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Abstract— Rigid haptic devices enable humans to physically
interact with virtual environments, and the range of impedances
that can be safely rendered using these rigid devices is quan-
tified by the Z-Width metric. Series elastic actuators (SEAs)
similarly modulate the impedance felt by the human operator
when interacting with a robotic device, and, in particular,
the robot’s perceived stiffness can be controlled by changing
the elastic element’s equilibrium position. In this paper, we
explore the K-Width of SEAs, while specifically focusing on
how discretization inherent in the computer-control architecture
affects the system’s passivity. We first propose a hybrid model
for a single degree-of-freedom (DoF) SEA based on prior hybrid
models for rigid haptic systems. Next, we derive a closed-form
bound on the K-Width of SEAs that is a generalization of known
constraints for both rigid haptic systems and continuous time
SEA models. This bound is first derived under a continuous
time approximation, and is then numerically supported with
discrete time analysis. Finally, experimental results validate
our finding that large pure masses are the most destabilizing
operator in human-SEA interactions, and demonstrate the
accuracy of our theoretical K-Width bound.

I. INTRODUCTION

During physical human-robot interaction (pHRI) it is often
desirable for the robotic system to render a virtual envi-
ronment, and, in particular, a virtual stiffness, with which
the human will interact. Virtual stiffnesses can be used to
guide humans along a pre-defined path or provide haptic
feedback from simulated objects, with applications in robotic
rehabilitation [1] and surgery [2]. So as to provide suitable
levels of path guidance and display a variety of realistic
objects, we would like to maximize the range of virtual
stiffnesses that our robotic system can render. We must first
ensure that these virtual stiffnesses are safe for the human,
however, and will not lead to instability during pHRI.

Passivity of the robotic system guarantees pHRI stability,
since (a) two passive systems coupled together result in
a stable system and (b) human operators can be assumed
to be passive [3]. Accordingly, we define K-Width as the
range of virtual stiffnesses which a robotic system can
render passively. Prior research by Colgate and Brown [4]
introduced Z-Width, which generalizes K-Width to include
virtual impedances (virtual stiffness and damping). Closed-
form constraints on the Z-Width and K-Width of a rigid
haptic device controlled by a computer interface are derived
in [4]-[6]. Interestingly, these works found that passivity is
affected by the computer interface—a ubiquitous component
in robotic systems. The computer interface operates in dis-
crete time, while the haptic device operates in continuous
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time; therefore, the computer interface must convert from a
continuous signal into a discrete signal, and then back to a
continuous signal. We refer to this process as discretization,
and point out that discretization is known to limit the K-
Width of rigid haptic devices [4]-[6].

More recently, compliant haptic devices—such as series
elastic actuators—have emerged as a desirable platform
for pHRI. Originally proposed in [7], SEAs incorporate a
compliant element of known stiffness between the actuator
and load, and, because of this physical compliance, SEAs
fundamentally improve the robot’s reflected dynamics [8].
Additionally, by measuring the spring displacement between
actuator and load, we can use SEAs to straightforwardly
control interaction forces between the human and robot.
Several groups have explored the K-Width of SEAs [9]-
[12], notably concluding that, for prominent linear control
schemes modeled in continuous time, the stiffness of the
virtual environment must be less than or equal to the stiffness
of the physical spring. Research on SEA K-Width, however,
has not explicitly considered discretization [13].

In this paper we extend the study of K-Width from
rigid haptic devices to SEAs, and explicitly consider the
effects of discretization caused by the computer interface.
By accurately determining SEA K-Width, we can guarantee
that SEAs will safely render virtual stiffnesses within pHRI
applications such as rehabilitation robotics [14]. In Section II
we rigorously define the class of systems we will consider,
and create a hybrid model for SEAs which parallels the prior
hybrid model for rigid haptic systems. Next, in Section III,
we derive and numerically verify a closed-form bound on
the K-Width of SEAs, where the resultant expression can
be seen as a generalization of previous work on both rigid
haptic systems and continuous time SEA models. We show
that large pure masses are the most destabilizing operator,
and thus, in Section IV, we validate the proposed K-Width
bound through experiments on a 1-DoF SEA coupled to a
pure mass. Our overall findings are summarized in Section V.

