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The fundamental processes of biological development are governed by multiple signaling molecules
that create non-uniform concentration profiles known as morphogen gradients. It is widely believed
that the establishment of morphogen gradients is a result of complex processes that involve diffu-
sion and degradation of locally produced signaling molecules. We developed a multi-dimensional
discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It
provided a full analytical description for stationary profiles and for important dynamic properties
such as local accumulation times, variances, and mean first-passage times. The role of discreteness in
developing of morphogen gradients is analyzed by comparing with available continuum descriptions.
It is found that the continuum models prediction about multiple time scales near the source region
in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that
view the degradation process as an effective potential, the effect of dimensionality on establishment
of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion
processes are modified with changing the size of the source region. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4866453]

I. INTRODUCTION

One of the most important biological phenomena is a de-
velopment of multi-cellular organisms from embryos with ini-
tially finite number of genetically identical cells. It is now
well established that such spatial patterning and tissue for-
mation is controlled by multiple signaling molecules that are
called morphogens.1–5 These signaling molecules create non-
uniform concentration profiles, which are also known as mor-
phogen gradients, that serve as local dose-dependent gene
regulators for embryo cells. Depending on the concentra-
tion of morphogens different genes are turned on or turned
off, producing morphologically different cells.2, 3 The origi-
nal ideas of reaction-diffusion control in biological develop-
ment have been proposed more than 60 years ago by Turing,6

and in recent years a significant number of quantitative stud-
ies that uncovered important properties of morphogen gradi-
ents in various biological systems have been presented.7–18

However, our understanding of mechanisms of formation
of signaling molecules profiles in embryos is still quite
limited.19

To explain complex processes that determine the estab-
lishment of morphogen gradients several ideas have been
discussed.19 But the most popular proposed mechanism is
based on a so-called synthesis-diffusion-degradation (SDD)
model.7, 20 It assumes that morphogen molecules are synthe-
sized in some localized region of the embryo, then they dif-
fuse along the cellular lines, and with some probability they
can associate to receptors on cells surfaces, from which they
are eventually degraded and removed from the system.5, 9, 10

This model has been widely used, although with a variable

success, for analyzing dynamics of signaling molecules in dif-
ferent biological systems.7–10, 12, 14

In most cases, theoretical analysis of the morphogen
gradient formation employs one-dimensional continuum ver-
sions of the SDD model.21–25 A more realistic description
of signaling processes that takes into account the struc-
ture of embryo requires the application of multi-dimensional
models.26 The importance of dimensionality has been also
pointed out in recent experiments on diffusion of morphogens
in extracellular space where geometric obstacles strongly af-
fect trajectories of signaling molecules.19, 27 Recently, the
spherically symmetric continuum SDD model has been in-
vestigated for multi-dimensional situations.28, 29 This elegant
theoretical method analyzed the kinetics of formation of mor-
phogen gradients, and it also provided analytical expressions
for stationary concentration profiles and for local accumu-
lation times (LATs), which are defined as average times to
reach locally the steady-state concentrations. One of the most
surprising observations of this work is a prediction that for
two-dimensional and three-dimensional systems, in contrast
to one-dimensional models, there are multiple time scales for
dynamics of formation of signaling molecules concentration
profiles for the spatial region near the source.28 It suggested
that the dimensionality might play an important role in dy-
namics of these reaction-diffusion processes.

Analyzing the application of the results from continuum
SDD models one has to remember that the continuum pic-
ture is an approximation which does not work for all set of
parameters. The fundamental biological processes of mor-
phogen gradients development are intrinsically discrete. The
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chemical reactions of degradation of signaling molecules
are taking place at specific locations that are spatially sepa-
rated from each other. Thus the comprehensive description of
these complex phenomena must be based on a discrete-state
stochastic approach. The continuum analysis is a special lim-
iting case of more general discrete method which can only
be applied when the characteristic length scales of the gradi-
ents are much larger than the average distance between recep-
tors where the degradation is taking place. The discrete-state
stochastic version of the SDD model on semi-infinite interval
has been recently introduced by one of us.30 It has been also
shown that the local accumulation times can be well approx-
imated via the corresponding mean first-passage times, and
the degradation process can be viewed as an effective poten-
tial that drives morphogens away from the source.30

In this paper we develop a discrete-state stochastic frame-
work for description of SDD models with strongly localized
sources in all spatial dimensions. This analysis allows us to
compute stationary-state density profiles for morphogens as
well as transient dynamic properties such as local accumu-
lations times, mean first-passage times, and variance of the
local accumulation times. It provides a direct way for mea-
suring the effect of dimensionality in these reaction-diffusion
processes. By comparing the obtained results with predictions
from continuum models the role of discreteness is also inves-
tigated. The existence of multiple times scales in dynamics
of morphogen gradients formation for two-dimensional and
three-dimensional cases is critically tested, and it is found that
there is only one time scale for all distances from the source.
In addition, we generalized our approach for the systems with
extended source regions, which allowed us to analyze the ef-
fect of the producing region size on dynamics of morphogen
gradients formation.

The paper is organized as follows. In Sec. II the general
d-dimensional discrete-state stochastic SDD model is pre-
sented and analyzed. The extended version of the model for
source regions of variable size is given in Sec. III. Summary
and concluding remarks are made in the final Sec. IV, while
some detailed calculations are presented in Appendices A
and B.

