
Notes
on

Combinatorial
Optimization

Robert E. Bixby *

October 16, 1987

TR87-21

•Partially supported by AFOSR grant 87-0276 to Rice University.

Contents

1 Introduction

1.1 What is Combinatorial Optimization?

1.2 Independence Systems

2 Minimum Spanning Trees

2.1 The Greedy Algorithm .

2.2 Prim's Algorithm .

3 Shortest Paths

3.1 Introduction.

3.2 Definitions ..

3.3 Minty's Analog Algorithm .

3.4 Solving (3.1)

3.5 Some Miscellaneous Results

4 Polyhedral Combinatorics

4.1 Introduction .

4.2 The TSP ..

4.3 An Exact Defining System for PTsP?

5 Facets of Polyhedra

5.1 Introduction

5.2 More Polyhedral Preliminaries

5.3 A Minimum-Spanning-Tree Polyhedron

1

3

3

5

9

9

10

17

17

18

19

21

24

29

29

32

37

41

41

41

45

2

6 Ellipsoids

6.1 Overview

6.2 Reduction to Testing Feasibility .

6.3 Ellipsoids

6.4 Optimization and Separation

CONTENTS

49

49

50

52

59

Chapter 1

Introduction

1.1 What is Combinatorial Optimization?

Graphs

Most combinatorial optimization problems are defined on graphs. We assume some
familiarity with this subject and give only a short introduction. Most of the books
referenced at the end of these notes also contain introductory sections on graphs.

An (undirected) graph G is a pair (E, V), where Vis a finite set of vertices and E
is a finite set of edges. Each edge has associated with it two vertices, not necessarily
distinct, called its ends. An edge with identical ends is a loop. Two non-loop edges
with the same ends are said to be parallel. If G has no loops or parallel edges it is
simple.

It is typical to draw pictures of graphs in which vertices are depicted as points
and edges as line segments joining these points. The graph pictured in Figure 1.1
has 4 vertices, 6 edges, one loop, and two parallel edges. There is one labeled edge,
e, and there are two labeled vertices, x and y, the ends of e. When there is no
ambiguity, as there is not for a simple graph, we write e = xy.

][

e

y

Figure 1.1: An example graph.

3

4 CHAPTER 1. INTRODUCTION

A path P from a vertex v 0 to a vertex vk in a graph G, sometimes called a v 0-vk

path, is a sequence of vertices and edges of G, P = (vo, e1 , v1 , e2, v2, •.• , Vk-i,

ek, vk), such that ei = Vi-l Vi (i = 1, ... , k). When no ambiguity arises we write
P = (Vo, ... , Vk). If Vo, •.. , Vk are distinct, the path is called simple. A path that
is simple except that v0 = Vk is called a circuit. The graph in Figure 1.1 contains
exactly four distinct circuits. Note that a loop ia a circuit with exactly one edge
(and one vertex). A pair of parallel edges also forms a circuit.

A graph is connected if for every pair of vertices x and y, there is a path from
x to y. A graph is a forest if it includes no circuits. A connected forest is a tree.
A subgraph of a given graph is obtained by deleting some of its vertices and edges.
Of course, when a vertex is deleted from a graph, then all incident edges must also
be deleted. An edge can be deleted without deleting its end-vertices. A spanning
subgraph of a graph is one in which only edges have been deleted. A spanning tree is
a spanning subgraph that is a tree. The graph in Figure 1. 1 has exactly 7 spanning
trees.

A Definition of Combinatorial Optimization

A combinatorial optimization problem can be defined in general as follows.

Definition 1.1.1 Let E be a finite set, let S be a family of subsets of E, and
let w E RE be a real-valued weight function defined on the elements of E. The
associated combinatorial optimization (CO) problem is to find S* E S such that

w(S*) = min w(S),
ses

where w(S) := Lees w(e). 0
Example 1.1.2 Traveling Salesman Problem. Let Kn denote the complete graph
on n vertices. Thus, Kn is a simple graph on n vertices in which every two vertices
are joined by an edge. Let w be a weight function defined on the edges of Kn. In
the typical traveling-salesman interpretation the vertices of Kn represent cities, and
the weights distances between these cities. Of course, other interpretations are also
possible, and important.

The n-city traveling salesman problem is to construct a circuit that passes
through each vertex, and has minimum total weight. A circuit passing through
each vertex of a graph is called a tour. In the graph K 4 given in Figure 1.2, and for
the weight function indicated on the edges, the minimum tour has weight 8.

To formulate the TSP as a CO problem, take S to be the set of edges of Kn (so
that ISi = n(n - 1)/2), and let S be the family of subsets of S forming tours. The
TSP is an example of a hard CO problem. It is known to be NP-complete: No
polynomial-time algorithm is known for it, and none is expected. O

1.2. INDEPENDENCE SYSTEMS 5

2

Figure 1.2: K4

Example 1.1.3 Minimum Spanning Trees. Let G be a connected graph. Given a
weight function defined on the edges of G, the minimum spanning tree problem is
to find a spanning tree of G that has minimum total weight. This is clearly a CO
problem.

The MST problem has numerous applications. One simple one is the following.
Suppose a collection of remote computer installations has been specified, and a cost
is given for connecting each separate pair of terminals by a direct communication
link. It is reasonable to ask for a minimum-cost collection of links the construction of
which would allow any one terminal to communicate with any other, communication
being possible exactly when there is path of links between the two terminals in
question. Given that the costs are nonnegative (and who would doubt that they
are), this is exactly a MST problem.

The MST problem is an example of an easy CO problem. There are several
polynomial-time algorithms known to solve it. O

1.2 Independence Systems

In this section we develop a general algorithm that can be applied to a wide variety
of CO problems. For most, it is only a heuristic, but for the MST problem we will
see that it gives an exact solution.

Definition 1.2.1 Let E be a finite set, and let I be a family of independent subsets
of E. The pair (E, I) is called an independence system if

(11) the empty set is independent, and

(12) subsets of independent sets are independent. O

Example 1.2.2 Both the TSP and the MST problem can be formulated as CO
problems on independence systems. For example, in the MST problem one can

6 CHAPTER 1. INTRODUCTION

take as the underlying set E the set of edges of the given graph G, and as the
family I the family of edge-sets of forests of G. The MST problem for G and
a weight function w is then equivalent to finding a maximum-weight independent
subset of E with respect to weight function { M - w(e) : e E E}, for a sufficiently
large constant M.

The TSP may be handled similarly. O

The following algorithm, named by Jack Edmonds, can be applied to any inde­
pendence system.

Algorithm 1.2.3 The Greedy Algorithm.

Input: An independence system (E,I), a weight function w ERE, and an indepen­
dence oracle.

Output: An independent set lg (of hopefully large total weight).

Comment: In order to apply an algorithm to (E,I), I must be specified in some
computationally accessible form. The typically assumed form is that of an indepen­
dence oracle. Thus, it is assumed that a subroutine or "oracle" is available that can
determine in constant time if a given X ~ E is independent. In applications this
oracle is replaced by a concrete calculation.

begin
sort E as e1 , ... , elEI so that for some k
w(ei) ~ ... ~ w(ek) > 0 ~ w(ek+i) ~ ... ~ w(elEl)i
lg:= 0;
for j := 1 until k do

if lg U {ej} EI then lg:= lg U {ej}i
end

Note that this algorithm requires at most IEI calls to the independence oracle;
moreover, for any reasonable implementation, the time requirements in addition to
these calls are bounded by a polynomial in IE!. The algorithm is thus said to run
in oracle polynomial time. More detailed estimates for concrete instances will be
given later.

For X ~ E, a ba3e B of X is a maximal independent subset of X, where B
maximal independent means that for every e E X\B, B U { e} is not independent.
The rank of X, r(X), is defined by

r(X) = max{IBI: Ba base of X}.

The lower rank of X, r1(X), is defined by

r1(X) = min{IBI: Ba base of X}.

1.2. INDEPENDENCE SYSTEMS 7

In terms of these quantities, we have the following general performance bound
on the greedy algorithm.

Theorem 1.2.4 (Jenkyns 1976) Where 10 iJ an optimal-weight independent Jet and
w(I0) > 0,

min{r,(F) : F CE r(F) 4 0} < w(Ig) < 1.
r(F) - ' ' - w(10) -

Proof. Let Wi denote We; and write Ei = {e1 , ... ,ei} (i = l, ... ,k). Define
Wk+i = 0. Then we have

k

w(Ig) = L Ilg n E;l(w; - w;+i),
i=l

and
k

w(Io) =Ello n E;l(w; - w;+t)•
i=l

But for each j, by the nature of the greedy algorithm, lg n E; is a maximal indepen­
dent subset of E;. Hence, r1(E;):::;. IIgnE;I; moreover, II0 nE;I ~ r(E;) since IonE;
is independent (being a subset of / 0) and r(E;) is the size of a biggest independent
subset of E;. Combining the above facts, and denoting the 'min' in the theorem by
q, we have

as required. D

k

w(lg) > E r1(E;)(w; - w;+i)
j=l

k

> Lqr(E;)(w;-w;+1)
j=l

k

> q L llo n E;l(w; - w;+1)
i=l

q w(Io),

Corollary 1.2.5 If r(F) = r1(F) for all F ~ E, then the greedy algorithm giveJ an
optimal Jolution of the maximum independent Jet problem. D

The objects singled out by (1.2.5) are known in the literature as "matroids" (see
[2]). We will not study their general properties further here.

8

Exercises

CHAPTER 1. INTRODUCTION

1.1 Let I be the family of subsets of edge-sets of tours in Kn. Define the rank r and lower
rank r1 for I as in §1.2. Let

q = min{ ~f ;; : F ~ E(Kn) and r(F) i: O}.

Show that q ~ 1/2.

Chapter 2

Minimum Spanning Trees

2.1 The Greedy Algorithm

An interesting overview of the subject of minimum spanning trees is given in "On
the history of the minimum spanning tree problem," by R. L. Graham and P. Hell
(1985), Annals of the History of Computing 7 43-57.

There are several known polynomial-time algorithms for the MST problem. We
begin by showing that the greedy algorithm (Algorithm 1.2.3) is one of them.

We make use here and throughout the remainder of these notes of the word
'maximal' in a set-theoretic sense. Thus, an (edge) maximal forest is one such that
the addition of any edge in the given graph, outside the forest, destroys the forest
property (creates a circuit). The word 'minimal' is used similarly. Hence, there
is an important difference between the words 'maximum' and 'minimum' and the
words 'maximal' and 'minimal'. (See also the definition of 'base' in §1.2.)

A (connected) component of a graph G is a maximal connected subgraph.

Lemma 2.1.1 {a) Every {edge) maximal forest of a connected graph is a spanning
tree. (b) Every spanning tree of a connected graph on n vertices has exactly n - 1
edges.

Proof. Let G be a connected graph on n vertices. The lemma is trivial if n = l.
Assume n > l.

We first prove (a). Let T be a maximal forest of G. If T is not spanning, let
x be a vertex of G not incident to an edge of T. Since G is connected, and has at
least two vertices, there must be an edge e incident to x. Adding e to T obviously
cannot create any circuits. This contradicts the maximality of T, and proves that
it is spanning. Now suppose that Tis not connected. Let T' be a component of T,

9

10 CHAPTER 2. MINIMUM SPANNING TREES

let x E V(T') and let y (/. V(T'). Now since G is connected, there is a path from x
to y in G. Let e be the first edge of this path with exactly one end in T'. Clearly
adding e to T creates no circuit, again contradicting maximality. This completes
the proof of (a).

Now consider (b). If every vertex of G is incident to at least two edges in T,
that is, has degree at least 2 in T, then it is easy to see that T contains a circuit
(see Exercise 1). Hence, there is some vertex incident to exactly one edge of T. But
deleting this vertex and the incident edge, we obtain a spanning tree of a graph
with one less vertex. The result now follows by induction. O

For a subset of edges F of a graph G, let G(F) denote the subgraph of G induced
by F, that is, the subgraph with edges F and vertices exactly those vertices incident
to some edge in F.

Corollary 2.1.2 Let F be a subset of edges of a graph G. Then the number. of
edges in any m.aximal forest of G(F) is exactly IV(G(F))I m.inus the number of
components of G(F). Hence, for the independence system given by the edge-sets of
the forests of a graph, r, and r are identical. It follows that Algorithm 1.i.9 (the
greedy algorithm) solves the problem of finding a maximum-weight forest. O

This greedy algorithm for the MST problem is now generally attributed to 0.
Boruvka (1926) ["On a minimal problem," (in Czech) Prace Moravske Prirodovecke
Spolecnosti Brne 3], although for years the earliest reference was thought to be J.B.
Kruskal (1956) ["On the shortest spanning subtree of a graph and the traveling
salesman problem," Proceedings of the American Mathematical Society 7 48-50].

We postpone a discussion of the theoretical efficiency of MST algorithms until
the end of the next section.

2.2 Prim's Algorithm

The main algorithm of this section, Prim's algorithm, is more efficient than the
greedy algorithm on "dense graphs," simple graphs with O(IVl2

) edges. Our deriva­
tion of this algorithm is based on three simple graph-theoretic lemmas. The proofs
are typical of this subject: They are much easier to picture than to write down.

Lemma 2.2.1 Let C1, C2 be distinct circuits of a graph G, and let e E C1 n C2.
Then (C1 U C2) \ { e} 1 contains a circuit.

1Even though 'path', 'circuit' and 'tree' have been defined in §1.1 as made up of vertices and
edges, it is frequently convenient, as it is here, to consider them to be simply subsets of edges. We
do this whenever convenient, without further comment.

2.2. PRIM'S ALGORITHM 11

Proof. C1 and C2 distinct implies there is an edge f E C1 \C2. Let f = xy.
Traversing C1 starting at y and moving away from x, we must find some first vertex
y' in common with C2 (since C1 and C2 have a common edge). Let Py be the path
so constructed. Similarly, construct x' and Pr:- Now x' -=f:. y', for otherwise C1 and
C2 have at most one vertex in common. Let Q be the path in C2 between x' and y'
not including e. Then {/} U P:r: U Py U Q is the desired circuit. D

Lemma 2.2.2 Let G be a connected graph, and let T be a spanning tree of G. Then
for any edge e E E(G)\T, TU { e} contain" a unique circuit, denoted C(T, e), and
called the fundamental circuit ofT ate. For any edge f E C(T,e), (TU {e})\{J}
is a spanning tree.

Proof. Let e = xy. Since T is spanning, it includes x and y, and since T is
connected, it includes a path P joining x and y. But then P U { e} is clearly a
circuit, proving that TU { e} contains at least one circuit. Suppose that this circuit
is not unique. Then there are two distinct circuits Ci, C2 ~ T U { e}. But then
by Lemma 2.2.1, (C1 U C2)\{e} contains a circuit contained in T, a contradiction.
Hence, the circuit C(T, e) = PU { e} is unique.

Now consider f = uv E C(T,e), and let T' =(TU {e})\{J}. If e =/,then
evidently T' =Tis a spanning tree. Assume e-=/:- f. Clearly T' contains no circuit,
by the uniqueness of C(T, e). Every vertex other than u and v is certainly incident
to some edge of T', since it is incident to some edge of T, and u and v are each
incident to some edge in C(T, e)\ {/}. Finally, note that T' is connected since every
path in T between two vertices either does not include f, in which case it is a path
in T', or it does include/, in which case replacing f by the path C(T, e)\{J} yields
a (not necessarily simple) path in T'. D

Definition 2.2.3 Let G = (V, E) be a graph, and let X ~ V. Define S(X) to be
the set of all edges in G with one end in X and the other in V\X. Subsets of edges
of the form S(X) are called cuts. O

Lemma 2.2.4 Let C* be a cut and C a circuit of some graph G = (V, E). Then
IC* n Cl -=/:-1.

