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ABSTRACT

Effects of synthesis conditions on the transition metal dichalcogenide TiSe2

by

Jaime M. Moya

TiSe2 is part of a family of materials known as the transition metal dichalco-

genides. Their quasi-two dimensional crystal structure sometimes gives rise to in-

teresting phenomena, spanning a vast array of physical and electronic properties

including charge order or superconductivity when various intercalants or dopants are

added. TiSe2 was shown to have charge ordering at a temperature of 200 K almost

45 years ago. Despite the time that has elapsed between this discovery and now,

TiSe2 continues to be an intensely studied material because the nature of its charge

ordering is still under debate. Some of the conflicting results are fueled by sample

dependency related to growth method and conditions.

Due to the small band gap or band overlap in TiSe2, it is not surprising that di-

lute impurities and growth conditions can affect drastically the transport properties

of TiSe2. In this work I systematically study the effect of variable growth conditions

including post synthesis cooling rate, anneal time, and temperature, on the electri-

cal resistivity of TiSe2. I find that slow cooling polycrystalline TiSe2 post synthesis

drastically increases the low temperature resistivity, which is in stark contrast to

the metallic low temperature resistivity observed in single crystalline TiSe2 grown

by iodine vapor transport, where the iodine charge dopes the sample. Together, the

logarithmic divergence of the resistivity and signatures in low temperature magne-



toresistance point to signatures of the weak-localization effect. Annealing samples at

low temperatures post synthesis also increases the low temperature resistivity, but

with a less profound effect. Finally, quenching samples from high temperature freezes

in disorder and decreases the low temperature resistivity.
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Chapter 1

Outline

This thesis is focused on my work on the transition metal dichalcogenide TiSe2. TiSe2

continues to be actively studied in the condensed matter physics community due to

the rich physics involved in the formation of its charge order as well as the interplay of

the charge order with superconductivity. In this work I focus and document how TiSe2

electrical transport properties systematically vary based on synthesis conditions.

In Chap. 2 I give a brief introduction to TiSe2 and show how sample variation

has led to different conclusions about the nature of the charge order in TiSe2. In

Chap. 3 I review the physics relevant to the charge ordering in TiSe2, namely the

Peierls instability, the band-Jahn Teller mechanism, and the excitonic mechanism.

Furthermore, I review some concepts involved in weak localization for which I found

evidence for in TiSe2. Finally Chap. 4 is largely reproduced from my publication [1]

where I detail the effects of synthesis conditions on the electrical resistivity of TiSe2.
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Chapter 2

Introduction to TiSe2

2.1 Overview

TiSe2 is part of a family of materials called the transition metal dichalcogenides

(TMDCs). Such materials have attracted considerable interest in the condensed mat-

ter community in part due to their quasi-two dimensional crystal structure which can

sometimes lead exotic to ground states. Furthermore their layered crystal structure

allows for easy intercalation or doping, which births an experimental playground for

tuning their electronic and physical properties.

While some TMDCs exist in many polytypes, TiSe2 only exists in the 1T poly-

type with trigonal symmetry in which the Ti atoms are octahedrally coordinated to

Se atoms, forming layers, Fig. 2.1a. These Ti-Se layers are bonded to each other by

van der Waals forces.

Di Salvo et al. first reported a commensurate 2×2×2 charge modulation or charge

density wave (CDW) in TiSe2 at TCDW = 200 K accompanied by a periodic lattice

distortion [2]. The CDW transition was marked also by an anomaly in resistivity at

TCDW , Fig. 2.1b. While the first band structure calculation, Fig. 2.1c shows that

TiSe2 should be a semimetal [3], the Fermi surface (FS) is not nested as shown in

Fig. 2.1d [4]. As explained in Chap. 3, often CDWs can be explained by heavily

nested FSs, but clearly this is not the case in TiSe2. Hence, proposed mechanisms

include the band Jahn-Teller mechanism [5], and an excitonic insulator scenario [6]
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Figure 2.1 : (a) The crystal structure of TiSe2 with Ti (blue) atoms are octahedrally
coordinated with Se (green) atoms. (b) Temperature dependent resistivity of TiSe2

from Ref. [2], with the anomaly being marked as a minima in the first derivative
(inset). (c) First published band structure of TiSe2 from Ref. [3] showing TiSe2 is
likely a semimetal. The Fermi surface plot of TiSe2 from Ref. [4] shows an unnested
Fermi surface.
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Figure 2.2 : ARPES data from Ref (a) [7] leads Watson et al. to conclude that TiSe2 is
a semiconductor at (a) T = 300 K with a band gap of about 74 meV, while at (b) T =
10 K TiSe2 is still a semiconductor, but with a smaller band gap. (c) ARPES data
from Ref. [8] is consistent with a semimetal above TCDW (top), and a semiconductor
below TCDW (bottom).

for the CDW formation, both reviewed in Chap. 3. A much needed starting point to

understanding the evolution of the CDW phase is to know both the high temperature

‘normal phase,’ and the low temperature ground state. However, due to sample to

sample inconsistency, semimetal to semiconductor and small band gap to larger band

gap semiconductor, have all been reported as the normal state and ground state,

across the CDW phase transition respectively. Hence, the mechanism for the CDW

phase transition in TiSe2 is still an active and debated topic. The experimental

discrepancies will be reviewed next in Sec. 2.1.1.

2.1.1 Sample dependence of the electronic properties

Normally, angle resolved photoemission spectroscopy (ARPES) is the definitive tool

for studying the band structure of easily cleavable materials. However, due to the

high transition temperature of the CDW phase transition, small band gap/overlap,
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Figure 2.3 : (a) The dependence of growth temperature on the resistivity of the single
crystals of TiSe2 from Ref. [2]. The temperature dependence of the resistivity as a
function of Se deficiency, δ, which was induced by annealing on TiSe2 from Ref. [17].
(c) Temperature dependence of the resistivity of TiSe2 single crystals grown by three
different methods: (red) a pressure method, (blue) Se flux, and (black) chemical vapor
transport with I2 as the transport agent from Ref. [18].

as well as sample variability, the size and nature (semiconductor or semimetal) of

the normal state is still under debate [7–15]. For example, recent ARPES data show

that above TCDW , Fig. 2.2(a), the normal state of TiSe2 is semiconductor with an

indirect band gap of about 75 meV, while below TCDW , Fig. 2.2(b), a direct gap of

around 15 meV emerges in the folded Brillouin Zone [7]. Preceding this measurement,

Cercellier et al.’s data is consistent with a small band overlap in the normal state Fig.