II. A DISCRETE-STATE STOCHASTIC SDD MODEL
IN GENERAL DIMENSIONS

Let us consider a general discrete-state stochastic SDD
model in d spatial dimensions as illustrated in Fig. 1 for
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FIG. 1. A schematic of the discrete-state SDD model for establishment of
morphogen gradients in d dimensions. A specific case of d = 2 is presented.
Signaling molecule is generated at the origin (shown in red) with a rate Q.
Particles can also diffuse along the lattice to the neighboring sites with a rate
u, or they might be degraded with a rate k.

d = 2. Any lattice site in the d-dimensional space is char-
acterized by d coordinates, namely, �n = (n1, n2, . . . , nd ).
We assume that morphogens are produced at the origin �n0

= (0, 0, . . . , 0) with a time-independent rate Q. Then, from
any lattice site �n = (n1, n2, . . . , nd ) they can jump to any
nearest neighbor site with a diffusion rate u. The particle can
also be degraded at any position with a rate k: see Fig. 1. The
continuum limit is realized when u � k, i.e., when the dif-
fusion rate is much larger than the degradation rate. For con-
venience, we adopt here a single-molecule view of the pro-
cess, in which the concentration of signaling molecules is
equivalent to the probability of finding a single morphogen
particle at given site.30 We define a function P(n1, n2, . . . ,
nd; t) as the probability to find the particle at the position �n
= (n1, n2, . . . , nd ) at time t. The temporal evolution of these
probabilities is governed by a set of master equations,

dP (n1, n2, . . . , nd ; t)

dt
= u

∑
nn

P (n1, n2, . . . , nd ; t)

− (2ud + k)P (n1, n2, . . . , nd ; t),

(1)

where
∑

nn is an operator corresponding to summing over all
nearest neighbors, namely,∑

nn

P (n1, n2, . . . , nd ; t)

= P (n1 − 1, n2, . . . , nd ; t)

+P (n1 + 1, n2, . . . , nd ; t)

+P (n1, n2 − 1, . . . , nd ; t)

+P (n1, n2 + 1, . . . , nd ; t) + · · · . (2)

For the origin site we have a slightly different master equa-
tion,

dP (0, 0, . . . ; t)

dt
= Q + u

∑
nn

P (0, 0, . . . ; t)

− (2du + k)P (0, 0, . . . ; t) (3)

with∑
nn

P (0, 0, . . . ; t)

= P (−1, 0, . . . , 0; t) + P (1, 0, . . . , 0; t)

+P (0,−1, . . . , 0; t) + P (0, 1, . . . , 0; t) + · · · . (4)

At large times, these equations can be solved exactly, produc-
ing the stationary density profiles,

P (s)(n1, n2, . . . , nd )

= 2Qx|n1|+|n2|+...+|nd |
√

k2 + 4duk

= 2Q√
k2 + 4duk

× exp

(− | n1 | − | n2 | − . . . − | nd |
λ

)
, (5)
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where

x = (2du + k −
√

k2 + 4duk)/(2du), λ = −1/ ln x, (6)

and λ is a decay length. For d = 1, these expressions are re-
duced, as expected, to already known results.30

One can see that in the steady-state the density profile
is the exponentially decaying function with the decay length
being independent of the source production rate Q. Simi-
lar behavior has been observed in multi-dimensional con-
tinuum SDD models.28, 29 In our approach, the continuum
limit corresponds to the case when the diffusion rate is much
larger than the degradation rate, u � k. In this case we have
λ � √

(du/k). At another limit, for fast degradation rates, k
� u, the decay length is equal to λ � 1/ln (k/2du). The analy-
sis of Eqs. (5) and (6) suggests that increasing d leads to lower
probability to find the signaling molecules at the origin, while
at the same time the decay in the density profile is also slower.
There is an important difference between the predictions for
the decay length in the continuum and discrete SDD models.
We argue that λ is generally larger (∼√

d in the continuum
limit), and it might be important for interpretation of experi-
mental results in the formation of morphogen gradients.26

A. Local accumulation times

An important dynamic property of morphogen gradients
formation is local accumulation times. They are defined as av-
erage times at which the stationary density profile is achieved
at given spatial position. Berezhkovskii et al.21 have intro-
duced a method of calculating explicitly these quantities by
using local relaxation functions R(n1, n2, . . . , nd; t), which can
be written as

R(n1, n2, . . . , nd ; t)

= P (n1, n2, . . . , nd ; t) − P (s)(n1, n2, . . . , nd )

P (n1, n2, . . . , nd ; t = 0) − P (s)(n1, n2, . . . , nd )

= 1 − P (n1, n2, . . . , nd ; t)

P (s)(n1, n2, . . . , nd )
(7)

for the discrete-state multi-dimensional SDD models. The
physical meaning of the local relaxation function is that it
gives a measure of how close the system to the steady-
state conditions. It ranges from R = 1 at t = 0 to R = 0
when the system reaches the stationary state at given lo-
cation. Introducing the Laplace transform of this function,
R̃(n1, n2, . . . , nd ; s) = ∫ ∞

0 R(n1, n2, . . . , nd ; t)e−st dt , it can
be shown that the LATs are given by21

t(n1, n2, . . . , nd ) = −
∞∫

0

t
∂R(n1, n2, . . . , nd ; t)

∂t
dt

=
∞∫

0

R(n1, n2, . . . , nd ; t)dt

= R̃(n1, n2, . . . , nd ; s = 0). (8)

From this relation the explicit expressions for the local accu-
mulation times can be found:

t(n1, n2, . . . , nd ) = (2du + k)

(k2 + 4duk)

+ |n1 | + |n2 | + . . . + |nd |√
k2 + 4duk

. (9)

To compare our results with continuum SDD mod-
els (which were analyzed for spherically symmetric
conditions),28, 29 it is convenient to consider a specific direc-
tion in space along a radial vector �r = (n1, n2, . . . , nd ) where
|n1| = |n2| = ... = |nd|. One can easily show that | n1 |= r√

d
,

where r is the radius of hypersphere enclosing the hypercube
of volume (2|n1|)d. This corresponds to a line of length 2|n1|,
a square of area 4|n1|2, and a cube of volume 8|n1|3 in one,
two, and three dimensions, respectively. Therefore, the equiv-
alent expression for the LAT at the distance r from the origin
is equal to

t(r) = (2du + k)

