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ABSTRACT

Atomistic Modeling of Nano-Materials: From Classical to ab
initio Simulations in Different Timescales

by

Yu Lin

Quickly developing computer techniques empower numerical simulations in ma-
terials science, which connect abstract theories and empirical experiments. Both
deterministic molecular dynamics simulation and stochastic Monte Carlo simulation
can employ various levels of theoretical models, from classical potential to the state-
of-the-art ab initio method, for different simulation accuracies and needs. After the
overview of a variety of methods used in this thesis, namely, classical potential, tight-
binding (TB), semi-empirical, and density functional theory (DFT) methods, three
following examples demonstrate how the computer-assisted simulations enable us to
investigate and predict physical and chemical properties of the nano-materials. Mass
diffusion through the graphene layer is the first example, where the DFT saddle point
calculations are performed to identify the transition states of carbon absorption, ad-

dimer flipping over the graphene layer, and Cs molecule dissociation. In the second



iii
example on the cross-linked carbon nanotube bundles, tight-binding method is used
for cross-link modeling and energetic stability analysis. Based on the semi-empirical
molecular dynamics simulations of the tensile strength testing, a phenomenological
model is proposed. After all the parameters are extracted from the quantum chem-
istry calculations, a series of canonical Monte-Carlo simulations are conducted to
statistically analyze the mechanical properties of a nanotube bundle with thousands
of cross-links. The last example on silicon nanowire demonstrates how various meth-
ods in different levels can be bridged by the energy decomposition in the energetic
analysis. A novel electro-mechanical property of the pentagonal silicon nanowire is

predicted by the electronic band structure calculations.
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Chapter 1

Simulation Methods and Models

Theory and experiment are two fundamental methodologies to quantitatively in-
vestigate the physical world in all scientific disciplines. Due to the current powerful
and quickly developing computer technology, numerical simulation is becoming more
and more important in both academia and industry. Simulation is an extension of the
abstract theories, which are based on both experimental evidence and proposed hy-
pothesis. Nevertheless, the purpose of simulation is to bridge the theoretical hypoth-
esis and the experimental observables, which cannot be achieved or are impractical
to obtain. Computational simulation is able to provide a much more transparent un-
derstanding of the physical world, which concise theories cannot explain, and current
experimental technologies cannot reach, such as the nano-structures.

In this chapter, we start with the molecular description of a material, which is dif-
ferent from the classical continuum description. A variety of theories are introduced
to describe how atoms in the materials interact with each other, namely, classical force
field model, tight-binding (TB) model, semi-empirical model, and first principle { or

ab initio) model. Based on these theoretical models, all the static physical properties



for any given material can be computed in principle, including Young’s modulus, elec-
tronic conductivity, optical absorption, etc. For the thermodynamic properties, two
basic simulation techniques in nano-materials science, molecular dynamics simulation
and Monte Carlo simulation are primarily used.

With different combinations of these methods and models, we investigate vari-
ous systems from carbon nanostructures to silicon nanowire, and demonstrate the

advantages and limitations of each method in the latter chapters.

1.1 Theoretical Models

All computer simulations are based on one or several theories, by which the com-
puter program can describe and simulate the materials. Finite element (FE) is one
of the most successful traditional or classical methods in material science, which is
based on the continuum mechanics. One fundamental assumption made in the fi-
nite element method is that matter in each element is homogeneous, so that all the
atomistic details are neglected. This assumption works very well for the macroscopic
objects, where atomistic behavior is not important, or can be interpreted by macro-
scopic physical quantities via statistical physics. However, continuum mechanics is
insufficient at all to describe the microscopic or meso-scopic phenomenon, such as the
mechanism of mass diffusion, mechanical failure, energetic stability of nano-materials,

ete.



In the microscopic or meso-scopic world, a material should be further described at
least in terms of ions, electrons, and the interactions among them. In this molecular
description, the materials are discretized: each ion is represented by a spatial point,
although the visualization tools often render them as a sphere, with a finite radius.
The radius is pre-set according to the isolated atom with electrons around it. The
chemical bonds are denoted by the lines between two interacting atoms. Similarly,
the visualization tools usually render the bonds as sticks, with a finite thickness
representing the electron cloud symbolically. Based on these descriptions, a theory for
the interaction between atoms must be provided in order to describe how a molecule

or material is formed.

1.1.1 Classical Force Field

Classical force field model describes material with the empirical potential energy,
which must be parameterized. This potential energy is broken up into various terms,
and each term is described by a mathematical function. In a classical force field
model, there is no concept of electron, which is treated as an inseparable part of
atoms. Therefore, the potential energy is merely determined by the coordinates of all
the atoms in the molecule or material.

The simplest classical force field is the hard sphere potential [1],
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|7 — 72| > 1o

(1.1)
where, 71 and 7 are the coordinates of two given atoms. This model works efficiently
and pretty well for the materials in low density liquid or gas phase, because this model
ignores all the interaction details other than the repulsion in a very short range. In
another word, the atoms in this model do not interact with each other when the
distance between them is greater than the critical radius, rq, while the repulsion is
too strong to allow any pair of atoms to stay closer than ry.

For carbon and silicon materials, one of the best classical models was introduced by

Tersoff and Brenner decades ago [2]. The binding energy in Tersoff-Brenner potential

follows Abell-Tersoff formalism [2]:

E, = %Z; [Ve(rij — Bi;jVa(ry)) (1.2)

where, Vr(r) and V4(r) are the repulsion and attraction terms for each pair of atoms
in the materials, and B;; is so-called bond-order function. This bond-order function
is highly determined by the local environment of the atoms in order to represent their

chemical bond nature. Under the first order approximation, this bond-order function

can be written as,

in which, the factor ¢ is different from one case to another, and Z;; is the number of

bonds competing with the bond ij. For example, if the ¢** carbon atom has already 4



nearest neighbors, this bond-order function increases dramatically in order to prevent
this carbon atom from forming the fifth bond.

Importantly, Tersoff-Brenner potential can also describe the m-bonding in carbon
as well as the o-bondings. The pioneering work on carbon nanotube [3] is one of
the successful applications of this method [4, 5]. Classical potential is certainly one
of the fastest simulation methods, and successfully describes material’s mechanical
and thermal properties. This method cannot be used to perform any optical or
electronic property calculation, and it will often fail under the circumstances where
the accurate calculations for chemical reactions are required. Additionally, classical
potential method requires well-defined potential for all the chemical bonds. Therefore,
it cannot well describe the materials which have different chemical bonding nature

than the ones included in its potential energy functions.

1.1.2 Tight-Binding (TB)

Tight-binding (TB) method [6, 7] originates from one of the quantum chemistry
methods, linear combination of atomic orbitals method (LCAO) [8, 9], developed for
the molecules by Slater and Koster in 1954. Tight-binding theory states that the

potential energy of a material or molecule consists of two parts:

E = Eron—1on + Eband (14)



where, Fron-10n 18 the repulsive part between ions, and Ejq,g is the attractive part
between electron and ion. In principle, these two parts of the potential energy are
not separable. We apply Born-Oppenheimer approximation (or diabatic approxima-
tion) [10], which assumes that all the ions move slowly enough so that all the electrons
reach the equilibrium at any moment. Generally, this statement is valid, because elec-
tron is so light compared to any ion. Typically, the velocity of electron is in the same
order of the Fermi velocity, vp & 108 m/s, while the velocity for ions is on the order
of 103m/s. With the Born-Oppenheimer approximation, ions can be treated sepa-
rately as classical particles, and electron-ion and electron-electron interactions can be
calculated with quantum mechanics.

Furthermore, another foundation of tight-binding theory and LCAO is that all the
electrons are tightly bounded to the ions. Even though the tight-binding theory works
very well for 7 electrons, which are nearly free in the conjugated organic complex.
Therefore, the wavefunctions of the electrons, |¢), are in terms of the atomic orbitals
of individual or isolated atoms.

) = Zci,a |Pi0) (1.5)

i
where, |@;4) is the ot* orbital of the it* atom, and ¢;, is the corresponding coeffi-
cient. According to quantum mechanics, these wavefunctions follow the Schrodinger

equation,

H|¢p) = €n|9) . (1.6)

The simplest example is the diatomic molecule, where, |10) = ¢1 |¢1) + c2 |¢2). By



multiplying (¢4, (i = 1, 2), both sides of the Eq. 1.6, one can get an equation set as

Hy, Hyp €1 S11 Sz C1
= 1.7
<H21 H22><02) 6<521 522>(02> (L7)

in which, Hy; = {¢;| H |¢;), and, S;; = (¢;]¢;). For non-trivial solutions, the deter-

follows,

minant of (H — eS) must be zero:

=0 (1.8)

Hqyp — 6511 Hyy — €519
Ho1 — €Sy Hop — €S9

Therefore,

(E+ & —2SV) £ /(& + & —25V)2 — 4 (1 - §2) (£:16, — V?)
< = 2(1— 52) (1.9)

where, & = Hj; is the self-energy of the 4y, atom, V' = H,; is the interaction between
two atomic orbitals, and the overlaping between them: S; = 1 and S;; = S. With
orthogonal orbital approximation, S = 0, one can get: ex = & & /A? + VZ, where,
the average energy level £ = (é;—&) and the polar energy A = ’é%_é'z‘ These
two solutions are corresponding to the bonding state and the anti-bonding state,
respectively.

From a molecule to the condense phase of material, we need to apply the periodic

boundary condition (PBC) with Bloch’s theory [6]:
cbn,a(];’ F) = Z e“—élﬁj ¢n,a(F_ ﬁg) (110)

in which, ¢, 4 is the a orbital of the ntt atom, éj = j1d; + j2ds + J3as, is the Bravais



lattice vector, and k is the reciprocal lattice vector [6]. Overall, the molecular orbital

1 oy
wavefunction, ¥ = — Cna i, ..
\/N nza ; i Xe ¢n,a
For a 1-dimensional single-orbital atomic chain, k = aj% . %“, where a is the lattice

constant, N is the number of atoms in the unit cell, and 7 = 1,2,---,N. The

Schrédinger equation becomes,

HY e*Fig=¢(k)d e*fig (1.11)
J

J

Multiplying ¢* in both sides, one can get the following recursive equation as follows,

e RO, 1+ Hyj+ e® Hypy = e(k) (e7®8;1 5+ Sj5 + €¥S5005)  (L12)

For the orthogonal approximation and the nearest neighbor approximation, the so-
lution for this atomic chain is e(k) = & + 2Vjcoska, where, &€ = H;; is the self-
energy, and Vo = Hj41; is the covalent energy [6]. For a infinite long atomic chain,
Ak = % — 0, since N — oc. Consequently, the electronic band energy becomes a
continuous function of k, and this is also called energy dispersion function.

For a two dimensional lattice, such as graphene sheet [11], one will get a secular

equation set as follows,

Haqa Hap ca - | Saa SaB ca
= e(k) (1.13)

Hps Hpp CB Spa SBB CB



in which,

HAA — HO + l:eiﬁal + e—iE51 + eiEiz
+6—iE52 + eiﬁ(§1—§2) + e—iﬁ(ﬁl—ﬁz)} H2 N
= Hy+ {2 cos (@kwa + %kya) + 2cos (?kwa — %kw)
+2 cos (kya)] Hy + - - (1.14)
= Hy+ [4 cos (?kxa) cos (%kya) + 2cos (kya)] Hy+---

T = AT e = 102 =
HAB — [ezgk(a1+a2) + e—z%k(al—Qag) + e—z%k(2a1—a2)] Hl + ..