Proof. Suppose e EC* n C and e = xy. Now C* = S(X) for some X ~ V, and we
may assume x EX. But then by definition y E V\X. Consider the path C\{e}.
Traversing it starting at x, there must be some last vertex x' EX. The next edge
in this path then has one end in X and one end in V\X, and is the required second
edge in c· n C. D

12 CHAPTER 2. MINIMUM SPANNING TREES

The next result is the key to the spanning tree problem.

Theorem 2.2.5 Let G = (V, E) be a connected graph with edge weighting w, and
let F be the edge-set of a forest in G. Let Vi, ... , Vk be a list of the vertex-sets of the
components of the edge-induced subgraph G(F). Suppose for some j (1 $ j $ k),
that e is a minimum-weight edge in o('V;). Then among all spanning trees that are
minimum-weight extensions of F, there is one containing e.

Remark: (a) We have previously proved that all maximal forests of a connected
graph are spanning trees. Thus, F is contained in some spanning tree.

(b) The above result applies to any forest F. F need not be contained in any
minimum spanning tree of G. One can imagine applications in which, because of
certain "external constraints," some edges are required to be in the solution, even
though they are in no globally-minimum tree. O

Proof of Theorem 2.2.5. Given Lemmas 2.2.2 and 2.2.4, the proof is straightfor­
ward. Let T be a minimum-weight extension of F. If e ET, we are done. Suppose
not. Let C* = 6(Vj), and let C = C(T, e) be the fundamental circuit of T at e.
Then e EC* n C, and so by Lemma 2.2.4, there is a second edge f EC* n C. Let
T' = (TU { e})\ {J}. Then T' is a spanning tree by Lemma 2.2.2, and

w(T') = w(T) + w(e) - w(f) $ w(T),

by the choice of e. This completes the proof. O
The validity of Prim's algorithm, given below, is immediate from Theorem 2.2.5.

This motivates, in part, the statement of the theorem. However, this result can also
be used to prove the validity of the greedy algorithm, Algorithm 1.2.3. In this
context it is most natural to consider an alternate, minimization version of the
greedy algorithm in which one does not stop with a forest, but continues through
all edges until a minimum spanning tree is constructed. The proof that the resulting
tree is indeed minimum proceeds by induction. Clearly the empty forest is contained
in a minimum tree. Assume, as the inductive step, that the forest constructed up
to some point in the algorithm is contained in some minimum tree. We need only
prove that this assumption is preserved when an edge is added to the forest. But
when an edge is added it is, by the ordering (now from minimum- to maximum­
weight edge), the minimum-weight edge then available that does not create a circuit
together with previously chosen edges, that is, it is a minimum-weight edge with
ends in different components of the current forest. Hence, by Theorem 2.2.5, the
inductive assumption is preserved.

2.2. PRIM'S ALGORITHM

Algorithm 2.2.6 Prim's Algorithm

Input: A connected graph G = (V, E) with edge weighting w.

Output: A minimum spanning tree T of G.

begin
X := {v} for some v EV;
T:=0;
while X =/:- V do begin

find e E 6(X) such that w(e) = min1es(X) w(f);
T:=TU{e};
X :=XU {y} where e = xy and x EX;

end
end

Theorem 2.2.7 Algorithm £.£.6 i., correct. D

13

We conclude this section with a discussion of the computational complexity of
Prim's algorithm. We do not include full details. These can for the most part be
found among the references given in the bibliography. For this discussion we assume
that G = (V, E) is a connected graph, n = IVI and m = IEI. We also assume that
Eis stored so that the ends of any edge can be found in time 0(1).

0(mn): It is trivial to give an 0(mn) implementation. To store X, simply keep a bit representation,
that is, keep an array COMP, say, of length n in which the entry for a vertex is 1 if that vertex is
in X, and O otherwise. On each execution of the while loop, we find e by scanning all edges, and
checking the location of its ends using COMP. The scan takes time O(m). Updating COMP and Tis
0(1). Since the while loop is executed n - 1 times, the overall bound is clearly O(mn), or O(n3)

for dense graphs.

O(n2): A shortcoming of the above implementation is that too much time is spent finding the edge
e in the while loop. This situation may be improved by keeping appropriate information for the
vertices in V\X. Create arrays SMALL and SMALL.EDGE, each of length n, and initialize them as
follows. For each u E V\ { v}, SMALL [u] = w(vu) if vu exists, and = +oo otherwise; SMALL.EDGE [u]
is a pointer to v in the first case, and null otherwise. This initialization takes time O(n). Now to
find e we simply scan SMALL, and take the minimum value that arises. If SMALL[u] is this minimum,
then SMALL.EDGE[u] is used to update T. This all takes time O(n), as does updating these two
structures.

O(mlogn) 2 : This bound is not as good as the above one for dense graph. However, in some
practical problems mis roughly linear in n, and then the bound is better. We give two approaches
that achieve this bound. The first is more direct.

(a) We use basically the same approach used to obtain the O(n2) bound, but now we keep a
(simple) heap (see (1)) in order to quickly find the minimum element in SMALL. The computa­
tion of the minimum is then 0(1). Extra work is however required to update the heap. The
initial heap is constructed in time O(n)-that this is possible is a standard result for heaps.
The updates proceed as follows. When a new vertex y is added to X, as many as d(y) (the

2log n stands for log2 n.

14 CHAPTER 2. MINIMUM SPANNING TREES

degree of y) values in SMALL could change. Updating the heap for each of these requires time
O(logn), and so the total work to add y to Xis O(d(v)logn). Since Evev d(v) = 2m, the
0(m log n) bound follows.

(b) This bound is derived in [9]. It involves a substantial modification of the algorithm as stated,
one that more fully makes use of the generality of Theorem 2.2.5. We keep, instead of a single
vertex set X, a collection of disjoint vertex sets X 1, ... , X 1r, for some k. Initially k = n so
that each X; is a single vertex. At a general iteration we find, for each X;, a minimum-weight
edge in 6(X;). This can be done in a relatively obvious way in one pass through E. Let A
be the list of edges so generated. Clearly IAI ~ k/2, since every X; is incident to at least one
member of A, and each edge of A is incident to at most two X;. Now by repeated application
of Theorem 2.2.5, we may add all the edges of A to T. The X; must then be updated. This
takes time O(n), and thus the whole iteration takes time O(m). Now, since IAI ~ k/2, k is
reduced by at least half at the next iteration. Thus, the number of iterations is bounded by
logn, and the overall bound follows.

O(m + n log n): This bound is due to Fredman and Tarjan. It is achieved using of Fibonacci heaps,
a discu88ion of which is beyond the scope of these notes [M. L. Fredman and R. E. Tarjan (1984),
"Fibonacci heaps and their uses in improved network optimization algorithms," Proceedings of the
25th Annual IEEE Symposium on Foundations of Computer Science 338-346). They also obtain a
bound of the form O(m,B(m, n)), where

,B(m, n) = min{j: log(j) n ~ m/n},

and log(j) n denotes the j1h iterated logarithm of n.

A difficulty with these bounds is that Fibonacci heaps are difficult to implement, and in practice
do not seem to be as efficient as other theoretically le88 efficient kinds of heaps. Successive attempts
to remedy this situation are made in [D.D. Sleator and R.E. Tarjan (1983), "Self-adjusting binary
trees," Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 235-245; D. D.
Sleator and R. E. Tarjan, "Self-adjusting heaps," SIAM Journal on Computing, to appear; R. E.
Tarjan, D. D. Sleator, M. L. Fredman and R. Sedgewick, "The pairing heap: A new form of self­
adjusting heap," AT&T Bell Laboratories Technical Report, September 18, 1985]. However, the
corresponding theoretical bounds have not yet been obtained for these modifications.

Exercises

2 .1 For sets X and Y define

XAY = (X\Y) U (Y\X).

X AY is called the symmetric difference of X and Y. Let C' and C" be two circuits of a
graph G.

(a) Let H be a subgraph of Gin which every vertex has even degree. Show that if H has
at least one edge, then it contains a circuit.

(b) Show that there are edge-disjoint circuits C1, ... , Cm (m ~ 1), such that C' AC" =
C1 U ... U Cm. (This result strengthens Lemma 2.2.1.)

2.2. PRIM'S ALGORITHM

2.2 Prove the validity of the following algorithm:

Algorithm. Dual Greedy Algorithm.

Input: A connected graph G = (V, E) with edge weighting w.

Output: A minimum spanning tree T of G.

begin
Sort E so that w(e1) ~ ... ~ w(e1E1);
T:=E;
for j := 1 until IEI do

if T\{e;} is connected then T := T\{e;};
end

15

2.3 Let G be a simple graph with n = !VI 2: 3. A Hamiltonian circuit or tour in G is a
circuit with n vertices. G is Hamiltonian if is has a tour. It is easy to give examples of
graphs that are not Hamiltonian, but one would expect that, if a graph has enough edges,
then it is very likely Hamiltonian. Use the following steps to prove that, if every vertex of
G has degree at least n/2, then G is indeed Hamiltonian.

(a) Let P = (vo, ... , vk) be a simple path in G, and assume that neither vo nor v1c is
joined by an edge to a vertex not in P (thus, P cannot be "extended" to a longer
path). Prove, using a counting argument and the fact that d(vo)+d(v1c) 2: n, that for
some j, vovj+l and v;v1c are edges of G (draw a picture!). Note that deleting v;v;+1
and adding these two edges to P yields a circuit.

(b) Let C be a circuit with fewer than n vertices. Use a counting argument, using the
fact that either C or its complement has at most n/2 vertices, to show that some
vertex in G is joined to a vertex not in C. Thus, by deleting an appropriate edge of
C we may "extend" C to a longer path.

Can this proof be made into an algorithm? If so, can you estimate its complexity?

2.4 Show that the symmetric difference of two cuts is a disjoint union of cuts.

16 CHAPTER 2. MINIMUM SPANNING TREES

Chapter 3

Shortest Paths

3.1 Introduction

The shortest path problem is one of the most-studied problems in combinatorial
optimization, and could easily be the subject of several chapters. Among its varia­
tions are the k-shortest path problem, the longest path, most-dependable path and
maximum capacity path problems, and the problem of finding shortest paths with
an even or odd number of edges. Our treatment will, however, be rather brief. We
consider only the problem of finding shortest paths from a single given vertex to all
other vertices. For this version we examine a linear-programming (LP) 1 approach
(the Ford algorithm), the Moore-Bellman algorithm, and Dijkstra's algorithm.

Those wishing a more detailed treatment are referred to [6]. For additional
material see also:

• Domschke, K. (1972), "Kiirzeste Wege in Graphen," Mathematical Systems
in Economics 2, Verlag A. Hain, Meisenheim am Glan

• Dreyfus, S. E. (1969), "An appraisal of some shortest-path algorithms," Op­
erations Research 17 395-412 (a classic article)

• Glover, F., D. Klingman and Phillips (1985), "A new polynomially bounded
shortest path algorithm," Operations Research 33 65-73 (this paper discusses
the more recent literature)

• Syslo, M. M., N. Deo and J. S. Kowalik (1983), the bibliography of Discrete
Optimization Algorithms, with Pascal Programs, Prentice-Hall, Englewood
Cliffs, New Jersey

1 A very brief introduction to linear programming is given in §4.1

17

18 CHAPTER 3. SHORTEST PATHS

3.2 Definitions

It is customary to study shortest-paths in the context of directed graphs. We begin
with a short introduction to these.

A directed graph, or digraph, D = (V, A) is an ordered pair made up of a finite
set V of vertices and a finite set A of arcs, such that each arc has associated with
it an ordered pair of (not necessarily distinct) vertices called its tail and its head,
respectively. For an arc e, we denote the tail by t(e) and the head by h(e). t(e)
is then a predecessor of h(e) and h(e) a successor of t(e). When no confusion can
arise (for example, when there are no similarly directed parallel arcs) we write
e = (t(e),h(e)).

All the notions previously introduced for (undirected) graphs, such as tree, path
and circuit, can be applied to digraphs by considering the underlying graph, simply
ignoring the directions on the arcs. For some of these notions we also define corre­
sponding directed versions. Thus, a v0-+vk dipath P = (v0 , ••• , vk) is a path such
that (Vi-l, Vi) is and arc (i = 0, ... , k). Dicircuit is defined similarly. For X ~ V,
b'-(X) = {e: t(e) E X,h(e) E V\X} and b'+(X) = b'-(V\X) (see Definition 2.2.3).

Definition 3.2.1 Let D = (V, A) be a digraph with a distinguished vertex r,
called the root, and a weight or length 2 function w defined on A. For a dipath
P = (Vo, ... , Vk), the length of P, w(P), is defined by w(P) = E7=o w(Vi-1, Vi).

The shortest path problem, SPP, for (D, w, r) is to find, for each vertex v of D, a
minimum-length, or shortest, dipath from r to v.

It may seem that a more natural version of the SPP would be one in which a
single di path between a pair of specified vertices is the goal. Indeed, this form of the
problem is discussed in some of what follows. However, most of the practical algo­
rithms that solve this "more natural" problem, also solve the one in the definition,
and so this version will be the focus of our treatment.

Finally, one can also define the shortest path problem in an obvious way for
undirected graphs. Instances of this problem can be converted to a directed prob­
lem by replacing each edge by two oppositely directed arcs, both having the same
length as the original edge. If the length on the edge is nonnegative, then the
techniques given in this chapter are applicable to the resulting directed problem in
a straightforward way. However, if there are negative-length edges, then a more
sophisticated approach using "nonbipartite matching" is called for. This approach
is discussed in [6].

2The reader is cautioned that these "lengths" need not be actual physical lengths, and so may
be negative. For this reason the use of the word 'weight' here might have some advantages, but we
prefer the more natural 'length'.

3.3. MINTY'S ANALOG ALGORITHM 19

3.3 Minty's Analog Algorithm and an LP Ap­
proach

George Minty suggested the following analog approach. Let G = (V, E) be a graph
with two distinguished vertices r and s and with a nonnegative length function w
defined on the edges. Construct a "string model" of G in which the edges have
actual lengths proportional to their length as defined by w. Now, grasp this model
by its two "ends," that is, by the two vertices r ands, and pull. One would expect
that the length of a shortest path between r and s will then be the distance by which
they are separated after this pulling. In fact, some additional reflection reveals that
this expectation is not quite justified, since some of the strings may be "caught" in
loops with others, but that some retying of the strings will remove these loops and
give the desired result.

The relevance of Minty's method here is: It suggests that we can solve the SPP,
which is a minimization problem, in a natural way as a maximization problem. The
formulation below uses this dual approach.

Let D = (V, A) be a digraph with length function w. Let r and s be two
distinguished vertices of D. Consider the following linear program:

max u(s) - u(r)
s.t. u(h(e)) - u(t(e)) ~ w(e) (e EA)

(3.1)

To help understand (3.1), suppose that there exists an r.-+v dipath for each
v EV, and assume that D contains no negative (-length) dicircuit. Let u(v) be the
length of a shortest r.-+s dipath for each v EV. Note that we may assume any such
dipath is simple, since otherwise it contains a dicircuit, and any dicircuit can be
deleted because, by assumption, it has nonnegative length. Now clearly u(r) = O,
and so u(s)- u(r) is evidently the length of a shortest r-+s dipath. Let e EA, and
let P be a shortest r-+t(e) di path. Appending e to P we obtain an r-+ h(e) di path
P' (not necessarily simple); moreover,

u(h(e)) ~ w(P') = w(P) + w(e) = u(t(e)) + w(e).

That is, u(h(e))- u(t(e)) ~ w(e). Hence, if D contains no negative dicircuit, then
(3.1) is feasible.

Theorem 3.3.1 If (9.1} has an optimal solution u*, then u*(s)-u*(r) is the length
of a shortest r--+s dipath.

