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Abstract

Dynamic Analysis of Stacked Rigid Blocks
by

Panayiotis C. Roussis

The dynamic behavior of structures of two stacked rigid blocks subjected to ground exci-
tation is examined. Assuming no sliding, the rocking response of the system standing free
on a rigid foundation is investigated. The analytical formulation of this nonlinear problem
is quite challenging. Its complexity is associated with the continuous transition from one
regime of motion to another, each one being governed by a different set of highly nonlin-
ear equations. The behavior is described in terms of the four possible modes of response
and impact between the two blocks, or the first block and the ground. The exact (nonlin-
ear) equations governing the rocking response of the system to horizontal and vertical
ground acceleration are derived for each mode. Furthermore, a comprehensive model gov-
erning impact is derived using classical impact theory. Finally, a computer program is

developed to approximate the response of the system under arbitrary base excitation.
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CHAPTER 1: Introduction

1.1 Motivation

It is common practice in structural engineering when dealing with structures under
dynamic excitation, to assume deformable continuum behavior. For a number of structural
systems, however, rigid body motion may well be a significant behavior mechanism. In
fact, the seismic behavior of block-like structures standing free on their foundation, such
as ancient monuments, petroleum storage tanks, water towers, nuclear reactors, concrete
radiation shields, computer-type equipment, and priceless artifacts, has been the object of

numerous researches for over a century.

Housner’s landmark study (1963) has provided the basic understanding on the rocking
response of a rigid block and sparked modemn scientific interest. Recent years have seen a
wealth of research papers on block-like structures, mainly devoted to the dynamics of a
single block. The dynamics of a such apparently simple system has proved quite compli-

cated and difficult to treat analytically due to its nonlinear nature.

As opposed to the case of a single rigid block, the dynamic behavior of multi-block struc-
tures has not been to date adequately studied. Even for the simplest case of multi-block
structures, i.e., two-block assemblies, the rocking problem becomes very complex. Such
configuration, in which one block is placed over the other, can be thought of as the model
of ancient Greek and Roman type structures composed of large heavy members that sim-
ply lie on top of each other, or a piece of machinery or statue placed on top of a block-like
base. This investigation was motivated by the concern of minimizing the damage of such

structural systems during major earthquakes. In this regard, it is particularly important to
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understand the dynamic behavior of these systems in order to check and possibly improve

their durability.

1.2 Statement of the Problem

This study deals with the dynamic behavior of structures consisting of two rigid blocks
that simply lie on top of each other. Under the assumptions of rigid foundation, large fric-
tion to prevent sliding, and point contact during a perfectly plastic impact, the only possi-
ble response mechanism under base excitation is rocking about the corners of the blocks.
In this regard, the most probable failure mechanism is the loss of equilibrium of the whole

structure or part of it.

The analytical formulation of this nonlinear problem is quite challenging. Its complexity is
associated with the continuous transition from one regime of motion to another, each one
being governed by a different set of highly nonlinear equations. The primary contribution
of this work is (a) the derivation of the exact (nonlinear) equations of motion for the sys-
tem considered undergoing base excitation, (b) the treatment of the impact problem by
deriving expressions for the post-impact angular velocities, and (c) the development of a
comprehensive computer program for calculating the response of the system to base exci-

tation.

1.3 Organization of the Work

A review of the literature on the dynamic behavior of rigid blocks is presented in Chapter
2, where a brief summary of recent investigations is given. For details of the earlier work,

the reader is referred to Ishiyama (1980).

Chapter 3 addresses the problem of a single rigid block. It serves as an introduction to the
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analysis of the two-block system studied extensively in Chapters 5 and 6. The analytical

models commonly used to study each mode of response are presented. Models include

those for the slide, rock, slide-rock and free-flight modes.

In Chapter 4, the dynamic behavior of rocking systems consisting of two blocks, one
placed on the top of the other, is examined. In particular, all different modes of response
are classified and criteria for initiation of motion are derived. For each mode of response,
the exact nonlinear equations of motion are derived and transition criteria between modes,

in the absence of impact, are outlined.

In Chapter 5, the impact problem is discussed. Impact plays an important role in the
dynamic analysis of the system, since impact is always accompanied by a mode transition.
Using the principle of conservation of angular momentum, expressions for the post-impact

angular velocities are derived.

Chapter 6 outlines a computer program developed for calculating the response of a two
stacked rigid block system to base excitation. The program solves for the response under
general conditions, considering all four modes of response, large angles of rotation,
impact, and arbitrary base excitation. The full nonlinear equations of moticn are integrated
for each mode using a fourth-order Runge-Kutta integration scheme, and any potential
transition between modes is automatically accounted for. To illustrate the practical appli-
cation of the program, the response of the system in free vibration and under earthquake

excitation has been computed for specific system parameters.

Finally, the summary and conclusions of this study are presented in Chapter 7.



CHAPTER 2: Literature Review

In almost every destructive earthquake in the Eastern Mediterranean and Middle Eastern
regions, free standing columns of Greek and Roman monuments and statues have survived
undamaged in earthquakes that have caused spectacular destruction around them. In some
cities in India, free-standing stone columns that supported heavy statues remained stand-
ing although at the end of the earthquake they were surrounded by heaps of debris that had
been seemingly more stable structures. Tall, slender stone pillars in graveyards have sur-
vived strong ground motion whereas box-like electric power transformers have rocked and
overturned. During the Chilean earthquakes of 1960, several golf-ball-on-a-tee type of ele-
vated water tanks survived the ground shaking whereas much more stable-appearing rein-
forced concrete elevated water tanks were severely damaged. It is clear that, the concept of
representing the effect of an earthquake by a certain szatic lateral force (percent g design)
may be quite misleading. In order to explain such anomalous behavior, the above-men-
tioned analysis of overturning of rigid blocks, proposed several decades ago, are inade-

quate, and it becomes necessary to consider the dynamics of the system.

Researchers have been interested in the rocking response of rigid structures as early as
1881. Before the advent of strong motion accelerographs, techniques were proposed for
estimating the intensity of ground shaking and predominant period associated with earth-
quakes based on observed overthrow of tombstones, monuments and statues. Due to the
complexity of the problem, many relied on experimental results and basic analytic solu-
tion for simple ground motions. Ishiyama (1980) provides a comprehensive review of this

early work, much of which is in Japanese. More recently, emphasis has been placed on
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evaluating the performance of rigid structures during an earthquake for safety require-

ments. A brief summary of these recent investigations is given below; for details of the

earlier work, the reader is referred to Ishiyama (1980).

Housner’s landmark study (1963) has provided the basic understanding on the rocking
response of a rigid block and sparked modern scientific interest. Motivated by the observa-
tions of damage to water tanks in the 1960 Chilean earthquakes, Housner was the first to
investigate systematically the dynamics of a rigid block on a rigid horizontal base under-
going horizontal motion. Using the linearized equation of motion and a simple impact
relation, free rocking (vibration) was first investigated. Representing the ground accelera-
tion as a rectangular pulse and as a half-cycle sine-wave pulse, equations were derived for
the minimum accelerations (which depend on the duration of the pulse) required to over-
turn a block. The approach employed in obtaining these equations is valid only for a single
pulse excitations which, if large enough, would overturn the block without rocking and the
associated impacts. Smaller accelerations may set the block to rocking but will not over-
turn it. It is, however, possible to overturn the block with smaller accelerations if a number
of pulses act successively, a characteristic of ground accelerations during earthquakes.
Using an energy approach and idealizing the ground motion as a white noise, Housner pre-
sented an approximate analysis of the dynamics of rigid blocks subjected to such excita-
tions. From these results he demonstrated that there is a scale effect which makes the
larger of two geometrically similar blocks more stable than the smaller block. Moreover,
the robustness of a tall, slender block suf:jected to earthquake motion is much greater than
would be inferred from a stability analysis to a static horizontal force, employed to repre-

sent earthquake effects in the simple analysis mentioned above.
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In 1980, Aslam et al. examined the response of a rigid block subjected to horizontal and

vertical ground accelerations, with the option of elastic tie-down rods and the assumption
of no sliding. The full nonlinear equation of motion was solved numerically using a pre-
dictor-corrector algorithm for free vibration, harmonic ground motions and recorded
accelerograms. Results were verified with experiments on a shaking table using a concrete
block. Free and forced vibration tests compared well with numerical results. However,
agreement with recorded earthquakes was poor. In addition, the experimental results for
recorded earthquakes were not reproducible over repeated tests using the same accelero-
gram. This indicated the sensitivity of the response to the foundation conditions during

impact.

In the same year, a probabilistic approach to the problem of rocking of rigid blocks was
pursued by Yim et al. They studied the rocking behavior of rigid blocks subject to horizon-
tal and vertical accelerations, assuming no sliding. The nonlinear equation of motion was
solved numerically using a fourth-order Runke-Kutta integration scheme for a series of 20
artificial earthquakes. A study was conducted to determine the effect of various system
parameters on the observed response. In addition, cumulative distribution functions for
overturning were generated for a range of system parameters. It was shown that a probabi-
listic estimate of the intensity of ground shaking could be obtained from the observed

effect of tombstones and monuments, provided sufficient data were available.

In 1982, Ishiyama analyzed impact from a rock, slide-rock and free-flight mode. Planar
impact was assumed, along with non-zero coefficient of restitution and non-infinite coeffi-

cient of friction. The analysis was broken down into two phases. Initially, the resultant
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impulses and were assumed to occur at some distance & measured from the center
p x y

of mass. Relating the pre- and post-impact y velocities at this point through the coefficient

of restitution, Q, was evaluated. To determine Q. , a new parameter, the “tangent coeffi-
cient of restitution” (—1 <e, < 1) was introduced which related the pre- and post-impact

tangent velocities at the point of application of the impulse. With an assumed e and e,, the

resulting post-impact velocities were evaluated. If the post-impact solution violated the
velocity constraint, a second series of impulses was applied in order to guarantee a post-

impact rock or slide-rock mode.

A study on the dynamic behavior of a rocking rigid block supported by flexible founda-
tions which permit up-lift, was performed by Psycharis and Jennings in 1983. They con-
sidered two foundation models, namely the Winkler model and a two-spring foundation,
and established an equivalence between the two models, so that the equivalent two-spring
model can be used instead of the Winkler foundation. Solutions of the linearized equations
of motion were developed and demonstrated that lift-off results in a softer vibrating sys-
tem which behaves non-linearly overall, although the response is composed of a sequence
of linear responses. Since the foundation models considered cannot dissipate energy, in
order to account for the energy dissipation from impact - which is expected to occur in

actual situations where lift-off happens - a simplified impact mechanism was introduced.

In 1984, Spanos and Koh investigated the rocking response of a rigid block subject to har-
monic ground motion, assuming no sliding. The linear and nonlinear equations of motion
were solved numerically assuming zero initial conditions to identify likely steady-state

modes of response. A number of modes were identified, including a fundamental mode at
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the frequency of excitation, a 1/3 subharmonic and an unsymmetric (i.e., non-zero mean)

mode at the fundamental frequency. Using the linearized equation of motion, a general
piecewise-exact solution for steady-state response was then developed for the identified
modes. Using the solution, steady-state amplitudes were obtained, and stability of the sys-
tem was investigated. These results were also compared to an approximate solution

obtained using the method of equivalent linearization.

In 1986, Allen et al., studied the dynamic behavior of an assembly of two-dimensional
rigid prisms. Their model was related to a precast concrete building system, employing
slender columns with negligible beam-column moment resistance, that would behave as
an assembly of constrained rigid bodies under earthquake excitation. Linearized time his-
tories were presented for one and two degree-of-freedom systems. As expected, the
response modes of the systems were poorly conditioned; small changes in input or geome-

try can create large changes in system response.

In 1986, Koh et al., studied the behavior of a rigid block rocking on a flexible foundation.
Modulated white noise was used as a model of horizontal acceleration of the foundation.
The statistics of the rocking response were found by an analytical procedure which
involved a combination of static condensation and stochastic linearization. The analytical
solution was computationally efficient and compared well with pertinent data obtained by

numerical simulations.

In 1989, Tso and Wong investigated the rocking response both analytically and experi-
mentally. Their study aimed to determine the effect of various system parameters on the

steady-state response. Experiments were conducted to verify the analysis. Peak steady-
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state amplitudes for the fundamental mode were recorded and found to be in good agree-

ment with the theory. In addition, a 1/3 subharmonic was recorded experimentally. Stabil-

ity of the steady-state solutions was also investigated numerically.

In 1990, Hogan, who adopted the model, the analysis, and the response classification of
Spanos and Koh (1984), performed a complete investigation of the existence and stability
of single-impact subharmonic responses (1,n) (with n 2 1), as a function of the restitution
coefficient . Hogan verified the existence of motions, characterized by a period increas-
ing with the amplitude of the harmonic excitation, until the response becomes aperiodic or
more probably chaotic. Due to the high sensitivity of the response to the initial conditions,
he determined the domains of attraction for four subharmonic orbits (1,7 ): the behavior of

the system was in some ways unpredictable.

