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Abstract 

In this thesis, an electrical analogue of the human cochlea was 

constructed from the equations of cochlear motion and optimized to 

produce a response which agreed with the experimental response 

measured from the human cochlea. The response of the electrical 

analogue and the perturbation of the response for small changes in 

the parameters describing the physical structure of the cochlea were 

first calculated on a digital computer. This data was then used in a 

linear program to minimize the difference between the model response 

and that measured from the human cochlea. The procedure was then 

repeated until no further reduction occurred. The result was a new 

model of the cochlea, the response of which agreed more closely with 

that of the human cochlea than previous models. 
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INTRODUCTION 

In recent years several investigators have constructed models to 

1,2 
represent the response of the human cochlea. These models have been 

prompted by the idea that some of the signal processing capabilities 

of the ear and particularly the cochlea could not only serve as useful 

tools in signal analysis but also aid investigators concerned with speech 

recognition. 

The models are based on the partial differential equations which 

represent a one dimensional approximation to the human cochlea. The 

equations relate the motion of fluid within the cochlea to the motion 

of the membrane which divides the fluid into two channels. The partial 

differential equations are further approximated by a finite set of ordi¬ 

nary differential equations which can be represented by a lumped elec¬ 

trical network. Most models have been constructed in this manner 

because electrical networks can be easily built in the laboratory and can 

be used for experimental work with electrical signals. 

An evaluation of the models to date reveals that they are consistent 

with the physical structure of the cochlea and provide a good qualitative 

description of the cochlea response. However, a point by point compari¬ 

son of the models with the response measured from the human cochlea 

shows that they could be greatly improved. For this reason the models 

can be viewed as only an initial stage in the development of an accurate 

model of the cochlea. 
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The objective of the present study has been the development of a 

technique which could be used to modify the model so that its response 

would best fit the response measured from the human cochlea. The 

model error was reduced by first describing perturbations of the model 

response in terms of changes in parameters describing the physical 

structure of the cochlea and then applying a linear programming algo¬ 

rithm for error minimization. The result was a new set of parameters 

describing the physical structure of the cochlea and a reduced error in 

the model. The process was repeated until the error remained constant. 

The new parameters were then checked with measurements taken from 

the human ear. As will be seen later, the modified parameters were 

consistent with our knowledge of the cochlea and the response error within 

the bounds of experimental error. Therefore, the techniques used for 

optimization proved satisfactory for the development of a model of the 

cochlea. 
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The Model of the Cochlea 

The cochlea is a rigid snail-shaped structure filled with fluid 

and divided into two channels by the cochlear duct. The motion of 

the cochlear duct is determined by the motion of the basilar mem- 

4 
brane for frequencies less than 3000 cps and can be described 

by a set of partial differential equations of fluid motion for the two 

channels, the equation of membrane motion, and the equations of 

continuity. The mathematical model of the cochlea will be derived 

for the idealized cochlea shown in figure 1. In this model the coch¬ 

lea will be treated as a one dimensional system in which only varia¬ 

tion along the length of cochlea is allowed; it therefore represents 

only an approximation to the human cochlea. 

Aj(x)fA2(x) 

b(x) 

m{x) 
f(x) 

K(x) 

fpM 

P 

Figure 1. Idealized Cochlea 

Cross sectional areas of channels 

Width of basilar membrane 

Mass / length of membrane 
Loss/length of membrane 
Elasticity/length of membrane 

Damping coefficient of fluid 

Density of fluid 
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To develop the equations of continuity, consider the section 

of the cochlea between x and x+Ax shown in figure 1. Because the 

outer structure of the cochlea is rigid and the fluid is incompressible, 

any increase in the fluid volume in channel 1 within this section 

must coincide with a corresponding decrease in the fluid volume in 

channel 2 within the same section. If the membrane displacement 

is assumed to be parabolic, then the equations of continuity for an 

increase in the fluid velocity between x and x+/\x in channel 1 can 

be written as: 

la u (x+Ax, t) A (x+Ax) - u (x, t) A (x) + \ b(x) u (x, t)Ax - 0 
xl lxl 13 z 

lb u Jx+Ax,t) A (x+Ax) - u (x,t) A (x) - \ b(x) u (x, t) Ax = 0 
x2 2 xZ 2 i z 

where: u (x,t), u _(x,t) are the x components of the fluid particle 
xl x2 

velocity in channels 1 and 2 respectively; 

A (x), A (x) are cross-sectional areas of channels 1 and 2 respec- 
1 u 

tively; 

b(x) is the width of the basilar membrane; 

u (x,t) is the component of the fluid particle velocity and therefore 
z 

the velocity of the basilar membrane. 

ForAx small, A(x+/\x) and u^(x+A x, t) can be expressed by: 

2a A(X+A X) = A(x) + A x 

2b u (x+Ax, t) = u (x,t) + — — Ax 

X X n X 
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If these are substituted into equations la, b and second order terms 

are neglected, the continuity equations can be reduced to: 

3a 
d 

^X 
A (x)u (x,t) 
1 xl 

3b -JL 
Jx 

A
2(X)UX2(X, t) 

= — b(x) u (x, t) 
3 z 

- - — b(x) u (x, t) 
3 z 

and since A (x) u (x, t) and A (x) u (x, t) are just the fluid volume 
1 X JL u X Cd 

velocities, 

4a u (x, t) = - 

4b u (x, t) = - 

2b (x) £x 

3 

iz^i (x>t) = _J  ^vx2 (x»t) 
2b(x) dx 

Zb(x) 7 (v (x,t) - V (x,t) ) Z 0x xl xZ 

where: v „(x,t) and v ^(x,t) are the fluid volume velocities in 
xl xZ 

channels 1 and 2 respectively. 