Proof. Let P = (v0, . .. , vk) be a v0-+vk di path. Then we have

20 CHAPTER 3. SHORTEST PATHS

k

u*(vk) - u*(vo) - E(u*(vi) - u*(vJ-1))
j=l

k

< Ew(vi-l,vi)
i=l

- w(P).

It follows that for any vertices x and y, and any x---+y dipath P, u*(y) - u*(x) is
a lower bound on w(P). Note also that if u• is tight for each arc in P, that is, if
u*(h(e)) - u*(t(e)) = w(e) for each arc e of P, then u*(y) - u*(x) = w(P).

Now let X be the set of all vertices reachable from r by u*-tight dipaths. Clearly
r E X, and ifs E X, then it follows by the computations of the previous paragraph
that u*(s) - u*(r) is the length of a shortest r.---+s dipath, as required. Assume
s(/.X.

Let a= min{w(e) - [u*(h(e)) - u*(t(e))] : e E 6-(X)}. Then a > 0, by the
choice of X. For each v E V\X, define u'(x) := u*(x) + a, and for x EX define
u'(x) := u*(x). The constraints of (3.1) are then affected only for arcs e with
at least one end in V\X. By the choice of o:, they are still valid on s-(X), and
they are obviously unaffected for any arcs with both ends in V\X. It remains
only to consider arcs e E s+(X). But for any such arc we have u'(h(e))- u'(t(e)) =
u*(h(e))-u*(t(e))-o: ~ w(e). Since u'(s)-u'(r) = u*(s)-u*(r)+o: > u*(s)-u*(r),
this contradicts the optimality of u•. O

The question of existence of an optimal solution for (3.1) is answered by the
following theorem.

Theorem 3.3.2 LP (3.1} is feasible iff D has no negative dicircuits. If (3.1} is
feasible, it is bounded iff there exists at least one r.---+s dipath.

Proof. In the proof of Theorem 3.3.1 it is shown that the length of any r.---+s
dipath is a bound on u(s) - u(r), for any feasible solution u of (3.1). Conversely,
suppose that there exists no r.---+s dipath. Let X be the set of all vertices reachable
by dipaths from r. Then we have s </. X. Now given any feasible solution u of
(3.1), we can clearly add an arbitrary constant to u(x) for each x E V\X, not
affecting feasibility, and increasing the value of the objective u(s) - u(r) without
bound. Thus, (3.1) is unbounded. This proves the boundedness criterion stated in
the theorem.

Now consider the feasibility question. Suppose C = (vo, ... , Vk = vo) is a nega­
tive dicircuit. Then the constraints of (3.1) imply

3.4. SOLVING (3.1) 21

0 - u(vk) - u(vo)
k

- I:(u(vj)- u(vj-1))
j=l

k

< L w(vj-1, v,)
i=l

w(C)

< 0,

a contradiction. It follows that the existence of negative dicircuit precludes the
existence of a feasible solution for (3.1).

Finally, consider the converse. Suppose that D has no negative dicircuit, and let
X be the set of all vertices x such that an r-+x dipath exists. Let u(x) be the length
of a shortest r.-+x dipath for each x EX. By the discussion following (3.1), u(x)
is well defined and satisfies the constraints of (3 .1) on X. If X = V, we are done;
otherwise, pick r' E V\X, and repeat the above construction: Let X' be the subset
of vertices reachable from r', and define u' appropriately on X'. The constraints
of (3.1) are then clearly satisfied on X' by u'. We would now like to extend u' to
XU X', but there is a difficulty: Even though there are, by definition, no arcs from
X' to X\X', there may be arcs from X\X' to X'. This situation is remedied by
choosing an appropriately large constant and adding it to u on X\X'. Now setting
u' := u on X\X', we obtain a feasible solution on XU X'. Repeating this entire
construction until a solution is found for all of V completes the proof. D

The above feasibility condition, that negative dicircuits do not exist, is funda­
mental. The SPP, though generally considered well solved, is in fact .NP-hard for
digraphs with negative dicircuits: A solution to this problem is easily seen to imply
a solution of the TSP.

3.4 Solving (3.1)

Obviously, (3.1) can be solved using the simplex method, or any other method for
solving LPs. However, the problem is simpler than that. L. R. Ford, Jr., offered
the following direct method.

Algorithm 3.4.1 Ford's Algorithm.

Input: An SPP (D, r, w) with no negative dicircuits.

Output: An optimal solution u of (3.1).

22 CHAPTER 3. SHORTEST PATHS

Comment: For any x, if no r-+x dipath exists, the algorithm terminates with u(x) =
+oo. This is consistent with Theorem 3.3.2.

begin
u(r):=0;
for x E V\{r} do u(x) := +oo;
while u(h(e)) - u(t(e)) > w(e) for some e EA do

u(h(e)) := u(t(e)) + w(e);
end

As is noted again below, Ford's algorithm is not polynomial (and is not even
finite if we allow negative dicircuits). However, it is instructive, and at least conve­
nient for hand computations. Note also that the algorithm does not actually output
the shortest paths, when they exist, but simply their lengths. However, it is not
hard to see that these can be found by appropriately recording the arcs e for which
u(h(e)) changes in the while.

Theorem 3.4.2 Ford's algorithm is finite; moreover, if for a particular x E X,
u(x) < +oo at termination, then u(x) is the length of a shortest r.-+x dipath, and
if u(x) = +oo, then there is no r.-+x dipath.

Proof. We give only an outline. The key is to prove that whenever u(x) is finite for
a particular vertex x, then u(x) is the length of some simple r-+x dipath. This is
certainly true at the start of the algorithm. One needs only prove that the property
is maintained by the assignment statement in the while.

Now, given the above fact about u, to see that the algorithm is finite, observe
that each update strictly decreases some u(x). But there are only a finite number
of simple r.-+x dipaths, and hence only a finite number of possible values for u(x).

Finally, the fact that the u(x) at termination have the correct values follows
because, first, when finite they do correspond to the length of some dipath, and,
second, the constraints of (3.1), which are evidently satisfied at termination, imply
that u(x) is a lower bound for the length of any r-+x dipath. D

Ford's algorithm has two major shortcomings: It can only be applied to digraphs
that are known not to contain negative dicircuits, and it has exponential worst-case
behavior. We have not explicitly demonstrated this second claim, but it is not hard
to do so. That this is possible should, in any case, not be surprising since the order
in which updates occur in the algorithm is completely arbitrary. The bound given
in the proof is certainly bad.

Both the above difficulties are dealt with by the Moore-Bellman algorithm. This
algorithm works roughly as follows. To start, an ordering of the vertices is fixed.
Then repeated passes are made through the vertices, using this ordering, IVI passes
in total. Each time a vertex is encountered during a pass, an "update" is performed

3.4. SOLVING (3.1) 23

on all arcs with tail equal to that vertex. Thus, on each pass each arc e is examined
exactly once. The total work for this procedure is clearly polynomial.

Algorithm 3.4.3 Moore-Bellman Algorithm

Input: A digraph D = (V, A) with arc lengths w. We assume V = {1, ... , n} and
r = 1.

Output: The conclusion that D has a negative dicircuit, or vertex numbers un(l),
... , un(n) with the following interpretation: If un(j) < +oo, then un(j) is the length
of a shortest 1-j dipath; otherwise, if un(j) = +oo, there is no 1-j dipath. In
addition, if there is no negative dicircuit, then for each un(j) < +oo, j ::f; 1, a vertex
PRED [j] is output such that (PRED [j] ,j) is the last arc in some shortest 1-j di path.

begin
u0 (1) := O;
for j := 2, ... , n do u0(j) := +oo;
for i := 1, .. . ,n do begin

for j := 1, ... , n do ui(j) := ui-1(j);
for j := 1, ... ,n do begin

for (j, k) EA do begin
if ui(k) > ui-1(j) + w(j, k) then begin

ui(k) := ui-1(j) + w(j,k);
PRED [k] := j;

end
end

end
end
if un(j) < un-l(j) for some j then

print "There exists a negative dicircuit";
end

Theorem 3.4.4 The Moore-Bellman shortest path algorithm is correct and runs
in time O(jVjjEj).

Proof. Again, we give only an outline, and, again, the key to the proof is an
appropriate interpretation of u. In this case one can show that when ui(j) < +oo
for some vertex j and some i = 0, ... , n, then ui(j) is the length of a shortest 1-+j
dipath using at most i arcs. Certainly this is true at the start of the algorithm,
after u0 is initialized, and it is straightforward to verify the claim in general, by
induction on i. Now, note that no simple dipath can have more than n - 1 arcs,
since D has only n vertices. Hence, if un(j) < un-1(j) for some j, then by the above
claimed interpretation of un(j), un(j) must be realized by a nonsimple dipath, and
this dipath must contain a negative dicircuit. The remaining parts of the proof are
routine. D

24 CHAPTER 3. SHORTEST PATHS

Note that Algorithm 3.4.3 is not guaranteed to find a negative dicircuit whenever
one exits, only to find one if it stands in the way of finding all shortest dipaths
starting at the root. In particular, if there is a negative dicircuit, but no vertex on
it is reachable from the root, then the algorithm will not find this dicircuit. Note
also that the implementation suggested above admits some obvious simplifications.
For notational convenience we have written the u values in such a way that a total
storage requirement of 0(n 2) is suggested: u0(1), ... , un(n). However, the algorithm
never requires knowledge of more the O(n) of these terms: ui-1(j) and ui(j) for
j = 1, ... , n and the current i. A second simplification, or at least speedup, can be
obtained by better exploiting the information in the algorithm. In particular, while
the algorithm uses ui-l in the updates for ui, for a given pass i, it could clearly
only help to use the current values of ui where these are smaller than ui-I. This
idea leads to a theoretically faster algorithm [Yen (1970), "An algorithm for finding
shortest routes from all source nodes to a given destination in general network,"
Quarterly Journal of Applied Mathematics 27 526-530; see also [6], pages 76 and
77], but does have the disadvantage that the proof is somewhat more involved: The
interpretation of ui(j) given in the proof is no longer quite correct.

3.5 Some Miscellaneous Results

We describe here one result in some detail, Dijkstra's algorithm, and mention two
others: the SPP for acyclic digraphs, and the all-pairs problem.

Dijkstra's algorithm [Dijkstra (1959), "A note on two problems in connexion
with graphs," Numerische Mathematik 1 269-271] seems to have been frequently
discovered, and is certainly frequently used, especially in theoretical applications.
The reader will almost certainly encounter it, and so it seems wise to present it here.
The situation treated is that in which all arc lengths are nonnegative. Thus, the
problem of negative dicircuits is automatically settled. The procedure itself can be
viewed as a "label fixing" procedure, rather than a "label adjusting" procedure as in
the case of the Ford and Moore-Bellman algorithms. The reason for this designation
can be seen in the following description of the algorithm.

The algorithm begins by assigning the root the label O and designating this label
as "fixed;" 0 is clearly the length of the shortest path from the root to itself. All
other vertices receive as "temporary" labels the length of the arc from the root
to that vertex, if there is one, and otherwise the temporary label +. Among the
vertices with temporary labels the vertex x with the smallest label is then selected,
and is designated as fixed. This label must be the length of a shortest path by virtue
of the nonnegativity of the arc lengths. Now, for each vertex y with a temporary
label that is also a successor of x, we compare the temporary label with the label
of x plus w(x, y), and update if necessary. Then we fix the label of the vertex with

3.5. SOME MISCELLANEOUS RESULTS

the smallest temporary label, and so on.

Algorithm 3.5.1 Dijkstra's Algorithm.

Input: A SPP (D, r, w). Assume w ~ 0.

Output: Vertex numbers u(x) (x E V) with the following interpretation: If u(x) <
+oo, then u(x) is the length of a shortest r-+x dipath; otherwise, if u(x) = +oo,
there is no r-+x dipath. In addition, for each u(x) < +oo, x f; r, a vertex PRED[x]
is output such that (PRED [x] ,x) is the last arc in some shortest r-+x dipath.

begin
TEMP:= V;
u(r) := O;
for x E V\{r} do u(x) := +oo;
while there exists x E TEMP with u(x) < +oo do begin

select x E TEMP such that u(x) := min
11
eTEMP u(y);

TEMP:= TEMP\{x };
for (x, y) E A and y E TEMP do

end
end

if u(y) > u(x) + w(x, y) then begin
u(y) := u(x) + w(x,y);
PRED [y] := x;

end

25

Theorem 3.5.2 Dijkstra's algorithm is correct and runs in time O(IVl2).

Remark: A O(IEI + IVI log2 !VI) implementation of Dijkstra's algorithm is given
in (M. L. Fredman and R. E. Tarjan (1984), "Fibonacci heaps and their uses in
improved network optimization algorithms," Proceedings of the 25th Annual IEEE
Symposium on Foundations of Computer Science, 338-346). See the discussion of
an 0(m + n log2 n) algorithm for minimum spanning trees at the end of Chapter 2.

Proof. Denote F = V\TEMP. Note that at any stage in the algorithm and for
y =/:- r : u(y) = min{u(x) + w(x,y) : x E F, (x,y) E A}, and PRED[y] E F if
u(y) < +oo.

The main step of the proof is to show that at any stage of the algorithm and for
any y E F, u(y) is the length of a shortest r-+y dipath. This is trivially true initially
since F = 0. Assume inductively that it is true at some stage, and suppose x is
the vertex selected for inclusion in Fin the next application of the while. If x = r,
u(r) = 0 is clearly the length of some r.-+r dipath; otherwise, let y = PRED[x] E F
and let P be a shortest r-+y di path. Write P(y, x) for the di path P with arc (y, x)
appended. Then we have

u(x) = u(y) + w(y,x) = w(P) + w(y,x) = w(P(y,x))

26 CHAPTER3. SHORTESTPATHS

where the first equality follows by the definition of PRED [x] and the second by the
inductive hypothesis on F. Thus, u(x) is the length of some r-+x dipath.

Now suppose Q is another r-+x dipath, let z be the last vertex of Q in F, let
Q1 be the r-+z portion of Q, let e be the next arc, and let Q2 be the remaining
portion of Q. Then

w(Q) = w(Q1) + w(e) + w(Q2) ~ u(z) + w(e) ~ u(x),

where the first inequality follows by the inductive hypothesis and the assumption
that w(Q2) ~ 0, and the second inequality by the choice of x. Combining this result
and the result of the previous paragraph we conclude that u(x) is the length of a
shortest r-+x dipath.

To complete the proof is now straightforward. The asserted property of PRED
in output is implicit in the calculation of the second paragraph of the proof. To
deduce the required properties of u note first that u(x) = +oo at termination if£
x E TEMP. Hence, the above proved property of F yields the desired properties of
u(x) when u(x) < +oo. In the remaining case, if u(x) = +oo for some x, then
necessarily b-(F) = 0 at termination, for otherwise u(y) = min{u(x) + w(x,y) :
x E F, (x, y) E A} < +oo for some y E TEMP. This completes the proof. O

We close, as promised, with remarks on two further special versions of the SPP.
Both are discussed in [6]; the all pairs problem, the harder of the two, is also
discussed in [9] (pages 129-133).

Shortest Paths in Acyclic Digraphs: Let (D, r, w) be a SPP problem and assume that D has no
dicircuit. Such digraphs are called acyclic. Since for acyclic digraphs there are a fortiori no negative
dicircuits (since there are no dicircuits whatsoever!), it clear that the SPP on such digraphs is
tractable. Indeed, it turns out to be very easy. In the standard algorithms the first step is to
"topologically sort" the vertices of D, that is, to find an ordering v1, ... , Vn (n = IV I) such that
(v;,v1:) is an arc only if j < k. It is then not hard to see that u(v1) = 0 and u(v1:) = min{u(v;) +
w(v;,v1:): j < k,(v;,v1:) EA} (k = 2, ... ,n). Solving these "equations" in a straightforward way
gives the desired solution in time O(IEI). This algorithm is at the heart of the subject called critical
path scheduling (the probabilistic version of which is PERT). The idea of topological sort is also
useful in its own right. For example, it is used in the UNIX utility 'make'.

