
RICE UNIVERSITY 

Passivity preserving model reduction in the 
context of spectral zero interpolation 

by 

Roxana Ionutiu 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Masters of Science 

APPROVED, THESIS COMMITTEE: 

(thanasios C. Antoulas, Chair 
Professor of Electrical and Computer 
Engineering 

^HX£L. 
Mark Embree 
Associate Professor of Computational and 
Applied Mathematics 

Kartik Mohapfam 
Assistant Professor of Electrical and 
Computer Engineering and Computer 
Science 

Danny/CJ. Sorensen 
Noah Harding Professor of Computational 
and Applied Mathematics 

Houston, Texas 

June, 2008 



UMI Number: 1466787 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 1466787 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Apn Arbor, Ml 48106-1346 



ABSTRACT 

Passivity preserving model reduction in the context of spectral zero interpolation 

by 

Roxana Ionutiu 

This thesis presents a new passivity preserving model reduction method for circuit 

simulation, based on interpolation of dominant spectral zeros. Implemented as an 

eigenvalue approximation problem, the dominant spectral zero method (dominant 

SZM) is based on the subspace accelerated dominant pole algorithm (SADPA), which 

computes dominant spectral zeros automatically. The application of dominant SZM 

is extended beyond its interpolatory nature, proposing solutions for several problems 

in passive reduction. In particular, better approximation is achieved when combined 

with partial realization for descriptor systems, a framework for SISO reduction of the 

voltage transfer function in transmission lines is presented, and the implementation 

of MIMO dominant SZM is developed. Dominant SZM reduces automatically passive 

circuits irrespective of how the system equations are formulated, transmission line 

models with controlled sources, or circuits containing susceptance elements. Results 

show that dominant SZM gives comparable and often more accurate reduced models 

than state of the art techniques. 
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Chapter 1 

Introduction 

1.1 Motivation 

Model reduction for large-scale systems arising in circuit simulation has been exten­

sively studied. See for instance [1] for a selection of recent results. Model reduction of 

transmission lines is also addressed in [2]. Such circuits yield systems with millions of 

internal variables, making simulation in full dimension unfeasible. A model of lower 

dimension is needed to approximate the behavior of the original circuit and replace 

it during simulation. For interconnects involving resistors, capacitors, inductors or 

controlled sources, the associated systems are passive, with positive real transfer func­

tions (for details see [3]). We are interested in reduced order models that are also 

passive. This guarantees stability of the overall nonlinear macro-model, when the 

reduced model replaces the original in the simulation process [4]. Furthermore, pas­

sivity insures that the reduced system is realizable, meaning that it can be synthesized 

into an electrical circuit with RLC components. This would be used in simulation 

in place of the original circuit [5]. The reduction method should have an efficient, 

robust implementation, suitable for large-scale applications. 

This thesis proposes a passivity-preserving model order reduction method that is 

more general than existing methods such as PRIMA [4, 6]. The dominant spectral zero 

interpolation method (dominant SZM) puts no constraints on the system matrices 

and generates passive reduced order models automatically. Based on an iterative 
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solver for an associated Hamiltonian eigenvalue problem [7, 8], the method uses a 

rational Krylov approach to construct a reduced model via interpolation. Unlike 

modal approximation [9, 10, 11], which matches dominant poles, dominant SZM 

matches the dominant spectral zeros of the original system, guaranteeing passivity. 

In comparison to other passivity preserving methods such as PRBT [12], it avoids 

costly large-scale matrix factorizations. 

Passivity preserving model reduction via spectral zero interpolation was first in­

troduced in [13, 14], however several open questions remained. This thesis proposes 

solutions to these problems and incorporates them in the reduction method as follows: 

(PI) In the spectral zero method (SZM) of [13, 14], it was still unclear which spectral 

zeros to select as interpolation points, such that the reduced system models 

closely the behavior of the original. Here a dominance criterion for selecting 

the spectral zeros is proposed. 

(P2) The second issue arose from large scale applications, where computing all spec­

tral zeros is computationally infeasible. An iterative algorithm is required to 

compute automatically only the spectral zeros of interest. Using the recent work 

of [11], [15, Chapter 3], a numerically efficient algorithm is proposed for com­

puting the dominant spectral zeros, which is suitable for large scale problems. 

(P3) For systems with D = 0 (see (1.1))^ the projection method in [13,14] is modified, 

so that the reduced system is strictly passive. 

Aside from the development of dominant SZM, several new approaches for pas­

sivity preserving reduction are presented: 

(P4) A framework is developed for combining dominant spectral zero interpolation 

with matching of Markov parameters for descriptor systems arising in circuit 



simulation. The approach enhances the quality of the approximation and is one 

alternative for addressing (P3). 

(P5) A procedure for reducing a single-input-single-output network with respect to 

the voltage transfer function is described, which insures that the reduced voltage 

transfer function is underlying a reduced model that is realizable with RLC 

components. 

(P6) Reduction of multiple-input-multiple-output (MIMO) systems with dominant 

SZM is implemented and accompanied by examples. 

The rest of the thesis is organized as follows. As part of this introductory chap­

ter, Sect. 1.2 sets the general framework for model reduction by projection, reviews 

definitions and properties for descriptor systems, and introduces passivity. Sect. 1.3 

discusses possible challenges for passivity preservation with some popular reduction 

techniques. Chapter 2* describes in detail the dominant spectral zero interpolation 

method, dominant SZM. Problems (P1,P2,P3) are addressed in that chapter, and the 

method is compared with other popular techniques (PRIMA, PRBT, modal approx­

imation) via extensive numerical results. Further developments based on dominant 

SZM follow in Chapters 3 and 4, where (P4) and (P5, P6) are addressed respectively. 

The contributions of this thesis are summarized in Chapter 5. 

1.2 Background on model reduction 

This section formalizes the model reduction problem mathematically. It introduces 

basic definitions and concepts used throughout the thesis and in model reduction 

"This chapter is part of an individual article [16]. 
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problems in general. Established results for model reduction preserving stability and 

passivity are also reviewed. The background provided here is by no means compre­

hensive, and the reader is referred to [3] for further details and proofs. 

1.2.1 The model reduction problem 

The general framework in model reduction involves the approximation of an original 

dynamical system described by a set of differential algebraic equations (DAEs). Us­

ing system-theoretic notation, these equations are frequently in the descriptor-form} 

S(E,A,B,C,D)[3 , 14, 17], [15, Chapter 1] namely: 

Ex(*) = AxM + Bu(*) 

y(t) = Cx(*) + Du(*) 

where the entries of x(£) are the system's internal variables, n(t) is the system input 

and y(i) is the system output, with dimensions x(t) G E", \i(t) G Rm, y(t) G Rp. 

Correspondingly, E G RnXn, A G RnXn, (A,E) is a regular pencil (see definition 1.2), 

B G RnXm, C G RpXn, D G RpXm. The dimension n of S is usually very large. 

The goal of system approximation is to constrain the dynamics of the system to 

lie in a lower dimensional subspace k •C n. The associated reduced order model 

S ( E , A , B , C , D ) is: 

Ex(t) = Ax(*)+Bu(*) 

y{t) = Cx(t) + Du(i) 

where x G Rk, E G Rkxk, A G Rk*k, B G RkXm, C G RpXk, D G RpXT 

^The term descriptor system denotes systems with E possibly singular, as opposed to state space 
system where E is invertible or the identity matrix. 
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Model reduction methods considered in this thesis belong to the class of projection 

methods, in which the reduced system £(E , A, B, C, D) is obtained by projecting the 

internal variables of the original system x onto the subspace ColSpan V C R"xfc, 

along Null W* C Rk*n, where V and W need to be computed. Denoting the internal 

variables of the reduced order model with x, the approximate internal variables of 

the original system become x ~ Vx, and the reduced system matrices are: 

E = W*EV, A = W*AV, B = W*B, C = CV. (1.3) 

The associated oblique projection which reduces the system is I I = V W , obtained via 

an LU factorization: W*EV = LU, V = VU" 1 , W* = L^W*, so that W*EV = Ifc. 

Model reduction methods differ in the way the corresponding projecting matrices 

V and W are constructed. These determine how accurately £ approximates £ , as 

well as what properties of the original system £ are preserved by the reduced £ . In 

circuit simulation, preserving the stability and passivity (defined in Sect. 1.2.2) of the 

original system is of crucial importance. The method under consideration achieves 

this through appropriate choice of V and W. 

1.2.2 System parameters 

In the following, a descriptor system S(E, A, B ,C,D) described by (1.1) is given. 

U(s) and Y(s) are the Laplace transforms of the system's input u(t) and output y(t) 

respectively. 

Definition 1.1 The system transfer function is denned as: 

H ( s ) : = uS = c(sE_ArlB+D 
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Definition 1.2 The poles of £ are all s G C where H(s) = oo, i.e., the generalized 

eigenvalues of the pair (A, E)*. Throughout this work, it is assumed that the matrix 

(A—<TE) is nonsingular for some a € C [17], which in mathematical terms is expressed 

as the matrix pencil (A, E) being regular. 

Corollary 1.1 

£ is stable if for all poles X, with \X\ ^ oo, Re(X) < 0 is satisfied, i.e., if all finite 

poles are located in the left half of the complex plane. 

Definition 1.3 The spectral zeros of £ are defined as: 

All SEC such that det[H(s) + H*(-s)] = 0, where (1.4) 

H*(-s) = B*(-sE*-A*)-1C+D*. (1.5) 

Definition (1.4) reveals the symmetry of spectral zeros. Every spectral zero Sj has a 

mirror image in the complex plane with respect to the imaginary axis. Real spectral 

zeros Si come in pairs (si5 —Si) while complex spectral zeros come in quadruples of the 

form: 

(S i ,s*,-^,-<) (1.6) 

*For A € CnXn, E £ C"*", A is a generalized eigenvalue of (A, E), if 3x 6 Cn, x ^ 0 such that 
Ax=AEx. 
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1.2.3 Passivity and positive realness 

Passive systems (such as RLC circuits) are systems which do not generate energy. 

They are dissipative with respect to the supply rate (1.7) (think of power delivered 

to the system, through the external variables input u and output y). Dissipativity 

w.r.t. s means that the system absorbs energy (supply) [3]. In other words, passive 

systems satisfy the dissipation inequality (1.8) [3, Theorem 5.22]. 

s = y*u + u*y (1.7) 

Re f u*{T)y{r)dn 
J—oo 

> 0 V t G R (1.8) 

Positive real rational functions H(s) = C(sE — A) *B + D on the other hand satisfy 

the following conditions: 

• H(s) is analytic for Re(s) > 0 

• ite[H(s)] > 0 for Re(s) > 0, where s is not a pole of H(s). 

The following well-known theorem relates passivity to the positive realness of the 

underlying transfer function. Corollary 1.2 is the foundation for the spectral zero 

interpolation approach for preserving passivity [13, 14]. 

Theorem 1.1 

S(E, A, B, C, D) is passive iff H(s) = C(sE - A ) - J B + D is positive real 

Corollary 1.2 

If for all spectral zeros s we have Re(s) ^ 0, then S is strictly passive. 



8 

1.3 Challenges for passivity preservation 

Many model reduction methods have been developed which preserve passivity, but 

they rely on some restrictive assumptions about the system matrices. This section 

summarizes such possible hurdles. PRBT [12] for instance requires an invertible 

E, while PRIMA [4] starts from system equations in a so-called "passive form" [5]. 

Dominant SZM on the other hand imposes none of these restrictions. Nevertheless, 

the challenge for dominant SZM is ensuring strict passivity for systems with D = 0, 

and possible solutions are presented in this thesis. 

1.3.1 E singular and PRBT 

In circuit simulation applications, systems with singular E arise frequently and pro­

vide a challenge to the model reduction problem formulated in Sect. 1.2.1, because 

some of the associated system poles and spectral zeros (defined in Sect. 1.2.2) are 

at infinity. Model reduction thus becomes numerically more sensitive and construct­

ing the required projections is more involved than for the case when E is invertible. 

A study of different model reduction methods for systems involving an invertible E 

can be found in [18]. If E is invertible, system (1.1) can be converted to state-space 

representation through left-multiplication by E"1. See [3] for an overview of model 

reduction methods for state-space systems. 

Some reduction methods have been adapted for general descriptor systems with 

singular E. Balanced truncation for descriptor systems is described in [17], and modal 

approximation as presented in [11, 19] also handles descriptor systems. For Krylov 

methods we refer to [20]. However, these methods are not passivity preserving in 

general. PRBT [12] is passivity preserving, but relies on invertible E. Dominant 

SZM on the other hand is passivity preserving and deals easily with singular E. 



1.3.2 "Non-passive" system formulation and PRIMA 

In circuit simulation, the system equations are often expressed in the modified nodal 

analysis (MNA) representation (1.9). 

c±(t)+g*(t) = Bu(t) 

y(t) = Cx(t) 

For MNA equations (1.9), internal variables are chosen as the node voltages and 

loop currents: x(£) = \v(t), i(t)]T. I*1 this case (1.1) becomes MNA (1.9), with 

E = C, A = — Q, B = B, C = £ , D = 0. To preserve passivity via congruence 

transformations, industry preferred methods such as PRIMA [4] assume systems are 

in "passive-form", imposing several constraints on the system matrices: 

C is definite (1.10) 

G + g* is definite (1.11) 

C = B*. (1.12) 

In applications however, some circuit simulators are known to generate system 

equations which do not satisfy these assumptions. In [21], for instance, the authors 

point out difficulties in automating the model reduction of a transmission line, for 

which (1.10) is violated. In such circumstances, a sign change which negates current 

variables is needed before applying a reduction algorithm like PRIMA, so that C in 

(1.9) becomes definite. This reorganization of equations not only requires knowledge 

of how they are generated internally, but may also conflict with other simulation types 

or data-structures. Dominant SZM avoids these manipulations by reducing a system 
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with an indefinite E in (1.1) directly, while preserving stability and passivity. Other 

examples which violate (1.11) include circuits with controlled sources and circuits 

with susceptance elements (RCS circuits) [22, 23]. Unlike with PRIMA, passivity is 

guaranteed when reducing such systems with dominant SZM. Finally, with dominant 

SZM, (1.12) need not hold to insure passivity for the reduced model, as long as the 

original transfer function is positive real [3, 13, 14]. 

To accommodate reduction for a broader class of dynamical systems, the descrip­

tor system notation (1.1) is used throughout this thesis, where E is possibly indefinite 

and singular, and no assumptions are made about the other system matrices unless 

otherwise stated (see Chapter 3). The dominant spectral zero interpolation method 

proposed in this thesis successfully handles descriptor systems while preserving pas­

sivity and stability, irrespective of whether (1.10), (1-11), (1-12) hold, and can be 

implemented efficiently. 

1.3.3 D = 0 and dominant SZM 

Often in circuit simulation, the original differential equations are formulated so that 

D = 0. The spectral zero interpolation approach as developed in [13, 14] assumed 

D ^ 0 in the output equation of the original system, so that the reduced model is 

strictly passive. This thesis extends the application of dominant SZM to guarantee 

stable and strictly passive reduced models also when D = 0. Possible approaches 

are treated in Sect. 2.3.2 and Chapter 3. The method in Sect. 2.3.2 makes no 

assumptions about the structure of the system matrices. In Chapter 3, information 

about the structure is used. 
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Chapter 2 

Passivity preserving model reduction using 
dominant spectral zero interpolation 

We present a new approach for passivity preserving reduction via interpolation of 

spectral zeros. A dominance criterion for spectral zero selection is proposed, which 

enhances approximation quality. Spectral zeros are computed as eigenvalues of an as­

sociated Hamiltonian eigenvalue problem. This is solved efficiently using the subspace 

accelerated dominant pole algorithm (SADPA), which computes relevant spectral ze­

ros automatically. The passive reduced order model is computed by projection. Our 

method extends beyond applications suitable for reduction via PRIMA: it reduces 

automatically systems with an underlying possibly indefinite E matrix, transmission 

line models with controlled sources, or circuits containing susceptance elements. We 

provide approximation results with the proposed method, and compare it against 

state of the art techniques such as modal approximation, PRIMA and positive real 

balanced truncation (PRBT). 

