associated with each substructure and with each interface are shown in Table 6.

Table 5: The number of fixed-interface modes retained in the HCB model of each substructure in the W-bracket model

Number of Internal Vibration Modes
(Maximum Frequency, Hz)

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Total

16 6 10 10 11 53
(1201) (1223) (1172) (1172) (1241) (1241)

Figures 5c and 5d respectively show the error in natural frequencies and mode shapes. Since the W-bracket has
more than one distinct interface, the H-CC results differ from the S-CC results and the WC L-CC results differ from
the UWC L-CC results. Once again, the S-CC and H-CC methods produce the lowest errors, with S-CC performing
slightly better at lower frequencies but H-CC performing slightly better at higher frequencies. The next best perform-
ing methods are WC L-CC and UWC L-CC, both of which show relatively similar error levels. The EC L-CC method
shows slightly higher error still, and the VN method again gives the highest error. Compared to the cantilevered-plate
results, the main difference in performance is that the EC L-CC becomes less accurate relative to the WC and UWC L-
CC techniques. This occurs because the number of interface DOF used by the EC L-CC method grows quickly when
the number and complexity of interfaces is increased. Thus, in order to reach the same number of interface DOF as
the other methods, the cut off frequency used for the EC L-CC method must be relatively low.

The computation times for the W-bracket model are summarized in Table 7. As with the cantilevered plate, the
eigenvalue solution times are roughly equivalent for all of the interface reductions, which is expected because the
final reduced-order model sizes are the same. Despite the more complex arrangement of substructures with multiple
interfaces, the relative computation times mirror those from the cantilevered plate example.

As with the cantilevered-plate model, a performance plot is produced for the W-bracket model to compare error
versus model size for each interface reduction. The maximum frequency error over the first 32 modes (excluding the
rigid body modes) is evaluated with respect to the number of interface DOF for each reduced-order model as the cut
off frequency is gradually incremented. The resulting curves are shown in Fig. 6 and mimics the performance seen
in Figs. 5c and 5d. Table 8 shows the lowest number of interface DOF in Fig. 6 that achieves a maximum frequency
error below 0.1%. Although the S-CC method requires the fewest interface DOF, the H-CC method has a much lower
frequency cut-off. This suggests that comparing frequency cut-offs across different methods should be done with
caution because the meaning depends on the method.

To understand the differences between the interface reduction methods, it helps to visualize the mode shapes. The
first three elastic mode shapes of the assembled HCB model are plotted in Fig. 7 to give an idea of the types of
interface motion that interface reduction modes must capture to achieve good accuracy. Note that although they are
not shown here, the W-bracket model also admits rigid body modes which must also be recoverable by the interface
reduction modes. Figure 8 shows three of the CM shapes used in the HCB model. The deflection in the substructure
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Table 6: The number (and cutoff frequency where applicable) of interface modes used by each method in reducing the W-bracket model. *Note that
for the EC, WC, and UWC methods the interface DOF are further truncated based on the singular value ratio; the number of modes and maximum
frequencies per substructure do not reflect this.

Method

Number of CC modes
Calculated per Substructure Number of Interface DOF
(Maximum Frequency, Hz) (Maximum Frequency, Hz)

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Γ1 Γ2 Γ3 Total

HCB - - - - - 150 150 150 450

S-CC - - - - - - - - 54
(11960)

EC L-CC* 15 13 9 9 9 16 21 16 53(740) (750) (650) (650) (650)

WC L-CC* 64 64 32 32 32 - - - 54(20930) (21100) (20850) (20850) (20850)

UWC L-CC* 58 58 29 29 29 18 18 18 54(18090) (18190) (17980) (17980) (17980)

VN - - - - - 3×6 3×6 3×6 54
= 18 = 18 = 18

H-CC - - - - - 16 23 15 54
(1460) (1460) (1220) (1460)
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Figure 6: Study of maximum frequency error with increasing number of interface DOF for various interface reduction methods using the W-bracket
model
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Table 7: Computation times needed to create each reduced-order model for the W-bracket, and the computation time needed to solve for each
reduce-order model’s eigenvalues. (Note that the reduced-order modeling times for each interface reduction only include the time needed to
compute the interface reduction and do not include the HCB modeling time.)