All Pairs SPP: Given a digraph D with edge-lengths w, the problem is to find shortest x-+y dipaths
for all pairs of vertices z, y. Clearly, this problem can be solved directly by n = !VI applications of
the Moore-Bellman procedure, once for each of n different choices of root. This gives a worst-case
bound of O(n4). There is, however, a better method. Using an idea of Floyd, S. Warshall showed
how to solve this problem in time O(n3), the same as for the usual SPP! The algorithm is not
difficult. See (6] for details.

Exercises

3.1 Let D = (V, A) be a digraph with a root vertex r. A rooted arboresence of D is a
spanning tree T such that for every vertex x, the unique r-x path in T is an r-+x di path.

3.5. SOME MISCELLANEOUS RESULTS

Algorithm. Simplex Algorithm for Shortest Paths.

Input: An SPP (D, r, w) and an arboresence T rooted at r. Assume D has no
negative dicircuits.

Output: An optimal solution of (3.1) (same as Ford's algorithm).

begin
for x EV do u(x) := w(P) where Pis an r - x dipath in T;
while u(h(e)) > u(t(e)) + w(e) for some e E A\T do begin

/ := arc of T with h(f) = h(e);
T' := component of T\ {/} containing h(e);

r := u(h(e))- u(t(e)) - w(e);
for x E V(T') do u(x) := u(x) - r;
T := (T\{/})u {e};

end
end

(a) Consider the following digraph:

~ 0 0 O
0 0 O

r

Start with the arboresence

~
r

27

and show that the above algorithm can take 15 iterations to solve the shortest path
problem.

(b) Consider the following digraph (due to J. Edmonds):

2n 2n-1 2n-2 ~
~n-2 , <nnl== 0 0 0

0 0 0 0 0

28 CHAPTER 3. SHORTEST PATHS

Show that the above algorithm can take 3 · 2n+1 - 2n - 5 iterations to solve this
problem. Deduce that it is not possible to give a polynomial time bound for Ford's
Algorithm.

Chapter 4

Introduction to Polyhedral
Combinatorics

4.1 Introduction

We begin with a brief introduction to linear programming and several of its asso­
ciated polyhedral concepts. We then consider the traveling salesman problem, as
an example of how linear programming techniques can be applied to hard combi­
natorial problems. This will serve to motivate some of the ideas that come in later
chapters.

An excellent linear programming book is [4]. For a thorough treatment of poly­
hedral preliminaries see Chapters 7 and 8 of [10]; included in these chapters are
proofs of (4.1.2) and (4.1.4), which are not proved in these notes.

A linear program, or LP, is an optimization problem of the form

(Primal)
min CTX

s.t. Ax 2: b
X 2: Q

(4.1)

where, for some positive integers m and n, c is an n x l column vector, b is an m x 1
column vector, A is an m x n matrix and x is an n x 1 column vector of variables.
cT x is the objective function and the inequalities in Ax 2: b are the constraints. Any
x 2: 0 such that Ax 2: b is called feaJible. { x 2: 0 : Ax 2: b} is the feasible region.

The form of (4.1) is, of course, not the most general form an LP can take. We
could as well consider maximum problems and mixed constraints, including equality
as well as inequality constraints. One can also consider variables with non-trivial
upper and lower bounds, or variables without any bounds whatsoever, so-called free
variables.

29

30 CHAPTER 4. POLYHEDRAL COMBINATORICS

The dual of (4.1) is the LP

(Dual)
max bTy
s.t. ATy::; c

y ?: 0
(4.2)

When discussing the dual, (4.1) is called the primal (as indicated in (4.1)). A simple
but important result for dual pairs of LPs is the following.

Theorem 4.1.1 (Weak Duality Theorem) If x and y are feasible solutions of (4-1}
and (4- 2), respectively, then cT x ?: bT y. In particular, if cT x = bT y, then x and y
are optimal solutions of (4- 1) and (4-2), respectively.

Proof. A straightforward application of the conditions of the theorem yields

There are several alternative versions of this theorem based on alternate forms
for the primal LP (and, hence, the dual LP). For example, if the primal has the form
min { cT x : Ax = b, x ?: 0}, involving only equality constraints, then the dual has the
form max{bTy: ATy ::; c} where they variables are free. Examining the proof of
weak duality suggests why: The second inequality in the proof is an equality, and
so the nonnegativity of the y variables is not needed.

Much deeper than (4.1.1) is the following result, widely attributed to John von
Neumann.

Theorem 4.1.2 (Strong Duality Theorem) If either (4.1) or (4-2} has an optimal
solution, then both have optimal solutions and the optimal values are equal. O

The strong duality theorem can be proved constructively using G. B. Dantzig's
simplex algorithm. It can also be proved using a separating hyperplane theorem,
such as the Farkas Lemma (see [10]).

We now introduce some of the polyhedral theory associated with LPs. As above,
A is an m x n matrix, and x and b are (column) vectors of appropriate dimension.
A set of the form P = { x : Ax ::; b} is called a polyhedron. A set C ~ Rn is
called a (convex) cone if for any x, y E C and any scalars a, /3 ?: O, ax+ f3y E C.
Given vectors y1 , ... , yk E Rn, and scalars a 1 , ... , a1c ?: 0, the linear combination
a 1 y1 + ... + awk of y1 , ... , yk is called a positive combination. If, in addition,
a 1 + ... + a1c = 1, it is called a convex combination. For X ~ Rn, pos X denotes
the positive hull of X, the set of all finite positive combinations of vectors in X, and
conv X denotes the convex hull, the set of all finite convex combinations of vectors in
X. Clearly pos X is a cone. If conv X = X, then X is convex. Cones and polyhedra

4.1. INTRODUCTION . 31

are examples of convex sets. If X is finite, we say that C = pos X is finitely
generated. Sets of the form conv X where X is finite are called polytopes. Finally,
define a point x in a convex set X to be an extreme point of X if x = ay + (1- a)z
for O < a < 1 and y, z E X implies x = y = z: Thus, xis extreme if it is not the
convex combination of distinct other points in X.

Proposition 4.1.3 A vector y E Rn is an extreme point of P = {x : Ax $ b} iff
y E P and y is the unique solution of some subsystem A' x = b' of Ax $ b.

Proof. First we show the necessity of the condition. Let y be an extreme point of
P, and let A'x = b' be the maximal subsystem such that A'y = b'. Let A"x ~ b" be
the subsystem of remaining inequalities in Ax $ b. If y is not the unique solution
of A' x = b', then there is a nonzero vector z such that A' z = 0 (take z to be the
difference of two distinct solutions of A'x = b'). Since A"y < b", and this system
is finite, there is some /3 > 0 such that Axi $ b (j = 1, 2) where x1 = y - /3z and
x2 = y + f3z. But then y = ½x1 + ½x 2 , a contradiction. Hence y is the unique
solution of A' x = b', as required.

Now to prove sufficiency, suppose y E P and y is the unique solution of the
subsystem A'y = b'. Suppose y =ax+ (1 - a)z where x,z E P and O <a< 1.
Now we have

b' = A'y = aA'x + (1 - a)A'z ~ab'+ (1 - a)b' = b'.

Hence, 0 <a< 1 implies A'x = A'z = b', and soy= x = z, as required. O
For sets A, B s; Rn, define A+ B = {a+ b : a E A, b E B}, the algebraic sum of

A and B.

Theorem 4.1.4 (Farkas-Minkowski-Weyl) P s; Rn is a polyhedron iff

P = conv X + posY,

where X and Y are finite subsets of Rn. O

It is natural to ask when we can put special conditions on the vectors in X and
Y. Define the lineality space of a convex set P, lin P, by lin P = 0 if P = 0 , and
otherwise lin P = { x : y + ax E P for all y E P and a E R}. If P = { x : Ax $ b} is
a polyhedron then it is easy to see that lin P = { x : Ax = 0}. We can also prove,
using (4.1.4), that P has an extreme point iff linP = {O}. Clearly linP = {O} is
necessary for this. To see the converse, assume lin P = { 0}, and take y E P such
that the maximal subsystem A'y = b' of Ay $ b, satisfied at equality, has as many
rows as possible. If y is not the unique solution of A'y = b', and hence not an
extreme point, then there is a nonzero x such that A'x = 0. As {x: Ax= O} = {O},
Ax f; 0, and so for some scalar a, y + ax E P satisfies more equalities than y, a
contradiction.

32 CHAPTER 4. POLYHEDRAL COMBINATORICS

Proposition 4.1.5 Let P be a nonempty polyhedron. Then linP = {O} iff there
exist finite &ets X and Y, X # 0, such that P = conv X + pos Y and such that X
is the set of extreme points of P.

Proof. If P has an extreme point, then linP = {O}. This proves one direction of
the proposition. To prove the the other, first apply Theorem 4.1.4 to represent P
as conv X + pos Y for finite sets X and Y. Assume that X is chosen to be minimal.

Suppose z = x + y is an extreme point of P, where x E conv X and y E pos Y. If
y -:/ 0, then z = ½x + ½(x + 2y) and x -:/ x + 2y, a contradiction. Hence, z E conv X.
But then obviously z EX. It follows that X contains all extreme points of P.

Now suppose z EX is not extreme and consider the following calculation. Again,
write z = x + y, where x E conv X and y E pos Y, and assume that y # 0. If
x E conv(X\{z}), clearly we may delete z from X, contradicting the minimality of
X. Otherwise x = az + (l - a)x' where x' E conv(X\{z}) and 0 <a< 1. But
then z = x' + y/(l - a), and again we conclude that z may be deleted from X.

Now, using the fact that z is not extreme we have

(4.3)

where x1 + /31y1 # x 2 + f32y2, 0 <a< land xi E conv X, yi E pos Y, /3; ~ 0 (j =
1, 2). By the calculation of the previous paragraph we may assume af31y1 + (1 -
a)f32y2 = 0, which implies {+/3iYi,-/3iYi} ~ posY (i. = 1,2), and so linP = {0}
implies /31y1 = /32y2 = 0. We conclude that z = ax1 + (l - a)x2 and x 1 # z # x 2

•

This will complete the proof if we can show that x1,x2 E conv(X\{z}). If not,
suppose say x1 = f3z + (l - f3)x 3

, where O < f3 <land x 3 E conv(X\{z}). Then

1 - a 2 a(l - /3) 3

z = l - a/3 x + l - a/3 x '

which is a convex combination of x2 and x3 • Repeating this argument for x2
, if

necessary, completes the proof. O
Applying (4.1.5) to linear programming, we see that if the feasible region of an

LP is bounded and nonempty, then it has an extreme-point optimal solution.

4.2 The Traveling Salesman Problem

We consider here a formulation of the TSP that is superficially different from that
given in Chapter 1, but is more convenient for our current purposes. Let Kn be the
complete digraph on n vertices. Thus, Kn is a digraph with n vertices, labeled say
1, ... , n, and all n(n -1) possible arcs (i,j) for 1 ~ i,j ~ n, i # j. Given a weight
function w defined on the arcs of Kn, the TSP may be defined as the problem of

4.2. THE TSP 33

finding a dicircuit including all vertices and having minimum total weight. As in
Example 1.1.2, we call a dicircuit including all vertices a tour.

Let us try to formulate the TSP as an LP. We begin with the following integer
linear program (ILP):

min WTX

s.t. Lft:k Xjk = 1
Lkf:i Xjk = 1
Xjk E {O, 1}

(k = 1, ... ,n)
(j=l, ... ,n)

(4.4)

(allj,k)

where the x ik have the interpretation of selecting or not selecting the arc (j, k) when
x ik = 1 or 0, respectively. The first n constraints say that a tour must enter each
vertex exactly once, and the second n constraints that a tour must leave each vertex
exactly once. (4.4) is called an ILP because it is an LP except for the restriction
that all variables take on integral values.

1
2

Vertex 3
4
5

Vertex
1 2 3 4 5
- 3 5 2 7
3 - 6 4 1
5 6 - 2 8
2 4 2 - 3
7 1 8 3 -

K 5 arc weights

Figure 4.1: The entry in row i and column j specifies the weight, w(i,j), of arc
(i,j).

34 CHAPTER 4. POLYHEDRAL COMBINATORICS

Example 4.2.1 Consider the symmetric weighting of K5 given in Figure 4.1. ILP
(4.4) then has 20 variables and 10 constraints, each involving 4 variables:

min 3x12 + 5x13 + 2x14 + 7x1s + 6x2a+
4x24 + x2s + 3x21 + 2x34 + 8xas+
5x31 + 6x32 + 3X45 + 2X41 + 4X42+
2X43 + 7xs1 + X52 + 8X53 + 3X54

S.t. X21 + X31 + X41 + X51 = 1
X12 + X32 + X42 + X52 = 1
X13 + X23 + X43 + X53 = 1
X14 + X24 + X34 + X54 = 1
X15 + X25 + X35 + X45 = 1

X12 + X13 + X14 + X15 = 1
X23 + X24 + X25 + X21 = 1
X34 + X35 + X31 + X32 = 1
X45 + X41 + X42 + X43 = 1
X51 + X52 + X53 + X54 = 1

Xjk = 0 or 1 {allj,k) D

(4.5)

The ILP (4.4) is not a correct formulation of the TSP because, while it does
guarantee that all vertices are visited, it allows for a solution made up of several
subtours, smaller di circuits that include only a subset of the vertices (see the con­
tinuation of Example 4.2.1 below). Nevertheless, (4.4) does have one very nice
property. Even though it is formulated as an ILP, rather than an LP, and integer
programming is, in general, NP-hard, in this case that integrality restrictions are
redundant: We can replace (4.4) by its LP relaxation, that is, replace each of the
integrality restrictions Xjk E {O, 1} by O ~ Xjk ~ 1, and the answer does not change.
We shall prove this shortly.

Example 4.2.2 ((4.2.1) continued) The solution of the LP relaxation of (4.5) is
X13 = X2s = X34 = X41 = Xs2 = 1, with all other variables equal to 0. This solution
has total weight 11, and, as claimed above, is indeed integral. Note however that it
is made up of two sub tours: (1, 3, 4, 1) and (2, 5, 2). D

Before attacking the subtour elimination problem, we prove the above claimed
integrality property of the (4.4) formulation.

Proposition 4.2.3 The LP relaxation of (4-4) has an integral optimal solution.

Proof. Let (4.4') denote the LP relaxation of (4.4). Let Ax = b be the system of
equality constraints in (4.4). We show that A is totally unimodular, that is, that

4.2. THE TSP 35

the determinant of every square submatrix of A has value ±1 or 0. To see that this
will prove the proposition, note that the set of feasible solutions of (4.4') is clearly
nonempty and bounded (bounded because each variable is individually bounded,
and feasible because any tour is a feasible solution). Hence, by Proposition 4.1.5, the
associated LP has an optimal solution that is an extreme point. But by Proposition
4.1.3, any extreme point of the feasible region can be obtained by setting some
of the x ik to 0 or 1, and solving the resulting subsystem of Ax = b uniquely for
the remaining variables. Cramer's rule together with the total unimodularity of A
implies that this solution must be integral.

To prove the total unimodularity claim, assume it is false and let B be a minimal
square submatrix of A with determinant other than ±1 or 0. Note that the rows of
A partition into two sets such that every column in each set contains exactly one
1, and otherwise Os. This partition induces a partition of the rows of B such that
each column has at most one 1 in each set. If, in fact, every column has exactly
one 1 in each set, then summing the rows in each part of the partition we obtain a
vector of all ls. Hence, Bis singular and has determinant 0, a contradiction.