II. PROBLEM STATEMENT

Our goal is to determine the K-width of a 1-DoF SEA
while considering discrete sampling and the zero-order hold
imposed by the computer interface. Inspired by the work of
Colgate and Brown [4], a closed-form bound on virtual stiff-
ness will be derived as a function of the system parameters.

A. Hybrid Model

As shown in Fig. 1, we consider a 1-DoF SEA with mass
m, viscous damping b, and spring stiffness k. The actuator
position is denoted by x4 while the load position is denoted
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Fig. 1. Schematic of a 1-DoF SEA. The actuator and load are connected
by a compliant element with constant stiffness k.
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Fig. 2. Hybrid model of a 1-DoF SEA system. Z;, is the impedance of
the human operator, 7 is the sampled load position, ZOH is the zero-order
hold, and @ is the second-order linear filter from (4).

by zy. This SEA is acted upon by two forces—the force
applied by the actuator, F'4, and the force applied by a human
operator at the load, F,. Following the convention of [8], we
define F, as positive when the spring is being compressed.
Thus, the SEA equation of motion in the time domain is

Fa(t) — Fp(t) = mia(t) + bia(t) (1)
Fr(t) =k(za(t) —z(t)) )

Within the Z-width literature for rigid haptic devices, where
actuator and load positions are equivalent, x 4 in (1) has been
replaced by xy (for examples, see [4]-[6]). To rewrite (1)
into a form relating F'4, Fr, and xy, we can combine (1)
and (2) to obtain the Laplace domain equation of motion

Q(s)Fa — Fr, =Q(s)(ms+ b)xps 3)
where (@ is a second-order linear filter
k
= 4
Q) ms2 + bs + k @

Throughout this work, we will find that () distinguishes our
SEA system from rigid haptic devices. For now, we notice
from (4) that Q(jw) approaches 1 at low frequencies (w —
0), while Q(jw) approaches 0 at high frequencies (w — c0).
Moreover, for a rigid haptic device where k& — oo, we have
that @ = 1 and, by comparing (3) to (1), x4 = xf.

We would like to control the SEA described by (3)
such that it renders a desired stiffness, k4, to the human
operator. When controlling the continuous time SEA using a
computer interface, (a) sampling is used to obtain a discrete
measurement of xz, (b) the desired load force, FT, g4, is
calculated by the computer at each sample time, and then (c)
a zero-order hold converts I, 4 into Iy, where F4 is held

constant between samples. Following the notation employed
by [6], we accordingly define the desired load force to be

Fp.a(hT) = —kgz(hT) Vh €N (5)

where h is the discrete time variable and 7' is the sample
period. For convenience, we also introduce the sampling
frequency, fs, which is defined as fs = 1/7. As explained
by [3], in the Z-width literature no distinction is typically
made between the virtual environment and the control law;
hence, we will treat the desired load force as our commanded
actuator force, where the merits of this decision are discussed
in Section II-B. Therefore, we define the actuator force as

Fa(t) = Fpo(hT) Vte [hT;(h+1)T[, heN  (6)

noting that (6) captures the effects of the zero-order hold. To
summarize, the block diagram of our SEA system described
by (3), (5), and (6) is shown in Fig. 2. We note that Fig. 2
is the same as the analogous block diagram for rigid haptic
devices shown in [4] when @@ = 1.

B. Controller Selection

It is standard practice when studying Z-width to use the
desired load force as the commanded actuator force [4]-
[6], [15]-[18], like we have done in (6). Within the SEA
literature, however, cascaded force-velocity control [9]-[11]
is commonly used to determine F4 based on Fp 4. To
demonstrate that (6) is still a “good” choice of control law,
we will briefly show that our system also captures several
salient features of cascaded force-velocity controlled SEAs.
Consider the case without discretization (1" — 0), such that
(5) and (6) simplify to Fs(t) = FL 4(t) = —kqzr(t), and
define the impedance of the SEA at the load, Z;, to be

Zy, = —Fp/&r. From Fig. 2, we can now write
kE(ms?+bs+ky
lim Z = — 7
50 £(s) 5<ms2+b5+k @

