


ABSTRACT

Magnetization and magnetoresistance in iron intercalated transition metal

dichalcogenides

by

Jesse Choe

The understanding of magnetism in strongly correlated electronic systems is a

vital area of research. Not only is it linked to other phenomena like high temperature

superconductivity in the cuprates and iron pnictides, but magnetic materials have

been used in electronics since before the computer. As it becomes harder to prop up

Moore’s law by increasing the density of transistors, mankind must look towards new

methods to improve technology or risk stagnation. Research into alternative materials

for technology, such as transition metal dichalcogenides, is a promising direction of

research to maintain the rate of technological improvement. Our work focuses on the

effect of iron intercalation in TiS2. Single crystals of FexTiS2 (0 ≤ x ≤ 1) were grown

using vapor transport. Anisotropic susceptibility and magnetization measurements of

the samples were measured, showing ferromagnetism and sharp switching behavior in

the magnetization. Finally electrical transport measurements were taken, both with

and without field. Measurements of magnetoresistance for x = 0.2 and 0.3 show large

magnetoresistance (up to ∼ 60%) and an atypical ‘bowtie’ shape.
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Chapter 1

Introduction

1.1 Overview

The Stone Age. The Copper Age. The Iron Age. The materials mankind use not

only define our technology, but name our history as well. Now we are in the silicon

age, the plastic age, but are still limited by the materials we use. Recently, two

dimensional materials been placed in the scientific spotlight. The material properties

and small form factors of materials like graphene and transition metal dichalcogenides

(TMDs) make them technologically and scientifically interesting materials. Much of

the interest in these materials has been concentrated on monolayers of graphene due

to its low electrical resistance and high mechanical strength [6]. However, as the

race towards thin films progresses, an often overlooked aspect is doping in quasi-

2D systems. While in graphene, dopants and defects tend to destroy the desirable

properties of the system [7], in bulk TMDs, doping opens up the parameter space of

a class of materials which has already found a variety of applications from chemical

catalysis [8], lubricants [9], electrodes for batteries [10], and in nanotechnology [11, 12].

This paper will look at the specific case of iron intercalation in TS2 (T = Ti, Ta)

TMDs. Their magnetization, which can show sharp switching behavior seen first by

Morosan et al [3], as well as the magnetoresistance in the system, which is strongly

dependent on the iron concentration and can change by orders of magnitude with a

small change in iron [5], will be investigated.
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1.2 Transition Metal Dichalcogenides

1.2.1 Properties of Transition Metal Dichalcogenides

Layered TMDs, TX2 (T = transition metal, X = S, Se, or Te), form a quasi-2D

system of X-T-X layers bound together weakly by van der Waals forces. They bear

a crystallographic similarity to graphite: strong intra-layer bonding; weak inter-layer

bonds; easy intercalation; and high anisotropy. In contrast to graphite and graphene,

the TMDs form a whole family of materials with their transport properties filling

the entire spectrum from insulators to metals. In addition, superconductivity (SC) is

observed in many TMDs and antiferromagentism can be seen in the undoped metals

[13].

The crystal structure of the TMDs strongly affects the physical properties of the

material. The polytype nomenclature is used to denote the different structures a

TMD may exist in. It consists of a number, which denotes the layers required for a

unit cell along the c axis, and a letter which denotes the symmetry of the system:

trigonal (T), hexagonal (H), or rhombohedral (R) [14]. For some polytypes, this is

insufficient information (eg. 2H and 4H), in which case a second lower case letter is

used to uniquely identify the stacking sequence [14]. Examples of two of the most

common polytypes are shown schematically in figure 1.1b-c. A clear example of the

importance of polytype is in the TaS2 system. For this system, the 2H-TaS2 polytype

shows a CDW transition at 78 K and a superconducting temperature at 1 K , while

the 1T-TaS2 polytype only has a CDW transition at 140 K [15, 16].
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Chalcogen 

1T 2H 

TX2 

TX2 

TX2 

Intercalant 

Intercalant 
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Trigonal Prismatic 

Transition Metal 

Octahedral 

Figure 1.1 : TX2 polytypes (unit cell outlined in black) result from different coordi-
nation T-X6 polyhedra (octahedral or trigonal prismatic) and the stacking of the TX2

layers. (a) One layer in a trigonal unit cell forms the 1T polytype, while (b) in the
2H polytype, the layers are staggered along the c axis, resulting in a hexagonal unit
cell with 2 layers per unit cell. Other TX2 polytypes include 3R (rhombohedral), 4H,
and 6R.

1.2.2 Intercalation and Doping of the Transition Metal Dichalcogenides

While graphene is comprised entirely of carbon atoms, TMDs are made of two atoms,

a transition metal (T = Ti, V, Zr, Nb, Mo, Hf, Ta, W) and a chalcogen (X = S, Se,

Te), and the combinations of these two atoms, coupled with the different polytypes,

yields a family of over 40 known TMDs [14]. With TMDs, finding the desired property

can be as simple as changing a constituent atom. From insulators like HfS2, to the

semiconductor MoS2, to semi-metals like WTe2 or TcS2, to metals like NbS2 or VSe2

[14] the variety in the TMDs is vast. But this array of possibilities is further increased

through doping.

In addition to simply doping on an atomic site [17], The layered nature of TMDs

opens up the possibility of intercalation of dopants between layers as a way to change

material properties. Depending on the TMD and the intercalant, the end result
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can vary from inducing superconductivity (Cu, Pd, Fe, and K)[18, 19, 20, 21]; to

creating magnetic properties through magnetic intercalants (Fe, Cr , V, Mn, Co, and

Ni) [3, 22, 23]; to large organic molecules pushing the system towards the 2D limit

(amine, or pyridine) [24]; to non-magnetic metals creating a more 3D system (Li, Na,

K, Ca, Cu, Ag, and Au) [25]; to the creation of a misfit structure with no long range

periodicity (Ln, Pr, Sm, Nd, Gd, Dy, and Er)[26, 27, 28, 29].