2.2(c, top), and a band gap in the CDW state Fig. 2.2(c, bottom) [8]. Furthering

the problem, optical studies are consistent with a semimetal to semimetal transition

across the CDW phase transition [16].

There also has been a recent resurgence of interest in the electrical resistivity

in TiSe2 [1, 17, 18]. Dating back to DiSalvo et al.’s original paper, the authors al-

ready understood that synthesis conditions greatly affect the resistivity, as the hump

centered around T = 150 K systematically decreases with increasing growth tem-

perature of their single crystals Fig. 2.3a [2]. The authors proposed that this may
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be due to self intercalation of Ti and iodine inclusions. Later Huang et al. showed

that by annealing polycrystalline samples at different temperatures, the resistivity of

their polycrystalline samples go from a semiconductor - like behavior, to a metallic

- like behavior at low temperature [17]. The authors attributed this to increase Se

deficiency with increased annealing temperature, and their results are shown in Fig.

2.3b. Finally, Campbell et al. synthesized TiSe2 single crystals via a pressure method,

Se flux method, and by I2 vapor transport [18]. It is seen in Fig. 2.3c (red curve)

that the sample grown by the pressure method shows an insulating behavior at low

temperatures with thermal hysteresis, in contrast to the low temperature metallic

resistivity of the crystals grown by Se flux and chemical vapor transport (blue and

black curve, respectively). Furthermore, the authors tried growing crystals at sev-

eral different pressures, however there was no systematic correlation between the low

temperature resistivity and growth pressure. Such discrepancies motivated my study,

in which I systematically vary growth conditions in an attempt to understand the

temperature dependent resistivity intrinsic to TiSe2 as described in Chap. 4.
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Chapter 3

Background

This chapter is split into two parts: in Sec. 3.1 I review some concepts of charge

density wave physcics, while in Sec. 3.2 I outline a phenomological understanding of

the weak localization effect.

3.1 Introduction to Charge Density Waves

3.1.1 Peierls instability

In metals it turns out that many of their properties are a result of their FS topology.

For example magnetism can arise not just from localized unpaired electrons as in

the case for insulators, but also from band effects in metals [19]. Furthermore BCS

superconductors remove a FS instability via an electron-phonon interaction which

leads to electron pairs, called Cooper pairs [20]. Another phenomena that can occur

due to a FS instability is a CDW, which is the focus of this introduction.

A CDW is simply a periodic modulation of conduction electrons with respect to

a lattice. Rudolph Peierls in the 1930s showed how such a modulation may occur in

one dimension [21]. Following Grüner [22], the charge density (in d dimensions) in

response to a time independent potential is given by

ρind(~q) = χ(~q)φ(~q), (3.1)

where χ(~q) is the Lindard response function given by
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χ(~q) =

∫
d~k

(2π)d
f~k − f~k+~q

ε~k − ε~k+~q

. (3.2)

f~k, the Fermi function is a function of ε~k. The topology of the FS greatly affects

χ(~q). The FS of a one dimensional metal consists of two sheets located at ±kf , Fig.

3.1a (top). This is an example of the so called “perfect nesting” condition which

occurs for FSs that have large parallel sheets that can be connected by the same

wavevector ~q. In such a scenario χ(~q), diverges at ~q due to the two states at ±kf

which have the same energy. In Fig. 3.1b I have plotted the χ(~q) for one, two, and

three dimensions. While χ(~q) diverges in one dimension due to this FS nesting, the

divergence is reduced to a kink due to the lack of FS nesting in two dimensions (the

FS is a circle Fig. 3.1a (middle)), and a smooth curve in three dimensions (the FS is

a sphere). The divergence in one dimension suggests that the charge distribution is

unstable to any external perturbation. Though the example of the divergence is most

apparent in one dimension, FS nesting can lead to an instability in low dimensional

systems so long as large portions of the FS are nested, as seen for example in Fig.

3.1a (bottom).

When coupling the one dimensional free-electron-gas to a lattice, through electron-

phonon coupling, the renormalized phonon dispersion can be written as

ω2
ren,~q = ω2

~q +
2g2ω~q
~

χ(~q, T ), (3.3)

where g~q is the electron-phonon coupling constant given as

g~q = i(
~

2Mω~q
)1/2|~q|V~q. (3.4)

Hence, at the wave vector where χ(~q, T ) diverges (~q = 2kf in one dimension), the

phonon dampens and the frequency goes to zero. I have plotted this in Fig. 3.1c (blue
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Figure 3.1 : (a) (top) A one-dimensional Fermi surface displaying perfect nesting at
wavevector |~q| = 2kF . (middle) A two-dimensional Fermi surface which displays no
nesting. (bottom) A schematic of a two-dimensional Fermi surface that displays par-
tial nesting. (b) Lindhard response function in one dimension (blue), two-dimensions
(yellow), and three dimensions (blue). (c) Renormalized phonon-dispersion when ac-
counting for electron-phonon interaction in one dimension. Above TCDW , the phonon
dispersion remains largely unchanged (grey), while below the TCDW the phonon mode
softens (blue). (d) (top) A one-dimensional lattice with lattice constant a (blue cir-
cles) and the electron density (black line) that results from the half-filled band struc-
ture above TCDW bottom. (e) Below TCDW a periodic lattice distortion occurs with a
new lattice constant 2a, and periodic charge distribution (top), resulting in an energy
gap (bottom).
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curve). This is sometimes termed “phonon freezing,” and the temperature at which

the phonon freezes is the definition of the CDW transition temperature TCDW . The

“frozen” lattice results, in a new lattice and charge distribution from ρ(x) = constant

(Fig. 3.1d, top) above TCDW to

ρ(x) ∝ cos(2kfx+ φ), (3.5)

shown in Fig. 3.1e, top, where φ is a phase constant, below TCDW . This new

periodicity opens an energy gap, at ±kf , shown in Fig. 3.1e bottom. Hence in one

dimension, the CDW phase transition is associated with a metal to insulator transition

when considering a half-filled band. If the CDW has a period proportional to integer

numbers of lattice spacings, the CDW is termed a commensurate CDW (CCDW),

whereas for non-integer periods it is called an incommensurate CDW (ICDW).

While Peierls explained how CDWs, accompanied by a periodic lattice distortion,

form, it was expected that such a transition could occur only in one dimension.

However, it was experimentally discovered that CDWs can exist in two dimensions,

for example, the transition metal dichalcogenides [23], and also in three dimensions,

reviewed in [24]. Furthermore, it has been experimentally shown that a CDW can

arise without a periodic lattice distortion, as is the case in K0.9Mo6O7 [25], showing

the electron-electron interactions can also play an important role in the formation of

CDWs.