3 V3
[e‘ZTsk““ + 2cos (%kya) e’Tskxa} Hy+---
with Hy is the self energy, H, is the interaction energy between the n*’-nearest-
neighbors ( e.g., Hy is the interaction energy between a pair of atoms which are the

nearest neighbors). For the orthogonal approximation, one can the electronic bands

as follows,

e(k) = Ho+ {4 cos <§kxa) Cos <—;—kya> + 2cos (kya)] H,

1
5
=+ [1 + 4 cos? (%kw) + 4 cos (%kw) cos (?kmaﬂ Hy+--- (1.15)

This simple analytical solution shows the band structure of graphene successfully,
and also gives clear classification and explanation of the interesting electronic prop-
erties of single-walled carbon nanotube [3, 5]. The essential parts of the tight-binding
models are the Hamiltonian (H;;) and the overlap (S;;) matrix, and the number

of the orbitals considered. Depending on the calculation, one can choose different



10

tight-binding models from orthogonal single orbital nearest neighbor interaction to
non-orthogonal multiple orbital long range interaction models. The matrix elements
of H;; and S;; can be parameterized by the empirical data, and/or from the higher
level computations, i.e. density functional theory (DFT) in the later chapter. Density
functional based tight-binding (DFTB) introduced by Porezag and his colleagues [12]
is parameterized via the DFT method. Trocadero [13, 7] is one of the simulation
packages that employs DFTB.

Tight-binding method is one of the cheapest methods based on quantum mechan-
ics, and it works fairly well for covalent systems, especially the organic molecules
and semiconductors with elements from the group IV in the periodic table: including
carbon [14] and silicon [15]. The biggest drawback for tight-binding method is that
it does not describe the chemical bonds as well as the covalent bonds, so that one

should turn to other methods when the materials have noncovalent bonds.

1.1.3 Semi-Empirical

Before we move to the first principle method, we want to introduce another im-
portant transition method, which lies between expensive first principle ( or ab initio)
method and empirical data dependent classical potential method. This method adapts
one of the first principle method, Hartree-Fock’s framework, and it is so-called semi-

empirical method. Therefore, the semi-empirical method does not have any preference
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for the elements or certain molecule/material in principle, which gives the computer
simulation much more freedom. Nevertheless, because the semi-empirical methods
still require empirical data for parameterization, their performance and availability
are dependent on whether and how the parameterization is deployed.
Semi-empirical methods were first developed by J. Pople in 1960’s, including com-
plete neglect of differential overlap (CNDO), intermediate neglect of differential over-
lap (INDO), and neglect of diatomic differential overlap (NDDO) [16]. Lately, due
to the performance and accuracy, two relatively new semi-empirical methods become
popular, Austin model 1 (AM1) [17] and parameterized model 3 (PM3) [18], which
are developed lately by M. J. S. Dewar et al., and J. J. P. Stewart, respectively.
According to the Pauli exclusion principle and Hartree-Fock theory, the N-electron

wavefunction |¥) = |19 - - 9n) can be written as a Slater determinant,

@1)1(7"1) 1/}2(771) wN(ﬂ)
) = (N7 Ui(72)  ¢a(fe) -+ Un(T)

P1(7n) 1/)2(.7”;N) 1JJN.('FN)

where, each single electron wavefunction ¢ is an eigenfunction of the following Hamil-

(1.16)

tonian:
1 M Zm
HIF = —EVz - Z E— + VHF<p) (1'17)
m=1 m

One may notice that this Hamiltonian is a function of the electron density, p =

> (¥i|ts). In Hartree-Fock method, this chicken-and-egg problem is solved by Hartree-

Fock self-consistent field (SCF) scheme. Instead of pure HF-SCF, semi-empirical
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methods employ parameterization and a variety of approximations to speed up this
procedure.

The parameterization in semi-empirical methods can be based on the ab initio as
well as the experimental data, and both AM1 and PM3 choose the later. Nevertheless,
semi-empirical methods still perform the self-consistent calculation for the electron
density and Hamiltonian. Consequently, semi-empirical methods describe the far-
equilibrium conditions better than tight-binding method usually, such as chemical
bond association/dissociation. In this thesis, two softwares are used to perform the

AMI1 semi-empirical computations, Gaussian [19] and Dynamo [20].

1.1.4 Ab Initio

Previously, we already mentioned one of the ab initio methods, Hartree-Fock
method. Because all these methods are solely based on the theories themselves,
the ab initio methods are often called first principle methods.

The most successful and frequently used ab initio method is the density functional
theory (DFT) method. Density functional theory was based on the Hohenberg-Kohn
theorems and the Kohn-Sham equations [21]. Hohenberg and Kohn first proved that
both the density and wavefunction of an electron gas are existing and non-degenerate
when the system reaches its ground state. The second theorem of the Hohenberg-

Kohn theory is that there exists an universal exchange-correlation functional of the
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electron density, E,.[p]. The ground state electron density minimizes the electronic

energy,

———/d?”\II*VQ\I!-i— /d /d ‘(FP(F +/dfve””t p(7) + Egc[p]  (1.18)

where, p is electron density, and V" is external potential.

Therefore, the key issues for density functional theory are identifying the exact
E,. and solving the Schrédinger equation. Kohn and Sham provided a recipe to
solve the many particle Schrodinger equation with single electron approximation [21].
However, a variety of exchange-correlation functionals are proposed. There are two
groups of functionals in DFT method, local density approximation (LDA) and gener-
alized gradient approximation (GGA). In local density approximation, the exchange-
correlation functional is only in terms of the local density of the electrons, while
the generalized gradient approximation includes the gradient of electron density. The
exchange-correlation functional in LDA is parameterized with high accuracy quantum
Monte Carlo calculations by Ceperley and Alder [22], and later improved by Vosko,
Wilk, and Nusair (VWN) [23].

Local density approximation works well and relatively efficiently, but it usually
overestimates the interaction and underestimates the bond length. Due to the sim-
pler mathematical form of the LDA functionals, local density approximation can be
enhanced by consideration of higher order terms, i.e. GGA. There are quite a lot

GGA functionals available, including Perdew 86 (P86) [24], Becke 95 (B95) [25],
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Perdew-Burke-Ernzerhof (PBE) [26], and Lee-Yang-Parr (LYP) [27]. Furthermore,
Becke developed the so-called hybrid functionals [28], which include both LDA and
GGA functionals with different parameterizations. Since this hybrid DFT method
works extremely well in most systems, it is widely used and is becoming more and
more popular.

The choice of the functional directly balances the efficiency and accuracy of the
computations. The way to construct the wavefunction is quite important. Conven-
tionally, a wavefunction can be constructed from either localized atomic wavefunctions
or plane waves. According to the Fourier theory, these two methods are identical in
principle. In reality, one should construct the wavefunction from a finite number of
primitive mathematical functions. For different circumstances, it would be ideal to
choose the right construction. For example, the plane waves used in Vienna Ab-initio
Simulation Package (VASP) more naturally represent the periodic systems and delo-
calized electrons, while the Gaussian shape localized functions used in Gaussian [19]
are much more efficient to describe localized atomic orbitals than the plane waves.
Since Gaussian orbitals have difficulty to descrbe the singularities near atomic nu-
clei, a new wavefunction basis set, linear combination of numerical atomic orbitals
(LCAO), is becoming more and more popular for DFT method. SIESTA [29] is one
of the ab initio simulation packages using LCAQ.

Another important issue for the ab initio calculation is the pseudopotential. Al-
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though Kohn-Sham theory approximatively solves the many-particle problem of the
electron gas, the calculation for the self-consistent iteration is still very costly. It
becomes more and more severe when we are trying to deal with elements with large
atomic number, such as Au. The all-electron calculation becomes very demanding,
but most of the electrons in the inner shells, so-called core electrons, are not involved
forming chemical bonds and remain intact. Pseudopotential is one of the solutions for
this problem. In this approximation, one replaces all the core electrons by a precalcu-
lated potential called pseudopotential within the cutoff radius. During the run-time
calculations, these core electrons are treated as a fixed external potential. Notably,
it’s quite important to choose a right pseudopotential for different systems, because
there is no universal choice for all the calculations. Without careful consideration and
testing, one may end up either wasting computational time on core electrons or losing
accuracy by freezing valence electrons, especially, for the first two rows of elements
in the periodic table.

In ab initio calculations, the electron density or wavefunction is computed either
in a fine grid of the real-space of the computational unit cell or within a cut-off value
in the momentum-space. Consequently, how to choose a suitable grid or cut-off mo-

mentum can also influence the accuracy or efficiency of the simulations significantly.
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1.2 Computational Molecular Simulations

With either one or several different theoretical models in the last section, we are
able to compute the static properties of given molecules or materials. In other words,
one can obtain a stable structure as an output by minimizing the energy of the given
molecule or material. This type of calculation is called geometry relaxation or opti-
mization. However, one may have no information yet on any of the thermodynamic
properties, such as the stability of a given material under the temperature, T, and the
pressure, P. In this section, how to relate the individual molecule or the computa-
tional unit cell to the macroscopic material with 102 molecules/atoms will be shown.
Two elementary (deterministic and stochastic) molecular simulation methodologies

will be covered herein.

1.2.1 Molecular Dynamics Simulation (MD)

Molecular dynamics simulation can describe the molecules or materials with either
classical mechanics or quantum mechanics, or both. Due to the complexity and
difficulty of solving the time-dependent Schrédinger equation in quantum mechanics,
only classical molecular dynamics is widely used in molecular dynamics simulations.
Therefore, we focus on the classical molecular dynamics simulation.

Although the force or interaction between nuclei can be computed with the models
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described in the last section, Newtonian classical mechanics is used to describe the

evolution of N atoms in materials.

dp; 8E(F1)F27"'777N)
e 1.19
dt or; ( )
and
dry

in which, F is the potential energy, 7; and p; are the coordinate and momentum of
the 7** atom, respectively. The trajectory of all the atoms virtually demonstrates and
predicts the dynamic behavior of the material. The evolutions of the coordinate and
momentum are calculated with the finite difference method. Therefore, for each time
step, At, the coordinate and momentum update once according to Newton’s laws.
The velocity Verlet method [30] is one of the most efficient algorithms for updating
the velocities and coordinates. Instead of direct motion integration, the velocity
Verlet approach updates the velocity and coordinate with more than just one step in

advance. The formula are shown below,
e+ A1) = 7(6) + 3 (14 SA1) At (1.21)
and

5 (t + %At) -7 (t - %At) (At (1.22)
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According to statistical physics, there are three principal thermodynamics en-
sembles [31, 32]: microcanonical ensemble, canonical ensemble, and grand canonical
ensemble. Correspondingly, there are three different molecular dynamics simulations:
microcanonical simulation, canonical simulation, and grand canonical simulation.
More specifically, in microcanonical simulations, the number of the atoms, N, the
volume of the material, V, and the total energy of the systems, £ = Ej + E,, are
not variables. Conventionally, it is named NV E simulation. In canonical simulation,
instead of the total energy, the temperature of the system 7' remains constant, and it
is named NVT simulation. Finally, grand canonical allows the number of the atoms
in the system to change, while simulation temperature and volume are constants.

Theoretically, molecular simulation is a deterministic simulation, but the sim-
ulation contains stochastic processes in reality. The simulation randomly assigns
each atom with an initial velocity, while the velocities of all the atoms follow Boltz-
mann’s distribution. For different simulations, either the total energy or temperature
converges to its preset value. The procedure and the bath (energy, temperature, or
particle bath) to control the thermodynamics physical quantities is called thermostat.