1.3 Charge Density Waves

A common phenomenological feature in the transition metal dichalcogenides is the

charge density wave (CDW). Charge density waves are a periodic redistribution of the

conduction electrons in a material coupled with an periodic lattice shift in the atomic

sites. This is arises in materials with lower dimensionality (like the TMDs) where

it becomes energetically favorable to open a gap in the Fermi surface by modulating

the lattice potential [30]. The modulation in lattice potential in turn results in a

modulation of the conduction electron density as represented in figure 1.2a. Due to

their quasi-2D nature, the TMDs are often host to CDW behavior.

The theory for charge density waves was first developed in a 1D system. These

principles are then be applied to higher dimensions, with the exception of some exotic

explanations of CDW formation, such as the Jahn-Teller effect, which will be covered

at the end of this section.

In one dimension, CDWs are explained by the Peierls transition. Consider a

1D metal at T = 0 K without electron-electron or electron-phonon correlations, as

shown in figure 1.2a. The atoms form a periodic lattice, with a constant electron

density, ρ(r) = ρ0. Its band structure follows that of the free electron theory E =

h̄2k2

2m
. By adding a periodic lattice distortion of period λ where λ = π

kF
, with kF

being the Fermi wave vector, there are two main effects. It introduces a modulation

in the conduction electron density, ρ(r) = ρ0 + ρ1 cos(2kF r + ϕ), and it induces a

gap at the Fermi level (figure 1.2b). This gap removes bands from the Fermi level,
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Figure 1.2 : (a) Real space depiction of the conduction electron density and atomic
positions for a 1D metal (top, blue) and a 1D charge density wave(bottom, black).
(b) Band structure of a 1D metal (top, blue) and a 1D charge density wave (bottom,
black).

creating an insulating state. If no states above kF are occupied, the overall energy

is lowered by the opening of the gap. When non-zero temperature is considered,

electrons may be excited to states above the gap, reducing the benefit of, and therefore

the size of, the lattice distortion. At a finite temperature, denoted as the Peierls

temperature Tp the distortion is no longer energetically favorable and a second order

phase transition occurs [31]. This modulation in electronic density can be achieved

through an electron-phonon interaction shifting the atomic lattice sites (and therefore

the associated charge) inducing the modulation in the conduction electron density.

In CDW systems the existence of Fermi surface nesting could also drive the CDW

state. This is explained by the Lindhard response function (equation 1.1).

χ(q) =
∫ dk

(2π)d
fk − fk+q

εk − εk+q

(1.1)

When large areas of the Fermi surface can be connected by the wavevector q, this
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is known as Fermi surface nesting. When the nesting vector q = 2kf , the Lindhard

function will diverge. This results in an unstable system, and a reconstruction of the

Fermi surface (via a CDW changing the electronic properties of the system) occurs.

The 1D description can generally be applied in the 2D case; however, in some

materials (e.g. TiSe2), different mechanisms are required to explain the emergence

of the CDW. The two common explanations are the excitonic insulator and the Jahn

Teller effect.

In an excitonic insulator, a material with a small number of charge carriers will

form excitons, bound states of holes and electrons, if the band gap is smaller than

the exciton binding energy. This removes charge carriers from the Fermi surface and

creates an insulating state. For an indirect gap, this results in a non-zero exciton

momentum, and in turn a CDW transition [32, 33].

The band Jahn-Teller effect is a structural distortion which breaks the degeneracy

of the ground state energy [34]. Typically this involves a higher energy coordination,

shifting atomic positions towards a lower energy coordination which create attractive

potentials. This differs from Fermi surface nesting as the distortion is driven by the

real space coordination [34].

Finally, the Peierls theory assumes the wavefunction of the conduction electrons,

match that of the lattice distortion, but this is not necessarily true. Figure 1.2a

shows the phase and wavelength of the conduction electron modulation perfectly

aligned with the lattice modulation. This is known as a commensurate charge density

wave (CCDW); however, CDWs do not have to be commensurate. Often at higher

temperatures, a CDW will go through an incommensurate phase (e.g. the periodicity

or phase of the electron periodicity does not match that of the atomic periodicity),

known as an incommensurate charge density wave (ICDW). In certain materials (e.g.

1T-TaS2), a material may also go through a nearly commensurate CDW (NCDW)

state, where the conduction electron periodicity is nearly aligned with the atomic

periodicity. Both of these states (ICDW and NCDW) are attributed to pinning of
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the CDW to impurities and as temperature is lowered, a material (if exhibiting the

states) will move from ICDW to NCDW to CCDW.

1.4 Magnetism in Non-Interacting Spins

Long range magnetic order in undoped TMD systems is typically absent, and para-

magnetic or diamagnetic behavior dominates. However, when doping a TMD with a

magnetic atom, variety of magnetic properties can arise. Additionally, just as CDW

and SC behavior appear to be closely related [19, 35], magnetism and SC appear to

have a deep connection as well. Therefore, it is prudent to cover the origins and types

of magnetism and long range magnetic order before discussing the specific case of

magnetism in the TMDs.

Consider the case of non-interacting spins. Magnetization is defined as the change

of free energy, F, with applied magnetic field, H.

M(H) = − ∂F
∂H

(1.2)

The susceptibility is defined as the derivative of magnetization with respect to field.

χ =
∂M

∂H
(1.3)

If this problem is treated classically, the Bohr-von Leeuwen theory can be applied to

show that the magnetization falls out of this equation [36]. Since magnetism cannot

be accounted for classically, it is by necessity a quantum phenomenon. Therefore,

electrons need to be treated as quantum mechanical particles. For magnetism, the

important attributes are an electron’s orbital momentum (L) and spin (S), which

when combined produces the total angular momentum (J = L + S).

The orbital angular momentum (L) can be derived from the classical picture of

an electron moving in an orbit of radius r.

µL = iA = − e
T
πr2 (1.4)
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L = mvr = m
2π

T
r2 (1.5)

Combining equations 1.4 and 1.5 and quantizing L in the form nh̄ gives

µL = −n(
h̄e

2m
) = −nµB (1.6)

here the quantity, µB = h̄e
2m

, the Bohr magneton which describes an electron’s intrinsic

spin momentum, has been introduced. Next the orbital angular momentum (L) and

the spin angular momentum (S) are defined in terms of momentum operators and the

Bohr magneton.