If the phase of the parenthesized part of (7) becomes nega-
tive, then the phase of the impedance transfer function will
drop below —90°, and the SEA system becomes non-passive
[9]. Hence, we have that k; < k is a necessary condition
for passivity when discretization is not considered, as was
previously derived for cascaded force-velocity controllers
[9]-[11]. Next, using (4), we can rewrite (7) more concisely

S

lim Zp(s) = § + (kd — k)@(s) (®)

Recalling the frequency response of Q(jw), we observe
that, when discretization is not considered, Zr,(jw) ap-
proaches the desired spring stiffness at low frequencies,
where Q(jw) — 1, and Zp(jw) approaches the physical
spring stiffness at high frequencies, where Q(jw) — 0. The
same result that was also found with cascaded force-velocity
control [11]. Therefore, we conclude that (6) is a “good”
choice of control law, both in that it parallels prior Z-width
research, and in that it captures some important aspects of
more common SEA controllers.



III. PASSIVITY RESULTS

Using the system described in Section II, we now seek
to derive and evaluate the K-width which ensures safe
operation of an SEA. Because the spring introduces @
into (3), our equation of motion is best suited for analysis
in the frequency domain. Unfortunately, the time domain
approaches developed for rigid haptic systems by Abbott
and Okamura [5] and Diolaiti et al. [6] are therefore not
well suited for our application. Earlier work by Colgate
and Schenkel [19] leverages frequency domain techniques;
however, their method does not readily incorporate @). Hence,
in this section we first create a continuous approximation of
our hybrid system, from which the passivity constraint can be
derived using linear analysis techniques commonly applied
to SEAs [9]-[12]. We then support the derived K-width
using a discrete model, with which coupled stability can be
numerically evaluated [15]-[18]. Our resultant approach is
perhaps most similar to Colonnese and Okamura [16], in
that we will consider both continuous and discrete models;
however, unlike [16], we here claim to find a closed-form
passivity constraint.

A. Continuous Approximation

In order to write the hybrid model shown in Fig. 2 as
a continuous system, we need a continuous approximation
of (6), the zero-order hold. As described by Adams and
Hannaford [3], the zero-order hold can be approximated as
a low-pass filter, where the filter’s time constant, 7, is half
of the sampling time

1 T

ZOH(s) = Tk =5 9)
This approximation, however, is only valid when aliasing
effects due to sampling are negligible [3]. Accordingly, we
assume that the system’s sampling frequency, fs, exceeds
twice the natural frequency of the SEA, f,. Since we will
later show that k; < k is a necessary condition for passivity
of the hybrid system, the maximum natural frequency of
the SEA should be f, = \/k/m rad/s [8]. In other words,
our assumption amounts to the following lower bound on
sampling frequency (measured in Hz)

1 [k
f5>7
s

m

(10)

This constraint is similar to the bound found for rigid haptic
systems in [6], except that k; has been here replaced by k.
Now applying (9), we can derive from Fig. 2 the impedance
transfer function for the SEA system, Zp,, which relates input
load velocity to opposing load force

Fr, E (ms?+bs)(ts+ 1)+ ky

7 = = —.
L(s) —xrs s (ms24+bs+k)(rs+1)

(11)

B. Impedance Passivity

The SEA system is passive if the continuous approxi-
mation of its impedance transfer function (11) is positive
real. Relevant necessary and sufficient conditions for positive
realness include: (a) poles of Z; on the imaginary axis

must be simple, (b) Zr must be stable, and (c) the real
part of Z; must be nonnegative everywhere along the jw
axis, except for poles [20]. Condition (a) is satisfied since
the only pole on the imaginary axis occurs at the origin. We
can verify (b) using the Hurwitz stability criterion; noting
that the coefficients of the denominator of Z; are positive,
we obtain the following requirement for stability from the
Hurwitz determinates [21]

b(m +br + kr?) >0 (12)

Because m, b, k, and 7 are necessarily positive, we therefore
have that condition (b) is always satisfied. Finally, we can
test condition (c) by defining Z,(s) = B(s)/A(s). Then

B(jw) } e { B(jiw) A(—jw) }
A(jw) A(jw)A(—jw)
(13)
where the final denominator is nonnegative [20]. Based on
this result, if Re{B(jw)A(—jw)} > 0, we can conclude that
condition (c) is satisfied, and thus Zy, is positive real.
For ease of notation, let’s define a polynomial P to be

