


ABSTRACT

Explicit Discontinuous Galerkin Methods for Linear Hyperbolic Problems

by

Thomas Reid Atcheson

Discontinuous Galerkin methods have many features which make them a natural

candidate for the solution of hyperbolic problems. One feature is flexibility with the

order of approximation; a user with knowledge of the solution’s regularity can increase

the spatial order of approximation by increasing the polynomial order of the discon-

tinuous Galerkin method. A marked increase in time-stepping difficulty, known as

stiffness, often accompanies this increase in spatial order however. This thesis analyzes

two techniques for reducing the impact of this stiffness on total time of simulation.

The first, operator modification, directly modifies the high order method in a way

that retains the same formal order of accuracy, but reduces the stiffness. The second,

optimal Runge-Kutta methods, adds additional stages to Runge-Kutta methods and

modifies them to customize their stability region to the problem. Three operator mod-

ification methods are analyzed analytically and numerically, the mapping technique of

Kosloff/Tal-Ezer [61], the covolume filtering technique of Warburton/Hagstrom [100],

and the flux filtering technique of Chalmers, et al. [19]. The covolume filtering and

flux filtering techniques outperform mapping in that they negligibly impact accuracy

but yield a reasonable improvement in efficiency. For optimal Runge-Kutta methods

this thesis considers five top performing methods from the literature on hyperbolic

problems and applies them to an unmodified method, a flux filtered method, and a



covolume filtered method. Gains of up to 80% are seen for covolume filtered solutions

applied with optimal Runge-Kutta methods, showing the potential for efficient high

order solutions of unsteady systems.
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Chapter 1

Introduction

This thesis considers efficient time integration of hyperbolic conservation laws that

have been discretized using a discontinuous Galerkin (DG) spatial discretization. Two

strategies are presented: spatial operator modification and optimal Runge-Kutta time

stepping methods. Within operator modification three techniques are compared, the

mapping method of Kosloff and Tal-ezer [61], the filtering method of Warburton and

Hagstrom [100], and the filtering technique of Chalmers et al.[19]. For optimal Runge-

Kutta methods this thesis compares the optimized methods of Toulorge and Desmet

[95] with those of Niegemann, Richard, and Kurt in [73].

1.1 Time integration for DG Discretizations of Hyperbolic

Conservation Laws

The modern DG method was introduced by Reed and Hill in 1973 to solve the neutron

transport problem in two spatial dimensions [84], and it was later analyzed by Lesaint

and Raviart in [78] for general two dimensional linear hyperbolic systems. One of the

novelties of this approach is the flexibility one has in handling information at element

boundaries. In the linear case a simple approach takes the boundary conditions

for the solution on an element to be the “inflow” values. In other words, one uses

information about the direction of wave propagation that is generally known a priori

for linear hyperbolic problems. Yoseph-Bar shows in [11] that this results in an
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explicit numerical method in which computations can be done on an element-by-

element basis by following these “characteristic” directions. This has the benefit of

relative simplicity of implementation, and potential for parallelization. This thesis

discusses mainly methods with these characteristics, as they have implications for

parallelization on specialized computing architectures, as noted by Goedel, Klockner,

and Warburton in the three papers [38],[60], [2].

Reed and Hill considered a steady state problem, and many subsequent advances

adapted the use of DG for transient simulations [24]. One may categorize two broad

strategies for handling the additional time variable: the first uses fully finite element

space-time discretizations as by Yoseph-bar and Lowrie in [11],[70] respectively, the

second applies the method of lines to the semidiscretization obtained when DG is

used on the conservation law, a brief history of which may be found in Cockburn’s

survey paper [24].

It is difficult to render a fully explicit scheme using the space-time DG approach, as

noted by Yoesph Bar in [11] and Lowrie in his PhD thesis [70]. An inherent difficulty

is that unlike the case of Lesaint and Raviart, or Reed and Hill, the notion of “inflow”

boundaries may not be well defined. The resolution that Lowrie takes in his thesis [70]

and Richter takes in the paper [87] is to impose a strict “angle condition” on the space-

time mesh. Yoseph Bar, instead of following this type of restrictive mesh condition to

maintain a fully explicit scheme, opted to permit a broader range of space-time meshes

which instead yields an implicit method, requiring iterative techniques to solve [11],

[12]. It should be noted that although Yoseph Bar’s method resulted in an implicit

scheme, the discontinuous nature of the approximation still yields a block diagonal

mass matrix which can be factorized on an element-by-element basis. The boundary

conditions however required iteration, as inflow directions might depend both on
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location in space and on the solution itself, and this iteration would inevitably involve

globalized inner products, which present scaling challenges on parallel architectures,

which this thesis attempts to avoid in order to remain forward compatible with for

future work.

As an alternative the method of lines approach saw an early applicaion with

explicit time integrators by Chavent and Salzano in [20] where they apply DG in

space and forward Euler in time, but obtain a scheme which requires one to take

prohibitively small timesteps in order to ensure stability [24]. Later, Cockburn and

Shu in their sequence of papers [26],[25],[23], [27] combine the use of higher order

Runge-Kutta methods in conjunction with DG and obtain a fully explicit scheme for

nonlinear multidimensional systems of hyperbolic conservation laws. Henceforth, this

thesis will only consider those schemes which are spatially discretized by DG and use

an explicit method of lines time discretization.

1.2 Stiffness in High Order Methods

With a fully discrete explicit method in hand the next task is to choose a suitable

timestep so that the scheme correctly resolves the physics of the problem. Given a

mesh consisting of elements (intervals in one dimension, triangles or quadrilaterals

in two dimensions, tetrahedra or hexahedra in three dimensions) and assuming the

velocity of propagation for waves in the solution to hyperbolic conservation laws is

generally known, a reasonable condition on timesteps might be one which requires

that a wave does not fully cross any single element in that elapsed time, for oth-

erwise compact stencil schemes like DG will completely miss that information as it

communicates only with nearby elements.

Numerical experiments by Solomonoff in [92] however show that when high order
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polynomial based methods are used the timestep must be taken significantly smaller

than what the above “domain of dependence” argument suggests. These strict require-

ments are order-dependent, and are observed by Gottlieb et. al in [40], and rigorous

asymptotic bounds given using eigenvalue techniques by Dubiner in [30], and also us-

ing approximation theoretic inequalities by Gottlieb in [41]. The basic results shows

that if the order of polynomial approximation used is N , then the timestep must be

taken to be �t = C/N2 for some C > 0. In the case of mesh based DG methods

the constant C is mesh dependent, and in fact C = O(h) where h is a mesh size

parameter, further exacerbating the situation [63],[94],[46]. A detailed derivation of

this timestep restriction is given in chapter 4 which provides L2 estimates for the DG

operator, and it follows the approach of Gottlieb in [41], and also that of Warburton

and Hagstrom in [100], but extended to work beyond the first dimension.

An additional difficulty noted by Trefethen and Trummer in [96] shows that in

addition to quadratic dependence on polynomial order, numerical roundoff effects

also produce nonnegligible stability issues for methods based on polynomial approx-

imation. An example of this phenomenon is the Legendre method produced earlier

by Tal-Ezer in [93], which has a provable eigenvalue stability limit of �t = C/N

for some C > 0, but in practice has a quadratic dependence on polynomial order.

This may be explained by severe nonnormality of the resulting operator which causes

perturbations to yield drastic changes to the spectra of the operator governing the

system of ODEs [96]. To address this seeming contradiction with known stability

results, Trefethen and Reddy extend the notion of absolute stability (defined later) to

account for this discrepancy in [83]. This definition of stability will automatically be

satisfied by the asymptotic arguments in this thesis by enforcing L2 stability, which

is a stricter stability requirement than Trefethen and Reddy’s in [83].
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The strict stability constraints from high order DG leads to a separation of scales:

relevant physical information propagates at a certain speed, but timesteps must be

chosen to resolve much faster spurious transient phenomena which are effectively arti-

facts of polynomial approximation. When this separation of scales exists, the system

is said to be stiff, and this thesis chiefly considers techniques for overcoming this stiff-

ness (operator modification strategies), or mitigating its effects (optimal Runge-Kutta

methods).

1.3 Operator Modification

Two reasons may be given for stiffness in high order polynomial based methods. One

explanation applies the domain of dependence argument seen earlier, but treats the

polynomial method instead as a high order finite difference method. This approach

is taken by Tal-Ezer in [93], and Kosloff and Tal-Ezer in [61]. The conclusion then

comes from the fact that to guarantee stability of polynomial interpolation, one must

use nodes which exhibit clustering near element boundaries, such as Chebyshev nodes

or Legendre-Gauss-Lobatto nodes [14]. It turns out this minimal spacing is indeed

O(1/N2

) for order N approximations. An obvious approach to fixing this problem

then would be to return to equally spaced nodes; unfortunately Solomonoff in [92]

gives numerical evidence demonstrating that the resulting spectral methods are un-

stable, and more recently Platte, Trefethen et al [77] have shown that equally spaced

nodes can not be stably used for any spectrally convergent linear approximation

method (this includes as a subset all standard spectral methods).

A method for using equally spaced nodes however is still available, and is the

subject of Kosloff and Tal-Ezer’s paper [61]. The basic strategy to moves away from

pure polynomial approximation, and instead composes the polynomial basis with a
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function which serves to more uniformly distribute interpolation nodes. The result-

ing method can produce O (1/N) timestep restrictions, which for high orders N does

not harm the accuracy of the method (indeed, Kosloff and Tal-Ezer in [61] provide

explicit formulas for maintaining predetermined precision, such as single precision).

This mapping has seen extensive analysis by Solomonoff for its impact on high order

spectral differentiation [29], Mead and Renaut for its implications on timestep stabil-

ity [71], Abril-Raymundo and Garcia-Archilla in [6] for its approximation properties,

Shen and Wang in [90] for its effect on error results, and a general explicit bound for

points-per-wavelength required for resolution of the mapped method has been given

by Liu and Shi in [99]. More recently this mapping approach has been generalized

by Hale in his PhD thesis [43] which also gives a conformal mapping interpretation

of the mapping’s effect, and proceeds to construct additional mappings which pro-

vide similar effects. Only one mapping however is considered in this thesis, as it will

be shown that the impact on accuracy is independent of the particular form of the

mapping, and depends solely on its impact on grid spacing.

In all but one of the above citations for the mapping technique, the map itself is

seen as a coordinate transformation which modifies the underlying semidiscrete equa-

tion’s form to attain its effect. It should be noted that the approach for motivation

and computations taken in this thesis is to take the inverse of this coordinate trans-

formation, and instead produce a new basis with which to perform computations.

The two approaches yield the same results, but the latter approach used here allows

the use of well known orthogonal polynomial approximation results [90]. As will be

seen in chapter 3, it also permits a motivation which unifies this approach with other

techniques as an effective strategy for dampening large gradients of polynomials near

element boundaries.
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The Kosloff/Tal-Ezer mapping strategy has seen application in many areas of high

order spectral methods. It has many virtues which may be exploited by its careful

application: Solomonoff in [29] has used it to mitigate roundoff effects of spectral

differentiation, Kosloff and Tal-Ezer in [61], Mead and Renaut in [71], and W.B. Liu et

al. in [99] all have demonstrated that the mapping may improve resolution properties,

and finally Kosloff and Tal-Ezer have demonstrated the timestep improvements [61].

For timestepping there have been many successful applications of this method: Jose

in [54] used this method to obtain the promised O (1/N) timestep restriction for the

two dimensional elastic wave equation, Patrick Godon in [36] used it to similar effect

with a slightly generalized form of the Kosloff/Tal-Ezer mapping strategy to model

accretion discs subject to certain tidal effects, Hesthaven et al. used this method

in the simulation of diffractive optical elements but instead chooses a less aggressive

mapping strategy for more modest gains to ensure that spectral convergence remained

unaffected, but still reported a stable doubling of timesteps [44].

The mapping strategy has also been used for spatial resolution properties, a strat-

egy actually introduced before Kosloff and Tal-Ezer’s paper by Bayliss et. al in [13]

to accumulate points in spectral methods to locations in the solution which exhibit

physically large gradients. An example of this application, specifically with that of

the Kosloff/Tal-Ezer mapping is by Celik and Cangellaris in [18] where they simulate

transmission lines, and adaptively apply the Kosloff/Tal-Ezer map when the line was

a certain factor larger than the smallest wavelength (in this particular paper they

chose the factor to be 4).

An alternative viewpoint on stiffness is given by Gottlieb in [41], where approxi-

mation theoretic inequalities are used to derive the timestep’s quadratic dependence

on order for pseudospectral methods. The basic inequality used is a special case of



11

the Markov inequality (see e.g. Lorentz [69] for the classical proof) which says that

the maximum absolute value of the derivative of an N � th degree polynomial grows

like O(N2

). On the face this does not appear to give a usable strategy for improv-

ing stiffness, but an observation by Warburton and Hagstrom in [100] suggests that

another approximation theoretic inequality is at play: Bernstein’s inequality, which

shows that the O(N2

) derivative scaling is at worst localized in small neighborhoods

of the boundaries of the element, but elsewhere behaves more as O(N). Combining

both Markov and Bernstein’s inequality one deduces that the gradients of polyno-

mials are in general the largest near element boundaries, and in fact near element

interiors behave more like O(N). Thus the quadratic behavior is the result of large

gradient behavior in small neighborhoods of element boundaries. This led Warburton

and Hagstrom to staggered grid strategies which effectively use two approximations

to the same solution, and combine them in such a way that information closest to

element centers are used, thus enforcing a O (N) gradient. Analytical and computa-

tional results show this method retains the approximation power of polynomials, but

also can reduce the timestep restriction to O(1/N) [100]. It is worth noting that this

staggered grid strategy has appeared in various forms elsewhere without the approx-

imation theoretic motivation, for example Hagstrom et. al in [39], and developments

in stable polynomial approximation follow the trend of using staggered grids as well

as seen in Boyd [53],[15] where the Runge pheneomenon is avoided by using staggered

gridpoints. More recently Hagstrom et al. has extended the staggered grid Hermite

methods given in [39] to an order adaptive method with similar timestep implications

[22].

A newer technique which does not depend directly on grid spacing or derivative

norm growth has been introduced by Chalmers et al. [19] whereby the timestep
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restriction is improved by targeting the constants implied in the polynomial trace

inequalities, which effectively bound boundary integrals in terms of volume integrals.

It is shown in the paper [19] that by appropriately modifying the lifting operator in

penalty methods so as to yield one of smaller norm can effectively increase the stable

timestep, and it is furthermore proven that doing this in a certain way can yield a

method with the same theoretical order of convergence in one dimension, a result

that is numerically verified in this thesis for two dimensions whenever the resulting

method is stable.

In chapter 3 this thesis analyzes numerically both the mapping strategy, and the

staggered grid strategy under the approximation theoretic approach of Warburton and

Hagstrom [100], and compares it by numerical experiment to the mapping strategies of

Kosloff and Tal-ezer [61], and Hale [43]. These two methods along with the technique

of Chalmers et. al [19] will be compared numerically. A contribution of this thesis

is the extension of the numerical results of Chalmers et al. in [19], of Warburton

and Hagstrom in [100] to a two dimensional problem, and the application of Kosloff

and Tal-Ezer’s mapping technique in [61] to discontinuous Galerkin. Furthermore

in chapter 3 the filtering of Chalmers and the filtering of Warburton and Hagstrom

will be combined with customized time-stepping routines to even further improve the

benefits. Customized timesteppers are the topic of the rest of this introduction.

1.4 Optimal Runge-Kutta Methods

With the spatial discretization suitably modified to improve the timestep restrictions,

there is an additional layer of modification to be made. The underlying explicit

timestepper may be customized to the problem at hand so as to stably admit the

largest possible timestep. This thesis focuses on Runge-Kutta methods because they
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permit low storage implementations which are suitable to low memory environments

such as graphics processors, a unified approach to low storage techniques given by

Ketcheson in [56], but in principle the ideas here could carry forward to other methods

such as the exponential timestepping methods analyzed by Saad in [88] or general

linear methods analyzed by Butcher in [16] (also known as multistep Runge-Kutta

methods, e.g. Renaut in [85]).

The early development of Runge-Kutta methods focused mainly on improving the

efficiency of solving ordinary differential equations by increasing the order of Runge-

Kutta method and using the minimal possible number of inner stage calculations to

achieve this order [50], thus permitting larger timesteps to be used for greater accu-

racy. This approach however does not effectively apply to stiff systems of differential

equations where timestep must be taken far below accuracy limits in order to satisfy

stability constraints. To quantify this stability limit we associate to each Runge-Kutta

method a “stability polynomial” (the seminal work of Butcher [16] investigates these

in depth) and consider the region of the complex plane for which the absolute value

of this stability polynomial has modulus not exceeding one. A timestep then is said

to be stable for a particular linear system of differential equations if the spectrum of

the linear operator scaled by that timestep is contained within the above mentioned

region, which will be denoted the “stability region.”

An early attempt at optimizing this stability region was made by Lawson in [64],

and [65] where fifth and sixth order Runge-Kutta methods were constructed such

that instead of using the minimal number of stages required to achieve fifth and sixth

order, more stages were added than is strictly necessary in order to make the stability

region larger. Using symbolic techniques a gain of 30% in efficiency in terms of right

hand side evaluations was observed [64]. Following this was Lomax in 1968 [68] who
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actually suggested a least squares approach for the adaptive selection of Runge-Kutta

methods. This adaptivity idea has not resurfaced in recent literature for convection

dominated problems except in a few cases, e.g. in [97] or [51].

Later development of customized Runge-Kutta methods can be largely catego-

rized in two ways: techniques for targeting the stability region to a simple reference

spectrum shape (such as a line, circle, ellipse), and analytic results concerning the

stability polynomials themselves. Initially many of the techniques used were symbolic

in nature and sought two key reference spectra: those for discretizations of parabolic

and hyperbolic problems. For the former case it is desirable to include as much of

the negative real axis as possible in the stability region, whereas for the latter case it

is important to contain a portion of the imaginary axis owing to the typically skew-

symmetric hyperbolic operators noted by Van Der Houwen in [98]. Both cases are

important for DG approximations to hyperbolic problems, as numerical dissipation

is often introduced for stability reasons, yielding eigenvalues with large negative real

part (see e.g. Hesthaven and Warburton in [46]).

For optimal imaginary axis stability Runge-Kutta methods Van Der Houwen in

[98] found symbolically those Runge-Kutta methods of first and second order which

include the largest portion of the imaginary axis as possible, these methods contained

the number of stages as an adjustable parameter (but only for odd number of stages)

so that one can find the optimal number of inner stage evaluations for their problem.

This work was continued by Kinnmark, Ingemar, and Gray in their sequence of papers

[59],[58],[57] where they extend the allowable orders to third and fourth using ad hoc

symbolic strategies. Later a general principle for construction of these methods would

be given by Kinnmark and Ingemar [75].

Optimal negative real axis Runge-Kutta methods saw more activity, as many



15

results would turn to their favor. One of these results is the equal ripple property,

which characterizes stability polynomials with optimal negative real axis inclusion

in their stability region [76]. This result may be used directly to construct such

polynomials, and in the first order case one is lead to shifted and scaled Chebyshev

polynomials, which as noted by Van Der Houwen [76] is actually a different, but

equivalent, formulation for Chebyshev acceleration of Richardson iteration [86] and

the resulting method became known as the Runge-Kutta-Chebyshev method. One

property of this method is that (like Chebyshev acceleration) it can be factorized

into a series of forward Euler steps with varying timesteps. This idea would later

be revived as supertimestepping by Alexiades in [8] and [9], where it would then be

applied in a more adaptive way in [35],[32], [67], and closely related DUMKA schemes

of and Medovikov [72], all of which require varying degrees of knowledge about the

spectrum of the problems considered. It should be noted that although super-time-

stepping was developed for parabolic problems, it has been succesfully applied to

hyperbolic problems which have been discretized with a method that induces spurious

eigenvalues of large negative real part [91]. Where super-time-stepping took advantage

of the ability to factorize a high stage high real axis stability method as a sequence of

forward Euler steps, another development by Abdulle et. al in [4],[3] would instead

exploit the stable three term recurrence of Chebyshev polynomials and use shifted

and scaled Chebyshev polynomials for the evaluation of even higher order Runge-

Kutta methods with real axis stability, effectively solving the “inner stage stability”

problem mentioned by Van Der Houwen in [76]. This development might see future

activity, as Ketcheson in [55] has noted benefits in changing polynomial basis so that

the basis is almost orthogonal on the spectrum of interest.