In these equations the volume velocities of the fluid in the two channels 

are related to the z component of the fluid velocity, which is equiva¬ 

lent to the velocity of the basilar membrane. 

The equations describing the motion of the fluid within the two 

channels relate the pressure within the channel to the velocity of the 

fluid. Since the fluid is incompressible, only terms involving the 

fluid mass and viscosity are included. 

5a 3P1<X’‘> 
X 

5b 
3P2(X, t) 

<)x 

'f (x) 

XP(x) vx2(x,t) + — P- 
A2( ' 2 A (x) 

u 

A. <*vxl
(x,t) 

<)x 

S v (x, t) 
xZ  

2ix 

where: f (x) is the damping coefficient, jD is fluid density, and 
P 

A (x) and A (x) are the cross-sectional areas of channels 1 and 2 
-L Ld 

respectively. 
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These pressures can then be related to each other by the motion of 

the basilar membrane. The difference between the pressures in 

the two channels determines a force, F (x,t), which acts upon the 
z 

membrane. 

6 F^(x,t) = pP^x, t) - P2(x, t)j b(x)^ X 

This force can be related to the velocity of the membrane by: 

7 F (x,t) = m(x)/\x ^u
z(x’^ + f(x)/\xu (x, t) + K(x)/\x fu (x,t)dt 

Z dt Z J Z 

where: 
m(x) is the mass/unit length of the membrane, 

f(x) * is the damping/unit length of the membrane, and 

K(x) is the elasticity/unit length of the membrane. 

The substitution of equation 6 and the continuity equations 3a and 

3b into equation 7 yields an expression which relates the pressure 

across the membrane to the changes in fluid volume velocities 

within the channels. 

8 Pj(xf t) - P2(x,t) - - | 

+ 
f (x) 
_£  

b2(x) 

avxi^.t) 
^X 

^vx2(x,t) 

m(x) 

■b2(x) 
Jt 

avx2(x,t
) 

a* 

3^x1 (x, 1:) 
^Vx2(x,t) 

£x 

K(x) 

b2(x) 

^Vxl(x,t) 
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Since we are interested in the displacement of the membrane and 

not the pressures and velocities in the individual channels, it is 

convenient to define the following variables which describe the 

pressure differential across the membrane P(x,t) and the differ¬ 

ential volume velocity difference between the two channels v(x,t). 

9a P(x,t) = P^x, t) - P2(x, t) 

9b v(x, t) = — fv (x, t) - v (x, t) 
2 xl xZ 

From 9b and 4 the displacement, d(x,t), can be written as: 

1 0 d(x,t) ~ / dv(x, t) 
dt 2b(x) J 

The equations of motion can be further simplified if it is assumed 

that the cross-sectional areas of the two channels are equal (i. e. , 

Al(x) = a2(x) = A(x)|> This gives for the equations describing the 

motion of the cochlea: 

11a 
dp(x, t) 

3X 

lib P(x,t) - = - 

2F (x) 
 E  

A(x) 

'm(x) 

v(x,t) + 
2P 
A(x) 

v(x, t) 

lb2(x) 

lb .^v(x, t) F(x) ^v(x, t) 
it a* b2(x) Jx 

+ f J 
b2(x) J 

* A justification for solving indirectly for the displacement is found 
in the Appendix. 
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These equations, together with equation 10 relating the displace¬ 

conditions, are sufficient to describe the mechanical motion of the 

cochlea. 

Since no analytic solution has been found for the set of partial 

differential equations describing the cochlea, the equations will be 

converted into a set of ordinary differential equations which can be 

solved by constructing an electrical network defined by a set of 

differential equations analogous to those defining the mechanical 

motion of the cochlea. The partial derivatives with respect to x 

If the length of the cochlea L is divided into N sections of length 

ment of the membrane to the volume velocity and a set of boundary 

Ax 

12b can be written as: 

13a 
dx 

frP(x, t) 
nL £p(n+l,t) - P(n,t)j Y 

jv(n+l,t) - v(n, t)J 

x 
N 

nL 

N 
13b 

x 
N 
L 
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or 

0P(x,t) 
1 nL = [P(n,t) - P(n-l.t)] 

N_ 
T Jx 

1 X “ N l J L, 

^v(x, t) 

dX 
1 nL = 
lX = N 

£v(n, t) - v(n- 1, t)j 
_N_ 

L 

To construct an electrical network in the form of a ladder network, 

either 13a and 13d or 13b and 13c must be used. In this case 13b 

and 13c are used and yield for difference equations: 

14a P (t) - P , (t) = 
n n- 1 

ii- fP<"> V (t) + ^  
N A(n) n NA(n) dt 

dvn(t) ^ 

3N 
14b P (t) = - ff- 

n ZL 
(v (t) - v (t)) (v (t)- v (t) ) 

_ Z(n) dt n+1 n ,2 n+1 n 
b b (n) 

+ 
K(n) f 
b2n J (v„+l(t) - v„(t) * dt 

In constructing an electrical network to represent the mechanical 

response of the cochlea, it is useful to relate the parameters in the 

mechanical equation to components in an electrical network. In the 

model, pressure and velocity will be represented by current and 

voltage respectively. With this analogy, the following electrical 

components can be defined for the network shown in figure 2. 



