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I. Introduction

A. Motivation

The techonological importance of the rare earths has
increased greatly in scope in recent years. Although the
uses of the pure elements are still limited, compounds of the
rare earths, especially with the iron-group elements, are
now finding technological applications. Permanent magnet
materials such as SmCo5 have very high energy products,
which means that they have large remanent magnetizations
and large coercive forces. Their large remanent magneti-
zations make them suitable for permanent magnet materials,
and because of their high coercive forces, these materials
resist demagnetization and can be fabricated in shapes that
would be impossible with normal permanent magnet materials.

The rare earth garnets are, presently7l, the most
promising magnetic bubble materials. Magnetic bubble domain
devices require materials that are ferromagnets (or ferri-
magnets) with fairly high uniaxial anisotropies and low
remanent magnetizations. Other considerations are the sizes
of the bubble domains and the width, mobility and structure
of the domain walls.

The rare earth-iron compounds, TbFe2 in particular,
exhibit very large room temperature magnetostriction72. It
has been shown in the laboratory that thin films of TbFe2

can function as microwave frequency ultrasonic transducers



2.
when deposited on quartz or ruby substrates73. In some
cases, the films were found to have a remanent magnetization
at room temperature, which allowed them to function even in
the absence of a bias field.

The purpose of this thesis is to explore the magneto-
elastic interactions in single-crystals through the
dependence of the adiabatic elastic constants on the sample
magnetization. The research reported in this thesis is a
part of a larger program being carried out in Brazil at
 Universidade Estadual de Campinas (UNICAMP) and at Rice
University. The goal of the program is to explain the
magnetoelastic contributions to the elastic constants of
the elements gadolinium through erbium using the theoretical
model presented in this thesis. Work is now in progress at
UNICAMP on the elements Tb, Ho, and Er. It is clear that
an understanding of the magnetoelastic behavior of the pure
elements will greatly facilitate the treatment of the more
technologically important compounds.

The theoretical model that was used to account for
the dependence of the elastic constants treated the exchange
interaction in the molecular field approximation and defined
the elastic constants in terms of thermodynamic quantities
which are easily calculable in the theoretical model.
Because of the complexity of the calculations, they were all
done numerically on a high-speed digital computer. This

approach was adopted because it is simpler and more
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appropriate for high temperatures than a fully quantum
mechanical treatment of the interaction of the quantized
phonon and magnon fields. |

Tt should be pointed out that the model also allows
other properties such as the magnetization, magnetic aniso-
tropy, and the static magnetostriction to be cplculated
(numerically, of course). The experimentally obtained
quantities are compared with numerically calculated
quantities in Chapter IV.

Because of the success of this model in the pure Dy
metal, it is hoped that the model proposed in this thesis
will, with some changes, of course, find use in more applied
problems. For example, the role of the magnetostriction in
the permanent magnet materials is not fully understood, and
could be a mechanism responsible for the fact that the energy
products that are experimentally realized are less than the
theoretical maxima. In bubble materials, the magneto-
striction plays a part in the formation and behavior of the
domain walls, and a better understanding of its role might
indicate which materials will support smaller, more mobile
bubble domains.

B. History

The early work on the bulk magnetic properties of

.9 - -~ .
the rare ear Sments wWas arried ocut at Ames Laboratory

)]
)
K

at Iowa State by Spedding and his coworkers. Rhyne™ has
given a good review of the bulk properties of the rare earth

metals which includes many of the results of these early
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investigations. Until ion-zxkchange techniques for separating
the rare earths were developed at Ames Laboratory, the
difficulty of obtaining samples of sufficient purity had
made studies of the fundamental properties of the rare earth
elements almost impossible. As reasonable quantities of the
pure metals started to become available, measurements of the
bulk properties of the heavy rare earths began at Ames Labor-
atory. The magnetization, specific heat, and resistivity
measurements that were made on polycrystalline and later on
single-crystal samples clearly indicated that the magnetic
behavior of the metals below room temperature was fairly
complicated.

C. The Ordered Magnetic Phases of the Heavy Rare Earths

The exact nature of the magnetic ordering in the heavy
rare earth metals remained a mystery, however, until single-
crystals of sufficient size became available for neutron
diffraction studies. The neutron diffraction experiments of
Koehler and his coworkers at Ock Ridge National Lahoratories
revealed the complex magnetic orderings of the heavy rare
earth metals. The article by Koehler2 gives a good review
of the experimentally determined ordered phases. Figure I-1
shows, schematically, the magnetic orderings that are found
in the elements Gd-Tm. In all ordered phases of the heavy
rare earths, all the moments in a given plane perpendicular
to the c-axis are ferromagnetically aligned, but in the

periodically ordered phases, the directicn and magnitude of
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the ordered moments are functions of displacement along
the c-axis.

The wide variety of magnetic orderings is probably
the most spectacular property of the rare earths. Each
element exhibits a paramagnetic phase (PM) at high temper-
atures, but the orderings at lower temperatures are widely
varied. All the heavy rare earths (Gd-Tm) have an antifer-
romagnetic phase, except for Gd, which is ferromagnetic
below its Curie temperature (TC), 293K. However, none of
the heavy rare earths exhibit the simple Neel antiferro-
magnetic ordering. Their observed behavior in their
antiferromagnetic phases varies from a simple helical order
in Dy, Tb, and Ho, to a combination, in Er, of helical order
of the basal plane components of the moments and square-wave
modulation of the c-axis components.

Dy and Tb are the simplest of the heavy rare earth
metals. They are simple helical antiferromagnets (HAF)
between their Neel temperatures (T, ). 197K and 229 K,
respectively, and their Curie temperatures. Below their
Curie temperatures, 85K and 221K, respectively, they are
simple ferromagnets.

Ho has the same structure as Dy and Tb in its HAF
phase, but below its Curie temperature, 20K, it is a conical
ferromagnet with the c-axis as the axis of the cone. The
cone angle is large because the anisotropy tends to hold

the moments in the basal plane.
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In Er, the sign of the second order anisotropy has
changed3, so the c-axis is the easy axis of magnetization.
Er has two distinct antiferromagnetic phases. 1In the phase
just below the Neel temperature, 85K, there is no spontan-—
eous moment in the basal plane, and the magnitude of the
spontaneous moment parallel to the c-axis varies sinusoid-
ally with displacemant along the c-axis. This phase is
generally ' referred to as having the c-axis modulated (CaM)
structure. As the temperature is lowered from the Neel
temperature, the modulation of the c-axis moment becomes
less sinusoidal and more like a square-wave. At the second
transition temperature, 53K, Er enters the quasi-antiphase
domain structure (QAD). The components of the moments along
the c-axis become square-wave modulated and the basal plane
components order into a spiral. At its Curie temperature,
20K, Er becomes a conical ferromagnet with the c-axis as the
axis of the cone. The cone angle is smaller than the one
found for Ho.

Tm has not been studied as extensively as the other
heavy rare earth metals, because it is relatively rare. Its
magnetic orderings are known, however. Below its Neel
temperature, Tm has the CAM structure. At its Curie temper-
ature, the sinusoidal modulation squares up and becomes an
asymmetric square-wave modulation of the c-axis component of
the moment. The structure has three layers with moments

parallel to the c-axis and four layers anti-parallel to the



c-axis, so there is a net spontaneous moment.

D. The Indirect Exchange Interaction

Since the 4f electrons are in an inner shell, the
direct exchange between the 4f electrons on different ions
is negligible. The actual mechanism for the exchange inter-
action is the indirect (RKKY) exchange interaction4_6,
which couples the moments on different ions through their
mutual interactions with the conduction electrons.

The long-range oscillatory nature of the indirect
exchange interaction is responsible for the periodic
orderings that occur in the rare earths, but the wide range
of orderings that has been observed is due to the interplay
of the exchange interaction with the anisotropy and magneto-
striction. The ordered phases of Dy and the phase
transitions that occur are discussed in more detail in

Chapter III.

E. Magnetic Anisotropy

211 the heavy rare earth metals except for Gd are
highly anisotropic, magnetically, and the single-ion aniso-
tropy dominates the two-ion anisotropy. The single-ion
anisotropy is due to the interaction of the quadrupole
moments of the 4f electron cloud with the crystalline
electric field. Since Gd3+ is an S-state ion, the guadrupole
moment of its electron cloud is zero and its single-ion

anisotropy vanishes.

Experiments investigating the anisotropy are generally
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only done on Dy or Tb, since all the other highly aniso-
tropic rare earths are periodically ordered in their
ferromagnetic phases, and theoretical interpretation of the
experiments is difficult. Dy and Tb are very similar, but
Dy will be chosen as an example, since it is the element
under investigation in this thesis.

At low temperatures, the c-axis of Dy is a very hard

magnetic axis7, and fields of 60kOe can only 1lift the
8

magnetization out of the basal plane by an angle of 5°-6°
The anisotropy energy, which is discussed more fully in
Chapter III, can be calculated from a measurement of the
magnetic field dependence of the angle that the magnetization
makes with the basal plane at low temperatures. Equiva-
lently, the anisotropy energy can be calculated from a
measurement of the torque that is necessary to hold the
sample stationary when a field is applied along the hard
magnetic axis. Accounting for the temperature dependence

of this anisotropv eneragv is a long standing problem that
still has not been completely explored. Experimentally,
difficulties are encountered because of the large magnetic
fields which must be applied to the sample. Theoretically,
it is hard to separate the magnetostrictive contribution to

the effective anisotropy from the part due strictly to the

~ an
- |RS]
-

anisotropy. The Callen and Callen”’™ " theory accounts

quite well for the observed temperature dependence of the

anisotropy energy, but the problem of the magnetostrictive
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contribution to the energy remains.

F.  The Callen and Callen Theory of Magnetic Anisotropy

The Callen and Callen theory takes the Zeeman and
exchange interactions as the zero-order Hamiltonian. The
exchange interaction is considered in the molecular field
approximation, and the single-ion anisotropy is treated in
first-order perturbation theory, an approximation which
should be valid in the ordered phases where the anisotropy
measurements were carried out. The form of the crystal

field Hamiltonian, which is derived in Chapter III, is:
.y _ 0.0 0.0 0.0 6 + _
3%, (1) = onz(?ri) + P,0, (31) + PO, (31) + P6Q66(3i) I-1

where the Q?'s are the angular momentum tensor operators
which are discussed and defined in Appendix A.

Since the anisotropy energy is calculated from
quantities measured under static conditions, the free energy
must be a minimum. In order to calculate the free energy,
it is necessary to calculate the thermodynamic average of
the tensor operators in the representation in which the
zero-order Hamiltonian is diagonal. The zero-order Hamil-
tonian is diagonal in the coordinate system in which the
magnetization lies along the z-axis. Since the rotational
properties of the tensor operators are well known, the
problem reduces to the problem of finding the thermodynamic
average of the operator Qg. This is the central problem in

the Callen and Callen theory of magnetic anisotropy. By
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making the approximation that J= o, Callen and Callen9 find

a closed form expression for the thermodynamic average:

0 N

-1,
I .,.,,(L "(0))
_ -1 o Ta+l/2

I-2

1) 5@ (o))
where Iz+l/2 is the modified Bessel function of half-
integral order, L(x) is the Langevin function, and ¢ is the
reduced magnetization, M/Mo. The temperature dependence of
the second and fourth order anisotropy constants of Dy has
been measured and fit to the Callen and Callen theory. The
fit, shown in the article by Rhynel, is very good.

G. The Callen and Callen Theory of Magnetostriction

The static magnetostriction has been studied in G4, Tb,
and Dy, and less “ithoroughly in Ho and Er. The experimental
magnetostriction at a fixed temperature in the paramagnetic
phase varies as the square of the magnetizationll’lz. The
magnetostriction is also anisotropic; it depends
on the orientation of the magnetization relative to the
crystallographic axes.

Theoretically, the single-ion magnetostriction arises
from the strain dependence of the crystalline electric
field, and from the rearrangement of the conduction
electrons in response to the strainsl3. The two-ion magnet-
ostriction arises from the strain dependence of the exchange

interaction.

Following the treatment of Callen and Callenl4, the
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lowest order terms in the single-ion magnetoelastic Hamil-
tonian (linear in the strain and bilinear in the angular

momentum operators) are, for hcp symmetry:

I oy _ @2 _ol 02 _0,2,.0,>
GCme(l) = (Bl e + B, e )QZ(Ji)

- 8Y2Y ot Y o -

BY “(e) 0, (F;) + ef 05,(F;))  I-3
€2, € 4t € o~

- %% (e5 05 (F)) + ey 053 ()

This Hamiltonian is derived from group theoretical consid-
erations that are presented in more detail in Chapter III.
Basically, the symmetry strains ea’l, ea,2’ ef, eg, ef, and
e§ are combinations of the Cartesian strains that transform
according to the irreducible representation with which they
are labeled, and the tensor operators transform according

to the same row of the same irreducible representation as

the symmetry strains that they multiply.

The Callen and Callen14 theory of magnetostriction is
concerned with the prediction of the dependence of the
single-ion magnetostriction on the temperature and the
magnitude and orientation of the magnetization. The two-ion
magnetostriction depends on the two-ion correlation functions
such as < Ji-Jj > which are not reliably handled in the
molecular field approximation, especially at low temperatures.
The problem of the single-ion magnetostriction is very

similar to the one encountered in the treatment of the

single-ion anisotropy. The magnetoelastic interaction is
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treated in first-order perturbation theory, so the thermo-
dynamic averages of the tensor operators that were derived
in the treatment of the anisotropy can be used directly in
the magnetostriction problem.

The dependence of the magnetostriction on the magnetic
field and temperature is contained in the thermodynamic
average of Qg(ﬁ). For small magnetizations, such as those

at moderate fields in the paramagnetic phasel3:

0 0 ~ -1
<Qy > = <Qy g g I5/p(L T(0))

%02 (/273 J(23-1)) 1-5

so the Callen and Callen theory correctly predicts the
dependence of the magnetostriction on the magnetization in
the paramagnetic phase.

The magnetostriction can be characterized at all

temperatures by the six magnetostriction constantsll’l4;

0' Xg'o'kf'zlxg'Z,XY’z. As,Z and the direction of the

Ay
magnetization. The two constantskf’C and Ag'e are strictly
of two-ion origin, whereas, formally, the other four are of
mixed origin. Assuming that the single-ion magnetostriction
dominates the two-ion magnetostriction, the Callen and

Callen theory predicts the dependence of these four mixed

constants on temperature and magnetization:

Ai’j(o,T) = 2173 (r=0) I, (L o(m,T)) I-6
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Experimentally, these constants are determined at a
constant temperature from the change in a given strain as
the (constant) magnetization is rotated from one specific
direction relative to the crystalline axes to another.

(see Clark et glll for the definitions of the iz’j's and for
the details of their measurement.)

The magnetostriction constants that require the
magnetization to be rotated from a hard to an easy axis can
only be measured in the paramagnetic phase, since the
magnetization can not be completely aligned along a hard
axis in an ordered phase, because of the large magnetic
anisotropy. Thus, the only constant that can be measured
over the entire temperature range, 4.2K to room temperature,
is AY’Z, which is measured by rotating the magnetization
from the a-axis to the b-axis.

As Figure I-2 shows, the Callen and Callen theory
accounts well for the observed temperature dependence of
AY'z in Dy. Rhyne et 2112 found that., to fit the measured
basal plane magnetostriction in Tb, however, it was
necessary to include a term of fourth-order in the angular
momentum operators, AY’4. The temperature dependences of

2 4

the two constants AY*“ and A\Y’" of Tb fit the predicted

temperature dependences 15/2 and 19/2, respectively, fairly

well. (See Rhynei.)

H. Magnetoelastic Contributions to the Elastic Constants

The magnetoelastic interaction manifests itself in
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Figure I-2 Comparison of the theoretical and

experimental temperature dependences
of the magnetostriction in Dy.
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ways other than the static magnetostriction just discussed.
The elastic constants exhibit anomalies at the magnetic
phase transitions that are of magnetoelastic origin, for
example.

There are five independent elastic constants in the
rare earths that have hcp structuresls, but there are more
than five independent ways to measure the elastic constants,
so it is possible to check the consistency of the
measurements. Figure I-3 shows some of the combinations of
propagation directions and polarizations that are possible,
and how the velocities that are measured in these situations
are related to the five elastic constants.

The behavior of the elastic constants of ErlG, whose
magnetic phases were discussed in a previous section of
this chapter, is particularly striking. The typical behavior
of the longitudinal elastic constants, shown in Figure I-4,
is a discontinuous change at the transition temperature.

The velocities that areshown in the figures are the same as
those defined in Figure I-3. The behavior of the shear
elastic constants, shown in Figure I-5, is also quite
pronounced. The behavior of C44 is particularly anomalous
since the normal behavior at a phase transition is either
a change in slope or a small dip. The mixed constants, C12
and C13, are not shown because their anomalies at the

transitions were small.

The elastic constants of Tb ! as a function of
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temperature are shown in Figures I-6, 7, and 8. The behavior
of the elastic constants of Tb is considerable different from
that of Er. There is a dip in C33 at each of the transitions,
but at higher and lower temperatures, C33 depends more oOr

less normally on the temperature. on the other hand,

€11
has small peaks at the transition temperatures, and at lower
temperatures, Clldecreases with temperature , in contrast

to the normal increase as the temperature is lowered. The
shear elastic constants have small anomalies superimposed

on the normal temperature dependence.

The measurements of the elastic constants of Ho18 were
only made between 77K and room temperature, soO only the
transition from the paramagnetic phase to the HAF phase is
included in the figures. C33, shown in Figure I-9, has
such a large dip at T

N that even at 77K, it still has not

reached its peak value, which occurred at about 170K. Cll’
shown in Figure I-10 is affected relatively little, showing
only a change of slope at TN' The shear constants, shown
in Figures I-1ll and I-12, show larger changes in slope but
little else.

The elastic constants of Dy, shown in Figures I-13,
14, and 15 , were measured by Rosen and Klimker at temper-

AN T o} t vy AF e Yonal
300K, The behavicr ¢©f the iongi-

[«1}

atures between 4.2K an
tudinal elastic constants of Dy at the PM-HAF phase
transition is similar to the behavior in Tb. This fact is not

unexpected since the HAF phases of the two elements are so
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similar. The anomalies in the elastic constants of Dy at
TC are more pronounced than the anomalies in Tb, as might be
expected since the HAF phase of Dy is much more energetically
stable than the HAF phase of Tb. The anomalously large
changes in the elastic constants at TC are undoubtedly due
in part to the magnetostrictive strains that change the
symmetry of the crystal at the transition53.

The anomalous behavior of the elastic constants at the
transitions is accompanied by anomalous peaks in the atten-
uationlﬁ. Figure I-16 shows the measured attenuation of
longitudinal elastic waves propagating along the c-axis of
Er. Similar results have been found for the other rare
earths elementszo’Zl. The attenuation also exhibits an
intriguing dependence on the magnetic field, as is shown in
. Figure I-17. It shows the echo height in szz, as a function
of temperature, measured with a constant :applied field.

Since the HAF phase of Tb is suppressed by fields larger than
1kOe, only one peak in the attenuation is seen for fields
greater than 1lkOe, and the temperature at which the peak
occurs moves to higher temperatures as the field is
increased.

I. Southern and Goodings" Theory of the Magnetoelastic

Contributions to the Longitudinal Elastic Constants
in the Paramagnetic Phase of the Heavy Rare Earths

The anomalies in the elastic constants that were

discussed in the last section are all due to the
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magnetoelastic contributions to the elastic constants with
zero applied field. The main interest of this thesis is the
contribution of the magnetoelastic interaction to the
elastic constants in the paramagnetic phase, as a function
of the sample magnetization. The treatment of this problem
requires an extension of the usual Callen and Callen theory
of magnetostriction since the definition of the elastic
constants that is appropriate for this problem is:

2

- o U -
izl T, =7
€i59%1
where €5 5 = aui/axj is the unsymmetrized strain tensor. One

consequence of this definition of the elastic constant is
that the internal energy U must have terms in it that depend
on the magnetization and that are bilinear in the strains,
if the magnetoelastic contribution to the elastic constants
is to be nonzero. Callen and Callen14 were concerned with
the static magnetostriction which only depends on terms in
the free energy that are linear in the strains and that
depend on the magnetization. Thus, their treatment predicts
a vanishing magnetoelastic contribution to the elastic

constants.

Southern and Goodings23 gave the first comprehensive
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constants of the heavy rare earths. Their approach,
discussed in more detail in Chapter IiI, involved the appli-

cation of finite strain 1:heor_3;24"26 to the heavy rare earths.
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Finite strain theory, also discussed in Chapter III,
requires that the total energy be expressed in terms of a
certain set of quantities. The application of finite strain
theory by Southern and Goodings entailed the replacement of

the usual (symmetric) part of the infinitesimal strain

tensor:
R Pl A I I-8
iz 2 8% o

with the finite strain tensor:

. U, au
= %(__3'_4.__1)4.%. Z_gx_k_a_xk. I-9

J i k i 3
and the replacement of the usual angular momentum operators,

3, with:
J. = 7 (8§.. = w:=) Jo I-10

where w; 5 is the anisymmetric part of the infinitesimal
strain tensor, which is usually neglected in classical
elasticity theory. The majority of Southern and Goodings'
paper is concerned withthe effect of the inclusion of the
antisymmetric part of the strain tensor, Wy 57 on shear waves
whose velocities are degenerate in the usual elasticity
theory, but which are not degenerate when the rotational
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section of the paper, however, they consider the effect of
the inclusion of the finite strains themselves on the longi-

tudinal elastic constants in the paramagnetic phase. Since
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e2, I-11
11

=

R
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+
N b=

the straightforward substitution of the finite strains for
the infinitesimal strains is sufficient to give a nonzero
magnetoelastic contribution to the longitudinal elastic
constants.

Several investigation527_31 of the longitudinal
elastic constants in the paramagnetic phase were motivated
by the theory of Southern and Goodings. The theory of
Southern and Goodings allows certain combinations of the
magnetoelastic constants to be determined from the experi-
mentally measured contributions to the ela;tic constants Cll
and C33. The static magnetostrictive strains can then be
calculated from these constants and compared to those
obtained experimentally. Figure I-18 shows the results of
this calculation for the strain él in 5039731,  The calcu-
lated strain is more than an order of magnitude larger than

the measured strain. On the basis of this result and other

similar results for Dy29 and for Tb27

, the Southern and
Goodings theory of the field dependence of the longitudinal
elastic constants was judged to be inadequate. Later invest-
igationsBo, including experimental measurements reported in
this thesis, have now shown other inadequacies. 1In partic-
ular, in the theory of Southern and Goodings, the entire
dependence of the elastic constant on the magnetization is

ion: T (L-l(o,) (see ITTI_.RBR.3 for its
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definition), which is a monotonic function of the magneti~
zation. Experimental measurements of C33 in Dy and Tb have
shown, however, that the dependence of some of elastic
constants on the magnetization is far from monotonic. In
some cases, the magnetoelastic contribution to the elastic
constant even changes its sign at high fields. This behavior
is completely unaccounted for in the theory of Southern and
Goodings.

J. Freyne's Method and Its Extension to the Highly
Anisotropic Rare Earth Metals

In this thesis, the thermodynamic method, inspired by
the work of Freyne32, is used to explain the experimentally
measured magnetoelastic contributions:- to the elastic
constants of Dy. The elastic constants C22, C33, C44, and
C66 were measured by the ultrasonic echo-overlap technique
developed by May33 and Papadakis34. The elastic constants
were measured as a function of magnetic field , for fields
up tc 75kO e, at temperatures in the paramagnetic phase. 1In
some cases the elastic constants were measured over the
temperature range 4.2K to 300K, but no analysis was done
of the low temperature data. The magnetic fields were
were applied only along:

1. the a-axis in the measurement of the shear constants C,,
and C66

2. the a and c-axes in the measurement of C33

3. all three axes in the measurement of sz.
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The magnetizations of the same samples that were used for
the ultrasonic work were also measured as a function of the
magnetic field, so the ultrasonic properties could be related
to the state of the magneatization in the sample.

The theoretical model that was used in the calculation
presented in this thesis is similar to the method of Freyne32
with which he was able to explain an experimental zero field
anomaly in the elastic constant C33 of Gd, as well as the
effect on the anomaly of magnetic fields applied either
parallel or perpendicular to the c-axis.

Using the elastic wave dispersion relation derived from
the equations of motion, Freyne calculated the elastic wave
velocity as a function of the second derivative, azU/ae33az,
of the internal energy. He used the Callen and Callen
Hamiltonian, but truncated the terms that were not necessary
for his problem. Freyne calculated the internal energy from
the truncated Callen and Callen14 Hamiltonian by treating
the exchange interaction in the molecular field approximation
and the anisotropy and magnetostriction in first-order
perturbation theory. Having calculated the energy levels,

Em, the calculation of the internal energy:

ZEm e-Em/kT

Hig expression for the second deriv-

2l

ative of the internal energy is rather complicated, but
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Freyne was using a computer for the numerical computations,
so there was no problem in calculating the derivative.

The agreement of Freyne's calculations with the ekper-
iment were good in zero field and fair in an applied field.
In all cases, his results agreed qualitatively with the
observed behavior.

Although Freyne's method was successful in Gd, it
can not be applied directly to the other heavy rare earths
because of approximations which Freyne made that are
justified for Gd, but not for the other heavy rare earths.
His method was extended somewhat in the work of Hubbell
et 2;35 on a similar anomaly in C33 at the PM-CAM transition
in Er. However, Freyne's method had to be extended still
more to handle the class of problems that are considered
in this thesis.

The zero-order Hamiltonian adopted for the calculations
presented in this thesis included the isotropic and aniso-
tropic exchange interactions, the Zeeman interaction, the
crystal field interaction, and the static magnetoelastic
interaction. The isotropic and anisotropic exthange inter-
actions and the two-ion magnetoelastic interaction were

treated in the molecular field approximation. The 16 by
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The perturbing Hamiltonian, JCEZ, is the part of

the magnetoelastic interaction that is a function of the

small dynamic strains that are applied to the sample by
rf

the transducer. Written in abbreviated notation, }cme is:
7
scrz = 1 X0 1-13
n i=1

where the Qi's are the seven angular momentum and tensor
operators that appear in the Hamiltonian and the Xi's

are their coefficients, which depend on the strains and on
the magnetoelastic constants. The contribution of the
dynamic magnetoelastic interaction (}CEZ) to the energies

was calculated in second-order perturbation theory, so if:

' _ 0
ﬁco‘m>—Em‘m> I-14
then
\
g =80 + E! + E I-15
m m m
or more explicitly:
_ o0 rf
Em-Em+<m|'.}cmetm>
rf rf
, nlmcme\n >eniX m
z I-16
n#m 0 _ g
m n

The magnetoelastic contribution to the elastic
constant is defined theoretically as:

32U 321_} . P — an
(o) - (0=0) I-18
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where the internal energy is defined in equation I-12.

The second derivative of the internal energy with respect
to the strains must eventually be expressed in terms of the
derivatives of E; and Ei since only they depend on the
strain. This presents a problem, since the magnetoelastic
constants are initially unknown. Inspection of equations
1-13 and I-16 shows, however, that the derivatives of E; and
Ei with respect to the Xi's depend only on the matrix
elements of the operators, Qi' As a result, the second
derivatives of the internal energy with respect to the . .=
strains must be expressed in terms of the second derivatives

of the internal energy with respect to the Xi's:

2
2 BXm oX 0 U

= % n I-19

The derivatives, azu/axmaxn, can be calculated numerically,
and the derivatives, axm/aeiﬁ, are just linear combinations
of the magnetoelastic constants, so the coefficients of the
calculated derivatives are bilinear in the magnetoelastic
constants. Thus, given the experimental values of the
Acijkl’ and the calculated derivatives of the internal energy
with respect to the Xi's, the magnetoelastic constants can
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The theoretical model used in this thesis still has
defects and omissions which should be made clear. 1Its most

glaring defect is that the helically ordered phase is not
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included. In the model, Dy becomes ferromagnetic at 170K
(6,) and below this temperature has a spontaneous moment
that is described approximately by the Brillouin function
with J = 15/2. The use of the molecular field approximation
is not desirable, but is almost inevitable because of the
complexity of other methods of treating the exchange inter-
action. Also, for simplicity, only terms linear in the
strains and bilinear in the angular momentum operators

were included in the magnetoelastic Hamiltonian:
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II. Experimehtal Apparatus and Techniques

The primary goal of the experiment was to measure the
elastic constants as a function of the magnetization. 1In
practice, the elastic constants and magnetization were
measured as a function of the applied field, and the elastic
constants were then expressed as a function of the magneti-
zation. By expressing the elastic constants as a function
of the magnetization, it was possible to avoid having to
account for the nonuniform demagnetizing fields that appear
in the nonellipsoidally shaped samples, and by making
measurements of the magnetization on the same samples that
were used in the measurement of the elastic constants, it
was possible to avoid small differences in the magnetization
due to differences in the impurities found in different
samples. Thus, it was possible to do a more reliable inter-
pretation of the elastic constant data when it was expressed
as a function of the sample magnetization.