In the time period mentioned some important theoretical work has also been done
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in addition to the explicit calculation of Runge-Kutta methods. The basic task was to

characterize stability polynomials which were “optimal” in some predefined sense. The

first theorems in this direction were bounds on the possible real axis and imaginary

axis stability that may be had. For imaginary axis stability Vichnevetsky in [81]

showed that for an S stage Runge-Kutta method, its stability region can not include

an interval of length greater than S� 1 of the imaginary axis. This bound is sharp in

the sense that some optimal schemes attain it [76]. A result for inclusion of circles was

shown in the same paper that said in effect that a disk tangent to the imaginary axis

could only be included in a Runge-Kutta stability region with S stages if its radius was

S, confirming a result saying essentially the same thing in [52]. For negative real axis

stability the explicit construction of the Runge-Kutta-Chebyshev method shows by

properties of Chebyshev polynomials that for an S stage method, its stability region

can include at most an interval of length 2S2 of the negative real axis. For problems

which include both wave propagation and dissipative characteristics however there is

no known analytic bound.

More recently Runge-Kutta methods have started to be tailored to specific types

of discretizations, for example in aeroacoustics Ramboer et al. constructed optimal

six stage Runge-Kutta methods [82] and Allampali et al. went up to 7 stages in

[10], this thesis will consider those optimal schemes of Niegemann et al. in [73] and

Toulorge and Desmet in [95], which are both very well suited to DG approximations

of hyperbolic operators (the last paper dealing specifically with that case). I present

these timestepping methods with both modified and unmodified DG operators to see

what manner of gains may be had, and I discuss the standard construction of these

Runge-Kutta methods along with a new technique given by Ketcheson and Ahmadia

in [55].
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Chapter 2

Discontinuous Galerkin for Friedrichs’ System

In this chapter I present the discontinuous Galerkin (DG) method for solving hyper-

bolic conservation laws, specifically the acoustic wave equation. This formulation will

form the foundation for the remainder of the thesis, which will present modification

strategies to the underlying weak formulation to alter the spectral properties of the

method.

2.1 Introduction

This thesis will consider the solution of systems of equations of the form

@Q

@t
+

@AQ

@x
+

@BQ

@y
= R (2.1.1)

on an open domain ⌦ with suitable initial conditions and boundary conditions. Here

the matrices A,B 2 Rr⇥r are symmetric and independent of space. Such a system is

known as a Friedrich system [33].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1.1 : Quadrilateral mesh
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Initially one constructs a mesh Th =

�

Dk | Dk is a quadrilateral, k = 1, . . . , K
 

(see

figure (2.1.1)), The idea behind DG is to approximate Q with a piecewise polynomial

Qh
N from a space PN

h of piecewise polynomials by forming a suitable projection of the

residual equation onto this space. A pure Galerkin approach would require that Qh
N

satisfy ˆ
⌦

v

✓

@Qh
N

@t
+

@AQh
N

@x
+

@BQh
N

@y

◆

=

ˆ
⌦

vR

for all v 2 PN
h . However, as the space PN

h does not automatically require uN to satisfy

any sort of auxiliary conditions (boundary conditions, continuity), it is necessary to

impose them in the projection step through a term which penalizes discontinuities

which arise from the solution space PN
h . For the special case of a Friedrich system

where A,B are continuous this penalization may be achieved by requiring that for

all elements Dk 2 Th we calculate the local solution QN by requiring

ˆ
Dk

v

✓

@QN

@t
+

@AQN

@x
+

@BQN

@y

◆

�
ˆ
Dk

vR =

1

2

ˆ
@Dk

v (C�C⇤C) [QN ] (2.1.2)

for all v polynomial on Dk. Here C is defined by

C = nxA+ nyC

where nx, ny are the components of the outward pointing normal of the element Dk

and

[Q] = Q� �Q+

is the difference between the solution on the element Dk and that of its neighboring

element. It should be noted that the above discussion assumes the solution will indeed

be a piecewise polynomial, but for quadrilateral meshes the basis functions local to
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each element will be small perturbations of a polynomial basis. This detail will be

handled carefully in chapter 4.

This thesis focuses on solving this system for QN in time using explicit timestep-

ping methods. To see the difficulties which arise in doing this, note that for each

Dk 2 Th one may view the global solution Qh
N as a coupled system of ordinary

differential equations
dQh

N

dt
= DQh

N +R,

which may be evolved in time by any explicit timestepper which has an appropriately

shaped stability region. A well known fact about explicit timestepping methods is that

they are for stability reasons limited in how large the timestep �t may be. In fact, for

any fixed explicit timestepping method the timestep must be inversely proportional

to the spectral radius of D, i.e. stability forces �t ⇡ ⇢ (D)

�1 . The difficulty then

which arises from DG is that ⇢ (D) = O (N2/h) where N is the polynomial order

used, and h is the mesh spacing parameter. This can be shown directly from the

weak form (2.1.2), and is derived in detail in chapter 4. The overall goal of this

thesis is to investigate methods for reducing the impact of this spectral radius on the

right-hand-side evaluations required to integrate the system to a desired final time.

2.2 Mesh and Solution Space

One difficulty in using quadrilateral meshes is that the mapping between arbitrary

quadrilaterals to a fixed reference element is mildly nonlinear. That distinguishes this

type of mesh from triangular or tetrahedral where the mapping is affine. This means

that the local solution space is not uniformly a polynomial space on each element, only

on those whose reference mappings reduce to affine (e.g. parallelograms). This will
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Figure 2.2.1 : Example quadrilateral

require a little more careful notation. The local solution spaces to each element Dk 2

Th will be constructed by taking the standard tensor product Legendre polynomial

basis on the reference bi-unit square and through a coordinate transformation induced

by the reference mapping create a new basis on the desired element.

The mesh in use is a quadrilateral mesh and will be denoted Th, with h parame-

terizing the maximum element diameter. Given an arbitrary quadrilateral specified

by four vertices (x
1

, y
1

) , (x
2

, y
2

) , (x
3

, y
3

) , (x
4

, y
4

) labeled in anticlockwise manner one

may map the reference biunit square onto this quadrilateral through the change of

coordinates x = �

k
1

(r, s) , y = �

k
2

(r, s) with

�

k
1

(r, s) =

(1 + r) (1 + s) x
1

+ (1� r) (1 + s) x
2

4

(2.2.1)

+

(1� r) (1� s) x
3

+ (1 + r) (1� s) x
4

4

�

k
2

(r, s) =

(1 + r) (1 + s) y
1

+ (1� r) (1 + s) y
2

4

+

(1� r) (1� s) y
3

+ (1 + r) (1� s) y
4

4

The transformation �

k from reference r, s coordinates into x, y coordinates on Dk 2

Th will have associated with it a transformation Jacobian matrix Jk and inverse
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�

Jk
��1

= Gk given by the entries

Gk
=

0

B

@

@r
@x

@s
@x

@r
@y

@s
@y

1

C

A

(2.2.2)

and an associated Jacobian determinant (hereafter referred to as “Jacobian”)

Jk
=

1

detGk
(2.2.3)

These geometric factors are important in the calculation of integrals and derivatives

on elements Dk, and effectively reduce calculation in an arbitrary quadrilateral to

calculation on the reference bi-unit square scaled by appropriate metric quantities.

One difficulty that will arise however is that (2.2.1) is nonlinear, and so the Jacobian

which appears in integration after pulling back to reference coordinates will be seen

later to damage orthogonality of the basis.

On the reference element, which will be denoted I throughout this thesis, an

orthogonal polynomial basis is constructed through a tensor product procedure on

one dimensional polynomials. Namely on the interval [�1, 1] one has the Legendre

orthogonal polynomials (L⇤
i ) which are defined through the recursion [5]

L⇤
1

(x) = 1

L⇤
2

(x) = x

L⇤
i+1

(x) =

1

n+ 1

�

(2n+ 1) xL⇤
n (x)� nL⇤

n�1

(x)
�

and futhermore these polynomials will be normalized to have L2 norm of one. The

extension to two dimensions is straightforward by defining a new double-indexed basis
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(Lij) such that

L↵ (x, y) = Lij (x, y) = Li (x)Lj (y)

which is still an orthonormal basis. A linear indexing scheme for ↵ may be imposed

arbitrarily, the one used in this thesis is the one supposed by MATLAB’s “kron” com-

mand, as all tensor products are computed with it to ensure consistency of indexing.

The extension of this basis to a general quadrilateral Dk is obtained through the

coordinate transformation � :

L↵ (x, y) = L↵

⇣

�

�

k
1

��1

(x) ,
�

�

k
2

��1

(y)
⌘

= L↵ (r, s) .

Since the transformation Jacobian (2.2.3) is nonlinear, this new basis is nonpolynomial

and furthermore not necessarily orthogonal. This may be seen through the equation

ˆ
Dk

L↵ (x, y)L� (x, y) dS =

ˆ
I

L↵ (r, s)L� (r, s) Jk (r, s) .

Later this restriction will not be important, as some of the modification techniques

introduced in chapter 3 will impose a structure restriction on the mesh, which will

effectively turn �

k into an affine function. The theory developed however will in

all cases seek to work on the general quadrilateral case, wherever applicable. Since

the reference mapping �

k will be different for each k, the solution space becomes

more complicated than simply finding piecewise polynomials. To account for this I

introduce the following local solution spaces,

V k
N = span

n

L↵ �
�

�

k
��1 | ↵ = 1, . . . , (N + 1)

2

o

. (2.2.4)
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In following DG formulations, the solution sought will locally belong to to one of

these spaces, or to modifications of them.

2.3 A Representative Problem

The purpose of this section is to present the standard DG method in two dimensions

for the acoustic wave equation in first order form. As explained in section (2.1) this

will be achieved by first discretizing the domain in question with quadrilaterals Dk

and then searching for a solution whose restriction to Dk is in the local solution space

for each Dk (but not requiring any sort of inter-element continuity). The auxiliary

conditions of inter-element continuity and of boundary conditions are then imposed

weakly by penalizing jumps, the way this is accomplished will be reminiscent of finite

volume methods and their use of the numerical flux [46, 66].

2.3.1 The Equations and Weak Formulation

The equations to solve are

⇢@u
@t

+rp = 0,
1


@p
@t

+r · u = R (2.3.1)

with suitable initial conditions and boundary conditions. Here u is wave velocity, p

is acoustic pressure, ⇢ is density, and  is bulk modulus. The speed of sound given

the material parameters , ⇢ is c =
p

/⇢ . To see that this takes the form as (2.1.1),

one may rewrite (2.3.1) as

@Q

@t
+

@AQ

@x
+

@BQ

@y
= R (2.3.2)
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with

Q =

0

B

B

B

B

@

u
1

u
2

p

1

C

C

C

C

A

A =

0

B

B

B

B

@

0 0

1

⇢

0 0 0

 0 0

1

C

C

C

C

A

B =

0

B

B

B

B

@

0 0 0

0 0

1

⇢

0  0

1

C

C

C

C

A

Suppose now that the domain for the sought solution is ⌦h =

SK
k=1

Dk, with Dk being

a quadrilateral for each k. Before following the discussion in the introduction, some

important notation must be introduced. As the solution sought exists in a space of

functions which does not guarantee continuity, it is important to refer to information

inside a given element Dk and information outside this given element, as the two may

be different (in contrast to traditional finite element methods). The interior trace

value of a function f at a point x 2 @Dk is given by

f�
(x) = lim

y ! x

x 2 Dk

f (y) , (2.3.3)
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and the exterior trace value at this same point is

f+

(x) = lim

y ! x

y 2 adjacent
�

Dk
�

f (y) , (2.3.4)

here adjacent
�

Dk
�

means the element Dj that shares the edge with Dk which contains

x. Note that (2.3.4) is not technically well defined, but it will always be clear from

context what values are being used. It will be useful as well to refer to the notion of

jumps across element interfaces

[f ] = f� � f+

Given the form (2.3.2) it is now possible to follow the idea in the introduction and

write a weak form. To simplify notation the following inner products will be used

throughout this thesis

(u,v)Dk =

´
Dk u · v, (u,v)@Dk =

´
@Dk u · v,

along with their associated norms

kukDk = (u,u)Dk , kuk@Dk = (u,u)@Dk .

The weak form (2.1.2) gives rise to the weak form for the acoustic wave equation: for

each k find QN 2
�

V k
N

�

3 (dependence on k omitted) such that

ˆ
Dk

v

✓

@QN

@t
+

@AQN

@x
+

@BQN

@y

◆

�
ˆ
Dk

vR =

1

2

ˆ
@Dk

v (C�C⇤C) [QN ] (2.3.5)
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holds for all v 2
�

V k
N

�

3

. The expression in the boundary integral may be interpreted

as an upwinding flux, and in fact in the case of continuous coefficients evaluates

exactly to what the upwinding flux should be [47]:

(C�C⇤C)

⇥

QN
⇤

=

0

B

B

B

B

@

nx
1

⇢
[pN ]� 2nx (n · [uN ])

ny
1

⇢
[pN ]� 2ny (n · [uN ])

n · [uN ]� n ·
⇣

n 1

⇢2

⌘

[pN ]

1

C

C

C

C

A

,

implementation details for this local semidiscrete form are postponed until chapter 7,

which will also contain implementation details for other components of this thesis.

2.3.2 Boundary Conditions

Dirichlet boundary conditions will be imposed by requiring the exterior trace Q+

N on

boundary edges to satisfy the equation

Q+

N = DQ�
N (2.3.6)

where the operator D is constrained to ensure that

Q�
N · (C⇤C�C)DQ�

N  0. (2.3.7)

Condition (2.3.7) is revisted in chapter 4 where it will be seen to be necessary and suf-

ficient for stability on an edge where a boundary condition of type (2.3.6) is imposed.

Aside from periodic conditions a popular boundary condition used in acoustic wave

simulations are reflecting conditions. For DG this is traditionally stated p+N = �p�N ,
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the corresponding matrix D is

D =

0

B

B

B

B

@

0 0 0

0 0 0

0 0 �1

1

C

C

C

C

A

and one may verify by inspection that it satisfies (2.3.7).
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Chapter 3

Stiffness Reduction through Operator Modification

In this chapter I deal with methods for handling the stringent requirements on

timesteps which is inherent in higher order methods. I focus the strategy on at-

tempting to reduce the operator L2 norms of the projected derivative operator and

the trace lifting operator, as these can be seen as key components to the contribution

of stiffness in DG (see chapter 4). The methods presented in this chapter focus on

directly altering the underlying semidiscrete formulation (12) in such a way as to

yield a smaller spectral radius without damaging theoretical results of classical DG.

I give numerical results to investigate the usefulness of these methods. It will

be seen that the mapping techniques generate significant error when they are ap-

plied aggressively enough to yield a nonnegligible impact on timestep size. This is in

contrast to the covolume filtering method, which degrades solution quality as well if

applied too aggressively, but it will be seen that there exists a cutoff which if used

leaves the accuracy virtually unchanged. The timesteps are improved considerably

under the covolume filtering strategy, and it appears to yield stable timesteps that

decrease only linearly with polynomial order as opposed to quadratically. The third

technique, which for lack of a name in the literature I will call “flux filtering” does

improve timestep size without heavily impacting accuracy, however its effect is some-

what unpredictable with respect to how heavily it is applied. A light application

of flux filteirng in some cases yields timesteps that are twice as large without sig-

nificantly impacting accuracy, but unlike the one dimensional case [19] can yield an
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unstable method after overapplication in two dimensions.

The contributions of this chapter are the extensions of covolume filtering and flux

filtering to two dimensions, and the application of mapping techniques to discontinu-

ous Galerkin. Furthermore the methods are all compared to one another in terms of

their impact on accuracy.

3.1 Introduction

Key elements which yield the L2 norm of O (N2/h) are two inequalities: the inverse

trace inequality and the Markov inequality. The first two methods investigated in this

chapter, the mapping method and the covolume filtering method are motivated by

looking at the Markov inequality. As it turns out, even though the Markov inequality

is sharp, the N2 magnitude of gradients of polynomials is only seen near element

boundaries. This can be seen through the Bernstein inequality, which says that given

an order N polynomial P on the interval [�1, 1] then the following pointwise bound

holds [69]

|P 0
(x)|  Np

1� x2

kPk1

for each x 2 (�1, 1) . Thus near element midpoints the gradients grow only linearly

with polynomial order, instead of quadratically.



30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Combined Markov and Bernstein Inequality

x − axis

D
er

iv
at

iv
e 

bo
un

d

Figure 3.1.1 : Combined Markov and Bernstein inequality on the interval [�1, 1]

For mapped methods [61] a coordinate transformation is suggested with serves to

’stretch’ out the interval [�1, 1] near its endpoints, but to leave the interior near the

midpoint relatively unchanged. A function which is expressed in this new coordinate

system would have lower gradients near its boundaries than in the original system,

and so hopefully lessening its impact on timestep considerations. The impact of this

stretching can be dramatic, as seen below (compare to figure (3.1.1) above)
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Figure 3.1.2 : Markov/Bernstein inequality under aggressive coordinate transforma-
tion

The covolume filtering strategy [100] works differently in that it involves projecting
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a function between two grids, the primal grid which is the grid on which the PDE in

question was originally posed in weak form, and the covolume grid which is staggered

over the primal grid. In this way only information from element interiors are used,

and spuriously large gradients near element boundaries are filtered out of the solution.
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Figure 3.1.3 : Combined Markov/Bernstein with staggered grid.

The flux filtering strategy [19] does not directly impact the derivative operator as

the mapped or covolume filtering strategies do. Instead it takes the lifted flux term

in the DG formulation, and filters the top modes before adding it to the interior

gradients. It was shown in the paper presenting this strategy that if only the top

mode is filtered then the formal order of convergence remains unchanged in the case

of periodic one dimensional advection. This method essentially reduces the spectral

radius of the DG operator by constraining the solution to satsify a more restrictive

inverse trace inequality. By not addressing the issue of spuriously large gradients

however, it can not achieve the same order of magnitude reduction as the mapped

methods or covolume filtering methods.
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The numerical examples in this chapter will all focus on the two dimensional

acoustic wave equation on a periodic spatial domain

8

>

>

<

>

>

:

@u
@t

+rp = 0

@p
@t

+r · u = 0

for (x, y, t) 2 (�1, 1)⇥ (�1, 1)⇥ (0, T )

with initial condition

p (0, x, y) =

m
X

i=1

n
X

j=1

pmn sin (j⇡x) sin (i⇡y)

u (0, x, y) = 0

and analytic solution

p (t, x, y) =

m
X

i=1

n
X

j=1

pmn sin (j⇡x) sin (i⇡y) cos
⇣

⇡t
p

i2 + j2
⌘

u =

m
X

i=1

n
X

j=1

pmn sin

⇣

t⇡
p

i2 + j2
⌘

p

i2 + j2

0

B

@

j cos (n⇡x) sin (m⇡y)

i sin (j⇡x) cos (i⇡y)

1

C

A

.