-TYWX 

LS ( N -I ) 

VN-I 
 9— 

GS(N-I) 

—W  
VN 

>-o- 

n CS (N-l) 

LS <N) 
_nnnn  

GS (N) 

-AAA  

CS (N) 

Cp(N)”I <Gp(N) 

Figure Z 

Electrical Analog of Difference Equations 

VN< ► VNfl 

Figure 3 

Network Model of Cochlea 



-10- 

2L f (n) 
P 

N A(n) 
G (n) 

P 

2 L 
. ; ... = C (n) 

A(n)N „ p' 

3N 
2L, 

m(n) 

b2(n) 
C (n) 

s 

3N 
2 L 

f(n) 

b2(n) 
G (n) 

s 

2b^(n) L» 
3K(n)N 

L, (n) 
s 

conductance 

capacitance 

capacitance 

conductance 

inductance 

a 

Using these electrical components it is possible to build an 

electrical network defined by equations: 

15a I - I . 
n n-1 

dVT 
G (n) V + C (n)   
p n p' dt and 

15b I = 
n c

s<"> 3T 
(Vn+r V + Gs(n) (vn+l - vn> + Ls<”> / (Vn+l */« 

which are analogous to the equations describing the mechanical motion 

of the cochlea. Any measurement on this electrical network corres¬ 

ponds to a measurement on the mechanical system. 

The experimental data available describing the mechanical 

response of the cochlea describes the displacement of the basilar 

membrane for a constant amplitude sinusoidal volume displacement 

of fluid at the input for several frequencies. In the electrical analogue 

the natural inputs and outputs are current corresponding to pressure 

and voltage corresponding to volume velocity. Therefore, the input 

V ) dt 
n 



to the system will be constant amplitude sinusoidal volume velocity 

and the output will be the velocity of the basilar membrane. Since 

the system is linear, this is equivalent to measuring the displace¬ 

ment of the membrane for a constant amplitude sinusoidal volume 

displacement. The network used for a model of the cochlea is 

shown in figure 3. Note that the input is a voltage which corres¬ 

ponds to a velocity differential between the channels at x=0 in the 

cochlea, while the output corresponds to the change in fluid volume 

velocity as a function of distance from the input. By equation 4 the 

fluid particle velocity in the direction which equals the velocity of 

the membrane is: 

16 u2(n,t)= -3^ [Vn(t>- vn(t)] 

By weighting the change in volume velocity by this factor, the mem¬ 

brane velocity can be easily calculated from a measurement of the 

branch voltage, V ^ - V , corresponding to a change in volume 

velocity. In this manner the transfer function of the cochlea can 

be easily represented by the electrical network and the necessary 

inputs and outputs are available for a representation of the experi¬ 

mental data describing the cochlea. 
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Optimization of the Cochlear Model 

The response of the model defined by the set of differential 

equations describing the cochlea is quite similar to the response 

of the human cochlea. Therefore, it was believed that a slight 

modification of the coefficients in the differential equations would 

produce a model which accurately predicts the response of the human 

cochlea. The process of error minimization will be based on several 

assumptions about the experimental measurements defining the model. 

First, it will be assumed that the set of differential equations derived 

in the previous section is sufficient to relate the response of the coch¬ 

lea to the mechanical properties of the cochlea. This means that any 

errors are due to unknown errors in the parameters defining the 

constants in the equations and are not caused by terms neglected 

in the derivation of the equations. The second assumption is that 

errors in the response measurements are negligible compared to 

errors in the coefficients appearing in the set of differential equations 

describing the cochlea. These assumptions allow the formulation 

of an error minimization problem in which the only variable para¬ 

meters are the terms related to the physical structure of the cochlea. 

Since there are bounds on the changes which can be made in the 

physical parameters, the variations required to produce a model 

which exhibits minimum error serve as a check on the final model. 
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If the final parameters are outside these bounds, the model must be 

discarded. As will be seen, the variations required to produce mini¬ 

mum error yield acceptable values for the physical parameters of 

the cochlea and therefore validate the assumptions about the human 

cochlea. 

The error minimization problem will be formulated as a linear 

programming problem in which the set of parameter variations is 

chosen to minimize the difference between the model response and 

the cochlear response. The linear programming formulation was 

chosen because of its inherent simplicity and because algorithms 

have been developed for solving large problems of this type. Al¬ 

though in this case the experimental data is not sufficient to neces¬ 

sitate the use of the large programs, the fact that these programs 

exist means that the techniques used in the formulation of the error 

minimization program can be applied to other modeling problems 

for which there is much more experimental data. Therefore, the 

error minimization problem is much broader than the special case 

of fitting the cochlear model response to the responses measured 

on the human cochlea. 
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A standard linear programming problem consists of a set of m 

linear equations (or inequalitites) with n non-negative variables, and 

a criterion function, Z, consisting of a linear combination of the n 

variables. The criterion function is either maximized or minimized, 

subject to the constraints of the m linear equations. This system of 

equations can be written formally as follows: 

1 Ay=b where: A is an n X m matrix; 

y^o bisalXm matrix; 

Min (z- cy) y is a 1 X n matrix; 

The solution to this problem is a set of values of y such that z assumes 

its minimum (maximum) value. 