A large part of the equipment discussed in this secticn
was used in both experiments, even though they were ‘carried out
separately. In particular, the magnet and power supply, the
dewar and temperature controller and the diodes were the
gsame. The sample holders were different, as was the actual
apparatus used in making the measurements: the magnetometer

in one case, and the MATEC ultrasonic eguipment in the other

case.
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A. Magnet and Power Supply

Both experiments were done using an Oxford Equipment
75k0e superconducting magnet, which was constructed from
NbTi wire potted in an epoxy resin. The solenoid had a
clear bore of 5cm and the inhomogeneity of the applied
field was less than 1 part in 105 inside a sphere of lcm
diameter. This inhomogeneity in the field was negligible
compared with the inhomogeneous demagnetizing fields inside
the nonellipsoidally shaped samples. Since no gaussmeter
was available to measure the magnitude of the applied
magnetic field directly, the current in the coil, as indic-
ated by the current monitor output of the power supply, and
the calibration of the coil provided by Oxford, 1.714k0e/A,
were used to calculate the value of the applied field when
it was of some interest. In most cases, however, the exact
value of the field was of no importance, since both the
magnetization and the elastic constants were measured as a
function of the applied current, and the elastic constants
were eventually expressed as functions of the magnetization.
The current or field was, therefore, only an intermediate
parameter which was later eliminated and any error in the
calibration, if it was constant with time, had no effect on
the final results.

The magnet current was supplied by an Oxford Instru-
ments 60A power supply. A potentiometer mounted on the

front panel of the power supply allowed the maximum magnet
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current to be chosen before the start of the experiment so
the magnet would never be gquenched by exceding the critical field.
The power supply also provided a current monitor voltage
which was proportional to the current, with a constant of
proportionality of 1.25mvV/A. 1In all cases, the current
monitor voltage was measured with a Systron-Donner 7004
digital multimeter (4 1/2 digits) and, when the magnetization
was being recorded, the current monitor voltage was used to
drive the X-axis of a Hewlett-Packard 7004B X-Y recorder.

The power supply current was externally controllable,
by the application of 0-5Vdc to the external sweep input,
from OA to the maximum set by the front panel potentiometer.
The 0-5 V was provided by an Oxford Instruments electronic
sweep generator as a linear function of time, with the total
duration of the sweep being variable from 1 to 100 minutes.
Most of the data in this thesis were taken at the 10 minute
sweep rate to conserve liquid helium (LHe) but, in temper-
ature or field regions where the magnetization was changing
more rapidly, the sweep time was raised to 20 or 50 minutes.

B. Cryostats

The main cryostat shown in Figure II-1 was supplied
by Oxford Instruments specially for the 75k0e coil that was
uced in this experiment. The cryostat consisted of a liquid
nitrogen shield surrounded by a continuously pumped isola-
on vacuum. The LHe reservoir was located inside the

cylindrical nitrogen shield, but was separated from it by
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the isolation vacuum. The superconducting coil itself was
suspended at the bottom of the LHe reservoir by three rods
which connected to a plate which was screwed to the top of
the cryostat. The plate contained feedthroughs for the
leads to the magnet as well as ports for the transfer of
the LHe, and other assorted feedthroughs. Two copper radi-
ation shields were attached to the three rods to minimize
the radiaticn into the LHe.

The variable temperature cryostat shown in Figure II-1
was constructed specially for the type of experiment reported
here. The variable temperature cryostat was of the conven-
tional flowing-gas type, with the rate of flow of the
exchange gas controlled by a needle valve. The sample
chamber had three accesses, one at the top for placing the
sample holder inside, one at the side for the recovery of the
flowing helium and for pumping the sample chamber, and one
at the bottom where the liguid or gaseous helium entered from
the LHe reservoir after passing through the capillary tube
and the heat exchanger. The sample chamber was surrounded
by a continuously pumped vacuum space which separated it
from the LHe reservoir and which prevented large losses of
LHe while operating at temperatures near room temperature in
the sample chamber. The vacuum space also included the capi-
llary tube which connected the heat exchanger and the LHe
, the leads to the heater on the heat exchanger,

and the magnetometer detection coils and leads.
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The pumpout port for the vacuum space of the variable
temperature cryostat, the knob that opened and closed the
needle valve, and the feedthrough for the heater and detec~-
tion coil leads were ‘located on the support plate of the
variable temperature cryostat that screwed to the plate
that supported the magnet.

C. Vacuum and Cryogenic Procedures

When starting the cool-down of the cryogenic system
after it had been warmed to room temperature and the vacuum
had been broken, it was first necessary to get a good diffu-
sion pump vacuum in the main isolation space. Generally, the
vacuum space in the variable temperature cryostat was also
evacuated at this time. The vacuum systems of the two were
separate, each consisting of a mechanical pump, a diffusion
pump, and the necessary valves and connections to allow
both rough pumping and pumping with the diffusion pump
backed by the mechanical pump. After achiéving a good
vacuum in the isolation space, the rough pumping and flushing
of the reservoir was started. Because of the presence of the
superconducting coil and many feedthroughs in the reseéervoir,
it was usually necessary to allow several hours for the
cleaning of the reservoir. After the cleaning had been
mpleted; the LN, shield was filled and cooling began. The
magnet and reservoir were rarely precooled with LN2 because
of the difficulty of removing all the liguid and the danger

of contaminating the LHe if any liquid remained when the LHe
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was transferred. However, a thermocouple had been mounted
in contact with the body of the magnet, so it was possible
to avoid large losses of LHe by delaying the transfer of LHe
until the magnet temperature was in the neighborhood of the
temperature of the liquid nitrogen.

The LHe was transferred from 100 liter storage dewars
into the reservoir through a vacuum insulated transfer line.
The LHe was transferred by maintaining an overpressure in the
storage dewar after the line had been inserted into the
dewar and reservoir.

All the helium used in this experiment was recovered,
purified and reliquified, so the cryogenic equipment was
designed with this fact in mind. The evaporated gas from
the LHe reservoir went directly into the recovery system
through a flexible brass tube that connected to the exhaust
port of the reservoir.

The reservoir was kept at an overpressure when
controlling the temperature so that the LHe would be forced
through the capillary tube into the bottom of the sample
chamber. This liquid became the exchange gas when vaporized
in the heat exchanger, so it was necessary to keep its flux
constant to avoid perturbing the temperature. The gas
passing out of the sample chamber passed through a fluxmeter
before entering the recovery system, so the flux could be
monitored and kept constant by either changing the pressure

in the reservoir or by opening or closing the needle valve.
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D. Diodes and Heaters

GaAs diodes supplied by Lakeshore Cryogenics were used
as temperature sensors and, since large magnetic fields were
being used, diodes designed to reduce errors in the temper-
ature when placed in a magnetic field were used. With a
constant 10pA of current through the diode, the voltage
across the diode was almost linear with temperature above
50K, with a sensitivity of approximately 3mV/K, about 100
times larger than the sensitivity of thermocouples normally
used at low temperatures. The data sheet supplied by
Lakeshore showed that at a temperature of 4.2K, in a field of
75kOe, with the junction of the diode parallel to the field,
the error in temperature was 1.5K, whereas at 77K, the error
was not shown, but was presumed to be zero. Temperature
errors of this magnitude should not have affected, apprec-
iably, the data reported in this thesis. Most of the the
data were taken at temperatures in the paramagnetic phase of
Dy, 179K and above, where the temperature error was small.
In addition, since the ordering temperature of Dy is relat-
jively high, most quantities of interest are slowly varying
functions Of temperature in the region where the errors are

the greatest, i.e. at temperatures below 77K and at magnetic

Although its sensitivity drops off rapidly below 20K, a
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copper vs. constantan thermocouple was chosen as the temper-
ature standard. At 20K and below, the interesting physical
guantities vary so slowly that a very precise calibration
was not necessary, at least for Dy. The copper vs. constan-
tan thermocouple had the advantage that its properties were
well known and that it had good sensitivity between 20K and
300K. Another important point that should be mentioned with
respect to the calibgation of the diodes, is that, although
there may be some systematic error in the calibration of the
diodes versus absolute temperature, any two diodes should
measure the same relative temperature. This is an important
point because in order to do a good analysis of the ultra-
sonic data, it was necessary to measure the magnetization
fairly accurately at the same temperature at which the
ultrasonic data had been taken. Thus, it was more important
that all the diodes measure the same relative temperature,
than that they all measure the correct absolute temperature.
The calibration of the diodes was done accordingly. The
three diodes were calibrated together, and as they began to
fail, the new diodes were calibrated versus one of the
remaining original diodes.

The three original diodes were calibrated by gluing
them all +to the top of a copper cylinder with GE-7031

varnish. A heater made of constantan wire was wound on the

was glued, with GE-7031 varnish, in a hole that was in the
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center of the three diodes. The reference junction of the
thermocouple was placed in a covered bath in a vacuum insul-
ated dewar-like container containing distilled water, ice
made from distilled water, and, hopefully, saturated water
vapor. The temperature of the ice bath was presumed to be
the triple point of water, 273.2K. The emf of the thermo-
couple was measured using a Leeds and Northrup K-1 potenti-
ometer, an Eppley unsaturated standard cell, a Hewlett-
Packard 6111A power supply as the battery, and a Sullivan
Type 3333 null detector. The National Bureau of Standards
calibration of the absolute emf of a copper vs. constantan
thermocouple as a function of temperature was used to
calculate the temperature.

Using the temperature controller described in the next
paragraphs,; one of the uncalibrated diodes was used to
control the temperature. After allowing a few minutes for
the temperature to stabilize, the thermocouple voltage was
measured with the Leeds and Northrup potentiometer, and the
voltage across each of the two free diodes was measured with
the Systron-Donner multimeter while a constant 10uA current
was flowing through the diode from a separate current source.
The set point of the temperature controller provided the
voltage across the diode being used to control the temper-
ature. The temperature was varied between 4.2K and 300K
with smaller increments at lower temperatures.

In later calibrations, when one of the diodes had
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already been calibrated, the diodes were glued to the same
copper cylinder and the calibrated diode was used to control
at known temperatures. The Systron-Donner multimeter was
then used to measure the voltage across the new diodes.

All the heaters were constantan wire wound on copper
forms; the intended use of the heater determined the shape
of the form. The wire was wound directly onto the sample
holders for ultrasonic measurements. For use with the
magnetometer, a small heat exchanger was made by filling a
copper sleeve with braid from coaxial cable, and soldering
copper screens over the ends of the sleeve. The heater was
wound directly onto the outside of the sleeve, and the heat
exchanger was mounted a few inches below the sample. The
heat exchanger at the bottom of the sample chamber was more
complicated; and consisted of two concentric sleeves. The
inner sleeve was filled with a fine copper powder. The tube
from the reservoir entered its bottom, and the heater was
wound around its outside. The capillary tube came from the
reservoir, and entered a small copper tube which wound around
the outer copper sleeve in a helix. The copper tube then
entered the bottom of the inner sleeve. The heater was
sandwiched between the two sleeves, so little of its heat
was radiated into the reservoir, and the heat exchanger was

more efficient.

The temperature controller was a proportional



51.
controller with an integrator and differentiator added. Its
design was based on the design of the Princeton Applied
Research (PAR) Model 152 temperature controller, but was
considerably simplified by the replacement of many discrete
circuit components, mainly the voltage regulators and oper-
ational amplifiers, with integrated circuits. The controller
was designed and built by Prof. P. L. Donoho in the labora-
tory at UNICAMP.

A calibrated current source in the controller supplied
a constant 10uA current to the GaAs diode, the positive
terminal of which was connected to the direct input of a
differential amplifier. A known voltage, controllable from
the front panel, and usually referred to as the set point,
was applied to the inverting input of the differential
amplifier. The difference voltage was amplified by a factor
of 1000, and a portion of it was applied to the integrator-
differentiator, an RC differentiator followed by an opera-
tional amplifier used as an integrator. The portion of
the amplified difference voltage that was applied to the
integrator-differentiator was controlled by the GAIN poten-
tiometer, and the time constants of the differentiator and
integrator were set by the DIFF and INTEG potentiometers,
respectively.

The current to the heater was proportional to the
cutput cof the differentiator-intgrator, and the output -

depended on the settings of the GAIN, DIFF, and INTEG
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potentiometers. A more detailed description of the function-
ing of the controller follows in the next paragraph.

Assuming that the integrating capcitor was initially
uncharged, and that the difference voltage was not zero, one
of two things happened. If the difference voltage was
changing too fast (according to the conditions set by the
front panel potentiometers) the differentiator overcame the
integrator and changed the heater current in such a way as
to slow the change of the difference voltage. If, on the
other hand, the rate of change of the difference voltage was
small enough and the error voltage itself was small enough,
the integrator dominated.

In order to allow the temperature to be changed -
faster, the integrator became inactive when the difference
voltage became too large,; about 1mV. When the error
voltage was too large, a solid state switch closed which
shorted the integrating capacitor,and the integrator began
to act like a fixed gain amplifier. The temperature
controller was then in the proportional mode, and the heater
current was proportional to the difference voltage up to the
point where the power amplifier saturated.

In normal operation, the integrator is active and its

cutput determines the current to the heater. Small fluctu-

sense necessary to correct the error.
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Through experience, it was learned that using the
temperature controller to control the current in the heater
at the bottom of the sample chamber led to long thermal time
constants and made the temperature very difficult to control.
The problem was that the heater was several inches from the
sample and diode, so the portion of the sample chamber .
between the heater and sample had to be warmed (or cooled)
before the temperature of the sample changed. To avoid
this problem, secondary heaters were placed nearer the sample.
The heater at the bottom was then supplied with a constant
current from a Phillips PE-1512 power supply that supplied
a maximum of 35V at 3A. The heater at the bottom of the
sample chamber preheated the gas entering the sample chamber
from the LHe reservoir and left the secondary heaters to be
controlled by the temperature controller. The current in
the bottom heater was set to keep the current in the secon-
dary heater near 250mA, thus allowing ample reserve power
for controlling. The maximum current applied to the bottom
heater was about 700mA, when controlling near room temper-
ature, and the minimum, applied at low temperatures, was about
150mA, which was enough to prevent LHe from collecting in the
bottom of the sample chamber.

The stability of the temperature depended greatly on

the sample holder and the settings of the controller. In

were less than .1lK, so the oscillations of the temperature
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of the sample, which had greater thermal inertia, were even
smaller. Finally, the reproducibility of the temperature
using this temperature ‘controller should be on the order of
.1K, the specification that PAR claims for their controller.

F. Sample Holders

Three different sample holders were used in the work
reported in this thesis: One to hold the sample when making
magnetization measurements, and two to hold the sample when
making ultrasonic measurements: one for propagation parallel
to the field and one for propagation with velocities perpen-
dicular to the field.

The sample holder, shown in Figure II-2, that was used
in making magnetization measurements, was the simplest. It
consisted, essentially, of a removable extension of the
vibrating rod that was driven by the magnetometer. The
extensions provided by PAR were constructed from a solid rod
of quartz approximately 25cm long, with a male threaded
plastic cup glued to one end and a female threaded plastic
cup glued to the other end. A teflon spacer, to prevent the
lateral motion of the réd in the suﬁport tube, was screwed
onto the plastic cup with the male threads which then screwed
into the bottom of the vibrating rod. After all the quartz
rods supplied by PAR had broken, it was necessary to replace
the quartz rods with thin walled stainless steel tubing.

The sample was actually glued to a plastic cylinder

with male threads on one end, and a flat platform
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Pigure II-2 Sample holder for the vibrating sample
magnetometer.
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perpendicular tothe axis of the cylinder on the other end.
After the sample had been glued to the platform, a second
teflon spacer was screwed onto the male threads, and the
whole piece was screwed to the bottom of the quartz or
stainless steel rod. The diode was not in direct contact
with the sample during the magnetization measurements, so it
was necessary to take great precautions to avoid temperature
gradients between the~sample and the diode, and the only
effective way that was found, was to avoid shielding the
sample from the gas flow. The sample was glued to the
platform to allow the flux of He to pass directly over it.

The simpler of the two ultrasonic holders was the
longitudinal sample holder, the one that was used for holding
the sample with the direction of the propagation of the
ultrasonic waves parallel to the applied field. The sample
holder, shown in Figure II-3, is similar to the one used in
previous work, but was modified to allow better control of
the temperature, and to decrease its size to allow it to be
used in the superconducting magnet .

The bottom part of the holder was a solid block of
copper that had been turned down to a cylinder. A hole was
drilled to the center of the block a few millimeters below
the platform on which the sample rested, so the temperature
gradient between the sample and diode was negligible. The
diocde was glued into the hole with GE-7031 varnish to insure

good thermal contact between the mass of copper and the



57.

=-THIN WALLED STAINLESS STEEL TUBE
COAXIAL CABLE

NN
N

COPPER DISCS

TEFLON
Lon SPRING
—Cu PLUNGER
e—-Cu SLEEVE
— TRANSDUCER
T —
N
DIODE ‘
NN Cu PLATFORM
N A
NN
4 N4
a§§§\§ HEATER
d N
Figure II-3 Longitudinal sample holder for measurements

of the ultrasonic velocity.
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diocde, and the heater was wound on the bottom of the cylinder.
The sample was glued to the platform, and silver paste was
used to provide the electrical contact between the copper
platform and the sample that was necessary for efficient
operation of the ultrasonic generator-receiver.

The top of the support consisted of a brass plug which
fit into the same support tube as the magnetometer and
vibrating rod. The BNC connector for the cable that
transmitted the rf pulses from the generator, as well as a
feedthrough for the diode and heater connections was located
on the brass plug. A coaxial cable which passed through the
stainless steel support tube carried the rf pulses from the
BNC connector to the sample holder. The shield of the
coaxial cable was connected to the mass of the sample holder,
and the metal sample was electrically connected to the
copper mass by the silver paste. The center conductor of the
coaxial cable was connected to a spring and plunger which
were electrically insulated from the mass of the sample
holder, and which provided the second electrode necessary for
efficient excitation of the piezoelectric transducer. The
sample itself was the first electrode, so, essentially, the
transducer was in the electric field of a capacitor whose
ates were formed bv the sample and the plunger.

The transverse sample holder, shown in Figure 11-4,
required a more sophisticated design. Because of the limited

space available inside the tube which supported the vibrating
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rod, the tube was removed, and the transverse holder was
placed directly into the sample chamber. The main body

of the holder was a block of copper, rectangular in shape,
with a small cylindrical extension on the bottom for the
heater. A hole approximately l4mm in diameter was bored
through one side of the block for the plastic plunger to move
in, and a larger hole with the same center as the smaller
hole was bored from the other side for the entrance of the
copper platform and sample. The samples were small enough
to pass through the smaller of the two holes when the copper
platform was secured to the main copper block, so the
distance that the plunger moved into the hole depended on
the length of the sample and the height of the platform.
Different sized platforms were made for different sized
samples, since the plunger could only move about 4mm.

The top plate of the transverse holder was essentially
the same as the top of the longitudianl holder, and the
support was a thin walled stainless steel tube with the
coaxial cable passing through it. The diode was glued in
a hole drilled between the sample and the heater, so it is
clear that, because of the position of the diode, the
thermal coupling between the sample and diode was not as
good in this sample holder as in the other. However,
measurements of the temperature gradient, made by putting
one juncticn ¢f a2 thermocouple at the position of the diode

and the other junction at the position of the sample showed
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that for heater currents of 200mA or less, the temperature
gradient was less than 1K.

G. Samples

Both samples that were used in the work reported here
were cut from a single crystal purchased from Metals Research.
The original crystal was grown from 99.9% pure stock by the
strain anneal method. The two samples were cut from the
original crystal using a Metals Research Servomet spark-
cutter, and were oriented using Laue back scattering of
X-rays. After being oriented, two surfaces, parallel to
within 1° and perpendicular to the c-axis to within
2° , were spark-planed, again using the Servomet spark-
cutter. Surfaces were also planed perpendicular to the
b-axis of both samples. The samples were shaped approx-
imately like flattened cylinders, with the axis of the
cylinder approximately along the c-axis.

Sample A was 7.33mm in length, and had a mass of 1.636g.
Sample B was somewhat shorter, 5.69mm, and had a mass of
].0234g. Sample A was found to give good results for waves
along the c-axis, but poor patterns for waves along the
b-axis. The echo patterns obtained for waves along the

c-axis of sample B were somewhat inferior to those of sample

superior to those of sample A. As a result, sample B was

used in mest of the measurements.
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H. Magnetometer

Although various types of vibrating sample magneto-
meters had been in use before Foner36, his name is generally
associated with the vibrating sample magnetometer. The
reason that the vibrating sample magnetometer carries his
name becomes more apparent when the difficulties with the
earlier magnetometers are considered. 1In particular, earlier
magnetometers required that the direction of the vibration
of the sample be parallel to the direction of the applied
magnetic field. The use of a conventional magnet with these
magnetometers required that one pole piece have a hole in it
for the driving rod to pass through, and the hole, of course,
introduced inhomogeneities into the magnetic field. Foner's
design eliminated this problem by allowing the vibration of

the sample to be perpendicular to

t

he maanetic field.

The basic principles of the vibrating sample magnet-
ometer are simple. The output of a low frequency sinusoidal
oscillator is amplified and used to drive an electro-mechan-
jcal transducer (essentially a loud-speaker driver) which
converts the alternating current into reciprocating, one-
dimensional motion. The transducer is in turn connected to

the magnetized sample which oscillates in the magnetic field.
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field of the magnetized sample, the movement of the sample
induces a voltage in the detection coils which have been

mounted near the sample. The induced voltage is generally
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of the order of 1luv, and has a constant phase relation with
the oscillator, so the magnitude of the induced signal can
be measured accurately using phase-sensitive detection. The
value of the magnetic moment itself can be determined after
the magnetometer has been calibrated with a sample of known
moment.

The magnet used in this investigation was a supercon-
ducting solenoid, so the direction of vibration was parallel
to the field. The principle of operation is the same as the
magnetometer used with a conventional magnet, but the location
of the pickup coils is different.

The magnetometer used in this work was a PAR Model 155
vibrating sample magnetometer. The transducer and all elec-

tronics were included with the magnetometer, but the

ducting solenoid that was used. The coils constructed for
these measurements were wound with copper wire on a plastic
form. The form was machined to a size large enough to fit
around the outside of the sample chamber, but small enough

to fit in the vacuum space. Two coils of 100 turns each were
wound, in the same direction, on opposite ends of the cylin-
drical form and were connected in opposition. The coil form
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the motion of the coils in the static magnetic field, but
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space limitations, as well as concern about the sheilding
effects of the intervening metal walls dictated that the
coils be attached to the sample chamber. The coils were
intentionally wound with less turns than the PAR coils, so
their sensitivity was about 10 times smaller, and the actual
moment, after calibration, was 10 times the indicated moment.
It was, thus, no longer necessary to use the 1:100 attenuator
to measure large magnetizations (100emu or more) .

The Model 155 magnetometer was designed to be used at
room temperature with conventional magnets, soO extensive
mechanical work was necessary to adapt it for use at low
temperatures with the superconducting solenoid. The main
problem was to find a way to couple the magnetometer to the
variable temperature cryostat in a way that allowed the head
of the magnetometer to be moved. The final solution was to
mechanically center the sample laterally, and to allow the
head to move only vertically.

The description of the PAR magnetometer will begin
with the transducer, usually called the head. The driving
mechanism of the PAR magnetoemter was essentially the same
as a loud-speaker driver. The alternating current passed
through a coil that was held, by copper-beryllium springs,in
ield of a permanent magnet. The interaction of
the static field with the alternating current caused the coil
ically. The top of the vibrating rod was

screwed into the top of the coil, so the rod moved along
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with the coil, as did the sample, which was mounted on the
rod. Problems could arise if the oscillatory motion of the
head were able to mechanically couple to the detection coils.
The coils would then be moving in the applied field at the
same frequency as the sample, and small inhomogeneities in
the field would induce voltages in the detection coils that
would be indistinguishable from the signalé due to the
motion of the magnetized sample. In order to avoid these
problems, PAR included vibration damping in the head of the
magnetometer. Mechanical resonators, tuned to the vibration
frequency of the coil, were connected to the coil support,
the parts of the magnetometer that supported the coil were
isolated from the rest of the magnetometer by rubber shock
absorbers, and the head itself was supported by vibration
absorbing rubber. The design of the magnetometer head
effectively prevented coupling of the vibration of the
driving coil to the detection coils. The head also
included a vibrating capacitor which was used in a feedback
loop to eliminate the effect of variations of the vibration
amplitude on the measured moment. The operation of the
vibrating capacitor will be discussed later in this section.

The operation of the electronics associated with the
magnetometer can best be understood by analogy with the
operation of an operational amplifier with feedback: the
gure II-5. The non-inverting input of

the amplifier is the ac voltage from the detection coils,
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which is proportional to the amplitude of the vibration of
the sample and the magnitude of the magnetic moment, and the
the inverting input of the operational amplifier is the
voltage from the vibrating capacitor plate which is propor-
tional to the amplitude of the vibration.

An ideal operational amplifier with feedback operates
by keeping its inputs at the same voltage. Since there is
feedback, the output of the amplifier will seek the level
that gives just enough feedback to keep the inputs equal. 1In
this model of the magnetometer as an operational amplifier,
the feedback comes about because the dc voltage across the
oscillating capacitor olates is proportional to the output
of the operational amplifier. The output of the amplifier
will seek the value that gives a dc voltage across the
capacitor plates that is just sufficient to cause the ac
voltage from the capacitor plates to be equal to the
instantaneous value of the voltage from the detection coils.
Since the sample and capacitor plates are rigidly connected,
the signals from them are affected equally by small changes
in the vibration amplitude and frequency, and the output
depends only on the magnetization.

In reality, of course, the operational amplifier

components, and the feedback loop contains a phase sensitive
lifiers, filters, and voltage dividers.

Before discussing the calibration procedure for the
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magnetometer, the functions of the front panel controls will
be explained. There was an on-off switch for the main power
as well as the Signal switch which allowed the input from
the detection coils to be shorted while zeroing the panel
meter. The panel meter had 3 1/2 digits (20% over-range)
with the polarity indicated, and there was also an auxiliary
D'Arsonval type meter. The digital meter always indicated
the value of the measured moment, but there was a switch
which set the function of the auxiliary meter. The functions
were: Standby, which interrupted the driving signal to the
transducer; Drive Amplitude, which allowed the magnitude of
the driving voltage to be set; Vibration Amplitude, which
monitored the amplitude of vibration of the coil and indi-
cated when there was some problem with the transducer or rod;
Moment, which indicated the same as the panel meter; and
Offset, which allowed the moment to be measured with greater
precision by the nulling of the dc voltage proportional to
the moment.

A full scale sensitivity of 100, 10, 1, .1, or .0lemu
was selectable with a front panel switch. BAn overload light
indicated when one or more of the amplifiers was overloaded
by either too large a signal, or by noise on the incoming
signal. BAncther switch allowed either the in-phase or
guadrature component of the signal to be measured. Poten-
tiometers were available cn the front panel to adjust the

amplitude of the driving signal, the zero of the panel meter,
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the calibration of the magnetometer, and to allow fine
adjustment of the phase of the signal from the detection
coils relative to the phase of the signal from the vibrating
capacitor. The time constant of the low-pass filter follow-
ing the phase sensitive detector could be selected from the
possibilities: 1, 3, 10, 30, 100, or 300sec, or an external
capacitor could be added in the back of the unit if longer
or shorter time constants were desired. A recoxrder output
was also available with an output of +10V, where 10V corres-
ponded to positive full scale on the panel meter. In:
addition, four decades of calibrated offset were available
to null the signal, as well as a switch to choose the polar-
ity of the offset, and a switch that allowed the full scale
sensitivity of the D'Arsonval meter to be set at 100, 10, or
1% of full scale, as indicated by the Sensitivity switch.
The rear panel had toggle switches that allowed the polarity
of the magnetization to be changed, and that enabled the
input from the detection coils to be attenuated by a factor
of 100 if the signal to be measured was greater than 100emu.
A test switch used in trouble-shooting and electrical
alignment of the magnetometer was also located on the back
panel.

ration of the Magnetometer and Measurement Of
agnetization

2|0

Ca
the

To begin the calibration procedure, the nickel sample

was glued to a sample holder and placed in the dewar. The
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calibration sample was machined from high purity nickel to
approximately the same size as the Dy samples to minimize the
form effect. The form effect is the fact that the shape of
the sample may affect its measured magnetization because the
sample occupies a finite volume of space and can not be
treated as a point dipole. The magnetic flux passing through
the detection coils depends on an integral over the volume of
the sample, thus on its shape. After the sample was in the
cryostat, the temperature was stabilized, usually at 4.2K.
The field was increased until the magnetization was saturated,
usually at about 10-15kOe, and the sample was positioned
vertically to maximize the indicated moment. The magneto-
meter was then calibrated to indicate the correct saturation
magnetization of the nickel sample. The saturation magnet-
ization was calculated fromthe mass and temperature of the
sample.