In 1990, Psycharis presented an analysis on the dynamic behavior of systems consisting of
two blocks. Assuming friction large enough to prevent sliding, all possible rocking modes
were classified depending on the relative position of the blocks. Furthermore, assuming
small angles of rotation, approximate (linearized) equations of motion were derived. The
response of the system to horizontal earthquake excitation was calculated by time step

integration.

In 1990, Sinopoli approached the impact problem by adopting a unilateral constraint,

‘kinematic approach’. Her study assigned a pure sliding mode after impact for short
blocks as having the aspect ratio less than /2 for frictionless surfaces and less than

(J2)72 for very rough surfaces. She analyzed the dynamic stability with respect to the
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overturning of a multi-block column excited by a sine wave ground motion.

One year later, Yim and Lin investigated the influence of nonlinearities associated with
impact on the behavior of free-standing rigid objects subjected to horizontal base excita-
tions. In addition to the periodic and overturning responses, they discovered two new types
of steady state responses, quasi-periodic, and chaotic. An analytical technique based on
the Melnikov function was derived for the prediction of the existence of chaotic response.
The accuracy of the method was assessed by numerical results. The relationship between
the Melnikov analysis developed in this study and the stability analysis developed by Spa-

nos and Koh (1984) was also examined.

In 1991, Giannini and Masiani tackled the problem of the dynamic response of a rigid
block oscillator to a Gaussian white noise excitation process. In this study, the equation of
motion was linearized with the assumption of small displacements. The energy dissipation
due to the inelastic impact was modeled as an impulsive process with arrivals occurring at
displacement equal zero. The solution of the associated Fokker-Plank equation was
obtained with two techniques of approximation: Gaussian closure and non-Gaussian clo-
sure. The first one gave a good approximation of the transient and the stationary approach
when the intensity of the excitation was low, but it overestimated the response for stronger

excitations. Non-Gaussian closure better approximated the stationary intensity.

In 1991, Shenton and Jones presented a general, two-dimensional formulation for the
response of free-standing rigid bodies to base excitation. The formulation assumed rigid
body, rigid foundation and Coulomb friction. The behavior was described in terms of the

five possible modes of response, namely rest, slide, rock, slide-rock and free-flight and the
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impact between the body and the foundation. A model governing impact from a rock,
slide-rock and free-flight mode was derived using classical impact theory. This model
assumed a point-impact, nonzero coefficient of restitution and finite-value of friction. An
approximate closed-form solution was developed for a single-mode-steady-state-slide-
rock response resulting from a harmonic ground acceleration, using the method of slowly
varying parameters. This approximate solution is valid for a rectangular block undergoing
small angles of rotation at the frequency of ground motion. Impact was assumed to be per-
fectly plastic and frictional impulses were included. Periodic solutions were found to exist
in general only for relatively high amplitudes of ground acceleration and friction less than
the inverse aspect ratio of the block. Results showed that the rock component of the
response was sensitive to changes in aspect ratio and friction and insensitive to changes in
ground acceleration. The slide components of the response was approximately equal to the
amplitude of ground displacement and was insensitive to changes in friction and aspect

ratio. Their results compared favorably to those obtained by numerical integration.

In 1992, Augusti and Sinopoli presented a formulation of dynamics and impact problem
for a single rigid body freely supported on rigid foundation. A review was presented on

the numerous researchers performed on this subject and the results achieved.

In the same year, Wang and Mason derived solutions for frictional planar rigid-body colli-
sions, using Routh’s impact process diagrams, for both Newtonian and Poisson restitution.
They classified the possible modes of impact, and derived analytical expressions for
impulses and motions of the bodies. The solution for the impact problem is applicable for

impact between two rigid bodies that are in contact with each other at only a single distinct
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point.

An investigation by Dimentberg et al. in 1993, adressed the toppling failure of a free
standing and an anchored rigid block due to horizontal and vertical base excitations. They
obtained expressions for the statistical properties and probability distribution of the ran-
dom toppling time. The excitations were idealized as white noises. It was found that the
correlation between the vertical and horizontal base excitations did not affect the averaged
rocking motion; however, the presence of vertical excitation about one-half the level of
horizontal excitation may increase the probability of toppling by as much as 30-40%.
They, also, concluded that larger blocks are more stable than the smaller ones of the same

geometrical proportion.

In 1995, Allen and Duan examined the effects of linearizing on rocking blocks. For free
vibration, they found that the difference between the approximate and the exact quarter
period increases as a block becomes less slender. The greatest difference was about 2%.
Parameter studies between surviving and toppling demonstrated that models were least
sensitive to the slenderness angle and the peak amplitude, more sensitive to the rebound
velocity coefficient, and most sensitive to the block diagonal. This sensitivity was gener-
ally reduced when using the nonlinear model. Although meaningful results could be
obtained with the linear model, they concluded that the nonlinear model provides more

robust results, even for slender blocks.

In the same year, Cai et al. examined the toppling of a rigid body under random excitation,
by modeling the base accelerations more realistically as evolutionary processes with

broad-band spectra. A version of quasiconservative averaging was applied to account for
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the nonstationary and nonwhite characteristics of the excitations. The total energy of the

rocking block was approximated as a Markov process. The reliability of the system,
namely the probability that toppling has not occurred up to a given time, was calculated by

using the numerical procedure of path integration.

More recently, Lin and Yim (1996) examined the rocking behavior of slender rigid objects
subjected to periodic excitations with and without noise disturbance for a better under-
standing of their response, stability and sensitivity. Taking into account the presence of
noise, a mean-square criterion for the possible chaotic domain based on the stochastic
Melnikov process has been derived. It was found that the presence of noise enlarged the
chaotic domain. Relationships between chaotic and overturning responses have been ana-
lytically examined. Numerical results indicated that even with the presence of very weak
noise the chaotic response trajectory will eventually be driven to overturning, thus weak
stability of deterministic chaotic rocking response was indicated. Numerical results also
confirmed that ‘noisy and chaotic’ response was a possible intermediate state between
bounded (periodic) response and overturning. In the companion paper, Lin and Yim also
examined, from a probabilistic perspective, the rocking responses of fully nonlinear rock-
ing systems subjected to combined deterministic and stochastic excitations. They con-
cluded that the Fokker-Planck equation provided a probabilistic description of the rocking
response behaviors to combined deterministic and stochastic excitations. In addition, the
resulting probability density functions provided global information about the response
behaviors. The long-term rocking response behavior was inherently unstable when sto-

chastic excitation was present. They also performed sensitivity studies of the response to
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relative randomness parameter Yy, system slenderness ratio r, velocity restitution coeffi-

cient e, as well as uncertainties in initial conditions.

In 1996, Gianini and Masiani used a random vibration approach to study the response of a
slender rigid block to seismic excitation. The problem of rocking with impulsive dissipa-
tion of slender rigid blocks under horizontal base acceleration was solved by means of a
non-Gaussian closure method assuming a Laplace marginal distribution for the displace-
ment and a Gaussian marginal distribution for the velocity. Two cases were considered to
simulate seismic shaking: a Gaussian stationary white noise, and a filtered Gaussian white
noise excitation of Kanai-Tajimi type. The analytical solutions were obtained solving ini-
tial value problems with ordinary differential equations. The mean upcrossing rates and
the response spectra in terms of displacement were evaluated. The reliability of the solu-

tions derived was assessed by comparing them with Monte Carlo simulations.

In 1997, Sinopoli investigated the dynamics of a rigid body simply supported on a moving
rigid ground in the presence of dry friction. Rigid body kinematics, in terms of generalized
coordinates, and features of contact were discussed. A variational formulation was
adopted to describe the dynamics of the system. A geometric method of the variational
formulation then proposed in the configuration space, which allowed the acceleration to be

determined for any kind of situation without any direct evaluation of the contact forces.

In 1998, Pompei et al. studied the dynamics of a rigid block subjected to horizontal ground
motion, the objective being to formulate criteria that separate the sticked and slipped

modes of the motion. In this study, they investigated the influence of three parametric

quantities, namely, the static friction coefficient ., the aspect ratio b/h of the block, and
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the normalized ground acceleration a/g. It was shown that, in some cases, sliding

response should be taken into account in the study of the body rotation.
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CHAPTER 3: Dynamic Response of a Rigid Block

3.1 Preliminaries

Consider a symmetric rigid body of mass m and centroid mass moment of inertia /, sup-
ported on a horizontal plane rigid ground in its static equilibrium configuration; see Figure

3.1. Let H and B be the height and the base width, respectively, of the block, and pu, and
L, the static and kinetic friction coefficients, respectively, for the materials in contact. The
distance from either base corner to the center of mass is denoted by r, and the angle mea-

sured between r and the vertical when the body is at rest is denoted by 0.

B=2b

H=2h
D
)
”

m,l
r

% o’
L1777777777777777/777777/77777

<8

Xe

Fig. 3.1 A Rigid Block at Rest

When subjected to a base acceleration with horizontal and vertical components ¥, and Ve

respectively, the block may move rigidly with the ground (rest mode), or be set into rela-
tive motion. In the latter case, the block can be set into slide, rock, slide-rock, or free-flight
mode. The five possible modes of response are illustrated schematically in Figures 3.1

through 3.5. Horizontal and vertical displacements of the mass center relative to the foun-
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dation are denoted by x(¢) and y(t), respectively. The tilting of the block from the verti-

cal is measured by the angle 6(t), positive in the counter-clockwise sense.

3.2 Analytical Models
Slide Mode

This mode describes the relative horizontal translation of the block with respect to the
ground. It is characterized by a normal reaction force greater than zero (f, > 0), a friction
force which is a function of the normal force and the velocity of the center of mass, and

zero rotation (6(z)=0).

B=2b

H=2h

m,I

Fig. 3.2 Slide Mode of a Rigid Block

Assuming that the body is initially at rest, a slide mode (Figure 3.2) is initiated once the

inertial load of the mass exceeds the resistance provided by friction, namely,

|mx| > u(my, + mg)

or



18

[%d > 1, (v, +2) 3.1

In the special case that j,=0 , Equation (3.1) reduces to

|5 > 1.8
Once the mass is sliding, the governing equation of motion is given by
m(X+x,) = -S(X)u,m(y, +8), (3.2)

where S(x) denotes the signum function in %, defined by

St = { 1 %>0 (3.3)

-1 %<0

Sliding lasts until the relative velocity of the mass equals zero (£=0). At that time, the
body momentarily comes to rest relative to the foundation and Equation (3.1) is used to
determine whether it remains at rest or continues to slide. Depending on the coefficient of
friction and the characteristics of ground motion, it is not unlikely for the block to experi-

ence extended periods of rest during the response.
Rock Mode

This mode is characterized by a rotation about either corner O or O' provided that friction

is sufficient enough to prevent sliding (|f,] < 1, f,). A rock mode (Figure 3.3) is initiated

from rest once the overiurning moment of the horizontal inertial force about one corner

exceeds the restoring moment due to the weight of the block and vertical inertial force:
mx,h >mgh +my b

or
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%> (j, +g)b/h (3.4)

In the special case that y,=0, Equation (3.4) reduces to

|%.|>gb/h

Fig. 3.3 Rock Mode of a Rigid Block

Once rocking has been initiated, the equations of motion governing the angle 8 from the
vertical are derived by considering the equilibrium of moments about the centers of rota-

tion O or O':

1,8 = mrcos(8, —6])%, — mrS(8)sin(8, - [8])(¥, +g) (3.5)
where [, is the mass moment of inertia of the block about the corner edge O and

0. = atan(B/H).

C

Clearly, Equation (3.5) is highly nonlinear and not amenable to exact closed-form solu-
tions. However, assuming slender blocks (H/B>3) and small angles of rotation, the above

equation can be linearized (e.g., Housner 1963, or Spanos and Koh 1984). Namely, for
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(0. £ 0) being small, the piecewise linearization procedure yields

1,6 = mri,—mrS(8)(8.-16])(¥, +g) (3.6)
Equation (3.6) is valid as long as 6 #0. When 8 = 0, an impact occurs between the
block and the foundation. Depending on the assumed impact model, the post-impact
motion may be a pure rock about either corner, or possibly another response mode alto-
gether. Previous investigations have focused primarily on rocking behavior. The landmark
work by Housner (1963), was based on the two-fold assumption of point contact occurring
during a perfectly plastic impact. This assumption guarantees a post-impact rocking
response, provided that the static friction coefficient is large enough to prevent any sliding
displacement of the contact point, and results in a reduction of angular velocity following

the impact, given by

8" = €0, (3.7)

in which e is the coefficient of restitution, 8 and 8 are the angular velocities immedi-
ately before and after impact, respectively. The coefficient of restitution is usually deter-
mined by considering the conservation of angular momentum or by means of a prescribed
reduction in kinetic energy.