Similarly, there can be no column of all Os. Hence, there is a column with
exactly one 1. But then expanding the determinant of B on this column, we obtain
det B = ± det B', where B' is a proper submatrix of B. This is a contradiction,
since by the minimality of B, det B' is ±1 or 0. D

The idea of the above proof, that of using total unimodularity to show that a
particular ILP can be solved as an LP is due to A. Hoffman and J.B. Kruskal (1956)
["Integral boundary points of convex polyhedra," in Linear Inequalities and Related
Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton Univ. Press, Princeton,
N. J., 223-246].

Let us now turn to the problem of eliminating subtours. C. E. Miller, A. W.
Tucker and R. A. Zanlin (1960) ["Integer programming formulations and traveling
salesman problems," Journal of the Association of Computing Machinery 7 326-329]
proposed the following clever formulation:

mm
s.t.

WTX

Lk~j Xjk = 1
Ei#k Xjk = 1
Uj - Uk+ nXjk $ n - 1

Xjk E {O, 1}

(j=l, ... ,n)
(k=l, ... ,n)
(2 $j,k $ n,j-/:- k)
(all j, k,j-/:- k)

(4.6)

We leave it to the reader to verify that this formulation does indeed eliminate
subtours, and is thus a correct ILP formulation of the TSP. This would seem to
imply that we have in fact found a acceptable formulation of the TSP. However,
there is a difficulty. While (4.6) is a correct ILP formulation of the TSP, it is also a
more typical ILP than (4.4) in that it does not have the integrality property proved
in (4.2.3). Obviously the new constraint matrix is not totally unimodular (it doesn't

36 CHAPTER 4. POLYHEDRAL COMBINATORICS

even have entries restricted to {0, ±1}), and so certainly the idea we applied to (4.4)
cannot be applied.

Example 4.2.4 ((4.2.1) continued) (4.6) adds 12 constraints to (4.5). An optimal
solution to the associated LP relaxation is x13 = 1, x25 = 0.6, x21 = 0.4, x34 = 1,
X45 = 0.4, x41 = 0.6, Xs2 = 1, u2 = 1.0, u 4 = 2.0, which has total weight 12.2. D

In an attempt to more clearly understand the difficulties that arise in (4.4) and
(4.6), we consider a "polyhedral approach." To this end, let A be the set of arcs of
Kn, For I~ A define the incidence or characteri8tic vector of I, x1, by x1(a) = l
if a E I and x 1 (a) = 0 if a E A \I. Let I be the family of subsets of arcs of A that
form tours. Let

Prsp = conv{x1
: IE I}.

Then it is easy to see that solving min{ wT x : x E PrsP} solves the TSP on Kn for
a given weighting w: If x* is an optimal solution of this optimization problem, then
x* E Prsp implies x* is a convex combination of a finite set of incidence vectors of
tours, x* = E;eJ a;x1i. If wT x* < wT x1i (j E J), then clearly

wTx* = Ea;wTx11 > Ea;wTx• = wTx*,
jEJ jEJ

a contradiction. Hence, some I; (j E J) is optimal.

Denote the feasible regions of the LP relaxations of (4.4) and (4.6) by Pa and
A, respectively. Clearly, both Pa and A contain Prsp; the difficulty is that both
properly contain PrsP, and that they are not good enough approximations. The
following formulation provides a better approximation. It was suggested in a seminal
paper by G. B. Dantzig, D. R. Fulkerson and S. M. Johnson (1954) ["Solution of a
large scale traveling salesman problem," Operations Research 2 393-410]:

min WTX

s.t. I:k*j Xjk = l
L,j# Xjk = 1
x(o-(X)) ~ 1
Xjk E {0,1}

(j=l, ... ,n)
(k=l, ... ,n)
(0 C X CV)
(all j,k,j =I- k)

(4.7)

Note that the constraints x(o-(X)) ~ 1 do eliminate subtours since if xis integral
and Xis the vertex-set of some subtour determined by x, then x(o-(X)) = 0.

At first (4. 7) would seem to be less useful than (4.6), since the number of subtour
elimination constraints is now expenential, 2n - 2. For any reasonably large problem,
(4.7) cannot even be written down. However, in their paper Dantzig, Fulkerson and
Johnson found that they could "generate" these constraints as they needed them
by using a network-flow technique. In this way they were actually able to solve
by hand the 48-city TSP (n = 48) corresponding to traveling through all the state
capitals in the continental US.

4.3. AN EXACT DEFINING SYSTEM FOR PTsP? 37

Example 4.2.5 ((4.2.1) continued) Formulation (4.7) adds 25
- 2 = 30 subtour

elimination constraints to (4.6). The optimal solution to the LP relaxation is
X12 = X2s = X31 = X43 = x 54 = 1 with total weight 14. Since the solution is
integral, and contains no subtours, it must be optimal for the original TSP. Indeed,
a more detailed examination of the associated LP solution, and in particular the
optimal values of the dual variables (not shown here, but provided by any standard
solution technique) reveals even more information: Most of the dual variables cor­
responding to subtour elimination constraints are 0, and hence these constraints are
not binding on the solution-they can be deleted. Indeed, only one of the additional
30 constraints is needed to produce the desired optimal solution, X = { 1, 3, 4} :

(4.8)

Note that this constraint explicitly eliminates the subtours (1, 3, 4, 1) and (2, 5, 2)
found in solving (4.5). Thus, we could have found it by first solving (4.5) and then
examining the solution.

If one writes out the dual of (4.5) with (4.8) appended, it is readily checked that
yT = [6 1 8 3 4 - 3 - 3 - 1 - 6 0 5] is feasible. Note in particular that y has
11 components, the first 10 corresponding to the constraints of (4.5) and the last
corresponding to (4.8). It also has some negative components, permissible since
the LP primal has equality constraints corresponding to these components. Finally,
note that the sum of the coordinates of y is 14. This proves, using weak duality,
that 14 is a minimum-weight tour. O

4.3 An Exact Defining System for PTsP?

The previous section is meant to illustrate how polyhedral and techniques might
be used to solve hard combinatorial problems. Contained in the section are the
beginnings of what has proved to be a very successful "deep-cut method" for the
solution of combinatorial problems. Apart from its purely illustrative value, there
are also several important theoretical ideas contained in this development. First, the
idea of finding a good approximation to the convex hull of the desired combinatorial
solutions-in the case of the TSP, a good approximation to the polyhedron PTsPi
the idea of being able to generate this approximation as it is needed, without having
to explicitly write down all constraints (the way in which (4.8) could be found from
the solution to (4.5)); finally, the idea that when this approach succeeds, it not only
provides a solution, but, via LP weak duality, a proof of optimality. The two last
points came up first when considering the formulation (4. 7).

Let us now consider some of these issues in a more general context. It follows
from the Farkas-Minkowski-Weyl Theorem, (4.1.4), that there does exist an exact
description of PTsP in the form {x: Ax ~ b}, but can we actually find A and bin

38 CHAPTER 4. POLYHEDRAL COMBINATORICS

practice? More precisely, can we "find" an A and b that describe PTsP and are not
too complicated? For example, we certainly don't want A to contain coefficients
with too many significant digits, so that even specifying an entry is in itself a
laborious procedure.

Considerations in theoretical computer science seem to suggest that the problem
of finding such an A will be difficult, for this would imply that the TSP has a good
proof of optimality, and hence is in the class NP n co-NP. To see this we apply
LP duality theory, as described below

Consider the LP min{wTx: Ax $ b,x ~ O}, where PTsP = {x: Ax $ b}; the
added nonnegativity conditions x ~ 0 clearly do not change PTSP· The dual of this
problem has constraints ATy ~ w, y ~ 0. Now the primal clearly has an optimal
solution since the incidence vector of any optimal tour is also optimal for the LP.
Let x* be the incidence vector of such an optimal tour. Then by strong duality,
(4.1.2), there is an optimal dual solution y*, and wTx• = bTy•. Now to "prove
optimality" we apply weak duality; thus, we must show how it can be quickly
checked, in polynomial time, that Ax* $ b, x* ~ 0, ATY* ~ w, and y* ~ 0. The
matrix A is likely, in fact, certain, to be huge, having exponentially many rows.
Hence, it is not a priori clear how this checking is to be done. However, as x* is the
incidence vector of a tour, x* ~ 0 is evident, and Ax* $ b we can check implicitly.
After all, if we have a theorem that claims PTsP = {x: Ax $ b}, and in particular
that PTsP is a subset of this latter polyhedron, then it suffices simply to show that
x* is the incidence vector of a tour! This takes time 0(n).

Finally, consider y*. Here the problem is somewhat more difficult. Because
A has a large number of rows, y* could in principal have a large number nonzero
components, and thus, be itself non-polynomial in size. However, this difficulty can
be avoided, for we can assume that y* has been chosen to be an extreme point of
the dual feasible region, {y ~ 0 : ATy $ w }. This follows from Proposition 4.1.5
since y ~ 0 prevents this set from having a nontrivial lineality space. Suppose that
A is K x n, where, as we have noted, K can be large. Then by Proposition 4.1.3,
y* is the unique solution of some subsystem (A'fy = w', Yi = 0 (j E J). Since y
has K components, this system must include at least K equations, or the rank of
the system cannot be large enough to force a unique solution. But if the system
has at least K equations, then Ill~ K - n, since A has n columns. Hence, y has at
most n positive components. It follows that checking y* ~ 0 is straightforward, as
is checking ATy* $ w, the latter computation taking time at most O(n2

). Finally,
we need to verify wTx* = bTy•, which is trivial (given that we know y* does not
have too many nonzero coordinates), and the proof is complete.

The above arguments suggest that a good, exact description of PTsP is unlikely
to be found. This is a negative result. However, the practical implications of the
above ideas, particularly the examples of the previous section, are meant to be
positive. They illustrate that even though a complete understanding of PTsP is

4.3. AN EXACT DEFINING SYSTEM FOR PTsP? 39

desired, it is not necessarily needed to get optimality. Indeed, we have proved that
there are always a small number of constraints that suffice, for a given w, to get an
optimal solution and prove its optimality. What we have not shown is how to find
these constraints, and that the constraints themselves are necessarily easy to write
down.

Exercises

4.1 Show that the formulation of the TSP given by (4.6) is valid. That is, show that an
integral x satisfies the constraints of (4.6) only iff x is the incidence vector of a tour.

4.2 The recession cone of a convex set P, rec P, is defined by rec P = {y : y+x E P Vx E P}.
Show that a closed convex set P is unbounded iff rec P contains some nonzero vector. (Can
you give an example showing that this is false if Pis not closed?)

I will accept a proof that this is true for polyhedra, which is simpler. A proof for general
closed convex sets seems to be an exercise in analysis.

4.3 Show that dim PTsP = n2 - 3n + 1. (Hint: The first step is to use the constraints of
(4.2.3) to show that dimPTsP $ n2 - 3n + 1.)

40 CHAPTER 4. POLYHEDRAL COMBINATORICS

Chapter 5

Facets of Polyhedra

5.1 Introduction

In this chapter we study the polyhedron of the minimum spanning tree problem
and give a complete description. A key idea is the notion of a "facet," or "maximal
face." For hard combinatorial problems, where finding a complete description of
the underlying polyhedra is expected to be hard (see the last section of Chapter
4), finding theoretical descriptions of facets is a crucial ingredient in developing
good computational procedures. In the context of integer programming, facets are
sometimes called deep or strong cuts.

In Chapter 6 we discuss the ellipsoid method and prove a result of Grotschel,
Lovasz and Schrijver showing that polynomial-time optimization is equivalent to the
existence of a polynomial-time algorithm for finding separating hyperplanes, given
the ellipsoid method. This fact yields the only known polynomial-time algorithms
for several important combinatorial problems. It also provides a general theoretical
basis for the polyhedral approach to CO problems: It implies that if a complete
description of a polyhedron can be found, and the separation problem can be solved,
then optimization is possible in polynomial time over that polyhedron.

5.2 More Polyhedral Preliminaries

We need a notion of dimension for polyhedra, from which come the tools to deal
with facets.

An affine combination of vectors xi E Rn (j = 1, ... , n) is a linear combination
of the form a 1x1 + ... + akxk, where a 1 + ... + ak = 1. Thus, an affine combination
is a convex combination in which some coefficients may be negative. For X ~ Rn,
the affine hull of X, aff X, is defined to be the set of all finite affine combinations

41

42 CHAPTER 5. FACETS OF POLYHEDRA

of vectors in X. X is said to be affine if aff X = X. For a E Rn, X + a denotes the
set { x + a : x E X}.

Proposition 5.2.1 X i8 affine iff X = S + a for. 80me linear 8ubspace S and some
vector a; indeed, if X is affine then X - a is a linear subspace, the same linear
subspace for any a E X.

Proof. Suppose X = S + a, where Sis a linear subspace. Then an affine combi­
nation x = 'E;eJa;xi of vectors in X satisfies x =a+ E;eJa;(xi - a) EX, since
"£, a; = 1, xi - a E S (j E J) and Sis closed under linear combinations.

To prove the converse, let X be affine and let a E X. We show that S = X - a
is a subspace. For a linear combinations= E;eJ a;(xi - a) of vectors in X - a, we
have

s = L a;xi + (1 - L a;)a - a EX - a
iEJ jEJ

since Ea;+ (1 - Ea;) = 1, a E X and X is closed under affine combinations. O
If X is a convex set, we define the dimension of X, dim X, to be the dimension

of the subspace (aff X) - a, where a EX.

Now, let P = {x : Ax ~ b} be a polyhedron. Let A'"'x ~ b"' be the subsystem
of Ax ~ b such that A· x = b= for all x E P. The equations A· x = b· are called
implicit equations of P. The remaining inequalities in the system Ax ~ b are
denoted A+x ~ b+. Note that if P # 0, then A+x < b+ for some x E P (if A= A·
we take this to be vacuously true, and otherwise take a proper convex combination
of a set of vectors such that for each of the inequalities in A+ x ~ b+ one of the
vectors in the set satisfies this inequality strictly). The next proposition implies
that { x : A= x = b=} is independent of the choice of A and b, depending only on P.

Proposition 5.2.2 If Pi= 0 , then aff P = {x: A=x = b=}.

Proof. Suppose z = a 1z1 + ... + akzk, where zi E P (j = 1, ... , k) and 01 + ... +
ak = l. Then by the definition of A=, b= we have A= zi = b= for each j, and so

k k

A = "'"" A= i "'"" b= b= z = L...J a; z = L...J a; = .
i=l i=l

This proves aff P ~ {x: A=x = b'"}.

To prove the converse, let z E { x : A= x = b=}, and let y E P be such that
A+y < b+. Now for a> 0, define y" = y + a(z - y). Note that

5.2. MORE POLYHEDRAL PRELIMINARIES 43

moreover, for the remaining inequalities in Ax~ b we have A+ya = A+y + a(A+ z -
A+y). Hence, A+y < b+ implies that for sufficiently small a> 0, A+ya < b+, and so
ya E P. But z =¼Ya+ (l - ¼)Y, and so z E aff P. D

The above result implies that { x : A· x = b=} is independent of the choice of
A, b. It also implies:

Corollary 5.2.3 dimP = n - rank A·. D

We next define face and facet. A face of a polyhedron Pis a nonempty set of
the form F = { x E P : aT x = ,8} where aT x must be a valid inequality for P, that
is, P ~ {x : aTx $,8}. The hyperplane {x : aTx = ,8} is then called a supporting
hyperplane of P. A face F of P is proper if F # P. A maximal proper face is a
facet.

We have the following relationship between the faces of a polyhedron and any
representing set of inequalities.

Proposition 5.2.4 F is a face of a polyhedron P = { x : Ax $ b} iff F # 0 and
F = {x E P: A'x = b'} for some subsystem A'x $ b' of Ax$ b.