The next few paragraphs will describe the procedure for
measurement of the magnetization. After the magnetometer had
been calibrated, the sample and its holder were put into
place in the cryostat. At some constant temperature, the
field was increased to a value high enough to give an apprec-
iable magnetization relative to the expected maximum magnet- -
ization, and the sample was vertically positioned to

maximize the measured moment. The head of the magnetometer

ation in the measured moment as a function of angle.
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Ideally, of course, the moment should not have changed with
angle, but normally, the variation was 1 or 2% peak to peak.
The magnetic field in the solenoid was fairly constant in the
radial direction, so the difference in magnetization could not
be attributed to the variation in magnetic field in the
region through which the sample moved. The more likely
explanation is that the axis of the sample was not exactly
parallel to the magnetic field, so there was some change in
the magnetization because the orientation of the hard axis
of the sample was changed slightly as the head was turned.
If the angular variation of the magnetization exceded a few
percent, the head of the magnetometer was repositioned over
the cryostat so that the axis of the sample was closer to
the direction of the field. 1In addition, the error was mini-
mized by rotating the sample to the position consistent with
the expected behavior of the magnetization. The position of
maximum magnetization was chosen if the field was along an
easy axis, and the position of minimum magnetization was
chosen if the field was along a hard axis. The head was
then kept stationary for the remainder of the measurements
along that axis. This procedure having been completed, the
temperature was chosen and allowed to stabilize.

While awaiting the stabilization of the temperature,
the rest of the equipment was calibrated. The X-axis of the
%~V recorder was calibrated by, first, removing the magnet

jeads from the power supply and replacing them with a short
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circuit across the terminals. The current was then raised
until the current monitor voltage (as indicated by the
digital multimeter) was a convenient multiple of the desired
sensitivity in mv/cm, and the X-axis was calibrated using
the vernier control for the X-axis sensitivity. 1In order

to calibrate the Y-axis of the recorder, it was necessary to
have a good idea of the maximum that the magnetization could
reach. Having estimated this quantity, the input signal
from the detection coils to the magnetometer was shorted,
and the Offset controls on the magnetometer were used to
produce an offset voltage corresponding to some multiple of
the desired sensitivity in emu/cm. The calibration having
been completed, the Offset was returned to zero, and the
magnet was reconnected to the power supply. By this time,
the temperature had stabilized and the measurement could
begin. A sweep speed was chosen that was appropriate for
the magnetization to be measured, and the sweep was started.
The magnetization was then recorded on millimeter graph
paper and stored. In addition, if the temperature was in
the paramagnetic range, the sweep was stopped at approxi-
mately tén points; and the current monitor voltage and
magnetization were noted. This procedure was convenient
pecause the magnetization curves in the paramagnetic range
are smooth curves that can be approximated well by low order
polynomials. The ten points that were recorded were later

entered into the computer and used to find coefficients that
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characterized the magnetization completely, within experi-
mental error. It was thus possible to avoid having to go
back to the original plots each time new magnetization data
were required, and many potential errors were avoided. The
magnetization curves in the antiferromagnetic and ferro-
magnetic phases were too irregular to be parameterized easily,
so the plots themselves were used when data was required.

Magnetization curves were recorded only when increasing
the field, so when the field reached its maximum, the temper-
ature was changed while the field was reversed and swept to
zero. This procedure saved both time and LHe, since the
field could be swept down faster than the magnetometer could
follow the changing magnetization.

J. Transducers and Bonding Materials

Plates of quartz that oscillate in either pure shear
or pure longitudinal modes when placed in fields parallel to
the normals to the plates can be obtained by cutting the
plates with their normals parallel to certain well known
crystallographic directions. The thickness of the plate
determines its resonant freguency. Plates (transducers)
whose faces have been sufficiently well polished can also be
excited at odd harmonics of their fundamental frequency.

The transducers used in the work reported in this
thesis were all piezoelectric quartz transducers supplied by
Valpey-Fischer Ccrperation. All measurements that were

made on sample A were made using 20MHZ, X-cut, 1/8"
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diameter transducers with a fine ground finish. Shear wave
measurements were made on sample B using 20MHz, AC-cut, 1/8"
diameter transducers with a fine ground -finish. During the
time that the longitudinal wave measurements were being made
on sample B, the original supply of 20MHz X-cut transducers
was exhausted. Some 3/4" diameter, X-cut transducers that
were already available were cut into smaller transducers.
Consequently, the transducers that were used to finish the
measurements on sample B were 10MHz, X-cut, nomimally 1/8"
diameter transducers with overtone polish. Some measurements
were attempted at the first odd harmonic, 30MHz, but the
overall quality of the results was judged to be superior at
10MHz, so all measurements using the 10MHz transducers were
made at 10MHz.

The £

he first measurements, on sample A; were made using

Nonag, a water soluble atopcock grease widely used for ultra-
sonic bonds, as the bonding material. Nonaq's primary
advantage is that it is easy to apply and to remove, and
that bonds made with it can be tested immediately. It does
have the disadvantages of solidifying and becoming brittle
at temperatures not too far below room temperature, and of
being useless for shear waves. The large magnetostrictive
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ns generated at the phase trangitions in Dy and the
other heavy rare earths tend to either break the Nonag bonds
compietely, or to introduce such distortion into the echo

pattern that they become impossible to use. As a result,
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the measurements made on sample A were not made below the

Neel temperature, and in the measurement of Acg2 (Acg2

the change in 022 when the field is applied along the

is

b-axis), the bond was impossible to use below 195K. The
ultrasonic data are therefore, incomplete below 195K. Time
did not permit the measurements to be extended to lower
temperatures using stréonger bonding materials.

vVarious other materials were substituted for Nonaq in
an attempt to avoid the problems caused by the magneto-
striction. Initially, materials such as the silicone
greases were tried because they do not crystallize at low
temperatures, and should be able to adjust to the changing
strain. The bonds that were made with the silicone greases
had better low temperature properties, but were less effic-
ient than Nonag at temperatures nhear roOm temperature.
Perhaps, had more time been spent in the attempt to use the
silicone greases, the problems could have been overcome, but
no measurements are reported in this thesis that were made
with bonds of silicone grease.

It was known that epoxy is a good bonding material for
low temperature ultrasonic work because it is so strong that
it doesn't usually break at the phase transitions. EpOXy is

. 3 . Py - .“ JR L Y
harder to use than Ncnag, however, because the echo pattern
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must be watched continually while the epoxy is curing, so,
if the bond is not satisfactory, the transducer can be

removed before the epoxy becomes too hard. A more serious
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problem with the use of epoxy is the removal of the trans-
ducer from the sample without damaging the sample, or, hope-
fully, the transducer. The solution of this problem was
found by accident. GE-7031 varnish was used to glue the
samples to prevent their moving when a magnetic field was
applied. After the varnish had been applied, it was baked
for several hours to speed the hardening process. It was
observed that after several such treatments, a transducer
that had been epoxied to a holmium sample fell off intact.
Further experiments showed that a transducer that been
epoxied could be removed in 3-4 days. When a transducer
was to be removed, the transducer and sample were covered with
a layer of varnish and baked for a few hours under an
infrared lamp. The varnish was then removed with acetone
and the process was repeated several times over the period
of a few days. Damage of the bond could generally be
detected visually by this time. The sample and transducer
were then placed in a mixture of equal parts of acetone,
toluene, xylene, and ethyl alcohol and placed in an ultra-
sonic cleaner for a few hours. Sometimes it was necessary
to leave the sample in the mixture for a few days, but in
all cases, when this procedure was followed, the transducer
was removed without being broken. The xylene, present in
the varnish and in the mixture of solvents, was probably
king the epoxy since xylene is known to

T Tk

attack epoxy.
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The one sample that has been subjected to this
procedure several times appears to have suffered a small
amount of surface damage. Since, however, the procedure has
only been used a relatively short time, it is impossible to
say whether the damage is real, and if it is real, whether
it resulted from the epoxy, the combination of epoxy and
heat, or possibly, the mixture of organic solvents. It is
clear, at least, that, in cases where epoxy bonds are the
only solution to the bonding problems, the process described
here is preferable to breaking the transducer (and probably
damaging the surface of the sample as well) to remove an
epoxy bond.

K. Ultrasonic Equipment and the Echo-Overlap Method

The purpose of the ultrasonic equipment is to produce
high power pulses of constant frequency rf energy at well
defined, controllable repetion rates, and to detect the
relatively weak rf signals that are the response of the
matter (generally solid or liquid) to which the pulses were
applied. Ordinarily, the rf energy is coupled to the matter
through a piezoelectric transducer that converts the electo-
magnetic waves to elastic waves. The ultrasonic waves
interact with the matter, and after each traversal of the
sample, the elastic wave echo is piezoelectrically detected
by the transducer and converted to electromagnetic waves.
The ultrasonic equipment detects this, relatively weak,

electromagnetic radiation, amplifies it, and displays it so
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that useful information can be gained from it. Generally,
the quantities of interest are the delay of the elastic
waves in passing through the matter and the attenuation of
the elastic wave in passing through the matter. The time
delay is related to the velocity of the elastic wave, and
the attenuation is related to the strength of the interaction
of the elastic waves with the matter and the excitations and
impurities that are present in the matter.

The functioning of the ultrasonic system, shown in
Figure II-5, can best be understood after a discussion of the
method used for determining the velocity of the ultrasonic
wave in the sample. The MATEC equipment was designed to be

used with the echo-overlap method developed by May33 and

Papadakis34. The echo-overlap method relates the velocity
of the elastic waves to the frequency, £, of a cw oscillator.
This frequency is the frequency at which the trace of the
oscilloscope is triggered, and it is also divided down and
used to trigger the pulse generator. When the pulse gener-
ator is triggered, it produces a pulse of rf energy that
interacts with the piezoelectric transducer which produces
elastic waves in the sample to which it is bonded. Since
the sample has parallel faces, the wave reflects between the
fwo faces until it has been dissipated. Each time that it
reflects from the face to which the transducer is bonded,
the echo induces an rf electric field in the transducer that

propagates back to the receiver. All the echoes are
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amplified by the receiver, but only two are displayed on the
oscilloscope. After the pulse generator has been triggered,
the decade divider-dual delay generaéor produces two strobe
pulses which enter the Z-axis of the oscilloscope and inten-
sify the trace at the times when the two echoes to be over-
lapped are being displayed on the oscilloscope. By adjusting
the delays of the strobe pulses, any two echoes can be
displayed. The oscilloscope is triggered at the frequency,
f, so if, for instance, echoes m and n are being strobed, and
if f has been adjusted to the lowest frequency for which the
two echoes overlap cycle for cycle, then the delay between
the two echoes is just 1/f. The time delay is just the
transit time for traversing the sample in both directions

n-m times, so 1/f = 2%(m-n)/v , where v is the elastic wave
velocity, and 2 is the distance between the faces of the sample.
The elastic constant can then be determined from the velocity
using the relations in Figure I-3.

The echo-overlap method is preferable to the pulse
superposition method for several reasons. First, the pulse
superposition method requires that the repetition rate of the
pulses be equal to the frequency, f, whereas the echo-overlap
method requires only that the repetition rate, f', of the
pulses be related to the frequency by the relation: £' = f/n,
where n is some integer, usually a power of 2 or 10. Higher

P~ I T Y

method because the duty cycle of the pulsed rf oscillator is
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smaller. Higher power pulses mean that it may be possible
to make measurements in regions of high attenuation with the
echo-overlap method that would be impossible with the pulse
superposition method. Second, the echo-overlap method
requires only two good echoes, whereas the pulse super-
position method requires at least 5 to 10. This fact is
important because the rare earths are rather soft, and are
naturally somewhat ultrasonically opaque, SO it is difficult
to get echo patterns with more that 10 or 20 good echoes
under the best conditions. The application of magnetic
fields aggravates the problem because the attenuation
usually increases as the field is increased, and because the
rare earths exhibit large magnetostriction which subjects the
transducer-sample bond to stresses which change the behavior
of the bond and sometimes distort the echoes. Using the
pulse superposition method when the attenuation is large
leads to decreased accuracy because of the smaller number of
usable echoes, and when the echoes are distorted, use of the
pulse superposition method may lead to situations where the
results of the measurements are ambiguous. In either of the
two situations just discussed, use of the echo-overlap method
is preferable to the use of the pulse superposition method.

The necessary background having been presented, the
block diagram of Figure II-6 will now be discussed component
by compeonent. The logical place to begin is with the cw

oscillator, which operates at a frequency of several hundred
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kHz. In the echo-overlap method, the frequency of the
oscillator at overlap determines the elastic wave velocity,
so it is necessary to have a stable oscillator and a way of
accurately measuring its frequency. The oscillator provided
as a part of the MATEC equipment was a Tektronix Model FG-501
function generator. The long term stability of the function
generator was not good, but over the short period of time
necessary to make the average ultrasonic measurement, it was

5; The function generator had a

stable to a few parts in 10
variety of possible waveforms, including: sinusoidal, square-
wave, sawtooth, and ramps. The frequency counter was a DC-
501-0P1 110MHz frequency counter with variable attenuation,
variable trigger level, and variable gate time. The counter
was used almost exclusivelywith no attenuation, triggering

at the level crossing, and a gate time of lsec, which allcwed
the frequency to be measured to + lHz.

Since the goal of the experiment was to measure small
changes in the elastic constants as a function of the applied
field, it was necessary to be able to set the frequency of
the oscillator with a resolution of a few Hz. The adjust-
ments of the function generator were much too coarse, soO
they were used to set the base frequency, and a variable dc
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input of the function generator to fine-tune the frequency
to give the best overlap. A 100k resistor in series with

a 10kQ wire-wound potentiometer was connected across the
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output of a Tektronix PS-501 power supply which provided a
dc voltage that was variable from 0 to 20V. The voltage
across the free end of the 100kQ resistor and the wiper of
the potentiometer was applied to the Voltage Controlled
Oscillator input of the function generator. The coarse
adjustment of the frequency was the vernier of the function
generator itself, the medium adjustment was the output
voltage of the power supply, and the fine adjustment was the
10k potentiometer.

The MATEC Model 1222 decade divider and dual delay
generator is exactly what its name implies. Its only input
is the output of the function generator, but it has three
outputs: a Master Sync output which is a square-wave at the
same frequency as the input, both positive and negative
strobe outputs with independently variable delays, and a
Divided Sync output which is a square wave at the frequency
of the input divided by 10", n = 1, 2, or 3, where the
factor by which the input frequency is divided is selectable
from the front panel. The strobe outputs are square waves
with pulse widths independently variable from 1 to 8usec.

The trigger from the Divided Sync triggers a variable-
delay monostable multivibrator which triggers the first
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vibrator when it returns to its stable state. The second
multivibrator triggers the second strobe puise. The maximum

delay time for the two multivibrators can be either 100usec
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or 1000usec, and there is a ten-turn potentiometer that sets
the delay as a percentage of the maximum.

The MATEC Model 6000 ultrasonic generator-receiver can
pe used with different plug-in units for producing pulsed
rf in the 1-700MHz frequency range. Only the Model 760V
plug-in, which operates between 10 and 90MHz, was utilized
in the work reported here, so the generator receiver and
plug-in will be discussed as one unit.

The pulsed rf oscillator is two ceramic tetrodes,
connected in a push-pull configuration, which drive a
tunable LC resonant circuit. The oscillator is turned on
when a positive voltage is applied to the control grids of
the tetrodes. The amplitude and width of the output pulse
are determined by the amplitude and width of the positive
square-wave that is applied to the tetrodes. The amplitude
and width of the square-wave are controlled by the front
panel Pulse Amplitude and Pulse Width potentiometers, respec-
tively.

The returning signals, induced by the echoes of the
applied pulse, are split into two parts and proceed to two
different amplifiers. One part is amplified by a wide-band
integrated circuit rf amplifier (20dB gain) and this signal
is directed to the Receiver Monitor output where it is
accessible for the velocity measurements. The second part
of the signal from the ccho is first amplified by a tuned rf

preamplifier (12dB gain) , and then passed to a double~-
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palanced mixer where it is mixed with the tunable local
oscillator frequency to produce a 60MHz i.f. signal. The
i.f.signal is then amplified by an i,f. preamplifier and
passed to the final 5-stage i.f. amplifier. After being
amplitude detected, the video signal passes through an
impedance lowering circut and out to the video Out BNC
connector (Zout = 500). The detected video output is linear
within + .5dB over a range of 26dB with a maximum video
output of 8V.

In normal operation, the generator-receiver was
triggered by the Divided Sync output of the decade divider-
dual delay unit. The video output was normally not used
unless the attenuation recorder was being used.

When checking the bond or setting the velocity strobes,

from the Receiver Monitor output of the

~~

the amplified rf
receiver) was displayed on the Y-axis of the oscilloscope,

a Tektronix Model 465 (100MHz bandwidth). The trigger of the
oscilloscope was from the Divided Sync, soO the whole echo
pattern could be displayed on the screen of the oscillo-
scope. If the bond was acceptable, and the velocity strobes
had been set on the desired echoes, the trigger signal was
manually changed to the Master Sync signal from the decade

¥ g atc By increasing the sweep speed

with the strobes could be displayed and cverla

cycle, on the screen. In some cases, difficulties, due to
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delays inherent in the system, were encountered in getting
the echoes overlapped on the screen of the oscilloscope. In
order to overcome this problem, an integrated circuit
variable-delay monostable multivibrator was introduced into
the line carrying the Master Sync signal to the oscilloscope.
The oscilloscope was triggered when the multivibrator
returned, after a time which could be varied to move the
echoes onto the screen of the oscilloscope, to its stable
state.

The MATEC Model 2470 attenuation recorder allows
attenuation data to be continuously recorded during dynamic
experiments. The measurements of the attenuation and velo-
city are independent and can be carried on simultaneously
without interference. The basic mode of operation of the
attenuation recorder involves the selection and peak detec-
tion of any two echoes in an ultrasonic echo train. The
resultant dc voltages are then differentially compared in a
logarithmic voltmeter. The attenuation is displayed on a
front panel meter with a full scale sensitivity variable from
14B to 20dB, and a recorder output is also available. A
calibrated offset control allows the measurement of small
dynamic changes superimposed on a large static background.
Very little use was made of the attenuation recorder, soO no
detailed explanation of its functioning will be given.

The ultrasonic pulse generator had a 500 output

impedance, so to get maximum transfer of power, the impedance
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of the load had to be 50Q also. The transducer presents a
high impedance, capacitive load to the generator, so impedance
matching is necessary. Two impedance matching units were
available, the MATEC Model 60 and the MATEC Model 70.
Impedance matching is accomplished with the Model 60 by
placing a fixed inductor and a variable capacitor in parallel
with the capacitive load of the transducer. The capacitor
is then varied until the resonant frequency of the circuit
is the same as the frequency of the driving signal. Seven
different fixed inductors were available, and the Model 60
could be used between 1 and 50 MHz. The Model 70 contained
a variable inductor which was put into series with the capac-
itive load of the transducer, and adjusted to resonate the
capacitance of the transducer at the driving frequency.

The Model 70 was designed to operate between 10 and 50MHz.
The Model 60 was used in most measurements, but,
occasionally, the Model 70 was used. Even though the cables
connecting the transducer and the pulse generator were quite

long, with an impedance matching unit, no problems were
experienced with small echo amplitudes except in regions of
high attenuation. However, the impedance matching unit

increased the Q of the circuit and caused the width of the
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n the width of the driving pulse.
The width of the pulses caused problems in thin samples
because it became impossible tc resclve an eche from the

one following it or the one preceding it. The problem was
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partially alleviated by placing resistors across the output
terminals of the impedance matching unit to dampen the
ringing in the circuit.

L. Measurement of the Elastic Wave Velocities

The ultrasonic measurement procedure began with the
installation of the sample in the sample holder after the
sample had been glued and a bond had been made. The cables
were connected and the equipment was turned on. The
frequency of the pulsed rf oscillator was roughly adjusted
by using the tuning data chart provided with the plug-in, and
the preamplifier and receiver tuning were also set to the
correct value for the desired frequency of operation. The
oscilloscope was adjusted to display the entire echo train,
so the integrity of the bond could be checked. The impedance
matching unit, the receiver tuning and the preamplifier
tuning were then adjusted for maximum echo height. Now, in
order to fine tune the rf oscillator frequency, it was
necessary to use the attenuation recorder. The two strowes
of the attenuation recorder were set on the first two video
echoes, and the frequency was adjusted for minimum attenu-
ation. The oscilloscope was set to display the video echoes,
and the preamplifier and receiver were again tuned to give
i a
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bond then had to be assessed, and a new bond made if

necessary.

Assuming that the bond was good enough, the next step
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was to set up the equipment for the velocity measurements.
Generally, a bond with ten or more echoes that decayed more
or less exponentially was considered suitable for data
taking. Experience showed, however, that some samples
produced better echoes than others, so decisions concerning
the quality of the bond had also to take into consideration
the best possible bond that could be expected from a given
sample.

After obtaining a sufficiently good bond, the strobes
from the-decade divider-dual delay generator were then set on
the echoes that were to be overlapped for the velocity
measurements, and the time delay between these echoes was
measured roughly and recorded. Greater sensitivity in
overlapping the echoes was obtained by taking echoes that
were separated in time as far as possible, but often,
because of the increasing attenuation, the echoes far out
in the train would disappear when a field was applied. As
a compromise, the first echo and the third or fourth were
overlapped, unless the temperature was near a phase
transition, in which case, the first and second echoes were
overlapped. The sample holder was then put into the sample

chamber, the operating temperature was chosen, and the temp-

Using the previously measured value of the time delay,
+oon the strobed echoes; the frequency, f=1/At, was

calculated and the function generator was set to approximately
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this frequency. The strobed echoes were then nearly over-
lapped. All subsequent adjustments of the frequency were
made by varying the input voltage to the Voltage Controlled
Oscillator input of the function generator.

The sweep speed of the oscilloscope was increased
until the two echoes extended across most of the oscilloscope
screen. The intensity of the trace was increased until the
baseline was barely visible and the frequency was set to
cause the zero-crossings of the two strobed echoes to
intersect each other at the baseline and to cause the envel-
opes of the two echoes to be aligned. Alignment of the
echoes meant that the maxima of the echoes were aligned on
the oscilloscope screen. Sometimes, because of distortion
of the shape of the echoes, there were two frequencies that
caused the zero crossings of the two echoes to intersect with
the baseline, and at both of which, the envelopes appeared
to be equally well overlapped. However, since measurements
of the change in velocity from its zero field value as a
field was applied were being made and not absolute measure-
ments of the velocity, the error resulting from taking the
wrong zero-crossing was negligible.

The sweep speed was increased further,after choosing
the zero-crossing of best overlap, by using the 10X sweep
expander. It was necessary to use a hood on the oscillo-
scope for measurements made with the expanded sweep,

because the trace was very dim. Measurements began at zero
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field by adjusting the frequency of the function generator
until the zero-crossings of the echoes intersected the
baseline, and then recording the frequency. Since the lines
that were overlapped had some breadth, there was some
uncertainty about the exact frequency of overlap. To
eliminate errors caused by the breadth of the line, the
frequency was measured several times, approaching the
overlap from both higher and lower frequencies. The errors,
due to the breadth of the lines, should then have tended to
cancel one another in the average which was used in the data
analysis.

The values of the field at which the measurements were
taken depended on the expected behavior of the velocity as
a function of the applied field. Measurements were taken
at closer intervals in regions where the velocity was
changing fastest, or in regions where the behavior was
anomalous. The value of the current monitor voltage and
several values of the frequency were recorded for each

point.
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III. Theory

Dy (atomic number 66) is a metallic element that has
an hexagonal close-packed structure at room temperature,
with a c¢/a ratio of 1.574, which is slightly smaller than the
theoretical value of 1.633 obtained for close-packing of
spheres. The ground state configuration of the electrons of

Dy is [Xe]6s24f10

, but in a solid, the atom becomes triply
ionized, and the two 6s electrons and one of the 4f
electrons are lost to the conduction band.

Like the other rare earths, Dy has a partially filled
4f shell, and although the 4f electrons are higher in energy
than the 5s and 5p electrons, their mean radii are smaller.
Thus, the 5s and 5p electrons partially shield the 4f
electrons from their environment. Since it is the 4f
electrons that are responsible for the chemical properties
of the rare earths, the fact that they are chielded means
that the chemical properties of the rare earths are very
similar. The shielding of the 4f electrons also means that

they are only slightly affected by the crystalline electric

fields in a solid, so the ions act very much like free ions.

]

In particular, the orbital anguiar mOmESnTum is not guenched

A
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by the crystalline field, and the spin-orbit coupling remains

strong. Because of the large number of electrons, the heavy
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rare earths can have total angular momenta that are quite
large. The ground state of the Dy3+ ion has J = 15/2, for
example.

Although weaker than the configuration interaction,
the spin-orbit coupling is much stronger than any of the
other magnetic interactions, suchas the exchange interaction,
the crystal field interaction, the Zeeman. interaction, and
the magnetoelastic interactions. Thus, if only the rela-
tively weak magnetic interactions are present, and if the
temperature is near room temperature, the behavior of Dy
can be characterized by the spin-Hamiltonian which describes
the lowest J- manifold.. Since the energy separation beéween the
two lowest J-manifolds is about 5000°K, the higher level is
not populated at temperatures near room temperature, and
none of the magnetic interactions will mix states of the two
J-manifolds. The remainder of this chapter will only be
concerned with the description of the lowest J- manifold.

The Model Hamiltonian (actually a Hamiltonian density)

that describes this manifold is:
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where Kex and:}(:ex are the isotropic and anisotropic exchange

interactions, respectively. RZ is the Zeeman interaction,
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Ka is the crystal field interaction, and’“ﬁe and.K;Z are the
one and two-ion magnetoelastic interactions, respectively.
Fach term in the Hamiltonian (density) will be discussed
separately. (Note that the components of the angular
momentum operator, 3, that are used in the Hamiltonian, are
defined to be dimensionless. They are equal to the usual
angular momentum operators divided by h.)

A. Discussion of the Model Hamiltonian

1. Exchange Interaction and the Molecular Field
Approximation

Although the form of the isotropic exchange:

=y v J.. J,° J. )

is the same as the form of the Heisenberg exchange, the
actual mechanism of the exchange is much different, since
the 4f electrons are very closely bound to the nucleus and
the direct exchange is negligible. The exchange interaction
in the rare earths is called the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction.4-6 The RKKY interaction is an
indirect interaction that couples the moments on different
ions through their mutual interaction with the conduction
electrons. A calculation of the RKKY interaction, assuming

Q
free electrons, yields the expression:3v
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and Qf is the Fermi energy, kf is the Fermi wavevector, and

J is the s-f interaction, the interaction between a local-
ized f electron and a conduction electron. The RKKY inter-
action is oscillatory with a period characteristic of the
Fermi wavevector because the electrons responsible for the
interaction must be able to change their polarizations to
participate in the interaction, so they must have energies
near the Fermi surface. In reality, of course, the Fermi
surface is not spherical, but the results of the simpler
calculation using the free electron approximation shows the
long-range oscillatory nature of the interaction.

Using inelastic scattering of neutrons to determine the
dispersion relation of magnons propagating along the c~-axis
in Dy, Nicklow et g;?g showed that the exchange interaction
in Dy is, in fact, oscillatory and long-range. A realistic

calculation of the exchange has not been done, since the
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interaction depends on the shape of the Fermi surface which
has not been measured in any of the heavy rare earths.

The exchange interaction, as it stands, is very diffi-
cult to treat, so the well known molecular field approxi-
mation40 was employed in all calculations. The molecular
field approximation assumes that the effect of all the other
moments on a given moment can be described by a hypothetical
magnetic field called the molecular field. The exchange
interaction, in the molecular field approximation, is written

in a form reminiscent of the Zeeman interaction:

mf -

Rex = Jug Hmf . ? Ji III-5
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it is written in terms of the reduced magnetization ¢ = M/M
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rather than in terms of the volume magnetization M. The
molecular field approximation is, of course, not too reliable
at low temperatures because it neglects correlations between
the moments, and treats only their average interactions.
Nevertheless, the moelcular field is the only approximation
that allows easy computation of the exchange interaction,

and it is used throughout the rest of this thesis.

2. Anisotropic Exchange

The calculations of Kaplan and Lyons41 and Specht4la,

which treated the RKKY exchange interaction in second-order
perturbation theory, showed that there can be an appreciable
(10% or greater) anisotropic contribution to the exchange in
the rare earths. There was no experimental manifestation

of the presence of an anisotropic component in the exchange
until Nicklow et al42 found that they could not explain their
inelastic scattering data on Er. They found that the spin-wave
spectrum could be fitted to the theory only if the anisotropic
contribution was allowed to be wavevector dependent. Since,
in the usual treatment, the single-ion anisotropy is not
wavevector dependent, Nicklow et al attributed the discrepancy
to their failure to include the anisotropic exchange inter-
action, which is wavevector dependent. Later, Jensen ggggf3
alsc found evidence that there was a small anisotropic
contribution to the exchange in Tb, and Nicklow43 was

“““““ cbtained preliminarv results that indicated

that the anisotropic exchange in Dy was intermediate between
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that of Er and Tb. As a result, a small anisotropic exchange
was included in the calculations reported here. Recently,
however, Lindgard44 has shown that the difficulty in fitting
the spin-wave data was not due to the absence of the aniso-
tropic exchange from the Hamiltonian, but was due to the
fact that the usual treatment of the single-ion anisotropy
was wrong to lowest order. By treating the one-ion aniso-r.
tropy correctly, Lindgard was able to get good agreement
between theory and experiment without invoking the aniso-
tropic exchange. The effect of the inclusion of the aniso-
topic exchange on the calculations reported here is minimal,
however, for reasons that will be explained later.