µL = −gLµBL (1.7)

with gL = 1 and L =
√
l(l + 1)h̄

µS = −gSµBS (1.8)

with gS ≈ 2 and S =
√
s(s1)h̄.

Finally, since L and S are coupled and give rise to the total angular momentum

(J = L + S), the total magnetic moment µJ is written as

µJ = −gJµBJ (1.9)

with J =
√
J(J + 1)h̄.

For equation 1.9, gJ is dependent on the configurations of the electrons in the

orbital.

gJ =
3

2
+

1

2

S(S + 1)− L(L− 1)

J(J + 1)
(1.10)

In order to determine this configuration, Hund’s rules are applied (section 1.4.1).

Which describe the filling of orbitals for all but the heaviest ions [36].

1.4.1 Hund’s rules

Hund’s rules outline simple sequential steps to follow for placing n electrons into

orbitals of an ion. These assumptions generally hold, though atoms with large spin-

orbit coupling will break them [36]. For a free ion with n valence electrons, there will
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exist 2(2l + 1) states (where 0 < n < 2(2l + 1) (since for a given l, 2l + 1 states exist

and two electrons of opposite spin can occupy a single state).

Hund’s 1st Rule

Hund’s first rule states that to minimize energy, one must maximize S. Due to the

Pauli exclusion principle, maximizing S involves placing a single electron into each

state, and simple addition suggests that they should be aligned parallel to each other.

As shown in figure 1.3a where the dashed arrow (blue) shows the correct placement

of the 5th electron and the crossed out arrow (red) is incorrect.

Hund’s 2nd Rule

If there exist n ≥ (2l + 1) states, then a second electron must be added occupied

states, where Hund’s second rule applies. Adding to half filled states should be done

in a way which maximizes L, as shown in figure 1.3b.

Hund’s 3rd Rule

Finally, the third rule deals with spin-orbit coupling in the system. Consider the total

angular momentum, J. Its two extrema are when L and S are orientated in the same

direction (L+S) and when they are anti-parallel (|L−S|). The coupling is represented

by a term in the Hamiltonian, Λ(L · S). The sign of Λ is related to the filling of the

shell, being positive for shells less than half full (when J = |L−S|) and negative for

those over half full (J = L+S). Hund’s third rule then is that for shells less than half

full, J = |L−S|; while for shells more than half full, J = L+S [36].
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Figure 1.3 : Examples of (a) Hund’s first rule, (b) Hund’s second rule. The dashed
arrow (blue) shows correct electron placement, while the crossed out arrow (red)
shows an incorrect placement

Now that Hund’s rules have been spelled out, the magnetic susceptibility for the

different scenarios can be considered. Rewriting the magnetic susceptibility (equation

1.3) as the molar magnetic susceptibility

χmol ∼ −
∂2En
∂H2

(1.11)

and taking the equation for the energy of the system.

∆En =
e2

8mc2
H2〈n|

∑
i

(x2
i +y2

i )|n〉+µBH·〈n|L+gS|n〉+
∑
n′ 6=n

|〈n|µBH · (L + gS)|n′〉|2

En − En′

(1.12)

equation 1.12 can be split into its three main constituents:

∆En1 =
e2

8mc2
H2〈n|

∑
i

(x2
i + y2

i )|n〉 (1.13)

∆En2 = µBH · 〈n|L + gS|n〉 (1.14)

∆En3 =
∑
n′ 6=n

|〈n|µBH · (L + gS)|n′〉|2

En − En′
(1.15)

and considered individually as three scenarios are considered.
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1.4.2 L=0, S=0

The simplest scenario to consider is that of a fully filled band which has no spin or

orbital angular momentum (L = 0, S = 0). The first term, equation 1.13, is only

remaining contribution to the ground state energy.

∆E0 =
e2

8mc2
H2〈0|

∑
i

(x2
i + y2

i )|0〉 =
e2

12mc2
H2〈0|

∑
i

r2
i |0〉 (1.16)

Note that
∑
i(x

2
i + y2

i ) ∼ 2
3

∑
i r

2
i for a spherical shell. Assuming this system remains

in its ground state, plugging equation 1.16 into equation 1.11 leads to the Larmor

diamagnetic susceptibility.

χmol = − e2

6mc2
〈0|

∑
i

r2
i |0〉 (1.17)

Where χmol ≈ −0.79Zi × 10−6cm3/mol. Thus Larmor diamagnetism is negative and

of the order of 10−5cm3/mol.

1.4.3 J=0, L=S6=0: Shell one short of half filled

For the case of J = 0 (which occurs when the shell is one electron short from being

half filled), the second (i.e. the linear) term, equation 1.14, still vanishes, but the

first and third remain.

χmol = [2µ2
B

∑
n6=0

|〈0|H · (Lz + gSz)|n〉|2

En − E0

− e2

4mc2
H2〈0|

∑
i

(x2
i + y2

i )|0〉] (1.18)

The second term is the Larmor diamagnetism from equation 1.17. The first term

is known as Van Vleck paramagnetism, and is of opposite sign to the diamagnetic

susceptibility (that is, it favors aligning parallel to the applied field). In this case,

the magnetic behavior will depend on the interplay between the two different terms

in equation 1.18 or if an excited state is close to the ground state, more complicated

behavior is expected [36].
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1.4.4 J 6=0: Curie Paramagnetism

In the case of J 6= 0, the linear term of equation 1.12 does not vanish, and is typically

so large that it dominates the behavior of the system to the point that the second

and third terms can be safely ignored.

Returning to the original definition of magnetization in equation 1.2 and plugging

in the statistical form of the free energy

F = −kT lnZ (1.19)

and writing the partition function as

Z =
∑
mJ

e−x (1.20)

where x = gJJ
µBH
kT

, the magnetization takes the form

M =
∂

∂H
[
∑
mJ

e−x] (1.21)

the summation term can be rewritten using the geometric series

n∑
i=−n

xi = x−n
x2n+1 − 1

x− 1
=
xn+1 − x−n

x− 1
(1.22)

resulting in

M(x) = M0[
2J + 1

2J
coth(

2J + 1

2J
x)− 1

2J
coth(

1

2J
x)] = M0BJ(x) (1.23)

with M0 = NgJJµB. Equation 1.23 gives the magnetization M as a function of the

Brillouin function BJ .