If the impact is assumed to be such that there is no bouncing of the block, the rotation con-
tinues smoothly and the angular momentum is conserved. Equating the angular momen-

tum about O' immediately before impact to that immediately after impact gives

1,6 -2mrbsin® 6 = 1,87, (3.8)
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which combined with Equation (3.7), and noting that for a rectangular block /, = ‘_;:mr2 .
yields

e=1- %sinzec. 3.9)

It is worth noting that if e is not computed based on Equation (3.9), the impact cannot be

perfectly plastic, in which case, a post-impact rock mode is not guaranteed.

Slide-Rock Mode

In this mode the block rotates about one comer, and simultaneously slides relative to the

foundation (Figure 3.4). The friction force is a function of the normal reaction and the

velocity of the corner in contact, X, or X, .

.............

ST/

Fig. 3.4 Slide-Rock Mode of a Rigid Block

The conditions governing the initiation of a slide-rock mode from rest are not altogether

clear. The mode is perhaps initiated from rest in the singular case:
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| %] > (¥ +8) = tanB, (y, + &) (3.10)
A slide-rock mode, however, may be initiated by transition from another mode of

response, e.g., from a rock mode when friction is not sufficient.

The equations of motion of the block may be derived using D’Alempert’s principle

(Mochizuki and Kobayashi, 1976) or Lagrange’s method. The resulting equations are

m(¥X+ %) = -S(¥)Lf, (3.11)
m(y+y,+g) = f, (3.12)
1.6 = —rf,[S(8)sin(B, -|6]) + S(xp)pcos(8, - 6])], (3.13)

where f, is the normal reaction at the corner in contact with the foundation, p is the

dynamic coefficient of friction between the edge in contact and the foundation, and S(u) is

the signum function defined by

I u>0
S = 3.14
() {-—l u<0 )

Note that v is not an independent variable, but rather a function of 6, namely,
v = r[cos(6,-16|) — cos8,]. (3.15)
Differentiating Equation (3.15) twice with respect to time yields the vertical acceleration:
y = S(8)rsin(6, - 16])0, (3.16)
y = 5(8)rsin(8,—16])8 - rcos(6, - 16})6°. (3.17)

Substituting Equation (3.17) into Equation (3.12), and eliminating f , from Equations

(3.11) and (3.13) yields
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X+ 8(8)S(%,))rsin(6, - 6])6 — S(x,)rcos (0, - 16])8>

(3.18)
= =S(x)u(y, +g) - %,
and
[I.+mr3(sin(0,-[0]))2 + S(8)S(x;)umr2sin(0, - |6])cos(6, —|6[) 16
—mr2[S(8)sin(8, — [8])cos(8, — [8]) + S(%,)L(cos (B, - [6]))2]02 (3.19)

+mr[S(8)sin(6, - 10]) + S(xo)ucos(6,. - 16))1(5, +8) = O
In order to evaluate S(%,), the velocity of the corner in contact must be determined.
Expressing the relative displacement of the corner x,, in terms of x and 0 gives
Xo = x—S(B8)rsin(6.-16]). (3.20)
Differentiating Equation (3.20) with respect to time leads to
Xy = £+rcos(8,.-10))6 (3.21)
and
£y = X+ rcos(0,-16])6 + S(8)rsin(6,~(6])67. (3.22)
Equations (3.20) through (3.22) give the displacement, velocity and acceleration of corner
O for >0 (S(8) = +1) and of corner O' for 8 <0 (S(8) = —1).

As with the rock mode, Equations (3.18) and (3.19) are valid, provided 6 #0. When

8 = 0, an impact occurs between the block and the foundation. The analysis of impact in

this case is much more involved than that of the rocking case.
Free-Flight Mode

Free-flight occurs when the body loses all contact with the foundation. That is, when the
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normal reaction force equals zero (Figure 3.5).

g=2b

IS ST

1
X

4

Fig. 3.5 Free-Flight Mode of a Rigid Block

Assuming the body is initially at rest or in a slide mode, free-flight is initiated when

y(t) = -g. (3.23)
For a body in a rock or slide-rock mode, the normal force is found by substituting Equa-

tion (3.17) into Equation (3.12). That is,
fy = m(rS(8)sin(8,~6])8 - rcos(6, - [6])6* + v, + g] . (3.24)
Initiation of free-flight is realized when f_v = 0, namely,
v, = —rS(8)sin(6,-6])8 + rcos(6, - [8])8"-g. (3.25)
Once free-flight has been initiated, the equations of motion are

m(E+E) = 0 (3.26)
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m(y+y,+g) =0 (3.27)

16 =0 (3.28)

Note that these equations may be integrated readily for known accelerations and initial
conditions. Equations (3.26) through (3.28) are valid until a point of the body comes in
contact with the foundation. At this time, an impact occurs which can be handled using the

principle of impulse and momentum, with the effects of restitution and friction included.

3.3 Analysis of Rocking Systems

The equations of motion governing the rock mode are highly nonlinear and, therefore,
closed-form solutions are extremely difficult to obtain, even for the simplest of ground
motions. For this reason, assumptions are commonly made in order to simplify the govern-
ing equation, restrict the motion to a single mode, or both. Typical assumptions made with
regard to rocking include small angles of rotation, slender blocks (e.g., H/B>3), sufficient
friction to prevent sliding, and perfectly plastic impacts. The latter two assumptions pro-
hibit a transition to a slide, slide-rock, or free-flight mode. In many cases, however, the

validity of these assumptions has not been investigated.

3.3.1 Equation of Motion

The equation of motion governing the response of a symmetric rigid block is given by

Equation (3.5). For a rectangular block, for which [, = 4-:;mr2 , this reduces to

- 3 . 3 . .
0= 4—"cos(ec -lehx, - Z—’-_S(G)sm(ec -8l (¥, + &) - (3.29)

Expanding the trigonometric terms in Equation (3.29) and neglecting y, leads to
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0= 4%( cos 0 cos|6| + sin®,sin|6])x, — %S(G)( sin®_.cos|0] — cosO,sin|0])  (3.30)

Assuming small angles of rotation, such that sin8 =0 and cos6 = |, Equation (3.30)

reduces to
0 = —(cosO,_ + sinB_|6|)x, —-—gS(G)(sinB ~cos0,[0]). (3.30)
4', [« [ g 4'_ [ c

A further approximation can be made assuming |6 « H/B, which implies

sin®,[6| « cosB, . That is

§ = —z’-cosec.’t’g—%S(G)(sinec—cosﬂclel) ,

4r
or
538 = 3 cos8 £, - 85(0)si
o 4'_c056c6 = 4rcosetxg 4’.S(G)smec. (3.32)

It should be noted that Equation (3.32) reduces to Equation (3.6), in which (6, -|8]) was
assumed small, if 0, is also assumed small. In other words, Equation (3.32) provides fur-
ther accuracy for aspect ratios H/B< 3.

For consistency, dimensionless equations are sought and the following quantities are intro-

duced
o2 = TE&T (3.33)
IO
9
0= 5 (3.34)

and
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T =ot. (3.35)

Applying Equations (3.33) through (3.35) into Equation (3.32) yields
& c0s6,0 = el[—S(G)sinec +cos8,%,/g]. (3.36)

Furthermore, introducing

B2 = cos@,, (3.37)
and
Y = tan6./6,, (3.38)
Equation (3.36) is transformed to
650 = -S(0) + Lk, (3.39)

Equation (3.39) is a nonhomogeneous nonlinear ordinary differential equation with con-
stant coefficients. It is also referred to as “piecewise linear”, since for S(©) = 1, the

governing equation is linear.

3.3.2 Free Rocking
When the block is rotated through an angle 6, and released with initial displacement, it

will be set to rocking about O and O' until the motion decays to rest. The equation gov-
erning the free vibration is obtained from Equation (3.40) with the base acceleration set to

zero. That is,

6 -B20 = -yB2S(0). (3.40)

The general solution of Equation (3.39), for © > 0, is given by
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©(t) = C,coshPt+ C,sinhBt+y. (3.41)

Equation (3.41) subject to the initial conditions ©(0) = ©, and ©(0) = 0 yields

O(1) = (©y—7Y)coshBt+7, (3.42)

which is valid for 0 <1 <1, in which T, denotes the time to first impact.

The time 1, to the first impact is determined from Equation (3.42) by setting ©(t) = 0:

l Y
T = 5 h( ) 3.43
{ Bacos N (3.43)

After the first impact, the block will rotate about O', and if there is no energy loss during
impact, it will rise until the angle becomes again equal to 8. At this instant, half cycle of

vibration has been completed. The time T required to complete this cycle is the period of

free vibration, given by

4
T =41, = BaCOSh(?TY(?o) (3.44)

in which B and y are functions of 8,, as defined in Equations (3.37) and (3.38).

Assuming sufficient friction to prevent sliding, impacts are governed by Equations (3.7)

and (3.9). Specifically, following the first impact the governing equation of motion is
described by Equation (3.39) taking into account the change in sign of © and the new ini-
tial conditions given by

O(t;) = 0 and O(t}) = eO(T;). (3.45)

The time to next impact, T,, is then determined and the procedure continues.
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CHAPTER 4: Dynamic Analysis of Stacked Rigid Blocks

4.1 Introduction

As opposed to the case of a single rigid block, the dynamic behavior of multi-block struc-
tures has not, to date, been adequately studied. Even for the simplest case of multi-block
structures, i.e., two-block assemblies, the analytical formulation of the problem is quite
challenging. Its complexity is associated with the continuous transition from one regime
of motion to another, each one being governed by a different set of highly nonlinear equa-

tions.

In this chapter, the dynamic behavior of systems consisting of two blocks, one placed over
the other, is examined. Such configuration can be thought of as the model of ancient Greek
and Roman type structures composed of large heavy members that simply lie on top of
each other, or a piece of machinery or statue placed on top of a block-like base. Assuming
no sliding, the rocking response of the system standing free on a rigid foundation is inves-
tigated. In particular, all different modes of response are classified and criteria for initia-
tion of motion are derived. For each mode of response, the full nonlinear equations of
motion are formulated and transition criteria between modes, in the absence of impact, are

outlined. The impact problem is addressed in Chapter S.

4.2 Analytical Model

The system under consideration is presented scematically in Figure 4.1. It consists of two

symmetric rigid blocks; the upper block resting symmetrically on top of the lower block,

and the latter resting on a rigid horizontal surface. Their mass is denoted by m; and their

centroid moment of inertia by /; , where i is the block index.
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82 = 2b2
Ial Gy 6, | Block2
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Fig. 4.1 Geometric Model of Two Stacked Rigid Blocks

Assuming that sufficient friction exists to prevent sliding of either block, the system pos-
sesses two degrees of freedom, namely, 6, and 6, denoting the angles of rotation of

Block 1 and Block 2 from the vertical.

When subjected to a base acceleration with horizontal and vertical components ¥, and ¥,

respectively, the block may exhibit four possible regimes of rocking motion, henceforth
called ‘modes’ for simplicity (Figure 4.2). The first two modes reflect a two-degree-of-
freedom system response, and they are discretized depending on whether the blocks rotate
in the same or opposite direction. Modes 3 and 4 reflect a single-degree-of-freedom sys-

tem response. In particular, mode 3 describes the motion of the system rocking as one

rigid structure (6,=0,), and mode 4 concerns the case where only one of the blocks expe-
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riences rotation (8,=0, 0, # 0). Furthermore, each mode is devided into two subcases to

account for the change in angle sign.

(a)6,>0,>0 (b) 6,<0,<0 (a)9,>0;6,<08, (b)6,<0;06,>6,

Mode 1 Mode 2
02 02
Ol O'I
MWW /7777007070 TTTTTTT
(a) 8, = 6,>0 (b) 8, = 0,<0 ()6, =0;6,>0 (b)8, =0;6,<0
Mode 3 Mode 4

Fig. 4.2 Classification of Rocking Modes for a System
of Two Stacked Rigid Blocks
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4.3 Analysis of Rocking

4.3.1 Initiation of Motion

When subjected to a base acceleration with horizontal and vertical components ¥, and y,

respectively, the system may be set into rocking in either mode 3, or Mode 4, (Figures 4.3
and 4.4), when the overturning moment of the horizontal inertia force about one edge
exceeds the restoring moment due to the weight(s) of the block(s) and the vertical inertia

force.

0, o,

1

-~

THITTTTTTN

System at Rest Mode 3a Mode 3b

Fig. 4.3 Initiation of Motion in Mode 3

The criteria for initiation of motion are given below.
Transition from rest to mode 3a requires

mh; +my(2h; + h,)
my +m,

where h =

is the distance of the mass center of the system from the

base of block 1.