2.1 Overview 

This chapter describes the complete procedure for passivity preserving reduction via 

interpolation of dominant spectral zeros. It outlines model reduction by projection 

with efficient dominant spectral zero interpolation in three stages: construction of pas­

sivity preserving projection (Sect. 2.2.1), dominant spectral zero selection (Sect. 2.2.2) 

and implementation with the recent subspace accelerated dominant pole algorithm 
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(SADPA) (Sect. 2.2.3). Sect. 2.3 addresses possible formulations for the Hamiltonian 

eigenvalue problem used in SADPA. Numerical results are presented in Sect. 2.4, fol­

lowed by a discussion on complexity and convergence for dominant SZM in Sect. 2.5. 

Finally, Sect. 2.6 summarizes the analysis and motivates further research. 

2.2 Dominant Spectral Zero Method with SADPA 

This section addresses two of the open problems stated in Sect. 1.1: (PI) a classifi­

cation of spectral zeros that reveals which ones to pick as interpolation points, and 

(P2) their efficient computation using SADPA [11], [15, Chapter 3] ((P3) is treated 

in Sect. 2.3.2). The method combines three ingredients: a dominance criterion for 

spectral zeros, a rational Krylov-type interpolation which guarantees passivity, and 

an iterative solver of a large-scale Hamiltonian eigenvalue problem. These make SZM 

suitable for reducing passive large-scale systems with more general structures and no 

constraints on the system matrices. 

The proposed dominance criterion for the selection of spectral zeros is related 

to the magnitude of the associated residues. Dominant spectral zeros, similar to 

dominant poles [11], [15, Chapter 3], characterize the system's response, thus using 

them as interpolation points enhances approximation quality. Because most domi­

nant spectral zeros can be scattered anywhere in the complex plane, computing them 

efficiently is a demanding task. We overcome this by first converting the spectral 

zero computation into a generalized Hamiltonian eigenvalue problem, similar to [14] 

(see also [7] and [8] for numerical methods involving Hamiltonian eigenvalue prob­

lems). Dominant spectral zeros and the associated projection eigenvectors are then 

computed efficiently using a variant of the Subspace Accelerated Dominant Pole Al­

gorithm (SADPA) (introduced in [11] and refined in [15, Chapter 3]). SADPA is able 
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to find iteratively spectral zeros and associated residues, according to a dominance 

criterion specified a priori, meeting the purpose of efficient spectral zero computation 

for large-scale applications. 

2.2.1 Model reduction by projection preserving passivity 

The spectral zero method (SZM) belongs to the class of Krylov based reduction meth­

ods. These exploit the use of Krylov subspace iterations to achieve system approxima­

tion by moment matching [3]. In the general case, using the rational Krylov approach 

[20], [24], reduced systems are obtained which match moments at preassigned inter­

polation points in the complex plane [3]. SZM is a rational Krylov method, where 

interpolation points are a subset of the spectral zeros of the original system [13], [14]. 

This selection guarantees stability and passivity for the reduced system [13], [14]. 

Summarizing [13] and [14], we describe how to build projection matrices V and 

W such that the reduced system S(E, A, B ,C , D) is strictly passive (i.e., E has no 

spectral zeros on the jcv axis) and stable (i.e., all poles of E are located in the left 

half of the complex plane). 

From (1.4), spectral zeros are poles of the rational function: 

G(S) = [H( S )+H*( - S ) ] - \ (2.1) 

where H*(—s) is computed as in (1.5). We seek the form of the system E G , associated 

with transfer function (2.1). This allows us to compute spectral zeros of the original 

system E as poles of E G - For an equivalent interpretation of spectral zeros as poles 

of an inverse system we refer to [25]. 
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Theorem 2.1 

Given system S(E, A , B , C , D ) with transfer function H(s) = C(sE - A) _ 1 B + D 

(assuming invertible T)+T>*), the spectral zeros of S are the poles of the associated 

Hamiltonian system E ^ E ^ , A^, B^, C^, A), where: 

(2.2) 

A, Ch=-A(C B*) , A=(D+D*)"1. (2.3) 

Proof 2.1 See Appendix A.l. 

Thus, spectral zeros of S are the generalized eigenvalues si, . . . , S2„of the Hamil­

tonian eigenvalue problem (2.4): 

A J t = EfcRA (2.4) 

where A = diag(si, . . . , s2^). In (2.4), we partition the Hamiltonian eigenvalues 

A=diag(A_, A+ , AQO) according to their location in the left, right half of the complex 

plane or at oo respectively (i.e., the spectral zeros of E are grouped into stable, 

antistable* and infinite). The right eigenvectors R are also partitioned accordingly: 

(2.5) 

It was shown in [14] that a passive and stable reduced model S(E, A, B, C, D) of 

*s € C is stable if Re(s) < 0 and antistable (or "unstable") otherwise 
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order k is obtained by constructing the projecting matrices as follows: 

V=X_[ : i l : fcp W=Y_[:>1:fc] (2.6) 

where the k columns of X_ and Y_ are chosen such that the corresponding spectral 

zeros Si,...,Sfc all belong to left half plane (with (2.6), stable spectral zeros are 

interpolated, but the result also holds for antistable spectral zero interpolation; the 

requirement is that interpolated spectral zeros all belong to the same half plane). 

V = [ ^ E - A ^ B , ••• , ( s f c E - A ^ B ] (2.7) 

W = [ ( -^ET-A*)- 1 ^, ••• , ( - ^ - A * ) - ^ ] (2.8) 

Through this construction, (2.7) and (2.8) are satisfied [14], and the reduced X in­

terpolates S at the chosen s» and their mirror images —s*, i = \,...,k [13], [3]. The 

projection matrices V and W insure that the reduced system satisfies the positive 

real lemma [3], [13], [14], thus passivity is preserved. 

We emphasize that there is no restriction on the singularity or definiteness of E 

with SZM. Even when E is singular and some of the associated spectral zeros are 

at oo, in V and W only the eigenvectors corresponding to finite spectral zeros are 

picked. No additional work is needed to deflate the infinite modes of the system to 

enforce invertibility of E (in [17], deflation of infinite modes is described as part of 

the balanced truncation method). SZM guarantees passivity by construction, because 

the reduced model interpolates the original passive system at spectral zeros, and the 

structure of the system matrices is irrelevant. 
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2.2.2 Dominant spectral zero selection 

Having determined how to build matrices V and W to preserve passivity, the natural 

question is which k out of the n stable spectral zeros of S to pick, so that the 

approximation error | |S — S|| is small. 

Given that spectral zeros of S are the poles of G(s) defined by (2.1), we propose 

a selection criterion based on the dominance of each spectral zero, which introduces 

the effect of the residues of the transfer function G(s). 

Using ideas from modal approximation [11], [3], we express the partial fraction 

expansion of G(s), in terms of poles s, of S Q and associated residues Rj [26], resulting 

in: 

In R 

G(*) = E I ^ T ? <2-9) 

Spectral zeros Sj and residues Rj are found via the Hamiltonian eigenvalue problem 

(A, R, L) = eig(A/n Efc), where: 

A f tR = EfeRA, L*Afe = AL*EA, and 

A = di&g(s1,...,sn,-s*1,...,-sn) 

R = [ r i , . . . , r 2 n ] , L=[l 1 , . . . , l 2 r a] . 

A contains the spectral zeros of S . The residues Rj are computed from the right and 

left eigenvectors using: 

7 i = Cfcr i(i;Efcr i)-1, &=1- B ' » ^ = 7 i f t (2-10) 
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Definition 2.1 Dominant spectral zeros Sj of 23 are the spectral zeros with largest 

associated measure (2.11), where residues Rj are computed from (2.10) [11]: 

iJte(8i)r
 {- } 

A modal approximant E G of dimension 2k for the Hamiltonian system E G , can be 

be obtained by interpolating E G at its 2fc, k <C n most dominant poles (i.e., at the 

k dominant spectral zeros of E, together with their mirror images), such that the 

reduced Hamiltonian system E Q has transfer function: G(s) = X)j=i ir^r- Using 

this observation, a passive reduced E for E, is obtained by first picking the k most 

dominant spectral zeros from A in the same half plane. The corresponding columns 

of R are then used to build matrices V and W as described by (2.6). V and W 

finally project E to the reduced E according to (1.3). A summary of the reduction 

procedure is given in Appendix A.2. 

Classifying spectral zeros according to large (2.11) is motivated by the fact that 

peaks of the frequency response of G(s) typically occur close to frequencies Uj, where 

Sj = o-j + iu)j [11], [3] (see also Fig. 2.11). However, depending on the application, 

one could select spectral zeros that are dominant in a different sense. For example, 

spectral zeros with small imaginary parts or small in absolute value could be preferred 

(see for instance [27]). Different selection criteria will yield different approximations. 

2.2.3 Algorithm for dominant spectral zero approximation (SADPA) 

To make the dominant spectral zero reduction method suitable for large scale appli­

cations, we propose an iterative procedure (developed in [11] and [15, Chapter 3]) for 
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computing efficiently dominant spectral zeros and associated V and W projecting 

matrices. 

As seen in (2.10), to determine the dominant spectral zeros, all residues, spectral 

zeros and associated eigenvectors should be available. This requires full computation 

of the Hamiltonian eigenvalue problem (2.4), which is numerically infeasible for large 

scale applications. An efficient alternative is to use an iterative algorithm to approxi­

mately compute only the desired k most dominant eigentriplets (SJ, Tj, \J), j= 1 , . . . , k 

of (Ah, E/j) (a pair of complex conjugate eigenvalues (SJ,S*J) counts as one spectral 

zero). 

Difficulties in computation arise from the distribution of dominant spectral zeros, 

which can be scattered anywhere in the complex plane. The scope of popular Arnoldi-

type algorithms is limited for such applications. For these methods, convergence starts 

with well separated eigenmodes located at the extremes of the spectrum. However, 

extreme eigenmodes are not necessarily dominant according to measure (2.11). Fur­

thermore, dominance criteria other than (2.11) could be relevant, depending on the 

application. Thus, a more flexible iterative algorithm for eigenvalue computation is 

needed, where the desired dominance criterion is predefined and convergence occurs 

accordingly. This can be achieved through the Subspace Accelerated Dominant Pole 

Algorithm (SADPA) proposed in [11], [15, Chapter 3]. For an overview of SADPA 

and implementation details adapted for efficient spectral zero computation, see Ap­

pendix A.3. 

In this work, SADPA is used to compute dominant spectral zeros of the original 

system as dominant poles of the associated Hamiltonian system. The implementa­

tion of SADPA from [11], [15, Chapter 3] is adapted here to account for the 4-fold 

symmetry (1.6) of spectral zeros, ensuring convergence respects this structure (for an 
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outline see Appendix A.3). 

With SADPA, we compute the (2ra x k) dimensional dominant right and left 

eigenspaces R = [n, . . . , rfc] G C2"xfc and L = [ll5 . . . , \k] € C2nXk of (Ah,Eh), 

associated with the k most dominant spectral zeros of S . Similarly to (2.6), projection 

matrices V and W are constructed by choosing the k columns of R, that correspond 

to the stable spectral zeros. Finally V and W from (2.12) reduce S according to: 

V = R[l:n,l:fc]> W = R[n+1:2n,i:fc] (2.12) 

W*EV,W*AV 

cv 
W*B 

D 

2.3 Hamiltonian system variants 

As shown in Sect. 2.2.1, the passivity preserving projection for an original system S 

is obtained from an associated Hamiltonian system. We address possible formula­

tions for the Hamiltonian system under consideration. Although these Hamiltonian 

variants are theoretically equivalent, numerical differences occur in implementation 

with SADPA, influencing convergence rate and computational cost. We also treat 

reduction for systems with D = 0 in the original S , providing a solution to problem 

(P3) mentioned in Sect. 1.1. 

2.3.1 Structured Hamiltonian 

In Sect. 2.2.1, we showed how spectral zeros of S are determined as poles of the 

associated Hamiltonian system S^ (2.2), (2.3). In (2.2) however, sparsity for A& may 

be lost in certain applications, particularly when B and C are full. This degrades 

performance of SADPA (especially in the solve step 3, see Appendix A.3, Algorithm 
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1). We avoid this by replacing E^(Efe, Afc,Bfc,Cfe, A) from (2.2), (2.3), with the 

equivalent structured Hamiltonian system ES(ES, AS ,BS ,CS , A) in the form (2.14), 

(A.7), which preserves sparsity. This is demonstrated through the following theorem. 

Theorem 2.2 

Given system S (E , A, B, C, D) with transfer function H(s), and the structured Hamil­

tonian system S5(ES, A s , B s , C s , A), with: 

( 

A, = 

a = 

A 0 B 

0 -A* -C* 

C B* D+D* 

C B* 

,ES = 

E 0 0 

0 E* 0 

%0 0 0 

- A ( C B* O ) , A = (D+D*)-1 

\ 

V 

>BS — 

V ° / 

(2.14) 

(2.15) 

the following holds (assuming invertible D+D*): 

1) ES(E5 ,AS ,BS ,CS , A) has transfer function G(s) = [H(s)+H*(—s)]-1, the same 

as the system Sfe(EA, Ah, Bh, Ch, A) specified by (2.2), (2.3). 

2) Spectral zeros of £ are the generalized eigenvalues of (As, E s) in the sparse 

form (2.14), the same as the generalized eigenvalues of the pair (Ah, EA) in the 

form (2.2). 

Proof 2.2 See Appendix A.l. 

The Hamiltonian eigenvalue problem (2.4) in structured form becomes ASR = 

ESRA, and SADPA is applied on the structured Hamiltonian ES(ES, As, B s , Ca, A), 

without affecting sparsity. 
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2.3.2 The D = 0 case 

According to [13,14], the theory in sections 2.2 and 2.3.1 assumed D ^ O in the output 

equation of the original system, so that the reduced model (2.13) is strictly passive. 

Often, for systems arising in circuit simulation, the original differential equations are 

formulated so that D = 0*. In this case, the construction of the Hamiltonian whose 

poles are the spectral zeros of S(E, A, B, C, 0) is shown in the following theorem. 

Theorem 2.3 

The structured Hamiltonian system associated with S(E, A, B, C, 0) has the form: 

( 

A. = 

A 

0 

c 

0 

-A* 

B* 

B l 
-C* 
0 J 

/ 

, Es = 

V 

E 0 0 ^ 

0 E* 0 

0 0 0 
/ 

B., = 

V 1 ! 

i C s C B* I 
) 

Proof 2.3 See Appendix A.l. 

For such S(E ,A, B, C, 0), the projection (2.13) (with W and V computed either 

from the Hamiltonian eigenvectors (2.12), or via (2.7) and (2.8)), yields a lossless 

reduced system, with all poles on the JUJ axis [28]. When D = 0, the projection 

which guarantees a stable and strictly passive reduced model turns out to be a slight 

modification to (2.13), and is treated next. 

*For the purpose of this chapter, we assume SISO systems, where D is scalar. 
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We evaluate the transfer function at s = oo according to (2.16), and distinguish 

two cases: H(s) 18=00 = 0 and H(s) |« ) 0 ^ 0. 

H(s)|«30 = C(sE-A)-1B|s=oo = D (2.16) 

Case H(oo) = 0 

As mentioned above, reduction according to (2.13) with D = 0 would yield a lossless 

system, with all poles on the ju) axis [28]. To guarantee reduced models with poles 

strictly in the left half plane, we solve the modified Hamiltonian eigenvalue problem 

(2.17), where 8^0 replaces EH-Dt:=0 in (2.14). Lemma 2.1 summarizes the complete 

stability and passivity preserving reduction procedure. 

/ A 0 B 

0 -A* - O 

C B* 8 

\ 

) \ Z s / 

' E 0 0 ^ 

0 E* 0 

0 0 0 

' x ^ 

\ Z s / 

As (2.17) 

Lemma 2.1 

Given an original system with S(E, A, B, C, 0) and H(oo) = 0, a stable and passive 

reduced system is obtained as follows: 

1) Solve the modified Hamiltonian eigenvalue problem (2.17) with large 8 (8 G 

[104,105] in practice), using SADPA. 

2) Partition X<$ and Ys corresponding to the stable, anti-stable and infinite Hamil­

tonian eigenvalues A$. Choose the k most dominant spectral zeros from As (in 

the left half plane) and build the corresponding projecting matrices X$, Ys, 
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according to (2.18): 

Zs \*s/ 

X^_ Xj ) + X,$)00 

Y^- Y&,+ Ys,oo 

^ Zs- ZS<+ 2i5,oo J 

Xs=XS-[:1:k] 

Ys=Ys,-bl.k] 

Zs = Zs,-[:1.k]. 