The two energy limits of this equation are now considered. When the temperature

dominates the energy scale (x < 1) and when the magnetic field dominates (x > 1).

In the case of x < 1, that is, the temperature much greater than the applied field,

performing a Taylor expansion on coth(x) leads to

M(
µBH

kT
) ≈ N

[g
√
J(J + 1)µB]2

3kT
H (1.24)
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Figure 1.4 : (a) Plot of Brillouin function. (b) Schematic of χ vs. T. (c) Schematic
of 1/χ vs. T.

dividing by susceptibility gives χ (as in equation 1.3).

χ(T ) =
Nµ2

B

3k

p2
eff

T
(1.25)

Where peff = g
√
J(J + 1) is the effective number or µeff = g

√
J(J + 1)µB, the

effective moment. Combining constants leads to

χmol =
1

8

p2
eff

T
=
C

T
[emu/mol] (1.26)

giving the Curie law, where C =
p2eff

8
is the Curie constant.

On the opposite end of the energy scale is x > 1, the field much stronger than the

temperature. In this case the Brillouin function goes to 1, and M ≈M0.

M(H) ≈ gJ = µsat[µB/atom] (1.27)

In this scenario, all ions are aligned with the field and have the maximum (i.e. satu-

rated) value.

So far, discussion of contributions to the magnetism have been limited to mo-

ments on the ions. There is however, another source of magnetic moments which

must be addressed before considering electron-electron interactions: the conduction

electrons. Conduction electrons will contribute to magnetism in two ways. The spins

will contribute to a phenomenon known as Pauli Paramagnetism, while the orbital

momentum will result in Landau diamagnetism.
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1.4.5 Pauli Paramagnetism

Consider the conduction band of a metal in the absence of an applied field (in standard

quadratic form (E = h̄2k2

2m
), an equal distribution of electrons with opposite spins is

expected. By adding an applied field, this distribution will shift, with the energy

band for parallel spins (+) lowering and the anti-parallel (-) band increasing. The

resulting energy in each band will be shifted from the original by Eshift = gSzµBH.

Since g = 2 and Sz = ±1
2

for electron spins, a shift of µBH for each band occurs,

resulting in an overall shift of 2µBH. In general a quadratic form cannot be assumed

and the electron density must be taken into account.

M = µB(n+ − n−) (1.28)

Where n is the number of electrons per unit volume and is given by

n± =
∫
dεg±(ε)f(ε) (1.29)

with g(ε) as the density of levels

g± =
1

2
g(ε∓ µBH) (1.30)

and f is the Fermi function

f(ε) =
1

eβ(ε−µ) + 1
(1.31)

with µ as the chemical potential.

It can be shown [36] that the resulting magnetization is

M = µ2
BHg(εF ) (1.32)

and therefore

χ = µ2
Bg(εF ) (1.33)

this gives the Pauli paramagnetism. It’s important to note that unlike Curie’s law

(equation 1.26), Pauli paramagnetism is (practically) independent of temperature.

Additionally, in the case of free electron theory, it will be of the same order as the
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diamagnetic susceptibilities (e.g. much smaller than Curie’s Law). Finally, due to its

relation to g(εF ), χPauli will be proportional to the density of states at the Fermi

level.

1.4.6 Landau Diamagnetism

Finally consider the orbital motion of the conduction electrons. In an applied field,

the orbital motion of conduction electrons gives rise to Landau diamagnetism. In the

case of free electrons in a material [36]

χLandau = −1

3
χPauli (1.34)

however, since the Landau, Pauli, and Larmor susceptibilities are all temperature in-

dependent, these phenomenon are often measured as a single value χ0 the temperature

independent susceptibility.

1.5 Magnetism and Long Range Magnetic Order

So far, the magnetism in the absence of interactions between the moments has been

considered. By introducing interactions, a variety of magnetic states including long

range magnetic order can occur. There are two primary methods of moment in-

teraction: dipole and exchange interactions. The magnetic dipole interactions are

typically of the order of ≈1 K, which is comparatively small for most materials.

Exchange interactions, on the other hand, can be vital and are split into several cate-

gories: direct, indirect, itinerant, and superexchange. Exchange interactions refer to

moment coupling to the overlap of electron orbitals. Direct exchange occurs through

direct overlap of the electrons’ wavefunctions. Indirect exchange is mediated through

a coupling of the f electrons and the conduction electrons, like in RKKY interactions

[37]. Itinerant exchange is mediated through conduction electrons. Superexchange is

mediated through non-magnetic ions, and is of importance in oxides.
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1.5.1 Ferromagnetism

The first form of magnetism discovered and still the most important form is ferro-

magnetism (FM). This state is characterized by magnetic order occurring (below a

critical temperature TC) in the absence of an applied field, that is, the system orders

spontaneously. While this also occurs in antiferromagnetism (AFM), in FM, the spins

align parallel to each other, whilst in AFM, they align antiparallel. The FM ordering

through the mean field approach will be investigated, the Curie-Weiss law derived

and the concepts of domains and hysteresis for ferromagnetic systems discussed.

In mean field, the Hamiltonian is written as:

H = −
∑
ij

IexcJi · Jj + gµB
∑
i

Ji · H (1.35)

where Iexc is the exchange coupling between the spins, while Ji is the response to the

applied field H.

Writing an effective mean field Heff such that

H = −gµB
∑
i

Ji · (H + Heff ) (1.36)

where

Heff = λM (1.37)

leads to

M = M0BJ(y) (1.38)

notice this is the same form as for the paramagnetic case in equation 1.23; however,

y is dependent on both H and M.

y =
gJµB(H + λM)

kT
(1.39)

such that

M =
1

λ
(
kT

gJµB
y −H) (1.40)
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this give equation 1.38 as a function of y. However, equation 1.39 shows that y is

a function both H and M . However, setting the boundary condition that at y = 0,

the slopes must be equal gives

M

M0

= BJ(y) ≈ J + 1

J

y

3
(1.41)

M =
1

λ
(
kT

gJµB
y −H) (1.42)

at TC , this becomes
kTC

λgJµBJ
=
J + 1

3J
M0 =

J1

3J
gJµB (1.43)

leading to

TC = λ
(gJµB)2J(J + 1)

3k
= λ

µ2
eff

2k
(1.44)

additionally, take equation 1.39 and 1.41 and apply it in the limit of small H and

large T .
M

M0

≈ J + 1

3J

gµBJ

kT (H + λM)
(1.45)

Plugging in equation 1.44.