The problem of minimizing the error in the model can be for¬ 

mulated as a linear programming problem by considering linear 

perturbations of the cochlear response for small changes in the 

variable parameters. Consider the response of the model at anode 

Mi" for a sinusoidal input of frequency f . For small variations of 

the parameter0£. the response can be expressed as: 

c is a n X 1 matrix. 

J 

i io 
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where: D. is the perturbed displacement of the response; 

D. is the response with no perturbation; 
10 

CXj is a variable parameter. 

This can also be written in terms of the normalized sensitivity, 

k bD± 
ij * 

(3) b(X. 
j 

and the unitless variable x.. 
J 

(4) Dk = Dk + ak. x. 
i i° J 

By considering perturbations with respect to all the variable parameters, 

the perturbed displacement can be written as: 

k / r- , ^ K ^ k k (5) D. = D. + / a..x. 
I io . ij J 

J 

In the same manner, the response of the model for small changes 

in the variable parameters can be calculated for every output node and 

frequency input. 

The error in the model at each node and input frequency can be 

calculated by subtracting the perturbed response of the model, D., 

from the response measured on the human cochlea, A. . 

, / v ^k A k ^ k 
(6) E. = A - D. 

i i l 

k 
is the error at the ith node for the kth input frequency. where: 
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By substituting equation 5 into equation 6 and defining E. = A. - 
lO 1 

D. , the parameter variations can be expressed in terms of the error 

before and after perturbation. 

„k , V* k ^k 
(7) E. +L,. a.. x. = E. 

i J ij J io 

k k 
Since the errors, E. and E. , and the coefficients are in general 

1 io 

complex, equation 7 can be divided into two equations by equating 

the real parts and the imaginary parts. This yields a set of simul¬ 

taneous linear equations which relate the response errors to the 

parameter variations: 

8a 
4 

k 
a • • T-) X. 

IJR J 
= Ek 

10R 

8b 
4 

k 
a. x. 

i]I J 
= Ek 

10I 

where: R and I denote the real and imaginary parts. 

In a linear programming problem the variables are also required to 

be non-negative. This is accomplished by representing the errors 

and the perturbation activities by the difference of two non-negative 

variables: 

9a E
k = E

k+ - Ek‘ , -^k+ > „k- s* 
where: E. — 0, E. — 0 

9b 

i i i 

+ 
X. = X. - X. 

1 1 
._k+ k- . 
(E E ) = 0 

J J J 
x. — 0, x. ^ 0 
J J 

+ - 
x. x. = o 

J J 
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Substitution of these into equations 8a, 8b yields a set of equations 

which act as constraints in the linear programming problem: 

k 
10a Ek f - Ek + T, . ak (x* - x. ) 

iR iR j IJR j j ioR 

1 Ob Ek+ - Ek‘ 
ll ll 

r-«- k . + - . k 
+ a . x. - x. ) = E 

To this set of constraint equations is added a criterion function: 

(11) Min s =£ . ck (Ek^ + Ek" + Ek+ E*~ ) 
i, k I iR iR ll — il 

Equations 10a, 10b, and 11 form a set of equations equivalent to 

equation 1 if the variables and constants in equations 10 and 11 are 

identified as follows with those in equation 1: 

k+ k- k+ k- + - ^ 
a. E , E , E , E , x. , x. g y 

iR iR il il j J 

b. E. , E. C b 
ioR 10I 

c. The coefficients of the variables in equations 10a, 1 Ob define the 

matrix A in equation 1, 

k 
d. The coefficients C\ in equation 11 define the vector C in equation 1. 

Since the optimization problem is equivalent to the linear program given 

in equation 1, the model of the cochlea can be optimized by evaluating 

the constants in these equations and applying the linear programming 

algorithm. 
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The size of the linear program and its ability to reduce the error 

to a reasonable level will clearly depend upon the number and choice 

of variable parameters. These parameters must be varied in a manner 

consistent with the experimental measurements on the physical system. 

In the case of the cochlea, the parameters of the model are related 

to the experimental values appearing in the differential equations 

which describe the physical structure of the cochlea. These include 

the membra ne width, elasticity, and mass; the fluid density and vis¬ 

cosity; and the fluid channel cross-sectional area. The parameter 

values which appear in the coefficients of the partial differential 

equation are functions of distance from the input to the cochlea. These 

functional relationships can be preserved by allowing only the constants 

appearing in the functions to vary during the minimization procedure. 

This will serve as a check on validity of these functions. If a tolerable 

model error can be achieved within the framework of these functions, 

then the mechanical measurements on the ear can be considered valid. 

If not, the parameters related to the physical structure of the ear must 

be re-examined and possibly re-measured. 

The coefficients relating the variable parameter x. to the model 

errors are the normalized partial derivatives of the displacement with 

respect to the variable parameterQ£. for every output node and frequency 

input. 
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12 a" =(X ^ 
,J J ao^ 

These coefficients can be computed directly from the original network, 

if it is modified in the following manner. Consider the partial deriva¬ 

tive of the cochlea difference equations with respect to Of. 