One of the widely used thermostat schemes is called the Nose-Hoover thermostat [33].
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1.2.2 Monte Carlo Simulation (MC)

In contrast to the deterministic molecular dynamics simulation, Monte Carlo sim-
ulation is categorized as a stochastic simulation. The atoms in the simulation do not
follow Newtonian mechanics. Instead, the system randomly moves the atoms in the
phase-space, either one atom or all atoms at each step. With the models provided in
the last section, system computes the energy of each configuration. According to the
Ergodic hypothesis, the system will visit all the positions in the phase-space over long
periods of time. Consequently, the thermodynamic average of the physical quantity
is approaching the true value.

However, Monte Carlo becomes impractical because it takes an infinite length of
time to simulate a true “long” time. In 1953, Metropolis et al. [34] proposed an
approach for Monte Carlo methods, which makes Monte Carlo methods powerful in
practical applications. In this approach, a weight is assigned to each Monte Carlo
snapshot or ensemble, exp (—E/kgT), and each move is also adjusted by this weight.
For example, the energy change for one move is AE, the probability to accept this
move is calculated as min[l,exp(—AFE/kgT)]. When energy is going upward, the
move has much more chance to be “rejected” than the move with a smaller energy
increase, while the moves with the energy going downhill are always accepted. Conse-

quently, the system can visit the phase-space much more efficiently. Even though the
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system may not really visit the high energy positions, this Boltzmann weight ensures
that the average is still quite accurate because of their negligible weights.

Because many dynamic details are not calculated in Monte Carlo method, this
method cannot tell us things like how the defect is generated in the material, or how
chemical bonds are dissociated. Nevertheless, because of this, Monte Carlo is very
efficient to calculate the thermodynamic quantities such as the Gibbs free energy.
For example, Monte Carlo can easily give us how several defects are going to migrate
statistically in the material, while one should run molecular dynamics simulations

numerous times over a fairly long time in order to get an accurate statistics.



Chapter 2

Mass Transport through Graphene Layer

2.1 Introduction

Interstitial carbon is one of the most important defects in the carbon materials.
The formation and the diffusion of the interstitials has been investigated from both
experimental [35] and theoretical perspectives [36, 37, 38, 39, 40, 41} for decades, and
been believed to have a significant barrier in the basal direction, which is larger than
5eV [35, 41].

Recently, a significant shrinkage of perfectly sealed multiple layered carbon onions [42,
43] is reported by Banhart and his colleagues. Furthermore, different groups in-
dependently observed diameter reduction of the seamless multi-walled carbon nan-
otubes [44, 45, 46], while the tubes retain their perfection [47, 48]. These experiments
indicate that there must be a diffusion channel for carbon atoms to penetrate the
seamless graphene walls, and it seems that this contradicts to the experiments in the
literatures and cannot be reconciled by any of the existing theoretical models.

Sigle and Redlich [49] proposed an interesting phenomenological diffusion mech-



22

anism from a statistical perspective, which is irradiation-induced diffusion of the
vacancies from the outermost shell towards the core of the carbon onion. Obviously,
it is not convincing enough to conclude this problem without further atomistic un-
derstanding. Additionally, Banhart et al. investigated and exposed some details of
the migration of metal atoms through carbon onions [50], although the atomistic
mechanism of this diffusion remains veiled.

In this chapter, we will begin with the experiment of a growing fullerene inside
of the larger fullerenes, which is a reverse process of the carbon onion shrinkage. We
propose a diffusion mechanism of Cy molecules instead of single carbon interstitials.
The diffusion can be decomposed into three stages: i) absorption of C, molecule
and forming addimer on graphene lattice; ii) addimer flipping from one side of the
graphene to the other side; iii) dissociation of the addimer. The overall transition
barrier, computed with density functional theory (DFT) method, is surprisingly lower
than the barrier for single interstitial or vacancy diffusion. The diffusion flux is

calculated accordingly, and is consistent with the experiment.

2.2 Experiment

The experiments are conducted inside a high-resolution transmission electron mi-
croscope (HRTEM) equipped with a nanofactory TEM-STM (scanning tunneling mi-

croscopy) platform, enabling in situ manipulation of individual carbon nanotubes.
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Individual MWCNT glued to an Au rod is connected to the STM probe by in situ
deposition of amorphous carbon. A detailed experimental procedure is described in
Ref. [51]. Once a connection is established, a high bias voltage is applied to Joule
heat the nanotube. The nanotube is Joule heated to about 2000°C at high bias volt-
ages [51, 52, 53]. At such a high temperature, a shell-by-shell self-templated growth
of fullerene takes place in the inner chamber of the MWCNT.

The first fullerene in Fig. 2.1 (a-e) is grown due to the breakage and wrap-up of
the innermost wall of the MWCNT. Then, a small island grows on the inner surface
of the first fullerene (f-h), and the island extends until the second fullerene is closed.
Notably, there is a spacing between the first and the second fullerene (i-j). Following
the same fashion as the growth of the second fullerene, the third fullerene is grown
on the inner surface of the second fullerene (k-0). The same spacing is kept between
the third and the second fullerene as well.

Initially, the carbon source comes from the residue of the broken carbon nanotube
walls and the carbon gas in the inner chamber of the MWCNT. The growth of the
second and the third fullerenes in the inner surface of the outermost fullerene is

surprising and entirely unexpected, since carbon atoms have to penetrate the enclosed

perfect fullerene to grow the second fullerene.
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Figure 2.1 Sequential HRTEM images showing the self-templated growth of three con-
secutive fullerenes. The nanotube is Joule heated to ~ 2000°C by applying a bias voltage
of 2 V. The time elapse are marked, and the arrowheads point out the growth front of the
fullerenes.
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2.3 Direct Penetration

Before we explore new mechanism of carbon diffusion through the hexagonal car-
bon network, let us first look at the most intuitive mechanism, direct penetration.
In this mechanism, carbon atoms penetrate through the center of the polygons, i.e.
hexagon for a perfect graphene lattice. We employed the density functional based
tight-binding molecular dynamic (DFTB-MD) simulations for our investigations.

In Fig. 2.2 (a), we schematically show how carbon atoms will shoot towards the
lattice in our calculations. Due to the high reactivity of the atomic form, carbon tends
to form the C molecular form, which is a relatively more stable gas phase than carbon
plasma. Therefore, we only consider C; molecule in our simulations. Initially, we keep
the carbon-carbon double bond in (5 normal to the plane of the graphene lattice,
and aim the Cy to the center of the polygon which the C; molecule is attempting
to penetrate. The Cy molecule is given an initial shooting momentum normal to
the graphene plane before we start the micro-canonical MD simulations. Due to the
radicals, Cy molecule senses the carbon atoms in the lattice and tends to form chemical
bonds with them. Consequently, Cy will be chemically absorbed by the graphene layer,
until the shooting velocity of the C; molecule is greater than the critical velocity, the
minimum velocity for Cy molecule to go through. The corresponding kinetic energy,
Einresnoia for one (5 molecule to physically penetrate a graphene layer through a

hexagon is around 38 eV.



26

40 1 I 1

—~
QO
~—"
~~
O
~
_|_

301

20- \
0 T @ ...... > +

10

Ethreshold (€V)
_|_

hexerxgon hept|agon octalgon

Figure 2.2 Direct penetration through carbon polygons. (a) Schematic for shooting Cs
molecule; (b) the threshold kinetic energies for Cy molecule to penetrate different polygons.

Certainly, one can lower this threshold energy by replacing the target from hexagon
to larger polygons, i.e. enlarging the “holes” in the graphene lattice. In our investi-
gations, we try two other polygons, namely, heptagon and octagon. Threshold kinetic
energies for different polygons are plotted in Fig. 2.2 (b). From this figure, one can
see that the threshold kinetic energy for an octagon is still more than 15 eV, which
is not easy for Cy molecule to attain in the ambient conditions. Additionally, a larger
“hole” on graphene will be quickly annealed to smaller holes [54]. Therefore, the
physical penetration can not provide a sufficient diffusion channel in the experiments

mentioned earlier, and new mechanisms need to be explored.
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2.4 Flip through Graphene as Addimer

2.4.1 Addimer on Graphene Patch

Because of the high reactivity of a single interstitial carbon atom, carbon atoms
are required to overcome a significantly high diffusion barrier [35, 36, 38, 41]. In
contrast, in the C, molecular form carbon has much fewer dangling bonds than in
the atomic form. Furthermore, due to the low concentration of the interstitial carbon
in the graphite, it is usually difficult to form C5 molecules. In the experiments we
introduced earlier of the chapter, especially, Huang’s experiment, the concentration
of the free carbon gas is high enough to form C; molecules. Therefore, it is more
reasonable to discuss the diffusion of Cy molecules rather than the atomic form.
Whether and how C, molecules diffuse through the graphene layer are investigated
through atomistic simulations in this chapter.

In the first order approximation, the graphene layer can be treated as a hexagonal
finite-sized graphene patch, such as the coronene (CoyHiz). It has been reported that
C> molecule can be easily absorbed chemically by the graphene layers or the side
walls of CNT and form addimer [55, 56]. In Fig. 2.3 (b), we show two different stable
addimer structures: i) horizontal addimer (Ap); ii) vertical addimer (A4,). In both
cases, the graphene patch is bended severely.

In order to better represent the infinite graphene layer with a patch, we freeze
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the hydrogen atoms at the edge of the fully relaxed graphene patch. The extra stress
introduced by this constraint can be depressed by choosing a larger patch, such as
CogHay (circum-circumcoronene) shown in Fig. 2.3 (a). In Fig. 2.3 (b), we show the
side view of an A addimer formed on CggHay with frozen edge. One can see that the
carbon plane is almost flat near the edge where the ripples exist for smaller patches.
Moreover, the formation energy of A, addimer (E,) versus the size of graphene
patch is plotted in Fig. 2.3 (c) with hollow squares. The convergence of the formation
energy indicates that circum-circumcoronene is sufficiently large in our calculations.
Therefore, we replace the infinite graphene by this CysHyy patch as our theoretical
model, hereafter.

For the purpose of maintaining the consistency and achieving as high accuracy as
we can afford, we conducted all the relaxation and saddle point searching with one
software package, Gaussian [19], from now on. We employed the functional density
theory method with the generalized gradient approximation (GGA) with Becke’s [28]
three-parameter hybrid functional in conjunction with the exchange-correlation func-
tional of Lee, Yang, and Parr [27] (B3LYP). In addition, the STO-3G Gaussian-type
basis set is used for F,4q convergence study, and a larger basis set 3-21G is used for
the rest calculations, including transition state searching. As a result, the binding
energy of the A, addimer on the circum-circumcoronene patch calculated with 3-21G

basis set is 1.7 eV, which is in a good agreement to the value reported by Sternberg
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et al. [56].

2.4.2 Local Buckled Plate Model

If two carbon atoms are added at the center of the patch, the circum-circumcoronene
changes its shape from a plate to a hat, with a hump at the center. Naively, one can
push this hump from one side of the graphene patch to the other by flattening the
“hat”. The energy barrier for this transition path is extremely high, which is 7.2 eV.
Obviously, this ad-dimmer is very unlikely to flip over the graphene plane through
this mechanism.

We revisit this buckled graphene patch carefully. This graphene patch is buckled
in one direction much more significantly than the other direction. In material science,
this addimer can be also categorized as a dislocation dipole, which consists of two
dislocations face-to-face. In the direction perpendicular to the extra line, the graphene
patch is highly buckled, the tiny extra line with these two absorbed carbon atoms is
out of the graphene plane. This buckled plate is analogous to the Euler plate [57],
if we ignore the buckling in the other direction. Since we freeze the edge of the
plane, the boundary condition of this Euler plate is referred to as a hinged boundary
condition [57]. According to Euler buckling theory, the solutions of the buckled plate

are series of sinusoid functions:
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fn(z) =sin (?m) (2.1)
where, f,(z) is the n™ deflection function of the plate, and [ is the length of the
plate. Assuming only elastic deformation in the plate, we can directly relate the
strain energy to the shape of the plate in the continuum approximation. Therefore,
the strain energy, E, x n?