M

M0

≈ TC
λM0

H + λM

T
=
TC
T

H

λM0

+
TC
T

M

M0

⇒M(1− Tc
T

) ≈ TCH

λT
(1.46)

Gives for small H and T >> TC

χ =
M

H
=

C

T − TC
(1.47)

where C = Tc/λ. Equation 1.47 is known as the Curie-Weiss law and is used to

describe the magnetic ordering of many materials.

At high temperatures (i.e. T � Tc), 1/χ vs. T is linear and both C and TC can

be extracted from the slope and intercept.

1

χ
=

1

C
T − TC

C
(1.48)

However the mean field calculations which lead to equation 1.47 were made for T �

TC , and the Curie-Weiss law breaks down when T ∼ TC . In this regime, the mean
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field theory used to derive the Curie-Weiss law fails due to short correlations and

low temperature fluctuations which are neglected in mean field. This results in the

correction.

χ =
C

T − θW
(1.49)

Where θW is the Weiss temperature, which would be TC without the aforementioned

fluctuations, but is typically higher. From C the effective moment is found.

C =
p2
eff

8
(1.50)

µeff = peff · µB =
√

8CµB (1.51)

Finally, since real data deviates from the Curie-Weiss law at low temperatures (figure

1.6c), the Arrott method is used to accurately determine TC (Figure 1.6d). The Arrott

method involves taking the derivative of free energy with respect to magnetization

and plotting M2 vs. H/M at different temperatures. The temperature that goes

through the origin is the critical temperature.

When measuring magnetization, M(T), a difference between the zero field cooled

(ZFC), and field cooled (FC) measurements is seen. When field cooling the domains

orientate as it is cooled below TC ; however, when the sample is zero field cooled that

is, cooled without an applied field, then measured on warming with low field, the

domains are locked in place until thermal vibrations are large enough to move the

domains (figure 1.6a).

Hysteresis and Domains

While magnetic ordering occurs in ferromagnets without an applied field, on the

macro scale, this magnetization is hard to detect. This is due to domains. When a

ferromagnet goes below TC , the spins order ferromagnetically in small regions known

as domains. The domains; however, need not be aligned with each other and result in

a weak magnetization. These domains are a result of the competition between dipole

interactions and the exchange energy. While a fully polarized (i.e. single domain)
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system favors the exchange energy, it is quite unfavorable for the dipole energy. To

reduce dipole energy, we can create domains which point in different directions. This

reduces the dipole energy, but increases the exchange energy. However, the exchange

energy is only increased for spins near the walls of the domains, resulting in an overall

decrease in energy. Additionally, much like the overall dipole energy can be reduced

by breaking up the sample into domains, the large exchange energy due to an abrupt

boundary between domains can be reduced by creating domain walls. These walls are

areas between domains where the spins slowly cant from one orientation to another.

Since the exchange energy will be reduced the more gradual the rotation is, barring

all other effects, this wall would stretch over the whole sample. However, crystals

have anisotropy that creates an ‘easy’ axis of magnetization which the spins prefer to

orientated for. This limits the canting in the domain walls and thus their size.

Domains also result in the hysteresis seen in the magnetization vs. field plots

(figure 1.5). In weak fields, the spins not aligned with the field begin to cant increasing

magnetization. As field increases the walls begin to move as spins at the edges of

aligned domains begin joining the domains. As this occurs, even if the field is removed,

pinning to defects can prevent a return to the original state. With increasing field,

whole domains align with the field, and eventually, all domains are merged into one

single domain and reach a saturation magnetization Msat. Removal of the field at this

point reduces the field to a remanent value, larger than the initial value, but lower

than Msat. Application of field in the opposite direction results in the same process

occurring. Together, this all results in the hysteresis curve seen in figure 1.5.
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Figure 1.5 : Typical hysteresis curve shown for a ferromagnetic sample, sketches of
domains inset.

1.5.2 Antiferromagnetism

Much like ferromagnetism, antiferromagnetism (AFM) in materials is characterized by

magnetic ordering below a critical temperature (for AFM TN the Néel temperature).

However, in AFM materials the ordering is anti-parallel. Since the spins align anti-

parallel to each other, a bipartite lattice, two lattices with the spins on each aligned
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parallel to themselves, is used. In mean field, this becomes

H = λHA ·
∑
i∈A

Si + λHB ·
∑
i∈B

Sii (1.52)

giving two coupled equations

MA = M0BJ(−gJµBJλMB

kT
) (1.53)

and

MB = M0BJ(−gJµBJλMA

kT
) (1.54)

with equal and opposite magnetizations. Resulting in

M = M0BJ
gJµBJλM

kT
(1.55)

above TN , the Curie-Weiss law (equation 1.49) still applies. The difference is that for

AFM θW < 0, while for the FM case θW > 0 (figure 1.6c).

The final thing to note about AFM vs. FM ordering is the differences in suscepti-

bility below the critical temperature. For the FM material, χ has two different curves

depending on the applied field H it was put under while cooling, due to the hysteresis

from domains (see section 1.5.2). For the AFM material, the two different curves

below the critical temperature are still an effect of H, but with respect to its direction

in relation to the orientation of the spins. When the field is aligned perpendicular to

the direction of the spins, the spins cant, but this does not change the magnetization

as the canting strength is constant. When the field is aligned parallel to the spins,

as the temperature increases, more spins aligned anti parallel to the field are likely

to have enough thermal energy to flip and align with field. Thus when the field is

parallel to the spins, the T < TN magnetization increases with temperature (figure

1.6).