1 3a 

31 

dl 
n-1 - Y, 

3V_ 
n 

d(Xt J *0C 
v dYP 

n 

1 3b 
sex 

-Y (J^tL 
dv 

J J 

J 

dY 

ja 
n ) - (V - V ) n+1 n C>d- 

3i $V_ 
In these equations the variables are and * 

n 

J 

; and for 
•dOCj — »a, 

small variations of rv ., V can be considered as constants. This 
n 

means that the equations can be rewritten as: 

a i n di 
14a I + 

pn dCX. 
n-1 

3v 

J 
3i 

14b 1° + TpT1 

sn d(JC. 

acx 

= - Y (n) 
s 

= ■ Vn) act 
n 

av 
n+l 

J 
3V 

n 

3 a, dCX: 
J J 

where: 

I = V 
pn n 

3Yp(n) 

30C 

i 
sn 

(V - V ) 
n+l n 

dYsM 

act. 

are current sources which can be computed from measurements 

of the node and branch voltages of the original network. 
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Since the network is linear, the normalized coefficients are cal¬ 

culated by simply multiplying the sources 1° and 1° by CY . for 
pn sn 

each calculation. In this way the nodes representing the displace¬ 

ment in the original network are converted to outputs representing 

the change in the displacement for a unit change in the parameter QC.. 

By solving the network response describing the sensitivity of the 

displacement at each output node and input frequency for a variation 

in each parameter, the coefficients for the linear programming 

problem can be generated, using the same computer program which 

was used for calculating the response of the original network. 

Another formulation for optimization of the cochlear model is 

a minimization of the difference between the magnitude of the model 

response and that of the experimental response measurements. Be¬ 

cause the phase measurements in general are more subject to error 

than the magnitude measurements, it is quite possible that a good 

fit may be obtained for magnitude response, but not for the real 

and imaginary parts of the response. The linear programming problem 

is identical to the one formulated earlier, with the exception of the 

sensitivity coefficients, a.., which must be defined as the normalized 
ij 

partial derivatives of the response magnitude with respect to the varia¬ 

ble parameters. The response magnitude of the network at node i 

and frequency k is given by: 
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vk = 
Mi V(VRi’2 

where: 

VKi = R 
e 

Vk 
I 

VH = I 
m 

Vk 
1 

VMi T.k 

ft2 

If a.. is defined as: 
1J k 

w k _ ry ^VMi 

!J J d CXj 

vk avk. 
Ri Ri 

<50T 
vk 

+ Ii 
^VIi 

^ cx 

V 
Mi 

Then the error minimization problem for the response magnitude can 

be stated as: 

17 E‘/' - E‘/ + Y, a -• (x+ - x7 ) = E? 
i i ij J J io 

Min j^z =Eck (Ek+ + Ek")j 

Because the sensitivity coefficients can be calculated directly from 

the coefficients in previous problems, the program which is used for 

minimization of real and imaginary error can be modified slightly to 

yield a program for the minimization of magnitude error in the model 

response. 
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Since the criterion function determines the manner in which the 

model is optimized, it is important to understand the possibilities 

available within the framework of linear programming. In general, 

the function can be any weighted summation of all the variables 

appearing in the constraint equations. In the case of the cochlea, 

however, the coefficients associated with the variable parameters 

are chosen as zero. Therefore the criterion only consists of the 

errors describing the difference between the response of the model 

and that of the human cochlea. The coefficients of these variables 

can now be interpreted as the costs associated with individual model 

errors and can be chosen according to the importance of any parti¬ 

cular data point. Thus, the weighted summation of the errors gives 

an indication of how well the model fits the experimental response data. 

Since very little is known at this time about which characteristics 

of the cochlea response are of greatest importance, the choice of 

error coefficients is rather arbitrary. The two most reasonable 

possibilities are minimization of fractional errors and minimization 

of total model error. The fractional error at any node will be defined 

as the sum of the real and imaginary errors at a data point, divided by 

the magnitude of the response measured from the human cochlea at 

that data point. The sum of these fractional errors will yield an 

error criterion giving equal weight to the experimental data points. 
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This, it seems, would force the model response to assume a form as 

similar to the experimental response as is possible. The other possi¬ 

bility, the minimization of total model error, gives greatest importance 

to the data points of highest amplitude. Between these error criteria 

lie all the functions in which the errors are weighted by the reciprocal 

of the response magnitude raised to some fractional power. Each 

yields an error minimum greater than the absolute minimum and a 

shape less accurate than the minimization of fractional error. The 

choice of which criterion best suits a particular optimization procedure 

depends on the quality of the experimental data and the characteristics 

of the data which the model must represent. 
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Expe rimental Data 

The human cochlea is described by experimental measurements 

of two types, the experimental data describing the steady state 

responses for sinusoidal inputs and the measurements describing the 

physical structure of the cochlea. The physical structure of the coch¬ 

lea determines the coefficients appearing in the differential equations 

of cochlear motion, while the response measurements provide a basis 

for judging the model constructed from the differential equations. 

Because the information used for the construction and verification 

of the model is limited to these two sets of data, the model's ability 

to represent the cochlea depends upon what constraints these measure- 

ments place on the cochlea as a whole. 