The form assumed for the anisotropic exchange was the

simplest possible second-order ax

|
)
|
Q
o
b
)]
@)
r
H
0O
s
]

W oo=-v T K. (33,3 - F.-3.) ITI-8
i J#i 4} L J L 3

The anisotropic exchange was also treated in the molecular

field approximation. Equation III-8 becomes in the molecular

field approximation:
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The Zeeman interaction is the ordinary one:

by By o = 9 Mg >; 3By III-10

where g is the Lande g-factor calculated for the free
tripositive ion.

4. Crystal Field Interaction

The one-ion anisotropy or crystal field interaction
is due, in the heavy rare earths, to the non-sphericity of
their 4f electron clouds (except for Gd which has no one-ion
anisotropy). The electric fields set up by the neighboring
ions in the crystal establish a preferential orientation for
the electron cloud in the crystal. Since the 4f electrons
are shielded by the outer electrons, the orbital angular .
momentum is not quenched, but its orientation depends on the
vientation of the electron cloud in the crystal. The spin
angular momentum is strongly coupled to the orbital moment,
so the preferred direction of the total angular momentum, 3,
and thus, the magnetic moment,is determined by the crystalline

electric field. A simple calculation serves to illustrate

Fh
ct
vy
(0]
Fh
O
8!
3
o]
H

the origin ©
Let the nucleus of the ion,at which the calculation

of the electric field is being done, be taken as the origin
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of the coordinate system, and let the axes of the coordinate
system be parallel to the crystallographic axes. The elec-
trical potential due to the other ions can be expressed as

a function of the coordinates of the ion,ﬁi, the coordinates

at which the potential is being calculated, ii’ and the

charges. of the ions, e, :

e,

i
III-11

V(r,0,p) = E“§_§fT

i i

(!§-§i|)-l can be expanded in spherical harmonics45-

E - - -
V(r,8,p) = 4m Te, § s (24+1) 1rz r 4-1 .
, X1 < >
i “4=0 m==%
> 1
Yzm(ei,mi) Yzm(e’@) III-12

or, in a more phenomenological form, the potential at a point

nearer the origin than any of the other ions is:

L

o m

V{r’e’@) =X z B )

I-13
420 m==g L T Y, . (059) II
where:
m o anml =81 *
Bz = 4n ? e, (2i+1) I Izm (ol,¢i\ T11-14
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The result. of the summations for a simple hcp lattice is that
only BZ, Bg, and B:6 are nonzero. Because, however, the c/a
ratio does not have its ideal value37, Bg is also nonzero.
These parameters can be determined from this simple model,

but they are not reliable because the effects of conduction
electron screening on the electric fields of the ions has not
peen included. To calculate the anisotropy energy, the expec-
tation value of the Hamiltonian must be found. The radial
part of the wave function must be calculated numerically, and
the straightforward method of calculating the angular part
would be to calculate the eigenfunctions of the !LSJMJ} repre-

sentation in terms of the single electron wave functions

|zmzsms>. This a formidable task for the 4f9 configuration,

46

put fortunately there is an alternative, due to Stevens
Using the Wigner-Eckhart theorem within the ground state J-
multinlet; the matrix elements of the spherical harmonics can
be replaced by matrix elements of the irreducible tensor oper-
ators multiplied by a constant factor which is the ratio of
their reduced matrix elements. The irreducible tensor oper-

ators are polynomials in the components of the angular momen-

to calculate in the !LSJMJ) representation. The final form

of the crystal field is thus:
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R 0O 0 - 0 O -~
Ka(l) = 92 Q2(Ji) + P4 Q4(Ji) + ILI-15

0 0, 6 + -
Pe Qg(J;) + Pg Qgp(d;)

where the QT'S are the angular momentum irreducible tensor
operators defined in Appendix A. The PT'S are phenomenolog-
ical constants that are normally measured experimentally,
because the theoretical calculations are liable to large
errors due to the difficulty of including the conduction

electron screening.

5. One-Ton Magnetoelastic Interaction

Before considering the magnetoelastic Hamiltonian,

which is written in the group theoretical notation of Callen

14, it is instructive to consider their derivation

and Callen
of the form of the elastic energy. 1In general, the elastic

energy is written:

Ke = (1/2) Cijkl eij e 1 III-16

where the ciﬁkl's are the elastic constants and the ei.'s

are the symmetric part of the infinitesimal strain tensor:

eij = (1/2) (aui/axj + auj/axi) ITII-17
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The symmetry of the crystal reduces the number of independent
i t t ive: and .

elastic constants to five Cll’ 033, C44, C12, 013
It is fairly easy to find the number of independent

elastic constants using group theory. The six Cartesian

strains e_, e , e ,e ,e _,ande form the basis of a

xx’ “yy’ zz’ Xy Xz vz
reducible six-dimensional representation of the hexagonal
group D6h’ This representation reduces into two one-dimen-

sional and two two-dimensional representations whose basis

functions are:

a,l

e = e + e + e
XX vy Z2
ed”2 = 3e --eo"l ITII-17a
zZ

Y = - Y =
el exx vy e2 2exy
e’ = ze £ = 22

1 vz 2 7 Txz

where some of the basis functions differ by a constant factor
from those of Callen and Callenl4. Coupling is allowed only
petween basis functions of the same representation and only
between basis functions with the same index in multi-dimen-
sional répresentations. The elastic energy can thus be

A L
written " :



x_ = (1/2) c°l‘(e°"1)2 s ol (%52 L (1/2) c‘;(e“’z)2
: vy Yy 2 Y, 2
+ (L/2) C ((el) + (e2) ) III-18

v (1/2) e + (€)%

where the Cg's are expressed in terms of the Cartesian

elastic constants in the following way:

Cl = (2cll + c33 + 2c12 + 4013)/9

G’— -

% = (Ccyy *+ €y, *+ 2y, 4c,,) /18
& = (c,., -C,, +C . =C.)/9 III-19

12° ‘“33 11 13 12
¢V =c = (1/2)(c,, - C..)

66 11 12

€ (—3

C Cha

where some of the elastic constants are defined differently
from those of Callen and Callen. The elastic contribution
to the energy is a purely classical term that will not be
explicitly included iin most calculations.

The one-ion magnetoelastic interaction is due to the
strain dependence of the crystal field anisotropy energy.

The infinitesimal strain tensor is:
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€55 = aui/axj III-20

where u is the displacement a poink X in the unstrained
solid suffers when a strain characterized by €54 is applied
to the solid, so Q2 = X' - X. Normally, in infinitesimal

strain theory, only the symmetric part of the infinitesimal

strain tensor:

eij = (1/2)(3ij + eji) I11-21
is considered. This is the only part of the strain that
was considered by Callen and Callen for example. Southern
and Goodings23 first pointed out that, because of the large
single-ion anisotropy of the heavy rare earths, the anti-

symmetric (or rotational) part of the infinitesimal strain:

eji) IT1I-22

L.o= (1/2 P "
Wy 5 (1/ )(elJ
can also lead to measurable effects. Appendix B discusses

. 47 . .
a general expansion of the crystal field anisotropy energy
in powers of the infinitesimal strain, including both th
symmetric and antisymmetric parts of the infinitesimal strain

tensor. The form of the contribution to the one-ion



106.

magnetoelastic Hamiltonian that is linear in the wij's is

derived in Appendix B, and is written:
I,rot _ 0 + - 2 -
K2 E00) = /6 By (wy 5 Q51 (3;) + wyg 25 (F3)) 111-23

where only terms bilinear in the angular momentum operators
are shown. These terms are manifested experimentally when
measuring the dependence of the elastic constant Chq OO the
magnetic field. There are two independent measurements
from which Cyq caN be calculated in hexagonal materials,
both of which are shown in Figure I-3. The two ways in
which C,, can be calculated are: C,, = pvi where v, is the
velocity of a shear wave polarized along the a or b-axis and
propagating along the c-axis; or C44 = pvg where Ve is the
velocity of a shear wave polarized along the c-axis and

ing along the a or b-axis. The strains which
describe these shear waves are: aux/az or auy/az for v2 and

auz/ax or auz/ay for V. gince the antisymmetric strains

are:
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the rotational contribution to the magnetoelastic interaction
enters with opposite sign for v, and Ve At zero field,
Vo = Vg but in an applied field, v, # Voo generally.

The symmetric part of the infinitesimal strain lowers
the symmetry of the crystal, so, in general, the single-ion
magnetoelastic Hamiltonian includes all irreducible tensor
oeprators of orders % = 2, 4, or 6. In fact, Donoho's47
numerical expansion of the crystal field anisotropy energy
in powers of the strain shows that the tensor operators with
m = 3 do not appear in the expansion. Group theory can be
used to show rigorously that the operators with m = 3 do not
enter the Hamiltonian. Following Callen and Callenl4, only
terms with £ = 2 will be kept in the single-ion magneto-
elastic Hamiltonian. It is reasonable to believe that the
2= 2 terms will be larger than the higher order terms because
the second-order contribution to the anistropy dominates the
higher order terms. It should be stated, however, that Rhyne
and Legvold]'2 found that it was necessary to include one
% = 4 term in order to fit the temperature dependence of the
basal plane magnetostriction of Tb. The possibility exists
that a better fit to the experimental data could be obtained
by the inclusion of higher order terms, but the ensuing
increase in complexity makes their addition worthwhile

only in extreme cases.
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The six symmetrized bilinear products of the angular
momentum operators are isomorphic to the six Cartesian -
strains, so basis functions can be formed from them in the
same way that they were formed from the strains. The
coupling of the strain basis functions and the angular
momentum basis functions follows the same rules that were
stated in the derivation of the form of the elastic energy.
The complete one-ion magnetoelastic Hamiltonian, to first
order in the infinitesimal strains and second order in the

angular momentum operators is:

I .. _ _ 022 0,1 Qs2 0,2 0=
}Cme(l) = (Bl e + ZB2 e ) QZ(Ji)

Ys2,.Y o7 (3 Y 0" (3
B (e Q,,(3;) + &) 0,,(3,)) III-25

€,2

€ + - e - —
B2 ey 05y (93) + &y Q1 93))

0] + = -

Note that terms in Qg (isomorphic to ei) do not appear in the
Hamiltonian because Qg is just a constant and shifts all the
energy levels equally. The relations between the coupling

14
constants used here and those used by Callen and Callen~L
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6. Two-Ion Magnetoelastic Interaction

The two-ion magnetoelastic interaction has its origins
in the strain dependence of the exchange interaction. The
form of the Hamiltonian is the same as for the one-ion inter-
action except for the fact that the angular momentum symmetry
operators are formed from bilinear products of angular mom-
entum operators associated with different ions. This change
has the effect of increasing the number of coupling constants
by two, because the 0perator,3i°3j, which is the basis
function for the fully symmetric representation, is no longer
trivial. The two-ion magnetoelastic interaction has the
form:

2,0 a,l . _a,0 cx.,2

IT -—h -
**({i) = - T. -0, ITI-26
Kme(l) g(Dllj € + U213 b0 j

- a2 G.,l oy 2 aa 3.7

z (Dllj + D21] )(3J1zsz Ji Jj)

- Y’ v -

z D (e (JIXJ]X le ) + eY (Jlx jy + Jiijx))
- 692 € ¢ +

¥ Dij (el(diijz + Jiz ij) r e° (JlXJjZ + Jinjx))

The two-ion interaction, being closely related to the
exchange, must also be treated in the molecular field
\. The approximation is applied in exactly the

same way as it was applied to the exchange interaction itself,
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and the result is:

II mf ,0 % 1 a,0 P 2, = = N
}o () = (G + G2 ) 53, (EI1-27)
raE@? ot s % 2 30,0y, - 503
2 i
¥,2 -
+ JG (e (cx ix ch ) + eY (cXle + chix))

6,2 € €
+ JG (el(chiz + chiy) + ez(ngiz + cZJiX))

where in the molecular field approximation:

™ = = _ = . ™ - -
;Dij Ji'Jj = Ji T Dij (Jj> ITI-28
J J
= =J,.0(T DP.)/J
2 i)
J
so
& = - D) /37 III-29
i ij

B. Applications of the Model Hamiltonian

1. Phase Transitions and Magnetic Ordering

The existence of magnetic ordering in the heavy rare
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exchange interaction, but the diversity of types of magnetic
ordering is due to the interplay of the exchange, crystal

field and magnetoelastic interactions.
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Although a prediction of the ordering temperature,
which would require a detailed calculation of the exchange
interaction, is difficult it is possible to make some
predictions about transitions from one ordered state to
another. As an example, Dy is appropriate, not only because
it is the subject of this thesis, but also because it (and
Tb) have the simplest ordered phases of the heavy rare earths.

At 179K, Dy has a phase transition from the paramag-=
netic phase to the helical antiferromagnetic (HAF) phase,
in which the moments are ordered in a basal plane spiral?’7
The helical ordering is a consequence of the fact that the
exchange is long-range and oscillatory. All that is theor-
etically necessary for the stability of the helical phase
is that a given moment (all moments are considered egquivalent)
have a positive exchange interaction, JO’ with neighboring
momente in the same plane, a positive exchange interaction,
Iy with its nearest neighbors in the adjacent planes, and a
negative interaction, J2(<0), with the nearest moments in
second-nearest planes. Figure III-1 shows the geometry of
the interactions more clearly. Experimental measurements
ction in Dy is actually
of longer range than this model assumes, but the simple model

doces illustrate the basic features of the helically ordered
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Pigure III-1 Model of the hcp lattice showing the
three interplanar exchange constants,
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state. The details of the calculation can be found in
Cooper's articless. The moments are confined to the basal
plane because of the large axial anisotropy in Dy that makes
the c-axis a hard magnetic axis.

In the ordered phases of all the rare earths, Dy in
particular, all the moments in a given plane perpendicular
to the c-axis are parallel48. The angle between the moments
can vary from plane to plane, however. In the HAF phase of
Dy, this angle varies from 43.2° at the Neel point to 26.5°
at the Curie tem.perature.48 The temperature dependence of
the turn angle is not predicted by the simple model discussed
in the previous paragraph, but it can be included phenomen-

ologically by letting the exchange constants be functions of

The theory of Elliott and W’edgewood.49 is generally
accepted as the physical explanation of the temperature
dependence of the turn angle. They argue that, since the
symmetry of the exchange interaction in the HAF phase is not
commensurate with the symmetry of the lattice, the Fermi
surface will be distorted by the energy gaps that are intro-
sced at the superzone boundaries. The magnitude of these
gaps issoz 2VJg, where V is the magnitude of the s-f inter-

action, J is the total angular momentum of the ion, and g is
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the reduced magnetization. The predicted temperature depen-
dence of the turn angle agrees with experiment fairly well
for Ho, Er, and Tm, all of which have Neel temperatures less
than 135K, but the agreement for Dy and Tb, which have Neel
temperatures above 175K, is not so good. Elliott and Wedge-
wood attribute the disagreement to high temperature effects
that were not included in their calculations.

The theory of Ellictt and Wedgewood predicts that the
HAF phase of Dy is, in the absence of interactions other than
the exchange, stable down to OK, at which temperature the
turn angle has decreased to 15°. Experimentally, a phase
transition to the FM phase occurs spontaneously at 85K and
can be induced at higher temperatures in the HAF phase by
the appiication of a magnetic field in the basal plane. The
critical field at which the transition occurs varies almost
linearly with temperature from OkOe at the Curie temperature
to approximately 10kDe at 160K.7 Cooper 51 has shown that
the combination of the magnetoelastic and basal plane aniso-
tropy energies has the correct magnitude and temperature

dependence to account for the transition. Cooper used the

cr

hrae plane interaction model &osaccount for the exchange.

Although Cooper's explanation is widely accepted, it has

ces s - . .50,
recently been criticized by del Moral and Lee because the
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difference in the exchange interaction in the ferromagnetic
and antiferromagnetic phases was neglected in Cooper's

calculation. In addition, they show52 that the temperature

dependence that Cooper assumed for the exchange constants
does not agree with their experimentally determined temperature
dependences. They argue that the agreement of Cooper's
theory with experiment is largely fortuitous, and that the
real driving force behind the transition is the lowering of
the exchange energy in the ferromagnetic phase relative to
the antiferromagnetic phase. Del Moral and Lee50 base their
arguments on the spin wave dispersion relation measured by
Nicklow g§.§;39 which clearly shows that the exchange inter-
action is different in the two phases. Del Moral and Lee's
argument is alsc open to criticism, however, because,
although the exchange interaction calculated from the spin-
wave dispersion relation is different in the two phases, it
is not clear whether the difference is primarily due to the
additional periodicity of the antiferromagnetic ordering, as
they suggest, or whether it is due to the magnetostrictive
strains occuring at the transition that lower the crystalline

[~
symmetry from hop to orthorhombic“3

2. Magnetization and Susceptibility

The measured susceptibilities of Dy are well fitted at

temperatures away from the Neel temperature by the Curie-
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Weiss law modified for anisotropic ferromagnets:

X|| = C/(T-e“) X, = C/(T-6,) III-30
C = NgzugJ(J+1)/3k

where C is the Curie constant and the 8's are the paramagnetic
Curie temperatures obtained by extrapolation of the parallel
and perpendicular susceptibilities measured at temperatures
well above the Neel temperature. The paramagnetic Curie
temperatures of Dy are: e\\ = 169K and 8 = 121K7. The
saturation magnetization of Dy, 10.3 uB/ion, which was
measured by Behrendt et 257, agrees well with the value, 10
uB/ion, calculated for the free Dy3+ ion. The excess magnet-
jization is attributed to the polarization of the conduction
electrons. A phase transition8 has been observed at low
temperatures when the field is applied along the c-axis.
Near 80kOe, and at a temperature of 4.2K, the easy axis moves
from the basal plane to the c-axis. This transition is
accompanied by large non-reversible strains and is assumed
to be of magnetostrictive origin.

3. Anisotropy

The Callen and Callen theoryg'10

is generally used
to interpret experiments measuring the anisotropy in the
heavy rare earths, and also to relate the measured

quantities to the parameters that appear in the theory.
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Callen and Callen were primarily interested in anisotropy in
ferromagnetic materials, so they assumed that the exchange
was the dominant interaction and that the crystal field and
7eeman interactions were small perturbations. It should be
noted here that although the Callen and Callen theory has been
applied in the paramagnetic phase, the assumption that the
exchange is the dominant interaction is not always true in
the paramagnetic phase. The magnetostriction is not included,
although it does contribute to the measured anisotropy. The

Hamiltonian that Callen and Callen adopt is:

K =1cii +#% +K 11I-31
The axis defined by the magnetization is taken as the axis
of quantization. 1In general, this axis does not coincide
with the symmetry axis of the crystal, so the irreducible
tensor operators, that appear in Hg, must be expressed in
the new coordinate system. The irreducible tensor operators
of order & transform,by definition54, like the basis
functions of the 2%+l dimensional representation of the full
rotation group (like spherical harmonics of order 1), so:

= £ o™ D' (o) III-32

I

e

where w = ¢, B, v; the Euler angles of the rotation, D

——

tL

is the rotation matrix for the 22+l dimensional representation,
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and the primed operators are defined in the rotated coord--
inate system. Eventually, the thermodynamic averages of the
operators will be calculated with the eigenfunctions of the
zero-order Hamiltonian, and since the zero-order Hamiltonian
has cylindrical symmetry about the axis defiined by the
magnetization, the thermodynamic averages of the operators
in the summation will be zero if m#0. For the axial term

(m=0), the only coefficient that appears isS4:
p¥ (@) = P,(cosB) III-33
00 2

and for the basal plane term (m=6), the only coefficient

that appears is:

D

[ 3

- 1/2 -
n = (4n/249+1) Yﬂm(B,Y) III-34
so the crystal field Hamiltonian becomes, in the rotated
coordinate system:

0

0
L} —
}Ca = P2 P2(cose) Q2' + P

0
4

0

0
P4(cose) Q4' + P6

P6(cose)Q6'

6 0
6 P66(cose) cos6¢ Q6'.

+ (1/180v231) P
The primes will be dropped in the remainder of the
discussion.

The only remaining problem is now to find the thermo-

dynamic average aEQ%. The thermodynamic average is, of
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course, the sum of 2J+1 terms. However, since J is large

for the heavy rare earths, Calen and Calleng'10

replaced the
summation with an integral over continuous orientations of
the moment. This is the classical limit in which the irred-
ucible tensor operators reduce to the spherical harmonics.
in this limit, Callen and Callen obtained an integral over 60
which they solved exactly for the result:
-1
% =N I1I-36
2 ) 1
Il/z(L (o))

N

_ -1
=Ny Igpq/0 L "(0))

where the normalization constant N, is the value of the
thermodynamic average of the irreducible tensor operator at
0K, L is the Langevin function: L(x) = ctnh(x) - 1/%,

o is the reduced magnetization: M/MO, and Iz+1/2 is the
fied Ressel function of half integral order.

This result implies that all the properties of the
anisotropy are functions of the magnetization, and do not
depend directly on the magnetic field or the temperature.
Callen and Shtrikman55 have shown that, although this result
was derived in the molecular field approximation, only those
properties of the molecular field that are common to all
renormalized collective excitation theories (such as the

molecular field approximation, spin-wave theory, and Green's
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function theories) were invoked in its derivation, so it is
of much wider validity than the molecular field approximation
itself, at least in situations\where the approximation that
J=« is a reasonable one.

The majority of the measurements of anisotropy involve
the measurement of either magnetization or torque, so they
are done at a constant temperature and the Helmholtz free
energy is the proper thermodynamical potential to use. There
are, however, two free energies that can be defined for use

in magnetic problems. The first, called Fa by Kitte156, is:

Fa = -KkT ln(ZO) IIT-37

where Z. is the partition function calculated with the
eigenvalues of the zero-order Hamiltonian. Fa includes the
energy of interaction between the magnetized sample and the

field as well as the energy that was necessary to magnetize

the sample. The other free energy Fa:
F, o= F_ + A-h III-38

is defined by subtracting the interaction energy, thus
aving only the energy that was added to the system that is

necessary to keep the sample magnetized when the magneti-

Treating the crystal field interaction in first-order
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perturbation theory 'the free energy- is:

> >
Fb = -kT 1n(ZO) + HeM + <Ka? I11-39

Normally, the anisotropy energy <Ka> is expressed in the form:

0
<> = K)(T,H) P,(cosd) + K)(T,H) P, (cosb) III-40

+ KO(1,H) Pglcose) + Kg(T,H) cos (66) P (cosO)

where:

KI;Z('I',H) = KIE(T=OK) :E L"l(o(T,H))) ITI-41

24172
At thermal equilibrium, the orientation of the magnetization

is such as to minimize the free energy, so:

aFé/ae = 0 = -HM sinb +3<3_> /36 ITI-42

The anisotropy constants K?(T) can be determined by
measuring the magnetization and its orientation for several
values of the field at a constant. temperature. The field must have
a component along the hard axis of the sample. A least
squares fit of the experimental data then determines the
anisotropy constants for that temperature. Note that,
although the K?'s are written, in general;as functions of the
magnetic field, their dependence on the field is weak because

the magnetization is almost independent of the field at
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temperatures below TN'

otropy constants on temperature can then be compared to that

The measured dependence of the anis- -

predicted by the Callen and Callen theory. The comparison
has been done for Kg, Kg, and Kg, for the elements Dy and
Tb, and the results can be found in the review article by_
Rhynel. The fit of the theory and exﬁeriment is very good
considering the limited accuracies of the experiments.

The T = 0K values of the anisotropy constants can be
calculated by a fit of the experimentally measured constants

to the equation:
N | I -1 _
Kp(T) = Kp(T=0) I, »( L7 (0)) III-43

The T = 0K values of the anisotopy constants have been
calculated using experimental data obtained by several
methods. The agreement between metheds is fairly good at

least for the values of Kg. Analysis of the magnetization

data of Feron and Pauthenet57, in fields up to 70kOe,

yielded the values: KJ(T=0)= 126°%/ion and K (T=0) = 12° K/ion.

The torque magnetometer data of Rhyne and Clark58, taken in

fields up to 150kOe, yielded the same value of Kg as the data
of Feron and Pauthenet, but the magnetization data of Rhyne

et gl?, which was taken in fields up to 150kOe, yielded the
0 0

ue: X ox/icn. However, the value of K, that

wal s
altue:?
2 2

q!._r\\' - 1%
v A== L

[N
73
")

. . .59 .
was obtained by analysis of the paramagnetic data of
- Y . . . .
Behrendt et al was 57°k/ion , Wiicln 15 different by 2 factorx

of two. The difference may be due, at least in part, to the
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fact that the data of Behrendt et al were taken at temper-:
atures above 200K, whereas the other determinations of Kg
were made using data obtained at temperatures of 150K or
below. The magnetostriction makes a relatively larger
contribution to the effective anisotropy at lower temper-
atures, and may account for a good part of the discrepancy.
Other measurements were discussed in the review article by
Rhynel.

All the measurements discussed prevoiusly were made on
single crystals of pure Dy metal. It was thus impossible
to separate the one and two-ion contributions to the anis-
otropy. Recently, however, Touborg and Hog 60 measured all
the crystal field constants of Tb, Dy, and Er, by analysis
of the magnetization of single crystals of alloys consisting
of scandium, yttrium, or lutetium, each with a few atomic
percent of one of the heavy rare earths added. The three
elements scandium, yttrium, and lutetium all have the same
crystalline: structure as the heavy rare earths {(with the
exception of a slightly different c/a ratio) and all three
are either paramagnetic or diamagnetic, so the two-ion
exchange interaction should be small or nonexistent. The
crystal field parameters themselves can thus be measured in
these alloys. Since, however, Touborg and Hog analyzed
their data under the assumption that the anisotropic exchange

interactionsare of the same order of magnitude as the

single-ion crystal field interaction, and since this
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assumption has been shown to be unecessary44, their results

are suspect.
The basal plane anisotropy has been measured by

several workers. Rhyne and Clark58 obtained a value:

Kg(T=0) = -1.7°K/ion, whereas Feron and Pauthenet57 found

that Kg(T=0) = -2,5°K/ion, and analysis59 of the magnetization
data of Behrendt et al yielded the value: K2(T=0) = -2.3%K/ion.

Tt should be pointed out that, as in all least squares

fits, the calculated K?'s depend on the number of terms that
were included in the fit. In particular, since Feron and
Pauthenet included terms higher than second-order, whereas
Rhyne et El? did not, their agreement on the value of Kg

should be interpreted accordingly.

4. Magnetostriction

m - 4
The Callen and Callen theoryl

is generally used to
interpret the magnetostriction data also. The isotropic
exchange interaction and the Zeeman interaction are taken as
the zero-order Hamiltonian, the single-ion anisotropy and
the magnetoelastic interactions are treated in first-order
perturbation theory, and the elastic energy is a classical
term that is added. The static magnetostriction measurements

are made under conditions of constant temperature, constant

<2 LAY

derived from the Helmholitz free energy Fa’ +that has the

magnetic field as an independent parameter, so:
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.-Ga = Fa + I elekl ITI-44
k,1

where the Helmholtz free energy is defined and discussed by
Kitte156. In the standard treatment of magnetostriction, the
Helmholtz free energy is used, so the small stress due to
atmospheric pressure is neglected. If the anisotropy and
magnetostriction are treated in first-order perturbation
theory, the Gibbs free energy becomes:

G, = F, + kzlelekl +oa> + <}cr1ne> + e IIT-45
14

where Fa does not depend on the strain. In equilibrium, the
free energy must be a minimum, so the equilibrium strains

can be found by solving the equations:
3G_/%el 73 = 0 III-46
a i

where eE’J is the symmetry strain (defined in equation

ITI-17a). The solutions of the equations are:
"0(.,1 —- -1 o 0L,2 0 _
e = A [C2 [Bl Pz(cose)<Q2> III-47

o,2 2 2
+ G1 (30Z ~g7)) + 7T

+ J2(G‘i’oo2

ll]

_ A0 0,2 0

120352 - ¢°%))1]
Z

o] o ¢

N R
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a%r2 _ A'l[cg [Bg’2 P, (cosb) <Q%>
+ J (Gu O 2 4 Gg'z(Boi - 02))]
[Ba ’2 P2(cose) <Q%’
+ J (Ga 1052 4 G (30 -02)) + Tqq1]
é} = 1/¢Y [BY' <Q > t 3%cY? (oi - 03)]
2

-g €
e, 1/C s <Q2 > + Jg°¢t (Zcxoz)]

where:

= 0% _

o
2 12)

Since the stress is just due to atmospheric pressure, Tll =
T22 = T33 = 106ergs/cm3, and the otherstress components are
zero, so the correction to Ea’l is about 2uin/in. The

2
correction to alr

is even smaller, so both corrections are
within experimental error. These expressions are more
convenient for use in magnetostriction problems when recast
in a slightly different form. In this form, the magneto-
striction constants that appear can be measured experi-
mentally (using standard strain gauge techniques) by
measuring the change in strain along a particular crysallo-

graphic axis while rotating the magnetization. Clark

in more detail. For example,
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AY’Z is the change in the strain €y when the magnetization
is rotated from the a-axis to the b-axis. In general,
however, the magnetization must be rotated from a hard axis
to an easy axis, and because of the large magnetic anisotropy
of Dy, the magnetization can not be fully aligned along the
c-axis except in the paramagnetic phase. Thus, only the
magnetostriction constant AY’z can be measured over the full
temperature range from room temperature to LHe temperature.
The acceptance of the Callen and Callen14 theory of magneto-
striction is due mainly to its prediction of the temperature

dependence of this magnetostriction constant in Tbl2 and

Dyll, and the prediction of the temperature dependence of

one % = 4 magnetostriction constant in Tblz. Figure I-2
shows the measured value of AY'Z for Dy plotted as a function
of the predicted dependence: 25/2( 1™ o)).