In this case I take pij = 1 for 1  i, j  6. The following sequence of meshes will be

used for h-convergence studies:
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Figure 3.1.4 : Sequence of meshes used for h-convergence studies

3.2 Mapped Methods

The idea behind mapping is to find a coordinate transformation which will lessen

the gradients of polynomials near boundaries while retaining the favorable gradients

near midpoints. Such coordinate transformations have been investigated in a related

problem of attempting to construct stable approximation techniques from equispaced

datapoints [43, 77], the one investigated in this thesis will be that of Kosloff and

Tal-Ezer [61], i.e. the one dimensional coordinate transformation

x = g� (y) =
sin

�1 �y

sin

�1 �

which has inverse

y = h� (x) =
sin

�

x sin�1 �
�

�
.

Two dimensional versions are readily constructed through tensor products in the case

of the square. To see the impact this has on the derivative of a function f expressed
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in the new coordinate system, apply the chain rule to find

f 0
(y) = f 0

 

sin

�

x sin�1 �
�

�

!

=

sin

�1 � cos
�

x sin�1 �
�

�
f 0
(x)

which shows significant reduction in the gradient of f near boundaries for �! 1
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Figure 3.2.1 : sin

�1 � cos

(

x sin

�1 �
)

�
for �! 1.

The behavior of this function near the midpoint of [�1, 1] thus appears essentially

bounded above and unchanged for changes in �, but near boundaries it drops off

dramatically, which is exactly the desired effect. The effects of this transformation

will now be investigated.

3.2.1 Weak Formulation

To facilitate its use in DG I will no longer consider this mapping as a coordinate

transformation, but rather as a non-polynomial basis which is used as an alternative

to the polynomial basis. If using the Lagrange basis Li on the reference square I the
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new modified basis becomes through this transformation:

L�
i (x) = Li (h� (x))

and the reference solution space becomes

PN,� (I) =
�

v � h� | v 2 PN
(I)
 

with local solution spaces V k
N,� constructed by coordinate transformations as in the

polynomial case. Recalling the local weak form (2.3.5)

ˆ
Dk

v

✓

@QN

@t
+

@AQN

@x
+

@BQN

@y

◆

�
ˆ
Dk

vR =

1

2

ˆ
@Dk

v (C�C⇤C) [QN ]

which holds for every k = 1, . . . , K and v 2
�

V k
N

�

3, one readily obtains the modified

weak form by simply replacing V k
N in the unmodified case with V k

N,�.

3.2.2 Numerical Results

Here I provide numerical results to determine whether the mapping technique is

effective at reducing the stiffness of the DG operator without hurting accuracy. It

will be seen that this is generally not the case for the polynomial orders considered

in this thesis, as there will be order reduction for aggressive mapping.

3.2.2.1 Effect on Spectrum

Now computations are undertaken to suggest numerically the timestep improvement

for appropriately chosen �. It will be shown that choosing � as a function of N,

increasing so that � ! 1 can yield a sequence of DG operators with spectral radius
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growing only linearly with N for N = 1, . . . , 8. As in the first chapter this requires

bounds on the derivative operator and the trace lifting operator. First I investigate

the derivative operator behavior. This I give numerically, as the operator is block

diagonal in DG simulations, and so only the L2 norms of a single block need to be

analyzed for varying �. The L2 norms of this operator may be calculated explicitly

through the generalized eigenvalue problem [74]

DT
r,�M2D

� DT
r,�u = ⇠M2D

� u

and for the lifting operator L� a similar eigenvalue problem is obtained

(L�Y)

T M2D
� (L�Y)u = ⇠M2D

� u

where Y is the linear operator defined as

Yu = u |@D .

Here the matrices Dr,�,M2D
� ,L� are the projected derivative operator, the two di-

mensional mass matrix, and the trace lifting operator for the reference solution space

PN,� (I) . Given that these matrices are very small compared to the whole problem this

can be done with relative ease using MATLAB’s “eig” command. Below are results

for varying � and polynomial order N. The results for varying N and � are given by

the below two figures
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Figure 3.2.2 : L2 norms of the operators Dr,�,L� for various N and �

note the scale difference in the x-axis on both figures. It is also instructive to observe

the imapct on the full spectrum of the DG operator. For example the following

figure shows how mapping compresses the spectrum in the case of the acoustic wave

equation operator posed on a periodic domain:
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Figure 3.2.3 : Compression of spectrum through application of Kosloff/Tal-Ezer map-
ping

One can see above the dramatic effect of the mapping for parameter values of � in a

small neighborhood of one.

3.2.2.2 h-convergence

Next it is important to see how the solution quality improves as one refines the mesh.

What is seen here however is that a heavily mapped method yields significant order

reduction for larger values of �, at least for the polynomial orders considered here.

The order values here are computed by using the mesh sequence (3.1.4). Because of

the amount of information it is necessary to convey I omit presenting the exact error
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for each mesh but instead just report the computed error decay p assuming it takes

the form ku� uh
Nk  Chp.
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Figure 3.2.4 : h-convergence for different mapping parameters �

One sees in the above figure a significant order reduction even for modest values of �,

and so I did not take values approaching one, but the order reduction becomes even

steeper in this limit.

3.2.3 Explanation of Results

In the numerical results of this section it was demonstrated that mapping does not

perform well in the low order regime in which DG is often applied. This might lead one

to consider alternative mappings as Hale did in his thesis [43] (but on notably much

higher order methods) or a basis that does not suffer the same Markov inequality
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as polynomials as Hesthaven et al. did in [21]. It should be first noted that it is

impossible to find a basis (�i) such that span {�i | i = 1, . . . } is dense in L2

(�1, 1)

which satisfies the inequality

k�0
NkL1

(�1,1)  CN1�✏ k�NkL1
(�1,1)

since one could always construct a linear combination f =

PN
i=1

↵j�j which is orthog-

onal to the characteristic functions of the intervals
⇥

m
N
, m+1

N

⇤

for m = �N, . . . , N � 1,

which would give

kfkL1
(�1,1)  max

m
sup

[

m
N ,m+1

N ]

f � inf

[

m
N ,m+1

N ]

f

 1

N
kf 0kL1

(�1,1)

 C
N1�✏

N
kfkL1

(�1,1)

and applying the same argument to (1/C) f yields a contradiction (construction

adapted from a Math Overflow comment [7]). Furthermore if span {�i | i = 1, . . .}

is not just dense in L2

(�1, 1) , but also satisfies similar error estimates as polynomi-

als, and a Markov inequality of the type

k�0
NkL2

(�1,1)  �N k�NkL2
(�1,1)
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then by defining UN to be the L2 projection operator from L2

(�1, 1) to span {�i | i = 1, . . . , N}

and taking any polynomial pN 2 PN
(�1, 1) we have

kp0NkL2
(�1,1) =

�

�p0N � (UNpN)
0
+ (UNpN)

0�
�

L2
(�1,1)


�

�p0N � (UNpN)
0�
�

L2
(�1,1)

+

�

�

(UNpN)
0�
�

L2
(�1,1)


�

�p0N � (UNpN)
0�
�

L2
(�1,1)

+ �N kUNpNkL2
(�1,1)


�

�p0N � (UNpN)
0�
�

L2
(�1,1)

+ �N kpNkL2
(�1,1)

so that if the term left term above is bounded in N we see that � grows at least

quadratically in N by the traditional polynomial Markov inequality. Further infor-

mation is provided in chapter 4 relating to blowup of constants in error estimates for

mapped methods.

3.3 Covolume Filtering

The idea of covolume filtering is to introduce a new ’covolume’ mesh which staggers

the original mesh. Then two L2 projection operators ⇧

P ,⇧C are formed. The ⇧

C

operator takes a piecewise polynomial function u 2 PN
�

Dk
�

and projects it so that

⇧

Cu is a piecewise polynomial on the covolume grid T C
h . The ⇧

P operator does the

same thing but instead projects it onto the space of piecewise polynomials on the

’primal’ or original grid T P
h . The covolume filter operator then is

⇧

P
⇧

C .
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The filtering used for this thesis is

⇧� = (1� �) I + �⇧P
⇧

C

where I is the identity operator. The semidiscrete form 2.3.5 becomes the task to

find QN 2 V k
N such that

ˆ
Dk

v

✓

@QN

@t
+

@A⇧�QN

@x
+

@B⇧�QN

@y

◆

�
ˆ
Dk

vR =

1

2

ˆ
@Dk

v (C�C⇤C) [⇧�QN ]

holds for all v 2
�

V k
N

�

3

.

3.3.1 Numerical Results

First an idea of how covolume filtering impacts the spectrum of the periodic acoustic

wave opeartor, this shows that one should expect an improved timestep through such

a filtering.
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Figure 3.3.1 : Impact of covolume filtering on DG spectrum

I provide here h-convergence results for covolume filtering. Note the mild departure

from standard DG
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Figure 3.3.2 : h-convergence for varying covolume filter parameter �

3.4 Flux Filtering

In the flux filtering technique introduced by Chalmers, et. al [19], based on ideas from

[62], the flux lifting term in the DG discretization is expressed in terms of a Legendre

basis and then the highest order modes of this expansion are directly reduced. The

operator used to achieve this is similar to traditional filtering used to improve stability

when aliasing errors introduce spurious oscillations, the only difference is that the

filter is applied only to the lifted flux term. Normally this filter would impact order

of accuracy, but in [19] it is shown that the order of convergence remains unchanged

in the one dimensional case if the filter is only used on the lifted flux terms, and if

only the topmost modes are modified. The impact is to reduce the contribution of the

lift operator to the spectral radius of the overall scheme, reducing its CFL number.
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This section is shorter than others as the theory is undeveloped for more compli-

cated problems, and its impact is less than that of mapping or covolume filtering. It is

nevertheless useful to consider, as its impact on accuracy will be seen to be minimal,

and among the other modification techniques considered here it involves the least

change to existing code.

The idea behind flux filtering in one dimension is to take the elementwise semidis-

crete form on an element Dk

d

dt
u = Du+ L (du)

with du as before referring to the field differences at the boundaries of Dk, accounting

for upwinding, and then replace L with a filtered version L� with � 2 [0, 1] . Given a

polynomial u on the boundary of Dk one may express it as a sum of appropriately

transformed Legendre polynomials Pi so that

L (du) =

Np
X

i=1

↵iLi

and so a filtered version of L (du) would be to take instead

L�
(du) =

Np�1

X

i=1

↵iLi + �↵NpLNp . (3.4.1)

The resulting local weak form is

d

dt
u = Du+ L�

(du) .

Furthermore for the case of one dimensional advection it is shown in [19] that this
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modification also does not impact the theoretical h-convergence rates, but does po-

tentially increase the constant implied in the error estimate. One contribution of this

thesis will be to extend this idea to two dimensions. No rigorous error estimates or

fully discrete stability will be proven in the accompanying theory chapter, instead I

will only provide the numerical results to validate these facts

3.4.1 Flux Filtering in Two Dimensions

In two dimensions simply filtering the highest degree mode as in (3.4.1) is not sufficient

for any significant gain, instead if one expresses a function u 2 PN as a tensor product

expansion of Legendre polynomials as

u =

X

1i,jN

uijLiLj

with ↵ being a multi-index, then the filtering in one dimension can be readily extended

to two dimensions as such:

F �u =

X

1  i, j  N

i+ j 6= N

uijLiLj + �
X

i+j=N

uijLiLj

with the resulting filtered lift operator L� becoming

L�
= F �L.
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3.4.2 Numerical Results

Here I provide similar reasoning for the improved timestep bounds as was used in

the mapping section as well as h-convergence studies. The difference is that here

the only operator affected is the lifting operator L. This operator yields inverse trace

inequalities which result in timestep bounds that result in asymptotic stability results,

like that derived in chapter 4. Below I compute the operator norm
�

�L�
�

�

L2 for various

�. It will be seen that the operator norm decreases monotonically for decreasing �,

corresponding to more aggressive filters.
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Figure 3.4.1 : L2 norms
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one furthermore sees that the most aggressive effect yields at most a halving of
�

�L�
�

�

L2 ,

but this does not necessarily correspond to a doubling of stable timesteps as the

Markov inequality will eventually dominate the estimates for L2 stability. Further-

more, there is no theoretical guarantee that this even results in a stable method, as
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seen in the below figure

−120−100−80 −60 −40

−60

−40

−20

0

20

40

60

δ = 1.000000

Real axis

Im
ag

in
ar

y 
ax

is

−100−80 −60 −40 −20

−60

−40

−20

0

20

40

60

δ = 0.800200

Real axis

Im
ag

in
ar

y 
ax

is
−100−80 −60 −40 −20

−60

−40

−20

0

20

40

60

δ = 0.600400

Real axis

Im
ag

in
ar

y 
ax

is

−80 −60 −40 −20 0

−60

−40

−20

0

20

40

60

δ = 0.400600

Real axis

Im
ag

in
ar

y 
ax

is

−60 −40 −20 0 20

−60

−40

−20

0

20

40

60

δ = 0.200800

Real axis

Im
ag

in
ar

y 
ax

is

−60 −40 −20 0 20

−60

−40

−20

0

20

40

60

δ = 0.001000

Real axis

Im
ag

in
ar

y 
ax

is

Figure 3.4.2 : Effect on spectrum of flux filtering

note that the last two are unstable.

Now I provide h-convergence results for flux filtering. Its departure from unmod-

ified DG is seen to be essentially negligible
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3.5 Comparisons and Conclusions

Now I compare each of the three methods presented in this chapter so as to see

which yields the most efficient method by measuring the number of right-hand-side

evaluations as a function of accuracy. It will be seen that the covolume filtering

method provides the most efficient for a modest impact to accuracy for the problems

considered here, while the mapping technique negatively impacts accuracy to the

point of yielding significant order reduction. In between these two methods is the flux

filtering technique, the impact of which is less but accordingly has a lesser impact

on accuracy as well. It has the added benefit of a simple implementation. The

figure below was determined by fixing the tolerance on ODE45 to single precision,

calculating the amount of RHS evaluations required to fully solve the system, and

then calculating the spatial error of the result. Calculations were done for a fixed

grid and fixed polynomial order of N = 6.
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The mapping technique should be expected to fail when used very aggressively, taking

a less aggressive approach however does not yield helpful gains in timestep size, since

the more dramatic effects of the mapping occur in a relatively small neighborhood of

the parameter value �! 1.

The covolume filtering method avoids the difficulties of mapping while still ad-

dressing the same issue. It furthermore allows the full use of polynomial approxima-

tion results, which both in theory and in experiments have proved to yield solutions

of similar quality to unmodified DG but with significantly improved timestep lim-

itations. The experiments done in this thesis however focused on linear problems

with smooth solutions, and as pointed out in the paper [100] one should not expect

similar results in nonsmooth cases (e.g. discontinuous coefficients, or development

of shocks) without a significant change to the technique. Furthermore the extension

of this technique to an unstructured grid is not straightforward, and would require

further study.

The flux filtering strategy directly lessens the impact of the discrete lifting oper-

ator to the spectral radius of the DG operator, but as it does not address the issue

involved with calculating derivatives on element interiors its effects are effectively

limited to decreasing the constant implied in the notation ⇢ (D) = O (N2/h) . It

nevertheless yields timestep restrictions which are in some cases 30% larger than un-

modified DG while only marginally reducing accuracy, and with its relative ease of

implementation it could potentially save time in codes which are having speed issues

in time integration. Its effects however are somewhat difficult to predict, with a very

strong filter it leads to unstable schemes.



52

Chapter 4

Theory

This chapter states and proves standard theoretical results in the new context of

mapped domains. The theory behind covolume filtering is also developed, but as its

use currently restricts one to tensor product grids it is more or less a direct exten-

sion of the results from [100] with slightly more restrictive regularity requirements

between primal and covolume grids. As of yet no theory exists for flux filtering in two

dimensions, seeing its reasonable impact on efficiency however this could be a useful

direction for further research. The theory in this chapter is not necessarily new, as

much of it is motivated by the preprint [101]. It is however the first time discontinuous

Galerkin theory has been applied to mapping techniques, showing their theoretical

convergence. Furthermore the theory for covolume filtering in two dimensions is new,

as the previous analysis in [100] applied only in the one dimensional case.

4.1 Notation and Preliminary Results

Before stating and proving key theorems for DG formulations I will introduce the

basic notation and machinery that will make their statements possible, and state the

key theorems and lemmas which are important in error analysis.

This thesis makes use of standard theoretical items from the theory weak solutions.

Given a quadrilateral Dk the function spaces L2

�

Dk
�

and Hs
�

Dk
�

all carry their

standard meanings, associated norms, seminorms, and inner products. Since however
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the DG method further weakens a solution by requiring it only to only be piecewise

continuous, the following extended space is also used: Given a mesh Th the set Hp
(Th)

is defined by

Hp
(Th) =

�

v | v|D 2 Hp
(D) 8D 2 Th

 

and is called the broken Sobolev space of order p for the mesh Th and it has along

with it an associated broken Sobolev norm

kuk2Hp
(Th) =

K
X

k=1

kuk2
Hp
(

Dk
)

and furthermore L2

(Th) will be understood as taking p = 0 in the above definitions.

To each element Dk 2 Th there is the associated element measure hk

hk = diam
�

Dk
�

and furthermore the global results will be stated in terms of

h = max

k
hk.

The set of unique edges of elements Dk 2 Th will be denoted as �. Recall that local

solution spaces are denoted V k
N and V k

N,� respectively for the standard and mapped

DG respectively, and for each element we have a local Jacobian Jk
� which depends on

the local element geometry.

Now I catalogue inequalities and projection estimates which are useful in the

derivation of error estimates.

Theorem 1. [Cauchy-Schwarz Inequality] Suppose that V is an inner product space
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with inner product (·, ·). Then for all u, v 2 V the following inequality holds

|(u, v)|  kuk · kvk.

Theorem 2. [Young’s Inequality] Suppose that a, b, ✏ 2 R. Then

2ab  a2

✏
+ ✏b2

holds for all ✏ > 0.

Theorem 3. [Castillo,Cockburn, et al.] Suppose that R,A,B,� are nonnegative func-

tions from [0, T ] to R, that B,� are measurable, and that

�2

(t) +R (t)  A (t) + 2

ˆ t

0

B (s)� (s) ds

Then given any t 2 [0, T ] we have

p

�2

(t) +R (t)  sup

0✓t

p

A (✓) +

ˆ t

0

B (✓) d✓.