Measurements made from human cadavers (vonBekesy) constitute 

5 
the experimental data describing the response of the human cochlea. 

The data includes the normalized magnitude and phase response of 

the basilar membrane for a sinusoidal displacement of the stapes at 

four frequencies, (fig. 4). Also, there are measurements describing 

the attenuation of the maximum response as a function of frequency 

(fig. 5). The attenuation characteristic allows the calculation of the 

absolute magnitude of the normalized response magnitude. Because 
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Figure 4b 

Phase Response of Basilar Membrane 
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the phase is available, the real and imaginary parts of the displace¬ 

ment can be calculated and compared with the model response to 

form the errors in the linear programming problem. The value of 

the data describing the location of the displacement maxima (fig. 6) is 

questionable because there is no information about the shape of the 

response. Nevertheless, these can be utilized as constraints in a 

region of the cochlea for which there is little experimental data. 

In this way the model can be optimized over a larger range of data 

than would otherwise be available. 

The physical properties of the cochlea are defined along the full 

length. These include experimental measurements for fluid density 

and viscosity; the membrane width, mass, friction coefficient, and 

6 
elasticity; and the fluid cross-sectional area. Because the measure¬ 

ments are the result of extremely difficult laboratory investigations, 

there is some doubt about their validity. The assumption that they 

represent at least the general form of the actual parameters, however, 

is justified, because other network models based on these parameters 

1,2 
have responses quite similar to the human cochlea. For this 

reason the functions describing parameter variations along the cochlea 

will be assumed valid and only the constants appearing in these ex¬ 

pressions will be varied in the optimization procedure which follows. 
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In this way the general characteristics of the models built by other 

investigators will be preserved in this model, and the regions for 

which there is no experimental basis will be forced to conform to 

the constraints imposed by a known set of experimental measurements. 
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Results of Model Optimization 

Models of the human cochlea were constructed for both minimum 

error in the magnitude response and minimum error in the sum of 

the error in real and the imaginary parts of the response. Also, 

to demonstrate that the optimization procedure was valid, the response 

of a three section low pass filter was optimized. The results of this 

procedure are given in appendix III. Of the two minimum error 

models of the human cochlea, only the model produced by minimizing 

the error in the magnitude response was a satisfactory representation 

of the cochlea. All attempts to find a network in which both the real 

and imaginary parts of the response, agreed with the human cochlea 

response were unsuccessful. 

In both the optimization problems there were difficulties encoun¬ 

tered during the optimization procedure. Since they are directly 

related to the problem of network optimization, they must be included 

as experimental results. First of all, it was quite difficult to move 

monotonically through decreasing error as the model approached 

optimum. This was partially due to the failure of the response gradient 

to give a good representation of changes in the network response. To 

correct this difficulty, an additional constraint equation was added to 

the linear program, a weighted summation of the parameter variations. 



-28- 

This partially corrected the difficulty, but did not eliminate the oscil¬ 

lation between higher and lower errors around the optimum. In the 

minimization of error in the magnitude response it was extremely 

difficult to determine when the optimum was reached. In fact, there 

was a series of networks which had almost the same error but a 

different set of parameter variations. This indicates that around 

the optimum there are several other networks with almost the same 

error and possibly a set of networks having identical error but 

different responses. Even though the network with minimum error 

will be given as the final result, it is possible that another network 

would be a more desirable representation of the human cochlea. Only 

by adding further constraints from additional data can the ambiguity 

be resolved. 

The response of the model before and after minimizing real and 

imaginary error is compared with the experimental response in figures 

7-10, and the parameter variations necessary to achieve minimum error 

are given in table 1. As can be seen by the error analysis in table 2, 

neither the original nor the modified model are satisfactory represen¬ 

tations of the experimental data. Also, the parameter variations are 

not within acceptable limits. It should be noted that the optimum model 

is simply a modification which forces several points on the response to 

agree with the data, and sets all others as near to zero as possible. 
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The improvement produced by minimizing the error in the magnitude 

response is shown in figures 11a, lib and the parameter variations are 

given in table 1. It should be noted that the function relating the width 

of the basilar membrane to the distance from the input to the cochlea 

has been changed from 

b(x) = B (1 + ax) 
o 

to 

b(x) = B / (1 - cx) 
o 

The modification is consistent with experimental data, because the 

only measurements describing the membrane width are for the two 

ends of the cochlea. Thus, any function passing relatively close to 

these end values is a possible description of the membrane width. 

The optimized magnitude response agrees quite well with the 

experimental response for the two higher frequencies, 200 and 300 

cps, but does not match the experimental data at the two lower 

frequencies, 50 and 100 cps (table 3). This is partially due to the 

amplitude dependence of the error criterion. Because the model can¬ 

not be adjusted to simultaneously fit both the high and low frequency 

data, the error criterion will cause the lowest percent error to occur 

at the highest amplitude data points. Since these occur at the highest 

frequencies, the model will best fit the response at 200 and 300 cps, 

and permit larger percent errors at the lower frequencies. 
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Since the match is quite good and the parameter variations, 

including the modification of b(x), are consistent with experimental 

measurements, the model can be accepted as a fairly good repre¬ 

sentation of the human cochlea magnitude response over a narrow 

frequency range. Any claims that the model is a good representation 

of the total response, however, are unjustified, because of the limited 

amount of experimental data and the inability to fit the real and ima¬ 

ginary parts of the data. An accurate model cannot be constructed 

without more experimental data which better defines the cochlea as 

a whole. 