C. Dependence of the Elastic Constants on the Magnetization

The Callen and Callen14 theory of magnetostriction did

ot predict’ any dependence of the elastic constants on the
magnetization because it only included magnetization
dependent terms that were linear in the strains. Terms
bilinear in the strains are necessary, however, for a
nonzero magnetoelastic contribution to the elastic constants,
since the elastic constant is defined as the second deriv-
ative of the internal energy with respect to the strain.

Under the assumption of small strains, the elastic

energy can be expanded in a Taylor series and only the first
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few terms kept. The first derivatives of the elastic energy
are zero since the energy is assumed to be an extremum. The
second derivatives of the elastic energy with respect to the
strains are just the usual elastic constants. Normally, only
terms in the elastic energy that are bilinear in the strains
are necessary, but if the strains become large enough to
cause the atomic restoring forces to become nonlinear, then
the third-order elastic constants, the third derivatives of
the elastic energy with respect to the strain, must be kept
if the elastic energy is to be calculated correctly. These
anharmonic terms in the elastic energy are responsible for
the thermal expansion of a solid as its temperature is
raised.

The elastic constants can be defined either as the
second derivatives of the free energy with respect to the
strain (isothermal elastic constant) or as the second deri-
vatives of the internal energy with respect to the strains
(adiabatic or isentropic elastic constant). The isothermal
elastic constants are appropriate for experimental situ-
ations where the strains are changing slowly enough to allow
the temperature to remain constant throughout the sample.
The adiabatic elastic constants are appropriate when the
strain is changing so fast that there is no heat flow from
one part of the sample to another, so the entropy is
constant. The elastic constants are generally measured

using aynamic strains, so the isentropic elastic constants
%
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are used. In practice, at temperatures near or below room
temperature, the difference between the isothermal and
adiabatic elastic constants is not significantsga.
It is important, at this point, to state the exact
definition of the elastic constant. In the usual elasticity
theory, the elastic constants can be defined in three

equivalent ways, which differ only in the notation. Take

C66 as an example. If the elastic energy Ue is:

6 3
Ue = 1/2 .Z__ Cijeiej = I Cijkleijekl IIT-48a
3=l i,5,k,1=1
iz—j 14 14 ’
then:
Ces = C1212 = C2121 = C1221 = C2112
where:
.2 2
C66 ] Ue/ae6
2 2 2 2
= / = -
0l = 27U /2T, = 2%U /heT, ITI-48b
eij = Bui/axj eij = 1/2 ( Eij + Eji)

The presence of the rotational terms in the Hamiltonain

(discussed in section III.A.5) means that in general,

BZU /8,2 # 82U /3¢c

) 2
12 21

where U is the total internal energy including magnetic terms.

Thus, the appropriate definition of the elastic constant is:
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C = 82U/Be..3e III-48c
ij

ijkl k1l
Note, however, that in all problems considered in this thesis,
the definition:
C..oq = 32U/3e, . 0e
ijkl ij k1
gives the same answer as the definition in equation III-48c,
put the notation there is not as convenient.

Since the Callen and Callen14 Hamiltonian is linear in
the strains, and since, in the Callen and Callen treatment,
the magnetoelastic correction to the energy is just the
first-order perturbation theory correction, either the Callen
and Callen Hamiltonian must be treated in higher order
perturbation theory, or the Hamiltonian must be fundamentally
modified. Southern and Goodings adopted the latter approach,
and their application of finite strain theory24_26 to the
heavy rare earths resulted in their prediction of the field

-1

e mem D mem mn L b
uepcunucice v h

the longitudinal elastic constants in the para-
magnetic phase.

1. Southern and Goodings' Theory of the Magnetic Field
Dependence of the Longitudinal Elastic Constants

Finite strain theory, as developed by Toupin24,
Tierstenzs, and Brown26, requires that the energy of a magnet-

terms of a certain
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theory was more general than it had to be for the problem
that Southern and Goodings were considering, so several
simplifying assumptions were made and samequantities which
appear in the general theory do not appear in Southern and
Goodings treatment. One of the invariant quantities that

is relevant to the rare earth problem23 is the finite strain:

Eij _ i(aui N u. - i Z'auk Buk
2 axj axi 2 k axi axj III-49

which replaces the infinitesimal strain in the Hamiltonian
of Callen and Callen. The other guantity is the, so called,

angular momentum invariant:

J, =% (8., + w,;.) J. ITI-50

[
(=
[
=)
[
[

where § is the angular momentum operator; and Wy 3 is the
*
antisymmetric part of the infinitesimal strain tensor. J

replaces the usual angular momentum operator in the Callen

[V}

and Callen Hamiltonian. The application2 of finite strain
theory to the rare earths is just the substitution of these
invariant quantities for the usual ones. The consequences
of the substitution will be discussed later.

The experimental verification of finite strain theory

]

ests on the workef Eastman

y ferrimagnetic YIG and the

work of Melcher62 on antiferromagnetic MnF Both authors

2.

present experimentally measured effocts that are unaccounted
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for in infinitesimal strain theory, but that are predicted by
finite strain theory. Upon examination, it is apparent that
in both papers, the theoretical explanations rely upon the
presence of the wij's and not upon the presence of the Eij's.
It is not necessary to invoke finite strain theory to include
these effects, however, because the general expansion47 of the
crystal field interaction in terms of the infinitesimal
strains, which was discussed in section III.A.5, includes
these terms.

Apparently, the only test of the substitution of the
finite strains themselves is found in the work of Salama

et 127, Kale et a128/% 30,31

, and Gama et al , who applied
Southern and Goodings theory of the magnetic field dependence
of the longitudinal elastic constants of the heavy rare earths
in the paramagnetic phase. As was discussed in Chapter I,
they found that the magnetoelastic constants calculated from
the theory of Southern and Goodings were at least an order of
magnitude too large to account for the static magneto-
striction results.

Although the bulk of the paper by Southern and Goodings
is concerned with the effect of the rotational terms, only
the part of their paper that treats the behavior of the longi-
tudinal elastic constants in the paramagnetic phase will be
discussed here. The rotational terms have no effect on iongi-

tudinal waves, so only the substitution of the finite strains

for the infinitesimal strains is important. After making the
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substitution, the magnetoelastic contribution to the internal

energy is:

. _(n%s2 a,l 0,2 0,2 0
Ume = (Bl E + B2 E ) P2(cose) <Q2>
wYr2 Yoat 5o 32 a,0 _o,1 a,0 0,2, 2
B E1<Q22> J (Gl E + G2 E o
- JZ(Gi"2 g%l . Gg'z Eu'z)(30§ - o) III-51

_ 12 AYe2 Y 2 _ 2
J° G Ej (oX cy)

where the magnetoelastic interaction is treated in first-order
perturbation theory and the two-ion interaction is treated in
the molecular field approximation. The shear strains have
been dropped from the Hamiltonian. In the paramagnetic

phase, where the magnetization is small, the Langevin function

can be approximated as:

L(o) = (1/3)c (o<<1) III-52

s0O:

1 t(o) = 30
Callen and Callen give the approximation:

I = X '
Tpp12®) = x /(28+41) !} III-53

where x<<1l, so:

)

I2+1/2(L—1(0)) = (30)2/(2z+1):: IIT-54
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0 2 2
<Q2> = JZ73 (237=J3) (3¢67/5) ITI-55

<0y,> = /378 sin%e cos2¢ <Qg>

Since:

2
Acijkl 0 Ume/asijae

k1l III-56

and:

E.. . e.. + (1/2)e>, III-57
11 = 11 11

in voight notation, the changes in the elastic constants are:

= = e a’z - alz 0 - Y,2 +
8Cy111 AC:q (Bl B, ) Pz(cose) <07 - B'' %<0,
_12,.0,0 _ 0,0, 2 .2 v,2,.2 _ 2
J (Gl G2 )o J G (o’x o'y)
- 32(g%12 _ %2 2 2 )
TGy G5’ %) (30, - o) III-58
= - - 0t,2 0.,2 0
ACy343= BC35 = —(By" " + 2B,"") P,(cos8) <Qy
2,.0,0 a,0, 2 2,.0,2 0,2 2 2
- ! 2€07 1 VY - o ’ ’ _
I7{e"7 + 26,7 )0 167" + 265" (30, - %)

Now, if AC?i is the change in the elastic constant Cii when
the field is applied along the x-axis, the five equations

that appear in the theory of Southern and Goodings are:

Ac?l/c2 -A/2 + B/2 + C -D + E

Ac‘i’l/o2 -A/2 + B/2 + C - D -E III-59

AC 2 _ _ -
A\,ll/o = A B +C D
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Ac§3/02 _A/2 - B + C + 2D

Ac§3/02 =A+ 2B+ C + 2D

where:
A = -(3/5) V27T (23%-3) B%'2 - 232 32
B = -(3/5)/§7§I(ZJ2-J) Bg’z - 2J2Gg’2
c = ‘G?'O III-60
D = -Gg’o
E = -(3/5)V/2/3 (23%-3) pYr2 _ g2 gYr?2

Although the notation is different from that of Southern

and Goodings, it is easy to see that, at a given temperature,
if the five experimental values on the left sides of
equations III-59 are known, then the five combinations of
magnetoelastic constants in equations III-60 can be deter-
mined. These five combinations are the same ones that
appear in the expressions for the static magnetostriction,

so the magnetoelastic constants that were determined from the
static magnetostriction can be used to predict the behavior
of the elastic constants as a function of the magnetization.
(Equivalently, the magnetoelastic constants determined from
;periment can be used to predict the

static magnetostriction, as was done in Chapter I.) In
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22 (0) = 4¢3, (0))/C,, (0) III-61

me
AC22(0)/C22(0) (AC

2¢Y 2Y72(7=0) (36°/5)

where AY’Z(T=0) is the value obtained from the magneto-
striction measurements of Clark‘gE'gl}l. The predicted

value, with the dependence on the magnetization factored

out is:

me 2y _

which is independent of the temperature. The measured

value of Acgg(o)/(czzoz) varies from approximately .33 at
180K to .08 at 300K. The discrepancy is obvious. Since the
predictions of Southern and Goodings are seen to be in
qualitative error, the application of finite strain theory
appears to be an inappropriate way to treat the problem of
the magnetic field dependence of the elastic constants.

2. Freyne's Thermodynamic Approach

Another approach to the problem of finding the magneto-
elastic contribution to the elastic constants is that of
Freyne~“. By adopting a thermodynamic approach, in which
the partition function is calculated with the energies that
include the corrections from the crystal field and magneto-
elastic interactions, Freyne was successful in explaining an
anomaly in the temperature depéndence of the elastic constant
C33 in the ferromagnetic phase of G4, and the corresponding

lack of an anomaly in the elastic constant C44.
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Experimentally, the anomalous dip in C33, measured by Long
et glG3 and by Fischer and Dever64, occurs at 240K. The dip
was observed to move to lower temperatures when magnetic
fields were applied in the basal plane. Fields of approxi-
mately 80kOe applied in either the basal plane or perpendic-
alar to it were sufficient to suppress the dip. No anomaly
was seen in the elastic constant C44.

Freyne related this anomaly to the change in the
direction of the easy axis of the magnetization that had been
observed in Gd using neutron diffractiones. The change in
the magnetoelastic energy that accompanied the change in the
direction of the magnetization was responsible for the
anomaly.

The magnetoelastic contribution to the elastic constants
was calculated by using the dispersion relation for longitud-

inal elastic waves propagating along the c-axisBZ:

2 _ a2
-pw uz(z,t) = 3 U /azaezz III-63

(where U is the internal energy) to calculate the magneto-
elastic contribution to the ultrasonic velocity, which was
then related . to the elastic constant by the formula: v =/B€§§}
Freyne's important contribution was in the calculation
of the internal energy. Whereas, Callen and Callen14 used
the eigenvalues of the zero-order Hamiltonian to calculate

their thermodynamic quantities, Freyne used energies that

inciuded the first-order perturbation theory corrections to
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the energy. The corrections came from the .crystal field
interaction and the magnetoelastic interaction.

Freyne used the molecular field approximation for the
exchange interaction. He took experimentally derived values
for the crystal field and magnetoelastic constants and he
calculated the temperature dependence of the magnetization
and the angle of the easy axis, to show that the parameters

that he was using in his Hamiltonian were consistent with
experiment.

His predictions of the anomaly in the elastic constant
C33 agreed fairly well with experiment. 1In 2zero applied
field, the calculated dip appeared at the correct temper-
ature, although it had a different shape. His calculations
showed that the dip moved to lower temperatures when a field
was applied, and that fieldsof approximately 8kOe in either
the basal plane or perpendicular to it were sufficient to

suppress the dip in C The qualitative agreement between

33°

and experimehnt was good. When Freyne calcu-

Freyne' Wh
lated the change in the elastic constant C44, he found an
anomaly that was much smaller than the anomaly in C33, and
that was consistent with experimental observations.

Although Freyne's approach gave good results for Gd, his
method is not directly applicable to the other heavy rare
earths because of the approximations that he was justified

in making for Gd which are not true for the highly anisotropic

rare earths. In particular, he neglected all operators
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giving off-diagonal terms in the zero-order Hamiltonian, such
as the basal plane anisotropy and magnetostriction. He also
assumed that the exchange interaction dominated the other
interactions, which is true for Gd since it is an S-state ion
and has no single-ion anisotropy, but which is not true for
the other rare earths, especially in their paramagnetic
phases. It is possible, however, to generalize Freyne's
method the other rare earths at the expense of some added
complications.

3. The General Thermodynamic Method Applied to the
Heavy Rare Earths.

In this thesis, the thermodynamic method has been
extended to allow it to be applied to any of the heavy rare
earths. Whereas Freyne used the magnetoelastic constants
deduced from the magnetostricion measurements in his calcu-
lation of the anomalous dip in C33, the thermodynamic method
is applied in this thesis with the purpose of finding the
set of magnetoelastic constants that best describe the
dependence of the elastic constants on the magnetization.
The helically ordered phase was not included in the calcu-
lations, but the method can be applied to elements in the
temperature range over which they are normally antiferro-
magnetic, if a magnetic field is applied that is large
enough to induce a transition to the ferromagnetic phase.
As in the other methods that have been discussed, the
exchange interaction and the two-ion magnetoelastic inter-

action were treated in the molecular field approximation.
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In the paramagnetic phase, the exchange interaction does not
always dominate the crystal field interaction and the static
magnetostriction, so it was necessary to include the crystal
field interaction and the static magnetostriction in the
zero—order Hamiltonian. The anisotropic exchange interaction
was included in the zero-order Hamiltonian also, for reasons
that were discussed in the section on the Model Hamiltonian.
The total strain is divided into two parts, the static

magnetostrictive strain, e-ir’J and the externally applied dynamic

r,j,r£,

strain , e,

S R oledrrE III-64
1 1 1

so the magnetoelastic interaction can be divided into two

parts also:

w =1 + xif III-65
me me me

wheresEme contains only the static strains and'zc;£ contains

. . . r,j,rt
only the dynamic strains. Although the strains ei’J' are
actually functions of time and position; they are treated as

uniform, static strains. Since the wavelengths of the elastic
waves used in this investigation were on the order of 105—106
interatomic spacings, the assumption of uniform strains is

a good one, since an ion and all of its neighbors experience
essentially the same strain. The assumption of static

strain is justified becauseiat the frequencies (10-20MHz)

which were used in this investigation, the time during which

. s \ . -7 . .
the strain changes is "0 'sec, which is much longer than
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the spin-spin relaxation time,fulo—losec. The spin system

is thus always in its internal equilibriun state with respect
to the dynamic strain. However, the spin-lattice relaxation
time is longer than the time over which the strain changes,
so there is no flow of energy from the spin system to the
lattice, and the use of the internal energy in the calcu-
lation of the dependences of the elastic constants is
justified. Stated in more general terms, the spin system,
because of its strong spin-spin interactions, is character-
ized by a spin temperature, which is different from the
temperature of the lattice because of the weaker spin-lattice
coupling.

Tn the calculations of the internal energy, all terms
bilinear in the strains were retained. The energies used
in the calculation of the internal energy included the first
and second-order corrections to the energy resulting from

rf

:}c .
me

The parameters that enter the calculation,; the molec-
ular field constants, the crystal field constants, and the
magnetoelastic constants that appear in:}Eme were chosen to
give the best calculated fit to the experimental magneti-
zation, anisotropy and magnetostriction data. This procedure
is discussed in more detail in the next chapter, where the
numerical calculations themselves are explained. It was
necessary to make numerical calculations of the thermodynamic

quantities that appear in the theory, because the 16 by 16
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Hamiltonian (J=15/2 for Dy3+) had to be digonalized before
the thermodynamic quantities could be calculated. In order
to avoid having to diagonalize imaginary Hamiltonians, only
fields applied along the x or z-axes were considered. The
only loss of generality in making this restriction was that
the magnetic field could not have components along both the
a and b-axes of the sample. Fields in either the a-c or b-c
planes could be simulated by changing the sign of the basal
plane anisotropy constant so that tha x-axis of the model
corresponded to either the a or b-axis of the sample.

The magnitude and orientation of the magnetization, the
free energy, and the internal energy were calculated from
their thermodynamic definitions. The static magnetostric ive
strains were calculated by minimizing the free energy wi’a
respect to the strains. Theoretical expressions for the
non-vanishing derivatives of the internal energy with
respect to certain functions of the strain were also eval-
nated. These expressions for the second derivatives will be
derived in the following section.

The Hamiltonian is written:

w = 3 + 3 ff III-66
0 me

and the perturbing term is due to the small oscillating
strains that are imposed on the sample. Since the static
strain will not appear explicitly in this section, the

. . . . . T,3
dynamic strain will simply be referred to as ei’J.
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An abbreviated notation is used for the perturbing

Hamiltonian, which is, in the abbreviated notation:

rf .. _ A0, + - + >
5 I7(1) = aQ) (F;) + BO;,(F) + €055 (F;) + DOy, (3;)

+ EQ;l(ﬁi) + Jo PRI, + Jo QT III-67
where:
A= —B%'Zea'l - Bg’z efr2 g = -BYr2 eI
D = -p€s?2 e5 + /8 Pgwl3 c=-8""2 e)
E = -B€’2 ei + /6 PngB ITI-68
P = (Gg’_"o - G‘i"z)e‘)"1 + (G%’O - c;g"z)e""2 + GY’zeI
Q= (G%'0 + 2G§'2)e“'1 + (30 + 26%'%) e
€,2

In this investigation, G was assumed to be zero, so it
does not appear in the Hamiltonian. Terms in GY'2 were
included in the calculations, but not in the analysis of

T

the experimental data.
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the zero-order Hamiltonian are assumed to be known, and:
% jm>= EO | > III-69
0 m

Now let Xi (i=1,7) denote any one of the coefficients: A, B,

Cc, D, E, P, or Q. The internal energy is:

L

L
L e BE
m=-2

BE,

m
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where B=1/kT, and the classical elastic energy is not
included. The energies that appear in equation III-70
include both the first and second-order perturbation theory
corrections due to the magnetoelastic interaction. It is
necessary to find the magnetoelastic contribution to the
elastic constant (Acijkl) in a form that will allow the
magnetoelastic constants to be determined from the experi-
mental measurements of the elastic constants as functions
of the magnetization. The magnetoelastic contribution can

be written:

Acijkl(o) = Cijkl(o) - Cijkl(o=0) III-71
220 3%y
= [ (o) - (0=0)1
aeijaekl 3€ij3€k1 €u6=0

Since derivatives are taken with respect to the small
dynamic strains, the derivatives are evaluated with the
strain equal to zero. It is assumed in the remainder of
this section that all derivatives are taken with respect
to the small dynamic strains, and that all derivatives are
evaluated with the strains equal to zero ( which implies

that all the X, are also equal to zero). Since:

aei. 1 9¢e,. X ITI-72
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the derivatives of the internal energy can be expressed in

terms of derivatives with respect to the coefficients Xi:

2
3°U > S 22y
= I III-73

aeijaekl m,naeij Bakl BXmBXn

Inspection of equations III-68 shows that the coefficients
that multiply the second derivatives are bilinear functions
of the magnetoelastic constants, so by numerically calcu-
lating the second derivatives of the internal energy with
respect to the coefficients xi, the magnetoelastic constants
can be determined by fitting experimental measurements of
Acijkl to the calculated derivatives that enter the expression
for Acijkl'

Now consider equation III-70, where

E =E + E + E I1T-74

and;
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ot T5 I1I-75
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rf rf
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E = L —
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The second derivative of the internal energy with respect to
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(k,1=1,3). Now the perturbing Hamiltonian is:
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rf, .\ _ 0,2 + - = + 2
Hfme(l) = AQz(Ji) + BQ22(Ji) + CQ22(Ji) + DQ21(Ji)
- >
+ EQZl(Ji) + JokPJx + chQJZ I11-77

so if Q; is defined as the angular momentum operator or

tensor operator that is multiplied by Xi’ then:

x ¥ = 5 x.0. II1I-78
me A s
J
so:
E_/X, = EL/3X, = < mp.|m > III-79
m i ™ i i
and:
325 /93X, 3X. = 9°E2/ 3K, X III-80
m i3 m i3
< m‘Q. h >< n D_ hx>
=2 T 1 J
n#¥m EO _ EO
m n
where the derivatives are evaluated with eij = Xk = 0.

There are ten types of summations that appear in
equation III-76, and to avoid confusion later, they will be

labeled in the way in which they were labeled in the computer

program:
_ a0
2 =11Xe BEm
m
0
UO = % I E_ e BEm
m
1
_ 1 aEm -BEO
Cli—-z'z-—-—e
m 2%
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1
.. OE 0
Cpi = FLi = ? & Py
m oX
1
oE 0
cy; = % X Eg M BBy
m Bxi
1
. 0B 0
c4i = % I Eg[ —m ]2 e BEm
m Bxi
2_2
.. 0 E
a = % 5 m_ ,~8E III-81
1ij m BXiBXj
2_2
3°E, 0
dgis = % T Eg m_ ~BEp
J m BXiBXj
1l 1
1 aEm BEm —BE
eli' =g y ——— — e
J m 3X4 oX
1 1
e =158 EEE EEE e_BEg
2ij Z m

In terms of these definitions, the derivatives are written:

52y

BXiQXj

+ dlij(l+BUO) - Bd

_ 2
= 2cliclj6(l+BU0) B (clic3j + cljc3i)

2
21y = Beyy4(2+BUg) + Brey,y

and:
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u....: 202_ 2
ax2 118(1+BUO) - 28 clic3j + dlij(l+BUo)
i
: 2 i}
- Bdy;4 - go,. (246U,) + B cy; III-83

The second derivatives of the internal energy with respect
to the Xi's have now been defined in terms of the matrix
elements of the seven angular momentum tensor operators, Qi’
that appear in the perturbing Hamiltonian. The matrix
elements are calculated in the representation in which the
sero-order Hamiltonian is diagonal. The derivatives are,
of course, calculated numerically. The details of the
numerical calculations will be presented in the chapter on
the numerical computation.

It is necessary to relate the calculated derivatives
of the internal energy to the experimentally measured
magnetoelastic contributions to the elastic constants.

Eguations III-73 and I1I-71 define this relationship, but

£r

- own
@AV

the derivatives of the Xi‘s with respect to the strains
still not been evaluated explicitly. Using equation III-73,
the dependence of Cll on the derivatives of the internal

energy is:

a,b, v _ a,2 _ o2, 2 Y2 50,2 _ 0,2
acTiP(0) = (B)'7 - BY )7 D, + BTIT(R, T - By' ) Dy

0,2 0,0 0,2y s 0_002y, ¥r2y
B %) (6] =67 )= (65" -G, ) 6 Ui
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2,2 _ 2 0,0 .oy o,0_ a 2.,
+ (BY'“)“ D, . F 2BY'“[(GY' -G 2y (G5 +G '2
0r0_0r2y_(n0r0_nar2y o oYr292
+ [(G{" =G )=(G," =G, ) + G ] Dpp ITI-84
c _ ar2_o0s2,2 Y92 q0r2_o0,2
- (x,,z_ a,z 0(,,0 d,,z - a,o 0(,2
2(Bl B2 )[(Gl +2G1 ) (G2 +2G2 1] Daq
'Y12 2 - Y12 a,0 G2 - a0 a2
+ (B )" Dpy 2B [(G] +2Gy ) (G2 +2G, )]Dbq

ars0 ar2y _ (n0r0,5n0,2y12
+ [(Gl +2G1 ) (G2 +2G2 )] aq

where the upper sign is for fields along the a-axis and the

lower sign is for fields along the b-axis, and:

2 2
_ 3%y - AU

N

D o =0)
XY  axay 9X 9Y

The equations for C,, are obtained from equation III-84 by
replacing BY'2 with -BY’Z, and GY’2 with —GY’Z.
The results for C33 are somewhat different since only

three derivatives enter each equation:

a _ b - OLr2
C 3(O) = AC33 = (B +2B ) D aa

2
2

2(B%"+2Bg")[(G%'U-Gi'4)+2(G§iU—G§; )] D

(Ga,O -

(3

|

G
QR
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c _ 0,2 0,2,2 _
c33(c) = (Bl +2B2 ) Daa III-85
- 2(B ;"2+2B°" )[(G“'°+2G )42 (G a0, 426 *2y1p
0 )0

+ 16y +2G%'2)+2(Gg +26% 2y42

qq
In ordinary elasticity theory, there are several ways

of measuring the shear elastic constants, for example:

C C = C = C ITI-86

44 ~ C1313 - C3131 - “55 2323 3232

However, using the definition of the elastic constants
given in equation III-48c, and including the rotational
terms, the elastic constants in III-86 are not necessarily
equal. In fact, the magnetoelastic contributions to the

four elastic constants derived from C44 are:

- E:—- > 0 2
Acl3l3(c) = (B - V3/2 P2) D

— 612 0,2 _
AC3131(0) = (B + V372 P2) Ddd III-87
_ 2 0,2
ACy355(0) = = /372 ;)" Dgq
— 812 0,2
AC354,(0) = (BX'T + /372 2,)" D

Since to second-order in the angular momentum operators,

there are no rotational terms that contribute to C66’ its
calculation is easy, and:
AC.. (o) = (BY'%) % D__ III-88
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IV. Numerical Calculations

This chapter describes the FORTRAN programs and
subroutines that were developed, primarily by Dr. P. L.
Donoho, to do the calculations of the thermodynamic
quantities that were described in the last section of
the preceding chapter. The programs were used on the DEC-10
computer at UNICAMP, so the programs, copies of which are
in Appendix D, are written in the version of FORTRAN that is
implemented on the DEC~10. Minor modifications would be
necessary before the programs could be used on other machines.

Since many approximations were made and many
conventions were adopted in the writing of the program, it
is important that they be brought together in one place.

1. The isotropic and anisotropic exchange interaction and
the two-ion magnetoelastic interaction are treated in the
molecular field approximation.
2. The HAF phase is not included in the calculation, so in
the temperature range over which Dy is normally antiferro-
magnetic, the calculations can only be compared to exper-
imental data obtained at fields high enough to suppress the
helical antiferromagnetism. In the model, the Curie
temperature is:

T =6, = 170K v-1
3. The contribution of the dynamic magnetoelastic inter-
action to the energy levels is calculated in second-order

24

perturbation theory.
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4. C%Z is set equal to zero. Zero is within the experi-
mental error, and ng =0 simplifies the equations for the

static magnetostriction.