Transition from rest to mode 3b requires
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hfg—blj;g>blg' (4.2)

Transition from rest to mode 4a requires
- hyX, —b,y,>b,g. (4.3)

Finally, transition from rest to mode 4b requires

gy m TTITTTTLTTETITTTTNG

System at Rest Mode 4a Mode 4b

Fig. 4.4 Initiation of Motion in Mode 4

4.3.2 Formulation of the Equations of Motion

The equations of motion of the system may be derived applying Newton’s second law to
each block separately, or Lagrange’s method to the system as a whole. Herein, for the two-
degree-of-freedom-systen response, Langrange’s equations are used, which eliminates the
necessity of evaluating the interaction forces, and permits the use of scalar quantities,

work and kinetic energy, instead of the vector quantities, force and displacements.

The well-known Lagrange’s equations of motion for an N-degree-of-freedom system are

expressed in the form



d aT) oT , dV _ i=1.2 ...N 4.5)

a1\34, —a_q,-+a_q,- = 0y
in which
q1> qa ---» qy is a set of generalized coordinates, T = T(qy, g, ---» N> 415 G2s ---» Gn) 1S
the total kinetic energy expressed in terms of the generalized coordinates and their first
time derivatives, V = V(qy, q», ..., qy) the potential energy expressed in terms of the
generalized coordinates, and Q,, O, ..., Qy are the non-conservative generalized forcing
functions corresponding to the coordinates g, g, -.., gy, respectively; they are defined
by the equation

OW,. = 0,89, +Q,0q,+ ... + Qpdqy, (4.6)

in which 8W,_ is the virtual work performed by the nonconservative forces as they act
through the virtual displacements caused by an arbitrary set of variations in the general-
ized coordinates.
For the system under consideration, the angles of rotation of block | and block 2 from the
vertical are chosen for the generalized coordinates of the system, so that the governing

equations of motion may be expressed in the form

d(dT\ oT . dV _ .. . _
ar -a?’)—a—e-"‘l‘a—el =0; i=1,2 (4.7)
where
e, -
T=T+T, = EZ(m,-va +1567) (4.8)
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is the kinetic energy of the system, and,

V=V +V,= ) (mhgg) (4.9)

i=1
is the gravitational potential energy of the system. In the above equations, I; denotes the
centroid moment of inertia of the i”* block, v the velocity of the center of mass, ; the
angular velocity of the block, and h the location of the center of mass above the ground.
Note that, since the system is conservative, the generalized forces do not appear in Equa-
tion (4.7): Q; = 0.
Governing Equations for Mode |

In the first mode, the blocks are rotating in the same direction. However, it is necessary to
differentiate among the two subcases of opposite angle sign (Figure 4.2), because different

equations of motion hoid in each subcase.

Consider first the case where the system is rocking in mode la. Assuming that block I

always remains in contact with the foundation, the global coordinates of its mass center

G, , are related to the excitation displacement components by the equations

xg, = x,—rysin(9,-6,)

(4.10)
Yg, = Yg+ricos(8, —6).
Differentiating the above equations with respect to time yields
e = %,+r01cos(0,. —-0,)
¢ = Tk ! (4.11)

Yo, = Yo +r01sin(6,, - 6)).

The velocity of the mass center of block 1 is given by



Similarly, the global coordinates of the mass center G, of block 2, are

where

2 - 22 -2
Vg, = Xg, T Vg,

‘tG; = XO: - rzsin(e‘:: - 92)

.VG; = yo: + r2COS(ec: - 92),

XO: = xg + lSin(el - B)

Yo, = Yg+1Icos(8,-B).

Differentiating the above equations with respect to time yields

Xg, = X, + [8,cos(8, —B) + r,82cos(6,, - 0,)

-‘}g —le|Sin(e[ - B) + rzégsin(ec:— 0,).

Y.

The velocity of the mass center of block 2 is then derived by

<
o

+2r293[.t'gcos(ec: —0,) + V,sin(6,, - 0,)] +2r,18,62cos(6, - 6, + 8.-B).

. 9 -9
X, +YG.

€2+ y24 1207 +ri6s + 2101[%,cos(0, — B)-y,sin(8, - B) |+

r26i + 2+ y2 +2r 01[%,cos(8,, - 0,) + y,sin(0, —6,)].
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4.12)

4.13)

(4.14)

(4.15)

(4.16)

Substituting Equations (4.12) and (4.16) into Equation (4.8), leads to the following expres-

sion for the kinetic energy of the system

T = %m,{r%éf-{-x‘é+yf;+2r19;[xgcos(6cl ~8)) + Ysin(6, —6,)]}+

43160 +amy{i} + 2 + 207 +r30} 4+ 216, [ %, cos (8, - B)-

—Y,sin(8; — B) 1+2r,02[%,cos(6,, - 6,) + y,sin(6,, - 6,) |+

+2r,16,82c05(8, - 0, + 6, — B) }+%16,6% .

4.17)
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The gravitational potential energy of the system rocking in mode la is obtained from

Equation (4.9). Specifically,
V = mgricos(9,—-0,)+m,g[rycos(6, -6,)+Icos(6,-B)]. (4.18)

Equations (4.17) and (4.18) are used to obtain the derivatives necessary for use in

Lagrange’s Equation (4.7). That is,

—_—= (10.‘*'”’212)6' +myrylcos(8, -92+9q—B)éz+m,r,[xgcos(9n—6,)+

+.‘}g5in(ec. - el) ]+mzl[x-gCOS(e[ - B)—}}gSin(el - B)]n

gg = merICOS(el —-92 + 91.: - B)é[ +10:62+m2r2[.x.g(:05(6q —92)+_\3ﬂ5in(9c: —62) ] "
d a—zj) = ([0I +m‘,12)é| +mzrleOS‘Yluéz—mzrzlsin‘Yla(el —62)62+mlrl+
di\gé, -
[£,cos(,—8,)+%,sin(0,—6,)0: + y,sin(6, —0,) — v,cos(6, -6,)6]
+m,l[£,cos(0, —B)—x,sin(6, - [3)(-')|—y'gsin(6l -B)—v,cos(8, - B)6:],
(Cilt gg ) = mzrzlcosYl“él—mzrzlélSinylu(él - 62) + 10:62+m2r2[,fg005(et.: - 62)+
+%,02sin(8,, - 8,)+¥,sin(B, - 6,) — y,02cos(0,, —6,)],
g—g— = mr0[%,sin(0, —6,)-y,cos(8, —0,)] - m,l6:[£,sin (0, — B)+y,cos(6,—B)]
1
-m,r,18:02sinY,,,
oT

= myr,0:[%,sin(0,, - 6,)~y,cos(8,, —6,)] +m,r,1082siny,,

Q)
o]
[5)
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% = m gr,sin(8,, - 8,)-m,glsin(8, - B), and
1

aV .

30, = m,gr,sin(6. —0,).

The governing equations for rocking response in mode la are then constructed using

Equation (4.7). This procedure gives,

(10| +m212)é[ + merICOS‘Ylaéz +m2r215in'y|aé% —mlrlgsin(el - ecl)

-mylgsin(8, — B)= —[m,r cos(8,-0_) +m,lcos(8, - B)]x,+

+[m,r sin(0,; —06_) + m,lsin(8, - B) 1y, ( (4.19)
myrylcosy, 01 + I 82-m,rylsiny, ,0i-m,gr,sin(6, - 0,)
= myr,[y,sin(6, - Gc:)—fc'gcos(ﬁz -6.)1 )
which is valid for 6, > 8, > 0. In the above equation v,, is defined by
Yie = 6, -0,+6,-P. (4.20)

For rocking response in mode |b, the governing equations are similarly derived and can be

written in the form

\
(Io, + myI2)B1 + myrylcosy, 02 + mzrzlsinyl,,e'% —mgrsin(0,+06,)
—m,glsin(0, + B)= ~[m,r cos(6, + 0, ) + mylcos(8, + B)]%,

+[mr sin(8, +86,) + m,lsin(8, + B)1y, (42D

mzrleOS‘Y”,él + Iozez—m-_)rzlsinylbé%—ngrzSin(ez + ec:)

= myry[y,sin(6, + el.x)—fgcos(ez +6,.)] )

which is valid for 6, <6, <0, and v,,, is defined by the equation
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Yis = 6, ‘ez-ecﬁ’B- (4.22)

Combining Equations (4.19) trough (4.22), leads to a compact set of equations for mode 1,

namely,

(1o, + my2)81 + myrylcosy B2 + myr,lsiny,03 —m,r gsin(0, — 54,0,
-m,lgsin(0, - Sg B)= ~[m r cos(8, - Sq 8, ) + m,ylcos(0, - Sy B) 1%,
+[m,r sin(6, — Sy 6, ) + m,lsin(8, - S B)1¥, e (4.23)

myrylcosy,8; + Iozéz—mzrzlsiny,éf-m?_grz sin(6,—S,6..)

= mzrz[ygSin(ez—Se|er:)—fgco5(92-Sele’::)] J
where Sg denotes the signum function in 6, , and

Y = 8,-6,+5,(8.,-B). (4.24)
Clearly, Equation (4.23) is highly nonlinear and not amenable to exact closed-form solu-
tions. An approximate solution can, however, be obtained using numerical methods.

Governing Equations for Mode 2

In the second mode, the two blocks are rotating in the opposite direction. Specifically,

mode 2a describes the response for 8, >0 and mode 2b for 6, <0.

For mode 2a, the velocity of the mass center of block | is the same as that of mode la

given by Equation (4.6). In order to find the velocity of the mass center of block 2, the

coordinates of G, are expressed in terms of the coordinates of point O,', namely,

Xg. = Xg. +rysin(0, +06,)
sz b (4.25)
yG: = yo.: + r2cos(ec; + 92)7

where



Xg, = X,—I'sin(B'-8,)

(4.26)
Yo, = Yg+lcos(B'-0)).
Differentiating (4.25) with respect to time yields
X = %, +01cos(P —6,) +ry0:cos(8, +86,)
G 7 e b-8 ? : (4.27)
Y. = Y, +01sin(B' - 0,)~r,02sin(6 ., +6,).
The velocity of the mass center of Block 2 is then derived by
v, = x'-};: + _\%g
= £2+y2+ 0207 +r303 + 2001 [x,cos(B - 0,)+V,sin(B' - 6,) ]+ (4.28)

+2r,02[%,c05(0, +8,)~V,sin(8,, +0,)] +2r,/'0162c05(0,- 0, + 6, + ).
Substituting Equations (4.12) and (4.28) into Equation (4.8), the kinetic energy can be

written as

T = %m,{r,léh2 +X2+ Y2+ 2r19l[x&,cos(9n -0,) +y,sin(8, -0))]}

+116|gf+l,,,2{x-g + 92+ 207 +r303 + 206, [ £ ,cos(P'-0,)

2 2 (4.29)
~v,sin(B'=8,) 1+2r,02[ %,cos(8,. +6,)—y,sin(6,, +6,)]

+2r21'6|62¢0$(92 - el + ec: + B') }+%IG;6§'

The gravitational potential energy of the system rocking in mode 2a, is obtained from
Equation (4.9); the result is

V = mgr cos(8.—0,)+myglrycos(8, +0,) +cos(f'-6))]. (4.30)
Equations (4.29) and (4.30) are used to obtain the derivatives necessary for use in

Lagrange’s Equation (4.7). Specifically,
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g_g = (Ip, + m,I2)01 + myryLcos(8,— 0, + 6, +B')02 +mr[£,cos(8, -0,)
1
+Y,sin(0,, —8,) [+m,l[%,cos(B' —0,) + y,sin(B' - 6,)],
oT NG ; , .
5% = myr,[cos(8, -6, +6, + P01 + [ 02+m,r,[ %, cos(6,, +6,)-y,sin(6_ +6,)],
d(oT s = . A A G
— | = (Ig, + myl'?)8 + myryl cosY,,02 — myryl'siny, (82— 6()02+m,r,
de\98,
[¥,cos(0,, —6,)+%,0:sin(B, —6,) + ¥,sin(6,, ~6,)-y,0,cos(0, —0,)]
+myl[£,cos(B - 8,) + £,81sin(B' —0,)+y,sin(B' —6,)-y,0:cos(B - 8,)].
d 91) = m,ryl cosY,,01-myryl'siny,, (82— 01)81 + 5 B824+m,r,[ %, cos(0, +86,)
dtaé?_ 272 2a 272 2a\V= 0,VY< 202l 4 g c: 2
—%,02sin(8,, + 6,)-¥,sin(6,, + 68,) — y,02cos(8,, - 6,)],
OT _ , r.6:[%,sin(® ;. cos(8, — 8 I8, sin(p'
36 m,r 6,[%,sin(8, -8,)-y,cos(8, —0,)] + my['0:[x, sin(f'-0,)
-y cos(f' —6,) ]—mzrzl'é 1825inY,,,
T _ . r.8:[-%,sin(8, +08,)-y,cos(B, +8 [6,6ssi
30 = m,ry02[—%,sin(8,. +0,)-y,cos(0,, +6,)]-m,r,[0,08:sinY,,,
oV . R
30 = m,gr,sin(8, —0,)-m,gl'sin(f'—0,), and
v _ .
30, - -m,gr,sin(0, +6,).