Although there are infinite numbers of Euler buckling modes, only the first so-
lution of the Euler buckling equation is stable, which is the bump in the circum-
circumcoronene. All higher order buckling modes are saddle points. Any infinitesi-
mal deviation from these modes will cause the energy of the plate to decrease, and
eventually transform the plate to the first order mode.

Turning back to the flipping problem of the addimer on the graphenen patch, all
these Euler buckling modes are just the transition states of the flipping. Therefore,
the lowest energy transition state (T'S) is the second order buckling mode, which has
only one node between two ends. The geometry of this TS is like an “S” shown in
Fig. 2.4(a). With this guess, we perform the saddle point search in Gaussian, and
confirm that it is one of the transition states. The corresponding energy barrier for
this transition path, E; = Erg, — Ev,, is only 1.0 eV. The surprisingly low barrier is
because this diffusion process does not involve any chemical bond breaking. Fig. 2.4

(b), the schematics shows this diffusion path, with the analogy to the Euler plate. The
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Figure 2.4 Diffusion paths for a Cy molecule to flip from one side of the circum-
circumcoronene to the other side. (a) The ball-and-stick model for the initial, transition,
and final states of this diffusion path. (b) The schematic diagram for the transition path
via the “S” shape transition state.
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dash line is representing the intermediate configuration, which has a node between
two ends as well. The node appears from one end, and moves to and disappears at the
other end. This process is also very similar to acoustic wave propagation. Therefore,
this process can be coupled with the acoustic mode of the graphene layer’s thermal
vibration, which can be clearly seen in the classical potential MD simulation of a huge
graphene layer (Cyrso) with addimers, shown in Fig. 2.6 (b).

Similarly, we predict the third order buckling mode to be the next lowest TS. This
buckling mode has two nodes between two ends, and the geometry of this transition
state is like an “M” shown in Fig. 2.4. Because the energies of the addimer and the
TS can be approximately described as the energies of the buckling modes, E, o n?,
this barrier can be estimated as, (Ey — Faq) = 8_;5% (Es — Euq) = 2.7 €V. The
actual computed barrier for this transition path is 2.2 eV, and is surprisingly in
agreement with our expectation. This difference is due to the complexity of the
actual boundary condition, which is not just hinged plate. The transition state energy
increases parabolically while the order of buckling mode is increasing. Theoretically,

the flattening of the addimer can be referred to the oco® order mode, although the

energy cannot be estimated in this way. In any case, the diffusion barriers for all
other modes are much higher than the first two paths. Consequently, they can not

make a sufficient contribution to carbon diffusion.
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from the gas phase to addimer, and back to gas phase.
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2.4.3 MD simulation

In order to further confirm the transition state calculations, we again perform
DFTB-MD simulations. During the simulations, we keep the hydrogen atoms frozen
while the simulation temperature is 2000 K. We observed addimer flipping through
Cos Hay, circum-circumcoronene after 2 ps. Clearly, we can see the addimer is following
the “S” shape transition path, which has the lowest energy barrier. The snapshot of

the transition state from the simulation is shown in Fig. 2.6 (a).

2.5 Diffusion Coefficient

After we locate all the possible transition path for the addimer to flip from one
side of the graphene plane to the other side, we try to evaluate the diffusion coefficient
of our mechanism and compare with our experiment in this section.

Although the energy barrier for addimer to flip from one side of the graphene layer
to the other is surprisingly low, this barrier is not for the whole diffusion process. In
order to penetrate the graphene layer, the C; molecule must escape from the carbon
lattice and return to the gas phase. This process is similar to the “fragmentation”
of the bucky ball [58, 59]. Compared to taking a Cy away from the perfect sidewall
of a Cgp, which requires around 12 eV [58], dissociation of the inserted C from

an addimer has a much smaller activation barrier (~ 4 eV). This is because that
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Figure 2.6 Molecular dynamics simulations. (a) Classical potential MD simulation for
five addimers on Cs750. (b) Snapshot of the “S” shape transition state from a tight-binding
MD simulation of CggHsy. Only the core of the circum-circumcoronene is shown, while
hydrogen and the outermost carbon are not.
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the carbon network of an addimer has two adjacent pentagons violating the isolated
pentagon rule (IPR) [60], and the carbon layer becomes perfect after releasing a Cs.
This O, dissociation is the reversed process of the formation of addimer, which was
briefly discussed in Ref. [56]. A can be formed or dissociated directly or through
forming A,, because two processes share the same transition state (7°Sha,), shown in
Fig. 2.5.

By considering both the flipping of the addimer and the dissociation of the addimer
from the graphene, we put all the favorable meta-stable structures and transition
states together and show in Fig. 2.5. One can see the bottleneck of the whole diffusion
process is the direct dissociation of Aj, (or transformation between A, and A, ), and
the overall activation barrier is 4.1 eV. The interstitial diffusion coefficient can be
evaluated by the following formula, D = 1/2 v a?exp(—Ey/kpT) [61], where v is
the characteristic frequency (~ 10'2s71), @ is the lattice constant, Ej, is the diffusion
barrier, and kp is the Boltzmann’s coefficient. Consequently, the diffusion flux of the
Cy gas through a single graphene layer at 2000 K, J = —D dC/dz ~ 10¥%s~lem=2,
assuming the concentration at one side is zero and the other side is one Cs above every

five hexagons. In this case, it takes 0.2 s for the carbon atoms which are required to

grow a full layer inside a fullerene to go through.
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2.6 Conclusion

Carbon penetration through graphene layer in the Cy molecular form provides a
new diffusion route for mass transport in various carbon nano-structures, including
fullerenes, carbon onions, and carbon nanotubes. DFT calculations show that an
addimer can flip from one side to the other without breaking any chemical bond, and
the activation barrier is only as low as 1 eV/. The bottleneck of the whole diffusion
process is to dissociate the inserted C, from the graphene layer, and the overall energy

barrier is around 4 eV, which is much lower than any other known diffusion channel.



Chapter 3

Cross-Linked Carbon Nanotube Fiber

3.1 Introduction

Carbon nanotube (CNT) [3] is believed to have many practical applications in
the coming era of nano technology because of the mechanical [4, 62] and electronic
properties [63, 64, 65, 66]. Although a major portion of current studies are focused
on production and properties of the ideal tubes, their structural variants, e.g. Y-
shaped tubes [67], tube junctions [68, 69, 70|, and functionalized nanotubes with
other atoms [71] or small cluster [72] have drawn increasing attention. All these
CNT-derived systems are expected to be closer to practical applications than the
ideal tubes, including the carbon nanotube fiber.

Since the discovery of CNT, individual CNT has been demonstrated to possess a
ultrahigh Young’s modulus and tensile strength by theoretical prediction T'Pa [4, 73,
74] first and experimental confirmation [62, 75], recently. However, due to the weak
van der Waals [76] interaction between side walls of nanotubes the reported values
for the strength of SWNT bundles are much less than the individual nanotube, which

is only up to 100 GPa [77, 78, 79]. Intuitively, chemical bonds and functionals have
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been introduced successfully to reinforce materials by both theoriticians [80, 81] and
experimentalists [82, 83, 84] as cross links between CNT or between CNT and polymer

matrix.

3.2 Carbon Links

Before considering other chemical species, our investigation begins with carbon
links between the single walled CNT’s by energetics calculation using a density func-
tional tight-binding force model [7, 12, 13] and molecular dynamics (MD) simulation.
Periodic boundary condition is applied in the axis direction of the tubes, with the
computational super-cell chosen long enough to eliminate the interaction between
the links. Two extreme chiralities, i.e. the armchair tubes with index of (n, n) and
the zigzag tubes with index of (n, 0), were considered. Formation energies of those
links between parallel identical CNT’s were calculated with respect to diameter and
chirality to extract basic energetics conditions that stabilize the links.

The formation energy of a Cj, link is defined as:

e = [B™ — (2 x El%h, +n x B, )| /n, (3.1)

dimer

where E% El% and EY.. are total energy of the linked system, the ideal tube and
the isolated carbon dimer, respectively. Such formation energy measure is closely

related to the strength of the link.
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Figure 3.1 (a) Top-site and (b) bridge-site Cy links between two parallel (4, 4) nan-
otubes; (¢) >C< cross-link is formed between two (6, 6) nanotubes.

3.2.1 Length of Cross Link

Due to van der Waals interaction between carbon nanotubes, the equilibrium
distance between side walls of two parallel CNT is 3.5 A [76]. This spacing is ap-
proximately enough for a link consisting of no more than two carbon atoms to fit in,
hecause this spacing is roughly three times that of a C—C hond length.

Therefore, we insert a Cy molecule between two parallel nanotubes. By running
MD simulations around 1,000 K, we search for different possible stable cross-linked
structures. Two typical linked structurcs are found: Top-site (linear) and bridge-site
(planar). In Fig. 3.1, we show the ball-and-stick models of these two links.

The chemical bonds in the top-site link is quite similar to those in the Acetylene
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(H-C=C—-H), but each hydrogen atom is replaced by one nanotube. This link itself
has a strong triple bond, while the bonding between the link carbon and the carbon
on the nanotube side wall is a much weaker single bond. This bonding causes the
rehybridization of this carbon on the nanotube side-wall, from sp? (graphite like) to
sp® (diamond like) in assistance of the curvature effect, which helps the pyramidiza-
tion [85]. However, the thicker the nanotube diameter is, the less significant the
sp? rehybridization becomes. In addition, the equilibrium spacing between tubes for
the top-site is around 4.0 A, which is greater than the spacing in bridge-site, 3.6 A.
Therefore, the top-site link is less favorable, compared to the bridge-site link, e.g.
the formation energy of top-site link is 2.5 eV weaker than the bridge-site link be-
tween two (4, 4) tubes, even without considering the energy cost to push tubes away
from the van der Waals equilibrium distance. Therefore, we will focus on only the
bridge-site links hereafter.

For the bridge-site C, link, each end of the link splits a C—C bond on one tube
but form two new bridge bonds at the same time, so that sp? hybridization remains
on the tube. The bond between the two carbon in the link is a double bond but is
sp? in nature as well. Consequently, the link splitting the most curved bond (the
weakest) is the most favorable, and releases the most strain energy. For example, the
formation energy of a bridge-link splitting the horizontal bonds (parallel to the axis)

on the zigzag (7,0) tubes is 4.5 eV stronger than that of the link splitting the vertical
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bonds (perpendicular to the axis) on the arm-chair (4,4) tubes. The more strain that
is released, the stronger the link that is formed.

Notably, we obtain an interesting bridge-site link with single carbon atom sitting
between two tubes. The only carbon atom of the link breaks one bond on each tube,
and forms four bonds with four different carbon atoms on the tubes. Such a link
formed between two (6, 6) tubes is shown in Fig. 3.1 (c). This type of link appears
stable, but the van der Waals repulsion makes this kind of link impractical unless

very high pressure is present.