3.1.2 Jahn-Teller mechanism

The band type Jahn-Teller mechanism was first proposed to explain the CDW in TiSe2

by Hughes [5]. This mechanism requires the normal state of TiSe2 to be a semimetal.

In the 1T polytype the chalcogenide atoms are octohedrally coordinated around the



11

transition metal, whereas in the 2H compounds the chalcogenide atoms are trigonally

coordinated around the transition metal atom. Band structure calculations show that

the d-bands of 1T and 2H polytypes of the TMDCs have slightly different energies

with the 1T type having slightly higher energies. Thus, a structural phase transition

from 1T to 2H was predicted, where a local increase in the density of states of negative

charge at the unit cell corners from the rotation of the chalcogenide atoms results in

an attractive potential for the transition metal ion. In this scenario, the CDW is

driven by the real space coordination of the transition metal and chalcogenide atoms,

and is not a FS effect.

3.1.3 Excitonic mechanism

The excitonic insulator mechanism for a CDW to form was first set forth by Jerome

et al. [6]. Such a scenario exists in a low carrier semimetal with a small band overlap

or a semiconductor with a small band gap. Due to the low carrier concentrations,

interactions between holes and electrons are very weakly screened. Therefore, by a

Coulomb interaction, holes and electrons can form bound pairs called excitons, and

remove free carriers from the FS if the binding energy of the exciton is larger than the

band gap or band overlap of the material. Hence, this transition is often a semimetal

to semiconductor transition. The exciton modes can couple to phonon modes, driving

a periodic lattic distortion that doubles the unit cell. It is important to note that even

though there is an electron-phonon interaction as a result of the exciton formation,

the driving force in the excitonic insulator scenario is an electron-electron (hole)

interaction. This is in contrast to that of the Peierls instability scenario which is

driven by the electron-phonon.

In reality, electron-electron and electron-phonon interaction probably play a role



12

in the formation of the CDW formation in TiSe2. The question that remains is the

relative involvement of each.

3.2 Introduction to weak localization

3.2.1 Feynman’s path integral approach to Quantum Mechanics

Feynman created an equivalent approach to the Schrodinger approach to quantum

mechanics [26]. I show it because later in Sec. 3.2.3, it is a nice way to phenomona-

logically explain the physics of weak localization. Thanks to Professor Jena’s online

lectures for giving a good synopsis of the physics weak localization [27].

Following is a review the equivalence between Schrodinger’s Hamiltonian approach

and Feynman’s path integral approach, starting with the Schrodinger equation Eq.

3.6.

i~
∂ |xi〉
∂t

= [
p̂2

2m
+ V (~r, t)] |xi〉 , (3.6)

where Ĥ is the Hamiltonian and |xi〉 is a state vector. The initial state |xi〉 evolves

with time as

|ψ(t)〉 = Û(t) |xi〉 = e−i/~Ĥt |xi〉 , (3.7)

where Û is the time evolution operator. Then, the transition amplitude from an

initial state |xi〉, to the final state |xf〉 is given by

〈xf | e−
i
~ Ĥt |xi〉 . (3.8)

We can imagine a particle traversing some path from a→ b. It is possible to slice

the time into equal parts as shown in Fig. 3.2 such that
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Figure 3.2 : An example of three different one-dimensional paths that could be traced
out starting at point a and ending at point b.
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Û(t) = Û(t/2)Û(t/2), (3.9)

and Eq. 3.8 becomes

〈xf | e−
i
~ Ĥt/2e−

i
~ Ĥt/2 |xi〉 . (3.10)

Inserting the resolution of identity

1 =

∫ ∞
−∞

dx |x〉 〈x| , (3.11)

Eq. 3.10 becomes

∫ ∞
−∞

dx 〈xf | e−
i
~ Ĥt/2 |x〉 〈x| e−

i
~ Ĥt/2 |xi〉 . (3.12)

We can further imagine slicing time into infinitesimal slices called ∆t = tn−tn−1 =

t/N and space, into the corresponding intervals xi → x1 → x2 → ...→ xj → xj+1 →

...→ xN−1 → xf so that we can cover all possible paths. Then, Eq. 3.8 becomes

〈xf | e−
i
~ Ĥ∆t/2e−

i
~ Ĥ∆t/2...e−

i
~ Ĥ∆t/2 |xi〉 , (3.13)

and has N terms. Inserting the appropriate resolutions of identity, Eq. 3.14

becomes

∫ ∞
−∞

dx1dx2...dxN−1 〈xf | e−
i
~ Ĥ∆t/2 |xN−1〉 ... 〈x2| e−

i
~ Ĥ∆t/2 |x1〉 〈x1| e−

i
~ Ĥ∆t/2 |xi〉 .

(3.14)

Taking N →∞ so that ∆t is very small, we can do a Taylor expansion such that

e−
i
~ Ĥ∆t ≈ 1− i

~
Ĥ∆t. (3.15)
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Now looking at only one term in the integral in Eq. 3.14, we have

〈xj+1| e−
i
~ Ĥ∆t |xj〉 ≈ 〈xj+1| 1−

i

~
Ĥ∆t |xj〉 . (3.16)

For simplicity we choose the one dimensional Hamiltonian

Ĥ =
p̂2

2m
+ V (x). (3.17)

Plugging the Hamiltonian Eq. 3.17 in Eq. 3.16, and solving by using Eq. 3.18-3.20

〈xj+1|xj〉 = δ(xj − xj−1) =

∫ ∞
−∞

dk

2π
eik(xj+1−xj) (3.18)

〈xj+1|V (x) |xj〉 = δ(xj − xj−1)V (x) =

∫ ∞
−∞

dk

2π
eik(xj+1−xj)V (x) (3.19)

〈xj+1|
p̂2

2m
|xj〉 =

∫ ∞
−∞

dk 〈xj+1|
~2k̂2

2m
|k〉 〈k|xj〉 〈x|k〉 =

∫ ∞
−∞

dk

2π
eik(xj+1−xj)~

2k2

2m
,

(3.20)

where δ(x) is the Dirac-Delta function, and in Eq. 3.20 I have used the identity

〈x|k〉 = e
ikx√

2π , we arrive at the transition amplitude

〈xj+1| 1−
i

~
Ĥ∆t |xj〉 =

∫ ∞
−∞

dk

2π
ei(xj+1−xj)[1− i∆t

~
(V (xj) +

~2k2

2m
)]. (3.21)

Notice, now there are no operators left, and taking advantage of the fact that

1− u ≈ e−u for u << 1, we can write Eq. 3.21 as

∫ ∞
−∞

dk

2π
[−i∆t

~
~2k2

2m
+ ik(xj+1 − xj)−

i∆t

~
V (xj)]. (3.22)
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Eq. 3.22 has the form of the beloved Gaussian integral
∫∞
−∞ due−au