(k2 + 4duk)
+

( √
d√

k2 + 4duk

)
r. (10)

In the fast degradation limit, k � u, this equation simplifies
into

t(r) � 1

k
+ r

√
d

k
. (11)

In the fast diffusion case, u � k, we obtain

t(r) � 1

2k
+ r

2
√

uk
. (12)

The dependence of the LAT on the radial distance r for
1D, 2D, and 3D systems for various sets of parameters is il-
lustrated in Figs. 2–4. In one dimension, the expression for
the local accumulation time derived in the discrete-state SDD
model reads as

t(r) � 2u + k

k2 + 4uk
+ r√

k2 + 4uk
, (13)

while in the continuum SDD model it was shown that28, 29

t(r) � 1

2k
+ r

2
√

uk
. (14)

The last expression could also be obtained in the limit of very
large diffusion, u � k, from Eq. (13). These results are plot-
ted in Fig. 2. For fast diffusion rates the predictions from dis-
crete and continuum calculations, as expected, fully agree (see
Fig. 2(c)). The deviations between discrete and contin-
uum models start to appear for comparable diffusion and
degradation rates (Fig. 2(b)), and for fast degradation rates
(Fig. 2(a)) the local accumulation time for discrete case is
smaller for all range of distances except very close to the ori-
gin. In this regime the continuum model cannot be applied,
but the discrete-state approach is valid for analyzing reaction-
diffusion processes of morphogen gradients formation.

Similar calculations in two dimensions yield the follow-
ing expression for the LAT:

t(r) � 4u + k

k2 + 8uk
+

√
2r√

k2 + 8uk
. (15)
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FIG. 2. Local accumulation times in one dimension as a function of distance from the source r for discrete-state and continuum SDD models. (a) Fast
degradation rates, k = 1, u = 0.01; (b) comparable diffusion and degradation rates, k = u = 1; and (c) fast diffusion rates, k = 1, u = 100. The predictions for
the continuum model are taken from Refs. 28 and 29—see Eq. (14). Insets show the same plots for larger length scales.

The 2D continuum SDD model predicts the following
result:29

t(r) � r

2
√

uk

K1(r
√

k/u)

K0(r
√

k/u)
, (16)

where Km(x) is the mth order modified Bessel function of
the second kind. Note that taking the limit of u � k in

our theoretical approach in Eq. (15), which supposed to be
corresponding to the continuum limit, produces a different
expression,

t(r) � 1

2k
+ r

2
√

uk
. (17)
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FIG. 3. Local accumulation times in two dimensions as a function of distance from the source r for discrete-state and continuum SDD models. (a) Fast
degradation rates, k = 1, u = 0.01; (b) comparable diffusion and degradation rates, k = u = 1; and (c) fast diffusion rates, k = 1, u = 100. The predictions for
the continuum model are taken from Ref. 29—see Eq. (16). Insets show the same plots for larger length scales.
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FIG. 4. Local accumulation times in three dimensions as a function of distance from the source r for discrete-state and continuum SDD models. (a) Fast
degradation rates, k = 1, u = 0.01; (b) comparable diffusion and degradation rates, k = u = 1; and (c) fast diffusion rates, k = 1, u = 100. The predictions for
the continuum model are taken from Refs. 28 and 29—see Eq. (19). Insets show the same plots for larger length scales.

Fig. 3 presents these functions for different sets of parame-
ters. We can see that even for large diffusion rates (Fig. 3(c))
the predictions of discrete and continuum models do not fully
agree, but for large distances from the source the differences
are small. Again, as for 1D case, the deviations between two
approaches start to build up with decreasing the diffusion rate
(Fig. 3(b)), and for large degradation rates the LATs for the
discrete-state model are significantly smaller for most dis-
tances, except for very small r (Fig. 3(a)).

For 3D systems the expressions for the local accumula-
tion times in the discrete SDD model are given by

t(r) � 6u + k

k2 + 12uk
+

√
3r√

k2 + 12uk
. (18)

The continuum description of the same reaction-diffusion
processes yields,28, 29

t(r) � r

2
√

uk
. (19)

For this case, the LATs are presented in Fig. 4. The observed
trends are very similar to 2D systems, but with stronger de-
viations between discrete and continuum predictions. Again,
even in the continuum limit our theoretical predictions for
the LAT do not agree with calculations from continuum
SDD models,28, 29 although for large r the differences are not
significant.

Comparing local accumulation times for discrete-state
and continuum SDD models, the important observation can
be made that, for all regimes the continuum models in both
2D and 3D predict t(r = 0) = 0, while in the discrete-state
analysis this time is always finite. Since at t = 0 there are
no morphogens in the system and the LAT is associated with
the time to reach the stationary density at given position, it is

expected that this quantity to be finite even at the origin. It
seems that predictions of the continuum models do not sat-
isfy this requirement for d > 1, suggesting that they cannot
properly describe reaction-diffusion processes of formation
of signaling molecules profiles close to the origin, even for
conditions when the continuum approximation should hold.
No such problems exist for the discrete-state approach. This
is the main reason for predicting multiple time scales in the
continuum description (for d > 1) of the development of sig-
naling molecules profiles. In the discrete model there is one
time scale, given by the LAT, at all distances. The main reason
for this discrepancy is that current continuum SDD models
assume that there are spherically symmetric solutions at all
length scales.28, 29 Obviously, very close to the source this is
not working. Note that one could solve the problem in Carte-
sian coordinates in the continuum limit and it does show that
solutions are not spherically symmetric near the source, in
agreement with our arguments.