Proof. See [17, pg. 465, lemma 3.11]

Theorem 4. [Multiplicative Trace Inequality] Suppose that Dk is a quadrilateral with

hk its associated element measure. Then there exists a constant C such that for all

v 2 H1

�

Dk
�

we have

kvk2@Dk  C

✓

kvkDk |v|H1
(

Dk
)

+

1

h
kvk2Dk

◆

The following theorems will be proven, as they are not already common in the
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literature. They deal chiefly with approximation theoretic estimates such as inverse

inequalities and truncation error estimates. The difference between theorems here

and other well known theorems is the unknown constants do not depend on local

element geometry. The dependence of the estimates on local geometry is explicitly

quantified, which permits one to impose restrictions on a quadrilateral mesh which

are sufficient to recover optimal convergence. The techniques of proof will mirror to

some extent the techniques in Hughes, et al. in [1]. To motivate some of the below

definitions recall that the local solution spaces V K
N,� are nonpolynomial, but can in

some sense be considered polynomial on a special reference element after reversing

the coordinate transformation used to obtain V k
N,�. More specifically for each function

�, 2 V k
N,� we may calculate the inner products as

ˆ
Dk

� (x, y) (x, y) dxdy =

ˆ
I

� (r, s) (r, s) Jk
� (r, s) drds (4.1.1)

here Jk
� is the Jacobian obtained after combining the coordinate transformations

from the Kosloff/Tal-Ezer mapping and the reference element mapping. Note that

� (r, s) , (r, s) are polynomial on I. It will also be important to evaluate the following

inner product

ˆ
Dk

@

@x
� (x, y)

@

@x
 (x, y) dxdy

=

ˆ
Dk

Gk,�
1

r� (x, y)Gk,�
1

r (x, y) dxdy (4.1.2)

=

ˆ
I

Gk,�
1

r� (r, s)Gk,�
1

r (r, s) Jk
�drds (4.1.3)

where Gk,�
1

is the first row of the geometric factors matrix Gk,� obtained again after

combining the two mappings. This result follows similarly for @/@y.
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To each Dk 2 Th I denote by Pk
N,� the weighted L2 projection operator defined for

every f 2 L2

�

Dk
�

3 by requiring

(f ,v)Dk =

�

Pk
N f ,v

�

Dk

to hold for every v 2 V k
N,�. As a slight abuse of notation I consider Pk

N,0 = Pk
N

to be the projection onto the unmapped local space V k
N . The theorems here follow a

general theme: express the L2 projection operator for an arbitrary local solution space

V k,�
N as a weighted L2 projection operator onto a space of polynomials. The result

of this projection is well known to minimize the associated weighted residual over

polynomials, and the use of Bramble-Hilbert will provide estimates on the unweighted

L2 norm which will be seen to be equivalent to the weighted norm. Note the form

of Bramble-Hilbert in use will be that of Dupont and Scott in [31], which is easier to

use when the approximation operator is known to satisfy a variational property.

I begin first with two generalizations of standard estimates, a generalized Markov

inequality and a generalized inverse trace inequality. Techniques here mirror those

taken by Warburton in the unpublished report[101].

Theorem 5 (Local Markov Inequality). There exists a constant C� independent of

hk, N such that for every u 2 V k
N,� the following estimate holds

�

�

�

�

@

@x
u

�

�

�

�

Dk

 C�
N2

hk

kukDk
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Proof. Suppose u 2 V k
N,�, then

�

�

�

�

@

@x
u

�

�

�

�

Dk

=

�

�

�

Gk,�
1

ru
�

�

�

Dk


�

�

�

Gk,�
1

�

�

�

Dk
krukDk


�

�

�

Gk,�
1

�

�

�

Dk

�

�

�

�

q

Jk
�

�

�

�

�

L1
(I)

krukI

 CN2

�

�

�

Gk,�
1

�

�

�

Dk

�

�

�

�

q

Jk
�

�

�

�

�

L1
(

Dk
)

kukI

 CN2

�

�

�

Gk,�
1

�

�

�

Dk

�

�

�

�

�

1

p

Jk
�

�

�

�

�

�

L1
(

Dk
)

�

�

�

�

q

Jk
�

�

�

�

�

L1
(

Dk
)

kukDk

where I have applied the Markov inequality for polynomials (see e.g. [28]) to obtain

the N2 scaling. Now I apply the following assumptions on the metric quantities:

�

�

�

Gk,�
1

�

�

�

Dk
= O

✓

1

hk

◆

�

�

�

�

�

1

p

Jk
�

�

�

�

�

�

L1
(

Dk
)

�

�

�

�

q

Jk
�

�

�

�

�

L1
(

Dk
)

= O (1) .

Variants of these assumptions will appear elsewhere also, they are not violated by

any of the code used in this thesis.

The next theorem estimates boundary norms in terms of volume norms.

Theorem 6 (Local Inverse Trace Inequality). There exists a constant L� independent

of N, hk such that for every u 2 V k
N,� the following bound holds

kuk@Dk  L�
Np
hk

kukDk
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Proof. Suppose that u 2 V k
N,�, then

kuk@Dk 
�

�

�

�

q

Jk,e
�

�

�

�

�

L1
(@I)

kuk@I

 L�N
2

�

�

�

�

q

Jk,e
�

�

�

�

�

L1
(@I)

kukI

 L�N

�

�

�

�

q

Jk,e
�

�

�

�

�

L1
(

@Dk
)

�

�

�

�

�

1

p

Jk
�

�

�

�

�

�

L1
(

Dk
)

kukDk

where Jk,e
� is the jacobian of the reference mapping restricted to edges of Dk that

appears in the pullback of the first inequality. The scaling of N appears from the

standard polynomial inverse trace inequality on I. Now apply the assumption

�

�

�

�

q

Jk,e
�

�

�

�

�

L1
(

@Dk
)

�

�

�

�

�

1

p

Jk
�

�

�

�

�

�

L1
(

Dk
)

= O

✓

1p
hk

◆

Now for projection error estimates on local elements.

Theorem 7. There exists a constant C independent of h such that for every u 2

HN+1

�

Dk
�

one has.

�

�u� Pk
N,�u

�

�

L2
(

Dk
)

 C ·Gk · hN+1

k kukHN+1
(

Dk
)

.

where Gk,� depends on the local geometry of Dk and the mapping parameter �.

Proof. The definition of Pk
N,� yields

Pk
N,�u = arg min

v2V k,�
N

ku� vkL2
(

Dk
)
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and furthermore Bramble-Hilbert guarantees the existence of a polynomial p for which

ku� pkL2
(I)  C · |u|HN+1

(I)

so

�

�u� Pk
N,�u

�

�

L2
(

Dk
)

=

�

�

�

p
Jk
�

u� Pk
N,�u

�

�

�

�

L2
(I)


�

�

�

p
Jk

(u� p)
�

�

�

L2
(I)


�

�

�

p
Jk

�

�

�

L1
(I)

ku� pkL2
(I)

 C
�

�

�

p
Jk

�

�

�

L2
(I)

kukHN+1
(I)

and provided the mesh is shape-regular the following scaling argument holds

�

�

�

p
Jk

�

�

�

L1
(I)

|u|HN+1
(I)  C

�

�

�

p
Jk

�

�

�

L1
(

Dk
)

�

�

�

�

1p
Jk

�

�

�

�

L1
(

Dk
)

hN+1

k kukHN+1
(

Dk
)

(see Ern and Guermond [34] pg.66), establishing the result with

Gk = C
�

�

�

p
Jk

�

�

�

L1
(

Dk
)

�

�

�

�

1p
Jk

�

�

�

�

L1
(

Dk
)

(4.1.4)

Remark 8. The dependence of the estimate on local geometry is measured by the

constant Gk in (4.1.4), and so for the estimate to retain its h-optimality it is necessary
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that


1

 Gk  
2

(4.1.5)

holds for 0 < 
1

 
2

independent of h. Note however that the constant C depends

on �, which will not affect the a-priori analysis as � is chosen independently of h, and

is fixed during mesh refinement.

Next I provide a means to estimate truncation errors which involve boundary

integrals, which will first require estimating the gradients of the truncation error to

ensure that the loss of order in this case does not exceed expectations.

Theorem 9. There exists a constant C independent of h such that for each u 2

HN+1

�

Dk
�

one has

�

�

�

�

@

@x

�

u� Pk
N,�u

�

�

�

�

�

L2
(

Dk
)

 CG⇤
kh

N+1

k kukHN+1
(

Dk
)

(4.1.6)

where G⇤
k depends only on local element geometry.

Proof. One has

�

�

�

�

@

@x

�

u� Pk
N,�u

�

�

�

�

�

L2
(

Dk
)

=

�

�Gk
1

r
�

u� Pk
N,�u

�

�

�

L2
(

Dk
)

=

�

�

�

�

�

p
Jk

p
Jk

Gk
1

r
�

u� Pk
N,�u

�

�

�

�

�

�

L2
(

Dk
)


�

�

�

Gk
1

p
Jk

�

�

�

L1
(

Dk
)

�

�

�

�

1p
Jk

r
�

u� Pk
N,�u

�

�

�

�

�

L2
(

Dk
)

=

�

�

�

Gk
1

p
Jk

�

�

�

L1
(

Dk
)

�

�r
�

u� Pk
N,�u

�

�

�

L2
(I)

 C
�

�

�

Gk
1

p
Jk

�

�

�

L1
(

Dk
)

|u|HN+1
(I)

where I have again applied the Bramble-Hilbert lemma for the last inequality. The
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result now follows from scaling with

G⇤
k =

�

�

�

Gk
1

p
Jk

�

�

�

L1
(

Dk
)

.

Remark 10. What looks like optimal recovery of order in (4.1.6) is misleading. The

constant G⇤
k will generally scale as 1/hk for well behaved meshes and so the next

assumption on our mesh will be

G⇤
k 

C

hk

(4.1.7)

for C independent of h.

Theorem 11. There exists a constant C independent of h such that for all u 2

HN+1

�

Dk
�

one has

�

�u� Pk
N,�u

�

�

L2
(

@Dk
)

 ChN+1/2
k kukHN+1

(

Dk
)

.

provided Gk, G⇤
k defined above satisfy (4.1.5) and (4.1.7) respectively.

Proof. Applying the multiplicative trace inequality (4) one obtains

�

�u� Pk
N,�u

�

�

2

L2
(

@Dk
)

 C
�

�u� Pk
N,�

�

�

L2
(

Dk
)

�

�u� Pk
N,�u

�

�

H1
(

Dk
)

+C
1

hk

�

�u� Pk
N,�u

�

�

L2
(

Dk
)

 ChN+1/2
k kukHN+1

(

Dk
)

the latter inequality following from estimates (7),(9), and assumptions (4.1.5) and

(4.1.7).
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4.2 Unmodified and Mapped Theory

Here I present three standard theoretical items for the case of the DG formulation

of the acoustic wave equation. Semidiscrete stability guarantees that if the system

(2.3.5) is solved exactly in time, then the energy of the system does not increase in

time if all source terms are zero, and otherwise increases only as fast as the time

integral of the norm of the source term if it is nonzero. The error estimate gives an

idea as to how one should expect solution quality to behave as the mesh is refined,

or as polynomial order is increased. Finally bounds for fully discrete stability are

derived which gives what stable timesteps must be asymptotically for a fixed explicit

timestepping method. Recall that the matrices A,B are symmetric, and assumed

independent of space. The results here will apply equally to unmodified DG and to

mapped DG, with special attention paid to the terms which arise out of mapped DG

(e.g. through the Jacobian Jk
�) which can potentially damage convergence. Many of

the ideas used here were motivated by the preprint [101].

4.2.1 Stability

Stability proved in this thesis means specifically that the energy of the system has a

well behaved bound. Specifically, defining the energy for a Friedrich system (2.1.1)

to be

E ⌘
X

k

Ek ⌘ 1

2

X

k

�

kQNk2Dk

�

then the energy is bounded in time. Furthermore, L2 bounds are obtained for a

CFL-like condition to be imposed on timesteps.
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4.2.1.1 Semidiscrete Stability

Theorem 12 (Semidiscrete Stability). Suppose that the domain ⌦h is periodic and

that QN satisfies the weak form (2.3.5) for each k = 1, . . . , K and for all t 2 [0, T ] .

Then the energy E satisfies the differential inequality

d

dt

1

2

E  C

 

E +

X

k

kRk2Dk

!

.

In the event that R = 0, then C  0.

To prove this theorem, I first prove it for the case of two adjacent elements.

Lemma 13 (Shared edge stability). Suppose that the domain ⌦h consists of two

neighboring quadrilaterals D1, D2. Then the differential inequality in theorem (12)

holds.

Proof. Without loss of generality assume R = 0 and consider the local weak form on

D1

: ˆ
D1

v

✓

@QN

@t
+

@AQN

@x
+

@BQN

@y

◆

=

1

2

ˆ
@D1

v (C�C⇤C) [QN ]

which holds for all functions v in the local solution space QN
(D1

) . Thus we may take

v = QN , and sum the components of this vector equation to obtain a dot product.

This may be concisely written

✓

QN ,
@QN

@t
+

@AQN

@x
+

@BQN

@y

◆

D1

=

✓

Q�
N ,

1

2

(C�C⇤C) [QN ]

◆

@D1

(4.2.1)

applying the product rule on the time derivative in (4.2.1) yields

1

2

d

dt
kQNk2D1 +

✓

QN ,
@AQN

@x
+

@BQN

@y

◆

D1

=

✓

Q�
N ,

1

2

(C�C⇤C) [QN ]

◆

@D1

(4.2.2)
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and by symmetry of A,B integration by parts says that

✓

QN ,
@AQN

@x
+

@BQN

@y

◆

D1

=

✓

Q�
N ,

1

2

(C�C⇤C) [QN ]�
1

2

CQ�
N

◆

so that (4.2.2) becomes

1

2

d

dt
kQNk2D1 =

1

2

�

Q�
N , (C�C⇤C) [QN ]�CQ�

N

�

to obtain the energy at the shared edge e = e1 \ e2 one sums the contributions from

both elements and uses the fact that on e1 one has C+

= �C�, [QN ]
+

= � [QN ]
�

1

2

d

dt

2

X

i=1

kQNk2Di =

1

2

�

Q�
N , (C�C⇤C) [QN ]�CQ�

N

�

e1

+

1

2

�

Q+

N , (C+C⇤C) [QN ] +CQ+

N

�

e1
. (4.2.3)

Thus the energy will be bounded in time provided the boundary integrals above are

nonnegative, it is sufficient to show that the integrand is nonnegative for any choice

of Q+

N ,Q
�
N . The term inside the integral of (4.2.3) is a quadratic form, and recalling

that [QN ] = Q�
N �Q+

N , it may be written

✓

Q�
N Q+

N

◆

0

B

@

�C⇤C C⇤C�C

C+C⇤C �C⇤C

1

C

A

0

B

@

Q�
N

Q+

N

1

C

A

= � [QN ]
T C⇤C [QN ]

 0

where I have used the fact that xTAx = xT 1

2

�

A+ AT
�

x when the entries of A, x are

real.

Corollary 14. In the absence of a source term R, the energy on interior edges e of
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the penalized DG discretization of a Friedrich system evolves as

1

2

d

dt
E = �

X

e2�

kC [QN ]k2e . (4.2.4)

Corollary 14 may be alternatively interpreted as saying: DG decreases energy when

jumps appear between element interfaces, and the magnitude of reduction is propor-

tional to the magnitude of the jump. The addition of a source term may be accounted

for easily through the Cauchy-Schwarz and Young inequalities, this is summarized in

the below corollary:

Corollary 15. If the source term R is nonzero, then the energy on interior edges e of

the penalized DG discretization of a Friedrich system satisfies the following differential

inequality:

1

2

d

dt
E = �

X

e2�

1

2

kC [QN ]k2e +
K
X

k=1

(QN ,R)Dk

 �
X

e2�
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2

kC [QN ]k2e +
K
X

k=1

kQNkDk kRkDk

 �
X

e2�

1

2

kC [QN ]k2e +
K
X

k=1

✓

1

2

kQNk2Dk +

1

2

kRk2Dk

◆

= �
X

e2�

1

2

kC [QN ]k2e +
1

2

E +

K
X

k=1

1

2

kRk2Dk

I now complete the semidiscrete analysis by showing the method is stable on

boundary edges when boundary conditions of type (2.3.6) are imposed.

Lemma 16 (Dirichlet Boundary Stability). Suppose that on boundary edges the fol-

lowing equation is enforced:

Q+

N = DQ�
N



66

where

(C⇤C�C)D

is negative definite. Then the DG method is semidiscrete stable on these edges.

Proof. Following the same arguments above, integrate by parts and apply the product

rule to obtain

1

2

d

dt
E =

1

2

�

Q�, (C�C⇤C) [Q]�CQ��

e

=

1

2

�

Q�,�C⇤CQ�
+ (C�C⇤C)DQ��

e

= �1

2

�

�CQ��
�

e
+

ˆ
e

Q� · (C�C⇤C)DQ�

 0

as claimed.

4.2.1.2 Fully Discrete Stability

The next task in stability analysis is fully discrete stability, that is stability in the

presence of inexact timestepping. The way this is usually accomplished is through

eigenvalue estimates of the discrete weak form. To do this I must first introduce a

lifting operator, and estimate its norm. Define LN to be the operator such that for

every u 2 L2

�

@Dk
�

the following equation holds

(u, v)@Dk = (LNu, v)Dk (4.2.5)

LNu 2 V k
N,�

and one has also the following bound
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Theorem 17 (Norm of Continuous Lifting Operator). The operator LN is bounded

on V k
N,� for every fixed N,� and satisfies

kLNukDk  CN2

hk

kukDk

for every u 2 V k
N,�.

Proof. We have

kLNuk2Dk = (LNu,LNu)Dk

= (LNu, u)@Dk

 kLNuk@Dk · kuk@Dk


✓

K�
Np
hk

◆

kLNukDk

✓

K�
Np
hk

◆

kukDk

from the local trace inverse inequality (theorem 6).

Now to show fully discrete stability I will assume for simplicity that periodic

boundary conditions are imposed and that the solution QN has the form

QN (t, x, y) = exp (tH)w (x, y) .

From the assumption that QN satisfies the weak form and the fact that exp (tH) is

invertible for all t the following holds

✓

v,Hw +

@Aw

@x
+

@Bw

@y

◆

Dk

=

✓

v,
1

2

(C�C⇤C) [w]

◆

@Dk

(4.2.6)

to obtain L2 estimates for Hw test with Hw and use the lifting operator (4.2.5) to
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turn everything into volume integrals:

kHwk2Dk = �
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(4.2.7)

+ kHwkDk

�

�

�

�

LN
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�

�

�

�

Dk

(4.2.8)

Unfortunately the norm in (4.2.7) can not be directly estimated because [w] has no

regularity requirement, with positive trace values coming from nearby elements. We

can however apply the triangle inequality and estimate the derivative terms with

the Markov inequality (theorem 5) The task then becomes to estimate the term
�

�LN
1

2

(C�C⇤C) [w]

�

�

2

Dk . We have to globalize the estimate by summing over all

elements to obtain
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(C�C⇤C)w+

�

�

�

�

2

Dk
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Dk2Th
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Dk

(4.2.9)

 C
X

Dk2Th

N2

hk

kC�C⇤CkDk kwkDk

the final inequality following from the lifting operator bound found in theorem 17.

Combining the estimate from Markov’s inequality and from (4.2.9) above yields

kHwkL2
(Th)  C

N2

h



69

with C absorbing all other constants. Taking the supremum over all initial conditions

w yields

kHkL2
(Th)  C

N2

h

which yields the following condition on �t:

�t  O

✓

h

N2

◆

.

Remark 18. Note the explicit appearance of the Markov and inverse trace inequality.

Their application here is sharp in the sense that the bounds can not be otherwise

improved theoretically, so the asymptotic analysis here is sharp in the sense that

the quadratic growth in N is necessary. Therefore attempts to reduce this impact

must change those elements of the formulation in some way in order to improve this

analysis. This however only applies to L2 stability, which is what the above argument

provides. If instead one can directly bound the spectral radius of the DG operator H

the bound could very well be smaller.

4.2.2 Error Estimates

This section is designed to prove an error estimate of the form

kQh
N �QkE  ChN+1/2 kQkHN+1

(Th)

with C independent of the mesh, and k·kE a suitably defined energy norm. One ap-

proach to construct such an estimate is to apply the stability estimate proven earlier,

but applied to a suitable projection of the truncation error. The resulting differen-

tial inequality can then be used to prove the desired estimate through application of
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Gronwall’s inequality [80]. This will be the approach taken here, but it should be

noted that if willing to sacrifice an order reduction of 1/2 in the estimate, a constant

C can be obtained which grows at most linearly in time [45]. The basic approach is

to consider the element-local error term

QN �Q

and realize that it satsifies the weak form 2.3.5 with zero source term. This error is

then split into two terms, a truncation error plus a local error:

QN �Q = Q� Pk
NQ+ Pk

NQ�QN

⌘ ✏+ ⌘

where Pk
N is some projection onto the local solution space. The truncation error ✏

will have known approximation theoretic estimates, and standard inequalities will be

used to express the local error in terms of these estimates. In order for this to work,

a standard assumption is made on the analytic solution Q that it properly satisfies

the weak form (2.1.2) posed on the infinite dimensional space H1

(Th). This ensures

that the error satisfies the homogeneous acoustic wave equation weakly.