2+bu+c with a

solution
√

π
a
e
k2

4a + c. Hence,

〈xj+1| 1−
1

~
Ĥ∆t |xj〉 →

1√
2πi~∆t
m

e
i
~ (m

2
(
xj+1−xj

∆t
)−V (xj))∆t. (3.23)

Noticing that the term in parentheses in Eq. 3.23 is the Lagrangian with L =

mv2

2
−V (xj) where

xj+1−xj
∆t

is the velocity, v, combining all the terms in Eq. 3.14, and

hiding all the differentials with a combined term Dx(t) we come to

〈xf | Û(t) |xi〉 =

∫
Dx(t)e

i
~Scl , (3.24)

where Scl is the classical action defined as
∫
Ldt. The term on the left is the

Schrodinger approach to quantum mechanics while the term on the right is Feynman’s

approach which he termed the space-time approach to quantum mechanics. I will use

it to give some insight later on to the physics of weak-localization.

3.2.2 Diffusion equation for a free particle

Weak localization is a known transport phenomenon that occurs in low dimensional,

disordered conductors or semimconductors. It manifests in an anomalous upturn in

resistivity at low temperatures that can be suppressed by applying a magnetic field

as shown in Fig. 3.33a. It is thus the goal of this section to give a phenomenological

understanding of this phenomenon.

The probability distribution P (r, t) for a particle undergoing diffusive transport

can be obtained by solving the diffusion equation

∂

∂t
P (r, t) = D∇2P (r, t), (3.25)
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Figure 3.3 : (a) Schematic of the effect of a magnetic field on the temperature depen-
dence of a low dimensional conductor. (b) Comparison of the probability distribution
of a wave (dashed line), and a particle (solid line). (c) Two possible real space paths
from a point a to a point b. (d) Schematic of the imaginary plane showing how all
the phases cancel in the second term of Eq. 3.27 for an object when time reversed
paths are not considered.

where D = v2τ
d

is the diffusion coefficient, v is the velocity and τ is a time constant.

If a particle is placed at the origin r = 0 at time t = 0, such that P (r = 0, t = 0) =

δ(0), the solution is described by a Gaussian in d dimensions.

P (r, t) =
1

(4πDt)d/2
e−
|r|2
4Dt . (3.26)

As time increases, the probability spreads in time such that maximum distance

L ∼
√
Dt. Furthermore, the maximum at r = 0 continually decreases as shown in
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Fig. 3.33b. However, if one solves the equivalent diffusion equation for a wave, there

is an increased probability at r = 0 to find a particle when compared to the case for a

particle shown in Fig. 3.33b. Thus, when considering the transport of a particle like

an electron, which is a wave, from a→ b, it is reasonable to expect a decrease in the

conductivity relative to the situation of a particle, due to the electron spending more

time at the origin. In the next section, Sec 3.2.3, Feynman’s path integral approach,

I show that this is indeed true in some cases in one and two dimensions.

3.2.3 Wave in a diffusive medium

Since we know that an electron is a quantum particle, we know we should treat it

as such. In Sec. 3.2.1 I reviewed Feynman’s path integral approach to Quantum

Mechanics. There we laid out a prescription for finding the amplitude of a particle

going from some point a→ b that does not involve using operators:

1. Find the Lagrangian along a single path: L = 1
2
mv2 − V (x)

2. Find the classical action along such a path: Sab = dtL(x, v)

3. Sum the quantum phases of all possible paths to get the transition amplitude.

Loosely speaking, to get the probability of such an event we should square the

amplitude, A, such that

A2 = | 〈b|a〉 |2 = |
∑
i

Ai|2 =
∑
|Ai|2 +

∑
i 6=j

AiA
∗
j . (3.27)

The first term is the particle-like contribution, while the second term, coined the

interference term, is due to the wave nature of the electron. It is always zero for a
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particle, and even naively expected to be zero for a wave, but under certain conditions

which I discuss later, can be non-zero.

First, I talk about the case when the interference term is zero. Consider an

electron moving from a → b in a flat band such that V = 0. For transport to occur,

the Fermi wavelength λF must be much less than the mean-free path length lel that

a particle goes before scattering inelastically. For weak-localization to manifest itself,

lφ >> Li >> lel. Here, lφ, the characteristic length an electron can go without losing

its phase due to an inelastic scattering event, hence weak-localization should occur

at low temperatures in a disorder medium.

Writing down the Lagrangian for such as system for a path - call it Li which could

be path 1: a-o-c-d in Fig. 3.33c, Li =
∫
dtmv

2

2
can be written as

Li =

∫
dtv(mv). (3.28)

Since we can expect that only electrons near the Fermi surface will contribute,

we let mv = pf and the integral part,
∫

dtv gives the length Li. With kF = 2π
λF

, the

amplitude becomes

Ai ∼ eikFLi = e
i 2π
λF . (3.29)

Now including a second path, for example path 2 in Fig. 3.33c, the second term

(the interference) in Eq. 3.27 becomes

∑
i 6=j

AiA
∗
j =

∑
i 6=j

eikF (Li−Lj) = cos(kF (Li − Lj)) + i sin(kF (Li − Lj)). (3.30)

Still considering only the interference term, but summing over all possible paths

from point a to point b which is identical to summing over all possible unit vectors
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in the imaginary plane (Fig. 3.33d), we find out the interference term is exactly 0.

However, if we consider a closed loop sub-path, L+, o-c-d-o in Fig. 3.33c, and

its time - reversed path L−, o-d-c-o, the interference term is 1! This means that

there is some enhanced probability for the particle to spend more time at point o,

implying that due to self-intersecting paths, the net conductivity must be lower than

the classical Drude conductivity, σ0 = ne2τel
m

, for some electron traversing from a→ b.

This is the phenomenological physics of weak localization.

3.2.4 Correction to conductivity

The weak localization correction, δσ to the conductivity, σ can be calculated as the

ratio of the volume swept by self-intersecting paths to the volume spanned due to

classical diffusion, given by

δσ

σ0

∼
∫ τφ

τel

λd−1
F vFdt

(Dt)d/2
, (3.31)

so

δσ ∼ e2

~

∫ τφ

τel

Ddt

(Dt)d/2
. (3.32)

The lower limit comes from the condition for conduction to occur, namely λF <<

lel, where τel is the corresponding time scale, while the upper limit τφ, is the time

scale corresponding to the phase coherence length Lφ =
√
Dτφ.