3.2.2 —-(C5,— Cross Link

The formation energy of a cross link is strongly dependent on the strain energy of
the bonds being split by the cross link. Since the strain energy originates from the
curvature of the rolled graphene sheet, the formation energy of the link is diameter
dependent. The diameter-dependence of the formation energy is shown in Fig. 3.2.
For each chirality, three non-equivalent cross links can form, because there are three
different bonds on each nanotube. However, for the armchair and zigzag tubes, there
are only two possible links due to the tube symmetry. In Fig. 3.2, we only show the
links with lower formation energies. In other words, we choose to show the most stable
ones for each case, i.e., for armchair (zigzag) tubes we choose the one splitting the

vertical (chiral) bonds. From the figure, one can see that in both cases the formation
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energy becomes weaker as the diameter increases. The cross links formed between
armchair tubes are stronger than those formed between zigzag tubes with a similar
diameter, although the difference tends to decrease, and eventually converges to zero
when the diameter approaches infinity, which is the graphene sheet.

Since Cs addimer is one of the most well-known isomers [55, 56], it is interesting
to compare the formation energy of the links with the on-wall addimers. The on-wall
addimer also splits two C—C bonds but in the same hexagon on the same nanotube.
As well as the bridge-site links, the addimer parallel to the axis of the armchair
tube [Fig. 3.3 (a)] is the most stable one among all different addimers. On a zigzag
tube, the addimer splitting the chiral bonds [Fig. 3.3 (a)] is found to be 0.4 ~ 0.8 eV
stronger than the horizontal addimer [Fig. 3.2] within the diameter range of 4 ~ 10 A.
Therefore, the formation energies of the chiral addimers on (n, 0) and the horizontal
addimer on (n,n) tubes are calculated against the diameter and shown in Fig. 3.2.
From the figure, one can see that the addimers are more stable than the Cy links when
the tube diameter is greater than 6 A. Therefore, smaller diameter is more favorable
for the formation of Cy links.

In the optimized addimer structures, two interstitial carbon atoms pop out of the
nanotube side-wall significantly. This indicates the existence of the mixture of sp?
and sp? hybridizations, and implies the dangling bond on top of the adatoms making

the addimer radical. When we bring two tubes closer than van der Waals spacing
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Figure 3.3 (a) Chiral addimer on a zig-zag tube: a Cy molecule (red atoms) splits two
facing chiral bonds and a 7/5/5/7 defects is formed. (b) Horizontal addimer on an armchair
tube: two vertical bonds are split. (¢) Cy cross link formed by two addimers on arm-chair
tubes, which are Cy molecules parallel to the axis splitting the vertical bonds on (6, 6)
nanotubes.
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with one addimer right above the other, the dangling bonds are saturated by forming
a Cy link. Therefore, we also include the diameter-dependent formation energy of the
Cy links in Fig. 3.2 as well as the (5 links and addimers. For all the tube diameters we
investigate, the formation energy of C, link is always lower than that of the addimer
on the same tube.

Furthermore, we extend this Cy link to (s, with n = 1,2,...,6, where n is
corresponding to the number of bonds split in one hexagon on each tube. Although
there are more than one nonequivalent structures for each n except for n = 6, one can
always figure out easily the most stable configuration by determining the weakness of
the bonds being split. The formation energies for the links (n =4, 5, and 6) between

(6, 6) tubes are shown in Fig. 3.4, and it turns out that the Cg link is the most stable.
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-5.26 eV

Figure 3.4  Cy, links between two (6, 6) tubes for n = 4,5,6. (a) Ball-and-stick
illustration for » = 6; (b) Schematic diagram for n = 4,5,6. Open circles denote sites
occupied by a Cq link.



49

3.3 Relocation of Cross Link on Nanotube: MD Simulation

In the last section, we have investigated different Cs, links. We will study the
shear strength of the interface between two individual nanotubes, which essentially
determines the strength of the CNT fiber in this section. For simplicity and for
the sake of revealing the physics of the mechanism, we take a simple Cy link as an
example throughout this chapter. Due to the lack of the experimental evidence, we
perform MD simulations to understand the mechanism of the failure in the cross-
linked nanotube fibers. Finally, we connect it to the macroscopic strength of the
fiber.

In our MD simulations, two nanotubes are aligned parallel to each other in the
manner that tubes align in the bundle. For computational convenience, we truncate
the nanotubes to a finite length from 1.2 nm up to 2.4 nm in different simulations.
Therefore, we employ hydrogen atoms to terminate all ends of the tubes by satu-
rating the dangling bonds. In order to reveal the essential physical phenomenon, all
calculations in this section are conducted with one consistent semi-empirical method,
AM1 [17]. It is relatively more accurate than the classical potential methods [2]
and even the tight-binding (TB) method [7] (TB is usually not good for describing
the chemical reactions), but much computationally cheaper than any density func-
tional theory (DFT) methods [21]. Two software packages, Gaussian-03 [19] and

Dynamo [20], are employed to perform the geometry optimization, the transition
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state searching and the molecular dynamics (MD) simulation. Shear strain is applied
horizontally on one end of each tube in the opposite direction. In order to represent
the van der Waals interaction between side walls, all the ends are constrained to
move only in parallel to the axis of the nanotubes. Although the studies on how the
normal force applied on the nanotubes’ interface influence the resistant force against
the shear is also important and interesting, we don’t include them in this chapter.
The shear displacement is prescribed by the shear rate and the time step of the MD
simulation.

After shear strain is applied, the nanotubes slide away from each other. The link
connecting the tubes is deformed/stretched, and the strain energy is accumulated.
Depending on the simulation temperature, the cross-link is eventually broken at dif-
ferent shear displacements. Between two carbon atoms of the link itself are sharing a
double bond which is similar to the bonding between the carbon atoms in ethylene.
This double bond is much stronger than the single bond between carbon of the link
and carbon on the side walls of the nanotubes. Consequently, the link only breaks at
the connecting points on the side walls. After the link is broken, the system stays in
very high energy state, due to the dangling bonds created thereafter. Interestingly,
the dangling link slips forward and reconnects with other carbon atoms on the tubes.
This phenomenon of link relocation not only enhances the modulus and strength of

the nanotube fibers but also keeps the cross-link intact.
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Figure 3.5 Two (3,3) SWNT with a >C=C< cross-link: (a) initial state; (b) transition
state; (c) final state.

As an example, we pick two (3, 3) SWNT are cross linked by —C = C'—, shown
in Fig. 3.5. This cross-link forms two bonds (legs) with each nanotube. In order
to simplify the problem, we intentionally choose the contact between link and one
(upper) tube stronger than the contact on the other (lower) tube. The two upper
“legs” are formed between the link and two carbon atoms associated with an armchair
bond at the bottom of the upper tube; and the two lower “legs” are formed between
the link and two carbon atoms associated with the chiral bond in the zigzag path on
the top of the lower tube.

One of two bonds connecting with the lower SWNT is stretched more than others.
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With the help of thermal vibration, this most stretched “leg” will break eventually
after a long enough duration time. Then, the link slides forward along the tube
axis, and forms a new “leg” with the next available side-walled carbon along the
zigzag path. This relocation of the cross-link is repeatable, since the cross-link is
healed by itself. However, each relocation event can be considered as “creep” failure,
and is influenced by the simulation temperature and the shear rate. The higher the
temperature or the more slowly the SWNT are sheared, the further the cross-link
can be dragged along the axis. In a simulation with the temperature of 300 K and
the shear rate of 0.1 nm/ps, we observed the relocation occurring when the shear

displacement is 2.27 A.

3.4 Phenomenological Model

Upon our observations in MD “experiments”, we proposed a phenomenological
model to investigate the friction/resistant force, which determines the strength of
the bundle essentially. In our model, the interface consists of two parallel surfaces
connected by the cross-links, which is illustrated in Fig. 3.6 (a). The upper surface
is pulled horizontally away from the fixed lower surface. For simplicity, the lower
contact between the links and the surfaces is assumed to be weaker than the upper
one, so the links are only allowed to relocate on the lower surface. Since the chemical

bonding can not be formed at an arbitrary position on an atomic surface, the lower
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Figure 3.6 (a) Sketch of the cross-linked model surfaces; (b) the potential energy and
transition state energy landscapes of the cross-linked system in function of displacement.

surface is divided into sites, which represent the periodicity. Each link must attach
at the center of one site at any moment. The spacing between two surfaces is fixed
to the intact length of a link, A.

When the upper surface is pulled away from site N, the shear strain is accu-
mulated around the links, because of the creep deformation. Although the energy
surface in terms of the shear displacement z can be numerically computed, the elas-
tic link approximately behaves like a rubber band, and the potential energy of one
link increases parabolically as it is stretched: En(z) = Eo + 3v(z — Na)?, where Ej
is the potential energy of a intact link and ~ is the force constant. The potential
surface according to the shear displacement is plotted in Fig. 3.6 (b) as a (black)
parabola, while the two dashed parabolas represent the energy surfaces when the

cross link is formed at site N+1 (green) and site N-1 (blue), respectively. Due
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to the periodicity, all individual energy surfaces associated with different sites have
one identical shape, but shifted from the nearest neighbor by a periodicity a. They
overlap with each other and form a hyper-energy-surface, which has multiple values
for a given displacement, because a cross-link can connect with different sites at one
position. Furthermore, the energy barrier preventing cross-links from moving from
one site to the other is a multiple value function of the shear displacement as well,
and the landscape of it can also be treated as a (red) parabola shown in Fig. 3.6
(0): Eisyoner (@) = €4s+ -12-%5 (m — 2%a)z. The local extrema of the transition state
energy is due to the symmetry that the process to move a link forward from site N
to site N+1 at (a/2 — ') is identical to the process of moving that link backward
from site N+1 to site N at (a/2 + ).

According to the transition state theory (TST) [86] and our previous works [87],
the transition probabilities for a link to relocate from site N to site N+1 in unit time

interval can be expressed as follows,

_ v _EbN—»N+1(w)
dt - Knyny1 = dz — €Xp { kaT ; (3.2)

in which, the attempt frequency [86, 87] v = kgT/27h, Eyy_ y.y = Etonon.i — En,
v is the shear rate and kg is the Boltzmann’s constant. Therefore, the slower the
link is pulled or the higher the temperature is, the higher probability for a link to

relocate. During the creep failure, the potential energy lost is mainly converted into
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the incoherent kinetic energy, which is the heat produced by the macroscopic friction.
By tracking either the instantaneous friction force or the energy lost during creeping,
we can calculate the dynamical friction after all the parameters introduced in our
model are computed.

Table 3.1 Parameters of two (3,3) nanotubes with a Cy cross-link, determined by
AM1 [17] method.

a(A) V(eV/Az) Ets — E0(€V) ’Yts(eV/Az)
1.23 1.224 2.014 0.816

3.5 Shear Rate and Temperature Dependent Strength

For a single link, the creep process described above is a time-dependent infinite

cascade levels problem as follows:

5it) = ¥ Ksat)os(t) — Kpmi(t)pi(t) (3.3)

in which, p;(t) is the probability for a link to connect with the it site at time ¢, and
the initial condition is as follows: py(0) = 1 and p;2n(0) = 0. Since there is no way
to obtain a general solution for it, we begin with the extreme cases: i. high shear

rate or low temperature; ii. low shear rate or high temperature.
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3.5.1 High Shear Rate or Low Temperature Limit

For the first case: a - vexp [—Eb(—g)/kBT} < v, the shear rate is so high (or
the temperature is so low) that the probability for a link to move backward is nearly
zero during the whole shear process. The movement of the links becomes stick-slip
motion [88]: stick for one period and slip at the average “creep” failure position, Z,
where the transition probability integral reaches unity: [Z _dt-K_ = 1. Substitution

of Eq. (3.2) into the integral yields the solution:

1
5 (’Y - ’Yts) (CE + £E0>2 — AFE = kgT In

21k (v — s) (T + Zo)
KL T?