It is interesting also to investigate the role of dimen-
sionality in the establishment of morphogen gradients. For
fast degradation the discrete model predictions are given by
Eq. (11), while in the fast diffusion limit they are given by
Eq. (12). The dependencies of the local accumulation times
on dimension d for the discrete and continuum SDD mod-
els are plotted in Fig. 5 for the sites that are far away from
the source (r � 0), and in Fig. 6 for the sites that are close
to the origin (r = 0). Surprisingly, the results are quite dif-
ferent. For fast degradation rates, the LAT is increasing with
d for the sites not so close to the source, while at the origin
and closest sites the LAT is slowly decreasing (compare up-
per plots in Figs. 5 and 6). A similar behavior is observed
for comparable diffusion and degradation rates, although the
effect is getting weaker (see middle plots in Figs. 5 and 6).
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FIG. 5. Local accumulation times at the position r = 10 as a function of
spatial dimensions. Upper curve corresponds to the fast degradation rates, k
= 1, u = 0.01. The middle curve is for comparable diffusion and degradation
rates, k = u = 1. The lower curve describes the fast diffusion regime, k = 1,
u = 100.
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FIG. 6. Local accumulation times at the origin r = 0 as a function of spa-
tial dimensions. Upper curve corresponds to the fast degradation rates, k =
1, u = 0.01. The middle curve is for comparable diffusion and degradation
rates, k = u = 1. The lower curve describes the fast diffusion regime, k = 1,
u = 100.

For continuum limit, u � k, the LATs in both positions be-
come independent of the dimension, as correctly predicted
by Eq. (12).

The following arguments can be given to understand this
behavior in the discrete SDD model. At t = 0 the signaling
molecules start at the origin, r = 0. The local accumulation
time is the average time to reach the steady-state density at
a given position, so it depends on possible pathways con-
necting the origin and any site at r > 0. Increasing the di-
mensionality produces more pathways so it takes longer time
if the diffusion is the rate limiting step. For this reason, the
LAT depends on d for diffusion rates comparable or smaller
than degradation, while for u � k there is no dependence on
the dimension—the degradation is a rate-limiting step in this
case. At sites close to the origin these diffusion pathways do
not play any role. But the stationary density at these sites is
also smaller for larger d, so it is faster to reach the steady-state
concentration with increasing d when the diffusion is rate
limiting.

B. Mean first-passage times

It has been argued before that in order to understand
mechanisms of formation of morphogen gradients it is useful
to consider mean first-passage times (MFPTs) to reach spe-
cific locations for molecules starting from the origin.30 The
reason for this is the fact that first-passage events are the dom-
inating factors determining the local accumulation times at
large distances, at least for one-dimensional systems;30 the
explicit connections between these quantities have been re-
cently studied for d = 1.23 It is important to understand if
first-passage processes describe the morphogen gradient for-
mation in higher dimensions.

To compute MFPT we define f(n1, n2, . . . , nd; t) to be
a first-passage probability to reach for the first time the site
�n = (n1, n2, . . . , nd ) at time t if at t = 0 the particle started at
the origin. The temporal evolution of this function follows a
backward master equation,31

df (n1, n2, . . . , nd ; t)

dt
= u

∑
nn

f (n1, n2, . . . , nd ; t) − (2ud + k)f (n1, n2, . . . , nd ; t), (20)

where
∑

nn is the operator that sums over all nearest neighbors. Utilizing the Laplace transformations, we obtain

f̃ (n1, n2, . . . , nd ; s) = 2
√

a2 − 4d2u2y|n1|+|n2|+...+|nd |

(a − 2du + √
a2 − 4d2u2)y2|n1|+2|n2|+...+2|nd | − (a − 2du − √

a2 − 4d2u2)
, (21)

where

a = s + 2du + k, y = [a +
√

a2 − 4d2u2]/2ud. (22)

The conditional mean first-passage time to reach the site �n = (n1, n2, . . . , nd ) can be found from the following expression:

τ (n1, n2, . . . , nd ) = −
df̃ (n1,n2,...,nd ;s)

ds |s=0

f̃ (n1, n2, . . . , nd ; s)|s=0

. (23)



085102-7 H. Teimouri and A. B. Kolomeisky J. Chem. Phys. 140, 085102 (2014)

After some algebra, the corresponding expression for the MFPT is derived:

τ (n1, n2, . . . , nd ) = 1√
k2 + 4dku

[
− 2du + k√

k2 + 4dku

+ (2du + k + √
k2 + 4dku)z|n1|+|n2|+...+|nd | + (2du + k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |

(k + √
k2 + 4dku)z|n1|+|n2|+...+|nd | − (k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |

+ (|n1 | + |n2 | + . . . + |nd |)(2du + k + √
k2 + 4dku)z|n1|+|n2|+...+|nd |

(k + √
k2 + 4dku)z|n1|+|n2|+...+|nd | − (k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |

+ (|n1 | + |n2 | + . . . + |nd |)(2du + k − √
k2 + 4dku)z−|n1|−|n2|−...−|nd |

(k + √
k2 + 4dku)z|n1|+|n2|+...+|nd | − (k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |

]
, (24)

where z = [2du + k + √
k2 + 4duk]/2du. For fast degrada-

tion rate, k � u, we obtain a much simpler expression,

τ (n1, n2, . . . , nd ) � |n1 | + |n2 | + . . . + |nd | +1

k
, (25)

which for large radial distances, r � 1, can also be written as

τ (r) � r
√

d

k
. (26)

One can see that this expression agrees well with Eq. (11)
at large r. In the opposite limit of the fast diffusion rates
(continuum limit), u � k, one can show that the MFPTs are
equal to

τ (n1, n2, . . . , nd ) � |n1 | + |n2 | + . . . + |nd | +1

2
√

kud
. (27)

For r � 1, it modifies into

τ (r) � r

2
√

uk
, (28)

which asymptotically agrees with Eq. (12) at large distances.
These results again support the idea that main contribution to

the LAT at large distances from the origin is due to the MFPT,
extending the validity of this idea to all dimensions. This is
an important observation since the first-passage analysis is a
well developed mathematical tool that was already success-
fully employed for analyzing multiple physical, chemical, and
biological processes.31

To support arguments about the importance of the first-
passage events in dynamics of the morphogen gradient devel-
opment, the ratio of MFPT over LAT is plotted in Fig. 7 for
different sets of parameters. One can see that this ratio is al-
ways approaching 1 for large distances. Larger degradation
rates as well as higher dimensions lead to faster converging
to unity, while in the continuum limit (fast diffusion rates) the
effect of dimension disappears.