P(w) = Zdiwi = Re{B(jw)A(—jw)}

Re{ZL(jw)} = Re{

(14)

Plugging (11) into (14), all coefficients d; of the polynomial
P are zero, except for

dy = k7(bkT + mky)

15
dy = k(bk — bkg — kkar) (15)

Coefficient d4 is always positive due to positive parameters,
and dominates the summation in (14) at higher frequencies.
Coefficient do, however, is only nonnegative when

kkqT
2

We conclude that (16) is the necessary and sufficient condi-
tion to guarantee that (14) is nonnegative at all frequencies,
and, by construction, ensure that the SEA system is passive.
A plot of (16) evaluated at different damping values and
sampling frequencies is shown in Fig. 3.

b(k —kq) >

(16)

C. Comparison to Existing K-Width Constraints

We have found that the SEA system described in Section II
is guaranteed to be passive when rendering a virtual spring if
and only if (16) is satisfied. Next, we would like to compare
this constraint to analogous passivity constraints derived for
rigid haptic devices [4]-[6], as well as for SEA systems when
discretization is not considered [9]. When k£ — oo and T >
0, we know from Section II-A that our SEA system mimics
a rigid haptic device with discretization. In this case, because
of L’Hopital’s rule, (16) simplifies to

o BT
- 2

17
which matches the result found in [4]-[6] specifically for
rigid systems with no virtual damping, sensor quantization,
or Coulomb friction. On the other hand, when k is finite
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Fig. 3. Normalized SEA damping (8) vs. the normalized stiffnesses (kq/k)
which can be rendered passively at different sampling frequencies. 3 is
defined as an independent variable b divided by 1.75 N-s/m, the estimated
damping of our hardware. Passivity regions (total area below each line)
were found by evaluating (16), with k taken from Table I. Increasing the
physical damping and/or sampling frequency increases the k; which can be
passively rendered.

and 7' — 0, we have a compliant SEA system without
discretization. In this case, (16) simplifies to

ka < k (18)

which is the same as the result reported by [9] when F'y =
Fp, q. Accordingly, we claim that (16) is a generalization
of (17) and (18), providing the passivity constraint for
rendering a virtual wall while considering both the actuator-
load connection stiffness and the presence of discretization.

D. Passivity vs. Coupled Stability

To further support the passivity constraint derived above,
we next consider an entirely discrete model of our SEA
system. This discrete model will be used to determine the
maximum virtual stiffness which results in stability when the
SEA is coupled to a human operator of known impedance.
Importantly, because the discrete model’s stability bounds are
the same as the stability bounds of the hybrid system [16], no
approximations are necessary here. We will, however, need
to choose Z},, the impedance of the human operator. Let Zj, ;
be the impedance of a pure mass attached to the load, which
has been shown to be the most destabilizing operator for our
SEA system when 7' — 0 [9]. Additionally, let Z; 3 and
Zn,5 be three- and five-parameter impedance models of a
human interacting with a haptic device as described by [22]
and [23], respectively. Thus, we have three choices for Z},

Zpa(s) =mps
2
_ mps” + brs + kn,
Zh,3(5) = s (19)
mpbys® + (mpky + bgbh)52 + ps + kgky,
mps3 + (b + bg)s? + (ki + kg)s
where p = (kqbp, + bgky). The mass, damping, and stiffness

parameter values we used for these models are taken from
[9], [22], and [23], and are listed in Table I.

Zy5(s) =

'0' Zh,l
157 Zn3 I Q\-
Zns y) W
’ ©
) Stable ‘o.o_
~ 17 , Regions D
~
S
=2
05 Passive
) Region
0 1 1 1
20t 107 10° 10 10°
fs [Hz]
Fig. 4. Passivity and coupled stability regions as a function of sampling

frequency using (16), (22), and parameters from Table 1. Normalized
stiffness values below each dashed line are stable when our SEA is coupled
to the corresponding human impedance model (Z}, ;). Normalized stiffness
values beneath the solid line can be rendered passively.