5. The magnetization can only have a component along either
the a-axis or the b-axis, but not along both.

6. The magnetization and the static magnetostriction are
calculated self-consistently.

7. Since the tensor operators for m=0 were defined in the
programs withoﬁt the irrational factor that appears in their
definition, some of the constants that appear in the theor-
etical expressions are different from those that appear in
the program. See Appendix C for the difference. Whenever
one of the constants appears in an equation or in an
expression , it is consistent with the standard definition
of the tensor operators unless otherwise specified.

8. All energies are expressed in °K, all energy densities
are in °K/ion, and all magnetic fields are in kOe in the
programs.

9. Gt2

= 0
10. The magnetoelastic constants that appear in the zero-
order Hamiltonian are not necessarily equal to those that
appear in the perturbing Hamiltonian.

The program actually consists of a main program, MAINO2, that
determines the flow of the calculations, and many subroutines

in which most of the calculations themselves are done. A

flow chart is shown in Figure 1IV-1.
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MAINO2

| ane
l CALCULATE !ﬂ l

DIAGONALIZE %, CALCULATE
CALCULATE o, R v, NEW a's

osg®?

YES CALCUATE
EQUALIBRIUM STRAINS

CONVERGED ?

YES

CALCULATE (st AND 2nd
ORDER ENERGY CORRECTIONS

[ cALCWLATE susmaTiONS |

[ CALCULATE 18- sec DERNTIVE |

QUTPUT DERIVATIVES NECESSARY
TO AIT EXPERMENTAL DATA

Figure IV-1 Flow chart of the caiculation of the second
derivatives of the internal energy that
are necessary to fit the observed dependence
of the elastic constants on the
magnetization.
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Slightly different notation was used in the program
than was used in the theoretical calculations, so the
Hamiltonian, as it was used in the numerical calculations,
is developed. It is convenient in the numerical calcu-
lations to group all the terms which multiply a given
angular momentum or irreducible tensor operator.

Since GY = 0, and Gg’2

= 0, Jy does not appear in the
Hamiltonian. The coefficients of Jx and Jz include contri-
butions from the isotropic and anisotropic exchange, the

geeman interaction, and the two-ion magnetoelastic inter-

action. The sum of these terms is:

zcii +‘3c2§ K+ sc;é = o J + a7, IV-2
where:
o, = 0 Hx + OXF"
0, = Q Hz + OZFZ Iv-3
r, = ?—}t—-“i(r-rl) + 9G] R Gy g2 4 gVl &)

gu ) _
r, = —2(r+2r) + J64T L )
k

and:

Q = 1000 (gu,/k) V-4

e% ™ = G%,O _ G%,2 Ga,+ Gu,O + 2Ga,2



Gy = Gg'o - Gg'z G%’* = 620 4+ 2692

The entire zero-order Hamiltonian is:

L - +.0 0.0, 0
Woli) = aJ +aJ, + P2Q2(3i) + P,0, () + pGQ(Si)

+
+ PGGQGGGFi) V-5
where:
+ _ 0 - d,,z -a'l - O.,2 -a’z _
P2 = P2 Bl e 32 e IV-6

The form of the perturbing Hamiltonian is not changed from

equation III-67:
rf,. _ 0 + - +
o (1) = AQ, (F;) + BO,, (J;) + CQ5,p (F;) + DQ,, (3.)
+ Einﬁi) + Jo PI_ + J0,0F, V-7

It is important to realize that there are two sets of magnet-
oelastic constants that appear in the Hamiltonian: the ones
in the zero-order Hamiltonian that characterize the static
magnetostriction and the ones in the perturkin
that are determined from the ultrasonic data. Ideally, the
two sets should be the same, but in practice, they were not.
There is a good reason for the difference, however. The
magnetoelastic constants that were used in the zero-order
Hamiltonian were chosen to give the best fit to the »
published data on the static magnetostriction, but it was
found that there were several sets of magnetoelastic

constants that gave approximately the same fit to the
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magnetostriction. The magnetoelastic constants in the
perturbing Hamiltonian are initially unknown, and are
determined from the ultrasonic data. Optimally, an inter-
ative procedure would be used in which the magnetoelastic
constants determined from the fit to the ultrasonic data
would be substituted into the zero-order Hamiltonian, the
calculation of the second derivatives of the internal energy
would be repeated, and a new set of magnetoelastic constants
would be calculated with the new second derivatives. The
procedure would continue until the magnetoelastic constants
that were calculated from the fit to the ultrasonic data
were negligibly different from those that were used in the
zero-order Hamiltonian. Each step in this procedure would
reguire that all the second derivatives of the internal

energy with respect to the coefficients, Xi, be recalculated

and would invlove the use of a considerable amount of

computer time.

A. Preliminary Data Analysis

Before the main program was used to caiculate the
derivatives needed to fit the ultrasonic data, the raw
experimental data had to be put into a form that could be
utilized by the main program. A flow chart of the programs,
including those that operate on the raw data, is shown in
Figure IV-2.

The raw data that resulted from the magnetization

measurements were, for each orientation and temperature in



UDER3:

Input(from terminal): Ultrasonic data
as a function of current monitor voltage
and, in the ferromagnetic phase,
magnetization as a function of current
monitor voltage.

Outpnt(to data file): Same as iﬂput
data.
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MAG2:

Input(from data file): Raw magneti-
zation data as a function of current
monitor voltage.

Output(to data file): Coefficients
that parameterize the magnetization
curves in the paramagnetic phase as

a function of current monitor voltage.

|

e

UDER3:

Input(from data files): Raw ultrasonic daca
from data file created by UDER3, raw magnetiza-
tion data for temperatures below T, from the
data file created by UDER3, and the coefficients
that parameterize the magnetization data in the
PM phase from the data file created by MAG2.

Output (to data file): Calculated values of the
reduced magnetization and Af/f as a function
of the reduced magnetization.

MAINOZ and subroutines:

Input(from data file): The reduced maenetization
and Af/f as a function of the reduced magneti-
zacion from the data file created by UDER3.

Output(to data file): The values of Acii
calculated from the experimental £
the second derivatives necessary to fit
the experimental data.

SE/€73and

A

e

NL? (APL program):

Input: The experimentally derived
values of AC 2 for all three
orientations“of the field, and the
derivatives necessarv to fit the
experimental data.

Output: One set of magnetoelasctic
constants that give the best fit
of the experimental data for
temperatures 195K and above.

Figure IV-2

A

NL3 (APL program):

Input: The experimentally derived
values of AC,, for both possible
orientations™of the field, and the
derivatives necessary to fic the
experimental data.

Outpug: One get of magnetcelastic
constants that give the best fit
of the experimental data for
temperatures 195K and above

Flow chart of the FORTRAN and APL

programs that were used in the fitting
of the elastic constant data.
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the paramagnetic phase, a list of the current monitor
voltages and the magnetization measured at each voltage.

A data file was created for each orientation and the raw
data was entered into the file. The program MAG2 read this
file and for fields in the basal plane, the magnetization

was fit to the equation:
2 3 4
0 = A(T)v + B(T)v® + C(T)v™ + D(T)Vv Iv-8

where o was calculated from the measured value of the
magnetization and v is the current monitor voltage that
appears in SC;Z. The magnetization with the field along

the c-axis was fit to the equation:
o =A(T)v IvV-9

since it was assumed that the small amount of curvature

that was observed in the plot of the magnetization versus
current was due to sample misalignment. The temperature
and the calculated coefficients were storsd by MMAG2

.
- TN
Y ATAL AN -

another data file.

The raw data from the ultrasonic measurements were,
for each temperature and orientation, a list of current
monitor voltages and the frequency of best overlap at each
voltage. Using the program UDER3,; this data was entered
into a data file, and after the errors had been corrected,

the same program created another data file that had, for

each temperature and orientation, a list of the quantities
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o and Af(o)/f = (£(0)-£(0=0))/£(0=0) Iv-10

where o was calculated from the current monitor voltage
using either equation IV-8 or IV-9. The reduced magneti-
zation at temperatures in the paramagnetic phase was calcu-
lated from the coefficients that were read from the data
file that had been previously created by MAG2. For temper-
atures in the ferromagnetic phase, the reduced magnetization
was calculated from the magnetization data that had been
entered with the ultrasonic data using the program UDER3.
This file was accessed by MAINO2 and the values of the
reduced magnetization were the values at which the second
derivatives of the internal energy were calculated.

B. Determination of the Parameters That Enter the
Zero-Order Hamiltonian

The magnetoelastic constants that appear in the
zero-order Hamiltonian were calculated from the experi-
mentally measured magnetostriction by assuming that the
in ie a linear function of the magnetoelastic
constants. A given Cartesian strain would, in general, be
a function of all eight magnetoelastic constants, but the
symmetry strains are only functions of the magnetoelastic
constants that are labeled with the same irreducible
representation as the strain itself. If the strains are
linear functions of the magnetoelastic constants, then, for

0,1l

example, the strains él ans e can be expressed in the

following way:
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e =Y
_ Je Je
el = 1 BY'2 + -——-—Ji—— G’Y'2 Iv-11l
and:
Y- - L
e’ = B‘i’ + Gol" 4 — G?_’
0(.12 Otro 01-12
BBl BGl BGl

The partial derivatives of the strains with respect to the
magnetoelastic constants were calculated numerically by a
slightly modified version of the main program.

The isothermal magnetostriction data that were used
were taken from the data of Clark gE'glll for temperatures
in the paramagnetic phase. Isofield datal (with a field of
30kOe along the a-axis) for the three strains ey €y and
e, were also used. Since the equations that determine the
magnetoelastic constants were overdetermined, a linear
least squares program was used to calculate the coefficients

that gave the best fit to the experimental data. The

et et mtatm 2 m A Lammen ]
constants obtained from the least sguares fit are:

%,z ~15°K/ion  B%’2 = -8.17°K/ion IV-12

lvy)
i

BY'2 - 30.2°K/ion GY'2 = -14.5°/ion

G%’o = -1.02°K/ion Gg’o - 10.6°K/ion
G%'z - 6.24°K/ion Gg’z = 6.24°K/ion
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The experimental data and the best fit are shown in Figures
Iv-3, 4, 5, and 6. Note that in Figure IV-6, the calculated
strains do not include the thermal contraction. The calcu-
lated curves at a temperature T should be shifted in a
negative direction by the amount of the thermal contraction
from 300K to T. This correction would improve the fit of
the c-axis strain relatively more because the c-axis

thermal contraction is larger.

Be'2 did not appear in the calculation because it
only enters when the magnetization has components along
the c-axis and in the basal plane, simultaneocusly, and this
situation was never experimentally realized in the ultra-
sonic measurements.

The assumption that the strains are linear in the
magnetoelastic constants is, of course, only an approxi-
mation, so errors arose from the fact that higher order terms
were neglected. Also, the partial derivatives in the Taylor
series expansicn were evaluated with all the magnetoelastic
constants equal to zero except for the one with respect to
which the derivative was being taken, so higher order cross
terms that were neglected gave rise to errors. A solution
could have been obtained even with the nonlinear dependence
of the strains on the magnetoelastic constants by using an
jterative procedure such as the Newton-Raphson method. The
improvement in the solution would have been at the expense

of a considerable amount of computer time, so only the
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Figure IV-3 Comparison of the measured magnetostriction

with the magnetostriction calculated
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modified version of MAINOZ, and the
magnetoelastic constants were those in
equation IV-12. Experimental points
after Ref. 11.
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and the magnetoelastic constants that were
used are given in equation IV-12. Experi-

Lo e g SN Y

mental data after Ref. 1.



1e8.

simple method was used to find the magnetoelastic constants
that were used in the zero-order Hamiltonian for the calcu-
lations of the second derivatives of the internal energy.

A good approximation for the value of the isotropic
molecular field constant, I', is its value for an iso-
tropic ferromagnet without magnetostriction. The Curie

temperature is proportional to the molecular field constant,

‘Y:

T, =9, = 169K = yC Iv-13

4

where C is the Curie constant (equation III-30) and
y = (guB/k)Mor. Small adjustments were, of course,
necessary because of the presence of the anisotropy and
magnetostriction. The value of the isotropic molecular
field constant that was used in the calculations is:
I = 54.4°K/ion. The paramagnetic magnetization data is
shown in Figure IV-7. The fit is fairly good except for
the fact that the slope of the reciprocal of the suscepti-
bility, 1/y., versus temperature is slightly too small. This
slope is not readily adjustable, since it is the inverse of
the Curie constant, C, which depends only on J and g.

The anisotropy constants were the most difficult to
determine. The four crystal field constants, as well as the
one anisotropic exchange constant, had to be chosen. The

experimental data that were used to choose the constants

were: the difference in the paramagnetic Curie temperatures,
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9, - ell, taken from the magnetization data of Behrendt et
g;?, and the low temperature magnetization data of Rhyne et
gia that was taken at 4.2K with the field parallel to the
c-axis. The low temperature magnetizations, is almost a
linear function of the field up to 60-70kOe, where there is
a phase transition which makes the c-axis an easy axis.

The phase transition occurred in the theoretical model too,
but at higher fields, between 160 and 200kOe. The slope of
the magnetization versus field along the c-axis depends
primarily on the second-order anisotropy, as does the
difference in the paramagnetic Curie temperatures. The
anisotropic exchange constant, Pl’ and Pg were adjusted

to give the best fit for both the low temperature data and
the paramagnetic data. The higher order anisotropy
constants, which are primarily responsible for the curvature
of the plot of the c-axis magnetization versus field ( at
low temperatures), were set to values small enough to
introduce only

Cf curtvature (ﬂnnci atant « 'ith

LS5 5.5 a0 Ehe I g w2

o
un
]
[}
|.-I
£
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:

experiment) into the numerically calculated magnetization
curve. The anisotropy constants that were used in the

calculations are:

r, = -2.62°K/ion Pg = .399K/ion Pg = -4.9x10"3°K/ion
0 -6, ,. _ -5, .
P6 = 4.72%x10 K/ion P66 = =9,77x10 K/ion

The fitting of the low temperature c-axis
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magnetization data and the data from the paramagnetic phase
was made somewhat easier by the fact that the second-order
anisptropy and the anisotropic exchange (in the molecular
field approximation) have different temperature dependences.
The second-order anisotropy depends on < Qg > which goes
approximately as 02 in the paramagnetic phase (o0<<1) and
which goes as 03 in the ferromagnetic phase (o=l). The
anisotropic exchange, in the molecular field approximation,
goes as 02 at all temperatures. The low temperature
properties were thus dependent on the relative sizes of the
crystal field anisotropy and the anisotropic exchange,
whereas the paramagnetic properties, at least when the
magnetization was not too large, were only dependent on the
sum of the two. The susceptibility data from the para-
magnetic phase and the calculated fit are shown in Figure
Tv-7. The calculated low temperature c-axis magnetization
followed the experimental data up to about 60kOe, where the
two began to differ because the experimental phase transition
was at 70kOe, whereas the calculated phase transition

occured at about 160kOe.

The explanation of why the, apparently, unecessary44,

anisotropic exchange had little effect on the paramagnetic
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is now easy. Since both the dominant crystal field term and
the anisotropic exchange have the same dependence on the

magnetization in the paramagnetic phase, only the sum of
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the two is important, not their relative contributions.
Thus, the thermodynamic properties are not appreciably
affected in the paramagnetic phase by the presence of the
anisotropic exchange.

C. Self-Consistent Calculation of the Magnetization

The calculation of the magnetization requires a
self-consistent procedure because the magnetization is
calculated from the formula:

3= s<nfm> e Fn IV-14
JZ m
where the energies, Em’ depend on the magnetization because

it appears in the zero-order Hamiltonian in the term:
(QH + 0, T )T, + (QH, + 0,T,)J, IV-15

For an anisotropic : ferramagnet without magnetostriction,

equation IV-14 becomes:

Jguy, (H+To)
o = Bsl 2 ] IV-16
kT
where:
B, (%) = 2041 oen (2L 4y - L coth () IV-17
2J 2J 2J 2J

Since the magnetostriction and the anisotropy are included
in the zero-order Hamiltonian, a clesed form expression for
the magnetization can not be found, and a different

approach had to be adopted for the numerical calculation of

the magnetization.
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The three quantities 3, ﬁ, and 3 are related by two
equations, so only one of the three is independent. The

first relation is just the definition cf o
o, = QHx + chx Iv-18

uZ = QHZ + I,ZO‘Z

and the second relation is equation IV-14. The particular
method employed in the calculation of o depended on which
of the three quantities 3, ﬁ, or & was chosen as the indep-
endent variable.

The calculation of s was simplest when 3 was chosen
as the independent variable. The desired value of 4 was
subsituted into the zero-order Hamiltonian which was diag-
onalized numerically. The eigenvalues and eigenvectors
were then used to calculate o using equation IV-14, and the

magnetic field could be calculated from the definition of

Taking the magnetic field as the independent
variable was more complicated, and an iterative procedure
was required. First, a value of & was assumed, and the
magnetization was calculated by the procedure described in
the last paragraph. There are actually two magnetic fields
that appear in this procedure, the desired value H, and
the actual value ﬁ', that is calculated from the definition

> - s o .
of & after the magnetization has besn calculated with the
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assumed value of a. The object of the procedure is to find
the value of a that, when used in the zero-oxder Hamiltonian

to calculate %, yields the proper magnetic field:

H
X

| I - -
Hx = (ux TXGX) Iv-19

= '=. -
H, Hz (az onz)

O~ . Ol .

A modified Newton-Raphson procedure was used to solve

the equivalent equations:

ar| Lt

Fx(ax,uz) ; (ax - QHX) -0, = 0 IV-20

i
o

_ 1 - -
Fz(ux,az) = T (az QHZ) o}

z
where the object is to find the value of & that makes ¥ = 0,
and where, as usual, oy = 0. The Newton-Raphson procedure
requires an initial guess of the solution to start the
iteration. The procedure then takes a Taylor series
expansion of the function (keeping only the first deriva-
tives) and finds the values of the arguments that make the
linearized function zero. These arguments are used as the
initial point for the next iteration. The procedure
converges if the initial guess is sufficiently close to the

root of the equation. In one-dimension, the Newton-Raphson

procedure is summarized by the algorithm:

of
X, . =X. = f(x. e
i+l i ‘ l)dxlxi Ty-21
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The generalization to n-variables is easy using the matrix

P
of the Jacobian: Jij = 3§l{ and the algorithm is:
3
i+l i -1 >i
. =x., - I J., F X Iv-22
J 3 g=q J¥ k%)

The derivatives in the matrix of the Jacobian are evaluated
numerically. The iteration continues until the following

condition is met:

F !, <m Iv-23

where T, is on the order of 10-6—10-10.

The procedure that is followed when the magnetization
is chosen as the independent variable is similar to the
one just described. When the magnetization is the indep-
endent variable, there are two magnetizations that are
defined, the desired magnetization, 30, and the calculated
magnetization 5, and the procedure iterates until a value
of &4 is found that, when substituted into the zero-order

Hamiltonian makes:

0 0
o, Oy | o, = o, 12Ty IV-24
The equations that must be solved are then:

- 7 o 0 —_

F. {a_sa, ) = o, - 0o, =20 IV-25
. P Lo .S -m

F (a_,a ) = a_ - 00 =0
z %'z Z z

The Newton-Raphson method proceeds in exactly the same way
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as before, the only difference being in the definition of %Q

Generally, purely theoretical calculations were done as functions
of the magnetic field, and the calculations of the second derivatives
that were necessary to fit the ultrasonic data were done as functions of
the magnetization. The programs that were used in the two cases had
to be slightly different.

The full two-dimensional calculation of the magneti-
zation was only necessary when there were nonzero components
of the magnetization in both the x and z directions. This
condition was only met in the low temperature calculations
of the anisottropy. The fitting of the experimental ultra-
sonic data required that only one component of the magneti-
zation be nonzero. With only one component nonzero, the
procedure described above becomes the Newton method in
one-dimension. The increased complexity of a program that
allowed the magnetization to be either along the X-axis or
along the z-axis or in the x-z plane was well worthwhile
because the calculations were much faster when the magneti-
zation was only along one axis. The three extra diagonal-
izations of the zero-order Hamiltonian,; in each iteration,
that were necessary to calculate the matrix of the

Jacobian in two dimensions were not necessary in one

- e .
AT NAana &
gimension,

D. Self-Consistent Calculation of the Static
Magnetostriction

The problems involved in the calculation of the static
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magnetostriction are similar to those encountered in the
calculation of the magnetization, since the equilibrium
strains are calculated from the derivatives of the free
neergy. The free energy is, however, calculated from the
eigenvalues of the zero-order Hamiltonian which is itself

a function of the equilibrium strains. The procedure starts
with the static strains equal to zero, so the values of Px

and Fz that enter the zero-order Hamiltonian are:

gig
I = —= (I - T.) IV-26
X Kk 1
gu
r = —B (T + 2r,)
2 x 1

After the magnetization had been calculated, the static

strains were calculated from the set of equations:

aFe _ ,aFm Vo2
T3 T'vJ
aei aei

where Fe is the elastic energy, and Fm is the free energy,
not including the purely elastic part. The derivatives of
Fe are trivial, and the derivatives of Fm were calculated
numerically. The equation itself is derived from equation
I1I-46, where the static stresses have not been included,
and ng has been set equal to zero. These equilibrium
strains were then incorporated into the zero-order Hamil-

h modifications of the coefficients of the

and by modifying the values of Fx

O
N+
N

Q0
N+

1’
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and Pz, as shown in equations IV-3. Since the zero-order
Hamiltonian had been modified at this stage, the magneti-
zation that was calculated from it was also modified. The
calculation of the magnetization thus had to be repeated
for the new zero-order Hamiltonian. After reaching the
correct value of the magnetization, the equilibrium
strains were again calculated. The iteration continued
until the new static strains were within a certain
percentage of those calculated in the previous iteration.
After the static strains had converged, and the
magnetization had been calculated for the zero-order Hamil-
tonian, the second derivatives of the internal energy were
calculated using the eigenvalues and eigenvectors of the
zero-order Hamiltonian and equations III-81, 82, and 83.

E. Calculation of the Second Derivatives of the
Internal Enerqgy

The calculations of the second derivatives of the
internal energy, using the second-order corrections to the
energies, was discussed in the last chapter. These energy
corrections were calculated in the subroutine ENCOR using
the matrix elements of the operators, and were stored
for use in the calculation of the summations that appear
in the expressions for the second derivatives of the
internal energy. The ten summations (equations III-81) that
appear in the expressions were calculated in the subroutine

SUMCATL and stored. The subroutine DERCAL used these values
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of the summations and equations III-82 and 83 to calculate
the second derivatives.

There are only eighteen nonzero second derivatives of
the internal energy with respect to the seven coefficients
(Xi) that appear in the perturbing Hamiltonian. The real
and imaginary operators must be considered separately, since
there can be no cross derivatives involving a real and an
imaginary operator because that would lead to an imaginary

energy correction. The real operators are: J, I Qg, sz,
and Q;l. There are 25 possible second derivatives that can
be taken with respect to the coefficients of these five
operators, but since the derivatives are symmetric, only
fifteen of the derivatives are distinct. Similarly, there
are three distinct derivatives involving the coefficients
of the imaginary operators: Q;z' and Qzl'

In an earlier computer program, the fifteen seocnd
derivatives of the internal energy with respect to the
coefficients of the real operators were calculated numer-
ically, by incrementing the coefficients of the operators;
for example:

%y _ 1
— = =, (20(A) - U(A+A) - U(A-1)) Iv-28
3A2 A

This is the simpler method, both conceptually an

computa-

[e])

tionally, but it is very wasteful of cumputer time, since

the evaluation of each derivative requires that the zexo-



180.

order Hamiltonian be diagonalized two or three additional
times.

The numerically calculated derivatives were, however,
compared with those that were calculated using the
expressions derived in the last chapter, arid were found to
agree to within 1 part in 103 or better. Since the deriv-
atives calculated by the two methods agree so well, there
is little doubt that the derivatives of the internal energy
that were used to fit the ultrasonic data were calculated
correctly.

After the derivatives had been calculated, the main
program, MAINO2, created a data file with the values of
the derivatives that were necessary to fit the experimental
data. Also, the changes in the elastic constant, Acii’ had
£c be calculated from the experimentally measured Af/f. If
magnetostrictive effects are ignored, Acii is:

Af (o)
£

AC. . (g) = 2C.

i1’ ii

The subroutine VEC multiplied the values of Af/f,that were
read from the data file, by the appropriate elastic constant,
and calculated Acii’ which was then stored in the data file
along with the calculated derivatives.

E. Nonlinear Least Squares Fit of the Ultrasonic Data

The coefficients that multiply the calculated deriv-

. . . 1
atives in the expressicns for the magnetoelastic
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contributions to the elastic constants are bilinear in the
magnetoelastic constants, so a nonlinear least squares
fitting procedure had to be used to find the magnetoelastic
constants.

There is no set method for solving nonlinear least
squares problemsGG; each one must be approached separately.
Three different methods were used in various stages of the

data analysis. The grid-search method66

was the first that
was used, but it was either not implemented well, or was
not appropriate for the problem. None of the data analysis
that is reported here was done using this method.

The most straightforward method is the direct search
of coefficient space. Assume that there are n coefficients
to be determined. The direct search requires a starting
point, which becomes the center of a grid of points that is
set up in the n-dimensional coefficient space. The sum of

the squares of the deviations:

¥2 =1 (aC

1

exp _ )ccal)? IV-29

is then calculated at each point of the grid, and the point
at which X2 is a minimum is chosen as the center of the
next grid. By reducing the distance between the grid points,
the procedure eventually converges.

The one advantage of the direct search is that it is

ea

0n

v to program. Its disadvantages are that it is very

wasteful of computer time because the large number of
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multiplications that must be done to evaluate x2 is multi-
plied by the number of points in the grid, which is large
when n is larger than 2 or 3. Also, there is no guarantee
that the procedure will converge to the absolute minimm of X2
rather than to one of the relative minima, so the whole
calculation has to be repeated several times from
different starting points to be sure that the absolute
minimum has been found.

The method that was found to be the most useful in

this problem was that of Levenberg67

, whose method is a
modified version of the Newton-Raphson method. Essentially,

the problem is to minimize:

,
X2 = I h;() 1V-30

1

. P . > .
with respect to the coefficients a. Thus, the equations:

33x2 =0 Iv-31

must be solved. These equations are, in general, a set of
coupled nonlinear equations. The function, hi’ is
expanded in a Taylor series as a function: of the coeff-
icients, EY

> > >
h, (B) = h; @g) + §ahi - A2 IV-32

where only the terms linear in the increments:
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this approximation into

equation IV-31l, a set of coupled equations is obtained, the

solutions of which are the increments of the coefficients.

The procedure operates

starting point for the coefficients.

iteratively, and requires a

In general, it is

found that if the initial guess is not close to the root of

the equations, the increments of the coefficients that are

calculated are very large, and

the procedure diverges. to

alleviate this problem, Levenberg changed the conditions

somewhat, and required that the sum of x2 and the square of

the increments, zAai, be minimized, and that the increments

i
be such as to reduce xz.

This
decreasing the increments, and
convergence, at the expense of
This procedure was implemented

of the experimental data shown

change has the effect of

of enlarging the radius of
some speed in the convergence.
in APL and used to fit most

in the next chapter.
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V. Experimental Data and Data Analysis

Two types of experiments: were carried out in the
course of the research reported in this thesis: measurements
of the magnetization and measurements of the elastic
constants as functions of the applied field. Limited
measurements of the ultrasonic attenuation were also done.

A. Magnetization Data

The magnetization data are fairly simple, but they do
deserve a short discussion. In the paramagnetic phase, the
magnetization as a function of the internal field is the
same, within experimental error, for fields applied
along any direction in the basal plane. The demagnetizing
factors are different for different directions, however, so
the magnetization was measured with fields applied along
each crystallographic axis.

The magnetization of the sample, DyA, was measured in
only the paramagnetic phase, and the data are not presented
because the dependence of the magnetization on the applied
field is quantitatively the same as for the DyB sample, for
which there are more complete data. The magnetization of
the sample DyB was measured at representative temperatures
in the range, 4.2K to 300K, for fields in the basal plane.
the sample stationary in high fields when the field was
being applied along the hard magnetic axis; the magneti=

zation with fields parallel to the c-axis was measured only
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at temperatures in the range 160K to 300K.

Figure V-1 is representative of the magnetization
curves obtained in the ferromagnetic phase of Dy with the
field along the a—axis; The saturation magnetization
obtained at 4.2K, with a field of 48kOe: along the a-axis of
the sample DyB, was 35lemu/g, which compares very well with
the value of 350.5 emu/g obtained by Behrendt et gl?.

Figure V-2 shows the magnetization obtained at 180K with the
magnetic field parallel to the c-axis. The c-axis magneti-
zation was not measured at fields above about 35kOe because,
at higher fields, deviations from the linear dependence of
the magnetization on the field were observed. These devi-
ations were attributed to movements of the sample or to
lateral vibrational modes of the vibrating rod caused by the
large torque on the sample. In situations where the magnet-
jzation at higher fields was needed, it was obtained from
a linear extrapolation of the low field magnetization.