For the error analysis dealing with potential nonpolynomial functions can make

handling derivatives more difficult, and the more general formulation of the Friedrichs’

system makes the task a little more difficult. I used two techniques of Warburton’s

unpublished report [101] to handle both of these issues. In that paper using orthogo-

nality properties of projectors gives a condition to recover optimal order convergence,

and a manipulation provides a way to ensure that jumps in the local error can be
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contributed back to the left-hand-side without scaling problems.

Theorem 19. Suppose Q 2 HN+1

(Th) satisfies the weak form (2.1.2) posed on

H1

(Th) , and that QN satisfies the weak form posed on PN . Then there exists a con-

stant C independent of h such that

kQ�QNkE  ChN+1/2kQkHN+1
(Th)

Proof. Decompose the error

QN �Q = Q� Pk
N,�Q+ Pk

N,�Q�QN

⌘ ✏+ ⌘

where the projection Pk
N,� projects the solution onto the local solution space, and can

be either the mapped projection operator or standard L2 projection depending on if

the underlying DG method is mapped or unmapped. Note that ✏ + ⌘ satisfies the

homogeneous Friedrich system weakly, which means that for all v 2
�

V k
N

�

3 we have

✓

v,
@✏+ ⌘

@t
+

@A (✏+ ⌘)

@x
+

@B (✏+ ⌘)

@y

◆

Dk

= (v, (C�C⇤C) [✏+ ⌘])@Dk

applying bilinearity yields the following equation

✓

v,
@⌘

@t
+

@A⌘

@x
+

@B⌘

@y

◆

Dk

� (v, (C�C⇤C) [⌘])@Dk = �
✓

v,
@✏

@t
+

@A✏

@x
+

@B✏

@y

◆

Dk

� (v, (C�C⇤C) [✏])@Dk

testing with v = ⌘ and applying the same product rule + integration by parts argu-
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ment as in the stability proof to the left hand side yields

1

2

d

dt
k⌘k2L2

(Th) +
X
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kD [⌘]k2e =

X

Dk2Th
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(4.2.10)
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X

Dk2Th

(⌘, (C�C⇤C) [✏])@Dk

=

X

Dk2Th
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@✏
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◆

Dk
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@x
,A✏

◆

Dk

�
X

Dk2Th
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⌘, (C�C⇤C) [✏]�C✏�
�

@Dk

=

X

Dk2Th

T k
1

+ T k
2

+ T k
3

where

T k
1

= �
✓

⌘,
@✏

@t

◆

Dk

T k
2

=

✓

@⌘

@x
,A✏

◆

Dk

+

✓

@⌘

@y
,B✏

◆

Dk

T k
3

= �
�

⌘�, (C�C⇤C) [✏]�C✏�
�

@Dk .

Bounding T k
1

is simplest by Cauchy-Schwarz:

�

�T k
1

�

�  k⌘kDk ·
�

�

�

�

@✏

@t

�

�

�

�

Dk

(4.2.11)

The next term T k
2

may be bounded by realizing that the truncation error ✏ is orthog-
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onal to the local solution space V k
N,�, so that

✓

@⌘

@x
,A✏

◆

Dk

=

✓

A
@⌘

@x
� Pk

N,�A
@⌘

@x
, ✏

◆


�

�

�

�

A
@⌘

@x
� Pk

N,�A
@⌘

@x

�

�

�

�

Dk

· k✏kDk

 C k⌘kDk · k✏kDk (4.2.12)

Similarly for the term
⇣

@⌘
@y
,B✏

⌘

Dk
. The step (4.2.12) could use a standard inverse

inequality for the finite dimensional space V k
N,�, however the scaling of the derivatives

will yield a suboptimal error result. Since the norm is measuring the truncation

instead one is left with the constant C effectively measuring the deviation of the local

element Dk from an affine element. If the mesh is assumed to be asymptotically

affine, then this term could be seen as yielding an optimal estimate. Also one can

assume that C scales no worse than

C ⇠ Qp
h

(where Q is a generic h independent constant) and still recover an optimal estimate,

since the loss of 1/2 order is unavoidable through the use of the multiplicative trace

inequality (4) (which I will use in bounding T k
3

). The technique used for equation

(4.2.12) was repurposed from the preprint [101].

Bounding T k
3

I will use a manipulation found in [101] (equation (4.2.13)) to ensure

that jumps in ⌘ can be contributed back to the left-hand-side of (4.2.10) , and then

I will apply Cauchy-Schwarz and the Young inequality twice to obtain



74

T k
3

= �
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(C [⌘] ,C [✏])@Dk (4.2.13)
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8�
kC [✏]k2@Dk (4.2.14)

the step (4.2.13) used symmetry of C. Since T k
3

effectively is the term coupling the

local elements together it is not enough to give a local bound as with T k
1

, T k
2

. Further-

more the term containing jumps in ⌘ may be effectively ignored since the constants

↵, � will be chosen so that it may be used as a contribution to the same term on the

left-hand-side of (4.2.10). Sum over all elements to obtain

P

Dk2Th
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8↵
k✏+ + ✏�k2@Dk +
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8�
kC [✏]k2@Dk


P

Dk2Th

⇣

1
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kCk2
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k✏�k2@Dk + k✏+k2@Dk

⌘

(4.2.15)

bounding the norm of the interior traces in (4.2.15) can be done directly through

the use of the multiplicative trace inequality (theorem (4)). However the regularity

requirements of the multiplicative trace inequality could be violated by the exterior

trace term, as it is the result of contributions from four neighboring elements without

any sort of a-priori regularity. To circumvent this note that on a given shared edge

e = e1 \ e2 that ✏+ on e1 is simply ✏� on e2. Summing over all unique interior edges
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e = e1 \ e2 and using the fact that C is continuous on the whole domain we obtain
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and a similar argument applies for boundary edges applying the condition Q+

=

DQ�. The final bound obtained is
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so that finally one obtains for suitable ↵, �
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Applying projection estimates(7), (11) yields
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d

dt
k⌘k2L2
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X

Dk2Th

C
3

kQk2
HN+1

(

Dk
)

where I have absorbed the Sobolev norm of the boundary condition operator D into

C
7

. Now integrate in time and apply the Gronwall inequality from theorem 3 to obtain

at time T

v

u

u
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k⌘kL2
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0

kQkHN+1
(Th)

+ k⌘ (0)kL2
(Th) (4.2.16)

completing the error estimate. Here the energy norm k·kE is defined by the left-hand-

side of (4.2.16).

4.3 Covolume Filtering

Now I provide theoretical justification for the covolume filtering technique. Since the

covolume filtering operator creates additional communication, it will be important to

globalize inner products in order to correctly state the new weak form. With this in
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mind, I define

(u, v)Th =

X

Dk2Th

(u, v)Dk

(u, v)@Th =

X

Dk2Th

(u, v)@Dk

this method relies on a staggered grid Recall that the covolume filtering operator ⇧�

is defined as

⇧� = (1� �) I + �⇧P
⇧

C

with I the identity operator and ⇧

P ,⇧C the standard L2 projections onto the global

solution spaces associated with the primal and covolume grids T P
h , T C

h respectively.

The space of piecewise polynomials on either of these sets can be interpreted as a

space of piecewise polynomial on the same domain ⌦h =

S

Th, and so we can use one

inner product when referring to either space of functions. The distinction is more

important in higher order Sobolev spaces however and so when relevant the norms

k·kHp
(

T P
h )

, k·kHp
(

T C
h )

will represent the broken Sobolev norms corresponding to the

two different spaces respectively. Thus, ⇧Cu for u 2 L2

(⌦h) is defined as

�

v,⇧Cu
�

Th
= (v, u)Th

for every piecewise polynomial v on T C
h , similarly for ⇧P we require

�

v,⇧Pu
�

Th
= (v, u)Th

for every piecewise polynomial v on T C
h . This leads to an important discrete adjoint

relationship: If v is a piecewise polynomial on T C
h and u is a piecewise polynomial on
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T P
h then
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= (v, u)Th
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Pv, u
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Th
= (v, u)Th

yields
�

v,⇧Cu
�

Th
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⇧

Pv, u
�

Th
(4.3.1)

for every Dk 2 Th. The covolume filtering is applied after each right-hand-side eval-

uation of the semidiscrete form, so in other words, assuming zero source term and

given the local weak form (2.3.5):
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Dk

v
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◆

=
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2

ˆ
@Dk

v (C�C⇤C) [QN ]

holding for all v 2 V k,P
N . A semidiscrete version of a covolume projected method filters

the solution QN , and is obtained through the following modification

✓
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◆
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(v, (C�C⇤C) [⇧�Q])@Th (4.3.2)

Theorem 20. The covolume filtered method (4.3.2) is semidiscrete stable.

Proof. From the weak form
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one may test with v = ⇧�Q and apply the standard stability argument of theorem
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12 to obtain in the periodic case
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and applying the discrete adjoint relationship(4.3.1) yields
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combining (4.3.3) and (??) gives the following energy equation
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X
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kC [⇧�Q]ke (4.3.4)

analogous to the unmodified energy equation.

To obtain an error estimate akin to theorem (19) three technical lemmas will be

necessary. This lemma gives the bound on the error incurred by the filter ⇧

� on the

interior of the domains, on their boundaries, and for derivatives of filtered solutions.

They are effectively tensor product analogues to the one dimensional case in [100].

Note that from here on out the mesh Th will be assumed uniform.

Lemma 21. There exists a constant C independent of h such that for every u 2

HN+1

�
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h

�
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�
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Proof. We have
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where I have used the fact that ⇧

P is a projection. The result now follows from

standard L2 projection estimates.
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Proof. Following similar reasoning as above
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where in the last step I used the Markov inequality for the finite dimensional solution

space. The conclusion follows from classical estimates and the fact that ⇧

P is a

projection.

Lemma 23. There exists a constant C independent of h such that for all u 2
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�
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the following holds:
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Proof. Once again
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where I have applied an inverse trace inequality for the finite dimensional solution

space, and the estimate follows from standard projection estimates and the multi-

plicative trace inequality.

I now prove the main theorem in this section, an error estimate for covolume

filtered DG.

Theorem 24. There exists a constant C such that if QN is the covolume filtered

solution and Q 2 HN+1

�

T P
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�

is continuous at element bisectors of the

primal and covolume meshes, and satisfies the continuous weak form, then
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.

where k·kE is a suitably defined energy norm.
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for all v 2 H1
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3 , which means that the L2 projection satisfies
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for each Dk and polynomial v. Now suppose that Th is polynomial on each Dk such

that

✓

v,
@⇧PQ

@t
+

@A⇧�⇧
PQ

@x
+

@B⇧�⇧
PQ

@y

◆

Dk

�
�

v, (C�C⇤C)

⇥

⇧�⇧
PQ
⇤�

@Dk = (v, Th)Dk

(4.3.6)

holds for each Dk and polynomial v. Subtracting (4.3.5) from (4.3.6), summing over
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by the discrete Cauchy-Schwarz inequality. The polynomial trace inequality tells us

that the first factor in (4.3.7) satisfies
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and the second factor in (4.3.7) may be bounded by separating out traces and applying

theorem (4), projection estimates yields the final truncation estimate
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Therefore considering the numerical solution QN to the filtered weak form (4.3.2),
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focusing on the second term of (4.3.8) one sees that
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we may therefore apply stability of the covolume filtered operator (energy equation

(4.3.4)) to get
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the final result following from an application of Gronwall’s inequlity, as done in the un-

modified case. Here however the use of the Markov inequality and the trace inequality

in the estimation of the truncation Th only gives us order n, instead of n+ 1/2.
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Chapter 5

Time-stepping for DG

In chapter 3 I investigated ways to directly manipulate the spatial discretization so as

to lower the CFL restriction. An additional strategy not yet attempted is to find time-

steppers which are most appropriate for the type of physics to be solved, ideally one

custom chosen to the problem at hand should give a more efficient method. There are

conflicting goals in time-stepping however, and so there is no proper “best” choice for

this reason, but rather a list of choices which balance these many traits. One helpful

characteristic for example would be a time-stepper which minimizes the number of

right-hand-size evaluations (matrix-vector multiplications, in this case) that it takes

to fully integrate a system to a desired final time. This goal may however be at

odds with memory limitations, or it might even cause one to construct a numerically

unstable time-stepper [49, 76].

The explicit time-steppers which require the least amount of function evaluations

per timestep are the Adams-Bashforth linear multistep methods, but they each require

a history of previous time derivative values of the solution state, increasing memory

needs. Instead of requiring previous time derivative values of the solution, an alter-

native is to produce the needed values on the fly. This is what one-step methods such

as Runge-Kutta methods do. An additional benefit of Runge-Kutta methods is they

are easily adapted to the problem at hand, leading to many optimized schemes which

minimize the right-hand-side evaluation requirement by increasing the maximum sta-

ble timestep. These optimized Runge-Kutta methods can be further constrained to
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fulfill a memory saving from which requires at any step to store only two full solution

states [56]. It will be these low-storage versions of Runge-Kutta methods which are

investigated in this thesis, with the exception of classical RK4 which is used as a

baseline.

In this chapter I will present the basic theory of explicit one-step timesteppers

and explain how it permits their optimization and low-storage varieties. Then five

optimized timesteppers from the literature which are specially constructed for the

upwind DG operator will be compared to classical RK4 and Adams-Bashforth meth-

ods. All numerical experiments in this chapter focus on the two dimensional acoustic

wave equation with a point source, but the timestepper theory itself will deal with a

generic linear system of ODEs.

Here I will consider numerical results for unmodified DG, flux filtered DG, and

covolume filtered DG, so as to see what the total gain one might expect in a high

order simulation. Mapped methods are excluded due to their order reduction which

occurs for parameter values that yield a nonnegligible timestep improvement. The

optimal RK methods by themselves are seen to yield around a 50% improvement over

classical RK4 in the unmodified case, but as one further modifies the method this

improvement becomes as high as 80%.

While the time-steppers here are not new, and have been applied to discontinuous

Galerkin in the past, this chapter shows how many of them can be still a significant

improvement over classical time-steppers when applied to operator-modified DG. The

numerical dissipation of DG makes the question of what sort of stability region will

be optimal for your problem a little more difficult since it is not constrained by a

simple geometric shape. I show here that even with the altered spectra produced

by modification, the timesteppers which were optimal for unmodified DG still yield
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considerable gain for modified DG, notably covolume filtered DG.

5.1 Optimal Low-Storage Runge-Kutta Methods

Given a system of ordinary differential equations q0
= f (t,q) , explicit Runge-Kutta

methods of order p are derived by forming the Taylor expansion of y about the

timestep �t and then forming a discrete recurrence involving evaluations of f which

matches this Taylor expansion up to the p-th term. A special subset of these recur-

rences are those which may be evaluated using only 2N storage, given that q (t) 2 RN .

These low storage varieties of Runge-Kutta methods will be those that are explored

here. The general form of a low storage Runge-Kutta method used here will be the

same used in Toulorge and Desmet [95] and Niegemann et al. [73]. It is given as

˜qi
= Ai˜q

i�1

+�tf
�

tn + ci�t,qi�1

�

qi
= qi�1

+Bi˜q
i

for i = 1, . . . , s � 1 with s the number of stages associated with the Runge-Kutta

method and the coefficients Ai, Bi, ci taken from tabulations of precomputed values

arrived at through a specified optimization procedure. This is implemented in the

general low-storage Runge-Kutta code LSRK.m (see chapter 7, listing 7.6)

To analyze the stability region of this method, observe that in being a Runge-

Kutta method it sends a linear ODE system q0
= f (t,q) =Hq to a truncated Taylor

expansion of the exponential function, i.e. a p-th order s stage Runge-Kutta method

will yield

q (�t) ⇡
p
X

j=0

�tjHj

j!
q (0) +

s
X

j=p+1

�tj⌘jHjq (0) = exp (�tH)q (0) +O (�tp) .
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Observe that this is nothing more than a polynomial of the matrix H, i.e. one may

more concisely write

q (�t) ⇡ Rp,s (�tH)q (0)

with Rp,s a polynomial of degree s. Repeated application of the Runge-Kutta method

means repeated application of the operator Rp,s (�tH) to q (0) , so that to arrive at

a desired time M�t one obtains

q (M�t) ⇡ [Rp,s (�tH)]

M q (0) .

A well known fact of matrix analysis states that this system is unbounded in M only

if the spectral radius of Rp,s (�tH) exceeds or possibly equals 1. Thus a condition for

stability would be to choose �t such that

⇢ (Rp,s (�tH))  1,

or equivalently to find �t such that the function |Rp,s| does not exceed 1 on the

spectrum of �tH.

The exact timesteppers used have their coefficients Ai, bi, ci tabulated in chapter

7, tables 7.6 through 7.10 which can then be provided to LSRK.m to integrate a gen-

eral system of ordinary differential equations. The methods will be those of Toulorge

and Desmet, using the same names (RK84,RKC84,RKC73) the naming scheme in-

dicating by the first number the number of stages and by the second number the

order. Furthermore these will be compared to higher stage timesteppers constructed

in Niegemann, et al. which were designed for schemes involving numerical dissipation

(as in the case of upwinding used in this thesis). These will be compared by means
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of their required function evaluations to integrate the upwind DG discretization to

the two dimensional acoustic wave equation. Accuracy at designated times (using

maximum possible timestep) will then be considered by comparison to the output of

MATLAB’s ODE45 at its most stringent error tolerance. It should be noted that the

differences should not be expected to be great among the Runge-Kutta methods, as

stability considerations dominate accuracy for the choice of the timestep; the spatial

discretization contributes the most to error in the simulation. However the accumula-

tion of error in time for Runge-Kutta methods and Adams-Bashforth methods could

be different, considering their different origins.

5.2 Adams-Bashforth Methods

Adams Bashforth methods have the virtue of only requiring one function evaluation

per step, but the tradeoff is necessity to store additional derivatives of previous solu-

tion states. The construction of these methods works differently than Runge-Kutta

methods in that instead of devising a recurrence to match a truncated Taylor expan-

sion to the exponential operator, a polynomial interpolant is constructed of previous

time derivatives and an appropriate quadrature rule is applied in time to determine

the next solution state. As a recurrence, an Adams-Bashforth recurrence with s

previous derivatives stored takes the form

qi+s+1

= qi+s
+�t

s
X

k=1

bkf
�

k�t,qi+k
�

where by taking a constant �t requires one only to evaluate f (s�t,qi+s
) for each

solution at time indexed by i.

There is little opportunity for optimizing the coefficients bk in the above recur-
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rence, as their choice is effectively uniquely determined by order and stability con-

straints. Thus only classical Adams-Bashforth methods are investigated here, with

precomputed values for bk. These precomputed values are tabulated in chapter 7 for

reference. Furthermore, taking s = 1 yields Forward Euler which is known to be

unstable for hyperbolic problems discretized by upwind DG, similarly for s = 2. Thus

only Adams-Bashforth of orders 3, 4, 5 are considered in this thesis. The general code

for Adams-Bashforth methods in MATLAB is given by the file ABM.m (see chapter

7 listing 7.7)

The stability analysis of Adams-Bashforth methods for systems of ordinary dif-

ferential equations is a little more complicated than for Runge-Kutta methods, as its

stability depends on how one “starts” the method by computing the initial derivative

values. This can be done with a Runge-Kutta method with the same timestep, but in

this thesis I chose to use the adaptive MATLAB timestepper ode45 with a stringent

error tolerance, so as to minimize the impact of the starting scheme on the validity of

results given later. How stable timesteps were computed is discussed in the numerical

results section, the strategy follows the Runge-Kutta strategy closely.