(3.4

in which, zg = 7—'_;%%, and the maximum energy barrier AE = &, — Ey + f}%%
Notably, although the solution shown here is for v > s, the results for those cases,
which have solutions for Ey(z) = 0, are similar to it. For the case, whose crossing point
between energy surface and transition energy surface is less than £, the motion of the
system is better described as breaking and reforming the cross-link [89], although
the recipe to study the friction is still applicable only through changing the model
reaction.
Because the energy lost equals the work done in one period, f = [E(Z) — F'(Z)] /a =

y (x - %) The critical strength is linearly proportional to the mean failure position,

Z, so the strength of the bundle increases monotonically as the shear rate rises. How-

ever, the friction cannot increase arbitrarily because the link will relocate immediately
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when the energy barrier becomes zero:
1

Py (7 - ﬁ)/ts) (i‘max + 330)2 —AE=0 (35)
2

Therefore, a rate-dependent friction [90] can be shown as follows:

FO) ™ Fs {1 + Bn (fi)} (3.6)

Ve

in which, the coefficient § = £8L . X 2850y When the shear rate reaches
AE  2\/2AE(y—s)~7a

k%Tz
27k (Y—ts )(Emaz +T0)

the critical value: v, = , the average dynamical friction is maxi-

mized, frez = ¥ [,/%_A—f: - —7—‘—‘] Likewise, the temperature dependent friction

Y—"Yts 2

law can also be shown as, f(T) ~ fma [1 -Zmn (TZ)], in which, © = T/8, and

T. = \/27r7"w (’Y - %s) (jmam + Z'0)/163'

3.5.2 Low Shear Rate or High Temperature Limit

The second case is: 0 < v < a - vexp[—Ep(0)/kpT], in which the shear rate is
low enough or the reaction barrier is relatively low compared to the temperature.
The cross-links can easily overcome the energy barrier, so the “occupants” for the
cross-link connecting with different sites are able to reach thermal equilibrium after
a delay. Since the cross-links can relocate anywhere during the shear process, we
need to integrate all the energy lost in one period in order to calculate the average

dynamical friction:

a2
f= JdW Cthvve_ﬁ_k_i_%z

a - k‘BT

(3.7)
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in which, C is a pre-factor. Therefore, the friction in this limit is fluid-liked, which

is linearly depending on the shear rate. The viscosity can be defined as: y =
22

C %ﬁe%:l, in which, A is the effect contact area for one link, and A is spacing

between two surfaces. Clearly, the viscosity increases when the temperature drops

dramatically. And, the contact area A is directly related to the density of the cross-

link. The higher density of the cross-link, the greater is the viscosity. The force

constant in the nominator means that the stronger the cross-links are, the thicker

this “fuid” is.
3.6 MC Simulation

Now, we go back to the two (3,3) SWNT and >C=C< link, whose parameters are
tabulated in Tab. 3.1. Although for this particular link all the realistic shear rates
and temperatures are in the high shear rate or low temperature regime, we employ
Monte Carlo (MC) [31] simulation in order to provide a method for general study and
to confirm our analytical solutions.

In our MC simulations, there are L SWNT interfaces, and in each interface there
are M cross-links. The displacements of the links belonging to the same interface are
in phase, which means they can only differ by integer times of the periodicity. All
the interfaces are sheared simultaneously by a sufficiently small distance. For each

movement, the probabilities for a single cross-link to slide forward or backward are
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computed and compared with a random number generated, and then the cross-links
will stay or move to the neighboring sites, accordingly. The dynamical friction of
1000 cross links between two (3,3) nanotubes at 300 K is shown in Fig. 3.7 (a) with a
shear rate, v = 4.0 x 10774 /ns [91]. The friction linearly increases as an elastic force,
and suddenly drops when it reaches the maximum static friction force (fstasc) about
3.3nN. Accordingly, the potential energy is lost periodically around the average creep
failure point,*Z, shown in Fig. 3.7 (b). By averaging the instantaneous resistant force,
we can get the average dynamic friction for corresponding shear rate and temperature.
Fig. 3.7 (c) shows that the average dynamical friction is logarithmically dependent
on the shear rate with a fixed temperature, and confirms the shear rate and friction
relationship as Eq. (3.6) shows.

In addition, one can calculate the shear strength of the cross-links between carbon
nanotubes as follows: Ospear & ML fstatic; i Which ny, is the number of the links for
each carbon atom on the contact area. For two (3,3) SWNT with >C=C< links,
the shear strength, o peqr = 1y, - 60 GPa. Usually, ny ~ 1072, so the shear strength
is on the order of 1 GPa. However, the tensile strength of a bundle is as follows:
Ctensile = %ﬁiasheara in which lye is the average length of the nanotubes, and 4. is
the average radius of the nanotubes in the bundle. Since the ratio of the length and

the radius can be up to 103, the tensile strength can reach the order of 1 T Pa.
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Figure 3.7 Monte Carlo simulations for the dynamical friction between two (3,3) SWNT
with a Cy cross-link: (a) instantaneous friction depending on the displacement, and (b)
energy lost during the sliding with a shear rate, 4.0 x 10774/ns @ 300 K; (c) lines are
theoretical values, points are the average dynamical friction simulated via MC method for
different temperatures.

3.7 Other Links

Because of the existence of interstitial defects, it is straightforward for carbon to
become one of the promising candidates for the cross-link. Among all the carbon
links, -C=C- link is the best, because its length is close to the van der Waals spacing
hetween nanotubes’ side walls. However there are circumstances where we might need
to examine the species other than carbon only.

The first example is the application of hydrogen storage. Carbon nanotube ma-
terials are expected to be one of the few best candidates for hydrogen storage due to

the high surface-to-volume ratio and light, porous structure [92, 93]. However, raw
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CNT materials often form bundles and the hydrogen storage in such tube bundles was
found to be very low [94]. Theoretical analyses indicate that the short inter-tube sep-
aration distance within bundle prevents hydrogen molecules from accessing the space
between the tubes [95, 96]. Based on this study, a further theoretical suggestion of
increasing the van der Waals gap to about 0.7 nm was proposed as a solution to
enhance the hydrogen storage in CNT fibers [93, 94, 95, 96]. Moreover, another the-
oretical consideration suggests that placing of parallel graphene layers every 0.7 nm
could double the potential well depth for hydrogen absorption, and thus significantly
enhance the hydrogen storage capacity at room temperature [93, 97].

One possible experimental route to achieve the well-separated single-walled carbon
nanotube bundles is via chemical functionalization, which is the covalent attachment
of functional groups to the adjacent tubes in the array bundle. At a certain concentra-
tion, such functional groups should be able to overcome the van der Waals attraction
between tubes (typically around 1 eV/nm of length) and thus increase the tube-tube
distance [98]. Based on this experiment, we propose to cross link the tubes with
benzene. In Fig 3.8, we show the ball and stick models of two different cross-links:
(a) p-phenylene and (b) biphenyl functionalized nanotube bundles [93]. After fully
geometrical relaxation via density functional based tight-binding method [7, 13, 12],
the former cross-link maintains a van der Waals gap at a nearly desirable value of

0.67 nm (wall to wall) with p-phenylene functional groups as the spacers between
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tubes. Fig. 3.8 (c) shows three-dimensional material consisting of nanotubes and the
p-phenylene cross-links. This cross-link plays two important roles: it makes the sur-
face of the tubes accessible, and in addition the overlap of van der Waals potential
nearly double the binding energy at the bottom of the well.

We also propose several other links with different species, including boron and
oxygen. Both of these linked structures are optimized with the AM1 method, and

are shown in Fig. 3.9.

3.8 Conclusion

In summary, >C=C< cross-link is one of the most stable cross-links formed be-
tween two parallel SWNT. The finite temperature AM1 MD “experiments” on two (3,
3) nanotubes revealed the creep of this cross-link in the nanotube bundles or fibres,
and suggested that creep of the cross-links can be the origin of the dynamical friction
and the strength of the bundle. We proposed a phenomenological model, whose pa-
rameters can all be determined by quantum chemistry methods. Analytical solutions
of the dynamical friction were shown for two limits: i. the logarithmic dependency
of the stick-slip friction on the shear rate or temperature was shown for high shear
rate or low temperature; ii. fluid liked friction linearly depending on the shear rate
was shown for the low shear rate. Monte Carlo simulations were further employed to

study the friction under general conditions. We show the shear strength of a bundle
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Figure 3.8 (a) p-phenylene, (b) biphenyl cross-links; (c) nanotube bundles with p-
phenylene functional cross-links.
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Figure 3.9 (a) -B-O-B- link; (b) O link

with the cross-link is less than 100 G Pa, but the tensile strength can be up to 1 T'Pa.



Chapter 4

Pentagonal Silicon Nanowire

4.1 Introduction

Highly anisotropic silicon nanowire (SINW) is drawing ever growing attention
from both theoretical and experimental workers. This is because the continuous ad-
vances of computer engineering technologies are driving the size of silicon-based elec-
tronic devices towards their limits. Quantum mechanics confinement effects become
dominant in this case. Moreover, silicon nanowires’ relative simplicity and com-
patibility with traditional techniques make it one of the promising building blocks
for the next generation of electronic circuits. These potential applications in nano-
electronics [99, 100, 101, 102, 103, 104] greatly stimulate this research interest in
SINW.

In this chapter, we start with generalized Wullf’s theory for the quasi-one di-
mensional materials, and propose a family of stress-free ultra-thin silicon nanowires.
After we conclude the ground-state structure of pristine SINW [103, 105], we further
study the electronic structures of the ground-state SINW, and the relationship be-

tween the conductivity and the surface dimerization. In the last part of the chapter,
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we demonstrate the hydrogen-passivated nanowires [106, 107, 108, 109, 110].

4.2 Pentagonal Silicon Nanowire

As we addressed previously, silicon has exclusive compatibility with the traditional
electronic industrial techniques. Additionally, silicon has relatively higher chemical
reactivity than other materials which facilitate doping [111}. Recent research reports
indicate ultra-thin SINW possessing novel properties, e.g. electronic and optical,
which could be utilized in future applications. However, some of the basic issues

remain unsettled, including the ground-state structure of the nanowire.

4.2.1 Generalized Wulff’s Construction

In material science, Wulff has given a solution [112] for more than fifty years to
determine the shape of a small crystal, assuming the surface free energy reaches the
minimum for a given volume (number of the atoms N = const). In other words,
the surface energy, I' = [ v(7)ds, where v is the surface energy at a given direction
specified by a vector # normal to this surface.

~(7) is a continuous function, but according to the atomistic level understanding
this function has cusp points everywhere. Because the surface energies usually will
increase dramatically at the minimum of this surface energy function. For example,

(100) has a local minimum surface energy, but even an infinitesimal disorientation,
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Figure 4.1 Whulff’s reconstruction polar plot to determine the ground shape of a macro-
scopic wire. Enclosed solid curve is the surface energy function, (7), and the dashed lines
are drawn through cusps and perpendicular to the corresponding 7. The inermost polygon
enclosed by dashed lines is the ground shape for the cross-section of the macroscopic wire.

e.g.