Doing the integral for d dimensions gives
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δσ ∼



e2

~ Lφ d = 1

e2

~ ln(
τφ
τel

) d = 2

e2

~
1
Lφ

d = 3,

(3.33)

and the total conductivity is written as

σ = σ0 + δσ. (3.34)

Notice that the integrals in Eq. 3.33 have different limiting behavior as Lφ →∞

(experimentally T → ∞) in different dimensions. For d = 1, 2 the integrals diverge

meaning that as time goes to infinity, it is guaranteed a particle will return to the

origin. In 3 dimensions, the integral goes to zero implying a particle on a random

walk is guaranteed NOT to return to its origin.

3.2.5 Application of a magnetic field

Upon the introduction of a magnetic field, the actions along time-reversed paths do

NOT accumulate identical phases anymore; the additional phase is the close-loop

integral of the vector potential defined as

Φ =

∮
~A · d~r =

∫
∇× ~A · d~S 6= 0. (3.35)

In two-dimensions, the famous Hikami-Larkin-Nagaoka formula [28] shows that

the conductivity decreases as

∆G = α
e2

2π2~
[ψ(

1

2
+
Bφ

B
)− ln(

Bφ

B
)] (3.36)
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in a magnetic field B perpendicular to the current, where ∆G = 1
ρ(B)
− 1

ρ(B=0))
,

Bφ = ~
4eL2

φ
, ψ(x) is the digamma function, and α = 1 for weak localization. Hence, I

have now explained why the resistivity in Fig. 3.33a decreases upon application of a

magnetic field.
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Chapter 4

Effect of synthesis conditions on the electrical

resistivity of TiSe2

This chapter is reproduced from my work Ref. [1]∗, with the exception of Sec. 4.2.1

where I have included additional details on maximizing reproducibility when synthe-

sizing polycrystalline TiSe2.

4.1 Introduction

Transition metal dichalcogenides (TMDCs) are a class of layered quasi-two dimen-

sional materials. Owing to their low dimensionality, they span a vast area of physical

properties. TiSe2 is one such TMDC that has attracted lots of attention due to its

complex electronic properties, including charge ordering [2], superconductivity with

intercalation of copper or palladium [29,30], and with the application of pressure [31]

or electrostatic gating [32]. On the other extreme, TiSe2 becomes insulating with

platinum doping [33], and displays potential Luttinger liquid states within domain

boundaries [34] revealing the versatility of the chemical tuning of this TMDC com-

pound.

The origin of the charge density wave (CDW) transition, occurring in TiSe2 around

202 K [2], has been an ongoing debate for decades, with proposed mechanisms in-

cluding an excitonic insulator phase [6] and the band-type Jahn-Teller effect [5]. For

∗Reproduced from Ref. [1] with permission. c©2019 American Physical Society.
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Figure 4.1 : A comparison of the resistivity (normalized to room temperature values)
for iodine-grown TiSe2 single crystals with the current i ‖ ab (dashed line) or i ‖ c
(open circles), and polycrystalline (solid line). The full triangle is used to identify
samples that are ‘As Grown, Air Quenched’ throughout the text.

the former, it can arise either in a small band gap semiconductor or a semimetal [6].

Below the CDW transition, angle-resolved photoemission spectroscopy (ARPES) ex-

periments point to a small bandgap. However, the normal state indirect band gap is

small, and its absolute value (positive or negative) is still under debate [7–15]. The

latter proposed CDW mechanism is independent of the free carrier concentration [5],

and this cannot account for the incommensurate diffraction spots seen in TiSe2 [2].

Recent experimental evidence favors the excitonic insulator scenario [8, 35–39], but

theories predict that the exciton condensation can either be a superfluid [40], or an in-

sulator [41]. Most recently, Watson et al. presented resistivity simulations, assuming

a semiconducting normal state [42]. Even without implementing CDW physics, these

simulations reproduced the anomalous peak observed in experiments around 150 K.

Huang et al. [17] showed insulating behavior for their polycrystalline TiSe2 samples

closest to stoichiometry, with metalicity induced by increasing Se deficiency [17],

while Campbell et al. recently revealed insulating behavior in iodine-free single crys-
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tals [18]. Historically though, single crystal samples grown by iodine vapor transport

have shown metallic behavior in resistivity [2, 13, 43]. Bearing all of the above in

mind, it is essential to reach experimental resolution of the intrinsic ground state of

TiSe2.

One problem faced in studying TiSe2 is the inconsistency in the physical prop-

erties from sample to sample. The temperature-dependent resistivity ρ(T) shows

discrepancy between single-crystalline TiSe2 grown by I2 vapor transport [2, 13, 43]

and polycrystalline TiSe2, synthesized by solid state reaction [15, 17, 29]. This is il-

lustrated by the normalized ρ(T) data of TiSe2 in Fig. 4.1. Even though the ρ(T)

behavior is qualitatively similar between single-crystalline and polycrystalline sam-

ples with a local maximum between 100 and 200 K, at the lower temperatures ρ(T)

varies drastically: metallic behavior (dρ/dT > 0) is registered in the single-crystalline

sample (dashed line and open circles), explained by either a doped semiconductor pic-

ture [42] or partial gapping of the Fermi surface [2], while semiconductor-like behavior

(dρ/dT < 0) is found in the polycrystalline sample (solid line). To our knowledge,

no systematic study of this discrepancy exists. It is imperative to understand the

intrinsic properties of TiSe2, and the effect of the synthesis conditions on the ob-

served resistivity measurements, before the more complex effects of chemical doping,

intercalation, or pressure can be understood.

It is well known that, for TiSe2 single crystals, the transport agent iodine might

partially substitute for Se and dope the system [2, 13]. Se deficiency also serves as a

method of self-doping [44]. Both dopants presumably contribute additional density of

states near the Fermi surface and hence enhance the conductivity on cooling. Here,

we report systematic variations in the electrical transport properties of polycrystalline

TiSe2 (without doping or Se deficiency), as a function of cooling rate, annealing time,
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and annealing temperature. By decreasing the rate at which samples are cooled post-

synthesis, an increase in low temperature resistivity is observed. We surmise that

the observed logarithmic temperature dependence is due to weak-localization (WL)

effects in low dimensional systems. Annealing polycrystalline samples post-synthesis

at low temperatures (200◦C) has a similar, but less drastic effect. Our results are

consistent with a possible intrinsic semiconducting ground state in TiSe2.