The governing equations for rocking response in mode 2a are, then, expressed in the form
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(10I + mzrz)él + merI'COS'quéz + m‘_)rzl'Sin‘Yzaé% —mlgrl Sin(el - ecl)
—m,glsin(0, — B')= ~[m,r cos(8, —6,,) + myl' cos(8, - ") 1%,

+[m,r sin(@; — 8. )+ m,l'sin(8, - B') 1, > (4.31)
m,ryl cos’yhél +1/ O:§g—m2rzl' sinyzuélz—m.lgr2 sin(8,+6,)
= myry[y,sin(6, + 6, )—x,cos(6,+6,)] )
which is valid for 8, > 0; v,, is defined by
Yza = el - 62 - eL.: - B' . (4.32)

For rocking response in mode 2b, the governing equations are similarly derived; they can

be written in the form

(1o, + myl?)By + myral cosY,,8: + myrol'siny,,03 —mgr,sin(8, +6,)
~mgl'sin(8; +B')= ~[m,r cos(6, +6,) + myl'cos(8, + B") %,

+[m,rsin(8; + 6, ) +m,l'sin(8, + )1y, r (4.33)
mzrzl'COS‘Yzbél + Iozéz—mzr'_)l'Siny:bé%—ngrzsin(92 b e‘.:)
= myry[y,sin(0,-0,)-¥,cos(8,-6,.)] )
which is valid for 8, < 0. In Equation (4.33) y,, is defined as
(4.34)

Y = 6,-6,+6.+p".
Equations (4.31) trough (4.34) can be combined to give one set of equations for mode 2,

namely,
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(Ip, + m,I'2)81 + myrol cosy,0: + myryl sinyzé—f —mgrsin(6, —Sg 6,.)
—m,gl'sin(8; - Sg f')= ~[m;r cos(8,-S40,) +mylcos(8, — Sy )1,
+[m,r sin(0, -8 8,.) +m,l'sin(8, - Sq B)1¥, r (4.35)

myral cosY,01 + 15 0:-myral'siny,0{-magrasin(0, + 5,6,

= mzrz[ygsin(ez + Selecz)—.‘fgcos(ez + Selec:) ]
where Sy denotes the signum function in 8, , and

Y» = 0,-6,-5,(0.+p). (4.36)
It should be noted that Equations (4.23) and (4.35) are valid provided 8, #0 and 8, # 0,:

when 6, = 0 or 8, = 8,, an impact occurs either between block 1 and the ground, or

between the two blocks. The relations governing impact are outlined in a general discus-

sion of impact in Chapter S.
Governing Equations for Mode 3
In mode 3, the two blocks remain in contact (8, = 0,), that is, the system rocks as a sin-

gle rigid body. The equations of motion of the system governing the common angle 0,

from the vertical, are derived by considering the equilibrium of moments about the center

of rotation. These equations may be written as

1,81~MRgsin(8, - 8,) = ~MR[x cos(8, —8,)-7,sin(0, —0,)] (4.37)
62 = 9|

which is valid for 6, >0, that is, for rotation about O, (mode 3a), and



1,6:~MRgsin(8, + 6,) = ~-MR[%,cos(8, +6,)—7,sin(8, +8,)] (4.38)
92 = el

which is valid for 8, <0, that is, for rotation about O, (mode 3b).

In the above equations M denotes the total mass of the system, R the distance of the c.g.
of the system from any base corner of block 1, and /,, the mass moment of inertia of the
system about any base corner of block 1.

Equations (4.37) and (4.38) govern the motion of the system in mode 3a and mode 3b,
respectively. These equations can be combined to yield a compact set of equations for

mode 3, namely,

[,81-MRgsin(0, — Sp.0,) = ~MR[%,cos(8, — S4.8,)-¥,sin(0, — S5.6,)] (4.39)
92 = el

in which Sy denotes the signum function in 6.

Governing Equations for Mode 4

Mode 4 reflects the rocking of Block 2 alone, with block 1 being still. In this case the

equations of motion are

15,.82~m,r,gsin(0,-0,,) = —myry[%,c0s(8, - 6,,)-y,sin(8,-6,,)]

which is valid for 6, > 0, that is, for rotation about O, (mode 4a), and
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9|=0

19.82-m,rygsin(0, + 6,,) = —m,ry[X,c0s(0, +0,5)—y,sin (6, + 6,,)]

(4.41)

which is valid for 8, <0, that is, for rotation about 0,’ (mode 4b).

Equations (4.40) and (4.41) govern the motion of the system in mode 4a and mode 4b,
respectively. These equations can be combined to yield a compact set of equations for

mode 4, namely,

o - 0 (4.42)
Io:e.z—m-_,r-_,_g Sin(ez—SG:ecz) = —mzrzligCOS(e-_) - Sezecl)—ygSin(ez - Soxerz)]

in which Sg, denotes the signum function in 6, .

Note that the equations of motion for mode 3 and mode 4, are valid provided 8, # 0 and
8, %20, respectively. When 8, = 0 in mode 3, an impact occurs between the single-block

behaving system and the ground. Similarly, when 8, = 0 in mode 4, block 2 impacts the
still block 1. The relations governing impact are outlined in a general discussion of impact

in Chapter 5.

4.3.3 Linearized Equations of Motion

The complexity of the governing equations of motion demonstrate the difficulty of the
dynamic analysis of a system of more than one rigid blocks. These equations are highly
nonlinear and not amenable to exact closed-form solutions. It should be emphasized that

the nonlinear behavior of the system is not only a result of the nonlinear nature of the
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equations of motion, but also of the continuous transition between modes each one being

governed by a different set of equations.

In order to simplify these equations, the assumption of small angles of rotation is made.
Under this assumption, the linearized equations of motion for each mode may be written

as

Mode 1|

(I, + myI2)81 + myrylcosy, 05 + Sqm,r gsin®, + Sy m,lgsinB=
= —[m,r cos0, +m,lcosBli,~Sg [m,r,sin_ +m,lsinBly, o (4.43)
mzl'leOS‘Y”_é[ + Iozéz + Se:ngrzsinec: = -‘m-_)rz[}.;gSe!Sinecz + .'fgCOSGL.:] J
wherey,;, = Sg.(0. -B)
Mode 2
(I, + myl?)81 + myrol'cosy,; 02+ Sgm gr,sin@, + S m.gl'sinp'
= —[mrycos®, +myl'cosP'lx, - S¢ [m,r sin0, +m,lsinB']y, (4.44)
myryl cosy, 6, + onég—Selmlgrzsinec; myry[y,Sq sin@, —x,cos0, |
where YZL = _Sel(ec: + B')
Mode 3
1,0, +Sg MRgsin®, = ~MR[%,cos8_ + ¥,Sg sin@,]
091+ 3o MRg ® e (4.45)

8,=9,

Mode 4
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8,=0
(4.46)

15,02+ Sgm,r,gsinG,, = ~m,r, [%,cos6,, + ¥,S¢ sin06,,]
In the above equations S (i = 1, 2) denotes the signum function defined as: Sq = 1 for

6;>0 and S = —1 for 6,<0.

4.3.4 Transition Between Modes without Impact

After the system is set to motion, it continuously switches from one mode to another.
Responsible for the transition may either be an impact, or a sudden change in ground exci-
tation. In fact, this transition between modes reflects the highly nonlinear character of the
system response. Transition criteria without the occurrence of impact, are outlined below;

impact is analyzed extensively in Chapter 5.

Once motion is initiated, this type of transition may occur from mode 3 or mode 4 if the
base acceleration is sufficiently strong. The conditions for transition from one mode to
another are derived by considering overturning and restoring moments. For example, the

system can change from mode 4a to mode la if the overturning moment of block | about

point O, becomes greater than the restoring moment.

Transition from mode 3a to mode 1a, Figure 4.5, requires

~cos(0,,—-6,)%,~sin(6,.,-6,)y, > gsin(0_,—-06) +dcos(6,, + m)é?
(4.47)

+[:dsin(9c2 +@) + e ]é;.

2l
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0,

0, 0,

Mode 3a Mode la

Fig. 4.5 Transition from Mode 3a to Mode 1a without Impact

Transition from mode 3a to mode 2a, Figure 4.6, requires

cos(0,,+0,)x, —sin(0., +8,)y, > gsin(0,, +0,) +dcos(20, + 6, + (o)éf
(4.48)

I~ ..
+[dsin(26, +0_,+ @) + ]e,.

msro

0,

Mode 3a Mode 2a

Fig. 4.6 Transition from Mode 3a to Mode 2a without Impact
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Transition from mode 3b to mode 1b, Figure 4.7, requires

cos(0,, +6,)¥, - sin(8,, +0,)7, > gsin(B,, + 8,) + dsin(w - 0_,)07
1)Xg 1) Y. > 8 1 1 (4.49)

J
—[dcos(ecz -w)--2 ]6..

272

Mode 3b Mode 1b

Fig. 4.7 Transition from Mode 3b to Mode [b without Impact

Transition from mode 3b to mode 2b, Figure 4.8, requires

Mode 3b Mode 2b

Fig. 4.8 Transition from Mode 3b to Mode 2b without Impact
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—cos(8,., - 0,)x, —sin(8., - 8,)y,> gsin(0,, — 6,)-dsin(w + 962)9%

I .. (4.50)
+[dcos(6€2 +@) -2 ]91.
Transition from Mode 4a to Mode la, Figure (4.9), requires
0,
- —_—
T
Mode 4a Mode Ia
Fig. 4.9 Transition from Mode 4a to Mode la without Impact
—(my +2m,y)h %,—~(m b + myE) ¥, > myra[Esin(0 ., — 0,) + 2k, cos(0,, — 6,) 182 @51)

+mary[2h,sin(8,, - 6,) — Ecos(8,, — 8,) 163 + m,b,g.

Transition from mode 4b to mode 1b, Figure 4.10, requires

AILNANNANARRRRRNVANLNNY

Mode 4b Mode 1b

Fig. 4.10 Transition from Mode 4b to Mode 1b without Impact
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(my + 2mo)hSo—(myby + mo&)F > ~maral&sin(B,, +8,) + 2k, cos(8,, +6)182 , o)

+m,ra[2h,sin(8,, + 0,) — Ecos (8, + 0,) 182 + m, b, g.

Transition from mode 4b to mode 2a, Figure 4.11, requires

ALLNLLNLLNARRRNA R AANNY

Mode 4b Mode 2a

Fig. 4.11 Transition from Mode 4b to Mode 2a without Impact

.—(m[ + 2m2)h|fg—(m|b, + ng')jfg > -mzrz[&_,’ Sin(ecz + 92)—2,1[ COS(ecz + 92)162(4 53)

-myry[2h,Sin(0,, + 6,) +E cos(,, +6,)102 + m,b,g.

Finally, transition from mode 4a to mode 2b, Figure 4.12, requires

m
Mode 4a Mode 2b

Fig. 4.12 Transition from Mode 4a to Mode 2b without Impact
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(my +2my)h X ~(m b + myE)y, > myry[E'sin(0,, — 0,)—2h  cos (6, , — 6,)]02

. (4.54)
-myry[2h,sin(0,, —0,) + &'cos(0,,~06,)]82 + m b, g.
. . 9 ] 2h| + h2
In the preceding equations, d = J(2hl +h,)"+b], ® = atan(—b——-), € =0b,-b,,
1

and & = 2b,-E.

4.4 Free Vibration

Free “vibration” or free rocking of the system is initiated by rotating the system through
an initial angular displacement, say 8,, = 8,,=0,, releasing it, and letting the system
rock back and forth about alternative corners until the motion decays to rest.

Consider the case where the system is set to free rocking by giving a positive initial angu-
lar displacement common for the two blocks. The system starts rocking about point O,
(mode 3a) and remains in this mode until an impact with the foundation occurs. When
such an impact takes place, the pole of rotation switches to O,' and block 2 may either

start rocking separately about O," (mode 1b), or remain in contact with block 1, so that the

system continues rocking as one block about O, (mode 3b). From this point on, the sys-
tem will experience a number of impacts before coming to rest. Note that in free rocking,
impact is the only mechanism for transition between modes, with every impact being
accompanied by a mode transition.