(10n), can make the facet energetically unfavorable. Fig. 4.1 shows a typical

polar plot of a surface energy function. Starting from the local minima, one can draw

planes for 3D materials ( or lines for 2D materials and quasi-1D materials), which

are perpendicular to the direction vectors. All these planes or lines will enclose a

minimal volume crystal. This shape will be the thermal equilibrium shape, which is

the ground structure.
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To determine the ground state of the bulk silicon wires with a given thickness,
classical Wulff’s construction indeed can provide us a powerful recipe [112]. More
specifically, one can get the cross section of the wire’s ground structure by minimizing
>~ 87vs with a constrain of N = const, where N is the number of the atoms in a cross-
section of diameter d ~ N1/2,

However, as the diameter goes down to the sub-micron range, one might notice
that surface energy is not the only term determining the shape of the cross section.
As the diameter decreases, the edge energy of a wire E, (~ d® ~ N°%) becomes more
and more important and comparable with the surface contribution (~ s ~ d ~ N/2),
while we assume the bulk (~ d? ~ N) has been minimized and thus invariant. For a
silicon nanowire, N can be only a few dozen. Therefore, we revisit the Wulff’s energy

and pick up the edge energy term E,, which is neglected:

F=F.+) sv+E (4.1)

Consequently, the cross-section of a silicon nanowire will not only be determined
by the facets, but also by the junctions between adjacent facets. In other words, one

should pay more attention on how to fuse all the facets together in order to get the

most stable silicon nanowire.
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4.2.2 Pentagonal Shape Cross-Section

Even for nano-sized wires, the contribution from the bulk part (~ N) is still
considerably larger than the contributions from both the surface (~ N'/2) and the
edge (~ N°). There is no much room to vary the bulk energy, F,. Therefore, to
find a ground state of SINW, one should cut the wire from silicon bulk. Several
possible pristine SINW structures have been reported [113]. Furthermore, according
to the generalized Wulft’s energy 4.1, all the facets of the ground structure of a silicon
nanowire should have the lowest or near lowest surface energy. In another word, one
should cut the silicon prism along certain direction in order to create low energy
surface only, for example (100) and {111} planes. One intuitive way of cutting is
shown in Fig. 4.2. This prism has one (100) and two {111} planes. Obviously, all the
edges of this pristine prism are having dangling bonds, which raises the energy of the
wire. The last question becomes whether we can eliminate all the dangling bonds?

Interestingly, one of the angles of the prism o = 2tan™! (1 / \/5), which is very
close to 27/5, with a deviation § = o — 27/5 =~ 0.025. Therefore, by putting five such
prisms together, one can construct SINW with a pentagonal shaped cross-section.
Since the mismatch between adjacent prisms is proportional to the thickness of the
wire, d, the energy cost (Fy) for the stacking faults [114] and the bulk shear [115]

can be even negligible compared to the contributions from other terms. As a result,
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Figure 4.2 A prism cut from silicon crystal bulk.

all surfaces of this pentagonal quasi-crystal are (100) facets, which has relatively
low surface energy [116, 117]. However, the interface between adjacent facets is not
identical for all the pentagonal SINW in this family. It can be divided into three
sub-families depending on the number of the layers in the prism: i) For those wires
having 4/ atomic layers, there are even number of silicon atoms on each facet. All the
surface silicon atoms can pair up and form dimers, and the dimer rows are parallel
to the axis of the wire. We name this subfamily PNW, shown in Fig. 4.3(a). ii) For
wires having (41 — 2) layers, there are odd number of silicon atoms on the surface.
There are always dangling bonds remain unsaturated in this subfamily of SINW, and

thus it will not be energetically favorable. iii) For those wires having (2 — 1) atomic
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Figure 4.3 Two sub-families of the pentagonal silicon nanowires made of five silicon
prisms: (a) Py, (b) Py.

layers, surface atoms are not pairing up along the circumferential direction but the
axial direction. Even or odd number of atoms does not effect the dimerization or
surface reconstruction of these subfamily of SINW. We name this subfamily P; NW,

shown in Fig. 4.3(b).

4.2.3 Ground State of the Thinnest SINW

Now, we turn to examination of the stability of these pentagonal SINW through
energetic comparison among different SINW, including hexagonal (H) and square (S)
shapes. Usually, total energy will be chosen for such kind of comparison. However,
one will notice that all the total energies are pretty close to each other, because the

dominant contribution in the total energy is from bulk, E,. For wires having the



72

same facets, the surface contribution does not vary either. The distraction from the
bulk and surface energies makes the comparison rather impractical. Furthermore, the
comparison here is among different SINW families instead of several individual wires.
In this case, direct calculation for all the wires is very expensive and calculation error
may influence conclusion dramatically. Therefore, we decompose the total energy into

different terms, and perform comparison of the excess surface energy,

1
Sog'=F—-N& — Sow=FE.+ Z 8%s — Sovo + Ef + 5NK62 (4.2)

where, & is the unperturbed bulk energy, E; is the stacking fault, %N Ke? is the
bulk shear, v = 1.32 eV per a? area is the surface energy of Si(100) or Si{111} with
(2 x 1) dimerization, and Sy = 2.11N/2 is the effective surface area corresponds to
the cylinder of diameter d, containing N atoms.

In order to demonstrate the validity and robustness of Eq. 4.2, we directly compute
the excess surface energy with many-body empirical potentials (EP) [2], and density
functional tight-binding force model (DFTB) [14] for some of the wires with smaller
thickness. In Fig. 4.4, one can see the deduction of a large trivial contribution from
Sovo reduces the error in absolute value of surface energy computed with different
methods, and computed results corresponding to Py and P, fit to a horizontal straight
line (dashed, I' = 0) and an inverse-linear curve (dotted, I' ~ 1/d), respectively.

Before we conduct the comparison, it is useful to corroborate the evidence of
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Fig. 4.4 with an estimation. Energy modeling of complex surface based on simpler
surfaces has been proved to be successful [114]. For example, in the square shape
SiINW, each edge has a three-coordinated atom in a length of v/2a. This edge atom
cannot be counted as standard (100) surface atom. The surface energy of the relaxed
{111} per surface atom is about 1.37eV, therefore, E, = 4 X £, = 4 x 1.37//2 =
3.88 eV. In another word, the edge-energy can be estimated by the number of dangling
bonds multiplied by the dangling bond energy, which is roughly 1 eV.

In our comparison, the candidates are one hexagonal shape (H), two square shape
(So and S,) SINW for two possible surface reconstructions [(2 x 1) and ¢ (2 x 2)], and
two subfamilies of pentagonal shape SINW (P and Py).

Although the energy decomposition is efficient and robust, our TB calculations in
Fig. 4.4 underestimate the stacking fault E and strain energy (empirical potential
calculations are even more). Therefore, instead of using all parameters extracted con-
sistently from only TB results, we use the TB computed E.’s, and ab initio computed
surface energies and stacking fault Ey = 0.06 eV [118] and experiment-based shear
modulus, K = 48 GPa = 5.9 eV/atom [115]. Because the number of surface atoms

in pentagonal wires equals the interface atoms in Ref. [118]. Table 4.1 can be used to

evaluate the SINW’s energy at arbitrary thickness.
With this decomposition-extrapolation approach, Fig. 4.5 well represents the en-

ergies of the wires, for instance, the asymptotic levels at d — oo correspond to their
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Table 4.1  Parameters (measured per length of a) used to calculate energy of SINW:
[=1,2,3,.., N is the number of all atoms, s is a number of surface atoms. The surface
energy Yo = 1.32 eV for (100)- and (111)-2 x 1 are based on Ref. [116], while that of ¢(2 x 2)
relative to 2 x 1 based on Ref. [113]. The area v/3a?/2 per (111) surface atom is used to
define s for the H bars.

N S Ee -
So (82+120+1)/vV2  8I/vV2 538 0
Se (B2+1204+1)/vV2  8l/vV2  3.56 0.077
H 41(61 + 1) 202+2v3) 196 0
P 100(21 + 1) 101 0 0

relative shape-determined surface areas and surface energies. As well as the asymp-
totic feature, the curves represent more subtle features, including the crossover of
the two sub-families of square shape SINW [113]. Not surprisingly, decomposition-
extrapolation approach shows its limitations: the computed edge energy is actually
much larger than the simple addition which we use the approach, due to the strain
overlap between neighboring edges when the thickness goes down to d < 1.5 nm.
The direct calculation for P of d = 1.1 nm is as high as that of one fullerene cluster
wire [119] in Fig. 4.5.

According to the classical Wulff’s theorem, the hexagonal SINW is the most com-
petitive candidate for the ground structure, because all the surfaces are either (100)
or {111}, and there is no bulk shear or stacking fault energies in a single crystalline
structure. However, pentagonal wire still wins out in Fig. 4.5, because pentagonal
wire (P)) has one edge less than hexagonal wire (H), which balances the small lost

in bulk energy. Surely, when the diameter goes greater than 6 nm, the cost of the
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Figure 4.5 Thickness dependent excess surface energy for different families of wires.
Open hexagons, squares, and diamonds denote, H, Sm, and S silicon nanowires, respec-

tively. The gray circle is the excess surface energy for the chain of Sig cages, Fig. 5 (¢) in
Ref. [103).
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stacking fault and shear energy eventually overcome the constant benefit from the
edge energy. It is consistent with the fact the bulk silicon is the true ground state

rather than quasi-crystal or poly-crystal bulk silicon with domain walls inside.

4.2.4 Kinetic Advantages of P-SiNW and Experimental Evidence

Additional to the energetic stability, the P structures also kinetically favor the
wire growth due to highly anisotropic diffusion of adatoms on the Si(100)-2x 1 surface.
It is around 1000 times faster along the flat dimer rows than across the row-groove
corrugation [120]. For example, diffusion rate D = 1072 ¢m?/s [120], and deposition
rate is less than 0.015 M L/s (Mono-layer per second), at a temperature T' = 550 k.
That means adatom propagates to the end of a 1um wire faster than two adatom to
form a dimer. On P|-SiNW surface, the dimer row is parallel to the axis of the wire.
Silicon atoms will prefer to diffuse along the axis, which facilitates the wire to grow in
length. On the other hand, P,-SiNW surface only allows silicon atoms diffuse in the
circumferential direction, which will make the wire goes thicker until it has enough
layers to become P wire. This kinetics favors a P|-SINW as well as the energetic
stability. In contrast, all other wires do not support such an enhanced axial diffusion.

Besides all these theoretical analysis of both energy and kinetics, several experi-
mental facts indicate that these pentagonal SiNWs are practically synthesizable, or

even existing. The silicon multiply-twinned nano-particles (MTP) [121], synthesized
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(a) HRTEM image of a silicon multiply-

twinned nano-particle (MTP) with five-folded symmetric cross-section (from Ref. [121]);

Pentagonal silicon nanowire.
(b) Ball-and-stick model of a pentagonal silicon nanowire, P.

Figure 4.6
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by K. Furuya and his colleagues using the electron-induced SiO;-decomposition tech-
nique inside an ultrahigh vacuum transmission electron microscope (UHV-TEM), has
five-folded pentagonal-like cross section, shown in Fig. 4.6. The surface reconstruction
on the sides of the nano-particle is showing the dimer rows parallel to the direction of
the pentagonal-like surface, which is exactly the same as the P|-SiNW. Another ex-
perimental evidence [103] suggest that high-vacuum growth of SINW offers an efficient

practical way complementary to vapor-liquid-solid growth [100].

4.2.5 Metallic or Semiconducting

As one of the candidates for the next generation of electronic devices, electronic
properties of SINW are the most important but lack of prior research effort. Due
to the difficulties in preparation and measurement of individual SINW with a well
defined structure, our theoretical study answers some key questions for the ground
structure of P-SiNW, such as what is the electronic band structure, and whether
P-SiNW is metal or semiconductor.