Numerical results will follow the same strategy as for Runge-Kutta methods, to

facilitate their ultimate comparison. It will be seen that for s = 3, Adams-Bashforth

yields a competitive integration strategy, but s = 4, 5 yield very strict stability con-

straints on �t, so that even by only performing one function evaluation per step they

end up performing far more steps to yield the same final time result as the low storage

Runge-Kutta methods.
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5.3 Numerical Results

The problem under consideration here is the solution of the two dimensional wave

equation 2.3.1 on page 23 on a square domain with periodic boundary conditions.

Figure 5.3.1 : Discretized Domain
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The material parameters are taken to be constantly ⇢ = 1, = 1. The stable

timesteps are calculated by constructing directly for Runge-Kutta methods the com-

panion matrix

H (�t) ⌘ Rp,s (�tH)

and for Adams-Bashforth methods the companion matrix is taken to be the matrix

resulting from applying Adams-Bashforth with initial condition being the identity ma-

trix, and time-stepping forward until the dynamic behavior of the Adams-Bashforth

recurrence dominates the behavior given by the manner in which the initial deriva-

tives are computed (if the initial states are computed to stringent tolerance as in this

thesis, a stability analysis shows the method to be almost A�stable if only one Adams-

Bashforth step is taken, this does not however represent its full dynamic behavior for

long time integration). Next the timestep is found by solving the constrained maxi-
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mization problem

max

�t
�t

s.t. ⇢ (H (�t))  1

using MATLAB’s fmincon (minimizing instead the function ��t). In what follows

below the timesteppers will be given the brief names:

RK4 Classical RK4
RKC73 Toulorge + Desmet 7th order 3 stage
RKC84 Toulorge + Desmet 8th order 4 stage
RKF84 Toulorge + Desmet 8th order 4 stage

NRK13E Niegemann et al. Elliptical stability region
NRK14C Niegemann et al. Circular stability region

AB3 Third order Adams-Bashforth
AB4 Fourth order Adams-Bashforth
AB5 Fifth order Adams-Bashforth

Table 5.1 : Naming Schemes for Timesteppers

First I provide a qualitative idea of what one should expect from the methods by

giving their stability regions (scaled by number of function evaluations per timestep).

I provide here stability regions for the different timesteppers under consideration, all

superimposed on the RK4 stability region for comparison purposes.
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RKC73 Stability Region
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RKC84 Stability Region
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RKF84 Stability Region

Real axis

Im
ag

in
ar

y 
ax

is

−1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3.2 : RKC73,RKC84,RKF84 stability regions (black) scaled by number of
stages
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NRK14C Stability Region
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Figure 5.3.3 : NRK13E,NRK14C stability regions (black) scaled by number of stages.
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AB3 Stability Region
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AB4 Stability Region
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AB5 Stability Region
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Figure 5.3.4 : AB3,AB4,AB5 stability regions (black) superimposed on RK4 (blue)

Now I consider the efficiency of each timestepper by calculating the number of

function evaluations required to reach a final time of t = 5, and calculating respective

L2 errors for time t = 5. The result is summarized in the below table. Note that

while I report the errors, this is only to illustrate that they are roughly all same order

of magnitude, and so not a relevant factor in the choice of a proper timestepper.

Computations here were done with order N = 8.
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#RHS L2 Error Relative Cost Compared to RK4
NRK14C 5040 0.4 · 10�4

0.57
RKC73 5530 0.1 · 10�3

0.59
RKC84 6360 0.9 · 10�5

0.68
RKF84 6720 0.7 · 10�5

0.71
NRK13E 7930 0.9 · 10�5

0.84
RK4 9500 0.6 · 10�5

1.0
AB3 10665 0.4 · 10�4 �
AB4 32745 0.8 · 10�5 �
AB5 41010 0.7 · 10�5 �

Table 5.2 : Timestepers ordered in terms of RHS evaluations

Considering the memory overhead of Adams-Bashforth type methods, the optimal

Runge-Kutta methods are the higher performing of those methods considered here,

with a particularly high performing Runge-Kutta method by Niegemann et al. [73].

The relatively modest increase in RHS evaluations for AB3 however might be over-

come through its viability in local timestepping situations where there are significant

spatial scale differences that can be exploited to ensure that physics on larger elements

is not needlessly overresolved [67, 89, 94, 37].

Next I consider only the optimized timesteppers, applied with flux filtering with

the parameter chosen as aggressivley as possible but maintaining roughly the same

order of magnitude error as in the unmodified case. Here that was � = 0.5.

#RHS Relative Cost Compared to Unmodified + RK4
NRK14C 3640 0.38
RKC73 4760 0.50
RKC84 5600 0.58
RKF84 5760 0.59

NRK13E 6500 0.68

Table 5.3 : Timestepers with flux filtering ordered in terms of RHS evaluations
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so that one sees a 12% increase in efficiency for the highest performing timestepper.

Finally I present the same list for covolume filtering, with the parameter � chosen in

the same way. Here that was � = 0.8.

#RHS Relative Cost Comapred to Unmodified+RK4
NRK14C 1950 0.21
RKC73 2800 0.29
RKC84 3120 0.33
RKF84 4704 0.50

NRK13E 5070 0.53

Table 5.4 : Timestepers with covolume filtering ordered in terms of RHS evaluations

5.4 Conclusions

The optimal timesteppers used here yielded a reasonable gain in efficiency even in

the case of unmodified DG. These methods have not been applied to modified DG

methods before this thesis, and in the case of modifications even further gains were

seen. One point to note is that although the modified methods mostly serve to

reduce the impact of numerical dissipation on stiffness, the methods more highly

optimized for less dissipative methods (NRK13E, for example) still did not perform

as well as those more optimized for numerical dissipation, even in the case of flux

filtering or covolume filtering. This can be attributed to the fact that in the limit

as these methods practically eliminate dissipation they also create an unfavorable

spatial error, and the parameters were chosen here so as to not impact spatial error

significantly. Flux filtering is the easier to implement over covolume filtering, and

the gains to be had from it are accordingly modest. This might still be a reasonable

strategy to try should code be taking a very long time to run (on the order of days,

for example). If code is taking even longer to run, say weeks, then the additional
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effort in implementing a covolume filter might be worthwhile in reducing the total

time of simulation without severely impacting solution quality.
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Chapter 6

Conclusions and Future Work

Even though DG can suffer from many of the difficulties that other high order methods

do, this thesis shows that at least in principle this is not a necessity. DG has many

redeeming virtues which make its application to hyperbolic problems very natural.

Like traditional continuous finite element methods (CFEM), the variational form

makes possible error estimates based on a standard decomposition of total error into

local and truncation errors. Unlike CFEM however DG permits a natural decoupling

of elements for a compact scheme which is easily scaled on parallel architectures [2].

This thesis had two goals in addition to improving the timestep restriction, and

I believe they have been achieved for the problem considered. The first goal was

to retain the qualities of DG which make it a good candidate for solving hyperbolic

problems, and the second goal was to avoid significant changes to an existing code-

base. The first goal was shown to be achieved through extensive theory and numerical

results in the operator modification chapter. Much of the theory in that chapter is

new, particularly the mapping techniques, which have never been applied to discon-

tinuous Galerkin before, but also the flux filtering and covolume filtering techniques,

which have never been applied in two dimensions before. The second goal I believe

also was satisfied, the techniques applied did not require a significant overhaul of

an existing DG code. The filtering codes just required the addition of an alternate

filtering routine which could be added directly to the right-hand-side evaluation with-

out any further change, and the mapping codes just required that one evaluate the
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mass matrix adaptively. The timesteppers presented automatically satisfy both goals

since the method of lines makes DG compatible with any explicit timesteppers, that

routine can be changed at will with very little change to surrounding DG code.

In terms of efficiency, the flux filtering and covolume filtering techniques clearly

win over mapping for the polynomial orders considered in this thesis. Between flux

filtering and covolume filtering however there are other more intangible factors to

consider if one is to compare them. While covolume filtering had the strongest impact

on timestep reduction, it relied on the tensor product structure of the mesh and

furthermore can currently only handle simpler boundary conditions. Its extension

to arbitrary boundary conditions or to unstructured meshes is not straightforward,

and could be the topic of future research. Flux filtering did not have the same

impact on timesteps that covolume filtering had, but its ease of implementation and

natural incorporation of boundary conditions could be an important factor in whether

one chooses to apply it to their problem. It generally only doubled the timestep

before impacting accuracy of the solution, but it is a mesh and boundary condition

independent method, meaning it has a wider range of possible applications than

covolume filtering currently does.

The optimal timestepping methods also provide a useful way to improve efficiency

without significantly changing existing code. One point to make here is that these

timesteppers were generally intended for nonlinear problems, as the papers in which

they are constructed enforce a nonlinear set of equations to ensure that formal or-

der of convergence would be retained even in a nonlinear simulation. For the linear

problem however one may observe that applying a timestepper is equivalent to eval-

uating the action of a matrix polynomial on a given starting vector. This makes

possible the application of now well-researched polynomial methods for matrices, and
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the order conditions for the linear problem can be much more easily enforced with-

out imposing the standard nonlinear constraints. This is a direction that could be

useful in combination with operator modification. The precomputed optimal Runge-

Kutta methods did a good job capturing the spectrum of the modified methods, but

in more complicated situations it may be more difficult to anticipate which method

to use without costly trial-and-error. A possible future direction here would be to

use some kind of modified Arnoldi factorization (e.g. using the energy inner product

instead of the discrete l2 inner product) with the desired truncation term as the start-

ing vector to automatically enforce the truncation error, but using acquired Krylov

information to optimize the next few terms to use. This would have some similarities

with exponential timestepping [79, 88, 48]. It has already been seen that optimized

timesteppers can yield a considerable gain, but further automating their selection

could prove valuable and potentially yield even more efficient simulations.

The overall goal of this thesis has been met. Explicit timestepping has been

used in a way that is significantly more efficient than before, the techniques have

been applied for the first time in two dimensions, and where theory did not exist it

has been included. There is possibility of further gain, and from the initial results

contained in this thesis it seems that could be a valuable direction to pursue future

research.
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Chapter 7

Implementation

In this chapter I show how one can implement some of the ideas presented in this

thesis in MATLAB code. The mesh is assumed uniform, and so the reference mapping

becomes affine and the local solution spaces V k
N all become polynomial spaces. This

eases the implementation considerably since the coordinate transformed Legendre ba-

sis in local coordinates on Dk retain their orthogonality property. This orthogonality

property translates to easily inverted mass matrices and a lower storage requirement.

While in principle one could extend the ideas here to at least a perturbed uniform

mesh, that was not pursued in this thesis. Covolume filtering still currently requires

a structured grid, and mapping techniques already have performance issues without

the added difficulties of non-affine elements.

For reference below is a table providing some of the primitive information that is

known before any sort of construction is performed:

Variable Value Description
NvQ Mesh input Number of vertices
KQ Mesh input Number of elements
Kb Mesh input Number of boundary elements
NQ User input Polynomial order
NpQ (NQ+ 2)

2 Nodes per element
NfpQ 4 (NQ+ 1) Boundary DOFs per element
NbQ Mesh dependent Total nodes on boundary

Table 7.1 : Indexing primitves
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Note that by removing the appended Q to the variables, the result is the same

associated variable for a one dimensional simulation. This will be important as many

two dimensional operators can be constructed through tensor products of one dimen-

sional operators.

7.1 Nodal Element

When implementing DG on a general mesh, most operations can be precomputed on a

given reference element and then mapped to a general element through a coordinate

transformation. In the case of quadrilaterals used for this thesis the mapping is

quadratic in the reference coordinates, but if the mesh is assumed to be uniform it

reduces to a affine transformation [42, 102].

Taking the reference element to be the biunit square I = [�1, 1]2 the mapping to

an element Dk of a uniform mesh becomes

�k (x) = Gkx+ rk

Where the geometric factors matrix Gk introduced in chapter 2 reduces here to a

linear function, and rk is the barycenter of the quadrilateral.

7.2 Index maps

In order to facilitate communication between the boundary degrees of freedom on

each element, a global index set is given for each node and index maps provide a

convenient way to directly access those global indices. A summary is given below for

each map and what job it performs in the code.



103

Name Dimensions Description
mapPQ NfpQ ·KQ⇥ 1 Elemental boundary nodes to +trace map
mapMQ NfpQ ·KQ⇥ 1 Elemental boundary nodes to �trace map
vmapPQ NfpQ ·KQ⇥ 1 Full node to +trace map
vmapMQ NfpQ ·KQ⇥ 1 Full node to �trace map
mapBQ NbQ ·Kb ⇥ 1 Elemental boundary to mesh boundary map

Table 7.2 : Index maps

7.3 Polynomial Basis

In the code I freely move between two types of basis: modal, and nodal. A nodal

basis simply takes a Lagrange type basis for the local solution spaces V k
N to ensure

that the expansion coefficients correspond to solution values at specified nodal points.

A modal basis is one which does not have this property, and is often an orthogonal or

nearly-orthogonal basis (i.e. Legendre polynomials.) The input and output format of

the code is nodal, that is the solution values at the predetermined KQ · NpQ nodal

points, (the Lagrange basis). However, most computation is actually done in a modal

basis, that is an orthogonal basis on the reference element I. This basis is formed

on a general quadrilateral by forming a tensor product of the Legendre polynomial

basis in one dimension. The normalized polynomials can be computed with the code

JacobiP.m taking ↵ = � = 0:
Listing 7.1: JacobiP.m

1 function [P] = JacobiP(x,alpha ,beta ,N);
2 % function [P] = JacobiP(x,alpha ,beta ,N)
3 % Purpose: Evaluate Jacobi Polynomial of type (alpha ,beta) > -1
4 % (alpha+beta <> -1) at points x for order N and

returns P[1: length(xp))]
5 % Note : They are normalized to be orthonormal.
6 % Turn points into row if needed.
7 xp = x; dims = size(xp);
8 if (dims (2) ==1) xp = xp ’; end;
9 PL = zeros(N+1,length(xp));
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10 % Initial values P_0(x) and P_1(x)
11 gamma0 = 2^( alpha+beta +1)/(alpha+beta +1)*gamma(alpha +1) *...
12 gamma(beta +1)/gamma(alpha+beta +1);
13 PL(1,:) = 1.0/ sqrt(gamma0);
14 if (N==0) P=PL ’; return; end;
15 gamma1 = (alpha +1)*(beta +1)/(alpha+beta +3)*gamma0;
16 PL(2,:) = ((alpha+beta +2)*xp/2 + (alpha -beta)/2)/sqrt(gamma1);
17 if (N==1) P=PL(N+1,:) ’; return; end;
18 % Repeat value in recurrence.
19 aold = 2/(2+ alpha+beta)*sqrt((alpha +1)*(beta +1)/(alpha+beta +3))

;
20 % Forward recurrence using the symmetry of the recurrence.
21 for i=1:N-1
22 h1 = 2*i+alpha+beta;
23 anew = 2/(h1+2)*sqrt( (i+1)*(i+1+ alpha+beta)*(i+1+ alpha)*...
24 (i+1+ beta)/(h1+1)/(h1+3));
25 bnew = - (alpha^2-beta ^2)/h1/(h1+2);
26 PL(i+2,:) = 1/anew*( -aold*PL(i,:) + (xp-bnew).*PL(i+1,:));
27 aold =anew;
28 end;
29 P = PL(N+1,:) ’;
30 return

and their derivatives may be calculated by recognizing that the derivatives of the

Legendre basis form another orthogonal basis under a nonconstant weight. The new

basis can also be computed with JacobiP.m taking ↵ = � = 1/2. This code comes

from the codes from the book [46].

Finally a point should be made on how Lagrange polynomials are computed

through the normalized Legendre basis. As mentioned initially, the input and output

values of the code are in fact nodal, not modal. Therefore coefficients of the Legendre

basis of the solution are not immediately available. These can be computed by as-

suming that a given vector u are the solution values at predetermined nodal locations
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(xi) and then forming a generalized Vandermonde matrix

Vij = Lj�1

(xi)

and then the Legendre coefficients of the polynomial u are given by the nterpolation

[46]

c = V�1u.

Thus, if additionally it is desired that the solution u be evaluated at points (yj) that

are not (xi) , then one again forms the associated Vandermonde ˜Vij = Lj�1

(yi) and

the nodal values of u at the points (yi) are given as

˜u =

˜VV�1u.

Tensor product versions of the Vandermonde operators can easily be computed with

MATLAB’s command “kron.” It automatically forms the tensor product of two op-

erators, and this is how the operators are constructed in associated code with this

thesis.

7.4 Precomputing Operators

Deriving precomputed operators for the two dimensional code in this thesis will first

require precomputed one dimensional operators, due to the tensor product structure

of the two dimensional simulations. To see why this is so, consider the Tensor product

basis

�ij = �i�j
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where �i (single indexed) is the Lagrange polynomial on a given interval [xl, xr] asso-

ciated with a node xi. Then given a bilinear form a (·, ·) and the task to find u such

that

a (u, v) = f (v)

holds for all polynomials v below a prescribed order, then the problem effectively

becomes the task to find coefficients c such that

Np
X

i,j=1

cija (�ij,�↵�) = f (�↵�)

so that if a can be separated in the following fashion:

a (fg, hk) = a1 (f, h) a2 (g, k)

the problem becomes effectively one dimensional

Np
X

i=1

cia
1

(�i,�↵)

Np
X

j=1

cja
2

(�j,��) = f (�↵�) .

Before giving the relevant a1, a2 for the various two dimensional operators in the

acoustic wave equation, I give a reference table for the two dimensional operators

obtained in this way, and their associated tensor product form:

Operator Tensor Product Operation MATLAB
M2D M1D �M1D Mass MassMatrixQ
Sr M1D � S r-Stiffness StiffnessMatrixrQ
Ss S �M1D s-Stiffness StiffnessMatrixsQ

Table 7.3 : Tensor product operators



107

From these operators we obtain associated derived operators Dr, Ds and L, re-

spectively the r, s projected partial derivative operators and the L2 polynomial trace

lifting operator. In order to compute the lifting operator L it is necessary to be able

to apply the one dimensional mass matrix M1D to the boundary degrees of freedom,

the operator for this action will be denoted E . For reference I put these in table format

as well

Operator Formula Operation MATLAB
Dr

�

M2D
��1 Sr L2 projected @

@r
DrQ

Ds

�

M2D
��1 Ss L2 projected @

@s
DsQ

L
�

M2D
��1 E L2 trace lifting operator LIFTQ

Table 7.4 : Derived operators

and now I present a table for the formulas of the one dimensional operators

Operator Matrix entries Operation MATLAB
M1D

´
1

�1

�i (x)�j (x) dx 1D Mass MassMatrix
S

´
1

�1

⇥

d
dx
�i (x)

⇤

�j (x) dx 1D Stiffness StiffnessMatrix

Table 7.5 : One dimensional operators

The codes for Mass1D.m is a little overly general for the polynomial case, it

adaptively applies gaussian quadratures until convergence. For polynomials this is

unnecessary, but as noted in the theory on chapter 4 it is important for the integrals

to be computed exactly. Thus for the Kosloff/Tal-Ezer mapped basis the adaptive

strategy is employed to be as exact as possible. Numerous experiments performed

demonstrate that this is enough.