C. Effective potentials

Analyzing mechanisms of morphogen gradient forma-
tion suggested a new idea that degradation can be viewed
as an effective potential that drives the signaling molecules
away from the source.30 Thus morphogens are not simply
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FIG. 7. The ratio of MFPT over LAT as a function of distance from the source for different dimensions for the discrete-state SDD models. (a) Fast degradation
rates, k = 1, u = 0.01; (b) comparable diffusion and degradation rates, k = u = 1; and (c) fast diffusion rates, k = 1, u = 100.
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diffusing with equal probability in each direction, but their
motion is biased by this effective potential to move further
away from the source. This concept can be extended and ap-
plied for the multi-dimensional SDD models of creating sig-
naling molecules profiles.

The effective potential can be easily calculated from the
stationary profile, leading to

Ueff (n1, n2, . . . , nd )

� kBT ln P (s)(n1, n2, . . . , nd )

= kBT (|n1 | + |n2 | + . . . + |nd |) ln x, (29)

and it can be rewritten as follows (for i = 1, 2, . . . , d):

Ueff (n1, n2, . . . , nd ) �
d∑

i=1

Ueff (ni),

Ueff (ni) = kBT |ni | ln x. (30)

This equation has an important physical meaning suggesting
that the overall potential is a sum of potentials along each of
the coordinate axes. Consequently, in higher dimensions the
effective potential is stronger than one dimension. The reason
for this is that in higher dimensions morphogens can diffuse
in more directions and thus the probability of returning to the
origin decreases as ∼1/d. It also suggests that there is a con-
stant force component,

Fi = − ∂Ueff

∂ | ni | = −kBT ln x = kBT /λ, (31)

along each axis that drives signaling molecules away from the
source.

The importance of this concept can be seen in explain-
ing most dynamic properties of morphogen reaction-diffusion
systems. The linear dependence of the LAT on distances from
the sources [see Eq. (9)] is the consequence of the effec-
tive potential that changes the unbiased diffusion of mor-
phogen molecules into a driven motion. Similarly, the linear
dependencies of the MFPT on distances have the origin: see
Eq. (24). It also provides an alternative explanation for de-
pendence of the LAT on dimension for sites near the source
(Fig. 6): increasing d makes this potential stronger so it drives
particles faster to their destinations. The same reasoning can
be used to understand why the MFPTs approximate the LAT
better at higher dimensions or at faster degradations (Fig. 7).

D. Variance of local accumulation times

The advantage of presented theoretical method is that
it allows us to calculate all dynamic properties of the mor-
phogen gradient formation. To illustrate this, let consider
higher moments of the local accumulation times. The LAT
itself is the first moment as indicated in Eq. (8). The second
moment, which is a mean-squared local accumulation time,
can be also calculated from the local relaxation function,

〈t2(n1, n2, . . . , nd )〉 = −
∞∫

0

t2 dR(n1, n2, . . . , nd ; t)

dt
dt

= −2
dR̃(n1, n2, . . . , nd ; s)

ds |s=0
. (32)

Substituting the explicit expression for R̃(n1, n2, . . . , nd ; s)
we obtain,

〈t2(n1, n2, . . . , nd )〉

= 2(|n1 | + |n2 | + . . . + |nd |)2 − 2

(k2 + 4duk)

+ 4(2du + k)(|n1 | + |n2 | + . . . + |nd |)
(k2 + 4duk)3/2

+ 6(2du + k)2

(k2 + 4duk)2
. (33)

It can be shown that generally the mth moment of the LAT is
given by

〈tm(n1, n2, . . . , nd )〉

= (−1)m−1m
dm−1R̃(n1, n2, . . . , nd ; s)

dsm−1 |s=0
. (34)

The explicit forms for the first and second moments of the
LAT allow us to calculate a variance, which gives a measure
of fluctuations in the local accumulation times. The variance
of the local accumulation time is equal to

σ (n1, n2, . . . , nd )

=
√

〈t2〉 − 〈t〉2

=
[

(|n1 | + |n2 | + . . . + |nd |)2 − 2

(k2 + 4duk)

+ 2(2du + k)(|n1 | + |n2 | + . . . + |nd |)
(k2 + 4duk)3/2

+ 5(2du + k)2

(k2 + 4duk)2

]1/2

. (35)

In terms of the radial distance r the variance can be written as

σ (r) =
[

dr2 − 2

(k2 + 4duk)
+ 2r

√
d(2du + k)

(k2 + 4duk)3/2
+ 5(2du + k)2

(k2 + 4duk)2

]1/2

.

(36)

In the limit of fast diffusion rates (continuum limit) the ex-
pression for the variance is simpler:

σ (r) �
√

5

2k
+ r

2
√

5uk
. (37)

This result implies that the variance becomes independent of
the dimension for u � k. For the case of the fast degradation
rates (k � u) the variance behavior is different:

σ (r) �
√

dr2 + 2r
√

d + 3

k
. (38)

In this limit the variance increases with d but becomes inde-
pendent of the diffusion rate.