The equations governing free rocking are derived from Equations (4.23), (4.35), (4.39),

and (4.42) with the base acceleration set to zero, namely
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Mode 1

(I, + m,12)8, + myrylcosy, 6 + mzrzlsin‘y,é% —mrigsin(8, —S5,90,.)

mzrzlcosylél + Iozéz-mzrzlSin‘Ylg‘lz-m‘_)grzsin(ez - Sezec!) =0

Mode 2

([0‘ + mzrz)é[ +m—_,r2rCOS'Yléz +m2r2rsin729'§—m1grl Sil’l(el —Selec')

Mode 3
1,61-MRgsin(8, -5,8,) =0 (4.57)
92 = e[
Mode 4
8, =0 (4.58)

15,82-m,ragsin(6,, - S¢8,) =0



CHAPTER 5: The Impact Problem

5.1 Introduction

One of the more complicated problems in dynamics is the impact between objects. Impact
phenomena involve a fairly complex interrelationship of energy and momentum transfer,
energy dissipation, elastic and plastic deformation, relative impact velocity, and body
geometry.

The impact of systems of particles is usually treated by a simplified analysis that utilizes
the coefficient of restitution - an experimental parameter. This analysis can be extended in
the treatment of the impact of rigid bodies - modeled as particles - only in the case of cen-
tral impact where the contact forces of impact pass through the mass centers of the bodies,
as would be the case with colliding smooth spheres, for example. To determine the post-
impact velocities of the bodies involved in the impact requires the introduction of the so-
called coefficient of restitution e. Although in the classical theory of impact e was con-
sidered a constant for given materials, more modern investigations show that e is highly

dependent on geometry and impact velocity as well as on materials.

Any attempt to extend this simplified theory of impact utilizing a coefficient of restitution
for the noncentral impact of rigid bodies of varying shape greatly oversimplifies the real
problem and has little practical value. It should be emphasized that noncentral rigid-body
impact is a more complex problem that depends on the geometries of the impacting bodies
and their surface characteristics as well as their relative velocities. Herein, the principle of

conservation of angular momentum is adopted in treating the impact problem.

Another important factor is the nature of the impact duration. Many impact problems are
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amenable to a solution, only if the duration of the impact At is so small that the displace-

ment of the bodies during the impact period can be neglected. Any motion that satisfies
this condition is called impulsive motion. Of course, the results obtained by assuming

impulsive motion are only approximations. The analysis is exact only in the idealized case

where At — 0.

5.2 Definitions

Angular Momentum.

Consider a system of n particles. Referring to the arbitrary {th particle of the system, let
m; be its mass, r; its position vector measured from a fixed point O, and r;,, its position
vector relative to an arbitrary point A . The angular momentum of the /th particle about an
arbitrary point A equals the moment of its linear momentum p;, = m;v;, about A. The

angular momentum of a system of particles is equal to the sum of the angular momenta of

all particles in the system, namely,

kh, = Z(hA)i = Zri/Axmivi' (5.1)

i=1 i=1
A rigid body is assumed to consist of an infinite number of infinitesimal particles, and

therefore, Equation (5.1) can be used to derive the angular momentum of a rigid body
about an arbitrary point A. The angular momentum of a rigid body about a point A

(which need neither be fixed nor attached to the body), can be expressed in the form
hA = hG+rG/Axva, (5.2)

in which v is the velocity of the mass center G, r,, is the position vector of G relative
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to A, and hg; is the angular momentum of the body about its mass center given by

h; = I;0, (5.3)
where ® is the angular velocity of the body and I, is the central mass moment of inertia
of the body about an axis perpendicular to the plane of motion.

For plane rigid-body motion, the angular momentum vector is always normal to the plane
of motion so that vector notation is generally unnecessary, and Equation (5.2) may be
written as

hy = [c®+(mvs)d (5.4)
where d is the distance of the linear-momentum vector, mv, from point A .

Moment-angular momentum relationship

Differentiating the expression for h, given in Equation (5.1) with respect to time and not-
ing that the absolute velocity v, of the arbitrary i th particle may be expressed with respect

to the velocity of point A as v, = v, +F,,,, one obtains

dh, df < ,
o T D TisaXmvy+Fi,)
i=1
n n
= zfim Xm(vy+Fisq) + Z"im Xmy,;.

i=1 i=1

But,

n n

Z’im Xmpy = vy X Zmiri/A = VaXmyg,

i=1 i=1
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and
Zfi/Axmifi/A = 0.
i=1
Therefore,
dh
ZMA = —‘-ﬁ+vAvaG, (5.5)

in which ZM a 1s the resultant moment about A of the forces that are external to the sys-

tem; v, and v are the velocities of point A and system mass center, respectively.

An important special case of this equation is when (a) point A is fixed, or (b) point A
coincides with the mass center. In such a case, the second term in Equation (5.5) vanishes

to yield
YM, = == (5.6)

Angular impulse-momentun principle.

Assuming that point A is fixed or it coincides with the mass center, Equation (5.6) can be

integrated over the time interval ¢, to ¢, yielding

_‘:MAdt = J;:dhA = Ah, (5.7)

or, “angular impulse equals change in angular momentum” which states the angular
impulse-momentun principle. Note that, practically speaking, this principle is valid only if

A is a fixed point or the mass center of a closed system of particles.
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Conservation of angular momentum

If the angular impulse about A is zero, it follows from Equation (5.7) that the angular

momentum of the system of particles is conserved about A :

if J’l ‘Mudt = 0, then (ky), = (k,), (5.8)

where (h,), and (h,), are the angular momenta about A at times ¢, and ¢,, respectively.

This is known as the principle of conservation of angular momentum. Note that, the term

J.‘: M ,d: in the above expression refers to the angular impulse of the external forces.
n

5.3 Analysis of Impact

5.3.1 Preliminaries

As stated in Section 5.2, the principle of conservation of angular momentum is, in general,
valid about the mass center or a fixed point. However, a useful simplification arises in the
analysis of rigid-body impact when the motion is assumed to be impulsive, meaning that
the duration of the impact is negligible. The characteristics of an impulsive motion are

summarized below:

The magnitudes of impact forces tend to infinity: The impulse of the impact force P is
finite, because it is determined by the impulse-momentum equations. But since P acts

over the infinitesimal time interval dr, the magnitude of 2 must tend to infinity for its
impulse to remain finite. A force of infinite magnitude that acts over an infinitesimal time

interval and exerts a finite impulse (area under the force-time curve) is called an impulsive
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force. An impulsive force is an example of a Dirac delta function.

The impulse of finite forces are negligible: If the magnitude of a force is finite, its impulse
during the impact period is negligible. For example, the weight W of particle is an exam-
ple of a finite, or nonimpulsive, force. During the time interval At, the impulse of W, i.e.,

WA, approaches zero as At — 0.

The accelerations of the blocks are infinite during impact: Because the changes in veloci-

ties are assumed to occur within an infinitesimal time period, the velocity-time diagrams

ey sy - - . .- - . . v .
exhibit jump discontinuities at the time of impact. Since a = %; it follows that the

‘jumps’ correspond to infinite accelerations.

The blocks are in the same location before and after the impact: Since At — 0, the dis-

tances moved by the blocks during the impact are infinitesimal (the velocities are finite).

Of course. the results obtained by assuming impulsive motion are only approximations.
The analysis is exact only in the idealized case where At — 0. In such a case, the angular
momentum about any point is conserved. The reason for this simplification is that by
assuming the time of impact to be infinitesimal, all displacements during the impact are
neglected. Consequently, all points are, in effect, fixed during the impact. A formal proof

of this assertion runs as follows.

Recall the moment equation of motion for a system of particles, Equation (5.5) which also

applies to a rigid body:

dh
ZMA = -;174+VAvaG.



drg

T and integrating over the time of impact, one obtains

Substituting v, =

[T Mdt = Ay +my, x [ drg, (5.9)
5 r
where r is the position vector of the mass center relative to an inertial reference frame.

Since the assumption of impulsive motion implies that the body occupies the same spatial

position before, during, and after the impact, r; may be considered to be constant, i.e.,

dr; = 0. Therefore, the integral in Equation (5.9) vanishes to yield

JJ:ZMAdt = Ah,. (5.10)

Note that, for impulsive motion, “angular impulse equals change in angular momentum” is

valid about any point A .

If the angular impulse about A is zero, it follows from Equation (5.10) that the angular

momentum of the system is conserved about A . That is,
if JJ:MAdt =0 , then (ky), = (h4), (5.11)
I
where (h,), and (h,), are the angular momenta about A at times ¢, and t,, respectively.

Note that, the term r M ,d: in the above expression refers to the angular impulse of the
n

external forces.
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5.3.2 Formulation

During vibration the system continuously switches from one mode to another when
impact between the two blocks or between the first block and the ground occurs. In this
study, the foundation is assumed rigid and friction large enough, so that there will be no
sliding either of block 1 on the foundation, or of block 2 on block 1. Under the assumption
of inelastic impact (no bouncing), the only possible response mechanism is pure rocking
about the corners of the two blocks (point-impact). Furthermore, the duration of impact is
assumed to be infinitesimal (impulsive motion), implying negligible changes in position
and orientation and instantaneous changes in angular velocities. In this regard, the impact

is analyzed using the principle of impulse and momentum.
Impact in mode 1

While in mode 1, the system will in time experience an impact occurring either when the
two blocks collide or when block 1 hits the ground. Each case is separately examined

below.

(a) Block I impacts the ground

Assume that the system is rocking in mode la. When the angle of rotation of block |
becomes zero, an impact occurs yielding a change of the rotation pole from O, to O,',
that is, a switch to mode 2b, Figure 5.1. This results to an instantaneous change in the
angular velocities of the blocks, whose post-impact values, 6/ and 6; , need to be deter-

mined. During impact, under the point-impact assumption, the only forces that exert a

moment about O,' are the weights of the blocks (the impulse forces pass through the point
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O,’). However, the angular impulse due to these finite forces about O,’ is extremely small

since the time of impact is negligible. Thus, the angular momentum of the system about

O,' may be said to be conserved ir accordance to Equation (5.11).

0,

0,

Mode la Mode 2b

Fig. 5.1 Transition from Mode la to Mode 2b through Impact

The angular momentum of the system about O," immediately before impact, is simply the

sum of angular momenta of each block about the point under consideration, that is,
(h—O.')S_vsrem = (h-O-')blm‘/tl + (h-().')bluckl -

Equation (5.4) is, then, used to compute the angular momentum of each block. For exam-

ple, the angular momentum of block 1 is given by

(h 0/ )btockt = 15071+ (myvg)d,

where /¢, is the central mass moment of inertia of block 1; 61 and vg; are the angular

velocity and the velocity of the mass center for block 1, immediately before impact, and d

is the distance of the linear-momentum vector, mv , from point O,’.
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The angular momentum of each block, immediately before and after impact, may be simi-

larly computed. Finally, the principle of conservation of angular momentum for the system

is expressed in the form

(h-O.').\'_vsrem = (h+0.')s_v:rcm, (512)

where

(ho)sys = {Ip, - 2m,bf +myl[rycos(0,-0., +B) +2h,cosB—(2b, — €)sinB)]1}6;
+{I o +m,ry[2h,cos(8,-8,,) + (2b, - &)sin(0, - 6,,)] }62,

and

(h*0.)sys = {I o, + Myl [r2c08(0,-8,_,—B') + 2k, cosP' + (2b, - E)sinP')] }61
+{I o, +myrs[2h,cos(8,—6_,) + (2b, —E)sin(6,—6,,)] }61.

Equation (5.12) involves the two unknown angular velocities, 6; and o, immediately
after impact. A second equation may be derived by considering the conservation of angu-

lar momentum about O, , for block 2 alone. This is justified by the fact that, since block 2
point-contacts block | at O,, all impact forces are transmitted to block 2 through that

point, so that the angular impulse of block 2 about O, is zero (the angular impulse of a

finite force like the weight of the block can be neglected). Furthermore since the motion is

assumed impulsive, angular impulse equal change in angular momentum, even about the

‘moving’ point O, (See Section 5.3.1). Therefore,

(R 0)btock2 = (R 0,)block2, (5.13)



where
(K o)z = [myrylcos(8, -6, + B) 161+ 1,62,
and
(h*0.)2 = [myrylcos(8,-6,,—B')161 + 1,65 .
The system of equations (5.12) and (5.13) is solved for the angular velocities immediately
after impact to yield

8 = A8, 5.14)

2= CO1+6: |

in which
TAA-AAY T T AAS-AAL]
where

Al = [0| +m2r[r2COS(92—ec2—B') +2hICOSB' + (2bl —é)SiﬂB')],

A, = Ip +myry[2h,cos(8,-6,,) +(2b, -E)sin(6,-6.,)].
A; = myrylcos(8,-6,,-PB),
A4 = [0:,

Bl = 10|—zmlb%"'mzl[rchS(ez—ecz"‘B) +2h[COSB-(2b| —&)Si“B)] ’ and

33 = m2r21005(92—962+ﬁ).