At temperatures in the HAF phase of Dy, the transition
from the HAF phase to the FM phase was observed at the
critical field. Because of the difficulty of calculating
the demagnetizing factor of the oddly shaped samples, it
was not possible to compare the measured critical fields
with the values given in the literature. Tne nonRZeroc demag=
netizing factor caused the discontinuity in the magneti-
zation, that appears at the critical (internal) fieidqd,

to have a slope in the plot versus applied field.
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Magnetization of DyB at 4.2K with the
field applied along the a-axis.
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Figure V-2 Magnetization of DyB at various temperatures.
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Approximate values of the demagnetizing factors along the
a and b-axes were calculated from the slope (at the
transition) of the magnetization as a function of the applied
field, but no usewas made of them. Figure V-3 shows
typical curves that were obtained in the HAF phase with
fields in the basal plane.

Figure V-2 shows the magnetization that was obtained
from the sample DyB at 180K, with the field parallel to
the a-axis. The deviation of the magnetization from a
linear dependence on the field is apparent. Some deviation
from the linear dependence was observed up to 280K, for
fields of 75kOe in the basal plane. Table V-1 gives the
coefficients that parameterize the magnetization of the
sample in the paramagnetic phase. Remember that the

reduced magnetization is calculated from the formula:
2 3 4
o = A(T)v + B(T)v® + C(T)v™ + D(T)v V-1

where the current monitor voltage, Vv, is in mV. Assuming
that the calibration of the magnet is correct, the magneti-
zation as a function of the applied field can be obtained
by using the following conversion:

H=1.372 v V-2
where H is in XOe.

B. Elastic Constant Data

Only the magnetoelastic contributionsto the longi-

tudinal elastic constants, C22 and C33, and the contributions
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Figure V-3 Magnetization of DyB in the HAF phase, with

the field applied along the a-axis.
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to the pure shear constants C44 and C66 were measured. The
shear constants were measured only with the field parallel
to the a-axis, and C33 was measured with the field

parallel to either the a-axis or the c-axis, since by
symmetry, there should be no difference in the dependence

of C33 on the orientation of the magnetization when it

lies in the basal plane. C22 was measured with the field
parallel t6 all three crystallographic axes, since the
axial symmetry that was present in the measurement of C33
is not present in the measurement of c22. Using the theory

developed in Chapter I1I,and the measurements of the longi-

tudinal elastic constants, the magnetoelastic constants:

B%'Z, Bg'z, BY'z, G%'O, Gg’o, G%’z, G2 2, and GY'2 can be
determined from measurements of ACa’b’ (o) and AC C(0) and a separate

determination of BY'zcan be made from measurements of

(o).

a
66

AC
The measured magnetoelastic contributions to the
longitudinal elastic constants were analyzed in several ways.
Originally, a set of constants was determined from the data

taken at each temperature and for each orientation of the
field. However, some of the constants that can be deter-

3 I F o = P :
mined from data taken with esach of several orientations of

the field were found to differ from orientation to orient-

ation. For exampie, BY"2 appears in the expressicns for
b
AC22, AC22, and AC22 At a temperature of 195K, the
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calculated values of BY’2 were: 24°K/ion, 21°K/ion, and
27°K/ion, respectively. To avoid such inconsistencies, the
program used to calculate the magnetoelastic constants was
modified to calculate the constants that gave the best

fit to all the data at a given temperature, and for a

given elastic constant. The magnetoelastic constants
determined in this way wereobserved to have a small depen-
dence on the temperature, and since the theory assumes no
such temperature dependence, the program was changed to find
the magnetoelastic constants that gave the best fit to all
the data for a given elastic constant. At the same time,
the program was modified to force GY’2 to be equal to zero,
since it has been shown that the experimental measurements
of the static strain, EI, can be accounted for by a theory
that includes only the single-ion magnetostriction. Because
a considerable amount of experimental data is needed to do
the fit at each temperature, only the data taken at the
temperatures, 195K, 200K, 220K, 240K, and 260K were included
in the calculation. Temperatures lower than 195K were not
included in the calculation because they are too close to
the phase transition at 179K, and at temperatures higher

than 260K, the relative errors in the experimental data

Aat

-

)

- -
a TR

-
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ecame larger, sc the t temperatures near ro
temperature were not included.

The equations that were used in the determination of

the magnetoelastic constants are:, for AC
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Acgz(o) =_a2Daa - 2abDab + 2acDap + b2Dbb - 2bcDbp + cZDpp
acP (0) = ap _ + 2abD_, + 2acD__ + b2D_._ + 2bcD__ + c2D
22 aa ab ap bb bp pPp
acS,(0) = a’p_, - 2abD,, + 2adD__ + %D, - 2bdD,  + dquq
where:
a= —(Bi"2 quz) b = --BY’2
c=6y" -6, a=gc"" - 6yt v-4
y —2%—;( ) - 220 (mg)
X3y
and ¢Y'2 is assumed to be zero. G%'-, G%’+, Gg’-, and

Gg’+ are defined in equation IV-4. There are, thus four
constants to be determined from the approximately 200
experimental points that were used in the calculation. The

magnetoelastic constants are:

B?'z - B§'2 = 37°K/ion BY'2 = 7°k/ion V-5
c%~ - ¢¥” = -17°K/ion c¥* - ¢¥" = -18°k/io
1 2 = 1 2 on

( Note that the magnetoelastic constants that are used in
this section are those that were defined in Chapter III,

and in some cases they differ from those that were used
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The experimental data and the fit to the data,
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calculated using the four magnetoelastic constants given

in equation V-5, are shown in Figures V-4, 5, and 6. (Note
that in Figures V-4 through V-9, the open symbols represent
experimental points and the closed symbols of the same
shape represent the corresponding calculated point. When
only the open symbol is shown, the experimental and calcu-
lated points were too close together to be resolved.) The
fit is not extremely good quantitatively, but qualitatively,
the main features of the experimantal data are reproduced
in the calculated functions. It should be noted that consid-
erably better fits can be obtained by letting the magneto-
elastic constants have a small temperature dependence, and

by letting GY'2

be nonzero. Since only part of the exper-
imental data is shown in the figures, all the data is
reproduced in Appendix E.

The equations for AC33 are derived from equations

III-85 and are written:

a 22 2 _
AC33(0) = a Daa + 2abDap + b Dpp V-6
c _ .2 2
AC33(0) = a Daa + ZaCDaq + ¢ qu
where:
a = -(8%2 4+ 28%2) b =™ + 26%"
1 "2 1 2
_ art G,"!' —
c = Gl + 2G2 v-7

The calculation of the magnetoelastic constants that appear
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in the equations for AC33(c) were determined from approxi-
mately 105 experimental points. The calculated values of

the constants are:

B%.z + 233'2 = 28°K/ion Gy'” + 263’7 = 149°K/ion

G%’+ + 2G%’+ 46°K/ion V-8

Figures V-7 and V-8 show the experimental and calculated
values of AC33(0). The fit is somewhat better than for
Aczz(c), as might be expected since there is less data to
be fit for AC33.

Since only one magnetoelastic constant, BY’Z, was
involved in the fit of AC26(0), it was only necessary to use
Y,2

the usual linear least squares method. The value of B ’

that was determined from ACZG(O), is:
Y2 = 250K/ion V-9

-y

and +he fit to the ewnerimental data is included in Figqure

The AC24(0) data were taken with the field parallel
to the a-axis and with the polarization of the shear wave
in the basal plane at a angle of 45° between the a and
b-axes. Thus, one component of the strain was parallel tc
the field and one component was perpendicular. Because oOf
the magnetic field, the velocities of the two, normally

degenerate polarizations were different. Experimentally,
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this difference in the velocities should have been mani-
fested as an oscillatory variation of the attenuation as a
function of the magnetic field, with the maximum attenu-
ation occurring when the two waves reached the transducer
180° out of phase, and the minimum in the attenuation
occurring when the two waves reached the transducer
in phase. The experimental results were rather puzzling
since the oscillations in the attenuation were not observed.
Also, the numerical calculation predicts that the velocity
of the shear wave polarized parallel to the a-axis will
increase with field about three times as fast as the perpen-
dicular shear wave decreases with field, so the average
velocity should increase with field. Experimentally,
however, the velocity was observed to decrease with field.
Also, at temperatures near the Neel temperature, the ultra-
sonic velocity (as a function of the magnetization) was
observed to reach a minimum and to begin increasing again,
whereas theoretically, the dependence on the magnetization
should monotonic. Probably, the discrepancies are due to

a small longitudinal component in the strain that entered
pecause of the error in the alignment of the face of the

crystal. Since this component will have the velocity that

th

L

characterizes C33, which shows the largest dependence o
field of any of the elastic constants and which does not
depend monotonically on the field, it can account for the

observed effects. No analysis of the C44 data was attempted
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pecause of the difficulty of accounting for the contribution
of the longitudinal part of the strain. The raw data are
presented in Appendix E, however.

The misalignment problem was not as severe for
measurements of A026(o), since the longitudinal constant
that enters is C22, which has a weak dependence on the
field compared to C33.

Probably the best test of the theory is the agreement
of the calculated values of BY'2 with the value obtained from
the static magnetostriction experiments. The fit of AC26(0)
yielded a value of 25°K/ion, which is probably somewhat too
large because of the error in the alignment of the face of
the sample. Considering the complexity of the calculation,
this value compares well with the value of 7°K/ion that was
obtained from the fit of Aczz(c). However, the important
fact is that both values are in good agreement with the
value of BY’2, 9.4°K/ion, that was obtained from the static
magnetostrictionll. The agreement of the three values of
BY'2 is particularly good when compared with the results
of the only other available theory, the theory of Southern

2

and Gooding523. The value of BY’“ that is calculated from

the ultrasonic data using the theory of Southern and Goodings
is approximately 100 times larger than the one calculated

from the static magnetostriction, so the error is an order

of magnitude larger.
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It is more difficult to compare the other magneto-
elastic constants to those calculated from the static
magnetostriction. The difficulty is that, whereas, EI
depends only on BY’Z, the strain e™!, for example,

ar2 2

depends on B1 ’ G%’o, and G%' . It is thus more difficult
to uniquely determine the other magnetoelastic constants.
The best compromise is to use the magnetoelastic constants
determined from the elastic constant measurements (equations
v-5 and V-8) to calculate the static strains, and to compare
these calculated strains with those measured experi-
mentallyll.

Since the magnetoelastic constants used in the calcu-
lation of the magnetostriction were determined from ultra-
sonic data takén in the paramagnetic phase of Dy, only the
magnetostriction in the PM phase will be calculated.

The calculation was a very rough one that was made
under the assumption that the static strains depend
linearly on the magnetoelastic constants. The derivatives
used in the Taylor series expansion of the strains, as
functions of the magnetoelastic constants, were those that

were used in the determination of the magnetoelastic

constants that were used in the zero-order Hamiltonian.

Saca
[ A

o

sign of the magnetostriction correctiy. The calculated eI
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was very close to the measured strain, as expected. 1In

addition to EI (and excluding 55), Clark et glll measured

the four strains (in their notation): A(c,c), 2A(a,a),

r(a,c) - a(c,c), and A°"2 - %AY’Z

0
was about a factor.of two larger than the measured strains,

. The calculated A(c,c)

x(a,c) - Alc,c) was a factor of ten too large, i(a,a) was

a factor of 6-8 too large. The worst agreement was for the

strain Ag’z - %AY’Z which was 20-100 times larger than the

experimentally measured strain. It should be pointed out,
however, the strain Ag'z - %AY'Z
mentally, so the relative error was naturally larger.

was the smallest, experi-

Clearly, the static magnetostriction is correctly
predicted, qualitatively, if not quantitatively.

The thermodynamic approach used in this thesis also
predicts the observed changes in the slopes of Acgz(o) and
AC§3(0) that are unaccounted for in the theory of Southern
and Goodings. In addition, Southern and Goodings predicted
that the shear constants would not depend on the magneti-
zation in the paramagnetic phase, whereas the thermodynamic
method accounts for the observed dependences quite well, at
least for the case of AC26(0)-

There are , of course, ways in which the calculation

o)
(o
®
f=t

ouly

p -

f +he halicalliv Aardavras
I ChRe neligcadd v.l-ue-l-ca

I, 2 s
FICS 4 19168 9 AR
LRGP LSRG ) 9

Q)
O

phase in the theoretical model would be interesting in
itself, and would make comparisons :of the theory with

experiment possible in this phase. The properties of the
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model in the paramagnetic phase would only be affected
slightly, if at all, by the inclusion of the helical
ordering, however.

There are contributions to the internal energy which
are not included in the calculation, but which might have
appreciable effects. One term that was neglected in the
calculation of the internal energy is the elastic energy
due to the third-order elastic constants. When the second
derivatives of such terms are taken with respect to the
dynamic strains, there will be acontribution due to the
presence of the static strains. The third—-order elastic
constants have, apparently, not been measured for the rare
earths, so no realistic analysis of their effect can be
made. However, if, as is usual in other materials, the
third-order elastic constants are comparable with the usual
elastic constants, then their contributions to the relative
changes in the elastic constants would be of the order of
the static strains. Thus, in the paramagnetic phase,the
contribution of the third-order elastic constants would be
most important for elastic constants which have a rela-
tively weak dependence on the magnetization. They could
possibly explain why the fit to the C22 data is not as good

A
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it to the C33 data, for .
terms in the expansion of the crystal field anisotropy
energy that would lead to terms in the Hamiitonian that are

bilinear in the strains and bilinear in the angular momentum
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operators. These terms would contribute to the elastic
constants in first-order perturbation theory. The inclusion
of these terms is almost impossible, however; since the
number of magnetoelastic constants that would then enter

the theory and that would have to be determined would
increase from 10 to 40 or 50. Presumably, since the strains
are small, these terms are small also.

A more serious omission in the theory is that the
magnetostrictive contributions to the changes in the elastic
constants were neglected. The origin of these effects is
easily seen by considering the definition of the elastic
constants in terms of the measured frequency of best

overlap, f:

2

_ 2 _ 2 _
C.. = pv = pg’eff £ v-10

11

where p is the mass density of the sample and zeff is the
effective path length. zeff is equal to twice the number
of round trips that the elastic wave makes in the sample
during the time between the two strobe pulses, multiplied
by the length of the sample, &, along the axis along which
the elastic wave is propagating. Thus, the relative change

in the elastic constant is:

AC;./Cyy = 20E/E + ML/ - AV/V v-11

volume, V, are magnetostrictive effects, and the change in
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the frequency is the quantity that is measured. The
correction for these effects would be easy enough to
make if magnetostriction data were available. However,
the magnetostriction data that are available were taken
with a maximum applied field of 30k0e1, and even those
data were almost impossible to use because they " are
isofield data, and isothermal data were needed.

Finally, some ultrasonic attenuation data are
presented with out analysis. The data were obtained in
the HAF phase, for the most part, and in all cases were
ontained for longitudinal waves with the field applied
along the a-axis. The attenuation as a function of the
applied field is shown in Figures V-10 and V-11. The
interesting feature of the attenuation data is that there
are several peaks, some of which occur at fields above the
critical field for the transition to ferromagnetic

ordering.



210.

T
251 _QyB ]
Hllg
vl kile
20 MHz
__20F -
£
Q
~
D
o)
~— {
pd |5" =
®
=
D
&
— 10 N -
<
P -
[ R 7 \
g s
>
S
;§ | 1 | | |
50 0 20 30

Figure V-10

APPLIED MAGNETIC FIELD (kOQe)

Attenuation of longitudinal waves propa-
gating along the c-axis of the sample DyB.



211.

I | T i | I
— |30 K
DyB . ———150K
skhlle b —— 160K _
1Tl b t ‘i‘ : ....... 170K
20 MHz ,' o
— | ;i
5 THE l | :
D | R
= oy
S \
)
=2
Ll
-
<
S
2
= | 1 i | ] ]
50 10 20 30
S APPLIED MAGNETIC FIELD (kOe)
Figure V-1l Attenuation of longitudinal waves

propagating along the b-axis of sample
DyB.



212.

- VI. Conclusion

In conclusion, it can be said that the thermodynamic
method presented in this thesis represents a considerable
improvement over the alternative method23 of accounting for
the magnetoelastic contributions to the elastic constants.
In particular, the thermodynamic method accounts for the
observed dependence of the shear constant 066' and for the
non-monotonic dependence of some of the longitudinal elastic
constants on the magnetization. 1In spite of the detailed
nature of the calculations, the agreement of the two
experimentally independent determinations of BY'2 with the
value obtained from the static magnetostriction is good.

In addition, the Model Hamiltonian that was used accounts
guite well for the single-ion anisotropy and the static
magnetostriction. It is not clear at this time how well
the model accounts for the low-temperature magnetoelastic
properties, since they have not been studied in detail.
Further work will be directed toward an exploration of the
low temperature properties of the model. There is some
reason to doubt that the results will be as satisfying at
lower temperatures, since the accuracy of the molecular
field approximation is suspect at low temperatures.

At low temperatures (in the ordered phases), the

spontaneous magnetization depends relatively weakly on the

applied field, so the experimental effects are more
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difficult to measure accurately. The static magnetostriction
will be more important, and more attention will have to be
paid to the separation of the magnetostrictive effects from
the intrinsic dependence of the elastic wave velocity on
the magnetization. Since the static strains are so large
in the ordered phases, the contributions of the third-order
elastic constants to the internal energy will be more
important.

The experimental contribution to the problem could
be improved by the measurement of the static magnetostriction
of the same samples that are used for the elastic constant
measurements. The measurement of the magnetostriction using
strain guage methods is relatively straightforward, but
involves the expenditure of an amount of time and LHe that
is comparable with the time necessary toO measure the
elastic constants themselves. There is no doubt, however,
that a knowledge of the magnetostriction at high fields
would improve the reliability of the results. The magneto-
elastic constants that enter the zero-order Hamiltonian
could be determined more accurately, as could the magneto-
strictive contributions to the changes in the elastic

constants.

of the magnetic field complicates the matter somewhat.
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If there is, in fact, some dependence on the frequency, the
dependence will have to be taken into account in the analysis
of the experimental data.

Some theoretical properties of the model, such as the
dependence of the second derivatives on the crystal field
constants and the magnetoelastic constants, have not been
investigated, but could lead to greater insight into the
validity of the results.

Finally, further conclusions about the range of
validity of the thermodynamic approach will be possible
when the companion investigations of the magnetoelastic
properties of Ho, Tb, and Er are completed at UNICAMP. The
results for Tb are expected to be qualitatively the same
as for Dy, since the two elements are so similar.
However, the single-ion anisotropy in Ho and especially in
Er is more complicated than in Dy or Tb, so the results
may be qualitatively different for Ho and Er. The validity
of the inclusion of the antisymmetric part of the strain
in the model has not yet been tested experimentally, but
expeiiments are now in progress at Rice to check the

validity of this aspect of the theory.
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Appendix A

Definition of the Angular Momentum Tensor Operators

Several different definitions of the angular momentum
irreducible tensor operators have appeared in the liter-
ature since their introduction by Stevens in his treatment
of the crystal field interaction. Most of the definitions
differ by only a constant factor, but it is necessary to
take such factors into consideration when comparing results
obtained by different authors. Some of the more commonly
used operators are those defined by Buckmaster68, which are
denoted by the symbol 0. Since the operators used in this
thesis are slightly different from those of Buckmaster, they
are given the symbol Q to emphasize the difference. The
constant factors by which the Q's differ from the operators
of Buckmaster are given in Appendix C. The definition of
the Q's, taken from Watanabesg, has the advantage that,
given J, the 22+l operators of rank % can be formed from the
definition of Qi and one recursion relation. They can
easily be calculated numerically, when necessary, by simple
matrix multiplications.

Since, by definition, the irreducible operators of

rank ¢ transform under rotations like the 2%+l spherical
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and m(;gf.mfg). For a given value of &, Qi(f) is defined:

eid) = -1
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where J, = J_ + Jy. The other tensor operators of rank

can be calculated from the recursion relation:

&G = AED e W0, @]

All five of the second rank tensor operators are used

in this thesis, so they are presented explicitly here.

0Jw) = /I73 (332 - 3(3+1)

L2y _ -1 _ _
0, (J) = -3,(23, + 1) o, () =93_(23, - 1)
2 % _ L2 -2 _ L2

0y () = J7 0, @) = 32

The operators, Q?(ﬁ), are not Hermitian, except for Qg(ﬁ),
so when they appear in the Hamiltonian operator, they must
occur (for m#0) in Hermitian combinations. The standard
definitions for these Hermitian operators, dencted by

Q%m(J), are:
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= 57 (17 Q" () - ¢ ()

The Hermitian operators of second rank are then Qg and

+ _ - _
Q21(J) = JxJZ + Jsz QZl(J) = Jsz + JZJy
+ _ 2 _ L2 - _

The other operators that appear in the calculations are:
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Qg(ﬁ) = /3735 (35J:-30J(J+1)J§ + zsai

+ 3323+1) 2 - 63(J+1))

4

Qg(S) ~/I7231 (231J: - 315J(J+1)Ji + 73537

+ 105J2(J+1)2J§ - 525J(J+1)J§ + 294J§

- 533 (3+1)3 + 4032(3+1)2 - 603 (J+1))

+ = 1 6 6
QGG(J) = '2' (J+ + J_)



Appendix B
An Expansion of the Strain Dependence of the Anisotro
Energy of a 4f Electron in a Crystalline Field of HCP
Symmetry

The anisotropy energy of a 4f electron at the point T
is given by equations III-13 and 14, where the nucleus of
the ion with which the electron is associated is taken as
the origin of the coordinate system. In the unstrained hcp
lattice, all the coefficients, B?, in equation III-14 are
equal to zero except for Bg, Bg, Bg, and B%G, so the aniso-
tropy energy of the 4f electron in the unstrained lattice

is:

0.2

E = -e(Bzr 4.0 0_6

0 0 0
Y2(6,¢) + B4r Y4(6,¢) + B6r Y6(6,¢)
6

6_6_6 -6 -6

where Bg is nonzero since the c/a ratios of the rare earth

lattices are not exactly equal to the ratio for the close-

packing of spheres. The symmetry of the strained lattice
. . m
is lower than hcp in general, so all the Bz's for 2 = 2, 4,

and 6 will be nonzero.

The anisotropy energy in the strained lattice can

be written as a Taylor series in the strains:

3E_ 3E
£ =8 le, .=,.=0) + T (—=e..+ S )
a a 1J 13 7 o ij Si3
i,3 BelJ Bwij
a2-—1 '\2'5‘
. }- . , o La o R . %) .ua - u
5 ijTkl TijTkl
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where only terms of first and second order in the strains
are considered. Since the point at which the 4f electron
is located is not affected by the strain, only the Bz‘s

are functions of the strain and the strain dependence of the
anisotropy energy is contained in the derivatives of the
B?'s with respect to the strains. Analytical calculation
of these derivatives is a formidable task because they
involve a summation over all the ions that contribute to
the crystalline electric field. The derivatives can be
calculated numerically, however, from the difference in the
anisotropy energy in the unstrained lattice and the energy
in a lattice in which only one of the components of the
strain tensor is nonzero.

Donoho47 has done this calculation of the strain
dependence of the anisotropy energy, numerically, in a
model that includes 164 neighboring ions taken in complete
symmetric shells. Donoho's computation showed that the
contribution of the terms linear in the finite strains to
the terms quadratic in the infinitesimal strains is of
the same order as the contribution from terms quadratic
in the finite strains. Thus, the finite strain tensor

is not particularly appropriate for an expansion of the

anisotropy energy. It can certainly be used if all terms
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of a given order in the infinitesimal strains are kept, but
it is not a natural choice.

Donoho's computation also showed that the coefficients
of the spherical harmonics with m=3 are all zero in the
expansion of the anisotropy energy. This is understandable
from a group theoretical point of view, since the spherical
harmonics with m=3 are all basis functions of the irreducible
representations Bl or B2 of the group D6h' Since none of
the symmetry strains transform according to these represent-
ations, there is no coupling between the symmetry strains
and the spherical harmonics with m=3.

Although a calculation of an arbitrary coefficient
that appears in the expansion of the anisotropy energy is
difficult, the coefficients of the terms that are linear in
the antisymmetric part of the strain temsor can be calcu-
lated explicitly.

When the symmetric part of the strain tensor is
zero, the lattice retains its full symmetry, and only
suffers a rotation described by the antisymmetric part of
the strain tensor. A calculation of the crystalline electric
field resulting from the rotated source ions is still a

formidable task, but it can be avoided since, physically,

Tne

O
3
O
tHa
'-J

are
are

rotation of the position of the 4f electron in the opposite
sense.

In the calculation, it is convenient to express the
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spherical harmonics in Cartesian coordinates since the
Cartesian strains are being used. Only the term,
rngYg(e,¢), of the anisotropy energy will be considered
since it is expected that, as usual, the contribution from
the second-order anisotropy will dominate the higher order
terms.

Since the symmetric part of the strains tensor is

zero, the position of a source ion in the strained lattice,

as a function of its position in the unstrained lattice is:

Vo=
x; ? (Gij + wij)xj

Equivalently, if the ions are considered fixed, the
position of the 4f electron is given by a rotation in the

opposite sense:

In the rotated system, Yg is:
r2v0(er, ") = /5787 3320 7% - &%)

and, expressed in the unrotated coordinate system, z' is:
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rng(e',¢') = rng(e,¢) + (3/2)(m13xz + w23yz)

2,0 2 ' -
TV (8,0) + xVB (w)3¥p, (0:8)%upsY  (6,4))



B5.

In terms of the operator equivalents, the one-ion magneto-

elastic Hamiltonian, linear in the wij's is:

The higher order terms in the anisctropy can be treated in
the same way.

The complete one-ion magnetoelastic Hamiltonian will
depend on all spherical harmonics with 2 = 2, 4, or 6 (m#3),
and although the spherical harmonics with ¢ = 2 are
isomorphic to the symmetry strains, the higher order
spherical harmonics are not. In order to write the Hamil=
tonian in group theoretical notation, the higher order
spherical harmonics must be classified according to the
irreducible representation under which they transform.
This is straightforward using the tables found in Bradley
and Cracknell7 . The complete one-ion magnetoelastic

Hamiltonian (linear in the strains) is47:

I = wIr2 o T4 | o I,6
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Appendix C

' Relations of the Quantities That Appear in this Thesis -to
Those. that Appear in the Expressions of Callen and Callen,
Southern and Goodings and in the Computer Programs

\

'Tﬁe quantities that appear in this thesis, the
irreducible tensor operators, the symmetry strains, the
symmetry elastic constants and the one and two-ion magneto-
elastic constants are defined in terms of the corresponding
quantities that appear in the theories of Callen and
Callen14 and Southern and GoodingSZ3, and in terms of the
quantities that are defined in the computer programs of

Appendix D. The relations are presented in tabular form.



Notation Notation used in|Notation used in |Notation
used in this |Callen and Southern and used “in -
thesis Callen Goodings computer
| programs
Qg = 2/7 §%? 2/273 O, /273 32
Q5 = 2 85 2373 V(—i“bgl) J21P
0y = 2 sf 2/373 (167)
Q;Z = 2 s 2/273"‘022 J22p
Qyp = 2 5] 2727363,
Q) = /2775 34
Qg = v&723T J6
el o et el E1A
e®? = 2/3 e™? 3 e@r? E2A
ef = 2 ef 2 ef E1G
eg = 2 eg 2 eg
B éf = 2 ef 2 ef
e = 2 es 2 e E2E
cy = ey cla
cyp = 7:175 cla
<y = = 5% c2a
cY = -% cY .% cY CG




Notation Notation used in| Notation used injNotation
used in Callen and Southern and used in
this thesis|Callen Goodings computer
programs
ST | 7
0,2 _ 1 o. 1 0,2
B2 T 176 P22 276 M20 /3/2 B2A
Yi2 L gY L 575 mY
B = 3 B 7 2 M22 BG
€,2 _ 1l e 1 €
B = 7B 4./37’2 Mo, BE
p* 0 = DY DY
1 11 11
a,0 _ 1 o 1l o
Dy = 373 P21 3 Dy
0,2 _ 1 o. v3 Lo
by = 573 P12 5 P12
0,2 _ 1 o V3 o
Dy~ = 12 P22 18 P22
Y2 _ 1 .Y 1 a5y
D = i D 2 D
p€r? = 3 p° 5'4: p®




Appendix D

The FORTRAN program and subroutines that were used to
fit the elastic constant data are presented. Many other
programs that were used for special purposes are not given,
in the interest of brevity. All the programs and subroutines
that were used for special purposes were fairly straight-

forward modifications of the programs presented here.
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192

133

139
901
222
123
104
¥5i
i
209
1o
189
Ag1

137
942

t32
134
109
92
1814
903
112

HATIN®2 D2.

MATIN PROGRAM FOR ELASTIC CONSTANT CALCULATION

CONVERGES TO EXPERIMENTALLY MEASURED MACNETIZATION,

INCLUDES THE TEMP, DEPENDENCE OF THFE BDASTIC_CONSTRNTS.