Proof. For one direction of the proof let F = {x E P: A'x = b'}. Define a= eT A'
and ,8 = eTb', where e is a vector of all ones. Then clearly {x E P; aTx = ,8} = F,
since x E P (that is, Ax$ b) implies eT A'x = eTb' iff A'x = b'. Hence Fis a face.

The proof of the converse is a bit more tedious. Let F = {x E P: aTx = ,8} be
a face, and let A' x $ b' be the set of all inequalities of Ax $ b satisfied at equality
by every x E F. Let F' = {x E P: A'x = b'}. Clearly F ~ F'. Suppose there is a
vector y E F'\F. Let A"x $ b" be the set of inequalities from Ax ~ b not included
in A'x $ b'. We may assume that there is a z E F such that A"z < b". This follows
from the convexity of F and the choice of A' and b'. Let za = z + o:(y - z). Since
A" z < b" and A' z = b', it follows that za E P for all a sufficiently near zero. But
aT(y-z) =/ 0, and so aTza > ,8 for some such o:, contradicting the fact that aTx ~ ,8
is valid. This contradiction completes the proof. D

The above result implies that P has only a finite number of faces. The next
result characterizes facets in terms of a defining system of inequalities. Call a
defining system irredundant if every inequality is essential, that is, if the removal
of any inequality from the system enlarges the polyhedron.

Theorem 5.2.5 Let Ax $ b be an irredundant defining systemfor a polyhedron P.
Then F is a facet of P iff F = {x E P: aTx = ,8} for some row [aT ,B] of [A+ b+].

Proof. To prove one half of the theorem, let [aT ,B] be a row of [A+ b+] and let
F = {x E P: aTx = ,B}. Clearly Fis a proper face since none of the inequalities

44 CHAPTER 5. FACETS OF POLYHEDRA

in A+x ~ b+ is implicit. To show that F is maximal, let x1 E P be such that
A+ x1 < b+. By irredundancy there is an x2 such that A= x2 = b=, A' x2 ~ b' and
aT x2 > (3 , where A' x ~ b' is the system A+ x ~ b+ with aT x ~ (3 removed. But
then for some convex combination x3 of x1 and x2 we have A"" x3 = b=, A' x3 < b'
and aTx3 = (3, which implies that Fis maximal. In particular, by (5.2.4), if there
were a proper face containing Fit would be given by some of the inequalities from
Ax ~ b, and we have just shown that every such inequality that is not implicit, and
is different from aTx ~ (3, excludes some point of F, namely x3

•

For the converse let F be a facet. Then by (5.2.4), F = {x E P: A'x = b'} for
some subsystem of A+ x ~ b+. Taking one of the equalities from A' x = b' suffices,
since none are implicit. O

Corollary 5.2.6 If F i., a face of P, then F i., a facet iff dimF = dimP - 1.

Proof. Clearly two affine sets, one containing the other and both with the same
dimension, are equal, because subspaces of equal dimension are equal; moreover, if
F1 and F2 are two faces of the same polyhedron, then F1 = F2 iff aff F1 = aff F2.
Hence, dimF = dimP - 1 for a face F, implies Fis a facet.

To prove the converse let F = { x E P : aT x = /3} where [aT /3] is a row
of [A b] and Ax ~ b is an irredundant system determining P-we may assume
F has this form by (5.2.5). Now clearly F = {x : Ax ~ b,aTx :2: /3}, and by
the proof of (5.2.5), the only implicit equalities in this system are A·x = b· and
aTx = (3 (x3 from the proof of (5.2.5) shows this). Hence, by Corollary 5.2.3,
dim F = n - rank A= - 1 = dim P - 1. D

Corollary 5.2. 7 Suppose F is a facet of P = { x : Ax ~ b} and

F = {x E P: g/x = ~} = {x E P: o:Tx = /3}

where g_T x ~ f3 and 711' x ~ (3 are valid. Then there exists a vector z and a scalar

a > 0 .9uch that [g_T ~ = a[a1' /3] + zT[A= b=].

Proof. Let [A!!] and (Ab] be [A= b=] with [g_T m and [711' /3], respectively, appended
as the last row. Then dimF = dimP -1 implies aff F = {x: Ax=!!}= {x: Ax=
b}, since both of the latter sets contain F, both are affine, and both have dimension
less than dim { X : A= X = b"'} = dim p. This proves that [g_ m is represented as
claimed in the corollary, where a =/- 0. To prove a > 0, let x E P be such that
a1'x < J3. Then a< 0 impliesg_Tx = aaTx+zT A=x > a/3+zTb= = /3, a contradiction.

0

5.3. A MINIMUM-SPANNING-TREE POLYHEDRON 45

5.3 A Minimum-Spanning-Tree Polyhedron

We saw at the end of the previous chapter that finding a complete description of
the polytope corresponding to the traveling salesman problem is likely to be very
difficult. In this section we show that, on the contrary, such a result can be obtained
for the polyhedron associated with the minimum spanning tree problem.

Let G be an undirected graph and let I be the family of edge-sets of forests of G.
Define PMsT = conv{x1 : IE I}. We call PMsT the minimum-8panning-tree, MST,
polyhedron. The following theorem gives a complete description of PMST· The proof
is derived from a proof for the polyhedron of "independent sets of a matroid" given
in [5].

Theorem 5.3.1 Let G = (V,E) be a graph and let E0 = {e EE: e is a loop}.
Then PMsT for G is the set of solutions of the following system of inequalities:

(i)
(ii)
(iii)

x(E(W)) ~ IWI -1
x(e) ~ 0
x(e) = 0

VW ~ V, IWI ~ 2;
\/e EE;
\/e E Eo.

Remark: E(W) denotes the set of edges in G with both ends in W. Similarly, for
a subset of edges A of G, V(A) denotes the set of vertices incident to A. Note that
(i) trivially holds if IWI = 1.

Proof. Let P denote the solution set of (i,ii,iii). First we show PMsT ~ P. Since P
is convex, it suffices to show that x 1 satisfies (i,ii,iii) for each edge-set I of a forest.
Obviously (ii) holds, and (iii) holds because no loop can be in any forest. To see
that (i) holds let W ~ V(G) and let W1 , ... , Wk be the vertex-sets of the connected
components of In E(W). Then we have

x 1(E(W)) - II n E(W)I
- II n E(Wi)I + ... +II n E(Wk)I
- IW1 I - 1 + · · · + IWkl - 1
< IWl-1,

where the third equality follows because In E(W;) is a tree (j = 1, ... , k) (see
2.1.1). This proves PMsT ~ P.

To show the converse, P ~ PMsT, we show two things: (a) that a.ff PMsT =
{x : x(e) = 0, e E E 0 }, and (b) that any facet of PMsT is a nonnegative multiple
of some inequality of type (i) or (ii) plus a linear combination of equations of type
(iii). Since by the Farkas-Minkowski-Weyl Theorem, (4.1.4), PMsT is the solution
set of some system of inequalities, and hence of an irredundant system (in the sense
of the previous section), it follows from Theorem 5.2.5 and the above claims (a) and

46 CHAPTER 5. FACETS OF POLYHEDRA

(b), once they have been proved, that any x E P must satisfy all the inequalities of
any such irredundant defining system, and hence that x E PMST·

First we prove (a). The equations (iii) are valid for PMsT (as noted in the
first paragraph of the proof) and are linearly independent. Hence, dimPMsT ~
IEI - IEol- But PMsT contains the 0-vector and the linearly independent vectors
{x{e} : e E E\Eo}, and so dimPMsT ~ IEI - IEol, Hence, equality holds. This
proves (a).

To prove (b), let Fa = { x E P : aT x = ,8} be a facet of PMsT and let Ia =
{ I E I : x 1 E Fa}. We may assume that a; = 0 for j E E0 since scalar multiples
of the valid equations x(e) = 0 (e E E0) may be subtracted from aTx = ,8 without
changing Fa. There are now two cases to consider:

Ca8e 1. Suppose a; < 0 for some j. Now if j E J for some IE Ia., then
,8 ~ aTxl\{i} = aTx1 - a; > ,8, a contradiction. It follows that x E Fa
implies x; = O, since by the definition of PMsT, Fa = conv{x1 : I E Ia}.
Hence Fa ~ F; = {x E P : x; = O}. But F; is a proper face of PMsT since
j E E\Eo. Hence, by the maximality of facets, Fa = F;. Since a1c = 0 for
k E E0 , Corollary 5.2. 7 implies that aT x ~ ,8 is a positive multiple of the
inequality -x; ~ 0.

Ca8e 2. Suppose a~ 0 and let A= {j: a; > O}. We claim that every IE Ia
is the edge-set of a maximal forest in A. Suppose not. Let IE Ia be such
that III < m, where m is the size of a maximal forest in A. Extend I to a
maximal forest I U K of A. Then we have

a contradiction. Hence Fa is a subset of the face F = {x E P: x(A) = m};
moreover, F is a proper face since A is a nonempty subset of E\E0 • It
follows that Fa. = F, and so a1c = 0 for k E E0 implies that aTx ~ ,8 is
positive multiple of the inequality x(A) ~ m.

Now to complete the proof of this case, let W be the vertex-set of a compo­
nent of G(A) and let F' = {x: x(E(W)) = IWI - 1}. F' is a proper face of
P and Fa. ~ F'. As above we conclude that Fa. = F' and that A = E(W).

D

The previous result gives a defining system for PMsT, but, as the last part of the
proof suggests, it is not an irredundant system. Define a graph to be 2-connected
if every pair of edges is contained is a common circuit. If the subgraph induced by
E(W) is not 2-connected for some subset of vertices W, then where W1, ... , W1c are
the vertex-sets of the "2-connected components" of the subgraph on E(W), (iii) for
W is implied by (iii) for W; (j = 1, ... , k), an observation that follows from the

5.3. A MINIMUM-SPANNING-TREE POLYHEDRON 47

observation that a forest of a graph is maximal iff it is a spanning tree of each of
the 2-connected components of the graph. This is the only redundancy that occurs.

Theorem 5.3.2 If W ~ V(G) and E(W) is a 2-connected subset of edges, then
the inequality x((E(W)) :::; IWI - 1 defines a facet of PMST· D

Exercises

5.1 Show that exact Gaussian elimination for rational linear systems is polynomial.

Remark: In order to make the intent of the problem clear, we first specify what is meant
by Gaussian elimination, and why it is not obviously polynomial. Let Ax= b be an n x n
system of equations involving only rational coefficients, and assume for convenience that
A is nonsingular. Suppose that an :/; 0. Then eliminating an means replacing ai; and
bi for i ~ 2 by an ai; - ai1 a1; and an bi - ai1 bi, respectively. Repeating this eliminatio:D.
procedure n - 1 times, following each elimination by a possible reordering of rows to insure
that the "pivot element" is nonzero, is what we call Gaussian elimination. Clearly, once the
procedure is completed, solving for x is merely a matter of back substitution.

How efficient is this procedure? The number of arithmetic operations is clearly polyno­
mial, 0(n3), but how much work does each of the operations take? Since we have said that
the arithmetic must be exact, this work cannot be ignored. Each of the numbers in A and
b is rational, and so can be taken as represented as a ratio of two integers. The size of each
of the numbers is thus the total number of digits in the numerator and denominator (this
is, after all, to within a constant how much space it takes to store these integers). Now if
M is the size of the largest of the ai;, then after one elimination, the size of the largest
coefficient can apparently be as big as O(M2). Thus, the number of digits may roughly
double. (Note that simply normalizing does not help because of our insistence on exact
arithmetic. Indeed, this would seem to make the growth worse.) After n - 1 eliminations,
the number of digits becomes 0(2n-l), an this is not polynomial!

Jack Edmonds was the first to prove that there is a way around this difficulty. He
observed that after the second elimination is carried out, a11 divides every entry in rows 3
up to n. One can prove the desired result by verifying Edmonds' observation, and showing
how its repeated application can be used to keep the number of digits from growing too
rapidly.

5.2 Prove Theorem 5.3.2: If W is a subset of vertices of a graph G and E(W) is a 2-
connected subset of edges, then the inequality

x(E(W)) ~ IWI -1

defines a facet of PMST· (A graph is 2-connected if every pair of edges is contained in a
circuit.)

48 CHAPTER 5. FACETS OF POLYHEDRA

Outline of Proof: It is sufficient to prove the result when G has no loops. Then PMsT
has dimension IEI. Let I be the family of all edge-sets of forests l such that x 1 satisfies
x1(E(W)) = IWI - 1. Let A be a matrix the rows of which are the incidence vectors x1

(IE I). Conclude that if the given inequality is not a facet, then rank(A) ~ IEI - 1. Show
that for any maximal forest l of E(W) and any element f E E\E(W), x1 U {/} is a row of
A.

Now, let z ERE be a nonzero vector such that Az = 0 (A has IEI columns). Note that
z is zero outside E(W). Let 11 = {/ E E(W) : ZJ < O} and 12 = {f E E(W) : ZJ ~ O}.
Both sets are nonempty (A has no zero column). Show that no circuit in E(W) intersects
both 11 and h, a contradiction. O

Chapter 6

Ellipsoids

6.1 Overview

We present a restricted version of the ellipsoid method, Algorithm 6.3. 7, and prove
it is polynomial time bounded. Then we present a result of Grotschel Lovasz and
Schrijver proving that optimization is equivalent to separation. This latter result
has important implications for combinatorial optimization. Our development is
based on Chapter 13 of [10], and in part on [4], pp. 443-454.

The ellipsoid method was developed over a period of years by several Russian
mathematicians as a way to solve general nonlinear programs, and convex programs
in particular. The method can be viewed as having emerged from two separate lines
of development.

In 1964 N. Z. Shor presented a general "subgradient method," a generalization
of what has come to be known as a "relaxation method." In this method a feasible
solution of a system of inequalities is found by successively projecting onto violated
inequalities. Shor later realized (circa 1970) that his method could be improved
by appropriately transforming the space at each iteration (an idea not completely
unrelated to Karmarkar's method for linear programming).

The second line of development originates with work by A. Ju. Levin in 1965 in
which he discussed a method of "central sections" for general convex programming.
D. B. Judin and A. S. Nemirovskii later noticed (1976) that if ellipsoids were used
in Levin's method, then it became more efficient and that using these ellipsoids
could be viewed as using a particular choice of transformation in Shor's method.
In addition, they proved that for a certain class of problems the ellipsoid method
could be used to approximate the optimal solution to within a given accuracy <7 in
time polynomial in the "size" of the problem and log 1 / <7 •

1

1 log n stands for log2 n

49

50 CHAPTER 6. ELLIPSOIDS

Finally, in 1979 Khachian proved that for LPs with integral data one could get
an exact solution in polynomial time. It was this result, brought to the attention
of the western mathematical programming community at the 1979 Oberwolfach
meeting in Germany, that caused such a stir. It solved the long-standing problem
of finding a theoretically efficient algorithm for LPs. The method has not, however,
proved effective as a practical method for solving LPs. Its importance for us is
based on its theoretical implications in combinatorial optimization.

Our development of the ellipsoid method proceeds as follows. The method is
most directly viewed as a method for testing the feasibility of systems of linear
inequalities, that is, as a method for testing whether a polyhedron P = { x : Ax ~

b} ~ Rn is nonempty. Thus, we begin by showing that testing feasibility is enough to
solve LPs. Having made this reduction, we describe the ellipsoid method under two
restrictive assumptions: that P is bounded and either empty or full dimen.$ional,
dim P = n. These assumptions remove certain technical difficulties, making the
presentation more direct. Their relaxation is treated in the exercises.