4.2 Methods

4.2.1 A practical guide to making reproducible TiSe2 samples

Upon starting this study, polycrystalline samples of TiSe2 were synthesized by solid

state reaction with a Ti:Se ratio of 1:2.02. The excess Se was added to compensate

for the partial evaporation inherent during synthesis. The samples were sealed in

quartz ampoules under partial Argon atmosphere and heated at 50◦C/hr to 650◦C,

followed by a 48 hour dwell at this temperature. After the 24 hour dwell, samples

were quenched to room temperature by pulling the ampoules out of the oven. After

quenching, samples were pressed into pellets appropriately sized for resistivity mea-

surements and sintered at 650◦C for 24 more hours. Then, the pellets were separated

into separate tubes where they were annealed at some predetermined temperature for

some predetermined time, and again quenched in the same manner.

Upon growing many sets of samples, I realized that depending on a variety of pa-

rameters, the resistivity of ‘As Grown’ samples varied greatly. This lead me down an

extensive path to maximize reproducibility. The first experiments I tried were varying

the time and temperature of post synthesis annealing. The effect of time and temper-

ature will be discussed in results and discussion, but for now I will focus on empirical
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Figure 4.2 : A comparison of experiments for which the surface of the samples were
(a) not polished before putting resistivity leads on and example for which samples
were (b) polished before attaching leads.

results that lead to reproducible trends. In one experiment where I annealed samples

in one day increments at 200◦C, I noticed that in general the resistivity increased, but

not always. For example, in Fig. 4.2(a) the lowest temperature resistivity decreased

between 3 and 4 days before increasing again. Empirically, I was able to get a more

consistent trend if I polished the surface of the samples post annealing and before I

attached my leads for resistivity measurements.

Knowing that polishing the samples before attaching resistivity leads affected my

measurements, I again set out to investigate the temperature and time dependence of

post synthesis annealing, this time polishing all my samples. Along the way, I tested

whether the thickness of the samples affected the resistivity. Unsurprisingly, it had

no affect on the resistivity. I also tested the dependence of how long I kept a sample

on my bench in an uncontrolled environment. It seemed overlong periods of time if I

left samples out in air with leads attached, the silver epoxy used for attaching leads

would react with the sample, so it is recommended to put the samples in a glove
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box if wanting to store for long periods of time. I also tested whether the lab policy

of curing (sparking) the leads by passing a large current through the sample had an

affect on the measured 4-point probe resistivity. No significant difference was observed

between sparking and not sparking the leads. However, between ’As Grown’ samples,

samples that had nominally been synthesized in the same way and had no additional

annealing procedure performed on them, there was large sample sample to variation

Fig. 4.3a. I found that instead of pelleting the samples, and putting them back in the

oven for sintering, I instead let the reaction of the loose powder to continue at 650◦C

for 24 hours such that the total time in the oven was consistent. I then pressed this

reacted powder (I first verified it was fully reacted by x-ray diffraction) into pellets

with no additional treatment before attaching resistivity leads. Using this method

of sample preparation with out sintering the pellets, seemed to reduce the sample

variation between batches as show in Fig. 4.3b.

Along the way, I also found out that how fast I cooled samples post-synthesis had

a drastic affect on the transport properties of the polycrystalline samples which are

covered in the subsequent sections. The optimal methods I used for preparing TiSe2

samples are outline in Sec. 4.2.2.

4.2.2 Experimental Methods

Polycrystalline samples of TiSe2 were synthesized by solid state reaction with a Ti:Se

ratio of 1:2.02. The excess Se was added to compensate for the partial evaporation

inherent during synthesis. The samples were sealed in quartz ampoules under partial

Argon atmosphere and heated at 50◦C/hr to 650◦C, followed by a 48 hour dwell at

this temperature. Subsequently, the samples were either cooled at different rates, or

annealed at different temperatures or different times under partial Argon atmosphere.
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Figure 4.3 : A comparison of experiments for which samples were (a) pelleted then
sintered, and samples that were (b) not sintered.

TiSe2 single crystals were grown by chemical vapor transport with I2 as the transport

agent. Ground elemental Ti and Se were sealed in quartz tubes with a ratio of 1:2.02

and 5 mg/cm3 of iodine. The tubes were then placed in a 550◦C - 650◦C temperature

gradient and held for 14 days, followed by controlled cooling to room temperature.

Structural characterization was done using a Bruker X-ray diffractometer with Cu

kα radiation. Refinements were performed using the FullProf software package [45].

The quantitative chemical composition was determined by electron probe microanaly-

sis (EPMA) using a JEOL JXA 8530F Hyperprobe located at Rice University, Depart-

ment of Earth, Environmental and Planetary Sciences, and equipped with a Schottky

field emitter and five wavelength dispersive spectrometers. The analytical conditions

were set to 15 kV accelerating voltage, 20 nA beam current, and beam spot size (∼300

nm). The Se Lα and Ti Kα X-ray lines were simultaneously measured using counting

times of 10 seconds per peak and 5 seconds per each lower and upper background,

respectively. Each element was simultaneously measured on two different spectrom-
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eters in order to increase the accuracy and the statistics of the measurement. Se Lα

was analyzed on two TAP diffracting crystals, and Ti Kα was analyzed on a PETL

and a LiFH diffracting crystal, respectively. The standards used to calibrate the

spectrometers were Se metal (Se = 99.9990 wt. %) and rutile (TiO2, where Ti =

59.9400 wt. %). For quantification, the ZAF matrix correction was used. The error

of analysis, determined after analyzing secondary standards is below 2%. The instru-

mental standard deviation (1σ) for Se and Ti in each analysis is 0.24% and 0.47%,

respectively. The quantitative analyses given in element wt. % were converted to

atomic ratios, and then the stoichiometry of the analyzed compound was normalized

to one Ti atom.

Polycrystalline samples were pressed into pellets without sintering, and shaped

into bars for resistivity measurements. DC electrical resistivity measurements were

made in a Quantum Design Physical Properties Measurement System with a stan-

dard four-point probe technique for temperatures 2−300 K. The technique described

in Ref. [46] was used for resistance measurements with curent i ‖ c. Hall coeffi-

cient measurements were performed at constant temperature for selected tempera-

tures sweeping fields from -9 T to 9 T to extract the Hall resistance.

4.3 Results and Discussion

4.3.1 Post synthesis cooling rate r

When trying to improve the quality of crystals (e.g. decrease extrinsic disorder),

two commonly used techniques for metals are: (i) slow cooling to avoid quenching in

disorder, and (ii) post synthesis annealing below the synthesis temperature to relieve

microstrain and increase grain size [47]. In the present study, both methods were
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employed to minimize disorder. By contrast, quenching from high temperature was

used to study the effect of enhanced disorder.