(2.18) 

3) Obtain the reduced system by projection, keeping D = 0: 

£ = 
Y*5EXs,Y*sAXs 

CXS 

Y * s 
(2.19) 

S from (2.19) is stable and strictly passive, and interpolates S (E , A, B, C,0) at 

points close to the dominant poles of S(E, A, B ,C,0) , together with their mirror 

images. 

Proof 2.4 See Appendix A.l. 

In particular, S is chosen so that the poles of the projected system are shifted away 

from the JUJ axis, resolving the above mentioned problem. The question arises of how 

to appropriately choose 5, such that the resulting projection also gives meaning to 

the approximation result. Inspired by the observation that dominant spectral zeros 

and dominant poles are closely related (see Sect. 2.4.4), it turns out that 5 —> 00 

transforms (2.17) into an eigenvalue problem whose solution A«j are points close to 

the poles of the original system, together with their mirror images. Interpolation at 

these almost dominant poles and their mirror images gives a strictly passive reduced 

model that is implicitly stable and furthermore embeds characteristics of the system 

response, similar to modal approximation. Finally, by keeping D = 0 in the reduced 
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model, the interpolating projectors X,$ and Y<$ reduce the original S(E, A, B, C, 0) so 

that the response H(s) | j^o=0 is also captured. 

Case H(oo) ^ 0 

In this case, the transfer function response at s = oo reveals a value for D ^ 0, even 

if the original data is provided as E(E, A, B, C, 0). This is because D ^ 0 is ac­

tually embedded in A, and can be recovered by evaluating (2.16). D is then used 

in constructing the stable, passive, reduced model, which interpolates the original at 

dominant spectral zeros. To this end, SADPA computes the most dominant spec­

tral zeros and the associated right/left eigenvectors vectors from the Hamiltonian 

eigenvalue problem: 

/ 

V 

A 0 B ^ 

0 -A* -C* 

C B* 0 

f x l 
Y 

lZJ 

/ 

= 

\ 

E 0 0 ^ 

0 E* 0 

0 0 0 

Y 

\ Z / 

(2.20) 

Grouping the right eigenvectors corresponding to the stable, anti-stable and in­

finite spectral zeros, we construct the projecting matrices X, Y and Z as in (2.18). 

The non-zero D computed from (2.16), together with X, Y and Z reduce the original 

system according to: 

S = 
Y*EX,Y*AX + Z*DZ 

C X - D Z 

Y*B - Z*D 

D 
(2.21) 

S from (2.21) is stable, passive, and interpolates the original S(E, A, B, C, 0) at 

the selected dominant spectral zeros from A in (2.20) [28]. Projection (2.21) extracts 
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H(oo) = D ^ Ofrom the structure of A, ensuring the passivity preserving projection, 

and capturing the non-zero response H ^ l s ^ ^ O in the reduced model. 

2.4 Numerical results 

Several examples from circuit simulation are presented, including transmission line 

models with voltage controlled current sources (VCCs). We show that dominant SZM 

is more general than existing techniques such as PRIMA [4], and achieves accurate 

passive reduction with no restrictions on the system matrices. Dominant SZM is 

compared with modal approximation, PRIMA and PRBT, in terms of approximation 

quality and performance. We also motivate the selection of dominant spectral zeros 

over non-dominant spectral zeros for interpolation, and identify close associations 

between dominant spectral zeros and dominant poles. All simulations are carried out 

in Matlab 7.1 on an Intel(R) Core(TM)2 Duo CPU T7700, 2.40GHz. Regarding the 

presentation of results: (1) in the frequency response plots, the x-axis is logarithmic, 

i.e 8 stands for frequency 108, (2) in all tables, the relative approximation error 

IIH7^?II " *s m e a s u r e d , where frequency UJ sweeps the plotted frequency range, (3) 

the PRBT implementation uses exact solutions of the positive real Riccati equations, 

which may be time consuming. For advanced implementations of PRBT, see [29], 

[30]. 

2.4.1 Reduction of transmission line model 1 with VCCs 

For the transmission line model with voltage controlled current sources (VCCs) in 

Fig. 2.1, the underlying equations yield system matrices which violate (1.11), thus 

passive reduction via PRIMA is unfeasible. The system is stable and passive, and 

the circuit simulator generates n = 149 internal variables. The dip in the frequency 
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Figure 2.1 : Transmission line model, voltage controlled current sources unconnected 
to the previous block. # i = 50ft, #2 = 50ft, R= lQ,G=lpS, C = l p F , L=lfiH, t= 
1, ||u|| = l /50A 

response at up — 109 rad/s in Fig. 2.2, corresponds to one dominant spectral zero 

quadruple (together with a dominant pole pair) shown in Fig. 2.3. This suggests 

that interpolation at this dominant spectral zero quadruple should already give an 

accurate, stable and passive reduced order model of dimension k = 2. Indeed, dom-

Frequency response 
SZM with SADPA, Modal Appreciation and PRIMA 

n = 149 

£ -

. 

• 

- - - Original 

' Reduced: MA (k=2) 
Reduced: PRIMA n»101 

i 1 1 1 ' i " 

• 

9.7 8.8 8.9 9 
Frequency (rad/s) 

9.1 9.2 9.3 9.4 

Figure 2.2 : VCC transmission line in Fig. 2.1. Original system and reduced with 
dominant SZM and modal approximation are indistinguishable. 

inant SZM successfully reduces this stable, passive system, as seen from Fig. 2.2. 

The dip is accurately reproduced, because dominant SZM interpolates the original 

system at the dominant spectral zero. Modal approximation also yields excellent 

reduction, but SZM has the additional advantage of guaranteeing passivity. We at­

tempted reduction via PRIMA (Fig. 2.2), and the reduced model is unstable and 

misses the dip in the frequency response. Table 2.1 summarizes the approximation 
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Poles and spectral zeros 
VCC transmission line, n = 149 

+ © © 

+ * 
u o 

Poles 
Spzs 
dominant poles 
dominant spzs 

9 © © 

= 4 - 3 - 2 - 1 0 1 
Real x 1 0 7 

Figure 2.3 : VCC transmission line in Fig. 2.1. Dominant poles and spectral zeros 
(complex, encircled) are significantly larger than a cluster of non-dominant, real, poles 
and spectral zeros closer to the origin. Dominant poles and spectral zeros generate 
the dip at u = 109 rad/s in Fig. 2.2. 

Table 2.1 : Approximation error for VCC transmission line in Fig. 2.1 

Reduction: n = 149, k = 2 

Dominant SZM 
MA 

PRIMA 

IIH(ju,)||2 

1.75 -lCT16 

3.6 • 10" l b 

unsuitable 

A + A* indefinite 

results. An accurate, stable and passive reduced-order model is obtained automat­

ically from E(E, A, B,C,0) even when the circuit equations cannot be formulated 

such that (1.10) and (1.11) are satisfied. 

2.4.2 Reduction of transmission line model 2 with VCCs 

We reduce the transmission line model with VCCs in Fig. 2.4. The main difficulty in 

reducing this system arises from the structure of the underlying system matrices, as 

E is singular and indefinite. PRBT [12] does not apply to E singular, and a deflation 

1 

0.5 

-0.5 

-1 
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Figure 2.4: Transmission line model with voltage controlled current sources connected 
to previous blocks. # i = 50ft, i?2 = 50fi, R=m,G=lpS, C=lpF, L=lfiH, t = 
1, ||w|| = l /50A 

step is required to make E invertible. For large systems this becomes computation­

ally infeasible. PRIMA [4] on the other hand requires a definite E and an A matrix 

with special block symmetries (1.11). To meet these assumptions, equations (1.1) 

should first be manipulated so that (1.10) is satisfied. This amounts to negating the 

stamps in E and A corresponding to the loop current variables, so that E becomes 

definite. Although not computationally expensive, applying the sign change transfor­

mation correctly requires knowing where the current variables are generated in the 

state vector. According to [21], this makes reduction non-automatic and cumber­

some in practice. Dominant SZM is more general, avoiding both the deflation step 

required by PRBT and unlike PRIMA, is not confined to MNA-type models. Modal 

approximation [31], [32], [9], [10] also reduces the system with indefinite and singu­

lar E automatically, however dominant SZM has the additional feature of preserving 

passivity, and is shown here to yield a more accurate reduced model. 

Fig. 2.5 shows the reduced models for dominant SZM, modal approximation and 

PRIMA. The system's transfer function is a simple high pass filter, but nevertheless 

clearly illustrates a case where dominant SZM achieves more accurate reduction than 

other methods. Already for k = 2, dominant SZM gives a passive reduced model 

which is indistinguishable from the original. Modal approximation only captures the 

dominant pole, but cannot reproduce the frequency response for the entire frequency 

range. The PRIMA model (stable only after conversion to E definite), matches the 
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Table 2.2 : Transmission line in Fig. 2.4, n=1501 k=2, reduction summary 

SADPA based 

Dominant SZM 
MA 

Other methods 

PRIMA 

PRBT 

Error 

1.89 • 10~4 

1.24 

Error 

9.98 • lO"1 

-

Time(s) 

0.8 
0.98 

Time(s) 

0.01 

-

Iterations 

14 
35 

Constraints 
E definite 

otherwise unstable 

E singular 
deflation unfeasible 

response only in the lower frequency range, indicating that a reduced model of order 

k > 2 is needed for better approximation at higher frequencies (this was achieved for 

k = 12 - not shown). Approximation errors and CPU times are summarized in Table 

Frequency response 
SZM with SADPA, Modal Appreciation, PRIMA 

n = 1501,k = 2 

-10 

"af -20 
T3 
3 .*? 

| _ 3 0 

2 

-40 

1 '" '"" '"''/* 
/•-

it \ 

Ori{>nal 
•• - " Reduced(SZM) 

Reduced(MA) 
- • - Reduced(PRIMA) w. 

4 6 8 10 
Frequency (rad/s) 

Figure 2.5 : VCC transmission line from Fig. 2.4. Frequency response of original 
system and reduced with dominant SZM, modal approximation and PRIMA. 

2.2. Computing two dominant spectral zeros via SADPA enables efficient reduction 

(t = 0.8s) with dominant SZM, when reduction with PRBT [12] is computationally 

unfeasible. Passivity is preserved automatically even when E is indefinite. 
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- j kZI i i •DD-egJ—i—i -CHHED-

Figure2.6: RLC Transmission line. #=10fi , Rc=108Q, C=10nF, L=lfiH, RL-

o.oom, H=iv. 

2.4.3 Reduction of RLC transmission line 

We reduce the driving point admittance for the transmission line in Fig. 2.6. Unlike 

the previous transmission line models, this system exhibits many dominant spectral 

zeros and poles. These are computed efficiently with SADPA and dominant SZM 

captures the system's response at these points. Results are compared with reduc­

tion via modal approximation (MA), positive real balanced truncation (PRBT) [12] 

and PRIMA [4]. Finally, we motivate interpolation at dominant spectral zeros over 

spectral zeros that are less dominant: by analyzing spectrum plots for the reduced 

models, we identify a connection between the location of dominant spectral zeros and 

dominant poles in the complex plane. 

The simulator generates n = 902 initial internal variables (dimension of original 

system), of which 599 are independent (dimension of deflated system, after the infinite 

modes have been eliminated). We reduce the system dimension to fc = 21. Similarly 

to example 2.4.2, S(E, A, B, C, D) has an underlying singular and indefinite E. 

The slow decay rate of the system positive real Hankel singular values, shown in 

Fig. 2.7, indicates a priori that the system is difficult to approximate, especially with 

PRBT (for a definition of positive real Hankel singular values and their relation to 

PRBT see [12], [3]). 
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Positive real hankel singular values 
n = 902 dim = 599 k = 21 

10° 
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10^ 
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Order k 

Figure 2.7 : RLC transmission line in Fig. 2.6. Normalized positive real Hankel 
singular values. 

Dominant SZM and modal approximation, using SADPA 

Fig. 2.8 shows the frequency response of the original and reduced system with domi­

nant SZM and modal approximation, where the dominant spectral zeros and respec­

tively dominant poles were computed with SADPA. The response is highly oscillatory 

and thus difficult to approximate (as already predicted from Fig. 2.7). Dominant 

SZM captures this behavior well for low and high frequencies, by interpolating at the 

dominant spectral zeros. This is contrasted by a surprisingly poor reduced model 

obtained with modal approximation. Interpolating the original system at dominant 

poles seems insufficient for good approximation. 

Positive real balanced truncation 

PRBT [12] was applied after deflating the infinite modes, so that E becomes invertible 

(recall that deflation was not necessary with dominant SZM). Comparing Figs. 2.9 

and 2.8, dominant SZM captures the system's oscillatory response better than PRBT. 
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Frequency response 
Dominant SZM and modal approximation 
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Figure 2.8 : RLC transmission line in Fig. 2.6. Frequency response of original system 
and reduced with dominant SZM and modal approximation. 

Frequency response 
Positive real balanced truncation 

dim = 599 k = 21 

-2 0 
Frequency (rad/s) 

Figure 2.9 : RLC transmission line in Fig. 2.6. Frequency response of original system 
and reduced with positive real balanced truncation. 

PRIMA 

The performance of the industry standard reduction method, PRIMA [4], is shown 

in Fig. 2.10. As in [21], when PRIMA is applied directly on S ( E , A , B , C , D ) with 

E indefinite the reduced system is unstable. To guarantee stability and passivity, 

reduction with PRIMA becomes non-automatic - for (1.10) to hold, stamps in E and 

A corresponding to loop currents have to be negated. The matching of moments at 
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s = 0 for PRIMA is reflected in good approximation for low frequencies, but misses 

the response at higher frequencies. 
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Figure 2.10 : RLC transmission line in Fig. 2.6. Frequency response of original 
system and reduced with PRIMA. 

Table 2.3 summarizes approximation error and computational cost for all meth­

ods applied. Dominant SZM and PRBT give similar approximation errors, however 

PRBT requires a costly deflation step of infinite modes, which is impractical. Not 

counting the cost of deflation, CPU time for PRBT was ~ 272 s (implemented with 

the MATLAB care routine), significantly higher than for dominant SZM (~ 5.36 s). 

More efficient implementations of PRBT for large systems with E singular go beyond 

the scope of this thesis, see [29, 30] for possible approaches. Even though PRIMA 

is the cheapest method (0.21 s), it gives poor approximation at high frequencies. In 

contrast with PRIMA, dominant SZM reduces the system with indefinite E directly 

and the resulting reduced model is more accurate. For this example, dominant SZM 

provides the best trade-off between approximation quality, preservation of stability 

and passivity and applicability on the system with singular and indefinite E directly, 

without intervening in the system structure a priori. 
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Table 2.3 : RLC transmission line in Fig. 2.6, n = 902, A; = 21, reduction summary 
for various methods 

SADPA based 

Dominant SZM 
MA 

Other methods 

PRBT 

PRIMA 

Error 

0.2251 
8.17 

Error 

0.233 

0.876 

Time(s) 

5.36 
5.24 

Time(s) 

272 

0.21 

Iterations 

105 
205 

Constraints 
E non-singular 
deflation t=896 s 

E definite 
otherwise unstable 

2.4.4 Interpolation at dominant versus non-dominant spectral zeros. A 

connection to dominant poles. 

We motivate the selection of dominant spectral zeros for interpolation, where the 

dominance criterion is (2.11), and reveal a connection between dominant spectral 

zeros and dominant poles. 

Since spectral zeros of the original system S(E, A, B, C, D) are poles of the associ­

ated Hamiltonian system SS(ES, A s , B s , C s , A) specified by (2.14), (A.7), we inspect 

the frequency response of the Hamiltonian system and its modal approximant (shown 

in Fig. 2.11). Peaks in the frequency response of the Hamiltonian system occur at 

frequencies close to the imaginary parts of its dominant poles. Modal approximation 

on the Hamiltonian system ES(ES, AS ,BS , C s , A) preserves these dominant poles 

and implicitly the dominant spectral zeros of the original system. This gives intu­

ition for reducing the original system E(E, A, B, C,D) directly with the dominant 

SZM. The result for dominant SZM was already shown in Fig. 2.8. Shown in Fig. 