Recently, Rurali et al. reported on the electronic properties of the square-shaped
SINW [122]. According to their report, surface reconstruction plays a very important
role on the conductivity. Different types of surface reconstruction yield completely
different behavior: for one kind of reconstruction, SINW is metallic, while for the other

kind of reconstruction, SINW is semi-metallic. This work indicates that ultra-thin
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silicon nanowire may be metallic without any doping.

For the purpose of understanding the physics, we choose the smallest nanowire in
the family of P-SiNW, which has a diameter of 1.1 nm, and is shown in Fig. 4.7. The
atomistic structure pre-optimized with DFTB method [14] is obtained from previous
study. Nevertheless, in order to catch as many details as possible, we employed
Density-functional theory (DFT) method to perform all the calculation in this portion
of study. We use the hybrid exchange-correlation functional, PBE [26], with the
generalized gradient approximation. The basis set we used is a linear combination of
numerical atomic orbitals [29], in a double—( polarized form. The plane wave energy
cutoff energy is 250 Ry, which is so fine that the energy converges. The Monkhorst-
Pack [123] k-point meshes of [32 x 1 x 1] are found to provide sufficient accuracy
in the calculation of total energies and forces. In order not to exclude the Peierls
instability [124], which might change the conductivity from metal to semiconducting,
we choose a computational cell with two primitive unit cells along the axis of the
nanowire. All the atomic structures are obtained under convergence criteria of the
maximum force smaller than 0.04 eV//A and the maximum displacement smaller than
0.01A.

After full relaxation, the dimers on the F-SiNW’s surface start buckling, which
happens to the square-shaped SINW as well [122], and have been observed in both

experiment [125, 126] and calculation [127]. In a buckled dimer, one of the silicon
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3 X

Figure 4.7  Cross sections of the four different buckled pentagonal silicon nanowires.
(a) 5>; (b) 4><; (¢) 3>2<; (d) 2><><.
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atom pops out of the surface’s plane, and the other atom sinks into the plane. This
buckled dimer has a degeneracy of two (> and <), because the energy will be the
same no matter which atom pops out of the plane. Due to such buckling, the five-
folded symmetry is broken. Notably, two adjacent dimers in the same dimer row tend
to buckle in different direction, i.e. the buckling pattern along the axis is always:
... ><><>< .... However, the neighboring buckles along the circumference do not
interact strongly. Consequently, four different buckling patterns are formed, and all
are shown in Fig. 4.7: 1) 5> ( >>>>> or <<<<<); i) 4>< (>>>>< or <<<<>);
i) 3>2< (>>><< or <<<>>); Iv) 2><>< (>><>< or <<><>).

Total energies of these four different buckling patterns are quite close to each
other, while the ground state is the first one, 5>. All four energy levels are shown
in Fig. 4.9 in reference to the energy of 5>. The highest energy state is 2><><,
whose energy is only 0.25 eV higher than 5< per supercell, or 4 meV/atom. The
lattice constants of these four patterns are also slightly differently from each other.
The lattice constant of 5> is the smallest, which is 7.63 A, while those for the other
three patterns are all 7.67 A.

We calculate the electronic band structures for each buckling pattern, and show
in Fig. 4.8. Excitingly, all four patterns are conducting, although the DOS of the
ground state is semi-metallic. Because there is a small DOS gap open (~ 50 meV),

and the Fermi level is slightly cutting through the conduction band. This gap can be
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Figure 4.8 Electronic band structures for the four different buckled silicon nanowire
Py (a) 5>; (b) 4><; (c) 3>2<; (d) 2><><.
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opened wider by applying external strain, which could be proposed for applications
of mechanical-electronic sensor.

In Fig. 4.8, one can see that all four band structures have some similarities. For
example, the band gap in semi-metallic 5> pattern is indirect: the bottom of the
conduction band is located at the I' point [9], and the top of the valence band is
somewhere between I' point and X point. The band structures for the other three
metallic patterns also have the bottom of the conduction band located at the I' point,
and the top of the valence band located between I' and X points. However, the gaps
in the metallic patterns disappear. The top of the valence band drifts away from the
I point, i.e. the higher the energy pattern, the closer the top of the valence band
approaches to the X point.

Since all the energy levels are so close to each other, how stable these patterns
are becomes interesting. We calculate the transition barriers between, i) 5> and
4><, ii) 4>< and 3>2<, and iii) 4>< and 2><>< by scanning the potential energy
surfaces. Virtually, the transition for each pair of patterns is just a flipping of two
buckled dimers. Not surprisingly, the energy barriers are also fairly small, which all

less than 270 meV'. This indicates that the wire can be easily promoted to metallic

states even at room temperature.
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Figure 4.9 Reaction paths between four buckling states of the pentagonal silicon
nanowire.
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4.3 Hydrogen-Passivated Silicon Nanowires

Pristine SINW possesses lots of interesting properties, but for most practical ap-
plications, pristine SINW must be passivated prior to any use. Passivated SINW have
been observed in experiments [106] and studied by computational modeling [107, 108,
109, 110]. When surface passivation follows the growth, it effectively seals the wire as
it was grown (e.g. in high vacuum). Depending on the procedures of synthesis, SINW
can be passivated in many different ways and by variety of agents, e.g. hydrogen,
oxygen, fluorine, or hydroxyl groups. For simplicity, we only briefly discuss hydrogen
passivated nanowires in this section.

In addition to structural stability, we discuss the electronic properties of the pen-
tagonal wires. All the calculations were performed with the Khan’s non-orthogonal
tight-binding model [15], which is much faster than ab initio calculations, yet reason-
ably accurate in band gap calculations. As a benchmark, we studied a completely
hydrogen passivated 3-layer thick hexagonal Si nanowire, which has four {111} and
two (100) facets, and is shown in Fig. 4.10. The pseudo-diameter of the single crys-
talline Si nanowire (before passivation) was defined as d = (32\/5/ IN bgi/ﬂ’L)lﬂ,
where N is the number of silicon atoms, bg; is the length of Si—Si bond, and L is
the periodic length of the Si wire. Thus, the pseudo-diameter of the 3-layer Si wire
is 1.3 nm. The tight-binding calculation shows that the band gap of the passivated

3-layer hexagonal Si nanowire is 2.2 eV, which is reasonably close to the experimen-
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Figure 4.10 Hydrogenated (a) pentagonal silicon nanowire Py, (b) hexagonal <110>
silicon nanowire, and (c) square shape cross section (100) silicon nanowire.



88

tal result [106]. To test the robustness of this tight-binding model for the electronic
density of states (DOS) calculations, another single crystalline SINW with a pseudo-
diameter 1.6 nm was studied, which is shown in Fig. 4.10 as well. The cross section of
this SINW is a roughly 8 x 8 square; all the four sides are (100) facets, and four cor-
ners are truncated, forming four narrow <110> facets. The band gap for this SINW
is also 2.2 eV, which shows the band gap of passivated SINW does not depend on
the shape of cross section shape much but the pseudo-thickness, and our calculation
results are reasonably consistent with the experiments [106].

We first consider P|-SiNW, discussed in the previous section as the lowest en-
ergy structure. Furthermore, to avoid the rather large systems and to reveal basic
physics, the 4-layer pentagonal SINW P can be explored. Since there are many ways
to passivate this pentagonal SINW Py, we consider fully passivated SINW, with no
dangling bonds left on the surface. Moreover, the pentagonal SINW P, surface has
been dimerized prior to passivation. The structure of this pentagonal SINW P is
shown in Fig. 4.3. Within the tight-binding approximation, we got the electronic
band gap of this passivated 4-layer P|-SINW, E, = 2.2 eV/, which is close to the band
gap of the single crystalline SINW mentioned previously. It also turns out that the
shape of the cross section of the SINW doesn’t make much difference for the band
gap, but the diameter or thickness play a substantial role to it.

All the results illustrated so far are for the equilibrium structures of different
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SiNW’s, which have no any external stress or compression. The strain effect on the
electronic band structure is well known and has been studied both theoretically [128]
and experimentally [129] for decades. For 1D-structures, among recent examples is
the band gap change of carbon nanotubes tunable by varying the external strain [130].
We have recently investigated the strain effect on the electronic band gap of SINW,
based on which the strain-controlled switch could be proposed. In Fig. 4.11(a), the
band gap of the passivated 4-layer pentagonal P-SiNW is plotted against the strain
applied along the axis of the SINW. The band gap of this P-SiNW has a nearly linear

response to the uniaxial strain applied on the nanowire,

Ey = Eo + ke (4.3)

where Fjy is the band gap of the equilibrium structure, x = —0.51 eV, and ¢ is the
external strain. The band gap of passivated P varies by about 120 meV within
+10% strain. For more details, the energies of the highest occupied molecular orbital
(HOMO) states and the lowest unoccupied molecular orbital (LUMO) states are
plotted respectively in the insets of Fig. 4.11(a). Although both the HOMO and
LUMO energies depend linearly on external strain, the corresponding slopes have
different sign: LUMO energy increases when the nanowire is stretched, while the
HOMO energy linearly decreases.

In cbntrast, the strain effect to the electronic band gap of the hexagonal single
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crystalline SINW with a similar diameter is different. Here, Fig. 4.11(b), both HOMO
and LUMO energies decrease linearly with tension, their slopes have the same signs
and are very similar in magnitude. Upon subtraction, the linear term in the band

gap is nearly cancelled out, and fitting the gap up to quadratic term yields:

E, = Ey + ke + e (4.4)

where ~ is the second order coefficient of Taylor expansion of E,(¢). Here, k =
—0.03 eV is twenty times less than for the P wire, v = —0.11 eV becomes relatively
significant, and makes the band gap dependence nonlinear, although small compared
to the P| wire: the band gap varies only by 7 meV between +10% and —10% strain.
Therefore, although both the passivated quasi-crystalline F-SiNW and the passivated
single crystalline hexagonal SINW have band gap tunable by the axial strain, only
the band gap in P changes linearly and significantly, and thus might be of interest
for designing an intact nano-sensor of strain, by remotely observing the changing

wavelength of light emission.

4.3.1 Mechanical Properties

Mechanical properties of these silicon nanowires are also studied. Following the
conventional definition [115, 131], the Young’s modulus of passivated silicon nanowire

can be estimated from the second derivative of the energy-strain curve:
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in which, V.yy, is the effective volume for strain-free structure or equilibrium struc-
ture, F is the strain energy, and ¢ is the uniaxial strain along the axis of the silicon
nanowires. Since in the nano-scale the volume is not well defined, we introduce the
effective volume, Vess = Nv, where v is the volume per atom in silicon bulk, while
the volume for hydrogen atoms is neglected. Again, the strain energies are calculated
with Khan’s orthogonal tight-binding model [15]. The Young’s moduli of 4-layered
P)-SiNW is 145 G Pa, which is much stronger than that of the square shape SiNW,
103 Gpa. However, both of them are in the same order of the silicon bulk’s modulus,

~ 150 GPa both experiments [132] and computations [115, 131].

4.4 Conclusion

In summary, with assistance of the modified Wulff’s theorem, we compared differ-
ent families of SINWs and singled out one of the pentagonal shape cross-section SINW,
P is the ground state of known silicon quasi-1D nano-structure. This P|-SiNW has
four different surface reconstructions. The ground state of them is semi-metallic, while
the other three are all metallic. The transition barrier for conversion between different
patterns can be overcome by thermal vibration under room temperature. The band
gap of the hydrogen passivated F|-SiINW is linear dependent on the external strain,

while single crystalline SINW’s are not.



Appendix A

Temperature Dependent Strength

A.1 Low Temperature Limit

In this Appendix, we derive Eq. (3.4).
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A.2 High Temperature Limit

In this appendix, Eq. (3.7) is derived:
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