Method
Model

Reduction
Time (ms)

Eigenvalue
Solution

Time (ms)

Full FE - 1026
HCB 965 98
S-CC 140 17
H-CC 221 15
EC L-CC 205 17
WC L-CC 448 15
UWC L-CC 409 18
VN 303 14

Table 8: Minimum interface size to achieve 0.1% frequency error for the W-bracket model

S-CC EC L-CC WC L-CC UWC L-CC VN H-CC

Number of CC Modes 26 114 43 51 >150 35
Maximum Frequency, Hz 3440 6200 14890 15360 - 280

interiors shows the static response to the CM’s unit interface deflection while holding the rest of the interface DOF
fixed. No individual CM captures the global behavior of the interface in Fig. 7 very well, but the linear combination
of all of the CMs does. This type of interface representation is completely uncoupled, meaning that deflection of any
interface DOF can occur independently of all other interface DOF.

Figure 9 shows select interface mode shapes for the S-CC, EC L-CC, WC L-CC, UWC L-CC, VN, and H-CC
methods. All of these interface reduction mode shapes represent linear combinations of the CMs, such as the ones
shown in Fig. 8. Thus, when these modes are projected back onto physical space, they also include deflection of the
interior parts of every substructure. All the mode shapes except for the VN interface modes show smooth deflections
compared to the CMs in Fig. 8 because they are all created using the characteristic vibration shapes of the interfaces
in one way or another. In contrast, the VN mode shapes are simply rigid couplings of interface nodes which explains
its poor performance on the cantilevered plate and W-bracket examples.

Among the six methods, the only two that show global coupling are the S-CC and the WC L-CC methods (Figs.
9a and 9c). This means that deflection of any interface DOF results in deformation throughout the entire model.
The H-CC, EC L-CC, and UWC L-CC mode shapes have uncoupled interfaces (i.e., each interface mode involves
deflection of a single interface and adjacent substructure interiors). The VN modes shows even less coupling, as
small groups of nodes can be deflected independently. Generally, less coupling can provide increased versatility. For
example, if interfaces are uncoupled it is easier to exchange substructures without updating the entire model, and the
modal representation of a single interface can be refined. For the same final model size, uncoupled interface methods
tend to produce smaller substructure model sizes. In terms of accuracy, uncoupled methods do not seem to have any
disadvantage.

In this example, each of the methods is able to reproduce rigid body modes in the system and the S-CC and WC L-
CC interface mode sets actually contain the global rigid body modes. For the other methods, the system rigid body
mode shapes are represented using a linear combination of the interface modes. Note that the EC L-CC method uses
a truncated SVD orthogonalization that could in theory discard part of the basis containing rigid body information.
This was not observed in any of the example systems because the SVD truncation typically discards higher frequency
modal information, but users should be aware of this possibility. If unexpected results occur with the EC L-CC
method, then the SVD truncation can be replaced with a pure orthogonalization without any truncation.

The elastic system modes in general cannot be exactly recovered by any of the interface reduction methods,
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however some methods give much better accuracy than others. The VN method will not achieve good accuracy
when models have flexible interfaces like the W-bracket model. For the other five methods, it is not readily apparent
from the mode shape diagrams why some outperform others. In general, characteristic shapes that are obtained from
assembled interfaces are able to capture the dynamics of the assembled system better than characteristic shapes that
are completely local.

(a) Mode 7 (b) Mode 8 (c) Mode 9

Figure 7: First three elastic system mode shapes for the W-bracket, obtained with the HCB reduced-order model.

(a) Constraint Mode 2 (b) Constraint Mode 3 (c) Constraint Mode 5

Figure 8: Selected constraint modes from HCB representation.