In addition to the optimized model of the cochlea, valuable infor¬ 

mation about the sensitivity of the cochlea response to changes in 

the experimental parameters describing the model can be gained by 

examining the normalized sensitivity coefficients used in the linear 

program. As an example, the sensitivity coefficients of the magni¬ 

tude response for a sinusoidal input of 300 cps are given in figure 12. 

An examination of the sensitivity coefficients gives the investigator a 

better idea of which parameters describing the model have the great¬ 

est effect on the model response. By using the information gained 

from sensitivities and the optimization procedure to guide further 

experimental work done in the laboratory, future investigators will 

be better able to learn more about the human ear than is now known. 
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Figure 7 

Model Response and Experimental Data for Minimization of Total 

Real and Imaginary Error 



 INITIAL MODEL Fig. 8. Model Response and 
Experimental Data for Minimization 
of Total Real and Imaginary Error 
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Comparison of Initial Magnitude Response of 
Model with Measurements from Human Cochlea 
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Figure 1Z. Normalized Sensitivities of Cochlea Magnitude Response at 300 cps 
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Discussion of Results and Conclusions 

The application of the optimization procedure to the electrical 

network representation of the human cochlea resulted in a good model 

for the magnitude response of the cochlea. The model for which the 

errors in the real and imaginary parts of the response were minimum, 

however, was unsatisfactory. The only conclusion which may be drawn 

is that the model cannot represent the phase measurements performed 

on the human cochlea. Since phase is very difficult to measure ex¬ 

perimentally and quite sensitive to experimental procedure, these 

measurements should be repeated to assure their validity. If the 

values for phase differ greatly from those used in this study, then the 

optimization procedure should be repeated. If not, then the model 

derived in this study must be discarded as an incomplete representation 

of the human cochlea. 

Although the construction of an accurate model of the cochlea 

was the primary objective of this study, the important result is the 

development of techniques for optimizing the response of an electrical 

network by combining an electrical circuit analysis program with a 

linear program for error minimization. Because the formulation of 

the optimization procedure does not depend upon any special properties 
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of the cochlea, it can be applied directly to many problems of model 

and network synthesis by changing the sensitivity calculations, the 

initial network, and the experimental response data. If the program 

achieves an absolute optimum rather than local optimum, then the 

program will yield a network whose response is optimum for a given 

criterion function. 

Further work on problems explored in this thesis should be 

concentrated in the area of network response optimization by linear 

programming and other numerical techniques. In the thesis only 

minimum error was considered. Other criteria related to circuit 

design, such as minimum temperature sensitivity and maximum gain 

in the deterministic case and minimum noise figure and sensitivity to 

component selection in the statistical case, should be analyzed in a 

future study. Also, a proper definition of which types of criterion 

functions and network responses are likely to yield multiple optimums 

would be a significant advancement in this area. This, however, may not 

be possible except for a few special cases. Although these are not all 

the problems of interest in automatic network response optimization, 

they at least indicate some of the areas where further work is needed. 

The important conclusion which can be drawn from the present study is 

that linear programming and other optimization techniques can be useful 

tools in the analysis and synthesis of electrical networks. 
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The application of network synthesis and response optimization 

to modelling should be treated as a special case of the network study. 

The additional problem which arises in model construction is the 

selection of a model which best represents the set of experimental 

data describing the physical system. This is not necessarily the 

network which produces a response closest to the experimental response, 

but a model in which the error also includes variations in all the meas¬ 

ured quantities describing the physical system. The weighting of the 

measured quantities should bear a direct relation to the accuracy of 

the experimental data and therefore produce a final network in which the 

parameter variations and the response errors are consistent with 

experimental errors. In this respect the model of the cochlea is a 

poor example of the linear program formulation because all the physical 

parameters are subject to wide variation and the response is assumed 

to be very accurate. Further study of models should be directed toward 

physical systems for which there is sufficient information about the 

accuracy of experimental data. This will permit the development and 

verification of techniques which have not been possible in this study. 
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From the work done in this thesis it is quite clear that there 

are still many unsolved problems in both the area of model synthesis 

and network optimization. The only conclusion reached is that the 

incorporation of linear programming and network analysis yields 

powerful tool for both network and model synthesis. If the techniques 

are fully exploited they will be a significant contribution to both elec¬ 

tronic design and the study of physical systems. 
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Appendix I 

DESCRIPTION OF COMPUTER PROGRAM 

The computer program used for developing the model of the 

cochlea consists of an Electrical Circuit Analysis Program (ECAP), 

a linear program for minimization of absolute error (LP), and several 

auxiliary programs which supply usable input and output for the two 

major programs* The total system is given by the diagram in figure Al. 

The steps in the calculation and the programs used for such steps are 

listed as follows: 

1. Calculation of Unperturbed Model Response . . . . . ECAP I 

2. Calculation of Sensitivity Sources for 
Sensitivity Calculation .   Reader-Writer I 

3. Calculation of Sensitivity Coefficient for 
Variable Parameters ................. ECAP II 

4. Reduction of Sensitivity Data and Response 
Data to a Format for LP Problem .......... Reader II 

5. Minimization of Error in Model  LP 

6. Calculation of Network Parameters which 
Minimize Error ................... Analyze 

Description of Programs 

1. ECAP I, II: Standard Rice-IBM program modified for use 

on 7094. 