The first experiment was dedicated to testing the effect of the cooling rate r post

synthesis on the electrical resistivity. Three samples were synthesized as described in

the Methods. Sample A was air quenched (r > 2000◦C/hr), sample B was fast-cooled

to room temperature at a rate r = 20◦C/hr, and sample C was slow-cooled at r =

4◦C/hr. The scaled semi-log ρ(T )/ρ(300 K) plot is displayed in Fig. 4.4(a). While all

three samples show a nearly 5 time increase in ρ/ρ(300 K) on cooling to 150 K, the

air-quenched sample A displays a broad local minimum centered around 60 K, while

both samples B and C exhibit nearly two orders of magnitude resistivity increase

down to 2 K. Hall coefficient values (not shown) are negative at low temperatures,

consistent with reported data [2, 18]. This rules out the possibility of a change in

dominant carrier type as the cause of change in the low temperature resistivity. The

large change in the resistivity as a function of cooling rate prompted the need to

check sample composition for possible non-stoichiometry. The results of the EPMA

analysis, displayed in Table 4.1, indicate that all three samples are stoichiometric

(to within a 1% error). This does not rule out that the resistivity changes between

the three samples may be due to composition variations below the EPMA resolution

limit, or, as discussed below, conductive grain boundaries and WL effects. Room

temperature X-ray diffraction data (Fig. 4.5) does not show any measurable change

in either the peak position or peak shape among the three samples, consistent with

invariable lattice parameters.

When plotting ρ(T ) on a semi-log scale (Fig. 4.4(b)), all three samples A-C show

a −lnT dependence of ρ(T ) upon cooling below the broad local maximum near 150 K.
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Since no magnetic impurities are present in any of the samples, the −lnT increase of

ρ cannot be attributed to Kondo or other extrinsic magnetic effects. In TiSe2, the

low dimensionality enhances two quantum corrections to the resistivity: Altshuler-

Aronov corrections due to the coherent scattering of electrons by impurity-induced

Friedel oscillations [48–50], and WL due to self-intersecting scattering paths [51, 52].

Upon an application of finite transverse magnetic field H ⊥ i, the shape of the

magnetoresistance MR = [ρ(H) − ρ(0)]/ρ(0) is insensitive to Altshuler-Aronov cor-

Figure 4.4 : (a) A comparison of the normalized resistivity ρ/ρ(300 K) as a function
of temperature for samples: A, air quenched; B, cooled at 20◦C/hr; C, cooled at
4◦C/hr. (b) A semi-logarithmic plot of ρ(T). (c) and (d) show the magnetoresistance
MR measured at 15 K for the polycrystalline samples A-C and the single crystal,
respectively.
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Cooling rate r (◦C/hr) Se

A: > 2000 (air quench) 2.02± 0.01

B: 20 2.01± 0.01

C: 4 2.00± 0.01

Table 4.1 : EPMA results for polycrystalline TiSe2 with variable cooling rates post
synthesis corresponding to Figs. 4.4 and 4.5. Data is normalized to 1 Ti.

rections, while WL can be suppressed in finite magnetic fields leading to a negative

MR. Fig. 4.4(c) shows a pronounced peak of MR centered at zero field for samples

A-C, which is typical for WL effects. However, the absolute MR values for the dif-

ferent samples reflect not only the WL effects, but also extrinsic effects likely due to

the different cooling rates. Therefore, possible explanations for the low temperature

increase in resistivity ρ(T ) with decreasing r include disorder, or grain boundaries

more conductive than TiSe2. It has been shown that grain boundaries in polycrys-

talline samples can be conductive [53]. Slow cooling (small r) would be expected to

increase grain size, reducing disorder and the number of grain boundaries, and thus

increasing the low temperature resistivity.

For comparison, the single crystal sample with iodine inclusions does not show

WL behavior either in ρ(T) or in MR (Fig. 4.4(d)). EPMA reveals a 1% iodine

impurity per formula unit in the single crysalline samples. In our single crystal

sample, the iodine inclusions might dope the system and dominate the transport

property which leads to a suppression of WL behavior. A recent electrical transport

study on iodine-free TiSe2 single crystals does show a large increase in electrical

resistivity on cooling, qualitatively consistent with what is seen in our polycrystalline
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Samples B and C [18]. It will be informative to investigate the magnetic field effects on

the transport properties in these iodine-free single crystals to quantitatively analyze

the characteristic parameters from the WL correction. The WL effect noted here for

the first time in TiSe2 had been previously reported in another TMDC, VSe2 [54].

Figure 4.5 : Room temperature powder X-ray diffraction patterns for the polycrys-
talline samples (symbols), with refinements shown as solid black lines, and the differ-
ence between measurement and calculation shown in red. The vertical marks below
each pattern correspond to the calculated peak position for TiSe2. Inset: a zoomed
in view of all three of the measured patterns plotted.
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Cooling samples slowly after synthesis was expected to decrease the extent of

disorder in the crystals and increase the average grain size. In an attempt to char-

acterized disorder, we turn again to the X-ray refinements. There are at least four

contributions to peak width in powder X-ray diffraction [47]: instrumental broad-

ening, thermal vibrations, grain size, and microstrain. Instrumental broadening is a

function of beam optics and geometry. Thermal vibrations increase the peak width

with increasing temperature. Peak width increases with reduced grain size and in-

creasing microstrain. No variations in the X-ray peak widths are measured in the

current pollycrystalline samples (inset of Fig. 4.5). Differential instrumental or ther-

mal peak broadening can be ruled out, since all samples were prepared and measured

at room temperature on the same instrument. Because all peaks are of similar width,

no difference due to grain size or microstrain can be resolved between samples A, B

and C.

4.3.2 Post synthesis annealing time t

The next set of experiments focuses on the effect of annealing time t. Different pieces

of sample A were annealed at T = 200◦C, for times t ranging from 1 to 6 days, followed

by air quenching. The low anneal temperature was chosen to relieve quenched-in dis-

order without adding more disorder from quenching at a high temperature. Resistivity

shows a general upward, albeit small trend at low temperatures for increasing t (Fig.

4.6a). As before, no change is recorded in the X-ray peak width and lattice parame-

ters (not shown). By comparison with the cooling rate r (Fig. 4.4 and Table 4.1), the

change in the low temperature resistivity is much smaller when varying the annealing

time t at T = 200◦C: at the lowest measured temperature, the relative change in ρ as

a function of r (Fig. 4.4) is ρC/ρA ∼ 30, even for stoichiometry changes less than 1%
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(Table 4.1). The corresponding change in ρ at low temperature with annealing time

t (Fig. 4.6) is ρ(6days)/ρA ∼ 1.5 with larger composition variation (Table 4.2). The

latter reinforces the idea of the possibly intrinsic semiconductor state in TiSe2, which

is approached with longer annealing. Conversely, the role of stoichiometry variations,

while unclear, appears to be minimal compared to the disorder and WL effects.