3.3. Can-Beam Model

The third and final numerical example is performed with the can-beam model shown in Fig. 10a in order to
demonstrate the methodologies on industrial sized models. This structure is split into two substructures: a can, and
a beam attached to a plate, which are joined at the eight circular patches (shown in detail in the inset of Fig. 10a)
to represent a bolted connection. The assembled FE model contains a mixture of 8-node shell elements and 20-node
solid elements elements, resulting in a total of 137,955 DOF.

An HCB representation of system is created with 26 fixed-interface modes as summarized in Table 9. The can-
beam model has 22 vibration modes with natural frequencies below 2000 Hz, including six rigid body modes. The
natural frequencies are computed with the HCB model as well as with all six interface reduction models, and are
plotted in Fig. 10b. Table 10 gives a summary of the number of interface DOF used by each method. For this
example, each interface reduced model contains 48 interface DOF.

Table 9: The number of fixed-interface modes retained in the HCB model of each substructure in the can-beam model

Number of Internal Vibration Modes
(Maximum Frequency, Hz)

Sub. 1 Sub. 2 Total

20 6 26
(2360) (1840) (2360)
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(a) S-CC (b) EC L-CC (c) WC L-CC

(d) UWC L-CC (e) VN (f) H-CC

Figure 9: Interface mode shapes for each interface reduction method. The S-CC and WC L-CC modes exhibit global deflection at all interface DOF.
The EC L-CC, UWC L-CC, and H-CC modes show localized deformation at specific interface sets. The VN modes show localized deformation of
certain node groups.
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Figure 10: FE mesh (a), natural-frequency comparison (b), frequency-error comparison (c), and mode-error comparison (d) for the can-beam
model.

Figures 10c and 10d show the error in natural frequencies and mode shapes respectively. Even though the interface
between the two substructures is clearly divided into 8 patches, from an analysis standpoint it is treated as a single
interface. This means that just like for the cantilevered plate, the S-CC results are identical to the H-CC results, and
the WC L-CC results are identical to the UWC L-CC results. The frequency and mode error plots behave quite a
bit differently than in the previous examples. This is expected because the can-beam model has small, concentrated
interfaces that are relatively rigid compared to the broad, flexible interfaces in the previous examples. As a result,
the VN method performs much better for this type of interface because a single VN can quite easily capture the
dynamics of one of the contact patches. As long as at least 8 VNs are kept to represent the bolted interface, the
reduction performs quite well. The EC L-CC and WC L-CC / UWC L-CC methods perform slightly better still, and
once again the best performance comes from the S-CC / H-CC methods. Modes 12 and 13, and modes 17 and 18
show degeneracy in the mode shape error due to the symmetry of the can substructure. This explains the abnormally
high mode error for these two mode sets across all methods. The presence of this degeneracy also suggests that these
modes (and potentially others as well) have displacements that are localized within the can substructure and thus have
very little interface participation. Low interface participation may explain why some modes (e.g., 9, 10, 12, 13, 17,
and 18) have much lower frequency error than others.
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Table 10: The number (and cutoff frequency where applicable) of interface modes used by each method in reducing the can-beam model

Method

Number of CC Modes
Calculated Per Substructure Number of Interface DOF
(Maximum Frequency, Hz) (Maximum Frequency, Hz)

Sub. 1 Sub. 2

HCB - - 2232

S-CC / H-CC - - 48
(38880)

EC L-CC
27 27

48(12240) (12930)

WC L-CC / UWC L-CC
72 72

48(100040) (87780)

VN - - 8×6 = 48

Table 11: Computation times needed to create each reduced-order model for the can-beam model, and the computation time needed to solve for
each reduce-order model’s eigenvalues. (Note that the reduced-order modeling times for each interface reduction only include the time needed to
compute the interface reduction and do not include the HCB modeling time.)

Method
Model

Reduction
Time (ms)

Eigenvalue
Solution

Time (ms)

Full FE - 56,462
HCB 201,865 3,729
S-CC 5,805 18
H-CC 7,630 9
EC L-CC 11,444 25
WC L-CC 32,334 37
UWC L-CC 31,906 20
VN 937 10

The computation times for the can-beam model are summarized in Table 11. The model reduction time reported
for each interface reduction is the time needed just to perform the interface reduction, and does not include the time
needed to obtain the HCB model. Note that this model shows computation times for an industrial scale model, but
the relative computation times could still vary significantly for systems with more than two substructures, and more
complex interface configurations.