Now that we have defined Z;,, we can find the continuous
transfer function which relates actuator force to load position.
Referring to the block diagram in Fig. 2, we obtain

Iy, 1
Fa ms2+bs+ sQ7Y(s)Zn i(s)

where subscript ¢ indicates the choice of impedance model
from (19). Again, we notice that @ distinguishes (20) from
the equivalent expression found for rigid haptic devices [17],
[19], where @ = 1. Next, following the process employed by
[15]-[18], the zero-order hold and G;(s) are converted into a
discrete transfer function using Z, the Z-transform operator.
Applying this discrete transfer function, the characteristic
equation of the coupled system becomes

(20)

1+ kqZ[ZOH G4(s)] =0 (21)

And so, by definition, the values of k; which yield coupled
stability must satisfy the constraint

kg < GM (z [ZOH Gi(s)]) (22)
where GM(-) denotes the gain margin. In practice, the right
side of (22) can be numerically solved in MATLAB.

Using (22), we calculated the upper bound on k4 for cou-
pled stability when considering each of the human impedance
models given by (19). We then plotted these results in
Fig. 4, along with the passivity region defined by (16).
From the resultant plot, we observed that our passivity
region is contained within each of the coupled stability
regions, as should be expected. Perhaps more surprisingly,
we also found that a pure mass attached at the load (Z}, 1)
is not the “worst-case”—or most destabilizing operator—at
all sampling frequencies. Indeed, while the coupled stability
bound for mp = 0.1 kg matched the passivity bound when
fs was greater than 10 kHz or less than 100 Hz, between
these sampling frequencies the stable k; region noticeably
exceeded the passive ky region. To better understand this
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Fig. 5. Effect of human mass (mjp) on the ratio between coupled stability
bounds and passivity bounds at different sampling frequencies. kg, s¢abie iS
defined as the upper bound of (22) when considering Z, 1, the impedance
model for a pure mass attached to the load. kg passive is defined as the
upper bound of (16). With the exception of the independent variable myp,,
all parameters were taken from Table I. The vertical dashed line shows the
value of mp /m used during our subsequent experiments.

result, we next reapplied (22) with Zj, ; while testing a
variety of values for my, the human mass. A plot of our
findings is shown in Fig. 5, where kg stqp1c 1S the upper bound
of the coupled stability region, and kg passive 1S the upper
bound of the passive region. Based on this plot, it is clear
that as my, increases, the coupled stability region converges
to the passivity region regardless of sampling frequency;
hence, we conclude that large pure masses (for example,
mp/m > 3) are the most destabilizing operator for our
SEA system when T' > 0. Moreover, the fact that kg stqpic
converges to kg passive SUpports the passivity constraint (16).

IV. EXPERIMENTS

To validate our passivity and coupled stability results de-
rived in Section III, we next conducted experiments using the
linear SEA described by [12], which is shown in Fig. 6. The
actuator consisted of a brushed DC motor (Maxon Motor, RE
30) and rotary incremental encoder (Maxon Motor, HEDL
5540) attached by capstan drive to a translational slider,
whose position was denoted as x 4. A bidirectional spring
was connected to the output of this translational slider, and
the spring’s displacement, Az = x4 — x, was directly
measured using a linear incremental encoder (US Digital,
EM1-0-500-1). By subtracting the spring displacement from
the slider position, x4 — Ax, we were able to measure zj,
the position of the load. The actuator’s mass, m, and viscous
damping, b, were identified using the logarithmic decrement
method and then verified with linear regression, while the
spring stiffness, k, was found by applying known forces and
measuring displacement; these identified SEA parameters are
listed in Table I. Control was implemented on a desktop
PC using Simulink (MathWorks) with the QUARC blockset
(Quanser). The computer interfaced with the SEA hardware
through a Q8-USB data acquisition device (Quanser), and
had a maximum sampling frequency of 1 kHz.