1.5.3 Magnetoresistance

At the intersection of transport and magnetization lies magnetoresistance (MR). Mag-

netoresistance is simply the change in resistance of a material in response to an applied
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Figure 1.6 : (a) Zero field cooled (ZFC) and field cooled (FC) susceptibility for a
ferromagnetic material (b) χ‖ and χ⊥ denoting applied field parallel and perpendicular
to the spins’ orientation in an antiferromagnetic sample. (c) diagram of typical 1/χ
vs. T behavior for the CW law. (d) Arrott plots for determining TC .
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magnetic field. In regular metals, this effect is quite small. For example in copper,

the change in magnetoresistance at room temperature is around 0.25% [38]. And

indeed, even bismuth, which shows one of the strongest magnetoresistive responses,

there is only about an 18% increase in a field of 24 T [39].

Thankfully, this is not all there is to magnetoresistance in materials. In many

materials, unexpectedly high magnetoresistive values have been discovered. While

all these effects result in large magnetoresistances, the constituent material and un-

derlying physics changes, necessitating names for the different phenomena (which

mostly take the form of adjective for large magnetoresistance). Three examples will

be covered: giant magnetoresistance (GMR), colossal magnetoresistance (CMR), and

a newly discovered phenomenon in WTe2. However, it is important to note that these

are just a few examples and other examples such as anomalous magnetoresistance

(AMR), tunneling magnetoresistance (TMR), and extraordinary magnetoresistance

(EMR) also exist.

While not the first to be discovered, giant magnetoresistance has arguably had the

most impact. Discovered independently in 1988 by Albert Fert and Peter Grünberg,

it went on to win a Nobel Prize in 2007 [40]. GMR arises in alternating layers of mag-

netic and non magnetic materials, electrons with different spins experience different

resistances due to the differences in the density of states for the spin directions [40].

The ability to create materials with larger magnetoresistances, led to the creation

of more sensitive hard drive read heads, allowing smaller bits to be used, leading to

higher density disks, and therefore, larger capacity hard drives.

Colossal magnetoresistance is found in the manganite perovskites, T1−xDxMnO3,

where T is a trivalent lanthanide cation (La), and D is a divalent alkaline earth (Ca,

Sr, Ba) [41], the pyrocholores (e.g. Tl2Mn2O7 [42]), and in the spinels (ACr2Ch4;

A = Fe, Cu, Cd; Ch= S, Se, Te [43]) [41]. In these materials, at the right doping

levels, the ground state is ferromagnetic and the ferro-to-paramagnetic transition is

accompanied by a large increase in resistivity and potentially the MR as well [41, 44].
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Recently, Ali et al. discovered what appears to be a new magnetoresistive effect

in the semimetal WTe2 [45]. It exhibits magnetoresistance of a form similar to other

semimetals like graphite and bismuth, with the resistance showing quadratic field

dependence. However, the magnetoresistance of WTe2 does not saturate up to 60

T [45], unlike graphite and bismuth which saturate at relatively low fields [46, 47].

With the applied field perpendicular to the ab plane, the magnetoresistance reaches

up to 13,000,000% in fields up to 60 T. The very large magnetoresistance is attributed

to the effect of the semimetal’s two band charge transport, with both p and n type

carriers. This model predicts a resonance in the magnetoresistance when the p and n

carriers are perfectly balanced (when p/n ≈ 1). In graphite and Bi, slight deviances

from p/n = 1 result in saturation at high fields [46, 47]. The small overlap between

the bands in WTe2 is similar to an excitonic insulator, which could mean that the

balance between electrons and holes in this compound is close to perfect, preventing

the magnetoresistance from saturating even at high fields [45].
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Chapter 2

Experimental Methods

2.1 Crystal Growth

Single crystal growth of the layered transition metal dichalcogenides (TMDs) was

done by vapor transport. Samples of FexTiS2 (0 ≤ x ≤ 1) were prepared by adding

pure powders of constituent elements together in the desired amounts (mtotal ∼ 1g)

with iodine (0.3 ≤ mI ≤ 0.5g) as the vapor transport agent. The elements were then

vacuum sealed in a quartz tube (dinner = 0.5 inches, l ≈ 6 inches.) Synthesis took

place in a gradient furnace. Temperature was first ramped up to 500°C and left dwell

for 10 hours. The oven was then ramped up to 800°C for the cold end and 900°C for

the hot end and left to dwell for 6-10 days. The furnace was then cooled to room

temperature. Crystals produced were of a gold on the lightly doped end and became

more black with increasing iron concentration. They formed thin hexagonal plates as

seen in figure 2.1.

2.2 Powder X-Ray Diffraction

Powder X-ray diffraction was used to check the crystal structure of the grown crystals

as well as to search for the presence of any impurities or secondary phases in the

crystals. X-ray diffraction measurements were taken using a Bruker D8 Advance X-

ray powder diffraction instrument with a Cu K-α beam (λ = 1.5406 Å). Samples

for powder X-ray diffraction were ground using a mortar and pestle. Special care

is required with the layered dichalcogenides as their flat, plate-like structure makes

it difficult to grind homogeneously and can result in a preferred orientation. Once
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Figure 2.1 : Quartz tube containing single crystals of FexTiS2. Inset: crystal of
FexTiS2 showing hexagonal structure, grid on paper is 1 mm corrugation.

the sample has become a uniform powder, it is mounted on a plastic sample holder

(to minimize background signal). Samples are rotated continuously throughout the

measurement, again to reduce any preferred orientation effects. Measurements were

typically taken over a range from 5°to 90°at ∆ = 0.02°with t ≈ 3 second for each

step. The diffraction pattern is then compared with patterns from the ICDD-PDF

database to confirm that the correct phase was obtained. Finally structural refinement

is performed using EVA to obtain precise lattice parameters.

2.3 Magnetization Measurements

Magnetization measurements were performed on a Quantum Design Magnetic Prop-

erties Measurement System (MPMS) for temperature from 2 to 300 K and fields up

to 7 T. Additional magnetic measurements at higher fields up to 9 T were performed
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Figure 2.2 : Schematic of apparatus to use the Faraday effect to view magnetic
domains on a sample.

using the Quantum Design Physical Properties Measurement System (PPMS) AC

measurement system (ACMS).