A similar study with anneal time was done on single crystals. The normalized

ρ(T) is plotted in Fig. 4.6b. Annealing did not change the low temperature transport

properties when compared to the polycrystalline samples. EPMA studies looking for

only Ti and Se show all similar ratios as seen in Table 4.2. However, as stated earlier,

EPMA measurements reveal iodine inclusions around 1% in single crystals for which

the Ti:Se ratio is found to be 1:2. The additional density of states near the Fermi

energy due to iodine accounts for the metal-like low temperature electrical transport

down to 2 K in single crystalline TiSe2.

4.3.3 Post synthesis annealing temperature T

The next experiment aims to purposefully induce disorder into the TiSe2 by quench-

ing, followed by annealing at different temperatures T . Different single crystal pieces

were annealed for 2 days at different temperatures T between 200 and 1200◦C. After

annealing, all samples were quenched. Normalized ρ(T) data is plotted in Fig. 4.7.

For anneal temperatures T below the growth temperature Tgrowth = 650◦C (tri-

angles, Fig. 4.7(a)), the low temperature resistivity of the polycrystalline samples

increases compared to that of the as-grown sample, much the same as the result

shown in Fig. 4.6(a). For anneal temperatures at (square) or above (star) the synthe-

sis temperature, the low temperature resistivity decreases. However, below 20 K the

resistivity increases on cooling for all annealing temperatures T . Our EPMA data
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Figure 4.6 : (a) Comparison of polycrystalline ρ/ρ(300 K) for TiSe2 samples annealed
at 200◦C in one day increments up to six days. With increase in anneal time, the low
temperature resistivity increases. (b) The same comparison for TiSe2 single crystals.
The low temperature resistivity is dominated by iodine impurities.

shows no systematic loss of selenium with increased anneal temperature (Table 4.3),

whereas X-ray diffraction patterns (Fig. 4.8) indicate significant peak broadening for

samples quenched from 1200◦C (star) indicating microstrain caused by quenching at

such a high temperature. Though there are small variations in lattice parameters,

the variations are less than 0.1% of the as grown (upwards triangle), so the change

in resistivity is not due to a change in the unit cell.

For comparison, analogous data is shown in Fig. 4.7(b) for TiSe2 single crys-

tals. Besides the differences in low temperature resistivity, which can be explained
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Figure 4.7 : (a) A comparison of normalized ρ(T) for polycrystalline TiSe2 samples
annealed at different temperatures post synthesis. For anneal temperatures below
the growth temperature, there is an increase in normalized ρ(T), while at higher
temperature anneals, their is a decrease in low temperature normalized ρ(T). (b) The
corresponding study for single crystals.

by iodine impurities, the normalized ρ(T) shows qualitatively similar features as the

polycrystalline samples. The trend of decreasing peak height below the CDW tran-

sition is qualitatively similar to that previously attributed to non-stoichiometry or

disorder, or both [2, 35]. Though a Se deficiency is seen in the sample annealed

at 1200◦C, the polycrystalline counterpart suggests that the decrease in the anomaly

height is not due to doping, but rather an increase in quenched disorder. Remarkably,

the 1200◦C single crystal (star, Fig. 4.7(b)) shows metallic behavior for the whole

temperature range, and no anomaly in ρ(T). Consistent with the observations of the
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Figure 4.8 : Zoomed in comparison of X-ray patterns for different anneal tempera-
tures. At 1200◦C there is an increase in disorder from microstrain as evidence by
severe broadening of the peaks.

most substantive structural changes at this temperature (Fig. 4.8), this signals that

self doping, disorder, grain boundary freezing, or more, inhibit the plausible intrinsic

semiconducting behavior of TiSe2 at excessively high annealing temperatures.

In summary, our results on polycrystalline TiSe2 are consistent with this system

being a small band gap semiconductor at low temperatures. When synthesis condi-

tions favor disorder, the semiconducting behavior is concealed by enhanced metallic-

ity. Though all polycrystalline samples in the current study are close to stoichiometry,

the small band gap causes even the smallest deviations from the 1:2 stoichiometry to

add impurity states, which, in turn, affect the low temperature transport. These im-

purity states become localized at low temperature, resulting in a logarithmic increase

of the resistivity on cooling rather than the exponential increase expected from an ac-

tivated gap. These observations are consistent with transport in polycrystalline TiSe2
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Anneal t Polycrystal Single Crystal

(days) Se Se

As Grown 2.00± 0.02 2.013± 0.02

2 2.03± 0.02

3 2.03± 0.03 2.017± 0.02

4 2.01± 0.02

5 1.98± 0.02

6 2.00± 0.03 2.012± 0.02

Table 4.2 : Se normalized to 1 Ti in TiSe2 samples annealed at 200◦C in one day
increments up to six days corresponding to Fig. 4.6.

Anneal T (◦C) Polycrystal Single Crystal

Se Se

As Grown 2.00± 0.02 2.013± 0.007

200 2.03± 0.05

400 2.02± 0.04 2.04± 0.01

650 2.026± 0.006 2.05± 0.01

1200 2.03± 0.02 1.882± 0.007

Table 4.3 : EPMA results for TiSe2 samples annealed for 2 days at variable temper-
atures corresponding to Fig. 4.7.
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emerging from both semiconductor physics and localization physics, more commonly

discussed in disorder metals.

4.4 Conclusions

We have systematically studied the effects of the cooling rate r, and temperature-

and time-dependence T and t of post-synthesis annealing on the observed electrical

transport properties of TiSe2. For the first time, the weak-localization effect is found

in polycrystalline TiSe2 samples, embodying the quantum corrections to the electrical

transport properties in low dimensional systems. At low temperatures results on

polycrystalline TiSe2 are consistent with a small gap semiconductor behavior, with

low temperature ρ(T ) and MR dominated by the weak localization effect due to

residual impurities. This study is intended to serve as a guide in the synthesis of

TiSe2, by pointing out the intrinsic and extrinsic properties as a function of the

preparation method.
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Chapter 5

Outlook

While I have identified synthesis conditions that systematically vary the electrical

transport properties measured in TiSe2, it has been hard to pin point the micro-

scopic mechanism responisible for such variations. Since all samples were very close

in stoichiometry, I hypothesize that some of the variation may come from local struc-

tural disorder. While powder x-ray diffraction is only sensitive to the average global

structure, pair distribution function analysis, a total scattering technique is indeed

sensitive to local structure. To further investigate the role of local disorder in TiSe2,

we have applied for beam time to study the local structure of TiSe2 samples that vary

most in transport.
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