Listing 7.2: Mass1D.m
1 function M = Mass1D;
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2 Globals1D;
3 tol=1e-15;
4 err=1;
5 qord=N;
6 umr=JacobiGL (0,0,N);
7 while(err >tol)
8 %First quadrature rule mass matrix.
9 [qr,qw]=lgwt(qord ,-1,1);

10 qr=sort(qr);
11 umrV=Vandermonde1D(N,umr);
12 VQUAD=Vandermonde1D(N,qr);
13 W=diag(qw);
14 [~,dmx]= MapFun(qr ,MapParam);
15 MW=diag(dmx);
16 M1=(MW*VQUAD/umrV) ’*(W*MW*VQUAD/umrV);
17 %Second quadrature rule mass matrix.
18 [qr,qw]=lgwt(qord+1,-1,1);
19 qr=sort(qr);
20 umrV=Vandermonde1D(N,umr);
21 VQUAD=Vandermonde1D(N,qr);
22 W=diag(qw);
23 [~,dmx]= MapFun(qr ,MapParam);
24 MW=diag(dmx);
25 M2=(MW*VQUAD/umrV) ’*(W*MW*VQUAD/umrV);
26 %Calculate discrete L^2 norm of difference.
27 %e=eig((M1-M2) ’*(M1-M2),MassMatrixQ);
28 %err=max(sqrt(e));
29 err=max(max(abs(M1-M2)));
30 qord=qord +1;
31 end
32 M=M2;

and

Listing 7.3: Stiffness1D.m
1 function S = Stiffness1D
2 Globals1D;
3 umr = JacobiGL (0,0,N);
4 umV = Vandermonde1D(N,umr);
5 umDr=Dmatrix1D(N,umr ,umV);
6 S = (umV ’) \ (umV\umDr);
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The stiffness matrix does not need adaptivity for the nonpolynomial case con-

sidered in this thesis, because the geometric factors from the derivative and from

the coordinate transformation cancel out in the integral. For linear problems with

constant coefficients these operators are all that will be needed to fully evaluate the

spatial discretization and ensure the validity of semidiscrete stability results.

7.5 Time-stepping

The final thing needed for a full simulation is a time marching scheme. Supposing for

the moment that the PDE under consideration is scalar (each component of the solu-

tion may be treated as such for time-stepping), one would obtain a semidiscretization

of the form
du

dt
= �

1

Dru+ �
2

Dsu+ L (du)

where d above calculates the inter-element boundary conditions (given by the operator

C�C⇤C). Thus given a function to evaluate the right hand side above, one can use

any explicit timestepping code whose input need only be a right hand side evaluation.

Listing 7.4: AcousticRHS2D.m
1 function [rhsUx , rhsUy , rhsP] = AcousticRHS2D(Ux ,Uy,P,rho ,kappa

,S,time ,alpha ,CovolumeFilter)
2 %function [rhsUx , rhsUy , rhsP] = AcousticRHS2D(Ux,Uy,P,Z,S,

alpha)
3 %Evaluates RHS of acoustic wave equation.
4 %Ux-x velocity.
5 %Uy-y velocity.
6 %P - Pressure.
7 %rho - Density.
8 %kappa - Bulk modulus.
9 %S - Source term.

10 GlobalsQuad2D;
11 NRHS=NRHS +1;
12 %Calculate relative impedence. Assumes references values of 1.
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13 Z = zeros(NfpQ*NfacesQ ,KQ); Z(:) = sqrt( rho(vmapMQ).*kappa(
vmapMQ));

14 ZP =zeros(NfpQ*NfacesQ ,KQ); ZP(:) = Z(mapPQ);
15 ZM = zeros(NfpQ*NfacesQ ,KQ); ZM(:) = Z(mapMQ);
16 %First order absorbing condition.
17 %P(vmapBQ)=nxQ(mapBQ).*Ux(vmapBQ) + nyQ(mapBQ).*Uy(vmapBQ);
18 %Calculate field differences at faces.
19 dUx = zeros(NfpQ*NfacesQ ,KQ); dUx(:) = Ux(vmapMQ)-Ux(vmapPQ);
20 dUy = zeros(NfpQ*NfacesQ ,KQ); dUy(:) = Uy(vmapMQ)-Uy(vmapPQ);
21 dP = zeros(NfpQ*NfacesQ ,KQ); dP(:) = P(vmapMQ)-P(vmapPQ);
22 %Impose reflective boundary conditions. (P+=-P-).
23 %dUx(mapBQ) = 0;
24 %dUy(mapBQ) = 0;
25 dP(mapBQ)=2*P(vmapBQ);
26 %Averages of acoustic impedences at faces.
27 Zavg = zeros(NfpQ*NfacesQ ,KQ); Zavg (:) = (Z(mapMQ)+Z(mapPQ))/2;
28 %Evaluate upwind flux.
29 ndotdU = nxQ.*dUx+nyQ.*dUy;
30 fluxU = (1./(2* Zavg)) .* (ZP.* ndotdU - alpha*dP);
31 fluxPx=-(ZM./(2* Zavg)) .* nxQ.*( alpha*ZP.* ndotdU - dP);
32 fluxPy=-(ZM./(2* Zavg)) .* nyQ.*( alpha*ZP.* ndotdU - dP);
33 %Local derivatives of fields
34 dUxdr = DrQ*Ux;
35 dUxds = DsQ*Ux;
36 dUydr = DrQ*Uy;
37 dUyds = DsQ*Uy;
38 dPdr = DrQ*P;
39 dPds = DsQ*P;
40 dPdx = rxQ.*dPdr + sxQ.*dPds;
41 dPdy = ryQ.*dPdr + syQ.*dPds;
42 dUxdx= rxQ.*dUxdr+ sxQ.*dUxds;
43 %dUxdy= ryQ.*dUxdr+ syQ.*dUxds;
44 %dUydx= rxQ.*dUydr+ sxQ.*dUyds;
45 dUydy= ryQ.*dUydr+ syQ.*dUyds;
46 %Compute right hand sides of PDE system.
47 %Note: Interpolates S rather than performing L^2 projection.
48 %Does not impact stability results.
49 rhsUx = (1./ rho).*(-dPdx + LIFTQ*( FscaleQ .* fluxPx));
50 rhsUy = (1./ rho).*(-dPdy + LIFTQ*( FscaleQ .* fluxPy));
51 rhsP = (kappa).*(-dUxdx - dUydy + LIFTQ*( FscaleQ .*fluxU) + S(

time));
52 %Now do covolume filter
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53 if(CovolumeFilter >0)
54 temp=CovolumeFilter2D(rhsUx);
55 rhsUx = (1- CovolumeFilter)*rhsUx + CovolumeFilter*temp;
56 temp=CovolumeFilter2D(rhsUy);
57 rhsUx = (1- CovolumeFilter)*rhsUy + CovolumeFilter*temp;
58 temp=CovolumeFilter2D(rhsP);
59 rhsUx = (1- CovolumeFilter)*rhsP + CovolumeFilter*temp;
60 end

and in order to be able to use this with the way timesteppers are generally written

(assuming a long vector of dimensions as mn ⇥ 1 rather than m ⇥ n), an associated

marshalling function is provided alongside this:
Listing 7.5: AcousticOdefun2D.m

1 function [uout] = AcousticOdefun2D(uin ,rho ,kappa ,S,time ,alpha ,
CovolumeFilter)

2 GlobalsQuad2D;
3 temp=reshape(uin ,length(uin)/3,3);
4 Ux=reshape(temp (:,1),NpQ ,KQ);
5 Uy=reshape(temp (:,2),NpQ ,KQ);
6 P=reshape(temp (:,3),NpQ ,KQ);
7 [rhsUx ,rhsUy ,rhsP] = AcousticRHS2D(Ux,Uy,P,rho ,kappa ,S,time ,

alpha ,CovolumeFilter);
8 uout = [rhsUx (:);rhsUy (:);rhsP (:)];
9 return;

10 end

Often this thesis uses the built in MATLAB solver ode45, but another comopnent

of this thesis is the use of Adams-Bashforth and optimal low-storage Runge-Kutta

methods. The codes for these are listed below for reference, along with corresponding

coefficients for the Runge-Kutta methods
Listing 7.6: LSRK.m

1 function [u nf] = LSRK(odefun ,init ,dt,FinalTime ,A,B,c,callback ,
varargin)

2 %Performs low -storage RK method associated with A,B,c. (See
Ketcheson et. al.)

3 %ARGUMENTS:
4 %
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5 % odefun - function for ODE.
6 % init - initial value.
7 % dt - timestep. (use evalstabledt to find CFL constrained dt)
8 % FinalTime - final time.
9 %A,B,c - LSRK tabulated coefficients.

10 %callback - Function to call at specified timesteps
11 %RETURNS:
12 %
13 % u - solution.
14 % nf - #function evals.
15 %
16 %USAGE:
17 % [u nf] = LSRK(odefun ,init ,dt,FinalTime ,A,B,c)
18 tol=1e-5;
19 time = 0;
20 Nsteps = ceil(FinalTime/dt);
21 dt = FinalTime/Nsteps;
22 u = init;
23 m = length(A);
24 nf = 0;
25 tstep =1;
26 while(time < FinalTime -tol)
27 callback(time ,u,varargin {:});
28 K2 = zeros(size(u));
29 K1 = u;
30 for i = 1 : m
31 K2 = A(i)*K2 + dt*odefun(time+c(i)*dt,K1);
32 nf=nf+1;
33 K1 = K1 + B(i)*K2;
34 end
35 tstep=tstep +1;
36 u = K1;
37 time=time+dt;
38 end
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Table 7.6 : Tabulated RKC73 coefficients
Ai Bi ci
0 0.01197052673097840 0

�0.8083163874983830 0.8886897793820711 0.01197052673097840
1.503407858773331 0.4578382089261419 0.1823177940361990
�1.053064525050744 0.5790045253338471 0.5082168062551849
�1.463149119280508 0.3160214638138484 0.6532031220148590
�0.6592881281087830 0.2483525368264122 0.8534401385678250
�1.667891931891068 0.06771230959408840 0.9980466084623790

Table 7.7 : Tabulated RKC84 coefficients
Ai Bi ci
0 0.216593673678085 0

�0.7212962482279240 0.1773950826411583 0.2165936736758085
�0.01077336571612980 0.01802538611623290 0.2660343487538170
�0.516258469830970 0.08473476372541490 0.2840056122522720
�1.730100286632201 0.8129106974622483 0.325126684378870
�5.200129304403076 1.903416030422760 0.4555149599187530
0.7837058945416420 0.1314841743399048 0.7713219317101170
�0.5445836094332190 0.2082583170674149 0.9199028964538660

Table 7.8 : Tabulated RKF84 coefficients
Ai Bi ci
0 0.08037936882736950 0

�0.5534431294501569 0.5388497458569843 0.08037936882736950
0.01065987570203490 0.01974974409031960 0.3210064250338430
�0.551812888932000 0.09911841297339970 0.3408501826604660
�1.885790377558741 0.7466920411064123 0.385036482485470
�5.701295742793264 1.679584245618894 0.5040052477534100
2.113903965664793 0.2433728067008188 0.6578977561168540

�0.5339578826675280 0.1422730459001373 0.9484087623348481
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Table 7.9 : Tabulated NRK13E coefficients
Ai Bi ci
0 0.0271990297818803 0

�0.6160178650170565 0.1772488819905108 0.0271990297818803
�0.4449487060774118 0.0378528418949694 0.0952594339119365
�1.0952033345276178 0.6086431830142991 0.1266450286591127
�1.2256030785959187 0.2154313974316100 0.1825883045699772
�0.2740182222332805 0.2066152563885843 0.3737511439063931
�0.0411952089052647 0.0415864076069797 0.5301279418422206
�0.1797084899153560 0.219891884310925 0.5704177433952291
�1.1771530652064288 0.9893081222650993 0.5885784947099155
�0.4078831463120878 0.00631990119859826 0.6160769826246714
�0.8295636426191777 0.3749640721105318 0.6223252334314046
�4.7895970584252288 1.6080235151003195 0.6897593128753419
�0.6606671432964504 0.0961209123818189 0.9126827615920843

Table 7.10 : Tabulated NRK14C coefficients
Ai Bi ci
0 0.0367762454319673 0

�0.718801208672410 0.3136296607553959 0.0367762454319673
�0.7785331173421570 0.1531848691869027 0.1249685262725025
�0.0053282796654044 0.0030097086818182 0.2446177702277698
�0.8552979934029281 0.3326293790646110 0.2476149531070420
�3.9564138245774565 0.2440251405350864 0.2969311120382472
�1.5780575380587385 0.3718879239592277 0.3978149645802642
�2.0837094552574054 0.6204126221582444 0.5270854589440328
�0.7483334182761610 0.1524043173028741 0.6981269994175695
�0.7032861106563359 0.0760894927419266 0.8190890835352128
0.0013917096117681 0.0077604214040978 0.8527059887098624
�0.0932075369637460 0.0024647284755382 0.8604711817462826
�0.9514200470875948 0.0780348340049386 0.8627060376969976
�7.1151571693922548 5.5059777270269628 0.8734213127600976

a function for computing Adams-Bashforth solutions for orders 1, 2, 3, 4, 5 is also

supplied below:
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Listing 7.7: ABM.m
1 function [u nf] = ABM(odefun ,init ,dt,FinalTime ,type ,callback ,

varargin)
2 %Implements third order adams -bashforth
3 tol=1e-5;
4 time = 0;
5 Nsteps = ceil(FinalTime/dt);
6 dt = FinalTime/Nsteps;
7 u = init;
8 %Pick AB scheme
9 switch type

10 %Euler ’s method
11 case 1
12 b = [1];
13 %AB2
14 case 2
15 b = [ -1/2;3/2];
16 %AB3
17 case 3
18 b = [5/12; -4/3;23/12];
19
20 %AB4
21 case 4
22 b = [ -3/8;37/24; -59/24;55/24];
23 %AB5
24 case 5
25 b = [251/720; -637/360;109/30; -1387/360;1901/720];
26 end
27 %Can ’t remember lowest relative tolerance , this will default to

it.
28 options=odeset(’RelTol ’,1e-15);
29 n=length(b);
30 %Obtain previous data
31 [T U] = ode45(@(t,u)odefun(t,u) ,[0:dt:(n-1)*dt],init ,options);
32 for i = 1 : n
33 fu(:,i)=odefun(time ,U(i,:) ’);
34 end
35 u=U(end ,:) ’;
36 time=time+(n-1)*dt;
37 nf=n;
38 while(time < FinalTime -tol)
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39 callback(time ,u,varargin {:});
40 u = u + dt*(fu*b);
41 time=time+dt;
42 fu(:,1:end -1)=fu(:,2:end);
43 fu(:,end)=odefun(time ,u);nf=nf+1;
44 end

7.6 Covolume Filtering

The covolume filter of Warburton and Hagstrom [100] is applied by utilizing the tensor

product structure of the structured grids in use to decompose the two dimensional

filter into a sequence of one dimensional filters. The one and two dimensional filter

MATLAB codes are given below

Listing 7.8: CovolumeFilterPeriodic1D.m
1 function v = CovolumeFilterPeriodic1D(u)
2 Globals1D;
3 %Assumes periodic mesh
4 v = P1*u(:,[2:end ,1]) + P2*u;
5 v = P1*v + P2*v(:,[end ,1:(end -1)]);
6 return;
7 end

and its associated 2D version in CovolumeFilter2D.m:

Listing 7.9: CovolumeFilter2D.m
1 function v = CovolumeFilter2D(u,CovolumeFilter)
2 GlobalsQuad2D;
3 v=zeros(size(u));
4 temp=zeros(size(u));
5 n=size(xgrid ,3);
6
7
8
9 %First do horizontal sweep.

10 for i = 1 : n
11 v(xgrid(:,:,i)) = CovolumeFilterPeriodic1D(u(xgrid(:,:,i)));
12 end
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13
14 %Next do vertical sweep.
15
16 for i = 1 : n
17 v(ygrid(:,:,i)) = CovolumeFilterPeriodic1D(v(ygrid(:,:,i)));
18 end
19
20
21 end

The operators in use in the code are precomputed L2 projection operators and index-

ing sets for two dimensions. Currently this code works only for periodic boundary

conditions.

7.7 Flux Filtering
The filter in use is implemented in Filter2D.m listed below

Listing 7.10: Filter2D.m
1 function [F] = Filter2D(Norder ,scale)
2 %Constructs simple modal filter.
3 GlobalsQuad2D;
4 filterdiag = ones( (Norder +1)^2,1);
5 index =1:( Norder +1) ^2;
6 index=reshape(index ,Norder+1,Norder +1);
7 %filterdiag(end)=scale;
8 for i = 0 : Norder
9 for j = 0 : Norder

10 if( (i+j) >= Norder)
11 filterdiag(index(i+1,j+1))=scale;
12 end
13 end
14 end
15 F = VQ * diag(filterdiag) / VQ;
16 return;

and if F � represents the filter operator, then the filtered lifting operator L� is given

by

L�
= F �L,
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once the lifting operator is computed, it is automatically used in the right-hand-side

evaluation functions and so no further modification is required.

7.8 A Complete Script

With the explanations given above I am in a position to demonstrate how to construct

a simulation script. In the script one must define the mesh desired polynomial order.

After this a startup script (StartUpQuad2D.m) is run to evaluate the operators,

construct index maps, and calculate geometric transformation factors. Next the user

must define any initial conditions and source terms, and then input the right hand

side evaluation function with these terms into the desired timestepper. This is shown

in the following driver script

Listing 7.11: AcousticDriverExample.m
1 %Driver script to solve acoustic wave equation in conservation

form in 2D using quadrilaterals.
2 GlobalsQuad2D;
3 %Polynomial order to use.
4 N = 8;
5 %Mapping function to use.
6 MapFun=@(r,lambda)identity(r,lambda);
7 %Flux filtering amount.
8 FluxFilter =1;
9 %Generate dummy 1D mesh for StartUp1D

10 [Nv, VX, K, EToV] = MeshGen1D (0.0 ,2.0 ,2);
11 Nx=5;
12 Ny=5;
13 %Construct uniform grid.
14 [NvQ VXQ VYQ KQ EToVQ] = BuildRegularQuadMesh2D(Nx,Ny);
15 %Construct airfoil grid.
16 %[NvQ , VXQ , VYQ , KQ, EToVQ] = BuildJoukouskyQuadMesh(Nx,Ny);
17 StartUpQuad2D;
18 %Impose periodic boundary conditions.
19 BuildPeriodicMapsQuad2D (2,2);
20 %Initial velocity = 0.
21 Ux = zeros(NpQ ,KQ);
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22 Uy = zeros(NpQ ,KQ);
23 %Initial pressure.
24 P=cos(pi*xQ).*sin(pi*yQ) + sin(pi*xQ).*cos(pi*yQ);
25 %Basic material properties.
26 rho = ones(NpQ ,KQ);
27 kappa = ones(NpQ ,KQ);
28 %Zero source term.
29 S=@(t)zeros(NpQ ,KQ);
30 %Desired times for solution outputs.
31 timesamples =0:1:5;
32 %Upwinding parameter
33 alpha =1;
34 %How much to apply covolume filtering.
35 CovolumeFilter =0;
36 odefun=@(t,u)AcousticOdefun2D(u,rho ,kappa ,S,t,alpha ,

CovolumeFilter);
37 init=[Ux(:);Uy(:);P(:)];
38 %Solve with ODE45
39 options=odeset(’RelTol ’,1e-4);
40 [T U] = ode45(odefun ,timesamples ,init ,options);



120

Bibliography

[1] Explicit trace inequalities for isogeometric analysis and parametric hexahedral

finite elements - springer.

[2] T. Warburton A. Kloeckner and J. S. Hesthaven. High-order discontinuous

galerkin methods by GPU metaprogramming. Technical Report 2011-13, Sci-

entific Computing Group, Brown University, Providence, RI, USA, June 2011.

[3] Assyr Abdulle. Fourth order chebyshev methods with recurrence relation. SIAM

Journal on Scientific Computing, 23(6):2041–2054, January 2002.