65
Note that, from symmetry, the same analysis also holds for the case of transition from

mode 1b to mode 2a.
(b) Impact between the blocks

Consider the case where the system is rocking in mode la. If the angle of rotation of block

2 becomes equal to that of block I, an impact between the blocks occurs and block 2 may

either start rocking about O,' (mode 2a), or remain in contact with block 1, implying that

the system rocks as one rigid-body about O, (mode 3a), Figure 5.2.

or

0, 0,

Mode la Mode 2a Mode 3a

Fig. 5.2 Transition from Mode la to Mode 2a or Mode 3a through Impact

Assume that the system switches from mode 1a to mode 2a. Considering the system, it is
seen that the forces generated during impact are applied at the point O/, so that the angu-
lar impulse of the system about that point is zero. Consequently, the angular momentum of

the system about O, is conserved during the time of impact, namely,

(hb.).tysrem = (h:;.)s_v.\'lem’ (515)

where



(Bp)spstem = Lo, + myl B} + 2k, + hy)*cos(C - B) 16,
+{lg + mzrz;ﬁ?% +(2h; + h-_,)zcos(e2 -0,-6,+0) 185,

and

(k) sysiem = {0, + mal JbT +(2h, + hy) cos( — B') 107

+{lg + m-_,rz,\/b:;’ +(2h; + hy)*cos(8, -6, + 8., +0) }65.

A second equation may be derived by considering the conservation of angular momentum
about O,', for the block 2 alone. Since impact takes place at O,', and neglecting the angu-

lar impuise of the weight of the block, the angular impulse of block 2 about that point is

zero. Furthermore, since the motion is assumed impulsive, the principle of conservation of

angular momentum is still valid about the ‘non-stationary’ point O,'. Therefore,

(R 0)btockz = ("0 )btock2 (5.16)

where

(W 0)btocka = Myrylcos(8, — 8, + 0, + B)O1 + [, + myricos(26,,)053,
and

(h"0)btacks = maryl'cos(8;—0, +6.,+B)81 +156>.

The system of equations (5.15) and (5.16) is solved for the angular velocities immediately

after impact to derive
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81 = A8, + BO:
(5.17)

8> = COy + DO

in which
TAA-AAT T T AA - AA
o ABi-ABs | AB-AB,
T AA;-AAT T AA-AAL]
where

>
|

= I, +myry b2 + (2R, + hy) cos(8, -0, +6,, + ).

A3 = myrylcos(6,-0,+6,,+8"),

>
s
]

Iy,

B, = I +mylfb> + (2h, + ha) cos({ - B).

Ig, +myry B> +(2h, + hy) cos(8, -8, -0, +{)

»
!

B; = myrylcos(6,-6,+6.,+f),and

B, = IG:-l-mzrgcos(ZGcz).

This analysis was carried out assuming that after impact, block | and block 2 rock sepa-
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rately about O, and O,', respectively (mode 2a). If, however, it turns out that 63 > 6,
which is physically impossible, then after impact, block 2 remains in contact with block 1
and the system rocks as one rigid body about O, (mode 3a). In such a case, 61 = 6,.and

its value is derived by considering the conservation of angular momentum about O, for

the whole system. That is,

(hb.)xystem = (hs.)system’ (5’18)
where
(hb.)s_vslem = {10. + m‘llA/b% + (Zhl + hz)zcos(c - B) }B-I
+{Ig, +myraJb2 + (2h, + hy) cos(8, -8, -0, + §) 163,
and

(1o eystem = 1001 ,

in which I, = I +1; + mz[bf +(2h, + h2)2] is the mass moment of inertia of the sys-
tem about O, .

The final relation is
. 4 . B . - B‘) . -
6 = 6; = (—-‘)61 + (—')92, (5.19)

where




69
and

B, = I +myraubt + (2h, + hy) cos(8, -0, —6,, + ).
The same analysis also holds for the case of transition from mode 1b to mode 2b or 3b.

Impact in mode 2

Let the system rock in mode 2 when an impact occurs. The impact analysis is again subdi-
vided into two cases depending on whether impact occurs between the two blocks or

between the first block and the foundation. Each case is separately examined below.

(a) Block 1 impacts the ground

If the system is rocking in mode 2a when block | impacts the foundation, transition to

mode [b occurs, Figure 5.3. In order to find the angular velocities after impact, the conser-

vation of angular momentum about O,' for the system, and about O, for the upper block

is employed. The equation concerning the conservation of angular momentum about O,

for the system is
(h 0;)system = (h+0")xy,wem , (5.20)

in which

(W 0:)system = {1, — 2m, B + myl[ryc08(8, + 8,2 + B') + 2k, cosB—Esin B) 1161
+{10! + m'lrl[thCOS(e-_) + ecz) + &Sin(ez + ecl)] }é:l,

and
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(h" 0;)svstem = {1p, + myl[rycos(0, +06_,-B) +2h,cosP + &sinB)]}é:
+{l, +myry[2h,cos(8, +8_,) +Esin(6, +6,,)] }65.

Mode Ib

Fig. 5.3 Transition from Mode 2a to Mode 1b through Impact

The conservation of angular momentum about O, for the upper block is expressed in the

form
(K o )btockr = (h* 0)btack2, (5.21)
where
(K 0 )btock2 = maryl'cos(8,+ 0., + B0 +1,63,
and

(h"0.)btock2 = myrylcos(0,+8,,—B)01 +1,65.

Equations (5.20) and (5.21) are simultaneously solved for the angular velocities immedi-

ately after impact to yield
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8; = A8, + BO;

(5.22)
8, = CO1 + DO
where
TAA-AADT T T AA-ALAL
coABi-AB; o AB-AB,
T AA-AA] T T AA,-AA]
in which

A, = [y +myllricos(8,+06,.,—B) +2h,cosP +EsinP)],

A, = I, +mary[2h cos(8, + 6,,) +Esin(0, +0,,)],

A; = m,yrylcos(0,+6,,-B),

A, =1,

B, = IOI—2mlbf+m21'[r2cos(62+9d+B')+2h,cosB'—§sinB')],
B, = I, +m,yry[2h cos(0, +6,,) +Esin(6, +6,,)],

B, = m,ryl'cos(6,+6,.,+p'), and

B4 = IO:'

The above analysis is also valid for transition from mode 2b to mode 1a.
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(b) Impact between the blocks

Assume that the system is rocking in mode 2a. If the angle of rotation of block 2 becomes

equal to that of block I, an impact between the blocks occurs and block 2 tends to start

rocking about O, (mode [a). It is also possible that, after impact, the two blocks remain in

full contact, so that the system rocks as one rigid-body about O, (mode 3a), Figure 5.4.

or

0, o,

Mode 2a Mode la Mode 3a

Fig. 5.4 Transition from Mode 2a to Mode la or to Mode 3a through Impact

Consider the case where the system switches from mode 2a to mode la. In order to find

the angular velocities after impact, the conservation of angular momentum about O, for

the whole system, and about O, for the upper block is employed, namely

(h;).):yslem = (h(;.)s_vﬂemv (5.23)

where

(hp)sysiem = Ll o, + ol b2 + (2h, + hy)*sin(8, + § - B) }6;
+{Ig, +marab +(2h, + hy)’sin(8, + 6, + {) }65,
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and
(h;.)s_vslem = {[0, + m?.l'\/b‘l-’ + (2h| + hz)ZSin(el + C - B) }er + [Oé;
Similarly,
(ho)btocka = (h;,)bluckz , (5.24)
where

(ho)btwck2 = maral'cos(6, -0, +86,.,—B)01 + (g, +m2r§cos(9, +0,-6,,-p)0:],

and

myrylcos(8, —0,+6,.,-B)0 + 1,6:.

+
( hO:)bIm:kZ

The system of equations (5.23) and (5.24) is solved for the angular velocities immediately

after impact. The final results are

6, = A6, + B6>
(5.25)
6; = CO1 + D6
where
A = AuBi-4:By o ABy-A,B,
T AA-AAY T T AA-ALAy]
T AA-AA T T AAL-AA,

in which
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Ay = Io +myl Jb? + (2h, + hy)*sin(8, + { - B).

A, =1,,

>
|

= myrylcos(8,-0,+6,.,-B),.

A4 = [01,

B, = Iy +myl b2+ (2h, + hy)’sin(0, + { - B,

By = I +myry b+ (2h, + hy) sin(8, + 8, + ),

B3 = mzl‘zl'COS(el —62 +9c2—B') ] and

B, = Ig +myrycos(6, +08,-8,,-B).
The preceding analysis assumed that after impact block | and block 2 rock separately

about O, and O,, respectively (mode la). If, however, this analysis leads to 62 <6,
which is not physically realizable, then after impact, block 2 remains in contact with block
I and the system rocks as one rigid body about O, (mode 3a). In such a case, 6; = 6,
and its value is derived by considering the conservation of angular momentum about O,

for the whole system. That is,

(hb.)s_v.nem = (hz.)x_v:tem’ (5.26)

where



75

(ho)system = {10, + b Jb% + (2h, + h,) sin(8, +§ - B }16;

+{Ig, +maryalb? + (2h, + hy)sin(0, + 6., + ) 165,

and

+ B[ T Bz AT .
(ho.)s_v:tem = (E)el +(7;)62,

B, and B, as defined in Equation (5.25).

The same analysis also holds for transition from mode 2b to mode b or to mode 3b.
Impact in mode 3

Consider the case where the two blocks are rocking together as one block about point O,
(mode 3a). If impact with the foundation occurs, the pole of rotation switches to O," and
block 2 may either start rocking independently about O,' (mode 1b), or remain in contact

with block 1, so that the system continues rocking as one block about O," (mode 3b),

Figure 5.4.

or

0, 0,

Mode 3a Mode 1b Mode 3b

Fig. 5.5 Transition from Mode 3a to Mode 1b or Mode 3b through Impact
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Consider first the case where the system switches from mode 3a to mode 1b. Evaluation of

the angular velocities after impact can be carried out by employing the conservation of

angular momentum about O,’ for the system, and about O,’ for block 2.

The conservation of angular momentum for the system may be expressed in the form

(hO.'.):_v:tem = (hO.'+).r_vslem’ (5'27)

where
(hO.'-):_vsrem = {[O_ZMb%}e.[-,

and

(ho;"system = {10, + Mall(2h, + hy)cosP + b, sinB]}07

+{IG +myry[b,sinB,, + (2h, + h,)cosB,,] }63.

The second equation, comes from the conservation of angular momentum of block 2 about

O,'. namely,
(h o )btock2 = (B @)block2 , (5.28)
where
(R o.)btockz = {1g, + m,yl'[hycosP'—b,sinf']}61,
and

(h*0.)btock2 = myl[hycosB + b,sinB167 + 1,63 .

The system of equations (5.27) and (5.28) is solved for the angular velocities immediately



after impact to yield

0 = A6,
(5.29)
8, = C6;
where
4= A,B —A,B, _ AB-AB,
T AA-AAYT T T AA-AALT
in which

A') = IG|+m2r2[b|Sin9L.2+(2h|+h2)005962],

e
!

= m,l[h,cos(P + b,sinP)],
A, =1,

B, = I,-2Mb}, and

B, = I, + m,l'[h,cosP'~b,sinf'].

This analysis was carried out assuming that after impact block 1 and block 2 rock sepa-

rately about O," and O,', respectively (mode 1b). If, however, it turns out that 62> 01,

which is physically impossible, then after impact, block 2 remains in contact with block 1

and the system rocks as one block about O, (mode 3b). In such a case, 8; = 65 , and its

value is derived by considering the conservation of angular momentum about O, for the
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system. The result is

(hO.'-)s_v.tlem = (hO.'+)syslem’ (530)

where
(hO.'-)x_v:lem = (IO‘ZMb%)e-[ ,

as in Equation (5.27), and

(hO.'+)sy.\'lem = 106:'

Equation (5.30) is solved for the common post-impact angular velocity giving

Iy- 2be) .

6 = 6> = ( 8. (5.31)
Iy

The above relations also hold for transition from mode 3b to mode la or to mode 3a.

Impact in mode 4

Assume that the system is rocking in mode 4a. If the angle of rotation of block 2 becomes
equal to zero, an impact with block | takes place and the pole of rotation of block 2
switches to O,'. Furthermore, block | may either start rocking about O,' (mode 1b), or
remain still, so that only rocking of block 2 is happening (mode 3b), Figure 5.6.