2.4 Electrical Transport

Transport measurements were preformed using the Quantum Design PPMS system

using standard four point probe techniques with silver paint to secure the contacts.

Temperatures ranged from 2 to 300 K. Measurements in field were done up to 9 T

with the field applied parallel to the c-axis of the samples. Samples were done with

DC resistivity measurements unless specified.
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2.5 Faraday Effect

The Faraday effect can be used to study magnetic materials. In the Faraday effect,

the polarization of light is rotated proportionally to the magnetic field in the sample.

The most common example of this phenomena being birefringence. Thus the relative

magnetization in a sample can be detected by shining polarized light at a sample, then

measuring the polarization of the transmitted light. Imaging domains in a magnetic

sample can be achieved with a setup similar to that in figure 2.2. Light is polarized

then shined on a sample. Depending on the magnetization of the area struck, (in

figure 2.2, spin left or spin right) it picks up a different shift in polarization. By

sending this subsequent light through another polarizer, the change in polarization

and thus the magnetization can be detected.
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Chapter 3

Magnetization and Transport of FexTaS2

The doping of magnetic atoms in the TMD system is of particular interest due to

the ease of intercalating the large magnetic atoms between layers. In addition, the

magnetic properties can be tuned using multiple methods as the resulting magnetic

properties depend on the dopant type, the dopant location (typically either interca-

lated between layers or substituted with the transition metal), dopant concentration,

and the parent compound. For example, in the Cr doped TiSe2 system, magnetic

behavior can be tweaked from spin glass [22], to cluster glass [48], to antiferromag-

netism [48]. The TMDs create a richly varied system in which to study magnetism,

which is vastly important in regards to its own technological uses [40], but also for

its close relation to superconductivity in the cuprates and iron-pnictides.

The FexTaS2 system exhibits many of the interesting magnetic behaviors found

in the TMDs. It has two common polytypes: 2H and 1T (as seen in figure 1.1). The

undoped 1T polytype goes through several different CDW transitions. Starting with

an incommensurate (IC) CDW state at high temperatures, then cooling to a nearly

commensurate (NC) and finally a commensurate (C) state [49]. The 1T polytype

does not show doping naturally, though it can be induced by doping iron atoms onto

the tantalum site [20]. In contrast, the 2H polytype does show superconductivity nat-

urally [16]; however, doping with iron results in intercalation rather than substitution

and upon doping, the superconductivity is suppressed and magnetic order arises [23].

Iron doping in the 2H-TaS2 system produces rather unintuitive results. At x=1/4

and x=1/3, a superlattice appears as the iron atoms intercalate in a periodic manner

with order a′ = 2a and a′ =
√

3a respectively (with a as the lattice parameter in
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Figure 3.1 : Weiss temperature θW as a function of Fe content x in FexTaS2. Open
squares from [1]. Closed circles from [2].

for the ab axis) [3]. The Weiss temperature, θW , changes non monotonically with

the iron concentration, seen in table 3.1. Note that at x = 0.45, θW goes negative,

indicating a shift from ferromagnetism to antiferromagnetism. Also of interest is that

near the x = 0.25 composition TC is large, TC ∼ 160. Naively, one would assume an

even larger TC for the larger concentration x = 0.33. However, this is not the case as

TC ∼ 35K for x = 0.33 [3]. Finally, TC seems strongly dependent on iron composition

as even small variations in x can result in appreciable changes in TC [50]. Its clear

the system’s interactions with the intercalants are crucial to the magnetic behavior

of the system.
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Figure 3.2 : M(H), hysteresis curves of Fe0.25TaS2 at 2K for H‖ c (triangles) and H⊥ c
(crosses). [3].

3.1 Sharp Switching in M(H) and ρ(H)

Initial interest in FexTaS2 arose due to the interesting behavior in its hysteresis curve.

Anisotropic magnetization measurements, shown in figure 3.2, on the x = 0.25 system

reveal two interesting features. First, there is a strong anisotropy in the system with

the easy axis along H‖c. Second, the hysteresis curve of the sample is atypical. While

a typical hysteresis curve is ‘S’ shaped as seen in Fig 1.5, the hysteresis curve for

Fe0.25TaS2 is square shaped with a sharp switching at a field (Msat) as seen in figure

3.2.

3.2 Magnetic Domain Imaging

The magnetic behavior of the Fe0.25TaS2 was also investigated through magnetic

domain imaging using the Faraday effect by Vannette et al. [4]. After field cooling, the
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Figure 3.3 : Images of domain moments in Fe1/4TaS2 with MOKE. Left to right
corresponds to increasing field [4].

crystal formed a monodomain, which persisted after switching the field off, suggesting

high anisotropy (agreeing with the anisotropy in the H‖c and H⊥c measurements in

Morosan et al. [3]).

The results show a dendritic formation of the domains. Which proceed to spread,

following the hexagonal structure of the crystal but do not seem correlated to any

defects in the structure. However, this does imply that the domain move easier along

the axes of the crystal.

3.3 Magnetoresistance

In 2015, Hardy et al. presented work on magnetoresistance in the FexTaS2 system

[5]. In this work, they found the x = 0.28 composition shows up to a staggering 60%

value for ∆ρ/ρ0 [5]. This is sharply contrasted by the magnetoresistance in the x

= 0.25 sample where the change in magnetoresistance is less than a percent (figure

3.4) [3]. These results are surprising and still not fully understood. One proposed

explanation is due to the spin disorder scattering [5]. The x = 0.28 can be viewed as
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Figure 3.4 : ρ(H), magnetoresistance curves of (a) Fe0.25TaS2 (120 · ∆ρ) and (b)
Fe0.28TaS2 at 2 K. Reproduced from [3] and [5].

either x = 0.25 + δ or x = 0.33 - δ. Either way, we have two different classes of iron

atoms, those within the ordered superstructure, and those in a disordered area (either

outside the superstructure or in an iron deficient area). Either way, the disordered

spins would be expected to have weaker exchange [51] and therefore would be more

easy to flip. We should then expect the scenario of the disordered spins flipping in low

fields, resulting in high spin disorder scattering and when all the spin flip, a drastic

decrease in magnetoresistance, as is seen in the magnetoresistance curve in figure 3.4.
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Chapter 4

Magnetization and Transport of FexTiS2

In the TaS2 system, the underlying physics of these effects has not been definitively

determined. By studying systems with similar behavior, a better understanding of

what is happening in the TaS2 system may arise. Negishi et al. produced results

on the FexTiS2 system whose hysteresis curve looks strikingly similar to the sharp

switching seen in Fe0.25TaS2 [23]. This motivated our work in performing single

crystal measurements of the anisotropy and magnetoresistance on the FexTiS2 system.