2.12 is the spectrum of spectral zeros and poles for the original and reduced system 

with dominant SZM. The reduced system interpolates the original at the dominant 

spectral zeros computed with SADPA (green circles match red stars). The location of 
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Frequency response, Hamiltonian system 
Modal Approximation: 2n = 1805 2k = 42 
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e Dominant pole peaks 

-1.5 -1 -0.5 

Frequency (rad/s) 

Figure 2.11: RLC transmission line in Fig. 2.6. Frequency response of original Hamil­
tonian system and reduced Hamiltonian system with modal approximation (dominant 
poles of Hamiltonian system are dominant spectral zeros of original system). 

poles for the reduced model with dominant SZM (light-blue squares) gives additional 

insight into the method's features: interpolation at dominant spectral zeros places 

poles for the reduced model in patterns similar to the original dominant poles (or­

ange triangles). To further support the connection between dominant spectral zeros, 

Spectral zeros and poles 
Original, reduced with SZM, and dominant 

o Spz: all original 
+ Poles: all original 
Q Spz: dominant SZM 
B Poles: dominant SZM 
A Poles: dominant 

Real 

Figure 2.12 : RLC transmission line in Fig. 2.6. Stable spectral zeros and poles 
of original system and reduced with dominant SZM. Interpolation is at dominant 
spectral zeros (green circles). Reduced order poles (light-blue squares) follow similar 
patterns to original dominant poles (orange triangles). 
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dominant poles and approximation quality, Fig. 2.13 shows poor SZM approximation 

via interpolation at non-dominant spectral zeros (for instance spectral zeros close to 

the imaginary axis). The reduced model captures no oscillations from the frequency 

response of the original system, contrasting the result in Fig. 2.8 when dominant spec­

tral zeros were interpolated. From the spectrum in Fig. 2.14, we see that interpolation 

at non-dominant spectral zeros (green circles) also generates poles at non-dominant 

locations (light-blue squares), far from the location of original dominant poles (orange 

triangles in Fig. 2.12). 

Frequency response 
Spectral zero method - non-dominant 

n = 902 dim = 5 9 9 k = 21 

>a Original 

-Deflated(SZM) 

"Z& - 6 - 4 - 2 0 2 4 6 
Frequency (rad/s) 

Figure 2.13 : RLC transmission line in Fig. 2.6. Frequency response of original 
system and reduced with SZM, with interpolation at non-dominant spectral zeros. 
Oscillations are missed. 

Summarizing the observations above, dominant SZM combines two key ingredients 

to compute passive reduced models: interpolation at dominant points and passivity 

preservation by construction. As with modal approximation (which preserves domi­

nant poles [31, 32, 9, 10]), a reduced model is constructed via interpolation at points 

that characterize the system's behavior. Dominant SZM chooses these points as the 

dominant spectral zeros of the original system, guaranteeing a passive reduced model 

[13], [14]. Our experiments show in addition that dominant spectral zeros are associ-
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Spectral zeros and poles 
Original and reduced with non-dominant SZM 
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Figure 2.14 : RLC transmission line in Fig. 2.6. Stable spectral zeros and poles 
of original system and reduced with non-dominant SZM. Interpolation is at spectral 
zeros close to the imaginary axis (green circles). Reduced order poles (light-blue 
squares) are far from the location of original dominant poles. 

ated with poles whose location in the complex plane resemble dominant poles. This 

observation also supports the passivity preserving projection for the case D = 0 in 

Sect. 2.3.2, 1). There, the spectral zero interpolation problem is modified into an 

approximate modal approximation problem, where interpolation is at points close to 

the dominant poles of the original system, together with their mirror images. We note 

that such an approach could also be exploited for the case D ^ 0, but is unnecessary 

for the purpose of this work and will be addressed in the future. 

2.5 Complexity, convergence and error control 

We address complexity and convergence for the dominant spectral zero reduction 

method. Our discussion* follows the implementation of dominant SZM via the itera­

tive dominant eigenvalue solver, SADPA [11], [15, Chapter 3]. Appendix A.3 shows 

^Section due to Joost Rommes at NXP Semiconductors, as part of [16]. 
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an algorithmic pseudocode for SADPA, which has been adapted here efficiently for 

computing dominant spectral zeros. 

2.5.1 Complexity and comparison 

The main computational costs in dominant SZM are in steps 3 and 4 of Alg. 1: 

theoretically speaking, the costs for solving a single linear system, such as in step 3, 

are 0(n3), which would make the algorithm impractical for large systems. In practice, 

however, circuit system matrices A and E are sparse, and by making use of clever 

row/column reorderings, fill-in of the LU factors can be minimized. Hence the linear 

systems in step 3 and 4 can be solved much more efficiently. Note that a single LU 

factorization is needed per iteration, since the factorization U*L* can be used in step 

4. Our implementation used the backslash operator in Matlab, which turned out to 

be very efficient. Practical experience shows factorization and solution costs of 0(rf) 

with l < a < 2 for typical circuit matrices, see also [33]. 

The Modified Gram-Schmidt procedure in steps 5 and 6 of Alg. 1 is of 0(kn) per 

iteration and is the second largest contribution in general. By keeping the search 

spaces small these costs can be limited; a practical choice is to restart at fcmoI < 15 

with a search space of dimension kmin > 4. For large search space dimensions, the costs 

for the eigendecomposition in step 1 of Alg. 2 can become large: for a search space 

of dimension k, the costs are 0(A;3), which indicates that kmax <C \fn to avoid too 

high costs. All other operations are cheap compared to the described costs (assuming 

sparse matrices). Note that direct computation of the projection matrices via (2.7) 

and (2.8) is not needed since bases for the corresponding subspaces are available 

implicitly, as described in section 2.2.1, equations (2.5), (2.6). 

In summary, the costs for the complete procedure are 0{q{kmaxn + fc^. + 2na)), 
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where q is the number of iterations, 1 < a < 2, and fc^x < 15. Compared to 

PRIMA, which has costs of 0(q2n + qna), the big difference is that our approach 

needs factorizations of s*E — A for multiple values of si5 while PRIMA in principle 

only needs one factorization. Consequently, computational costs for PRIMA will be 

lower in general practice, provided that: (1) the order of the reduced order model 

should not be too big, otherwise the orthogonalization costs will start to dominate, 

and (2), only 0(1) interpolation points s» are needed to produce an accurate model. 

Especially if condition (2) is not satisfied, costs for PRIMA may increase rapidly: 

first, one has to choose/compute the correct shift to improve accuracy, and then the 

Krylov bases must be computed. The dominant spectral zero approach, on the other 

hand, automatically finds the most effective shifts. Similar remarks can be made 

with respect to Poor Man's TBR§ [33], with complexity 0(q2n + 2qna): although 

for PMTBR the number of frequency points q is in general lower than the number of 

iterations needed for our approach, one still has to rely on a frequency sample selection 

strategy [33]. However, in agreement with arguments in [33], the reduced model 

generation time is in practice dominated by the model simulation time, making model 

compactness, accuracy, and passivity more important than the reduction time. In this 

respect, the dominant spectral zero approach has the advantage over other methods 

that it is automatic and that it preserves passivity without putting constraints on the 

original system matrices or projections. 

In case that exact solutions of the linear systems are not computable due to 

memory and CPU limits, one could use inexact solution methods (see [15, Chapter 

3]) to find spectral zeros: only steps 3 and 4 of Alg. 1 need to be replaced by inexact 

§An implementation of PMTBR is omitted here, as it is neither stability nor passivity preserving 
by default. 
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solutions methods. This will slow down convergence, but the reduction procedure 

remains the same and applicable in practice. In the case of PRIMA and PMTBR, for 

instance, such an adaptation is less trivial, since the availability of exact solutions for 

linear systems with operator (soE — A) is assumed. 

2.5.2 Convergence and error control 

Concerning the convergence to spectral zeros it is clear that, being a (subspace ac­

celerated) Newton method, the rate of convergence is quadratic in the neighborhood 

of a spectral zero. Moreover, convergence to dominant spectral zeros is much more 

likely than convergence to less dominant zeros, even if located close to each other, 

due to the specific convergence properties of the Dominant Pole Algorithm. We refer 

the reader to [34] for a detailed analysis. 

For the convergence of reduced order models to accurate approximations of the 

original systems, the situation is less trivial. Unlike balanced truncation, there is 

no computable error bound, as is the case for all Krylov-type methods, including 

PRIMA. A practical way to deal with this is to monitor the decay of the residues 

associated to the spectral zeros: if the residues of the most recent dominant zeros are 

significantly smaller than the residues of already found zeros, convergence could be 

reached. An additional check can be to inspect the difference m r ^ i ! f°r a 

number of frequency samples o>j. 

2.6 Conclusions 

Dominant SZM was presented, a passivity preserving reduction method which inter­

polates the dominant spectral zeros of the original system. The proposed method 

guarantees passivity for systems with more general structures than what can be han-
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died by industry-preferred techniques such as PRIMA [4]. Theoretical considerations 

for the dominant spectral zero method were outlined, and performance was evaluated 

by reducing the discretized models of transmission lines, including models with con­

trolled sources (VCCs). Results showed that, irrespective of stability and passivity 

preservation, the performance of dominant SZM is at least comparable to passivity 

preserving methods like PRIMA and positive real balanced truncation, and even su­

perior for certain examples. Dominant SZM is also suitable for reducing large scale 

systems, when implemented as an iterative eigenvalue approximation problem. 

The spectral zero interpolation method SZM, first developed by [13] and [14], was 

extended here threefold. A classification of spectral zeros was proposed, based on a 

dominance criterion involving the associated residues. The second novel ingredient is 

the implementation using the recently developed subspace accelerated dominant pole 

algorithm (SADPA) [11], [15], which iteratively computes dominant spectral zeros 

irrespective of their location in the complex plane. Finally, based on the observation 

that dominant spectral zeros have close associations to dominant poles, we showed 

how for systems with D = 0, a projection is constructed which guarantees a strictly 

passive reduced model. 

The ability of SADPA to approximate spectral zeros according to various domi­

nance criteria makes SZM flexible in choosing the interpolated spectral zeros. Dom­

inance criteria other than the proposed (2.11), that would yield significantly better 

approximants, are not known to the authors at this stage. A dominance criterion 

exploring 7̂ 2 optimality [35] is currently under investigation. The MIMO implemen­

tation of dominant SZM, based on the multivariable version of SADPA [19], is treated 

in Sect. 4.4. 
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Chapter 3 

A combined dominant SZM - Markov parameter 
matching approach for descriptor systems in 

circuit simulation 

It is shown how modal approximation and the spectral zero interpolation method 

can be combined efficiently with moment matching at so = oo for descriptor systems 

arising in circuit simulation, where the underlying system matrices satisfy certain 

structural properties. The approach is an alternative for resolving the lossless problem 

occurring with dominant SZM reduction when D = 0. 

3.1 Background 

The combined framework proposed in this chapter can be placed in the context of 

partial realization of descriptor systems with singular E [36]. When E is singular, 

matching of moments at oo (also called Markov parameters) is an open problem, 

especially when no block structures of A and E are available. Similarly to [36], the 

approach uses information about the structure of E, but requires little numerical 

work since only one or two Markov parameters are matched, instead of a full partial 

realization solution. The effort of the method proposed in this thesis is in computing 

the dominant spectral zero projection matrices (see Chapter 2), while the matching 

of few Markov parameters is integrated at the end. Two equivalent forms associated 

with a descriptor system E(E, A, B,C,0) are addressed separately, and examples 

with both formulations are provided. The approach developed here for a combined 
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rational Krylov - partial realization framework continues the work in [36]. 

3.2 Equivalent form 1: slow-fast subsystem decomposition 

Consider a descriptor system in the form (1.1), where without loss of generality assume 

D = 0. According to [37], there exist nonsingular matrices Q and P such that (1.1) 

is restricted system equivalent (r.s.e) to the subsystem formulation (3.1), (3.2): 

X l( t) = A l X l ( i ) + B l U( t) (3.1) 

yi(t) = C W * ) 

Nx2(t) = x2(*) + B2u(i) (3.2) 

y2(t) = C2x2(i) 

y(t) = Cixi(t) + C2x2(t) - yi(t) + y2(t). 

The coordinate transformation is [xf,xi[] = P _ 1 x , xx G K"1*™2, x2 G Rn*Xn* and 

the transformed system matrices are in the form (3.3): 

(cA 
• (3-3) 

where n\ + n2 = n and N G K™2xra2 j s nilpotent with index u, i.e. N" = 0. System 

(3.1) is called the slow subsystem and (3.2) the fast subsystem. R.s.e systems have 

identical transfer functions, thus H(s) can be split into (3.4), where Hi(s) is the 

strictly proper part and H2(s) is the polynomial part of the transfer function. 

H(s) = Ca(SIni - A i ) - ^ ! + C2(sN - I„2)-1B2 = H^s) + H2(s) (3.4) 
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The Laurent series expansion of H(s) around infinity (3.5) reveals the Markov pa­

rameters of the slow and fast subsystems respectively [17],[37]: 

OO V— 1 

H!(s) = Y, C i A i B i s"'> R 2( s ) = y > C 2 N j B 2 y . (3.5) 

In most circuit simulation applications, the transfer function is either proper or 

strictly proper. If proper, the polynomial part is a constant H2(s) = — C2B2 = Ho ^ 0 

(N has index v = 1). Also H2(s) = —C2B2 = lims_>0OH(s) is precisely the hidden 

D ^ 0 in the context of Sect. 2.3.2. When H(s) is strictly proper H2(s) = —C2B2 = 

fio — 0. Example 3.1 illustrates the transformation of a simple circuit to the equivalent 

form (3.1), (3.2). 

Next, we introduce the notion of dominant poles at 00 for descriptor systems 

S(E, A, B, C, 0) with E singular, and show how interpolation at such poles is linked 

to moment matching at 00 for the fast subsystem associated with S(E, A, B, C,0). 

We propose how to efficiently integrate interpolation at dominant poles at 00 in the 

modal approximation (Sect. 3.2.1) and dominant SZM (Sect. 3.2.2) framework, when 

B and C* belong to the nullspace of E. 

3.2.1 Modal approximation and poles at 00 

Consider descriptor systems S(E, A, B, C, 0) where without loss of generality, assume 

D = 0 and E singular. Let rai and «2 denote the number of finite and infinite eigen­

values of the pair (A, E) respectively, n = n\ + n2. Within the modal approximation 

framework, consider the partial fraction expansion [34] of the transfer function (3.6), 
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where Roo represents the constant contribution of the n2 poles at oo: 

H(s) = E7zV+i*~- <3-6) 
J = l J 

Lemma 3.1 

The first Markov parameter of the fast subsystem associated with E(E, A, B, C, 0), 

namely fi0 = — C2B2 in (3.5), is the same as R^, the total contribution of the poles 

at 00 in (3.6). 

Proof 3.1 Let X = [X^, XQO] where Xrai = [x i , . . . , *^ ] € C™*"1 spans the sub-

space of the ni right eigenvectors of (A, E) corresponding to the finite eigenvalues. 

Xoo = [XQO^ .. .JXQO^J G CnX"2 spans the subspace of right eigenvectors of (A,E) 

corresponding to the n-i eigenvalues at 00. The left eigenvectors of (A, E) are parti­

tioned similarly, Y = [YB1, Yoo], Y n i = [yi , . . . ,yB1], Yoo = [ y ^ , . . . ,yoo„2]. 