A performance study is carried out for the can-beam model by incrementing the cut off frequency and obtaining
the resulting maximum frequency error over the first 22 modes versus the number of interface DOF. Performance
curves are obtained in this way for each interface reduction method and plotted in Fig. 11. The local methods all
have quite similar performance. They achieve good frequency error (<1%) very quickly, but then plateau and do not
not fall below 0.1% error without exceeding 150 interface DOF. As discussed above, the VN method performs much
better for the can-beam system and does nearly as well as the other local methods. Table 12 summarizes the number
of modes necessary for each method to reach a frequency error of less than 1%.
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Figure 11: Study of maximum frequency error with increasing number of interface DOF for various interface reduction methods using the can-beam
model

Table 12: Minimum interface size to achieve 1% frequency error for the can-beam model

S-CC /

H-CC EC L-CC WC L-CC /

UWC L-CC VN

Number of CC Modes 11 22 25 48
Maximum Frequency, Hz 1810 3780 28130 -

4. Conclusion

This work provides a review and improvements on six different interface reduction techniques that can be applied
to Hurty/Craig-Bampton models and provides comparative examples to demonstrate the advantages and disadvantages
of each modeling approach:

1. System-level characteristic constraint
2. Exact-compatibility local-level characteristic constraint
3. Weak-compatibility local-level characteristic constraint
4. Uncoupled weak-compatibility local-level characteristic constraint
5. Virtual node
6. Hybrid-level characteristic constraint

Each method can be classified as either system-level (item 1), local-level (items 2-5) or hybrid-level (item 6). The
system-level technique applies the interface reduction using information from the fully assembled Hurty/Craig-Bampton
models whereas any of the four local-level techniques can be applied to individual substructures without explicitly
knowing the connecting substructures. The hybrid-level reduction falls in between these two since the reduction can
be applied locally to a single interface but still requires information about the immediately adjacent substructures.

Modal analysis solutions obtained by the system-level method are several orders of magnitudes more accurate
when compared with the local-level methods because the coupling between all substructures has been properly con-
sidered. However, the computational cost of the system-level eigenvalue analysis may be more expensive or even
unacceptable for large-scale FE models with millions of interface DOF. Under these conditions, the local methods,
where the modal analyses are applied at the substructure level before the system is assembled, are preferred. Local
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methods also retain a greater degree of versatility because they can be assembled in different configurations after
performing the reduction. Three of the four local-level reductions utilize interface vibration modes with either exact
or weak interface compatibility, and the last uses virtual nodes to reduce the interface. The three based on interface
vibration modes have comparable performance, and the virtual node method consistently has the worst performance
when applied to models with flexible interfaces. The hybrid-level technique achieves accuracy comparable to that
of the system-level technique because it utilizes assembled interfaces to produce the reduced-order basis, but also
achieves some of the benefits of local-level reduction. By computing the interface modes for sub-assemblies rather
than the whole system assembly, the computational cost of obtaining hybrid-level interface modes may be reduced
compared to the system-level interface modes, especially when there are many substructures with many interfaces.
Furthermore, when substructures are added, removed, or modified, only those interfaces connecting to the updated
substructures need to be recalculated.

The interface reductions presented in this paper are all based on methods from the literature, but several have
been improved or generalized in some way. Both of the local-level weak-compatibility methods are generalizations
of the method presented in [17] to systems with multiple interfaces. The hybrid-level technique is similar to the one
presented in [2], but the theory has been revised to allow for the rigid-body motion to be captured in the formulation.
This modification allows the method to be used for systems with free boundary conditions, resulting in a more accurate
set of predictions.