Crystal were grown using the chemical vapor transport method (section 2.1) with

iodine as the transport agent. Anisotropic magnetization measurements (H‖c and

H⊥c) are being taken for FexTiS2 (xnominal = 0.1− 0.9) for both magnetization M(T)

and hysteresis M(H). All x values denoted as either the nominal value, xnom or as xµsat .

xµsat is calculated by scaling M(H) to a saturated moment of 4µB (when possible). A

sample M vs. T plot is shown in figure 4.1a and b. As seen, a high level of anisotropy

exists between different crystallographic directions, with a much larger magnetization

along the c axis.

A sample inverse χ plot is shown in figure 4.1c, showing the sample is clearly

ferromagnetic. The Curie-Weiss law was calculated for both H‖c, H⊥c, as well as for

the average susceptibility (calculated as χavg = (2 · ∆χab + ∆χc)/3. Where ∆χ =

χ− χ0) [3].

Hysteresis (M vs. H) curves for the FexTiS2 system bear a striking similarity to

those of FexTaS2. While this has been previously reported [23], our results show some

interesting additional features. Anisotropic hysteresis curves for the samples show a

large variation in the strength of the H⊥c signal. For example, figure 4.2e shows
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Figure 4.1 : χ vs T plot for Fe0.5TiS2 with (a) H‖c and (b) H‖ab. (c) 1/χ plotted for
χ‖ (open squares), χ⊥ (closed squares), and χavg (closed diamonds).

a H‖ab curve with a max around 2µB/Fe while in figure 4.2h, its nearly zero. This

suggests that the anisotropy of the system has some dependence on iron concentration.

Additionally, figure 4.2c and f show a step in the hysteresis, which appears in several

measured samples.

Resistivity plots show a sharp drop near the critical temperature, showing the loss

of spin disorder scattering below the critical temperature. This behavior is seen both

for H = 0 T and H = 9 T.

Finally, as shown in figure 4.4a, the maximum difference in magnetoresistance was

∼ 60%. This, in addition to the similar bowtie shape seen in figure 4.4a and b shows

that we do indeed appear to have an analog for the magnetoresistance in FexTaS2.
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Figure 4.2 : M(H) curves for FexTiS2. Colored symbols are H‖c, open symbols are
H⊥c
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Figure 4.3 : Resistivity (H = 0 T, and H = 9 T) for Fe0.5TiS2



38

Figure 4.4 : Magnetoresistance of FexTiS2 samples
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Chapter 5

Discussions and Outlook

Future work on the FexTaS2 and FexTiS2 is focused on better understanding the

mechanisms behind the sharp switching in hysteresis and the large magnetoresistance.

The next step upon finishing magnetization and magnetoresistance measurements

is to run inductively coupled plasma (ICP) on the samples. ICP can accurately

determine the relative compositions of the materials, and thus determine a more

accurate value for x. Then electron energy loss spectroscopy (EELS) and transmission

electron microscopy (TEM) will be performed. TEM will search for a superstructure

in the FexTiS2 systems. Determination of a superstructure similar to the FexTaS2 (x=

0.25, 0.33) system would further reinforce the idea of spin scattering off superstructure

defects. EELS in these samples will give a nanoscale view on the distribution of the

iron in the samples. While ICP accurately determines the relative compositions of

the sample, it does not give information of the local distribution of atoms. Since

the iron atoms do not necessarily form a consistent superstructure, the breaking of

the symmetry of the crystal through areas where iron has aggregated or sparsely

accumulated could also help explain the unusual properties of these materials.

Work on the iron doped TaS2 and TiS2 systems has shown in both, sharp switch-

ing of the magnetization, and unusually high magnetoresistance for a bulk system. In

Fe xTaS2, the sharp switching is attributed to the strong anisotropy in the system [3],

while the large magnetoresistance is theorized to arise from spin disorder scattering

off defects in the iron superstructure [5]. In FexTiS2, both these features have been

observed, but more evidence is required on the origin of these behaviors. These mate-

rials do draw light to a question: ‘what causes large magnetoresistance in materials?’
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This question is of value philosophically, as the physics behind magnetoresistance is

varied, scientifically, as the materials can be related to other interesting phenomena

such superconductivity, and practically, as magnetoresistance is used in magnetic data

storage. Large magnetoresistive drove an exponential increase in hard drive density

as read heads with more sensitive magnetoresistive materials could read smaller bits

[40]. Sharp magnetization switching could also be used to improve magnetic bits as

a more binary state and more definitive threshold field would reduce write errors.

While neither TiS2 nor TaS2 are good candidates (TC for both is too low for practical

use), understanding the properties in these systems may allow for the engineering of

other materials with the same switching and magnetoresistance, but a more practical

Curie temperature.
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Chapter 6

Appendix

All magnetoresistive data currently taken is shown in figure 4.4. While figure 4.4a and

b have bowtie shapes similar to those of the FexTaS2, the rest do not. And instead

they have an asymmetric curve. While the root cause for this is yet to be determined,

there are possibilities that have been ruled out. The samples are all single crystal

so unless twinning or a similar effect occurred, this isn’t due to grain boundaries.

This could be due to the Hall effect, as a sizable Hall effect was seen in the FexTaS2

samples. Additionally, the leads are placed by hand and shocked afterwards to remove

any oxide layers formed. Both of these could contribute to a small ρxy contribution

to the resistance measurement.
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Figure 6.1 : Magnetoresistance of FexTiS2 samples
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