For an eigentriplet (A^x^y.,) of (A, E), where Xj is either a finite or infinite 

eigenvalue, the following holds [34]: 

Ax,- = XjExj, x , - ^ 0 (3.7) 

y*A = A iy*E, y ^ O (3.8) 

y*EXj = 0, VA^A,- , ij<ni (3.9) 

Exoo. = 0, y ^ . E = 0 VA., = oo, 3 <n2 (3.10) 

Assuming that eigenvectors corresponding to the finite eigenvalues are scaled so 
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that y!-Exj = 1, i < n\, from (3.7)-(3.10) we obtain the projected system: 

Y*EX = 
Y n i E X n i Y ^ E X Q O 

Y ^ E X n i Y ^ E X 
oo 

Y*AX = | Y : i A X n i Y : i A X ° ° 1 = 1 ' Ani A - Y - E X ~ U 3 . n ) 

Y^AX^ Y^AX^ J y A^Y^EX^ Y^AX0 

V 0 1 ( Y*B , 
, Y*B = n i | , C X = ( C X n i , CXoo) 

0 Y ^ A X M / \ Y ^ B 

Recall the existence of nonsingular matrices Q and P that put E(E, A, B, C, 0) in 

the form (3.3). Clearly, with Q = Y* and P = X, (3.11) is in the form (3.3) where: 

Ai = An i = diag(Ai,..., Ani), Bi = Y ^ B , Ci = CXrai 

N = O e C 1 2 ^ , B 2 = (Y^AXooJ-^Y^B), 02 = 0X0,,. (3.12) 

The projected system is now decoupled into the slow and fast subsystems (3.1), 

(3.2). In particular, as N = 0, for the fast subsystem we have: 0 = x2(i) + B2u(i), 

=> Y2(t) — —C2B2u(i) so the total system equations are rewritten in the form: 

xi(t) = A n i X l( i ) + Biu(t) (3.13) 

y(t) = Cixx(t) - C2B2u(<). (3.14) 

The transfer function becomes H(s) = Ci(s l n i — A„1)"~1Bi — C2B2. As in (3.4), the 
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strictly proper part corresponding to the slow subsystem is revealed: 

H1(S) = C1(SIni-A„ir
1B1 = X ; - z V ' A* = (CxiHtfB), 

j = i J 

while the constant contribution of the poles at oo is —C2B2. Finally, according to 

(3.5) this is also the first Markov parameter of the fast subsystem: 

po = - C 2 B 2 = - (CX 0 0 ) (Y^AX 0 0 )" 1 (Y^B) . (3.15) 

Note that if H(s) is strictly proper, then R^ = —C2B2 = lims_+00H(s) = 0. • 

To the author's best knowledge, with modal approximation only the strictly proper 

part of the transfer function is reduced, interpolating it at the finite dominant poles. 

This neglects however possible non-zero contributions of poles at 00, and affects 

the response of the reduced system, as observed in Examples 3.2 and 3.4 below. 

Lemma 3.1 suggests that this contribution is recovered by constructing projection 

matrices which also include eigenvectors corresponding to infinite poles, along with 

the eigenvectors corresponding to dominant poles. From (3.15) however, it is clear 

that for large-scale problems, the subspaces spanned by the infinite eigenvectors YQO 

and XQO may be impossible to compute. Nonetheless, these subspaces can be cheaply 

approximated when only few of the poles at 00 are dominant, as is proposed next. 

Similarly to [34], consider the expansion of B and C in the basis of eigenvectors of 
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(A, E) as follows: 

B = 2 &Ex,- + £ ôo, AXo0i (3.16) 

rai «2 

j = l i = l 

The expansion coefficients in the basis of eigenvectors corresponding to the finite poles 

are found as usual from (3j — y!-B, 7j = CXJ. These coefficients determine the degree 

of controllability and observability of the corresponding states in the new basis [5]. 

Accordingly, the pole Xj for which jjffix is large is called dominant [15, Chapter 3]. 

This is the basis of modal approximation, where components of the transfer function 

corresponding to most dominant poles are kept in the reduced transfer function. 

Similarly, the expansion coefficients in the basis of eigenvectors corresponding to 

infinite eigenvalues are found using (3.18). A dominance criterion for poles Aj at oo 

is thus established. 

Definition 3.1 A pole of E(E, A, B ,C , 0) at A* = oo is dominant if fi^. ^ 0 and 

7oo. ^ 0, where (3.18). 

In turns out that in most circuit simulation applications, only one or two of the 

poles at oo are dominant. This is linked to the structure of the input and output 

matrices B and C. For many circuit simulation examples B and C are vectors 

with one or two non-zero entries and additionally often satisfy B G Null(E), C* G 

Null(E*) (this holds for instance for the transmission line models in Figures 2.6 and 

2.4). The infinite subspaces YQQ and X ^ are thus easily approximated, as Theorem 
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3.1 demonstrates. First, a few technical remarks are in place. Note that y ^ A x ^ = 

Ajy^.Exooj where A* = oo => py^,.AXQQ. = 0. Therefore, p = 0 is an eigenvalue of 

E with Xoo4, yoo4 being the corresponding right/left eigenvectors. This implies that 

Xoo spans Null(E) and Y^, spans Null(E*). The singularity of E in most circuit 

simulation applications is due to the structure of E, which has a non-singular block 

banded by zero rows and columns. Thus one can assume without loss of generality 

that the right/left eigenvectors of (A, E), Xj, y;, i < n2, corresponding to \ = oo are 

orthonormal. Consequently X ^ X ^ = I„2 and Y ^ Y ^ = I„2. Furthermore, as E is 

square, we know Null(E) = Null(E*) and so YQO = X ^ . We are ready to prove the 

following: 

Theorem 3.1 

Let £ (E , A , B , C , 0) be a descriptor system with E singular, where (A, E) has n2 

eigenvalues at oo. Assume B G Null(E), C* G Null(E*). Then S (E , A ,B ,C ,0 ) has 

one dominant pole at oo. Furthermore, if CAB ^ 0 the dominant pole is interpolated 

by approximating subspaces X ^ and Y ^ with B and C respectively in (3.15). 

Proof 3.2 Recall that Y ^ = [ y ^ , . . . ,yoonJ and Xoo = [ x ^ , . . . ,xO0n2] both span 

Null(E), as E is square. Since B G Null(E) =^ Y ^ B = (0, . . .0 , *, 0 , . . .0)T . 

Similarly, since C* G Null(E*) =^'CXoo = (0, . . .0 , • , 0 , . . .0 , ) . Thus there is 

only one non-zero coefficient pair (/3oo>7oo) m (3.18) and according to Definition 3.1 

only one dominant pole at oo. Consequently, only the dominant infinite pole (and 

corresponding left/right eigenvectors yoo, Xoo) contributes to the constant term (3.15). 

Projecting S(E, A, B ,C , 0) with yoo, Xoo is sufficient to capture this contribution, 

instead of using the full subspaces Yoo and X ^ . As C G Null(E*) and B G Null(E), 

we have the freedom to set y ^ = C and x ^ = B. Provided CAB ^ 0, projecting 

E(E, A, B, C, 0) with C and B interpolates the dominant pole at oo and recovers the 
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constant contribution —C2B2 = —CB(CAB) -1CB. From Lemma 3.1, this is also 

the first Markov parameter of the fast subsystem E(0, I„2, B2, C2,0). • 

Remark: When CAB = 0, projecting with C and B would give a fast subsystem 

of the form S(0 ,0 , B2 , C2,0). In some experiments however, this occurs jointly with 

AB G Null(E) and (CA)* G Null(E*) Thus one can approximate: Y ^ with [C, CA], 

and XQO with [B, AB] and similar derivations for the dominance of two poles at 00 

can be developed. 

3.2.2 Dominant SZM and poles at 00 

We saw how modal approximation can be enhanced with interpolation of dominant 

poles at 00, so that possible non-zero contributions of such poles are incorporated in 

the reduced transfer function. Extending the approach to the spectral zero interpo­

lation method is straightforward: 

Corollary 3.1 

Given S(E, A, B, C, 0) with E singular, where Yoo, X00 span Null(E*) and Null(E) 

respectively. Let W and V be the projecting matrices from (2.12) which interpolate 

the dominant spectral zeros. Projecting S(E, A, B, C, 0) with Y = [W, Yoo] and 

X = [V, XQO] matches in addition the Markov parameter of the fast subsystem 

fj,0 = - C 2 B 2 in (3.5). Furthermore, when B G Null(E), C* G Null(E*), CAB ^ 0; 

YQO, XQO are replaced by C and B respectively and //Q = —CB(CAB) -1CB. 
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Proof 3.3 From EXQQ = 0 and Y ^ E = 0, the projected matrices are: 

(3.19) 

The projected system can be rewritten in compact form: 

Ei!( t ) = [A - AuA^AalxjCt) + [B - A ^ A ^ B X * ) (3.20) 

y(t) = [C - C a A ^ A ^ x ^ ) - [62A^1B2]u(t). 

The constant term is - Q j A ^ B a = ^o in (3.5). When B e Null(E), C* G Null(E*), 

CAB ^ 0, the proof for no = - C B ( C A B ) _ 1 C B follows as in Theorem 3.1. Recall 

also that as D = 0, the reduced system S(E, A, B, C, D) was lossless, but with (3.20) 

the poles of the reduced system are moved away from the joj axis. • 

In summary, the usual modal approximation or dominant spectral zero projecting 

matrices can be extended with eigenvectors from the subspaces Xoo and Y^ that 

correspond to dominant poles at oo, according to Definition 3.1. In particular, the 

extended projectors will be Wfc+P = [W,Yoop], Vjt+P = [V,Xoop], where W and V 

are the usual modal approximation or dominant SZM projectors of column rank k. 

Yoop, Xoop of column rank p < n 2 span the dominant eigenspace of (A, E) associated 
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with dominant poles at oo. In some cases, these are approximated easily with C and 

B respectively. An alternative to be investigated in the future is to compute Yoo,,, 

Xoop approximately as eigenvectors of E associated with dominant eigenvalues at 0. 

The theory developed in this section is applied in Examples 3.2 and 3.3. 

3.3 Equivalent form 2: decoupled equations 

We show how moment matching at oo is achieved when S(E, A, B, C, 0) has sparsity 

structures arising often in circuit simulation. It is known [37] that for any descriptor 

system with rank(E) = q, there exist nonsingular matrices Q and P such that Q E P = 

diag(I9,0). Denoting E n = I?, with the coordinate transformation [x^x^] = 

P - 1 x , Xi € Rq, x2 € Rn~q, the transformed matrices are: 

QEP 

Equations (1.1) are thus decoupled into: 

B l ] , (CP) r = f C l I (3.21) 
B2 / C2 

En3Ci(t) = A u xi ( i ) + Ai2x2(t) + Bm(*) 

0 = A2ixi(t) + A22x2(t) + B2u(t) (3.22) 

y(t) = Cixi(t) + C2x2(t). 

System matrices from circuit simulation are often in the form (3.21), where E n need 

not be Iq, rather it is non-singular. A22 is also assumed non-singular. When the 

underlying circuit has neither inductive nor capacitive coupling, E n is diagonal, thus 

very sparse. With inductive or capacitive coupling, E n becomes block diagonal, 

triangular and in some cases full. 
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In (3.22), the dynamics of the system is described by the first equation, while 

the second is algebraic. Solving for X2(£) = [—A2~2
1A2i]xi(£) — [A2~2

1B2]u(t) from the 

second equation and replacing it in the first and third, reveals the compact form 

(3.23). 

Eki(t) = Axi(t) + Bu(t) (3.23) 

y(t) = CX l(i) + Du(i), 

where 

E = E n , A=A 1 1 -A 1 2A 2 - 2
1A 2 1 , B ^ B j - A i 2 A ^ B 2 (3.24) 

C = Ci — C2A2^A2i , D=—C2A2 2B2 . 

Since E is invertible, (A, E) has no infinite eigenvalues and the following holds: 

Fact 3.1 

Dominant SZM applied on S(E, A, B, C, 0) is equivalent to dominant SZM applied 

on the compact system S(E, A, B, C, D). Furthermore, the Markov parameters (mo­

ments at so = ooj of E(E, A, B,C,0) are computed from the compact matrices 

(3.24): 

770 = 5 , Vj = C(E~1Ay-1E~% j>0. 

System (3.23) is reduced as usual with dominant SZM, with V and W as in (2.12) 

being the projection matrices that interpolate (3.23) at the dominant spectral zeros. 

When D = 0, projecting with V and W alone will give a lossless reduced system (see 

discussion in Sect. 2.3.2). Similar to Sect. 3.2, the remedy is to match a Markov 

parameter in addition to the interpolating the dominant spectral zeros. The approach 
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is summarized in the following proposition. 

Proposition 1 Let £ (E , A, B, C,D) be in compact form (3.23) and assume D = 0. 

Let V and W be the projection matrices that interpolate (3.23) at the dominant spec­

tral zeros (from (2.7) or (2.12)). With extended projection matrices V = [V, E B] G 

cnx(fc+i)^ -yy _ p ^ Q*J e cnx(fe+i)^ ^ e re(iuce(i system matches the first Markov pa­

rameter r]i = C E B in addition to interpolating the dominant spectral zeros. 

Proof 3.4 Let the reduced matrices be E = W E V, A = W A V, B = W B , 

C = C V, D = 0. The first Markov parameter of the reduced system is: 

Vi = 81~ f = c [v, E^B] (W*E V)-I:W*B 

= c[v, E^B] (W*[E v, BD^WB 

= U [ v , E ^ B j f l * ,W*B])-1:W*B 

= C [V, E ^ B ] efc+i 

C E 1B = n1 

For the interpolation of dominant spectral zeros, the proof is analogous (see for in­

stance [3]). • 

Due to E invertible, the matching of Markov parameters is a known result, see 

[3] for instance. Compared to the approach in Sect. 3.2, no assumptions about B 

and C are necessary. Rather, when the system matrices are easily transformed to 

the equivalent form (3.21), moment matching at oo for a system with singular E, 

was simplified to the usual moment matching of a compact subsystem (3.23) with 

non-singular E. This is done easily with no additional numerical work, by simply 

appending the projecting matrices with E B, C (and additionally with E A E B, 
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C E A if two moments at oo should be matched). Examples 3.4 and 3.5 demonstrate 

the approach in practice. 

3.3.1 Numerical examples 

To support the theoretical developments in this chapter, several examplesn are given. 

f?\ 
1- Ck 

•C 
Figure 3.1 : RLC circuit with lim^oo H(s) = 0. All circuit elements have unit values. 

Example 3.1 

Consider the circuit in Fig. 3.1, with states x = [ii,Ui,U2]T, output y = i\ and all 

circuit elements with unit values. The state matrices are: 

(\ 0 0^ 

E = 0 0 1 

0 0 0 

A = 

'o i o ^ 

1 0 - 1 

1,1 1 1 J 

B = 
(°1 

0 

I - 1 J 
CT = 0 

w 
(3.25) 

The poles of the system are Ai,2 = — 1 ± i, X3 = oo. The spectral zeros are 

Si>2 = ±1.4142, S3...7 = 00. Due to the inductor in series with R\ in the first loop, 

lims_>00H(s) = 0 and the transfer function H(s) is strictly proper. Thus, recalling 

the decomposition (3.5), the first Markov parameter of the fast subsystem should be 

0, as is confirmed next. The equations are decoupled into slow and fast subsystems 
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of the form (3.1), (3.2) via the state transformations: 

Q = 

' i o - i ^ 

0 1 0 

0 0 1 

p = 

/ 1 0 0 

- 1 - 1 1 

y 0 1 0 

\ 

(3.26) 

The transformed matrices are: 

QEP = 

(l 0 0 

0 1 0 

\0 0 0 

\ (-1 - 1 0 \ 

QAP = 1 - 1 0 

0 0 1 

QB = 0 

v - 1 / 
(CP)T = 

M 
0 .(3.27) 

Thus according to the form (3.3), Bj = (1 0), B 2 = - 1 , Ci = (1 0), C2 = 0, 

(-i -i 
Ai = | , N = 0, and the fast subsystem is: 

1 - 1 V 

Qx2(t) = x2(i) + B2u(i), y2(t) = 0. (3.28) 

From (3.5) the first Markov parameter of the fast subsystem is indeed B 2C 2 = 0. 