2. Reader-Writer I: Provides selection of particular set of 

ECAP outputs and calculates network response and sensitivities source 

used in ECAP II. 
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3. Reader II: Reduces ECAP II output data to a format 

compatible with LP. 

4. LP: Linear program which minimizes a weighted sum of 

absolute errors. 

5. Analyze: Calculates modified network parameters from LP. 



Figure A 1 

Network Optimization Program 
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Appendix II 

ERROR GENERATED BY INDIRECT CALCULATION 

OF BASILAR MEMBRANE DISPLACEMENT 

Since the displacement is calculated from the volume velocity 

and is not a variable in the resultant difference equation, the validity 

of the approximation must be verified. This is done by comparing the 

equation for u in the indirect solution with that taken directly from 
z 

a set of difference equations. The equations describing fluid motion 

in terms of pressure are given by: 

ap _ la 

lb P = - Y 

YpV 

dv 
s d x 

The membrane velocity u can be written in terms of the volume 
z 

velocity as: 

1 

z I b<x> 

bv_ 

Substitution of this expression into equation la and lb yields a set 

of differential equations describing membrane velocity in terms of 

the pressure across the membrane: 

* 
dp _ 3 , -r  - - — b(x) Y„ u 
d x 2 v ' P z 

3b P = - ~ b (x) Y u 
Z s z 
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The difference equations corresponding to this set of differential 

eonations is: 
2 Y, 

4a (L> (Pn + l + P„-l " 2P„' ' ~YZ ,P„+I - p„» r = - b(n'YP "a 

4b P = -b(n) Y (n)u 
n Z s z 

As was shown in the derivation of the model, the difference equations 

for model can be written as: 

5a 
N 
(f) (P - P ) = 
L n n-1 - Y_V P n 

5b P = 
n • Ya(Vn+l 

5c u (n) 
r7 

= (Vn+l - 

f b(n) 

' V ’ L 

These can be re-written in terms of u (n) by substituting equation 5c 
z 

into 5a and 5b: 

2 Y(n+1)-Y(n) 
6a (P .. + P - 2P ) - (—) (   JT  ) (P - P ) 

n+1 n-1 n L Y (n-1) n+1 n 

= b(n)Y_(n)u (n) P z 

6b P = -b(n)Y (n) 
n s 

The only difference between the two sets of equations, 4a, b and 6a, b 

is approximated by: is that in the model Y 
/ 

P/ Y, 

Yp(n+1) - Yp(n) 

Yp(n+1) 
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In the cochlea the admittance Y^fx) is expressed as: 

8 Yp(x) - 
1 

2A^(1 - ax)^ 
o 

jw 

A (1-ax) 
o 

A substitution of Y_ into the coefficients , . 
P Y (n) 

PM Vn+1)-YP(n>   and (-  
Yp(n+1) 

yields for 
L 
N 

= .0212: 

9a 
Yp(n) 0212 
Yp(n) (1- . 0212n) 

2 Gp(n) + jw Cp(n) 

Gp(n) + jw Cp(n) 

Yp(n+1) - Yp(n) 

Yp(n+1) 
0212 

1 - . 0212n 

2 Gp(n+1) (1 +i°.2
<

1Q212n )+jwCp(n+l 

Gp(n+1) + jw Cp(n+1) 

Since the errors generated by having Gp(n+1) and Cp(n+1) can be corrected 

by a scale factor in the constants, the only important error is the factor: 

. 0212 
1 - .0212n 

This term varies from . 0212 for n = 0 to . 0822 for n = 35. Because 

the term is quite small, it will be neglected in this model as a second 

order effect. 
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Appendix III 

OPTIMIZATION OF RC LOW PASS FILTERS 

To check the computer program used to optimize the model of 

the cochlea, the procedure was verified for a three section RC low 

pass filter. First the response of the network shown in figure A2 

was calculated for output nodes 1,2,3. The parameters were then 

varied to simulate errors in the physical parameters. The errors 

between perturbed networks and the original network were then 

minimized by varying the components in the perturbed networks. 

Results of the test for minimization of real and imaginary error are 

given in the table below for several perturbed networks. From the 

results it is clear that the optimization procedure can effectively fit 

the network to the unperturbed network response. 

R1 Cl R2 C2 R3 C 3 
00 (fd) (k) (fd) (k) (fd) 

Unperturbed 
C ircuit 
C omponents 1.000 1.000 1.000 1.000 1.000 1. 000 

1% Parameter Perturbation 
a. Original 1.000 . 990 . 990 . 990 . 990 . 990 
b. Optimized 1.000 1.000 1.000 . 999 . 999 1.001 

10^ Parameter Perturbation 
a. Original 1.000 . 900 1. 100 . 900 1.000 . 900 
b. Optimized 1.000 . 990 . 989 . 997 . 987 1.000 

Scattered Perturbation 
a. Original 1.000 1.200 1. 100 . 850 1. 100 1.200 
b. Optimized 1.000 1.008 .979 . 958 . 944 1.040 



Figure A2 

RC Low Pass Filter 
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