[4] Assyr Abdulle and Alexei A. Medovikov. Second order chebyshev methods

based on orthogonal polynomials. Numerische Mathematik, 90(1):1–18, Novem-

ber 2001.

[5] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth

dover printing, tenth GPO printing edition, 1964.

[6] M.R. Abril-Raymundo and B. Garcı?a-Archilla. Approximation properties of

a mapped chebyshev method. Applied Numerical Mathematics, 32(2):119–136,

February 2000.

[7] Ben Adcock\phantomx(mathoverflow.net/users/19011). Markov-type

inequalities with arbitrary exponents. Published: MathOverflow



121

http://mathoverflow.net/questions/81933 (version: 2011-11-26).

[8] V. Alexiades. Overcoming the stability restriction of explicit schemes via super-

time-stepping. Proceedings of Dynamic Systems and Applications, 2:39–44,

1995.

[9] Vasilios Alexiades, GeneviÃ c�ve Amiez, and Pierre-Alain Gremaud. Super-

time-stepping acceleration of explicit schemes for parabolic problems. Com.

Num. Meth. Eng, 12:12–31, 1996.

[10] Vasanth Allampalli, Ray Hixon, M. Nallasamy, and Scott D. Sawyer. High-

accuracy large-step explicit runge-kutta (HALE-RK) schemes for computational

aeroacoustics. Journal of Computational Physics, 228(10):3837 – 3850, 2009.

[11] P. Bar-Yoseph. Space-time discontinuous finite element approximations for

multi-dimensional nonlinear hyperbolic systems. Computational Mechanics,

5(2):145–160, March 1989.

[12] Pinhas Bar-Yoseph and David Elata. An efficient l2 galerkin finite element

method for multi-dimensional non-linear hyperbolic systems. International

Journal for Numerical Methods in Engineering, 29(6):1229–1245, 1990.

[13] A Bayliss and B.J Matkowsky. Fronts, relaxation oscillations, and period dou-

bling in solid fuel combustion. Journal of Computational Physics, 71(1):147–

168, July 1987.

[14] John P. Boyd. Chebyshev and Fourier Spectral Methods. 1999.

[15] John P. Boyd and Jun Rong Ong. Exponentially-convergent strategies for de-

feating the runge phenomenon for the approximation of non-periodic functions,



122

part two: Multi-interval polynomial schemes and multidomain chebyshev inter-

polation. Applied Numerical Mathematics, 61(4):460 – 472, 2011.

[16] J.C. Butcher and J. Wiley. Numerical methods for ordinary differential equa-

tions. Wiley Online Library, 2008.

[17] Paul Castillo, Bernardo Cockburn, Dominik Schotzau, Dominik, and Christoph

Schwab. Optimal a priori error estimates for the hp-version of the local dis-

continuous galerkin method for convection-diffusion problems. Math. Comput.,

71(238):455–478, April 2002.

[18] M. Celik and A.C. Cangellaris. Simulation of multiconductor transmission lines

using krylov subspace order-reduction techniques. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 16(5):485–496, 1997.

[19] N. Chalmers, L. Krivodonova, and R. Qin. Relaxing the CFL number of the

discontinuous galerkin method.

[20] G. Chavent and G. Salzano. A finite-element method for the 1-d water flooding

problem with gravity. Journal of Computational Physics, 45(3):307–344, March

1982.

[21] Q. Y. Chen, D. Gottlieb, and J. S. Hesthaven. Spectral methods based on

prolate spheroidal wave functions for hyperbolic PDEs. SIAM Journal on Nu-

merical Analysis, 43(5):1912–1933, January 2005.

[22] Ronald Chen and Thomas Hagstrom. P-adaptive hermite methods for ini-

tial value problems. ESAIM: Mathematical Modelling and Numerical Analysis,

46(03):545–557, 2012.



123

[23] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu. The runge-kutta local

projection discontinuous galerkin finite element method for conservation laws.

IV: the multidimensional case. Mathematics of Computation, 54(190):pp. 545–

581, 1990.

[24] Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu. The develop-

ment of discontinuous Galerkin methods. 1999.

[25] Bernardo Cockburn, San-Yih Lin, and Chi-Wang Shu. TVB runge-kutta local

projection discontinuous galerkin finite element method for conservation laws

III: one-dimensional systems. Journal of Computational Physics, 84(1):90 –

113, 1989.

[26] Bernardo Cockburn and Chi-Wang Shu. TVB runge-kutta local projection

discontinuous galerkin finite element method for conservation laws II: general

framework. Mathematics of Computation, 52(186):pp. 411–435, 1989.

[27] Bernardo Cockburn and Chi-Wang Shu. The runge-kutta discontinuous galerkin

method for conservation laws v: Multidimensional systems. Journal of Compu-

tational Physics, 141(2):199 – 224, 1998.

[28] Z. Ditzian. Multivariate bernstein and markov inequalities. Journal of Approx-

imation Theory, 70(3):273 – 283, 1992.

[29] Wai Sun Don and Alex Solomonoff. Accuracy enhancement for higher deriva-

tives using chebyshev collocation and a mapping technique. SIAM J. Sci. Com-

put., 18(4):1040–1055, July 1997.

[30] Moshe Dubiner. Asymptotic analysis of spectral methods. Journal of Scientific

Computing, 2(1):3–31, 1987. 10.1007/BF01061510.



124

[31] Todd Dupont and Ridgway Scott. Polynomial approximation of functions in

sobolev spaces. Mathematics of Computation, 34(150):441–463, April 1980.

ArticleType: research-article / Full publication date: Apr., 1980 / Copyright

c� 1980 American Mathematical Society.

[32] Kenneth Eriksson, Claes Johnson, and Anders Logg. Explicit time-stepping for

stiff ODEs. SIAM J. Sci. Comput., 25(4):1142–1157, April 2003.

[33] A. Ern and J.-L. Guermond. Discontinuous galerkin methods for friedrichs’

systems. i. general theory. SIAM Journal on Numerical Analysis, 44(2):753–

778, January 2006. ArticleType: research-article / Full publication date: 2006

/ Copyright c� 2006 Society for Industrial and Applied Mathematics.

[34] Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements,

volume 159. Springer, 2004.

[35] C. W. Gear and Ioannis G. Kevrekidis. Projective methods for stiff differential

equations: Problems with gaps in their eigenvalue spectrum. SIAM J. Sci.

Comput., 24(4):1091–1106, April 2002.

[36] Patrick Godon. Numerical modeling of tidal effects in polytropic accretion disks.

The Astrophysical Journal, 480(1):329, 1997.

[37] N. Goedel, S. Schomann, T. Warburton, and M. Clemens. Local timestepping

discontinuous galerkin methods for electromagnetic RF field problems. page

2149–2153, 2009.

[38] N. Goedel, T. Warburton, and M. Clemens. GPU accelerated discontinuous

galerkin FEM for electromagnetic radio frequency problems. pages 1 –4, June

2009.



125

[39] John Goodrich, Thomas Hagstrom, and Jens Lorenz. Hermite methods for

hyperbolic initial-boundary value problems. Mathematics of Computation,

75(254):595–630 (electronic), 2006.

[40] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods.

Society for Industrial and Applied Mathematics, Philadephia, PA, 1977.

[41] David Gottlieb and Eitan Tadmor. The CFL condition for spectral approxima-

tions to hyperbolic initial-boundary value problems. Mathematics of Computa-

tion, 56(194):565–588, 1991.

[42] Ben-yu Guo and Hong-li Jia. Pseudospectral method for quadrilaterals. Journal

of Computational and Applied Mathematics, 236(5):962–979, October 2011.

[43] Nicholas Hale. On The Use Of Conformal Maps To Speed Up Numerical Com-

putations. PhD thesis, University of Oxford, 2009.

[44] J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov. Spectral collocation

time-domain modeling of diffractive optical elements. J. Comput. Phys.,

155(2):287–306, November 1999.

[45] J. S. Hesthaven and T. Warburton. High-order nodal discontinuous galerkin

methods for the maxwell eigenvalue problem. Philosophical Transactions:

Mathematical, Physical and Engineering Sciences, 362(1816):pp. 493–524, 2004.

[46] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Meth-

ods: Algorithms, Analysis, and Applications. Springer Publishing Company,

Incorporated, 1st edition, 2007.



126

[47] J.S Hesthaven and T. Warburton. Nodal high-order methods on unstructured

grids: I. time-domain solution of maxwell’s equations. Journal of Computational

Physics, 181(1):186 – 221, 2002.

[48] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta

Numerica, 19:209–286, 2010.

[49] PJ Houwen. Construction of integration formulas for initial value problems.

North-Holland Pub. Co.(Amsterdam and New York and New York), 1977.

[50] Butcher J.C. A history of runge-kutta methods. Applied Numerical Mathemat-

ics, 20(3):247–260, March 1996.

[51] R. Jeltsch and M. Torrilhon. Flexible stability domains for explicit runge-kutta

methods. Some topics in industrial and applied mathematics, 8:152, 2007.

[52] Rolf Jeltsch and Olavi Nevanlinna. Largest disk of stability of explicit

runge-kutta methods. BIT Numerical Mathematics, 18(4):500–502, 1978.

10.1007/BF01932030.

[53] Boyd John. Exponentially accurate runge-free approximation of non-periodic

functions from samples on an evenly spaced grid. Applied Mathematics Letters,

20(9):971 – 975, 2007.

[54] Carcione Jose. A 2D chebyshev differential operator for the elastic wave equa-

tion. Computer Methods in Applied Mechanics and Engineering, 130(1–2):33–

45, March 1996.

[55] David Ketcheson and Aron Ahmadia. Optimal runge-kutta stability regions.

2012.



127

[56] David I. Ketcheson. Runge-kutta methods with minimum storage implementa-

tions. J. Comput. Phys., 229(5):1763–1773, March 2010.

[57] Ingemar P. E. Kinnmark and William G. Gray. Fourth-order accurate one-step

integration methods with large imaginary stability limits. Numerical Methods

for Partial Differential Equations, 2(1):63–70, 1986.

[58] Ingemar P.E. Kinnmark and William G. Gray. One step integration methods of

third-fourth order accuracy with large hyperbolic stability limits. Mathematics

and Computers in Simulation, 26(3):181 – 188, 1984.

[59] Ingemar P.E. Kinnmark and William G. Gray. One step integration methods

with maximum stability regions. Mathematics and Computers in Simulation,

26(2):87 – 92, 1984.

[60] A. Klöckner. High-Performance High-Order Simulation of Wave and Plasma

Phenomenon. PhD thesis, Brown University, 2010.

[61] Dan Kosloff and Hillel Tal-Ezer. A modified chebyshev pseudospectral method

with an o(1/N) time step restriction. J. Comput. Phys., 104(2), February 1993.

[62] L. Krivodonova and R. Qin. An analysis of the spectrum of the discontinuous

galerkin method. Applied Numerical Mathematics.

[63] Ethan J. Kubatko, Clint Dawson, and Joannes J. Westerink. Time step restric-

tions for runge-kutta discontinuous galerkin methods on triangular grids. J.

Comput. Phys., 227(23):9697–9710, December 2008.

[64] J. Douglas Lawson. An order five runge-kutta process with extended region of

stability. SIAM Journal on Numerical Analysis, 3(4):pp. 593–597, 1966.



128

[65] J. Douglas Lawson. An order six runge-kutta process with extended region of

stability. SIAM Journal on Numerical Analysis, 4(4):620–625, December 1967.

ArticleType: research-article / Full publication date: Dec., 1967 / Copyright

c� 1967 Society for Industrial and Applied Mathematics.

[66] Randall Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002.

[67] Anders Logg. Multi-adaptive time integration. Applied Numerical Mathematics,

48(3-4):339 – 354, 2004. Workshop on Innovative Time Integrators for PDEs.

[68] Harvard Lomax. On the construction of highly stable, explicit, numerical meth-

ods for integrating coupled ordinary differential equations with parasitic eigen-

values. Technical report, Ames Research Center, Moffet Field, California, 1968.

[69] G.G. Lorentz. Approximation of functions. Chelsea Publishing Company, In-

corporated, 2005.

[70] Robert Byron Lowrie, Professor Philip, L. Roe, and Professor Bram Van Leer.

Compact Higher-Order Numerical Methods For Hyperbolic Conservation Laws.

PhD thesis, 1996.

[71] Jodi L. Mead and Rosemary A. Renaut. Accuracy, resolution, and sta-

bility properties of a modified chebyshev method. SIAM J. Sci. Comput.,

24(1):143–160, January 2002.

[72] Alexei Medovikov. High order explicit methods for parabolic equations. BIT

Numerical Mathematics, 38(2):372–390, June 1998.



129

[73] Jens Niegemann, Richard Diehl, and Kurt Busch. Efficient low-storage runge-

kutta schemes with optimized stability regions. Journal of Computational

Physics, (0):–, 2011.

[74] Sevtap Ozisk, Beatrice Riviere, and Tim Warburton. On the constants in inverse

inequalities in l^2. Technical 19, Rice University, 2010.

[75] Ingemar P.E and Kinnmark. A principle for construction of one-step integration

methods with maximum imaginary stability limits. Mathematics and Comput-

ers in Simulation, 29(2):87 – 106, 1987.

[76] Van Der Houwen P.J. The development of runge-kutta methods for partial

differential equations. Applied Numerical Mathematics, 20(3):261 – 272, 1996.

[77] Rodrigo B. Platte, Lloyd N. Trefethen, and Arno B. J. Kuijlaars. Impossibility

of fast stable approximation of analytic functions from equispaced samples.

SIAM Review, 53(2):308–318, 2011.

[78] P.Raviart P.Lesaint. On a finite element method for solving the neutron trans-

port equation. Mathematical aspects of finite elements in partial differential

equations, 1974.

[79] David A. Pope. An exponential method of numerical integration of ordinary

differential equations. Commun. ACM, 6(8):491–493, 1963.

[80] J. Proft and B. Riviere. Discontinuous galerkin methods for convection-diffusion

equations for varying and vanishing diffusivity. Int. J. Numer. Anal. Model,

6(4):533–561, 2009.



130

[81] R and Vichnevetsky. New stability theorems concerning one-step numerical

methods for ordinary differential equations. Mathematics and Computers in

Simulation, 25(3):199 – 205, 1983.

[82] Jan Ramboer, Tim Broeckhoven, Sergey Smirnov, and Chris Lacor. Optimiza-

tion of time integration schemes coupled to spatial discretization for use in CAA

applications. Journal of Computational Physics, 213(2):777–802, April 2006.

[83] Satish C. Reddy and Lloyd N. Trefethen. Stability of the method of lines.

Numerische Mathematik, 62(1):235–267, 1992. 10.1007/BF01396228.

[84] W.H Reed and T.R. Hill. Triangular mesh methods for the neutron transport

equation. 1973.

[85] R. A. Renaut. Two-step runge-kutta methods and hyperbolic partial differential

equations. Mathematics of Computation, 55(192):pp. 563–579, 1990.

[86] L. F. Richardson. The approximate arithmetical solution by finite differences

of physical problems involving differential equations, with an application to the

stresses in a masonry dam. Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or Physical Character,

210:pp. 307–357, 1911.

[87] Gerard R. Richter. An explicit finite element method for the wave equation.

Appl. Numer. Math., 16(1-2):65–80, December 1994.

[88] Y. Saad. Analysis of some krylov subspace approximations to the matrix ex-

ponential operator. SIAM Journal on Numerical Analysis, 29(1):pp. 209–228,

1992.



131

[89] S. Schomann, N. GoÌ^ anddel, T. Warburton, and M. Clemens. Local timestep-

ping techniques using taylor expansion for modeling electromagnetic wave prop-

agation with discontinuous galerkin-FEM. Magnetics, IEEE Transactions on,

46(8):3504 –3507, August 2010.

[90] Jie Shen and Li-Lian Wang. Error analysis for mapped legendre spectral and

pseudospectral methods. SIAM Journal on Numerical Analysis, 42(1):326–349,

January 2005. ArticleType: research-article / Full publication date: 2005 /

Copyright c� 2005 Society for Industrial and Applied Mathematics.

[91] Y. Shi, L. Li, and C.H. Liang. Multidomain pseudospectral time-domain algo-

rithm based on super-time-stepping method. Microwaves, Antennas and Prop-

agation, IEE Proceedings -, 153(1):55 – 60, February 2006.

[92] A. Solomonoff and E. Turkel. Global properties of pseudospectral methods.

Journal of Computational Physics, 81(2):239 – 276, 1989.

[93] Hillel Tal-Ezer. A pseudospectral legendre method for hyperbolic equations with

an improved stability condition. Journal of Computational Physics, 67(1):145

– 172, 1986.

[94] T. Toulorge and W. Desmet. CFL conditions for runge-kutta discontinu-

ous galerkin methods on triangular grids. Journal of Computational Physics,

230(12):4657 – 4678, 2011.

[95] T. Toulorge and W. Desmet. Optimal Runge–Kutta schemes for discontinuous

galerkin space discretizations applied to wave propagation problems. Journal

of Computational Physics, 231(4):2067–2091, February 2012.



132

[96] Lloyd N. Trefethen and Manfred R. Trummer. An instability phenomenon in

spectral methods. SIAM Journal on Numerical Analysis, 24(5):pp. 1008–1023,

1987.

[97] F. X. Trias and O. Lehmkuhl. A self-adaptive strategy for the time integration

of navier-stokes equations. Numerical Heat Transfer, Part B: Fundamentals,

60(2):116–134, 2011.

[98] P. J. van der Houwen. Explicit runge-kutta formulas with increased

stability boundaries. Numerische Mathematik, 20(2):149–164, 1972.

10.1007/BF01404404.

[99] Michael Ng W.-B. Liu and Zhong-Ci Shi, editors. Spatial Resolution Properties

of Mapped Spectral Chebyshev Methods. Science Press (Beijing), 2007. p. 179-

188.

[100] T. Warburton and T. Hagstrom. Taming the CFL number for discontinuous

galerkin methods on structured meshes. SIAM J. Numer. Anal., 46(6), Septem-

ber 2008.

[101] Timothy Warburton. Analysis of low storage curvilinear discontinuous galerkin

method for wave problems. Preprint, Rice University.

[102] Ben yu Guo and Hong-Li Jia. Spectral method on quadrilaterals. Math. Com-

put., 79(272):2237–2264, 2010.


	Abstract
	List of Illustrations
	List of Tables
	Introduction
	Time integration for DG Discretizations of Hyperbolic Conservation Laws
	Stiffness in High Order Methods
	Operator Modification
	Optimal Runge-Kutta Methods

	Discontinuous Galerkin for Friedrichs' System
	Introduction 
	Mesh and Solution Space
	A Representative Problem 
	The Equations and Weak Formulation
	Boundary Conditions


	Stiffness Reduction through Operator Modification
	Introduction
	Mapped Methods
	Weak Formulation
	Numerical Results
	Effect on Spectrum
	h-convergence

	Explanation of Results

	Covolume Filtering
	Numerical Results

	Flux Filtering
	Flux Filtering in Two Dimensions
	Numerical Results

	Comparisons and Conclusions

	Theory
	Notation and Preliminary Results
	Unmodified and Mapped Theory
	Stability
	Semidiscrete Stability
	Fully Discrete Stability

	Error Estimates

	Covolume Filtering

	Time-stepping for DG
	Optimal Low-Storage Runge-Kutta Methods
	Adams-Bashforth Methods
	Numerical Results
	Conclusions

	Conclusions and Future Work
	Implementation
	Nodal Element
	Index maps
	Polynomial Basis
	Precomputing Operators 
	Time-stepping
	Covolume Filtering
	Flux Filtering
	A Complete Script

	Bibliography