The variances normalized with respect to the LAT are
presented in Fig. 8. We can see that at large distance the ra-
tio σ (r)/t(r) is always approaching unity. The increase in the
degradation rates lowers the variance, while increasing the
diffusion rate makes the system more noisy. At fast degra-
dation rates, increasing the dimension lowers the variance
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FIG. 8. The ratio of variance over LAT as a function of distance from the source for different dimensions for the discrete-state SDD models. (a) Fast degradation
rates, k = 1, u = 0.01; (b) comparable diffusion and degradation rates, k = u = 1; and (c) fast diffusion rates, k = 1, u = 100.

(Fig. 8(a)), while for large diffusion rates there is no depen-
dence on d. The importance of these observations is that they
suggest possible ways of how nature might control noise in
morphogen gradient systems.

III. A DISCRETE-STATE STOCHASTIC SDD MODEL
WITH EXTENDED SOURCE REGION

In the model discussed before it was assumed that the
source of signaling molecules is sharply localized at the
origin. In real systems the morphogen production is more
delocalized,1, 2, 7 and it raises a question of how the size of
the source region affects the dynamics of morphogen gra-
dient formation. To answer this question, the original d-
dimensional discrete-state stochastic SDD model is general-
ized to take into account this effect by assuming that mor-
phogens can be produced from the discrete point sources dis-
tributed inside a hypercubic of volume (2R)d in d-dimensional
space. This corresponds to a line of length 2R, a square of area
4R2, and a cube of volume 8R3 in one, two, and three dimen-
sions, respectively. It is assumed that the production rate at
each site is equal to Q.

It is convenient to introduce a propagator function G(m1,
m2, . . . , md; t0|n1, n2, . . . , nd; t) defined as the conditional
probability to find the particle at site �n = (n1, n2, . . . , nd )
if it starts at t0 at site �m = (m1,m2, . . . , md ).22 Then the
probability P(n1, n2, . . . , nd; t) of finding the particle at site
�n = (n1, n2, . . . , nd ) at time t can be expressed as a superpo-
sition of the corresponding propagators:

P (n1, n2, . . . , nd ; t)

=
R∑

m1=−R

R∑
m2=−R

. . .

R∑
md=−R

×
t∫

0

G(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)dt0, (39)

where the summation is performed over the region of space
where particle sources are located. The corresponding mas-
ter equations for temporal evolution of probabilities can be
solved in the large-time limit (see Appendix A), leading to

P (s)(n1, n2, . . . , nd )

= 2Q�d

√
k2 + 4duk

× exp

(− |n1 | − |n2 | − . . . − |nd |
λ

+ dR

λ

)
,

(40)

with x and λ defined in Eq. (6), while a new function � is
given by

� = xR+1 + xR − 2

x − 1
. (41)

It characterizes the extended source region. In the case of
R = 0 we get � = 1 and the results of Sec. II are fully recov-
ered. In general, � can be a complex function that strongly
depends on geometry and distribution of morphogen sources.

To simplify calculations, here we assumed that the mor-
phogen molecules are produced in the hypercubic region
around the origin, but our analysis can be easily extended
to geometrically more complex source regions. It is also im-
portant to note that our model differs from the continuum
SDD models where morphogens can be produced only at the
surface of the region of size R.28, 29 In our case, which is
much closer to the real situation, the sources of the signal-
ing molecules are distributed inside of the production region,
and morphogens can diffuse in the source area, cross into non-
productive region, and return back.

The local accumulation times for the discrete SDD model
with the extended source can be calculated following the same
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procedure as explained in Sec. II. It yields

t(n1, n2, . . . , nd ) = 1√
k2 + 4duk

[
2du + k√
k2 + 4duk

+ |n1 |

+ |n2 | + . . . + |nd | −dR

+ d
(R + 1)xR+1 + RxR − x�

�(x − 1)

]
, (42)

which at the distance r (along the vector �r = (n1, n2, . . . , nd )
with |n1| = |n2| = ... = |nd|) is modified into

t(r) = d√
k2 + 4duk

[
2du + k

d
√

k2 + 4duk
+ r√

d
− R

+ (R + 1)xR+1 + RxR − x�

�(x − 1)

]
. (43)

In the limit of fast degradation rates, k � u, the resulting ex-
pression is simpler,

t(r) � 1

k
+ d

k

(
r√
d

− R

)
, (44)

which for R = 0 reduces, as expected, to Eq. (11). For the spe-
cial position on the surface of the producing area at the edge
of the hypercube, r = R

√
d, it predicts even simpler expres-

sion t(R
√

d) � 1/k. For fast diffusion rates (u � k) one can
show that the LAT is given by

t(r) � 1

2k
+

√
d

2
√

uk

[(
r√
d

− R

)
+ 2R2

2R + 1

]
, (45)

which for R = 0 reduces to Eq. (12).
The LATs at the surface of the production area for dif-

ferent dimensions are plotted in Fig. 9. One can see that for
large degradation rates the LATs become independent of d

(Fig. 9(a)), while for larger diffusion rates there is a depen-
dence on the dimensionality. It can be explained using the fol-
lowing arguments. At very large k, fluxes from other source
sites do not reach this specific location—particles are de-
graded before they can diffuse to neighboring sites. In this
case the LAT should not depend on R and on d—only local
dynamics at the given site is important. For faster diffusion
(Figs. 9(b) and 9(c)) the role of fluxes from neighboring sites
becomes more important so the dependence on R will show
up. But the contribution from the sites that are further away
will be much smaller. As a result there is a saturation behavior
at R � 1. In addition, increasing the dimension leads to higher
stationary concentrations so it takes more time to reach the
steady-state conditions, and this explains why the LATs are
the highest for 3D and the lowest for 1D systems.