There are several open areas for future research relating to the interface reduction methods presented in this paper.
Some or all of the methods may be extended to nonlinear substructure models. Nonlinear calculations tend to be
even more computationally demanding than linear models, so interface reduction could have a dramatic impact in
reducing computational cost. Another possibility is to extend the interface reduction techniques to different CMS
representations such as those based on free-interface and attachment modes, or those that extend to higher frequencies
by using quasi-static constraint modes. Finally, it is possible to significantly enhance the accuracy of HCB models by
approximating the participation of the residual modes [15]. The same approach can be used to enhance the accuracy
of system-level interface reduction, and may also be extended to the local or hybrid-level techniques.
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Appendices
Appendix A User Selected Parameters

Several of the interface reduction methods described in the main body of this paper require the user to choose
some cut off parameters. This section provides a few studies designed to show the effect that these parameters have
on the performance (i.e. accuracy versus model size) of each method. The studies were performed on the W-bracket
model and thus the parameters selected as a result may not be optimal in general, however the results display the
general effect that the parameters have on the performance.

A.1 EC L-CC

When implementing the EC L-CC interface reduction, the user must decide on a range-space truncation tolerance,
σR, to be used in conjunction with the SVD orthogonalization in Eq. (18). Selecting a truncation tolerance σR = 0
will result in a pure orthogonalization with no truncation. This is practically equivalent to a Graham-Schmidt or QR
orthogonalization. As σR is increased, the level of truncation grows, thus reducing the model size and increasing
error. To find the value of σR that works best for the W-bracket model, a performance study was carried out. For each
value of σR, the number of interface DOF in the EC L-CC model was slowly increased by increasing the frequency
cutoff used to obtain the interface mode sets. For each of these models, the maximum frequency error over the first 26
elastic modes was evaluated with respect to the HCB model. The performance curves are plotted in Fig. A.1. Overall,
the best performance was achieved using σR = 1 × 10−4. This agrees with the choice of σR used in [12].

A.2 WC L-CC

To implement the WC L-CC interface reduction, the user must decide on an approximate null-space tolerance,
σN , used to weakly enforce the constraint equations. In the WC L-CC method, error occurs due to (1) interface mode
truncation, and (2) inexact compatibility. Raising σN will increase the number of interface DOF and thus decrease
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Figure A.1: EC L-CC performance curves showing maximum frequency error versus number of interface DOF for the W-bracket model. Different
curves are obtained by varying the truncation tolerance, σR.

the first kind of error, but will relax the compatibility tolerance and thus increase the second kind of error. To find the
value of σN that works best for the W-bracket model, a performance study was carried out. For each value of σN , the
number of interface DOF in the WC L-CC model was incremented and the maximum frequency error over the first
26 elastic modes was evaluated with respect to the HCB model. The performance curves are plotted in Fig. A.2. The
best performance was achieved using σN = 1 × 10−1. It is interesting that optimal results were obtained with such a
low value of σN ; apparently this model is more sensitive to mode truncation than inexact compatibility.
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Figure A.2: WC L-CC performance curves showing maximum frequency error versus number of interface DOF for the W-bracket model. Different
curves were obtained by varying the null-space tolerance, σN .
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A.3 UWC L-CC

Similar to the WC L-CC method, the WC L-CC method requires a null-space tolerance, σN . To find the best
value of σN , a performance study was carried out exactly the same way as in the previous section. The resulting
performance curves are shown in Fig. A.3. Once again, the best performance was observed with σN = 1 × 10−1.
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Figure A.3: UWC L-CC performance curves showing maximum frequency error versus number of interface DOF for the W-bracket model.
Different curves were obtained by varying the null-space tolerance, as well as the mode selection method.

29


	Introduction
	Interface Reduction Techniques
	Hurty/Craig-Bampton Method
	System-Level Reduction
	Local-Level Reduction
	Exact Compatibility Hong2013
	Weak Compatibility
	Uncoupled Weak Compatibility
	Virtual Node

	Hybrid Reduction

	Numerical Examples and Discussion
	Cantilevered-Plate Model
	W-Bracket Model
	Can-Beam Model

	Conclusion
	User Selected Parameters
	EC L-CC
	WC L-CC
	UWC L-CC