6.2 Reduction to Testing Feasibility

The first step in the reduction is to apply LP duality theory. Consider the LP

min CTX

(P) s.t. Ax~ b

x~O

The dual of (P) is the problem

max bTy

(D) s.t. ATy ~ C

y~O

By the LP strong duality theorem, (4.1.2), we know that x* is an optimal solution
of (P) iff x* is feasible for (P) and there exists a feasible y* for (D) such that
cTx* = bTy•. But a simple calculation, (4.1.1), shows that if x* and y* are feasible
to (P) and (D), respectively, then cTx• ~ bTy*. We conclude that testing the
feasibility of the following linear inequality system is equivalent to solving (P) (and
(D)):

Ax > b
-ATy > -c

-CTX + bTy > 0
X > 0

y > 0

6.2. REDUCTION TO TESTING FEASIBILITY 51

We carry the reduction one step further by showing that testing a system for
solvability in polynomial time, and finding a solution if one exists, is equivalent
to simply recognizing solvable systems in polynomial time.· Thus, we show that
having, say, a "subroutine" or "oracle" that recognizes solvable systems implies the
existence of a method to actually construct solutions.

Consider a system Ax ~ b and suppose we have a subroutine that recognizes
solvability. If the system has no solution, there is nothing to do. Assume the
contrary. We then perform two reductions (the second reduction actually being an
expansion):

Reduction 1. Remove columns from A, and the corresponding variables from
x, until any further removals destroy feasibility. Denote the result by Ax ~ b,
the same as the original.

Reduction 2. Expand the system Ax ~ b by, for each of the inequalities
aT x ~ /3 in the system, adding the reverse inequality aT x ~ /3 to the system,
when doing so preserves feasibility. Again, denote the final result by Ax~ b.

Clearly, both of the above reductions can be carried out with polynomial number
of calls to the assumed subroutine: If A ism x n, Reduction 1 requires at most n
calls and Reduction 2 at most m calls.

Lemma 6.2.1 Let A"x = b" be the system of equations corresponding to the system
of inequalities added in Reduction 2. Then A" x = b" has a unique solution.

Note that this lemma does imply the desired result. It implies that we can use a
subroutine for recognizing solvability to reduce the problem of solving an inequality
system to that of solving some equality system. But we know a method to solve
equality systems, Gaussian elimination, and this method runs in polynomial time
(as was demonstrated in exercise 5.1).

Proof of (6.2.1). First we prove that after Reduction 1, the columns of the matrix
A must be linearly independent. Assume not. Let x be a solution to Ax ~ b, and
let a; be any dependent column of A. We can "compensate" for a; x; by expressing
a; in the form a;= A'z, where A' is A with a; deleted. In particular, replacing each
component x1c of x, other than x;, by Y1c = x1c + z1cx;, we obtain

A'y = Ax - aix; + A'zx; = Ax - aix; + aix; =Ax~ b,

showing that ai could have been deleted, a contradiction.

Now we prove that A"x = b" has a unique solution. If the rows of A" span the
rows of A this will follow, because then, by the result of the previous paragraph,
the columns of A" must be linearly independent. Suppose that A" does not span

52 CHAPTER 6. ELLIPSOIDS

the row space of A. Then there is a vector c orthogonal to all the rows of A", but
not all the rows of A. Clearly, by adding an appropriate scalar multiple of c to any
solution x of Ax ::5 b, we preserve A" x = b" and can produce equality in some other
inequality. This contradicts the maximality of [A" b"]. O

6.3 Ellipsoids

The ellipsoid method may be viewed as a kind of higher-dimensional binary search
in which, instead of halving an interval at each stage, we halve an ellipsoid. In more
detail, suppose P = { x : Ax ::5 b} is a polyhedron and an "ellipsoid" E containing
Pis given. Then either the "center" c of Eis in P, in which case we are done--P
has been shown to be nonempty-or c violates one of the inequalities aT x ::5 f3 of
Ax $ b. In the latter case we find an ellipsoid E' containing {x E E : aTx $,8},
and show that E' may be chosen so that its volume is less than the volume of E
multiplied by a constant factor less than 1, dependent on the dimension n of the
ambient space Rn, but independent of P and E. This gives a geometric decrease in
the volume of the ellipsoids generated. Finally we give a "polynomial" lower bound
on the volume of P, assuming it is nonempty. If P is nonempty we therefore find
that the center of a containing ellipsoid mu3t be in P before the volume of that
ellipsoid becomes too small.

For a vector x E Rn, define llxll = ,/xT'x. llxll is the length or Euclidean norm
of x. Let A be an n x n nonsingular matrix and let c E Rn. Then an ellip3oid E
with center c is a set of the form

E = { x : II A(x - c) II :5 1}.

Note that y = A(x-c) iff x = A-1 y+c. A transformation of the form T(y) = By+d,
where B is an n x n matrix and d E Rn, is called an affine tranJformation; if B
is nonsingular, then T is a nonJingular affine transformation. It follows that an
ellipsoid is the image under a nonsingular affine transformation, T(y) = A-1y + c,
of the unit ball in Rn, Bn = {y: IIYII ::5 l}.

It will be convenient here to introduce an alternative definition of ellipsoid. A
poJitive definite matrix D is a matrix of the form D = AT A for some nonsingular
matrix A. We define the ellipsoid ell(c, D) with center c by

ell(c, D) = {x: (x - c? n-1 (x - c) :5 l}.

The equivalence to the previous definition is immediate from the definition of posi­
tive definite matrix.

The crucial result for showing that ellipsoids can be used to treat systems of
linear inequalities is a result showing that any "half ellipsoid" is contained in an
ellipsoid the "volume" of which is smaller by a suitable constant multiple.

6.3. ELLIPSOIDS 53

Perhaps a word should be said here about how volume is defined. We need only
some very elementary facts. First, it is clear that whatever definition we choose, it
should assign volume 1 to the unit cubes 2

• In general, consider the parallelepiped P
spanned by a set of vectors a1 , ••. , an in Rn, that is, the convex hull of the set of all
vectors achievable as sums of subsets of these vectors-assuming no degeneracies,
there will be exactly 2n such sums, including the origin (which we take to be the
result of the empty sum). Now if we replace one of these vectors ai by aai, for a
scalar a, then this should multiply the volume of P by lal. On the other hand,
if we replace one of the vectors by its sum with some other vector in this list, say
replacing a" by a" + ai, j -:/:- k, then this should leave the volume of P unchanged.
Where A is the matrix with columns a1 , ... , an, it is easy to see that the above
conditions imply volP = I det Al.

Proposition 6.3.1 If A i., an n x n matrix and P s;;; Rn i.5 "w.ell behaved," then
volA(P) = ldetAlvolP. D

Proof. If aff P -:/:- Rn, or A is singular, clearly vol A(P) = O; otherwise, approximate
P as a disjoint union of cubes-that this is possible is what we mean by "well
behaved"-and apply the conclusion of the previous paragraph. O

We actually use (6.3.1) only for Pa very special polyhedron or an ellipsoid. The
applications to polyhedra is in the proof of Lemma 6.3.6.

Corollary 6.3.2 volell(c,D) = v'detDvolBn.

Proof. Write D-1 = AT A. Then ell(c,D) = {x: IIA(x - c)II ~ 1}. It follows that
ell(c, D) = A-1 (Bn) + c. Hence (6.3.1) implies volell(c, D) = I det A-1 1 vol an.

A second proof, not using (6.3.1), runs as follows. Since Dis positive definite,
it can be written in the form D = UT RU, where U is orthogonal (UTU = I) and R
is diagonal. It should be clear that an orthogonal matrix, the application of which
simply rotates the space, does not change volume, and that applying a diagonal
matrix multiples volume by the absolute value of its determinant. D

Theorem 6.3.3 Let E = ell(c, D) be an ellipsoid with center c, and let a E Rn be
nonzero. Let H = {x: aTx ~ aTc}, and let E' = ell(c',D') where

, 1 Da
c=c--- ,

n + l JaTDa

D' __ n_
2

_ [D __ 2 __ D_aa_T D_l
- n 2 - 1 n + l aT Da ·

2We take here as unit cubes any set that has the form I1 x · · · x In, where each I; E
{[0, 1), (0, 1), [0, 1), (0, 1)} (i = 1, ... , n).

54 CHAPTER 6. ELLIPSOIDS

Then H n E s; E' and
1

volE' < e- 2<n+1> volE.

Proof. In order to simplify the details of the proof, we apply two nonsingular affine
transformations that have the effect of reducing c to 0, E to a unit ball, and H to
{x : x1 :s; O}. The success of this approach relies in the end on the fact that when
applied to both E and E', these transformations preserve preserve ellipsoids and
preserve ratios of volumes, the latter because of (6.3.1).

Let T1 is the affine transformation T1(x) = A(x - c) where n-1 = AT A and A
is nonsingular. Then T1 is nonsingular, T1(E) = Bn and T1(E') = ell(c1 , D 1) where

1 b
Ct = - n + 1 ...Jlii1;'

D1 = n2 [1 - _2_bbT]
n2 - 1 n + 1 bTb

and b = (AT)- 1a. This is verified by substituting x = A-1y + c in the definition of
ell(c',D'). Clearly T1(H) = {x: bTx :s; O}. Note also that D1 = AD'AT.

For the second transformation, let U be an orthogonal matrix such that Ub = ad,
where dT = [1 0 ... 0] and a > 0. (Such a U can be obtained by applying, say, the
Gram-Schmidt process to a basis for Rn, the first vector of which is b.) Define
the affine transformation T2(x) = Ux and define T = T2T1 . Since T1 and T2 are
nonsingular, so is T, and it is straightforward to verify that T(H) = {x : x1 :s; O},
T(E) = Bn and T(E') = ell(c2,D2) where

1
C2 = ---

1
d,

n+

D2 = n
2

[1 - - 2-aa:r].
n2 -1 n + 1

Note that D 2 = U AD' ATUT.

Since D2 is evidently diagonal and has positive entries on the diagonal, it follows
that D' is positive definite. Now to see that { x E Bn : x1 :s; 0} = T(E) n T(H) s;
ell(c2, D 2) = T(E') involves a straightforward calculation.

To complete the proof we need to estimate volE'/volE. Since, by (6.3.1), T
preserves ratios of volumes, we have

But by (6.3.2),

vol E' vol ell(c2, D2)
volE = volBn

vol ell(C2, D2)
volBn

J!detD2I

n [n2 l n2
1

n + 1 n 2 -1

6.3. ELLIPSOIDS

Using the fact that ez: > 1 + x for x-/= 0, we have

as required. D

volE'
volE

1 1 n-1 < e-n+l (en2-1)-2-

1
e - 2(n+l),

55

To continue further we must be able to construct a starting ellipsoid, and get
a lower bound on the volume of the given polyhedron. In both cases we do this
by bounding the complexity of the solutions of systems of linear equations, and
this in turn we do by bounding the complexity of determinants. Precise notions of
complexity for rational numbers are essential here.

Let r = p/q E Q be a rational number where p and q are relatively prime
integers. Define

size(r) = 1 + flog(IPI + l)l + r1og(lql + l)l,

where rPl is the least integer greater than or equal top. Thus, size(r) is a bound Oil

the number of binary digits needed to represent r. Now let c E Q" be an n-vector
and A E qmn an m x n matrix. Define

size(c) = n + size(c1) + ... + size(cn),

size(A) = mn + size(a11) + ... + size(amn).

Proposition 6.3.4 size(det A) < 2 size(A).

Proof. As the result is trivial for 1 x 1 matrices, we may assume A is n x n,
n > 1. Let aii = Pi;/qi;, where Pii and qi; are relatively prime. Let (1 = size(A) and
det A= p/q, again relatively prime. We have the following inequalities:

I det Al :::; Il(IPiil + 1),
i,j

lql :::; II lqi;I < 2u-1,
i,j

i,j

The first inequality is proved by a simple induction using the fact that 0:1 + .. . +o:1c :5
nJ=1(lo:;I + 1) for any scalars 0:1,···,o:k. The third line of inequalities uses the
first inequality, together with the fact that n > 1 to get the last strict inequality.
Combining the last two lines proves the proposition. O

The next step is to deal with "vertex complexity."

56 CHAPTER 6. ELLIPSOIDS

Proposition 6.3.5 If P = {x : Ax :5 b} # 0 and u ~ size([aT ,8]) for all rows
[aT ,8] of [A b], then the complexity of an extreme point of P is at most 4n2u.

Proof. By Proposition 4.1.3, z is an extreme point of P iff z is the unique solution
of some subsystem A' x = b' of Ax = b. Applying Cramer's rule, we see that each
component z; of z is given by an expression of the form det B/ det A', where Bis A'
with the Ph column replaced by b. By hypothesis, size(B) :5 nu and size(A') :5 nu.
Hence, size(det B) < 2nu and size(det A') < 2nu. It follows that size(z;) :5 4nu - 1,
and so size(z) :5 n + n(4nu - 1) = 4n 2 u. O

We need one more preliminary result, a method for bounding the volume of a
polyhedron from below. To this end we give an exact formula for the volume of one
very special polyhedron:

Proposition 6.3.6 Let x1 , ... , xn+l E Rn. Then

vol conv{ x1, ... , xn+l} = ~! ldet [; 1 .. · x}+l] I

Proof. Consider Xn{ a) = conv{O, ae1, ... , aen} where ei is the ?h unit vector in
Rn. We claim that volXn(a) = an/n!. This is certainly true for n = 1. Assume it
is true for a general n. Then by induction,

l e, (a - xr
Xn+1(a) =

1
dx,

o n.

which yields

Now let X = conv{O,x1, ... ,xn} ~ Rn and let A = [x1
... xn] be an n x n

matrix. Then clearly X = A(Xn(l)), and so by Proposition 6.3.1 and the result of
the previous paragraph, we have

ldetAI
volX=ldetA!volXn(l)= 1 .

n.

Let yi = [;,]. We can now prove the proposition:

I det[yl ... yn+l]I - I det[yl y2 - yl ... yn+l - yl]I

- I det[x2 - xl ... xn+l - xl]I

- n! vol conv{O, x2 - x1, ... , xn+l - x1}

I 1 { 1 2 n+l} n. vo conv x , x , ... , x . D

6.3. ELLIPSOIDS 57

We can finally state and prove the validity of a restricted version of the ellipsoid
method. Note that the statement of the algorithm includes the use of a operator
{ ·} P that truncates its argument top binary digits beyond the decimal point. We are
forced to include some such operator if, for no other reason, because of the presence
of a square root in the update formula for c. This unfortunately complicates the
proof of validity, and necessitates several technical lemmas. We do not prove them
here, referring the reader rather to [10). In each case they involve estimates of how
the eigenvalues of the matrices D vary under the truncation.

Algorithm 6.3. 7 The Restricted Ellipsoid Algorithm

Input: An integer u and a bounded polyhedron P = { x : Ax $ b} ~ Rn specified
by a rational matrix [A b] E Qmn+n such that size([aT ,8]) $ u and a -::/: 0 for each
row [aT ,8] of [A b]. We assume that if P-::/: 0, then Pis full dimensional.

Output: The assertion that P = 0, or a point c E P.

Comment: Suppose P -::/: 0. In the unrestricted version of the algorithm, in which
the assumption of full dimensionality (and boundedness) is removed, termination
does not occur yielding a point c E P, but only with the assertion that P-::/: 0-see
exercise 6.2. A point in P can then be found using the results of §6.2.

begin
v := 4n2u;
N := 32n2v;
p := 5N2 ;

M := 2";
D := M 2 I where I is an n x n identity matrix;
C := 0 E Rn;
if Ac $ b then output c and stop;
for j := 1 until N do begin

let [aT ,8) be a row of [A b] such that aT c > ,8;
/ 1 Da)

c:=,c-n+I\l'aTDa P;

D ·-(_..!!:_ [D- _2 DaaTD]).
·- n 2 - 1 n + 1 aT Da P'

comment (·)p truncates top binary digits beyond
the decimal point;
if Ac $ b then output c and stop;

end
output the assertion that P = 0;

end

Theorem 6.3.8 The restricted ellipsoid algorithm is correct and runs in time poly­
nomial in the size of the input.