Our analysis can also be extended for computation of
mean first-passage times for the systems with extended pro-
duction volume. The explicit formulas for MFPT are quite
bulky and they are fully derived in Appendix B. Here we
present simpler limiting expressions. For slow degradation
(conditions close to the continuum limit) we obtain

τ (n1, n2, . . . , nd )

� (|n1 | + |n2 | + . . . + |nd | +1 − dR)/2
√

kud, (46)

which for the single-point source (R = 0) reduces to Eq. (27).
For the opposite limit of slow diffusion rates, k � u, the
MFPT depends only on the degradation rate,

τ (n1, n2, . . . , nd )

� (|n1 | + |n2 | + . . . + |nd | +1 − dR)/k, (47)
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which also for the case of R = 0 is identical to Eq. (25). In
both limiting cases MFPTs decrease for larger production ar-
eas since there are source sites closer to the given position.

Varying the size of the production region modifies also
the effective potential that morphogen molecules experience
in the system due to degradation. From the stationary densities
we obtain,

Ueff (n1, n2, . . . , nd ) � kBT �d (|n1 | + |n2 |
+ . . . + |nd | −dR) ln x, (48)

which can be rewritten as

Ueff (n1, n2, . . . , nd ) �
d∑

i=1

[Ueff (ni) − Ueff (R)], (49)

where we defined (for i = 1, 2, . . . , d)

Ueff (ni) = kBT �d |ni | ln x, Ueff (R) = kBT �dR ln x.

(50)

The corresponding force along the axis i that effectively
pushes morphogens away from the source is given by

Fi = − ∂Ueff

∂ |ni | = −kBT �d ln x = kBT �d/λ, (51)

leading to stronger forces with increasing the size of the
producing area.

IV. SUMMARY AND CONCLUDING REMARKS

We developed a multi-dimensional discrete-state stochas-
tic theoretical framework for understanding reaction-diffusion
processes of morphogen gradients formation. The approach
provides a full analytical description of stationary state and
dynamic properties of complex systems where signaling
molecules profiles are created. It allowed us to fully an-
alyze the role of discreteness by comparing with current
continuum theoretical models, as well as the effect of the
dimensionality.

It is found that at large times the system will reach sta-
tionary exponential density profiles with the decay length
that increases with the dimension, in contrast to the con-
tinuum methods which predict the decay length to be inde-
pendent of d. The differences between two approaches be-
come larger in analyzing dynamic properties such as the lo-
cal accumulation times that describe the relaxation to the
stationary-state behavior. Continuum models predict that the
LAT is approaching zero at the source, resulting in multi-
ple time scales that control dynamics of the system. In con-
trast, our calculations suggest that the local accumulation
times are always finite and they provide the only time scale
to describe the kinetics of morphogen gradients formation.
Thus, it is argued that current spherically symmetric con-
tinuum models cannot be used in analyzing these reaction-
diffusion dynamics at distances closer to the source, while
our discrete approach does not have any problems. It also
shows that there is no advantage in using continuum mod-
els to describe the formation of signaling molecules profiles
since the discrete-state approach allows for relatively sim-

ple fully analytical solutions for all dynamic properties in all
dimensions.

From the presented discrete method an interesting depen-
dence of dynamic properties on dimensions is observed. It is
found that for sites close to the source, when the degrada-
tion is faster than the diffusion, the LAT times decrease with
the dimension, while for regions far away form the source
the dependence is reversed. At the same time, for large dif-
fusion rates no effect is observed at any distance. It is ex-
plained by accounting for possible pathways connecting the
source and the given location in the system. We also ana-
lyzed another dynamic property, mean first-passage times. It
is shown that at large distances from the source the MFPT
provides an excellent approximation for the LAT, and the ap-
proximation is better for higher dimensions and larger degra-
dation rates, while at the continuum limit (fast diffusion) there
is no dependence on d and the approximation does not work
as well.

The concept that degradation processes can be viewed as
an effective potential that pushes signaling molecules away
from the source has been extended to multi-dimensional sys-
tems. It is found that increasing the dimension makes this po-
tential stronger, and this simple idea was powerful enough to
explain most trends in dynamic properties, such as the lin-
ear dependence of the LAT and MFPT on the distances and
the effect of dimensions. In addition, the method allowed
us to compute higher moments of the local accumulation
times, and specific calculations have been made for estima-
tion of variances. Finally, we extended our method for ana-
lyzing reaction-diffusion systems with variable range of pro-
duction region by explicitly estimating all dynamic and sta-
tionary properties and their dependencies of the size of the
source volume and dimensions.

It was argued that the presented discrete-state stochas-
tic approach allows to capture all relevant physical-chemical
properties of the development of morphogen gradients. The
main success of the method is a full analytical description
of all involved processes at all times and distances. An-
other advantage is that other biochemical and biophysical pro-
cesses can be consistently incorporated. For example, it will
be crucial to extend the models to take into account more
complex phenomena such as non-uniform production rates,
cooperative mechanisms of degradation, and possible bind-
ings/unbindings of morphogens to other molecules in the sys-
tem. It will be also very important to test these theoretical
ideas in experimental studies.
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APPENDIX A: CALCULATIONS OF STATIONARY
DENSITY PROFILES FOR THE SYSTEM WITH
EXTENDED PRODUCTION VOLUME

In Sec. III we introduced the propagator or Green
function, G(m1, m2, . . . , md; t0 = 0|n1, n2, . . . , nd; t), that
characterizes the system with extended range of morphogen
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production. Its temporal evolution is governed by the following master equation:

dG(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)

dt
− u

∑
nn

G(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)