Example 3.2 

Consider the circuit in Fig. 4.2, with states chosen as X\ = u\, x<i = M2, XS = «2, the 

current through L and a;4 = i1} the current through Ri, and output y = i\. Assuming 

all circuit elements have unit values, the system matrices are: 

E = 

' 1 0 0 0^ 

0 1 0 0 

0 0 - 1 0 

0 0 0 0 V 

A = 

'o o - i i » 

0 0 1 0 

1 - 1 0 0 

1 0 0 1 

' o ^ 

0 

0 

V " 1 / 

CT = 

^ 0 ^ 

0 

0 

v 1 / 

(3.29) 
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The transfer function is H(s) = C(sE - A) _ 1 B = $+£$£+2. H(s) is proper, with 

lims_K30H(s) = 1. The system has poles at Ai = —1, A2,3 = —0.5 ± 1.323i, A4 = 00, 

and the spectral zeros are: s1)2 = 0.31454 ± 1.3637?, s3>4 = -0.31454 ± 1.3637i, 

s5)6 = ±0.72207, S7...9 = 00. Note that EB = 0 and CE = 0. The results with modal 

approximation and dominant SZM, with and without the moment matching of the 

fast subsystem at 00 are shown if Fig. 3.2. For modal approximation, the chosen finite 

poles are Ai^, but the approximation misses the response at high frequencies. With 

additional moment matching at 00, the approximation is improved significantly. For 

dominant SZM spectral zeros s5)6 are chosen. As discussed in Sect. 2.3.2, as D = 0, 

Frequency response 
Modal Approx with and without moment matching at ° 

n = 4 k = 1 

Frequency response 
Dominant SZM with and without moment matching at <» 

n = 4,k = 2,H2 -0.10228 

; -10 
9 

: -12 

-14 

-16 

- I S 

1 ^ • — • • < — • » ' • " 

. 4 
: ' I 

1 X 
• • • • ' Original 

„ „ „ , S Z M - s 1 i 2 

_ _ _ SZM-51 , and oo 

• 

• 

0 2 4 6 
Frequency (rabVs) 

0 2 4 
Frequency (raoVs) 

Figure 3.2 : Small RLC in Fig 4.2. Frequency response for modal approximation with 
and without moment matching at oo of the fast subsystem. 

projecting with V and W that interpolate s^s, gives a lossless system, with a pole at 

0 and all spectral zeros at oo. As with the enhanced modal approximation approach, 

this is resolved by projecting with [W, C] and [V, B] instead. The first Markov 

parameter of the fast subsystem is matched: C2B2 = CB(CAB) _ 1 CB = 1, the 

poles of the reduced system are —1.2, 00 and the spectral zeros are s5i6 and three at 

00. 
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Example 3.3 

The transmission line models in Figures 2.4 and 2.6 both have associated systems 

S(E,A, B, C,0) where H(s) is proper and lims_oo H(s) ^ 0. Furthermore they 

satisfy BE = 0 and CE = 0. Dominant SZM was applied with the additional 

moment matching at oo, as described in Sect. 3.2.2. For each transmission line, the 

approximation result was identical to what was already shown in Figures 2.5 and 2.8 

respectively. Note that in Chapter 2, the lossless problem for D = 0 was resolved via 

(2.21) in Sect. 2.3.2. 

I J 11 J » 12 

-OZ1—,—CO— 

c oj fu4 
7TX 

Figure 3.3 : RLC circuit with lima_«x> H(s) = 0 for Example 3.4. All circuit elements 
have unit values. 

Example 3.4 

Consider the circuit in Fig. 3.3, with states chosen as x 
output y = i\. The system matrices are: 

[ii,i2,«2,W4,wi,w3]
T and 

E = 

/ L 0 0 

0 L 0 

0 0 C 

0 0 0 

0 0 0 

^ 0 0 0 

0 0 0 

0 0 0 

0 0 0 

c o o 

0 0 0 

0 0 0 

A = 

(° 
0 

1 

0 

0 

{Ri 

0 

0 

- l 

l 

0 

0 

0 

0 

0 

0 

- 1 

1 

0 

0 

0 

1 
R 

1 

0 

1 0 

0 1 

0 0 

0 0 

0 1 

1 0 

B = 

/ o ^ 
0 

0 

0 

0 

C J = 

(A 
0 

0 

0 

0 

(3.30) 

Already in the form (3.21), these matrices characterize a descriptor system of type 

(3.22). With all circuit elements having unit values, the transfer function is H(s)• = 

C(sE - A)-XB = s4;2
3

st+
24+g^+2- S(E , A, B, C, 0) has poles at A1)2 = -0.2571 ± 
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1.5291*, A3,4 = -0.7429 ± 0.529H, A5)6 = oo and spectral zeros s1<2 = 0.3145 ± 

1.3637i, s3,4 = -0.3145 ± 1.3637), s5>6 = ±0.7221,s7...i3 = oo. The system in compact 

form (3.23) has the same transfer function H(s) = H(s) = C(sE - A)"1© + D = 

s4H
s
2^+4a2^4a+2 • Note that D = 0 and also lims_>00H(s) = 0, since H(s) is strictly 

proper. 

Let S denote the system in compact form (3.23) and S the original system in the 

form (1.1). We reduce £ with dominant SZM by constructing projection matrices 

V and W that interpolate at spectral zeros s5>6. As D = 0, the reduced system is 

lossless, with transfer function IQ'1™S, one pole at 0 and three spectral zeros at oo. 

Projecting £ instead with V = [V, B], W = [W, C ], the reduced system becomes 

strictly passive, with transfer function x ^ffi+^oik+i T stable poles — 0.7160 ±0.833H 

and spectral zeros s5)6 = ±0.7221, s7...9 = oo. A quick check verifies the matching of 

the first Markov parameter, according to Proposition 1: rji = % = 1. The frequency 

responses for the lossless and the strictly passive reduced systems is shown in Fig. 

3.4, as compared to the frequency response of H. The modal approximant of SJ with 

interpolated dominant poles XSti is also shown. 

The contrasting results for modal approximation without the moment matching 

at oo, for the Examples 3.2 and 3.4 are worth explaining further. In example 3.2, 

note that linis-nx, H(s) ^ 0, and H(s) is proper. Any proper transfer function can be 

split into a strictly proper part and a constant term. Essentially, this is a special case 

of decomposition (3.4), where the polynomial part is only the constant term in (3.5), 

B2C2 = lims_,.oo H(s) 7̂  0. Note however that the poles of the system are completely 

characterized by the strictly proper part of the transfer function and are independent 

of the constant term. As modal approximation only interpolates the poles of the 

system, it loses information about a non-zero constant term, and thus the response 
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Frequency response 
Dominant SZM with and without moment maching at *> 

n = 6,k = 2, H2 =0.28172 

|> -100 • *%Sfc 

-150 • ^ ^ S ^ 

*% 
-200' ' • ' ' ' ' ' ' ' ' ' 

- 2 - 1 0 1 2 3 4 5 6 7 8 9 
Frequency (rad/s) 

Figure 3.4 : RLC circuit in Fig. 3.3. Frequency response of original system and 
reduced with dominant SZM, dominant SZM with one moment matching at oo and 
modal approximation. 

at oo is poorly approximated. Better matching for high frequencies with modal 

approximation is thus achieved by matching B2C2 / 0, the first Markov parameter 

of the fast subsystem, as discussed in Sect. 3.2 and shown in Fig. 3.2. In example 

3.4 however, the transfer function was strictly proper and thus lim^oo H(s) = 0. As 

there is no constant term to account for, modal approximation captures the response 

by interpolating the dominant poles, and additional moment matching at 00 is not 

necessary. This explains the quality of modal approximation in Fig. 3.4. 

The properness of H(s) has a similar effect in the spectral zero interpolation 

method. Recalling the definition of spectral zeros (1.4), it is clear that a constant 

term in the transfer function will influence the value of the spectral zeros. The 

usual spectral zero interpolating projection becomes problematic when D = 0, as the 

reduced poles are all on the ju axis [28]. Similarly to modal approximation, the case 

lim^oo H(s) ^ 0 is resolved by matching the Markov parameter B2C2 7̂  0 in (3.5) as 

well (see Sect. 3.2). When lims_>00H(s) = 0 the approach was to match one Markov 

parameter, in addition to the interpolated dominant spectral zeros, of an equivalent 

'-

- -

•'Original 
„ .SZM-S s e 

- S Z M - S M 
_ M A - l , 4 

and-
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system in compact form (3.23) (see Sect. 3.3). 

Example 3.5 

Consider N — 400 LC sections in the circuit from Fig. 3.3 and states chosen as 

x = [ui... UN, «I . . . ijv, WJV+I • • • V>2N] (voltages across capacitors, currents through 

inductors and voltages across inductors respectively), and output y = i\. The system 

is of the form S(E, A , B , C,0), with equations described by (3.22), easily convert­

ible to (3.23). Furthermore, lims^ooH(s) = 0. In Fig. 3.5 we compare results for 

dominant SZM reduction with and without the moment matching at oo. Without 

the additional moment matching at oo, the reduced system is lossless. Modal ap­

proximation cannot capture the oscillations either, however dominant SZM with one 

moment matching at oo captures most of the response. It is worth comparing this 

result with the 5 approach from Sect. 2.3.2, as shown in Fig. 3.6, left. The fact 

that the 8 approach gives a poorer reduced model is expected, since it exploits the 

properties of modal approximation (see Sect. 2.3.2), which for this example was not 

accurate. Finally, a comparison with PRIMA is shown in Fig. 3.6, right. 

Frequency response 
Dominant SZM with and without moment matching i 

n = 1200, k = 20, H 2 „ = 0.26889 

•Original 
s i . . . » -

, „SZM-s1 ^iand-

— MA-X, „ 
• • • l _ 

0 1 2 3 4 5 6 7 8 9 10 11 
Frequency (rad/s) 

Figure 3.5 : Extended RLC transmission line in Fig. 3.3. Frequency response of 
original system and reduced with dominant SZM, dominant SZM with one moment 
matching at oo and modal approximation 
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2 3 4 5 6 7 8 9 10 11 
Frequency (rad/s) 

Figure 3.6 : Extended RLC transmission line in Fig. 3.3. Frequency response of 
original system and reduced with dominant SZM with one moment matching at oo, 
dominant SZM with the 5 approach, and PRIMA. 

3.4 Summary 

This chapter showed how for systems S(E, A, B, C, 0) with certain matrix structures 

arising in circuit simulation, moment matching at oo can be used efficiently to improve 

reduction results with modal approximation and dominant SZM, even when E is 

singular. The combined method also resolves the lossless problem for the case D = 0 

in the context of dominant SZM. The approach is a possible solution for the future 

work mentioned in [36], which involves integrating rational Krylov methods into the 

partial realization framework for descriptor systems. 
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Chapter 4 

Reduction of voltage transfer function 

A method for reducing SISO transmission lines with respect to the voltage transfer 

function is proposed. The solution insures that the reduced voltage transfer function is 

underlying a reduced model realizable with RLC circuit components. Results with the 

proposed method are presented and compared with the MIMO approach for voltage 

transfer function reduction. 

4.1 Background 

Due to positive-realness requirements for the underlying transfer function, reduction 

for SISO systems describing transmission lines is generally performed with respect to 

the driving point impedance/admittance (where the output y is the voltage/current at 

the same port where input u is applied). Since transmission lines are more often used 

to transmit signals, rather than as driving point loads, reducing SISO transmission 

lines with respect to the voltage transfer is an emerging problem. This involves 

reduction of a non-positive real transfer function, where a different output w measures 

the voltage at the far end of the line, oppositely to u. 

According to [3, Theorem 5.26], passivity for electric circuits is equivalent to H(s) 

describing the network's driving point impedance (or admittance). Thus, by taking 

u and y at the same port, a network synthesis in terms of passive circuit elements 

is always possible. This is not guaranteed however, when an output w is measured 
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at a different location than u, as the new transfer function is no longer positive real. 

Nevertheless, the circuit itself is still dissipative with respect to the the supply rate 

(1.7). It remains to show how dissipativity is expressed in terms of the new output 

w, as addressed this in Sect. 4.2. 

Passive reduction with respect to a voltage transfer function can be done in a 

MIMO setting, by embedding the system in a two-input-two-output network, with 

ui> yi? the voltage and current at one port, and u2, y2 the current and volatge at the 

opposite port (see for instance Example 4.4.3). The resulting 2 x 2 transfer function 

is positive real. With MIMO dominant SZM reduction (see Sect. 4.4), a reduced 

positive real 2 x 2 transfer function is obatined, which can be further realized as a 

passive 2 port network. The (1,2) entry of the MIMO reduced transfer function would 

correspond to the reduced voltage transfer function. Nevertheless, this thesis gives an 

alternative for directly reducing the SISO voltage transfer function of a transmission 

line, which only relies on the positive realness of the driving point transfer function 

and an additional output corresponding to the voltage transfer function. Even with 

the SISO approach, the circuit realization of the reduced model is still possible. 

The approach is developed as follows. In Sect. 4.1.1 the difference between the 

two SISO reduction approaches is explained: driving point vs. opposite ends. Then, 

the theory underlying SISO voltage transfer function reduction is developed in Sect. 

4.2, and numerical results follow in Sect. 4.3. The MIMO extension of dominant 

SZM is addressed in Sect. 4.4. 

4.1.1 Driving point reduction 

In the SISO case, the motivation for reducing the netlist with respect to the driv­

ing point admittance is the positive-realness of the underlying transfer function. In 
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particular, to guarantee that a reduced system is passive (thus realizable with RLC 

components), one needs to start from an original positive real transfer function. For 

RLC circuits, the original transfer function is guaranteed to be positive real by tak­

ing the output variable at the same port as where the input is applied. There is no 

guarantee of positive-realness however, when input and output variables are taken at 

opposite ports. This can be made clearer with through an example. 

Example 4-1 

Consider the simple circuit in Fig. 4.1. The state variables are x T = [wi,ii], t i e 

voltage across capacitor C and current through inductor L respectively. The input 

voltage u is applied at the left port, and we measure the voltage across resistor R2, 

at the opposite port. The state matrices are: 

V ^ 

ul 

N]/ 

Figure 4.1 : Simple RLC circuit, with input voltage u at left port, and output variable 
y, voltage across resistor R%. 

, B = lRl , C = ( 0 J f e ) , D = 0. 

Assuming unit values for all RLC components, the transfer function is H(s) = 

gi * 3, not positive real (the difference between the degrees of the numerator and 

denominator is 2, while for a positive real function it should be at most 1, [3, Theorem 

5.22]). The system has spectral zeros on the ju axis. A reduced order model obtained 
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directly from the voltage transfer function which underlies this system will be non-

passive. If we measure instead the current at the input port, through resistor Ri, the 

state matrices become: 

c = ( * ° ) ' D = i r (41) 

The new transfer function is H(s) = 2̂+33+3 and is positive real. No spectral zeros are 

on theju axis and a passive-reduced order model can be obtained with SZM. Because 

the original input admittance transfer function is positive real, the reduced transfer 

function will also be positive real and the resulting system is passive, realizable with 

RLC circuit components. 

4.2 Voltage transfer function reduction 

In short, a passive, physically realizable reduced network is obtained first as usually, 

from the driving point reduction with the spectral zero interpolation method. The 

same projection is used afterwards to obtain the output which describes the reduced 

voltage transfer function. Thus, the original and reduced voltage transfer functions 

need not be positive-real themselves. Rather, their corresponding outputs are drawn 

from the original and reduced passive networks respectively, whose underlying driving 

point transfer functions are positive real. Next the theoretical foundation for the 

proposed method is developed. 

Considering a SISO dynamical system of the form (1.1), where y(t) = Cx(£) + 

Du(i) describes the output measured at the input port, so that the resulting driving 

point transfer function (4.2) is positive real. S(E, A, B, C, D) is passive and realizable 

in terms of RLC circuit components. This also implies that S is dissipative with 
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respect to the supply rate (1.7). Consider also the output w(t) = Cx(£), measuring 

any state (or linear combination of states) that is not at the input port, for instance 

the voltage at the far end of the transmission line. The associated non-positive real 

transfer function is (4.3). The two transfer functions are related by: 

H(s) 

H(-) 

H(«) 

U(3) 
W(s) 
U(s) 
W(s) 

= C(sE - A) _ 1 B + D 

= C(sE - A) _ 1 B 

= H(s) ^ = H(s)R(S). 

(4.2) 

(4.3) 

(4.4) 

The supply rate (1.7) can be expressed equivalently as a function of external variables 

u and y, or as a function of external variables u and w: 

s(u,y) = (y* u*) (4.5) 

Using (4.4) and the fact that for exponential trajectories u(t) = est, y(t) = H(s)u(t) 

and w(i) = H(s)u(£), we express the supply (1.7) in terms of the output w(£): 

u*y + y*u = u*H(s)u + u*H*(s)u = u* [H(s) + H*(s)] u 

= u H(s)ww + w^)H (s) , Y(s) Y*(s) . 

W(s) + W*(s) 
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s(u,w) = (w* u*) 
0 ^ & 
u W ( s ) 

Y(.) 
W(s) 0 

w 

u 

(4.6) 

While Q in (4.5) is constant, a dynamical system underlies Q w in (4.6). Taking 

^ ( s ) ~ YW = ifffl» w e recover the form of this dynamical system, denoted by E R . * 

Theorem 4-1 

Given transfer functions H(s) = C(sE - A) _ 1 B + D and H(s) = C(sE - A ) - 1 B , 

the system E R with transfer function R(s) = j # j has the minimal realization (4.7). 