Consider the case where the system switches from mode 4a to mode 1b. In order to find
the angular velocities after impact, the principle of conservation of angular momentum
about O/’ for the system, and about O,' for block 2 is employed. Considering the system,

one obtains
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(hO.'-):_vslem = (hO.'+)s_vsrem ’ (5’32)

where

(ho; Vsystem = {Ig,+ myry[(2h, + hy)cosO ,—b,sinb,,]1}18: ,
and

(ho: system = {10, + Myll(2h, + hy)cosP + b, sinB] }6; +

+{Ig_ +myry[(2h, + h,)cos8,, + b,sinb,,] }63.
0,
0, —_— or
™ WAVY
Mode 4a Mode 1b Mode 4b

Fig. 5.6 Transition from Mode 4a to Mode 1b or Mode 4b through Impact

Conservation of angular momentum about O,' for block 2, gives

(ho)btocks = (RO )ptocka » (5.33)

where

(h-O';)blnckZ = {IO, - 2m2b§}6;. N

and
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(R Yptockzr = MallhycosB + b,sinBl6y + 1,63 .

The system of equations (5.32) and (5.33) is solved for the angular velocities immediately

after impact to yield

8! = BO>

(5.34)
8= D6,

in which

B=-%1"32.p
A1A4_A2A3 A2A3—A|A4

where

>
i

[ o, + myl[(2h, + hy)cosP + b, sinB],

As = I +myra[(2h + hy)cosB,, + bsind,,],
A3 = m,l[hycosB + b,sinB],

Ay =1q,

Bl = [G:+m2r2[(2hl +h2)C059L.2—b|Sin9L.2], and

B, = I, —2m,b;.

This analysis was carried out assuming that after impact block 1 and block 2 rock sepa-

rately about O,' and O,', respectively (mode Ib). If, however, it turns out that 8 >0,

which is physically impossible, then after impact, block | continues to remain still and
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only block 2 is rocking (mode 4b). In such a case, 8, is derived by considering the conser-

vation of angular momentum about O, for block 2, yielding

(h-o")bl‘":kz = (h;:')blm:kz ’ (5.35)
where
(hb:')bll:L'kl = {10: - 2m2b§}éé ,

as in Equation (5.33), and

(hg;)bluckz =1 o:é; -

Equation (5.35) is solved for the post-impact angular velocity to give

v (I, =2m,b2 ..
8, = (Oz—m--)ez. (5.36)
10:

The same analysis also holds for the case of transition from mode 4b to mode la or to

mode 4a.
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CHAPTER 6: Numerical Solution

6.1 Preliminaries

The equations of motion for all modes of response were derived in Section 4.3. These
equations are highly nonlinear and not amenable to exact closed-form solutions even if the
time variation of the excitation is described by a simple analytic function. Numerical
methods are therefore essential in deriving an approximate solution for the response of
such a nonlinear system. In this study, a fourth-order Runge-Kutta method was employed.

A brief discussion of its basis is presented here.

Problems involving ordinary differential equations can always be reduced to the study of
sets of first order differential equations via a state-space formulation. Therefore, the funda-
mental problem in the numerical solution of ordinary differential equations is the solution

of the first-order equation

dy(t) _
~ar = f(t,y(t)) 6.1

subject to the initial condition y = y, when t = ¢,.

Since y as an explicit function of t does not exist, the objective is to obtain satisfactory
approximations to the values of the solution y(t) on a specified set of r values,
ty, ts, ..., ty. The fourh-order Runge-Kutta method, approximates the exact solution y(z)

by the stepwise iteration algorithm

Yiey = y,.+é(k, + 2k + 2k + k) (6.2)

in which
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ky = nf(t,y;)

ky = hf(t,- + g v+ gkl)
(6.3)

h h
k3 = hf(t, + 5, y,- + ik:)

k4 = ’l_f‘(tl "l'h, yl+hk3)
where h denotes the constant incremental step in time.

The method demonstrated above for solving Equation (6.1) can be extended to systems

involving differential equations of order higher than one, since an nth-order equation

reduces to a set of n Ist-order equations.

The classical fourh-order Runge-Kutta algorithm is by far the most popular method for
obtaining numerical solutions to differential equations. It is relatively easy to code. and in

general, very stable and accurate.

6.2 Structure of the Program

A computer program has been developed for calculating numerically the response of two
stacked rigid bodies to base excitation. The program solves for the response under general
conditions, considering all four modes of response, large angles of rotation, impact, and
arbitrary base excitation. The exact highly nonlinear equations of motion are integrated for

each mode, and any potential transition between modes is automatically accounted for.

The program is unique in that it considers the many different modes of response. It deter-
mines the correct mode of response, integrates the corresponding equations of motion and
checks the results to determine if they are consistent with the given mode. If this is not the

case, a mode transition occurs. Responsible for the transition may either be an impact,
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which is governed by the impact model derived in Chapter 5, or a sudden change in

ground excitation.

The program has been written in Matlab. Integration of the governing equations of motion
is accomplished using a fourth-order Runge-Kutta algorithm. For this reason, a state-space
formulation is employed to yield a system of four first-order differential equations. It is to
be noted that, great effort was devoted to developing the algorithms to track the response
and correctly handle the transition phenomena, rather to integrating the equations as an

isolated problem.

A typical calculation runs as follows. Upon reading the input parameters, the program is
initialized and the initial mode of response is determined by the motion initiation criteria

given in Section 4.3.1. The equations of motion corresponding to that mode are then inte-
grated within the time interval from ¢,=0 to t,=¢, + h, in which A is the user-specified
time step. The computed response is then checked to determine if a mode change has

occurred. If not, the appropriate equations of motion are integrated from ¢, to t;=t, +h
and the process is repeated.

Suppose that at some arbitrary time ¢; the system is rocking in mode la (08,>8,>0). If
the response at the next step ¢,,,, which is computed using the equation of motion for

mode la, yields a negative angle of rotation for block 1 (8, < 0), then these results are not
valid. This implies that an impact between the first block and the foundation has occurred

(8,=0) yielding a mode change to mode 2b. Then, taking the angular velocities reported

at time ¢; as the pre-impact angular velocities, the post-impact velocities are evaluated
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according to the equations governing impact in Chapter 5. These values are then used as

initial values for the equations governing the next mode of vibration.

A similar procedure is carried out for eight different mode conditions encountered. These
conditions are associated with a potential mode transition or overturning of the system.
Note that, although impact is always accompanied by a mode transition, a mode change
can also occur as a result of a sudden change in ground excitation. The criterion for over-

turning of the system, checked after each time step, refers to overturning of any of the two
blocks and is defined herein by 0;=n/2 . It should be emphasized that 8,=8,_; cannot be

used as criterion for overturning, since the loading under consideration is of dynamic - not

static - nature.

6.3 Applications

The dynamic response of the system for the case of free rocking and under ground excita-
tion has been computed for various system parameters. It should be emphasized, though,
that the aim of these calculations was not to perform an exhaustive parameter study, rather

to simply demonstrate the application of the program.

6.3.1 Free Vibration Response
Free “vibration” or free rocking of the system is initiated by rotating the system through
an initial angular displacement, say 6,,=8,,=8,, releasing it, and letting the system rock

back and forth about alternative corners until the motion decays to rest.

In the following examples, a system of two blocks having slenderness ratios H,/B,= |

and H,/B,=2.5 with base width B;=1.25 m and B,= 1.0 m were used. The blocks were
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assumed homogeneous of equal material densities p,=p,=2500kg/m3. The nonlinear
equations of motion were integrated using a fourth order Runge-Kutta method with time
step of 0.001 sec.

Presented in Figure 6.1 are results for 6,,=6,,=0.15rad and zero initial angular veloci-

ties. It is seen that the angles of rotation of the two blocks are decaying in an oscillatory

manner with that of block | decreasing at a faster rate.
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Fig. 6.1 Free Vibration Response of a Two-Block System
(B|=Hl= 1.25 m, Bz= l.O m, H2=2.5 m).
The system starts rocking about point O, (mode 3a) and remains in this mode until an

impact with the foundation occurs. When such an impact takes place, the pole of rotation

switches to O, and block 2 starts rocking independently about O,' (mode 1b). From this
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point on, the system will experience a number of impacts before coming to rest. Note that

in free rocking, impact is the only mechanism for transition between modes, with every

impact being accompanied by a mode transition.

In this example, block 1 comes temporarily practically to rest very quickly, since the
amplitude of the second cycle is already very small. This block will in time experience a
few more short periods of rocking, generally as a result of an impact with block 2. For the
cases where block I can be thought of as being still, the system may be assumed to rock in
mode 4. In contrast, block 2 performs a number of cycles before coming to rest, with
decreasing amplitude in each cycle, except for the second half cycle. At r=1Isec, the

angle of rotation reaches a value of 0.183 rad exceeding the initial value 6,,=0.15rad.

This is not surprising, since the angular velocity of block 2 increases during the first
impact. Note also that, the period of vibration significantly changes in each cycle for both

blocks.

For the single rocking block, Housner (1963) derived a relation between the amplitude of
vibration and the period. Apparently, for the two-block system, such a correlation is not
easy to derive, due to the complexity of the phenomenon. It can be said, however that, in
general, larger amplitudes correspond to larger periods, although the mode of vibration

plays an important role as well.
As a second example, the response of the system under the conditions mentioned above,

was also calculated numerically employing the linearized equations derived in Section
4.3.3 for small angles of rotation. The results for both the linear and nonlinear formulation

are illustrated in Figures 6.2 and 6.3.
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Fig. 6.2 Rotation Angle for Block |: Nonlinear vs. Linear Formulation
Referring to these figures, it can be seen that the linear formulation yields an increased
system response. Furthermore, this amplification seems to be affecting more the interme-

diate stages of motion. Attention should also be drawn to the fact that there is a time lack
in the two responses.
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Fig. 6.3 Rotation Angle for Block 2: Nonlinear vs. Linear Formulation

6.3.2 Response to Earthquake Excitation

As a second case, the response of the system to a horizontal earthquake excitation was
computed. Results are presented here for an accelerogram recorded at Simi Valley during
the Northridge CA, 1994, earthquake. This record is shown in Figure 6.4c and has a peak
amplitude of 0.71g. The blocks were assumed homogeneous of equal material densities
P =pP2=2500kg/m3 with geometric characteristics: B;=H,=1.25 m, B,=1.0 m, and

H,=2.5 m. The first 13 sec of the response of the system are shown in Figure 6.4.

Referring to Figure 6.4, it is observed that the response of block 1 is, in general, much less
than that of block 2, in amplitude and duration. In particular, block 1 is set into motion

whenever a large peak on the excitation occurs, or when it is hit by block 2, in which case
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the system rocks as one rigid block (mode 3a or 3b). Attention should also be drawn to the

fact that the maximum response of the two blocks, which occurs at different times, does
not immediately follow the peak amplitude in the ground acceleration. Finally, the system

comes to rest before the end of the earthquake record.

It should be emphasized that the behavior of the system is highly nonlinear and small
changes in the system parameters may alter the response significantly. Therefore, the fore-

going quantitative results, cannot be generalized.
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CHAPTER 7: Conclusions

The dynamic behavior of structures of two stacked rigid blocks subjected to ground exci-
tation is examined. Assuming no sliding, the rocking response of the system standing free
on a rigid foundation is investigated. In this problem, the most probable failure mechanism

is the loss of equilibrium of the whole structure or part of it.

The analytical formulation of this nonlinear problem proved quite challenging. Its com-
plexity is associated with the continuous transition from one regime of motion (mode) to
another, each one being governed by a different set of highly nonlinear equations. Further-
more, depending on the mode, this transition can happen either through impact, occurring
between the blocks or between the lower block and the ground, or without impact by an

instantaneous separation of the two blocks.

The exact (nonlinear) equations governing the rocking response of the system to horizon-
tal and vertical ground acceleration are derived for each mode. Furthermore, a model gov-
erning impact is derived using the principle of impulse and momentum. Finally, a
computer program is developed to solve for the response of the system under base excita-
tion. The program solves for the response under general conditions, considering all four
modes of response, large angles of rotation, impact, and arbitrary base excitation. The full
nonlinear equations of motion are integrated for each mode using a fourth-order Runge-
Kutta integration scheme, and any potential transition between modes is automatically
accounted for. To illustrate the application of the program, the response of the system in
free rocking and under ground excitation has been computed. It should be emphasized that

the behavior of the system is highly nonlinear and the system response is poorly condi-
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tioned; small changes in input or geometr may yield large changes in system response.

Therefore, the quantitative results obtained in the application examples cannot be general-

ized.

The current model may be extended to incorporate some of the characteristics of a non-
rigid foundation. For example, by inserting an elastic layer between the lower block and
the rigid ground, the complex impact problem may be avoided. Furthermore, it is possible
to undertake a comprehensive numerical investigation into the generalized response for
realistic ground motions, utilizing the computer program developed in this work. Using an
ensemble of synthetic earthquake ground motions, response statistics may be obtained for
a range of system parameters, from which possible systematic trends in the system
response may be identified. Experimental investigation of the problem is also expected in
future work. This attempt is essential in verifying the numerical solution of the nonlinear
equations of motion. Finally, a dynamic analysis of multi-block structures, consisting of
more than two blocks, might be attempted with a method analogous to the one described

in this work.
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