58 CHAPTER 6. ELLIPSOIDS

Proof. In verifying that the algorithm will actually run, that is, that all the
steps are well defined, the only nontrivial part is to show that aT Da > 0 at each
iteration. But as part of proving Theorem 6.3.3, we proved that if the matrix D
given in statement of the theorem is positive definite, then so is D', and given the
choice of p in the algorithm, Theorem 13.2 of [10] then implies (D')P is positive
definite3• Since the initial Din (6.3.7) is obviously positive definite, it follows that
all subsequent D are (the update formula for D being exactly the corresponding
formula from (6.3.3)). But D positive definite and a=/ 0 evidently implies aT Da > 0.

As the next step in the proof, we observe that if the algorithm terminates with
the assertion that c E P, then this is obviously correct. Suppose the algorithm
terminates with the assertion that P = 0, but in fact P =/ 0. We have assumed
that P is bounded, and so it is the convex hull of its extreme points. By (6.3.5)
these extreme points have size bounded by v = 4n2u. Let E0 = ell(O, M 2 I) = MBn,
and let E; = ell(c, D) for the c and D obtained after the jfh application of the for
loop in (6.3.7) assuming no truncation is performed. Clearly P ~ E0 since E0 is
convex and all extreme points of P are in E 0-they all have norm at most M.

Now by (6.3.5) and (6.3.6)

and since Eo = Bn ~ [-1, l]n, we have

Now applying the above inequalities and (6.3.3) yields

Were it not for truncation, this would complete the proof since it implies that the
volume of EN is smaller than that of P, while at the same time P ~ EN. Indeed
N = l6n2v in the statement of the algorithm suffices for this. For the version
that includes truncation and for N = 32n2v, as stated in the algorithm, Theorems
13.2 and 13.3 of [10] can be used to show that volEN < 2nMne-N/sn, and that
P ~ ell(c,4D) where EN= ell(c,D) and c and Dare the final (truncated) c and D
produced by the algorithm. But then, using (6.3.2),

vol P ~ vol ell(c, 4D) = 2n vol EN < e-2n11
,

a contradiction. This proves the theorem. O
3This proof uses the facts, consequences of the formulas in (6.3.3), that the maximum eigenvalue

of D' is at most 4 times the maximum eigenvalue of D and the minimum eigenvalue at least 1/4
times the minimum eigenvalue.

6.4. OPTIMIZATION AND SEPARATION 59

6.4 Equivalence of Optimization and Separation

As currently stated, (6.3.7) requires explicit knowledge of a defining system Ax :5 b
for the given polyhedron P. However, even for some very simple CO problems,
such as the MST problem (see Theorem 5.3.1), the size of such a system must
necessarily be exponential in the number of variables. What is needed is a version
of (6.3.7) in which A can be treated in some implicit way. That such a version is
possible was observed by Grotschel, Lovasz and Schrijver (1981) ["The Ellipsoid
Method and its Consequences in Combinatorial Optimization," Combinatorica 1
169-197-corrigendum: 4 (1984) 291-295], Karp and Papadimitriou (1982) ["On
linear characterizations of combinatorial optimization problems," SIAM Journal on
Computing 11 620-632], and Padberg and Rao (1980) ["The Russian method and
integer programming," BGA Working paper, New York University, New York (to
appear in Annals of Operations Research)].

The following modified "oracle" version of the ellipsoid algorithm has the above
property. It is the same as (6.3.7) except for the 'Input' and two smaller changes
necessitated by this change: The two lines in the algorithm where we check Ac :5 b
must be replaced by calls to SEP, and the statement 'let [aT ,B] be a row of [A b]
such that aT c > ,8;' must be correspondingly modified.

Algorithm 6.4.1 Oracle Version of the Restricted Ellipsoid Algorithm

Input: An integer u and a bounded polyhedron P ~ Rn specified by a "separa­
tion" subroutine or "oracle" SEP such that for each y E Qn, SEP(y) runs in time
polynomial in size(y) and either asserts that y E P, or returns a rational inequality
aTx :5 /3 :5 aTy valid for P such that size([aT /3]) :5 u and a f; 0. We assume that if
P f; 0, then P is full dimensional.

Output: The assertion that P = 0, or a point y E P.

begin
V := 4n2 0' j

N := 32n2v;
p := 5N2;

M:=2V;
D := M 2 I where I is an n x n identity matrix;
C := 0 E Rn;
if SEP(c) asserts that c E P then output c and stop;
for j := 1 until N do begin

let [aT /3] be the inequality returned by SEP(c),
valid for P but violated by c (aT c > (3);

/ 1 Da)
c:= \c- n+lJaTDa Pi

60 CHAPTER 6. ELLIPSOIDS

D--(~ [n- _2 DaaTD]).
·- n2 -1 n+l aTDa P'

if SEP(c) asserts c E P then output c and stop;
end
output the assertion that P = 0;

end

It is a straightforward exercise to check that the proof of (6.3.8) remains valid
for this modified algorithm 4 • In particular, note that Proposition 6.3.5 can still be
applied since this result does not depend on how many rows the defining system
has, only on the complexity of these rows. Note also that because of the truncation,
size(c) is bounded by a polynomial in u, and so the calls to SEP(c) run in poly­
nomial time. Finally, observe that (6.4.1) can be used to optimize. The approach
given in §2 is no longer valid when a defining system is not explicitly given. One
alternative is to replace it by binary search on objective function values. For a,
say, minimization problem, after having found one feasible point, we have an upper
bound on the optimal value. But we also have a lower bound, because P ~ MB".
Using these bounds, we can get within any desired number q of digits of accuracy
using a number of calls to (6.4.1) polynomial in q. Now, by adding an appropriate
perturbation to the objective function, a perturbation with polynomailly bounded
size, we can also arrange that the optimal solution is unique and that any solution
optimal for the new objective is optimal for the original objective. But, since we
have a bound on the number of digits required to specify any extreme point of P, by
insisting that q is large enough, we can "guess" what that extreme point is. Thus,
we can find the exact optimal, the exact optimal to the original problem.

We might summarize the content of the modified oracle version of (6.3. 7) as
showing that if we can solve "separation" in polynomial time for a polyhedron,
then we can solve (linear) optimization for this polyhedron. As our final result in
this section we prove a (simplified version of a) converse due to Grotschel, Lovasz
and Schrijver (see the 1981 paper referenced in the first paragraph of this section).
The proof involves a kind of "polarity." Our version of this proof is brief, in the
hopes that the main idea is, in this way, not obscured by technical details. A
complete treatment seems to encounter such details, in abundance, at every turn.

4The reader may ask why we have not stated the ellipsoid algorithm in the above form at the
outset, given that the proof works in essentially the same form? The principal reason is the difficulty
in dealing with the full-dimensionality assumption in an oracle setting. In the exercises we have
indicated a straightforward method when the polyhedron is specified by an explicit linear-inequality
system. However, when it is not, then something more complicated must be done. Papadimitriou
and Karp resolve the issue by first assuming an appropriate bound on the size of the output of
SEP (we have assumed this as well in our modified statement of the algorithm). Grotschel, Lovasz
and Schriver show, however, that this is not necessary, that only a bound on "vertex complexity"
is needed. Indeed, they show, by use of basis reduction techniques due to Lovasz, that a modified
version of the algorithm will suffice in this case, if we are willing to apply it n times!

6.4. OPTIMIZATION AND SEPARATION 61

Definition 6.4.2 Given a set P ~ Rn, we define the polar P* of P by P* = {x :
xTy < 1 Vy E P}.

Note that the polar of a polyhedron is a polyhedron by Theorem 4.1.4.

We state the following result only for polyhedra, although it is valid for any
closed convex set in Rn. The proof for general convex sets requires a separating­
hyperplane theorem. For polyhedra, these hyperplanes are given in the definition,
and the result is easy.

Lemma 6.4.3 Let P = { x : Ax 5 b} for b E Rn and A an m x n matrix. Then
P** = P iff OE P. {P** denote., (P*)* .)

Proof. The necessity of the condition OE Pis clear: The polar of any set contains
0. To prove the converse, first note that P ~ P**. Indeed, every vector in P* has
inner product at most 1 with every vector in P, which is the same as saying that
every vector in P has inner product at most 1 with every vector in P*. Suppose
P =/= P**. Then there exists z E P**\P. But z ¢ P implies there is a row [aT ,8}
of [A b] such that aT z > ,8. Note that ,8 ;:::: 0, since O E P. Suppose ,8 > 0. Then
apparently a' = a/ ,8 E P*, contradicting the fact that z E P** since zT a' > ,8 / ,8 = 1.
Hence, ,8 = 0. Then aTz = 8 > 0. Let a'= 2a/8. Then a' E P*, since for x E P,
aTx 5 ,8 = 0, and so xTa' 5 0 5 1. But zTa' = 28/8 = 2 > 1, again contradicting
the fact that z E P**. O

For a set X ~ Rn define the interior of X, int X, to be the set of all x0 E X
such that for some e > 0, llx - x0 II < e implies x EX.

Lemma 6.4.4 If P ~ Rn i., bounded, full dimen3ional and O E int P, then P* i.,
bounded and full dimen3ional.

Proof. The assumptions of the lemma imply that for some e1, e2 > 0, e1Bn ~ P ~
e2B\ which implies that l/e2Bn ~ P* ~ l/e1Bn. O

Theorem 6.4.5 (Grotschel, Lovasz, Schrijver) Let P ~ Rn be a bounded polyhe­
dron with a given integer u bounding the complexity of any extreme point of P.
A33Ume that if P =/= 0 then P is full dimensional, and suppose that an oracle OPT
i3 given such that for each c E qn:

0 PT(c) solves the program max{ cT x : x E P} in time polynomial in u and
size(c), that is, OPT(c) either declare., that P = 0 or. give., an optimal
3olution x*.

62 CHAPTER 6. ELLIPSOIDS

Then in time polynomial in u we can con3truct a algorithm SEP 3uch that for each
a E Qn:

SEP(a) either declare" that a E P, or give" a vector c E Qn and a 3calar
/3 E Q 3uch that cTx ~ /3 for all x E P and cTa > /3; moreover, SEP(a)
run3 in time polynomial in size(a) and u.

Proof. If P = 0, then SEP is easy to construct. We can test whether this is
the case by solving max{0Tx : x E P} using OPT(0). In the case that P =/:- 0
we solve 2n additional programs max{ cT x : x E P} where c ranges over the 2n
unit vectors in Rn and their negatives. Let x1 , ... , x 2n be the solutions of these
programs and let x0 = (Ef~1 xi)/2n. Then x0 E intP. Define Q = (P - x0)•. Note
that O E int(P - x0

) so that Q* = P - x0 and Q is a bounded, full-dimensional
polyhedron, by (6.4.3) and (6.4.4); moreover, note that we have a bound on the
complexity of the extreme points of Q, because of Proposition 6.3.5 and the fact
that the extreme points of defining system of inequalities for Q (with right-hand-side
all ls). This bound is polynomial in u.

We construct SEP* that solves separation on Qin polynomial time. This will
complete the proof since it will imply, using the ellipsoid algorithm, that we can
construct OPT* for Q, and hence, repeating the argument, SEP for Q* = P - x0 •

Obviously, knowing SEP for P - x0 is the same as knowing it for P.

Now let us consider the construction of SEP* for Q. Let w E Qn, and consider
the program max{wTx: x E P}. Let x* be an optimal solution of max{wTx: x E

P}. There are two cases.

Ca3e 1. Suppose wTx• ~ wTx0 + 1. Then wTx ~ wTx0 + 1 for all x E P, that
is, wT(x - x0

) ~ 1 for all x E P. Hence, w E Q.

Gau 2. SupposewTx• > wTx0 +1. Thenx* E Pimpliesthat yT(x*-x0) ~ 1
for ally E Q, and yet wT(x* - x0

) > 1. Thus, we have found a hyperplane
separating w from Q. D
An important aspect of (6.4.5) is the way in which it makes concrete the con­

nection between finding a polyhedral description and finding an algorithm for a
combinatorial problem. The ellipsoid algorithm itself makes a precise statement
about how understanding the polyhedron associated with a combinatorial problem
can lead to solving it. The above result proves that in a sense these are equivalent
problems: If we can find an algorithm, then implicitly we can find a good description
of the polyhedron.

Theorem 6.4.5 also has important concrete algorithmic applications. For exam­
ple, an important problem in combinatorial optimization is that of minimizing a
"submodular function." The only known polynomial-time algorithm for doing that
uses (6.4.5). An outstanding open problem is to find a direct algorithm.

6.4. OPTIMIZATION AND SEPARATION

Exercises

63

6.1 In the statement of the Restricted Ellipsoid Algorithm, show how to remove the bound­
edness assumption. This may be done by finding a bounded polyhedron P' such that
P n P' = 0 iff P = 0.

6.2 Let P = {x : Ax 5 b} where A is an m x n rational matrix, and let 8 = ½n-12-11

where v = 4n2 size([A b]). Let pT = [8 .. . 8] E Rm. Let P 0 = {x: Ax 5 b + p}. Prove that
P 0 = 0 iff P = 0. Conclude that the full dimensionality assumption on P in the Restricted
Ellipsoid Algorithm can be removed.

Hint: Make use of the following statement of the Farkas Lemma, deducible from the Strong
Duality Theorem, (4.1.2): Let A be an m X n matrix and let b E Rm. Then Ax 5 b has a
solution x iff yTb ~ 0 for each vector y ~ 0 with yT A = 0. Note that in this statement, at
most n components of y need be positive.

64 CHAPTER 6. ELLIPSOIDS

Bibliography

[1] Aho, A., J. Hopcroft and U. Ullman (1974), The Design and Analysis of Com­
puter Algorithms, Addison-Wesley

[2] Bixby, R. E. (1982), Matroids and operations research, in: Advanced Tech­
niques in the Practice of Operations Research (6 tutorials presented at the
Semi-Annual joint ORSA/TIMS meeting, Colorado Springs, 1980); H.J. Green­
berg, F.H. Murphy and S.H. Shaw, eds.; North-Holland, New York, pp. 333-
458.

[3] Bixby, R. E. (1982), Combinatorial Optimization (Notes)

[4] Chvatal, V. (1983), Linear Programming, Freeman

[5] Grotschel, M. (1985), Operations Research I: Skriptum zur Vorlesung im SS
(Notes)

[6] Lawler, E. L. (1976), Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart & Winston, New York, (out of print)

[7] Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, eds.
(1985), The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley, New York

[8] Mehlhorn, K. (1984), Data Structures and Algorithms 2: Graph Algorithms
and NP-Completeness, EATCS Monographs on Theoretical Computer Science,
Springer, Berlin

[9] Papa.dimitriou, C. H. and K. Steiglitz (1982), Combinatorial Optimization,
Prentice Hall, Englewood Cliffs, New Jersey

[10] Schrijver, A. (1986), Theory of Linear and Integer Programming, Wiley

[11] Tarjan, R. E. (1983), Data Structures and Network Algorithms, SIAM,
Philadelphia, Pennsylvania

Notes: [1], [8] and [11] are written by computer scientists. [2] is an introduction
to matroid theory, a topic not discussed in any detail in these notes. [4] is an

65

66 BIBLIOGRAPHY

excellent text on linear programming. [5], written in German, describes an extensive
collection of applications, as well as giving an introduction to most of the important
topics in combinatorial optimization. [6] and [9] are two standard references on
combinatorial optimization. [6] contains a particularly thorough chapter on shortest
paths. The emphasis in [9] is on the "primal-dual approach." [10] is an excellent
reference work on many aspects of combinatorial optimization, especially, so far as
it concerns these notes, on polyhedral combinatorics and the ellipsoid method.

2

X

e

y