Thus R(s) = C(sE - A + BD" 1C)- 1BD- 1
} and 

S R = 
( E . A - B D ^ C ) B D - l 

(4.7) 

Proof 4-1 Let G(s) = g^r, with system £ G 

( E , A G ) 

c G 

B G 

DG 

, where: 

- l \-i A G = A - B D " 1 C , B G ^ B D " 1 , C G = - C D " 1 , D G = D " 1 . Thus: (4.8) 

R(S) = = H(s)G(s) = [C(sE - A)-1B][CG(sE - A G ) " 1 B G + DG] 
H(s) 
H(s) 

C(sE - A)~1BCG(sE - A G J - ' B G + C ( S E - A)~ 1BDG (4.9) 

s P 

*For simplicity, we derive w.l.o.g. S R associated with the transfer function H(s) — Y>7 instead 

of y}u\ • The inverse system corresponding to pjjr can then be derived using [15, Theorem 5.3.5]. 
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The product system is S p 
( E P , A P ) B P 

, where: 

Ep = 
E 0 

0 E 
, A P 

A B C G 

0 A G 

0 

, B P , C P = ( C 0 ) . (4.10) 
B G J

 V ' 

I - I 
To obtain a minimal realization for S p , let T = | | be a similarity trans-

0 I 

formation, with T - l 

/ 

V 

I I 

o i 
and T T = I. Transform now matrices of Sp by 

, E 0 \ . / A 0 
similarity: E P = T E p T " 1 = | , A P = TApT" 1 = 

0 E / \ 0 A G 

T B P = 
- B r 

B G 

, C p ^ C p T " ^ ( c C ) . Pluggi 

\ 

/ 

, B P 

ing the transformed matrices 

back into (4.9) and using (4.8), we obtain: 

R(s) = Cp(sEP - Ap) _ 1 B P + C(sE - A)- 1BDG 

(sE - A)"1 0 

0 (sE - A + B D ^ C ) - 1 - ( e e ) 

- B D - 1 

+ 
V BD - l 

- i m - i r » T ^ - i + C(sE - A J - ^ D " 1 = C(sE - A + B D - ^ J - ^ B D (4.11) 

Theorem 4.1 together with (4.6) say that, even though H is not positive real, 

system S(E, A , B , C , 0) is still dissipative with respect to the supply rate (1.7), and 

relates to the passive system S(E, A, B, C, D) (with positive real H) via (4.11). Thus 

we can use the passive S(E, A, B, C, D) to obtain the passivity preserving projection 

via SZM, and use this projection to also reduce S(E, A , B , C , 0). Clearly, the two 
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reduced systems will only differ in the corresponding reduced outputs, and as a result 

will also satisfy a relation of type (4.11), with the corresponding reduced matrices. 

The procedure is outlined next and supported with examples. 

4.2.1 Procedure for SISO voltage transfer reduction 

Given are the dynamical system S(E, A, B, C, D) with positive real transfer function 

(4.2) describing the driving point impedance, and S(E , A, B, C, 0) with non-positive 

real transfer function (4.2) describing the voltage transfer function. To obtain a 
J*** V. -A, A -W 

reduced system E(E, A, B ,C , 0) for the reduced voltage transfer function, that is 

also synthesizable in terms of RLC components, proceed as follows: 

1) Build passivity preserving projections V and W according to (2.12), that inter­

polate E(E, A, B, C,D) at the desired spectral zeros. The method has been 

described in Sect. 2.2. 

2) Project S(E, A, B, C, 0) with V and W from step 1). 

E = W*EV, A = W*AV, B = W*B, C = CV (4.12) 

3) Project S(E, A, B ,C,D) according to (2.13). The reduced XJ(E, A ,B ,C ,D) is 

passive, with positive real driving point transfer function H(s), thus it is syn­

thesizable in terms of RLC components using [38], [39]. 

4) Note that the reduced states are independent of the output, i.e., Ex(£) = 

Ax(i) + Bu(i). Thus, from the circuit obtained in step 3), we can draw the 

output w = Cx(t) corresponding to the reduced voltage transfer function. The 

linear combination of reduced states underlying the reduced voltage transfer 
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function is therefore simply given by C. 

4.3 Numerical examples 

Figure 4.2 : Simple RLC circuit illustrating SISO voltage transfer function reduction, 
with input voltage u at left port, and output variables y and w. All circuit elemtns 
have unit values. 

We illustrate the procedure through some examples. 

Example J^.2 

Consider the circuit in Fig. 4.2, with all circuit elements having unit values. With 

states chosen as the voltages across the two capacitors and the current through the 

inductor x(£) = [wi,U2,«i], let y measure the current through Ri, i.e., y(t) = Cx(i) + 

Du(i), C = [—-^-,0,0], D = ^-. The transfer function corresponding to the driving 

point impedance is H(s) = C(sE—A) - 1 B+D = ^+L^^+2> ^^d is positive real. Let 

output w = Cx(i), C = [0,1,0] measure the voltage at the far end of the line, so the 

voltage transfer function is H(s) = C(sE — A ) - 1 B = 3 3 + 2 ^ 3 s + 2 , non-positive-real. 

The spectral zeros ofH(s) are: slj2 = 0.31454 ± 1.3637*', s3,4 = -0.31454 ± 1.3637«, 

s5)6 = ±0.72207. In step 1), we construct the passivity preserving projectors that 

interpolate S(E, A, B, C, D) at the spectral zeros S1...4: 

V = [ ( s j E - A ) " ^ , ( s J E - A ) " ^ ] (4.13) 

W* = [(-siE* - A * ) - 1 ^ , (-s*E* - A*)-1^] (4.14) 
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The projection (4.12) in step 2) gives C = [-0.26421, 0.60613] and a reduced volt-

age transfer function H(s) = C(sE — A) _ 1 B = J^f^"!^ 3T5> n°n-positive real. 

The original and reduced voltage transfer functions H(s) and H(s) are shown in 

Fig. 4.3. The reduced positive real transfer function corresponding to the input 

impedance is obtained from step 3) H(s) = C(sE - A) _ 1 B = ^ S ^ S s > wbere 

C = [—0.4771, — 0.19333]. A reduced network can be synthesized from the posi-

tive real H(s) using for instance [38]. Finally, in step 4) we draw the output of this 

reduced network according to w = Cx(i). 

Frequency response 
Voltage transfer function -SZM 
n = 5, k = 3, H reterr = 0.52104 

Figure 4.3 : Voltage transfer function reduction for circuit in Fig. 4.2. 

Remark: Note that R(s) = f|fj sf'}n ,, satisfies Theorem 4.1. Also s3+s2+2s+l 

,a+o"S£S.657 and H is easily verined that R ( s ) = C(sE - A + 

B D - 1 ^ ) - 1 ^ - 1 . 

Example 4-3 

We apply the above SISO voltage transfer function reduction on the RLC transmission 

line in Fig. 2.6. The output w is measured as the voltage across the capacitor at the 

last port. The approximation is shown in Fig. 4.4. 
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Frequency response H I 2 - voltage transfer function 
Spectral zero method with SADPA 

n = 902 dim = 599 k = 23 

-10 • 

o 
1 - 3 0 -
c 

§ - 4 0 -

-50 ' 

-CO • 

-70 

• Original - H I 2 

- Reduced from SISO - H12 

- Reduced from MIMO - H12 

- 8 - 7 - 6 - 5 - 4 - 3 - 2 
Frequency (rad/s) 

Error response H12 - voltage transfer function 
Spectral zero method with SADPA 

n = 902, dim = 599, k = 23 

-2 0 2 
Frequency (rad/s) 

Figure 4.4 : RLC transmission line in Fig. 2.6. Voltage transfer function reduction 
with dominant SZM. Frequency response and error function. 

4.4 MIMO Dominant SZM 

This section presents reduction results with MIMO dominant SZM. The implementa­

tion is based on the subspace accelerated MIMO dominant pole algorithm (SAMDP) 

[15, Chapter 4], [19]. In what follows, £ describes an original MIMO system with 

n states, m inputs and p outputs, and transfer function H(s) of size (m x p). £ 

is the MIMO reduced system, with k states, m inputs and p outputs, and H(s) of 

size (mxp). For overall approximation assessment, we compare singular value plots 

of H(s) and H(s). Relative approximation errors are measured as iiHr^H ^or 

frequency sweeps u). Original and reduced transfer functions from one input to one 

output are also compared individually (e.g., the response from input U\ to output y2 

is the (1,2) entry of H(s), approximated by the (1,2) entry of H(s)). 
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Singular value plot, original and PRIMA 
n = 14k = 6 

Singular value plot, original and dominant SZM 
n = 14,k = 6 
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Figure 4.5 : MIMO RLC tline model. Singular value plots, original and reduced with 
dominant SZM and PRIMA. 

We reduce a small MIMO system with n — 14 states, m — 2 inputs and p = 2 

outputs, with MIMO dominant SZM and PRIMA. The singular value plots for the 

original and reduced systems are shown in Fig. 4.5. The transfer functions from each 

input to each output are shown in Fig. 4.6. The PRIMA model is more accurate. 

4.4.2 MIMO transmission line, n = 256 

A MIMO (2 x 2) transmission line model [40] was reduced. Fig. 4.7 shows the singular 

values plots of the original and reduced models. The system equations cannot be 

reformulated to satisfy the PRIMA requirements, thus the PRIMA reduced model is 

unstable, while with dominant SZM passivity is preserved. The interpolation effect 

at the dominant spectral zeros is reflected in the fact that dominant SZM captures 

more peaks in the Omax plot than PRIMA. Dominant SZM reduces the individual 

transfer functions (input 1 to output 1), and (input 1 to output 2) as shown in Fig. 

4.8. Table 4.1 summarizes the approximation performance with the two methods. 
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Small example - frequency response H,, 

n = 14,k = 6 

Small example - frequency response H<: 

n = 14,k = 6 
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Figure 4.6 : MIMO small example. Individual transfer functions, original and reduced 
with dominant SZM and PRIMA. 
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.7 : MIMO 2 x 2 transmission line reduced with dominant SZM (left) and 
(right-unstable). Singular value plots. 
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Dominant SZM delta approach 
n o 256, H2 = 0.M7628 

- 2 -1 0 
Frequency (rad/s) 
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Dominant SZM delta approach 
n = 256, HB m 0.047628 
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, Ortglnal-H,2 

. dcmSZM-H„ 

Figure 4. 
response 

8 : MIMO 2 x 2 transmission line reduced with dominant SZM. Frequency 
of individual SISO transfer functions: H ( l , l ) (left) and H(l ,2) (right). 

Table 4.1 : MIMO (2 x 2) tline, n=256 fc=12, reduction summary 

S A D P A b a s e d | Error Time(s) Iterations 

Dominant SZM 0.155 51 45 iter., 5 restarts 

Other methods Error Time(s) Constraints 

PRIMA 0.975 0.1 unstable 

4.4.3 MIMO version 1 of Fig. 2.6 model 

We reduce the RLC transmission line in Fig. 2.6 by embedding it into a MIMO 

(2 x 2) transfer function as follows. A current source is added in parallel to Re at the 

right port, defining the second input w2. The output y2 is the voltage at the far end 

of the line, across the last Re- The positive real MIMO (2 x 2) transfer function is 

reduced with dominant SZM and PRIMA. With PRIMA, the sign change is needed 

to convert E to definite, while dominant SZM applies directly. The singular value 

plots are compared in Fig. 4.9, and the individual transfer functions are shown in 

Fig. 4.10. 

As with the SISO results in Sect. 2.4.3, the model reduced with dominant SZM 
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Figure 4.9 : RLC tline, MIMO model 1. Singular value plots, original and reduced 
with dominant SZM and PRIMA. 
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Figure 4.10 : RLC tline MIMO model 1, original and reduced with dominant SZM 
and PRIMA. Frequency response of SISO transfer functions. 
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Table 4.2 : RLC tline MIMO model 1, n=902 k=23, reduction summary 

SADPA based 
Dominant SZM 

Other methods 
PRIMA 

Error 

0.448 
Error 

0.471 

Time(s) 

38.2 
Time(s) 

24.9 

Iterations 

810 iter., 113 restarts 
Constraints 
E definite 

is a better approximant than the PRIMA model for a wider frequency range. The 

reduction summary in Table 4.2 for the relative errors and computational time shows 

that dominant SZM is at least comparable to PRIMA. Although the computational 

time for obtaining a reduced model with dominant SZM is larger than with PRIMA, 

the quality of the reduced model is more important for simulation purposes. Dominant 

SZM also applies on the system matrices resulting from the simulator with no prior 

manipulations. 

Finally, Fig. 4.4 compares the reduction of the voltage transfer function with the 

two approaches: the SISO procedure from Sect. 4.2.1, and the reduction starting 

from the MIMO system described here. Results with the two approaches are similar. 
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4.4.4 MIMO version 2 of Fig. 2.6 model 

We reduce the RLC transmission line in Fig. 2.6, where an additional resistor R was 

added at the right end of the line, similarly to the left end of the line. Input voltage u2 

and output current y2 (through the added resistor R) are denned. u\ and y\ at the left 

remain as in Fig. 2.6. The model becomes MIMO (2x2) and is reduced with dominant 

SZM and PRIMA. PRIMA needs the sign change to accommodate passivity, while 

dominant SZM applies directly on the system equations. Figures 4.11 and 4.12 show 

the singular value plots and the individual transfer functions respectively. PRIMA 

approximates the response better in the lower frequency range, while dominant SZM 

is a better approximant for higher frequencies. Table 4.3 summarizes the error and 

computational cost for both methods. Note that the MIMO PRIMA implementation 

becomes more expensive than MIMO dominant SZM, as the cost of orthogonalizing 

the Krylov vectors at each iteration inside PRIMA starts to dominate. 

MIMO RLC tline - singular value plot 
n = 902, dim = 599, k=31 
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Figure 4.11 : MIMO RLC tline model. Singular value plots, original and reduced 
with dominant SZM and PRIMA. 
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12 : MIMO RLC tline model, original and reduced with dominant SZM and 
Frequency response of SISO transfer functions: H( l , 1) and H(l ,2) . 

Table 4.3 : RLC tline MIMO model 2, n=902 A;=31, reduction summary 

S A D P A b a s e d Error Time(s) Iterations 

Dominant SZM 0.171 13.54 197 iter., 25 restarts 
Other methods Error Time(s) Constraints 

PRIMA 0.763 33.3 E definite 

4.4.5 MIMO coupled RLC transmission line 
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Figure 4.13 : Two coupled transmission lines 

The inductively coupled MIMO RLC transmission line in Fig. 4.13 is reduced. The 
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system equations axe written in the PRIMA-friendly "passive-form", and the system 

matrix E is invertible. Prom n = 11998, we reduced the system to dimension k — 50 

with MIMO dominant SZM, PRIMA and modal approximation. Fig. 4.14 shows the 

plots for <Tmax and amin of the original and reduced transfer functions. In Fig. 4.15, 

the individual components H( l , 1) and H(l ,2) of the original and reduced transfer 

functions are compared. Errors and CPU times are collected in Table 4.4. The 

PRIMA model is the most accurate and cheapest to compute. The Dominant SZM 

model is comparable to PRIMA, but misses some oscillations. Modal approximation 

misses most of the response. Even though results with PRIMA are most promising, 

they are strongly dependent on the original "passive form" for the system equations, 

and the fact that the pencil (A,E) has no eigenvalues at infinity. 
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Figure 4.14 : MIMO coupled model in Fig. 4.13. Singular value plots, original and 
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Figure 4.15 : MIMO coupled model in Fig. 4.13. Frequency response of SISO transfer 
functions: H( l , 1) and H( l , 2), original and reduced with dominant SZM and PRIMA. 

Table 4.4 : MIMO coupled model in Fig. 4.13, n= 11998 fc=50, reduction summary 

SADPA based 

Dominant SZM 
Modal approx. 

Other methods 

PRIMA 

Error 

0.2823 
0.7136 

Error 

0.2047 

Time(s) 

226 
125 

Time(s) 

8.4 

Iterations 

163 iter., 18 restarts 
239 iter., 26 restarts 

Constraints 

-

4.4.6 MNA transmission line 

We reduce an MNA transmission line model [40] with n = 980 states, m = 4 inputs 

and n = 4 outputs with modal approximation, dominant SZM and PRIMA. The 

dominant poles interpolated with modal approximation are shown in Fig. 4.16, left. 

With dominant SZM, the 5 approach from Sect. 2.3.2 was used to resolve the lossless 

problem. The resulting poles and spectral zeros are as in Fig. 4.16, right. Fig. 4.17 

shows the singular value plots. In Fig. 4.18, several individual transfer functions are 

compared. Overall, reduced models with dominant SZM and PRIMA approximate 

the response for the low to mid frequency range better than modal approximation. 