+ (2ud + k)G(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t) = Qδ(n1 − m1)δ(n2 − m2) . . . δ(nd − md ), (A1)

where δ(x) is a Kronecker delta and
∑

nn is the operator that sums over the nearest neighbors,∑
nn

G(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t) = G(m1,m2, . . . , md ; t0|n1 − 1, n2, . . . , nd ; t)

+G(m1,m2, . . . , md ; t0|n1 + 1, n2, . . . , nd ; t) + G(m1,m2, . . . , md ; t0|n1, n2 − 1, . . . , nd ; t) + · · · . (A2)

Equation (A1) can be rewritten as

L̂G(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t) = δ(n1 − m1)δ(n2 − m2) . . . δ(nd − md ), (A3)

with L̂ defined as an operator acting on the Green function. Here, the Green function can be regarded as an auxiliary function
which satisfies the appropriate boundary conditions generated by a singularly point source located at �m = (m1,m2, . . . , md ).
The corresponding Green function for the steady state reads then

G(s)(m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t → ∞) = 2Qx|n1|−|m1|+|n2|−|m2|+...+|nd |−|md |
√

k2 + 4duk
. (A4)

Now we can calculate probability function defined in Eq. (39) by summing over the source region,

P (s)(n1, n2, . . . , nd ) = 2Qx|n1|+|n2|+...+|nd |
√

k2 + 4duk

R∑
m1=−R

R∑
m2=−R

. . .

R∑
md=−R

x−|m1|−|m2|−...−|md |. (A5)

The summation over m1, . . . , md can be performed in the following way:

R∑
m1=−R

x−|m1| = 2
R∑

m1=0

x−m1 − 1 = x−R(xR + xR+1 − 2)

x − 1
. (A6)

Substituting this result into Eq. (A5) yields

P (s)(n1, n2, . . . , nd ) = 2Qx|n1|+|n2|+...+|nd |−dR

√
k2 + 4duk

(
xR + xR+1 − 2

x − 1

)d

= 2Q�dx|n1|+|n2|+...+|nd |−dR

√
k2 + 4duk

. (A7)

APPENDIX B: CALCULATIONS OF MEAN FIRST-PASSAGE TIMES FOR THE SYSTEM WITH EXTENDED
PRODUCTION VOLUME

Similarly to the approach explained in Appendix A, we define F(m1, m2, . . . , md; t0|n1, n2, . . . , nd; t) as a first-passage conditional
probability to reach for the first time the site �n = (n1, n2, . . . , nd ) if at t0 the particle starts at �m = (m1,m2, . . . , md ):

dF (m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)

dt
= u

∑
nn

F (m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)

− (2ud + k)F (m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t). (B1)

Here again
∑

nn is the sum operator explained in Eq. (A2). The corresponding mean first-passage probability can be expressed
as a sum over these propagators,

f (n1, n2, . . . , nd ; t) =
R∑

m1=−R

R∑
m2=−R

. . .

R∑
md=−R

t∫
0

F (m1,m2, . . . , md ; t0|n1, n2, . . . , nd ; t)dt0. (B2)

It can be shown that

f̃ (n1, n2, . . . , nd ; s)

= 2
√

a2 − 4d2u2y
|n1|+|n2|+...+|nd |−dR

1

�d
1 (a − 2du + √

a2 − 4d2u2)y2|n1|+2|n2|+...+2|nd |−2dR

1 − �d
2 (a − 2du − √

a2 − 4d2u2)
, (B3)
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where we defined

�1 =
(

yR+1
1 + yR

1 − 2

y1 − 1

)
, �2 =

(
yR+1

2 + yR
2 − 2

y2 − 1

)
, (B4)

and

y1 = (a + √
a2 − 4d2u2)

2du
, y2 = (a − √

a2 − 4d2u2)

2du
, a = s + 2du + k. (B5)

The MFPT, to reach the site �n = (n1, n2, . . . , nd ), can be found from the following expression:

τ (n1, n2, . . . , nd ) = −
df̃ (n1,n2,...,nd ;s)

ds |s=0

f̃ (n1, n2, . . . , nd ; s)|s=0

. (B6)

The final expression is given by

τ (n1, n2, . . . , nd ) = 1√
k2 + 4dku

[
− 2du + k√

k2 + 4dku

+ 	d
1 (2du + k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR + 	d
2 (2du + k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

	d
1 (k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR − 	d
2 (k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

+ 	d
1 (|n1 | + |n2 | + . . . + |nd | −dR)(2du + k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR

	d
1 (k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR − 	d
2(k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

+ 	d
2(|n1 | + |n2 | + . . . + |nd | −dR)(2du + k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

	d
1 (k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR − 	d
2(k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

+ 
1(2du + k + √
k2 + 4dku)z|n1|+|n2|+...+|nd |−dR − 
2(2du + k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

	d
1 (k + √

k2 + 4dku)z|n1|+|n2|+...+|nd |−dR − 	d
2 (k − √

k2 + 4dku)z−|n1|−|n2|−...−|nd |+dR

]
,

(B7)

where

z1 = (2du + k + √
k2 + 4duk)

2du
, z2 = (2du+k−√

k2+4duk)
2du

, (B8)

	1 =
(

zR+1
1 + zR

1 − 2

z1 − 1

)
, 	2 =

(
zR+1

2 +zR
2 −2

z2−1

)
, (B9)


1 = d	d−1
1

[
RzR+2

1 − RzR
1 − 2zR+1

1 + 2z1

(z1 − 1)2

]
, 
2 = d	d−1

2

[−RzR+2
2 +RzR

2 +2zR+1
2 −2z2

(z2−1)2

]
. (B10)
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The auxiliary functions 	1, 	2, 
1, and 
2 depend on the
range of the source production. In the case of R = 0 we obtain
	1 = 	2 = 1 and 
1 = 
2 = 0, and Eq. (B7) reduces, as
expected, to Eq. (24).
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