TABLE I
PHYSICAL PARAMETERS FOR OUR 1-DOF SEA AND HUMAN OPERATOR
IMPEDANCE MODELS

Parameter Variable Value
SEA Mass [kg] m 0.375
SEA Damping [N-s/m] b 1.75
SEA Stiffness [N/m] k 1075
Impedance Model Zna  Zn3  Zngs
Source [9] [22] [23]
Human Mass [kg] mp 0.1 0.15 1.46
Human Damping [N-s/m] by, - 4.8 4.5
Human Stiffness [N/m] kn - 600 48.8
Grasp Damping [N-s/m] by - - 7.9
Grasp Stiffness [N/m] kg - - 375

During experiments, we varied the sampling frequency of
our computer interface, fs, while rendering different values
of virtual stiffness, k4. Since the passivity of an SEA can be
difficult to observe, we instead tested for coupled stability
when a pure mass, my, was attached to the load, i.e., Zj, 1
in (19). Based on our discussion of Fig. 5 in Section III-D,
we know that large pure masses are the most destabilizing
operators for our SEA system, and thus, when a sufficiently
large mass is attached at the load, the coupled stability region
approximates the passivity region. Accordingly, to get an
idea of the k4 that can be rendered passively, we set mj;, =
0.441 kg, noting that my, could not be further increased in
our system due to actuator saturation and maximal spring
displacement. Hence, during our experiments my, /m == 1.18,
which unfortunately is less than the my/m > 3 ratio we
recommended in Section III-D; as a result, the stability
region will be noticeably larger than the passivity region
(as observed in Fig. 7). For a given fs and kg4, a malicious
human operator perturbed the load mass by briefly applying
an impulse force and then abruptly releasing, in an attempt to
cause the coupled SEA and load mass to become unstable.
If the oscillations of z; decreased in magnitude, k; was
increased and the experiment was repeated; otherwise, if the
oscillations of x; became unstable, k; was recorded and we
started to test the next sampling frequency.

The results of our experiments can be seen in Fig. 7. The
values of normalized stiffness, kq/k, which are predicted to
be stable (below dashed line) were found by evaluating (22)
with Zj, 1, where here m;, = 0.441 kg. The actual values of
normalized stiffness at which our SEA system became unsta-

Fig. 6. 1-DoF SEA hardware used for our experiments. (1) motor and
rotary encoder, (2) translational slider with position x 4, (3) linear encoder
measuring spring displacement, (4) spring, (5) load mass with position x,.
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Fig. 7. Experimental results. A load mass was attached to the SEA and
then perturbed by a malicious operator. The lowest normalized stiffness,
kq/k, at which oscillations of the load mass became unstable is plotted as
a function of sampling frequency, fs. Predicted values for coupled stability
and the passivity region were obtained using the load mass, m, = 0.441
kg, and the identified SEA parameters listed in Table I.

ble are marked. We observe that the experimental coupled
stability region is contained within the theoretical coupled
stability region, and, on average, there is a 9.98% error
between the experimental and theoretical values for kq stabie-
We also show the passivity region (below solid line), which
was defined by (16). Because the coupled stability and pas-
sivity regions are here similar, we will approximate stability
as passivity; therefore, we claim that the values of k; where
our SEA became unstable approximate the maximum virtual
stiffnesses that can be rendered passively. Following this line
of reasoning, the experimental passivity region is slightly
larger than the theoretical passivity region, with a 7.85%
average error for kg passive-

V. CONCLUSION

We have found the K-Width of SEAs—a class of com-
pliant haptic devices—while explicitly considering discrete
sampling and the zero-order hold imposed by the computer
interface. We first described the hybrid model for a 1-
DoF SEA, from which we obtained (), a linear filter that
distinguishes SEAs from rigid haptic devices. After making a
continuous approximation of the zero-order hold, we applied
the positive realness test, and derived a closed-form bound on
SEA K-Width that generalizes previous work on both rigid
haptic systems and continuous SEA models. To numerically
verify this bound, we next considered a discrete model of
our SEA coupled to human operators of known impedance.
Interestingly, we found that large pure masses are the most
destabilizing operator, and thus, when an SEA attempting
to render a virtual stiffness is coupled to a large pure mass,
the coupled stability region matches the passivity region. We
leveraged this similarity between coupled stability and pas-
sivity during our experiments, where we confirmed that the
SEA K-Width could be predicted by our theoretical closed-
form bound. Our findings can be used to determine the virtual
stiffnesses that can be safely rendered by an SEA, such

as for rehabilitation applications. These findings can also
be applied to refine the K-Width of other haptic devices—
besides SEAs—which have non-negligible compliance.
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