No method can approximate the response for higher frequencies. 
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Figure 4.17 : MIMO MNA tline model. Singular value plots, original and reduced 
with dominant SZM, modal approximation and PRIMA. 
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MNA4 - frequency response H f l 

n = 980,k = 59 

MNA4 - frequency response H1; 
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Figure 4.18 : MIMO MNA tline model. Individual transfer functions, original and 
reduced with dominant SZM, modal approximation and PRIMA. 

4.5 Summary 

Reduction for the voltage transfer function of transmission lines was addressed both 

from a SISO and MIMO perspective. The SISO method is novel, as reduction for 

SISO systems is generally performed with respect to the driving point admittance 

or impedance. The solution proposed here exploits the interpolation at dominant 

spectral zeros and insures that the reduced voltage transfer function is associated 

with a reduced model that can be synthesized with RLC circuit elements. Dominant 

SZM was also extended to handle MIMO systems, and the voltage transfer function 

reduction in this setting is comparable to the proposed SISO approach. 
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Chapter 5 

Conclusions and future work 

This thesis presents several new approaches for passive reduction of systems arising 

in circuit simulation. The foundation for preserving passivity is the spectral zero 

interpolation method [13, 14], which is improved as follows. A dominance criterion 

for selecting spectral zeros is proposed, and an iterative eigenvalue solver (SADPA 

[15, Chapter 3]) is tailored for automatic computation of dominant spectral zeros. 

SADPA also finds the associated invariant subspaces, which are used to construct the 

passivity preserving projection. The method reduces all passive circuits, including 

those not suitable for reduction with popular industry methods such as PRIMA. It 

is also shown how for certain descriptor systems from circuit simulation, dominant 

SZM and modal approximation can be combined efficiently with matching of Markov 

parameters of the fast subsystem. This improves the approximation and overcomes 

technical difficulties with dominant SZM when the system matrix D is 0. The problem 

of reducing transmission lines with respect to the voltage transfer function is also 

solved in this thesis. Based on the interpolatory nature of dominant SZM, a SISO 

reduction procedure is developed, which guarantees a realizable reduced model for 

the reduced voltage transfer function. Finally, the application of dominant SZM is 

extended for reduction of MIMO systems, based on the iterative solver SAMDP [15, 

Chapter 4]. 

The work in this thesis motivates further research in at least the following di­

rections. The dominance criterion for spectral zero selection proposed here is by no 
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means unique. Other criteria such as 7̂ 2 optimality [35] could be exploited and in­

corporated in SADPA, but the preservation of passivity is still an open question. In 

the context of Markov parameter matching for the fast subsystem associated with 

E(E, A , B , C,D), methods for approximating the dominant eigenspace associated 

with the infinite eigenvalues of (A, E) are of interest. A step further would be passive 

reduction for E(E, A , B , C, D) with a singular (A, E) pencil, which often occurs in 

practice but is very little understood. Finally, to synthesize the reduced models as 

RLC circuits, a block structure preserving version of dominant SZM will be addressed, 

similar to the structure preserving SPRIM method proposed in [6]. 
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Appendix A 

Appendix 

A.l Proofs of theorems 

Proofs for the theorems in Chapter 2 are included in this section. 

Proof A.l (Proof of Theorem 2.1) Recalling definition (1.4), we first identify the form 

of the system Hz, whose zeros are the spectral zeros of S . 

Hz(s) 

Az 

H(s)+H*(-s) = Cz{sEz-Az)-
1Bz+Bz, where 

Bz = 
A 0 

0 -A* 

B \ / E 0 

- C / \ 0 E* 

c B* , DZ=D+ET. (A.1) 

The associated system is Hz = 
(AZ,EZ) B ; 

D , 

system with transfer function G(s) = Hz(s) * is S G = 

from Hz as follows: 

. Using [15, Theorem 5.3.6], the 

(Afc,Efc) 

Ch 

, obtained 

Afe = AZ—BZT>ZC*Z: Bfe = B^D^ , Eh=Ez 

Ch = -D-JCz, A = TTl 
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Prom basic operations on (A.l), the Hamiltonian system matrices in the form (2.2), 

(2.3) are obtained immediately. 

Proof A.2 (Proof of Theorem 2.2) 1) Using the Schur complement of—D—D*: 

C s ( s E s - A s r B s + A 

( c \ (sE-A 0 - B 

= - A B 

\ 0 / 

\ " V B \ 

0 sE*+A* C* 

- C -B* -D-D* 

= ̂ ( c B °)(-V -a 

\ ° / 

-c 

V ° / 

A+A 

A+A 

( c B*)"!*"1 
= -A C B* A+A 

-C* 

Ch(sEh-Ah)~
1Bh+A = G(s), where (A.2) 

/ 
^ ^ 

\^J 

= s 

A = 

s E - A 0 

0 sE*+A* 

E 0 \ | A - B A C -BAB* 

0 E* J I C*AC -A*+C*AB* 

(D+D*)-1. 

[ - D - D T ^ - C -B*) 
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2) Eigenvalues of (AS,ES) are all s G C such that det(sE s—A s)=0 4» 

0 = 

0 = 

<$ 

0 = 

s E - A 0 

B / \ 0 sE*+A* 

det[(sE-A)J • det^-sET-A1)] 

& 

det 
/ 

+ (D+D*) 

V -a 
0 = det[(sE-A)]-det[(-^E*-A*)]det[H(s) + lT(-^)]. 

> v ' 

Pencil (A, E) is regular, thus any s £ C such that det [H(s)+H*(-s)] = 0 is 

a spectral zero of S, according to definition (1.4). They are the same as the 

eigenvalues of (Afc,E/,), as evident from (A.2). 

Proof A.3 (Proof of Theorem 2.3) Setting Bz = 0 in H z (s) in (A.l), we obtain the 

system S z whose zeros are the spectral zeros of E(E, A, B, C, 0). Using [15, Theorem 

5.3.5] , the Hamiltonian system Eh(E/l, A ^ B ^ , 0^,0) with transfer function G(s) = 
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Hz(s) is obtained from Hz as follows: 

Ah = 

Bh = 

A z B z J / Ez 0 

c * o J ' h loo 

, C f c = - Ci J , Dfe = 0. 

Proof A.4 (Proof of Lemma 2.1) Solving for Z^ = ^ ( C X j + B*Y,s) from the third 

equation in (2.17) and plugging it in the first and second, transforms the Hamiltonian 

eigenvalue problem into (A.3): 

£-11 C B* 
- O ) 

(A.3) 

As 8 —^oo, (A.3) approaches the generalized eigenvalue problem (A.4): 

(A.4) 

where A<y = diag([Ai,..., A„, — A*l5...,—AJJ). Since 8 —*• oo, these points are close 

to the poles of the original system (the generalized eigenvalues of (A,E)), together 

with their mirror images. This motivates projecting the original system with Y<s and 

X$. Y,j and X,$ are passivity preserving projection matrices, because they interpolate 

Ai,...,A„ and their mirror images — A*l5...,—Xn, thus satisfying the positive real 

lemma [13], [14], [3]. 
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From (A.4) and partitioning A($=diag([A,—A*]), we obtain: 

AXS = EXsA 

-A^Yj = ETYj(-A*) =• XJA = y j E A 

(A.5) 

(A.6) 

From (A.5) and (A.6), as 5—»oo, the projecting matrices Yj and X«$ approach the left 

and right eigenvectors of (A, E) respectively, corresponding to eigenvalues A. Con­

sequently, the poles of the reduced system (2.19), i.e., the generalized eigenvalues of 

(YjyEXa, YgAX-s) are stable, located close to the dominant poles of S(E , A, B, C, 0). 

A.2 Reduction with the dominant spectral method 

The procedure for passive reduction with dominant SZM is summarized next: 

1) Given S(E, A , B , C, D), construct the associated Hamiltonian system S s de­

scribed by (A.7), whose poles are the spectral zeros of S . 

A., = 

Cs = 

A 0 B 

0 -A* -C* 

C B* D+D* 

C B* 

\ / E 0 0 ^ 

) E j = 0 E* 0 

x° ° ° 
- A ( C B* O ) , D S = ( D + D T 1 

/ 
\ 

)BS — 

V ° / 
(A.7) 

2) Solve the Hamiltonian eigenvalue problem 

(A,R,L) = eig(As,Es), i.e., ASR = ESRA, L*AS = AL*ES. Eigenvalues A = 

diag(si , . . . , sn, — s j , . . . ,—Sn) axe ^n e spectral zeros of S , and R = [r l 5 . . . , r 2 r a ] , 

L=[l!,...,l24 
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3) Compute residues Rj associated with the stable* spectral zeros s^, j = 1 . . .n 

as follows: Rj=ijPj, ^j = CsTj(ljEsrj)~
1, /3, = 1*B5. 

4) Sort spectral zeros descendingly according to dominance criterion J A , [15, 

Chapter 3], and reorder right eigenvectors R accordingly. 

5) Retain the right eigenspace R = [n, . . . , rfc] G c2nXk, corresponding to the 

stable k most dominant spectral zeros. 

6) Construct passivity projection matrices V and W from the rows of R: V = 

R[i:n,i:fc], W=R[n+i:2n,i:fc], and reduce I! according to (1.3). 

As explained in [13, 14] and Sect. 2.2.1, by projecting with (1.3), S interpolates 

the k most dominant spectral zeros of S , guaranteeing passivity and stability. For 

large-scale applications, a full solution to the eigenvalue problem in step 2), followed 

by the dominant sort 3)-4) is computationally unfeasible. Instead, the iterative solver 

SADPA (developed in [15, Chapter 3]) is applied with appropriate adaptations for 

spectral zero computation as described in Appendix A.3. The k most dominant 

spectral zeros and associated 2n x k right eigenspace R are obtained automatically. 

A.3 Subspace accelerated dominant pole algorithm 

The following pseudocode is extracted from [15, Chapter 3] and [11], with efficient 

modifications to automatically account for the four-fold symmetry (A,—A*, A*,—A) of 

spectral zeros. In particular, as soon as a Hamiltonian eigenvalue (spectral zero) A has 

converged, the right/left eigenvectors corresponding to —A* are immediately deflated 

as well. It turns out that the right/left eigenvectors corresponding to —A* need not 

*s € C is stable if Re(s) < 0. 
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be solved for explicitly. Rather, due to the structure of the Hamiltonian matrices [7], 

[8], they can be written down directly from the already converged left/right eigen­

vectors for A, as shown in steps 13-16 of Algorithm 1. As for modal approximation 

[11], [15, Chapter 3] deflation for A* and —A is automatically handled in Algorithm 

3. To summarize, once the right/left eigenvectors corresponding to an eigenvalue A 

have converged, the right/left eigenvectors corresponding to—A*, A*,—A are also readily 

available at no additional computational cost, and can be immediately deflated. 

In Algorithm 2, the MATLAB qz routine is proposed for solving the small, 

projected eigenvalue problem in step 1. This reveals the right/left eigenvectors 

X, V of the projected pencil directly, however they are neither orthogonal nor bi-G-

orthogonal. Thus the normalization in step 3 is needed when computing the residues. 

A modified Gram-Schimdt procedure (MGS) is used throughout for orthonormal-

ization, following the implementation in [15, Algorithm 1.4]. For complete mathe­

matical and algorithmic details of SADPA we refer to [15, Chapter 3] and [11]. 
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Algor i thm 1 (A, R , L) =SADPA(E f c , Afc, Bh, Ch, S i , .. . Prnaxi krnini krnax) 

Given: (EAj A f c ,BA ,CA), E^GC2"*2", A fe€C2nx2ra , Bh€C2raa, C^GC1*2" an initial pole 
estimate si and number of desired poles Pmax (in the restarted version, kmin and fcmox 
are also specified) 

Output: A, the Pmax most dominant eigenvalues and associated right, left eigenspaces R, 
Lof(A f c ,E f c) 

1: k = 1, pfound = 0, A = Q, R = 0, L = 0 
2: while pfound < Pmax do 
3: Solve for x from (sfcEfc — A/,)x = B/j 
4: Solve for v from (sfcE^ — A^)*v = C*h 

5: x =MGS(X, x), X = [X, x/||x||] 
6: v = M G S ( V , v ) , V = [V,v/||v||] 
7: Compute G = V*EftX and T = V*AfeX 
8: (A, X, V) = DomSort(T, G, X, V, Bh, Ch) _ > Algorithm 2 
9: Compute dominant approximate eigentriplet (Ai,xi ,vi): 

Ai = Ai,X! = (Xxi)/ | |Xxi | | , V! = (VvaJ/HVv^l 

10: if ||AftXi - EftXiAi|| < e t h e n 
11: (A,R,L,X,V,B f c )C f c ) =_Deflate(Ai,xi,vi,... 

A, R, L, X X ( . | H ) , VV(.i2:fc),... 
Bh, Bh, Cfe) > Algorithm 3 

12: Pfound + + 
> Also find eigenvectors for the antistable spectral zero — Aj and deflate 

13: x = [ - v W : 2 n > : ) ; vi(1SB)!)] 
14: v = [x1( t i+1 ;2n : ); -x 1 ( 1 : n : ) ] 

15: (A, R, L, X, V, Bh, Ch) = DeflateC-A*!, x, v,... 
A, R, L, X, V, Efcl Bh, Ch) > Algorithm 3 

16: P found + + 
17: Ai = A2 

18: else if ncols(X) > kmax t h e n > Possible restart 
> Retain first kmi„ most dominant approximate eigenvectors and re-orthonormalize 

19: X =MGS(XX(.il:fcmin)) > orthornormalize all columns sequentially 
20: v =MGS(VV(;;1; c;}) 
21: end if 
22: Increment k = k + 1 
23: Select new most dominant pole estimate Sfc = Ai 
24: end while 
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Algor i thm 2 ( A , X , V ) = D o m S o r t C T ^ X ^ B ^ C f c ) 
Given: (T\G)>X,V,B f c lC f c 

Output: (A, X,V) , k dominant approximate eigenvalues and associated right, left eigen­
vectors of (T, G), sorted such that Ai is most dominant 

1: (AA,BB,Q,Z,X,V) = QZ(T,G) 
2: A = diag(AA)./diSig(BB) and |A»| ^ oo, i = 1 . . . k 

3: Ri = [Chxj]lvtBh] > Compute residues 

4: Sort (A,X,V) in decreasing |Ri|/|i?e(Aj)| order 

Algor i thm 3 (A, R, L, X, V, Bfe, Cft) = Deflate(A, x, v,... A, R, L, X, V, Efe, Bh, Ch) 

Given: (A,x,v): the newly converged most dominant eigentriplet, (A,R, L): the domi­
nant eigentriplets already found correctly, X, V: the approximate right/left eigenvectors 
not yet checked for convergence, Efc,Bfe,Cft 

Output: (A, R,L): updated converged eigentriplets, X, V: deflated approximate 
eigenspaces, B ^ C ^ : deflated matrices 
A=JA,A] 
r = x/(v*Efex) > for keeping converged eigenvectors bi-E-orthogonal 
l = v 
R = [R,r ] ,L = [L,l] 
Deflate Bfc = BA - Efer(l*Bfe) 

6: Deflate Q , = Cfc - (CAr)i*Ek 

7: if imag(A ^ 0) then 
8: A = [A,A*] 
9: f = f*, i = r 

10: R = [ R , r ] , L = [L,1] 
11: Deflate Bfc = B,, - Ehr{\*Bh) 
12: Deflate C& = CA - (CAr)i*EA 

13: end if 
14: X = Y = 0 
15: for j = 1 . . . #cols(X) do 
16: X = Expand(X, R, L, EA, 39) 
17: V = Expand(V, R, L, E^, \j) 
18: end for 

> also deflate complex conjugate 

> Algorithm 4 
> Algorithm 4 
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A l g o r i t h m 4 X =Expand(X, R, L, Eh, x) 

Given: X € C2nXfe such that XX* = I, (R,L) G C2nXP: the correctly found right/left 
eigenvectors such that: L*E^R is diagonal and L*E^X = 0, x: approximate eigenvector 
not yet checked for convergence, E^ 

Ou tpu t : X G c2n*(k+V expanded such that XX*=I 
> Project x onto ColSpan (R) along ColSpan (L) 

x*+ 1=nk(i-r$|)* 
x = MGS(X,xfe+1) 
X=[X,x / | | x | | ] 
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