OUTPUTS THE NECESQ!RX ODERIVATIVES TOo DISK DAIA 'FI)E,

NOTE THAT NXZ CANNOW BE {,2,0R 3 , IE, I PARALLEL TO A,B8,0R C
IMPLTICIT REAL®O(A=H,J,0-2)
COMMON/MISBLK/T,J Ny N1 pN2,86/JBLK/JIZC17),J2C17),04¢17),Jd6(C17),

1JX(16),J21P¢16),J22P(18),J66P(11)/GBLK/Q,GX,GZ/3HBLK/3X,SZ,HX,H?,
LAX AZ U, P, Z/HABLK/HACIT) ,HICI6) o H2(19)/CBLK/C1A,C24,CG,CE
1/8BLK/B{A,B2A,BG,BE/G2BLK/G1Ad,G2A8,G|A2,C2A2,GG/PB1LK/P?,P4,P0,
1P66/EBLK/EE(4) /FBLK/F1(3) /HAMBLK/H(17,17)1/DIABLK/ECT7),EX(1T),
tA(17,17)/CRBLK/DIV(1%3),ET(23,17)/3UMBLK/3C(5,4),30(18,2),

1 S¥(17,2)/DERBLK/DFR(18)/NEWBLK/SIGY/BABLK/BIA4,82A4

2 /DRBLK/DEP(18,2%),IEC,NXZ,NH,DF(2%),ErAR(3,25)

DIMENSION DAC198),rn(S3),EEN(4),EEPC4),3TCV(2S),

1 HP(25),SP(2%),THP(25),CP(2%),EP(4,2%)

FORMAT(IHL)

CALL ERRSET(A)

TYPE {33

FORMAT(//' WANT STANDARD VALUES? {=YES, 23N0,

1 HUMBER OF FIRST TEMP TO BE RUNT)

ACCEPT 201 ,NDATA,ITH

FORMAT(1G)

GO TO (9v1,942),NDATA

CaLL STD

GO 10 951

CALL PNT(Y)

ACCEPT 193, J

FORMAT(1G)

FORMAT(/?' J = !',F5,1)
CALL JCALC

DO tilsy,4

EE(I)sy

GO TO (9%2,894),NDATA

CALL PNT (2) ]

ACCEPT 1v%, G,GX,GZ
FORMAT(3G) ’

Qw6 ,7187364150-22G
FORMAT{/7 GoFACTOR 3 1,7 {d,5,7 EXCHANGE CUNSTANT3E GX = ,F10.5
1,? GZ 3 1,F1v.9%)

CALL PNT(3)

ACCEPRT 1017, D2,P4,P6,P06
FORMAT(4G)

00 1321=21,N

DO 132K=a1,N

H(T,K)13@

DG 131 I={,N6

H(L,1+6)3066#J66P(1)

GO TO (A0S5,802),NDATA
FORMAT(/ ' CRYSTAL=FIELD: P2 = ', [PD17,5,’ P4 = 1,012,595, P6

1 =2 9,012,5,' P66 = ',D17,5)

CALL PNT(3) ’

ACCEPT 147, CIA,C2A,CG,CE
FORMAT(/' ELASTIC CONSTANTSE CtIA = +,19012,.%,1 C28 = 1,012,5,!

1 G = ',012,3,! CE = 1,D12.5)

CALL PNT(S)

ACCKPT 1917, BIA,B2A,HG,BE
FORMAT(/' ONE<LON ME COMSTANTS: BIA = ',1PD12,5," B2a = ',012,5,

R 80 = 1,012,585, RE = 1,D12,5)

ez
113
14
RGS

419

CALL PHT(S;

ACCF®T 113, G1A®,G2AM,G1A2,G2A2,0G,GE

FORMAT(G)

FORMAT(/! TWO=ION ME CONSTANTSI GIAA = 1,1¥D12,5,' G240 ®= 1,012,5
\/23X,1G1A2 = ',012,3,' G2AZ = ',012,%,' GG = ',012.8,' GE =
11,042 8)

WRITE(8,162)

CALL PHT(])

ACCEPT 410, IFINA,JOFINA
FORMAT (AS/A6)



CALL OFILE(2,JOFINA)Y ’ :
CALL IFILE(1,IFINA) D3.
REAU(1,1905) 1EC,NXZ,NT
WRITE(2,1045) NT,LEC,NXZ
IF(NXZ,EQ,2) P6Bm=P6S
G=Q/6,718736415D-2
WRITE(6,1004)J
WRITE(6,1¢6)G,GX,G2
WRITE(G,1¢8)P2,P4,P6,P66
"Rtts‘svllO)C|AfCII,CG.CB
WRTTE(6,112)B1A,B2A,BG,BE
WRITE(6,114)G1AN,G2A0,G1A2,G2R2,GG,GE
CALL PNT(9)
IP(NXZ,EQ,2) WRITE(6,11%)
118 FORMAT(///7' NOTE THAT THE SIGN OF PR6 HAS BEEN CHANGED
{ BECAUSE THE FIELD 13 ALONGC THE B=aAX18'/' THUS EXXaEBB AND
2 EYYSEAAY)
400 ACCEPT 201{,NC,TL
201 FORMAT(2G)
DO 1AAL IT={,NT
BX=sf
READCE,20¢8) T,NH, (SIGV(II),OF(ITI,IT=1,NH)
IF(IT,LT,IT?) GO TO (A
CALL ELCON(T, lEC,ELCO)
GO TO(491,401,4042),NX2Z
Wt CONTINUE
3Zs¢
HZ=0
OHZaa@
DHX=6% /WH
HX3=0HX
WRITE(®b,1401)T,HZ,TL
1401 FORMAT('ITEMP = 1,Fh,4,! HZ a2 ,FR,0,) AAGTOL =3 !
1 1PO12,57)
WRITE(6,500)CIA,C2A,CG,CF, [EC,IEC,ELCY
LIl FORMAT(! CiAat,F6,9,9%X,? C2A=! ,F6,4,5X,' CG2',F6,A,5X,! Cr=!,
1 F6,0,5X,1CY,71,11,'21,F08,4/)
WRITE (6,1992)
GO TO 40)
402 SX=(¢y
SZ=0
HX=0
DHXup
0HZ=65/NH
HZE=0HZ
NRITE(6,3402)T ,HX,TL
1102 FORMAT (1 TEMP s ',F6.8,' HX =3 F,F6e¥,! MAGTOL = !

¢ 40Ny & 4
-

e W g .
WRITE(6,509)CIA,C2A,CG,CE, LEC, TEC,ELCY
) WRITE (6, 19942) - )
1902 FORMAT(3IX,' STGMA?TX,'THETA!,10X,'1 3/21,11%,'EIAY,
1 11X,9€28",11X,'E1G", 11X, *E2E, (AKX, YEXX',9X, 'EYY!, 9%, 1E22'/)
493 00 404 Kx1,%
484  TOIX)=¥
D0 463 Rwi,|s
405 Do(X)=9
00 641 K=1,4
E£E{R ) SEEH(K)
hdl EEA(K)=a
DO 10A9 K=1,8H
HZwHZ+DHZ
HX=HX+OHX
51GAESIGV(K)
AX2QuHA4GX #8X
AZzQoHZ+GZ RS2
IT(SIGA,LT,1,Dei#t) AXs®
IF(31GA, LT 4,D=1¢) AZ24A
NXZP®m3
IeeNYT wn'a} yyI0m9

.8 VTR gew by 913

IF(NXZ,LT,3) NXZPsi
CALL MAGSTR(TL,NXZP)
CALL ENCOR(NXZP)

[£)

4

’



106

407

719

Y99
994

499
L1109

3ot

..1302
19190
1383
1304
1920

i3es
1001
899

o

CALL SUMCAL

CALL DERCAL D4.

DO 4¢6 Ls=y,5
F1(L)®FI(L)=FO(L)
IF(K O, 1IFcLInFi (L)
CONTINUE
DO 447 L = 1,18
DERCL)SDER(L ) «DW(L)
IF(K, KQ,1)DaCL)SDER(L)
CONTINUE
00 710 Lmt,4
EEP(L)SEE(L)=EEN(L)
IF(K ,KQ,§)EEU(L)=EE(L)
CONTINUE
S1GuDSQART(8X#8X+82052)
THS57 ,2997798 1 »DATAN(SZ/3X)
HWsHX
IF (NXZ,EQ,3)HWsHZ
HP(K)»HW
SC(K)nS1IG
THP(K)=TH
CALL 1I52(S1G,CA)
CP(K)=CA
DO 990 L=1,4
EP(L,K)=EEP(L)
00 991 L=t,19
DEP(L,K)=DER(L)
ECAR(1,K)uEEP({)/)=EEP(2)/64+EEPt 1}/
ECAR(2,K)=ECAR(!,K)=EEP( )
ECAR(3,XISEEP(L)/I+EEP(23/3
TYPE 999,IT,K,T,HX,H2
FORMAT(?2G,FB8,1,F8,7A,F8,a)
CONTINUE
DO 13¢Y I=mi,NH
WRITE(b,1302)SP(X),THPC(I)},CPCL )}, (EP(K,T),K=21,4)
1, (ECAR(K,1),K=21,3)

FORMAT(1PD12,4,6D14,5,3012,3) o
WRITE (6,1910) '

FORMAT(' SIG ',7X,'Uhl',llx,’UlB'pllx.'ﬂﬁb’p!lX.’URP'.!ng

1 'UAO',!lx,'UBB',lix,'UBn',ilX.'UBP',(!X:'UBO'/)
00 1393 isi,NH ’
HR!TE(S;!JU4) SP(I)I(DEP(h'I)'D.‘aq)
FORMAT(FR,6,1PTD14,%,2D013,4)

WRITE(6,1920)

FORMAT(? SIG 1,7X,0UDDY, 11X, U0, 11X,100Q1,41X, 1UPPY, 11X,

1 1UPQY,11X,'0Q01,11X,1UCCY,11X,'UCE!, 11X, UEE?/)
00 1303 Im{,NH
WRITE(6,1384)81IGV(l7, (DEP(L,:),Ls1d,18)
CALL VEC(ELCO,T)
CONTINUE
GO TO(49Y,599),NC
ENDFILE 1
ENOFILE 2
8TOP
END

HOUSEHOLDER TRIDIAGCONALIZATION OF SYMMETRTC MATRIX

SUBROUTINE TRED

IHPLICIT REAL®S(A=H,0=Z)
ComMmMoN /HAMBLK/A(I?,l7)/DIA8bK/D(|7),€(|7).Z(17,17)
1 /HISBLKIT,TT,","‘,NZ;N‘

DO 1» 1Isg,N

00 1A J=,N

Z(L,J)aA(1,J)

203;1)=22¢2,0;

00 24 Iix2,N

IaN+2-12

Lal-2



16
21

104

L1

70
71
50

o

k1]
a
102
29

121

122
t20
94

123
100

PIZ(I,I-H

Gat?

IF(L,FQ,MG0 TO 23
DO 3¢ Kay,L
G3G+Z(1,K)*»2
HRG+FofF
IF{G,GT,1,32D0+23)G0 TO 141
E(l)af

Hu?

GOTO (M2

LslLet

ECI)sLSQRT(H)

IF(F GE,ME(1)s=E(I)
GeE( 1)

HuHeFnG

Z(l,I=l)uf=g

fuad

0O 3@ Jsi,L
Z(Jy1)82(1,J)/H

Gud

00 60 K=t,J

G'G*Z(J' K)ynZ(I,K)
JJnJ+t

IF(L LT ,JJ)GO T0 71
00 79 K=JJ,L
GuG+Z(K,J)#2(I,K)
E¢J)aG/H
FeF+GuZ2(J, 1)
HH3F / (HeH)

00 8@ J=it,L

FaZ(1,J)
ECJ)3E(J)=Hy»F
G=E(J)
00 99 K=i,J

LT RISLITIRISTREIRI~GRAI X
CONTINUE

D(L)=H

CONTINUE

D(1)=#

E(l)=n

00 (e I=t,N

L3ie]

Irip(T) £2,9,0R,L,£7,A)G0 TO 99
D0 127 J={,L

Gsd

00 121 Kat,L
GaG+2(1,K)#Z(K,J)
DO 122 RSi,0u
E(RpJIBZ(K,J)=GWZ(K,1}
CONTINUE
D(LYs2(I, )
Z¢i,1)=%

IF(L KA ,3)GOTA 19
Do123 J=1,L
Z2(l,J)=9

Z(J,1)00

CONTINUE

RETURN

END

D5.
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QL ALGORITHH FOR EIGENVALUES AND EIGENVECTURS OF SYMMETRIC MATRIX

v D6.

SUBROUTINE TQL

IMPLICIT REALMI(A~H,0=2)
counONIDIABbK/D(I7),E(l7),z¢t7,l7)/uxsagx/r.u,u.nl.Nz,ns

DO tAls2,N

E(lat)=ECI)

E(N)=@

B8u?

Fao

00 2@ Lst,N

Jaa

el , 11D«164¢(DABS(D(L))+DABS(E(L)))

IF(B, LT ,H)BENH

00 I M=, N

IF(DABS(E(M)) LE.B)GO TO 3t

CONTINUE

CONTINUE

IFi{M.,EQ,L)GO TO 32

CONTINUE

IF(J,FQ,3A)G0 TO |9A¥a

Jstlag

Ca0(L)

Pe(D(L+11=G)/(20E(L))

ReD3QRT({+P»p)

Xsp«g

IF(P,GT . A)XapPeR

DCL)=E(L)/X

HaG=D (L)}

IF(L FEQ,NYGO TO 9%

LL3G+1

DO 59 1=3LL,NM

DCl)au(I)y=H

Faf4H

Pa0 (M)

Cot

Sa

IF((M=1) LT LLYGO TO &t

MMB={

DO 64 1IzL,HM

IaMM=TI+L

GaC»F (1)

wec ey

IF(DABS(P) . LT.DABS(E(I)))G0 TO 109

CxL{1)/P

RaD4QRT(1+CeC)

E(L+1)a8ePan

S=C/R

Cul/R

GO TO toq

CaP/E(1)

R=D3QRT(14CnC)

E(l+1)3SeE(I)eR

3=t /R

CaC/R

PuCep(l)=80G

DCL+1)mH+58(CG34D(1))

DO 74 Kai{,N

HeZ(K,I+1)

Z(KyTI+1)2SBZ(K,T)+C

Z(K,1)3CwZ(X,1)=SeH

CONTINUE

E(L)=3Ssp

D(L)eCep

IF(DABS(E(L)),GT,B)G0OTO40

CLu)suiLI+F

CONTINUE

00 2094 I=mt,N

Kul



QOGO

'ty
w

. PaD(1)
IF(I KA, NGO TO 211 D7.
Jusis+t
DO 21 JaJJ,N
IF(D(J) ,GE,P)GO TO 219
Ked
P=0(J)
219  CONTINUE
211 CONTINUE
LF(K,EQ,1)GO TO 234
D(X)=D(I)
D(I)=P
DO 240 Jmi,N
POZ(Jpl)
2CI,TI=Z(IoK)
248 Z(J,K)=P
239 CONTINUE
200  continue
RETURN
1988 WRITE(6,1041)
1061 FORMAT(1H1'ELGENVALUE ROUTINE FAILED')
stop
END

CALCULATION OF J OPERATORS

SUBROUTINE JCALC
é::L!CIT REAL®3(A=H,J,0=7)
MON/ZJBLK/ZJZC17),32¢87),34(17 6 5
10660(1l)/ﬂlsabklr,d,uful,&z,éﬁ Yod6(17),I%XC16),321P(16),022P(15),
N=28J4+1,01
JSs1al ety
NidNey
N2®N=2
NGuNe§
DO 1A Isi,N
RaJsi=1
R2=A8R
R4=mR2I8R2
JZily=R
J2C(I)338R2-J8
J4(I)m358Q4-( 3023825 5R24 13753 (JB=2)
135§§;=R4s(2315R2-313.JS¢735)on2n(lG%oas.(as'SJ0294)-5IJS¢(J3l(JS-8
*
IF(INENIJX(I)SDSQRT(JS=R#(R=1))/2
18 CONTINUE
O 28 I=i N3
J220(T1)aJX(I)SIX(L+1 )02
DO 3 I = {, N§
J66P(1)=dnd22P(1)8J22P(I+2)8J22P( T +4)
00 43 I» {,M1
CRIP{IISJR{TIS(JE(II*IE(TI?i))
RETURN
END



D8.

SUBROUTINE PNT(N)

GO TO (1¢2,39%4+3,6,7,8,9),N

TYPE 10

FORMATC/! ENTER J!/)

RETURN

TIPE 20

FORMAT(/' ENTER G, GX, GZ'/)

RETIURN

TYPE 30

FORMAT(/' ENTER P2, P4, PG, P6G'/)

RETURN

TYPF 40

FORMAT(/! ENTER CIA, C2A, CG, CE'/)

RETURN

TY{PF 40

FORMAT(/' ENTER BiA, B2A, BG, BE!'/)

RETURN

TYPF. 60

FORMATC(/! ENTER GlAA, G2AP, GIA2, G2A2, GG, GE'/)
RETURN

TYPE 79

FORMAT(/! ENTER TY, DT, NT, HQ, OH, NH, NXZ, NC, Tu'/)
TYPF 80

FORMAT (/' ENTER INPUT FILENAME(SLETTERS) <CR>
1 OUTPUT FILENAME(ALETTERS)!)

RETURN

TYPE 90

FORMAT(/' ENTER NC,TL?)

RETURN

END

SyUsRQUTINE STD
IMPLICIT REAL#8(A=H,J,0-2)
COMMON/CBLK/CIA,C2A,CG,CE/BBLK/BIA,B82A,R8G,8E/GBLX/Q,GX,62
{ /CARLK/GIAR, C2AD,CIA2,G2A? ,GC/MISRLK/T  J N Nt N2 .6
{ /PBLK/P2,P4,P5,PH6
Ju?7,9

Gm4,/3,
Q=Gr0,7187384150=2
GXeS87,14285%714
GZ=49,26108374
Pim,32

P4n= _07/60

Poadey 182251Da6/7
P663=9 ,77931222D=9
CLA®A9958

C2An21260

CG358290

CE=35660
GiM==T , 26268
GiP=11,4622

G2M=4 37471
G2P=23,1078
GlLAPS (289G 1M+G1P) /]
GLA2=2(GiP=G1IM) /3
GARB(28G2M+G2PY /)
G2AZM(G2P=G2M )73
GG3=14,5483

GEan

BlAm=12,3¢%3

B2Asan 04977
BG23¥.176

88,

RETURM

END
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20

109

1729

149

160

SUBROUTINE ELCON(T,IEC,ELCO) D9.

DOUBLE PRECISTON C1A,C2A,CG,CE,T,ELCY

COMMON/CBLK/C1A,C2M,CG,CE

DIMFNSION C11V(17),C33V(17),C84V(17),C12V(17)1,C13V(17),TV(17),

1 ChreV(IT)

DATA TV/¥,,25,,%4,,79,,80,,85,,99,,100,,119,,130,,179,,
17%,,184,,185,,199,,200,,3¢90,/,

Ci1V/74726,7,126,7,45,6,98,6,7%4,6,688,6,614,7,74,

7.,777,7,556,7,373,7,34,7,31,7,31,7,36,7432,7.07/,

C33V/9,52,8,52,0,48,8,42,8,378,8,131,8,4,8.4,

8,206,8,1,7,94,7,87,7,84,7,878,7,94,7,961,7,9/,

CA4Y/2,702,2,1,2,68%,2,65,2,64,2,63),2,633,2,679,

2,675,2.62%02,3902.56%,2:368,7436,255512.546+2.47/,

CH6V72,82%,2,829,2,772,2,754,2,742,2,73%3,2,727,2,73),

2,733,2,694,2,644,2,619,2,994,2,983,2,5872,2,5%,2.438/,

C12V/2.5,2,476,2,271,1,9¢1.61,1,%9%,1,508,2,653,

2,67,2,55,2.5,2447,2,93,2,6,2,62,2,6,2,83/,

C13v/1,98,1,947,2,938,2,01%,1,968,1,9315,1,998,1,922,

1,959,2,072,2,147,2,138,2,13,2,16,2,16,2,14,2,08/

C=2228)

TEsSNGL(T)

00 tva l=y,17

IF(TE,EQ,TV(I)) GO TO {29

IF(TV(1),6T,TE) GO TO 149

CONTINUE

GO TO 200

C118CLIvII)

C33aCHIIVCI)

C448C44V(Y)

C668Ch6V(I)

Ci2eCt2v(1)

C13=CLIV(I)

GO TO 16¥

CLLa(CIIV(I)=CIIVII=1))R(TE=TV(INI/CTV(T)=TV(I=1))+CHIV(I)

C333(C3IV(I)=CIIV(I=1))8(TE=TV(T NI/ (TV(TI=TV(I=1))+CIIV(I)

Ca48(CH4V(1)=C44V(Tal) ) n(TESTY(T) )}/ (TV(TI=TV(T=1))+C44V(I)

Co6m(CEEV(II=COHOVII=L))R(TE=TV(II/(TV(TI=TV(T=1))+CH6V(I)

C122(¢C12V(1)=C12V(I=1))#(TE=TV(I )/ (TV(TI=TV(I=1))+C12V(L)

ClJ!(ClJV(x)-clBV(I-t))p(rE-TV(r))/(TV(I)-TV(I-l))oc13vtx)

ELCO=CaCly

IF(IEC.EQ,.3) ELCO3CIInC

IF(IEC,EQ,4) ELCO=C44%C

IF(IEC,EQ,6) ELCOSCHAAC

CLAICHDBLE (2#C|1+C3I3+28C12440C13)/9

C2A=CoDBLE(C114+C12+42%C33=48C1 11/ IR

CG=CoDBLE(CH6)

CEaCaNBLE(CA4)

FORMAT(IF 15 _4)

RETURN

TYPE 229,TE

FORMAT(! DIDNT FIND TEMP=',F6,0)

RETIRN

END

SPWN OB RAL N

BUBROUTINE 1352(S,7)

IMPLICIT DOUBLE PRECISION (A=H,0<Z)
IF (S,LT.1.0+3)GO 10 20

Xs) 23

VeDEXP (=2,D0%XA)

Cm() DA+V) /(1 ,DV=Vi=i, UG /XT=8

D=y DA/XPan2=4 DARY/( (1 ,DA=V)282)
DEL=eC/D

X0aXx3+LEL

1F(t D=14 LT, (DABS(DEL)/XR))GO TO 15
Ful DA=3,DNeS/X®

nemrtn s
Ve § Sy

Fup ,6DGe8ae2
RETURN
END
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CALCULATION OF MAGNETIZATION AND MAGNRTUSTRICTION
SUBROUTINE MAGSTR(TL,NXZ) DlO.
IMPLICIT REAL®OCA=H,,02)
connou/suabx/sx,sz.ux.Hz,Ax,Az,u.r,z/uwabxluaci7).H|(16).H2(15)
\/GBbKlOpGx.GZ/CBLKIClA,C2A.CG.CE/aBbKlB|A.B)A.BG.BE/G?BLKIG!uﬁ
1.czaa,ctuz.czaz,cc/psux/pz,94,96,pﬁ«/uzsagx/r,a,u,u|,uz,un/
1Jabxlaztt7),dz(111,J4<11).J6(17).Jx(1ﬁ).J21?(16).J22P(15),J669<11?
x/sabx/cln.szn,ttc,zzs/rabx/ra,ra.ro,rn,ro/nuuabxlut'7.11)
FDui
FPaR
Fas@
GIMEGIAA=GIA2
G2MEG2AN=G2A2
G1PEGIARI2#C1A2
G2PEG2AN+29G2A2
DELxE{ D=6
NTs®
IF(DABS(BEA) JLT .| ,D=6)NT=1
GZP=GZ
GXA=GX
P2P=P2-BIARE I A=B2ARE2A
P22==BG#E1G
P2is=pEE2E
GXSGXA+JR(GCIMPE I A+GIMREZA+GGPELC)
GZSGLA+J»(GIPOEIA+G2P#E2A)
DO 1# Izt,N
HO(T)3P2P#J2(1)+P48J4 (1) +P68JA(1)
00 11 I=4,N{
H1(Z)2P21eJ21P(T)
00 12 1=1,82
H2(1)3P22%J22P (1)
CALL CONV(NT,NXZ)
IF(NT)Y14,14,15
Four
002312t , N
H(t,t)lﬂ(l.!)*DCL'JZ(I)
CALL S1GMA
FAS(F=F0)/DEL
00 21 Ist,N
HC(L,1)sH(1,1)=DEL®J2(I)
IF(NXZ,.EQ,1)G0 TO 4534
DO 481 Iw=g,N
H(T,1)=l(T, L) +DELAJZ(T)
CALL SIGHA
FomJs3Zs(F=f0)/DEL
DO 22 1st,N
H(l,1)2H(1,1)=DEL®JZ(T)
CONTINUE
IF(NXZ.NE,3)GO TO 452
DO 23 I=t,Ni

23 H(L, T+1)8H(T,2+1)+DEL8J2LP(I)

CALL SIGMA

FOS(F=FQ)/DEL
oo 89 I=at,nt
H(T,141)3H (T, To1)=28DEL#I21P(])
CALL SIGMA
FDx S8 (FD=(F=F®)/0EL)

DO 24 124,84

H(L,T+1)8H(1,141)+DELRJ21P (L)
CONTINUE o
{F(NXZ.E0,2)G0 TO 453
DO 434 131,41
HeT,T+13%HE1,1411+DRLEIR
CALL SIGMA

FO=a8Xn(T=ra) /DEL

00 2% Ixi,Ni

HCEpT+1)BH(T, 141 )=DEL#JIX(IY
U0 26 1si,Ne

H(L,T+2)3142(1) +DELRJ22P (L)
CALL SIGMA

-
-4
s
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100
29

2
1ot

19

40

11

FBs(F-ra)/0EL o
E1AL=(BLASFA=GIMWFP=G|PWFQ) /CIA D1ll.
E2A{=(B2A#FA=G2HFP=G2PsFQ) /C2A
E1G|s(BGeFB=GGSFP)/CG
E2€(«BESFD/CE
tg;onaxt(DABB(!!Al-tlu1,0ABStﬁzl|-Ezn),DABa(Elci-Elc),oaastsztt-EZE
E1ASEIAL
E2AsE£2A1
£1G=E1GY
E2E=EQLEY
DDSOMAX 1 (DABS(E 1A14DADS(E7A) , DABS(E1G) ,DABS(EZE)) + 1.E76
0DD®0 /DD
1F((D/DD) ,GT,TL)NT@
GO T0 100
GX2GXP
GZaGZA
IECUABS(EIA) (LT, | D=6)EIARD
IF(UABS(E2A) LT, D=6 )E2A=2
IFCDABS(E(G) ,LT.1.0=6)E1G=O
IF(DABS(E2E) LT, | ,D=6)E2ERD
RETURN
END

CONVERCENCE OF FIELD V3 SIGMA
SUBROUTINE CONVNT,NXZ)
IMPLICIT REAL®B(A~H,J,0-2)
connou/suabxlsx,sz.ﬂx,Hz,Ax,AZ.u,r.Z/nwabxlﬂo(11)."1t16),H2(15)
1 IGBLKIO,GX,GZ/HAMBLKIH(17,\7)IMISBLK/T,J,N,M1pNZ.NGIJBLK/JZ
1(11),D0(51),thiG),DD(A?)/NBwDbKISIGO
ra(3X)sSI1Ga=SX
FH(SZ)aS1GA=52
Dm{ D=6
PO 3 I=i,N2
ﬂ{:'172\-unfl)
TRt V=5
IF(NT NE,A)TL=1,D=9
GO TO (29¥,309,104),NX2
DO 20 1=1,N
H(I'()lﬂﬂ(I)QAZIJZ(I)
LO 2t Isi, N1
H{TpI+i)%HI{1iARSIRILS
CALL SIGMA
FXaFQ(3X)
FLarv(sZ)
IF(DABS(FX).LE.TL.AND.DABS(?Z)}LE.TL)RET"RH
[»]+] k] 1",”
H(I,1)=H{T,11+08J2(1)
AZBAZ+D
CALL SIGMA
£X1xFQ(3X)
FZ1aFrn(32)
00 44 1s=1,N
HCI,T)3H(II)=0"32( 1)
AZBAZ=D
DO 41 I=q,N1
HCL,1+1)3HCT, Lo ) #O®IX{T)
AX=AX +0
CALL SIGMA
PX2=FA(SX)
FZ2=F4(52)
AXmAX<D
FRES{TRI=FTR)/
FXAB(FX2=FX)/D
r2xs(F22=F2)/D
r22a(r21~-r2)/D

P Y BS



200
79
tidY
71

72

jat
"

A2

A

29

39
10

DENaFXXSTZZ=FXZ0F2ZX
D2W(FXZ»FZ=-FZZ#FX) /DEN
DIS(FZXeFX=FXX2F2)/DEN
AXSAX+D?2
AZ3AZ+01
GO TO 100
po 74 Isi,N
LISPROLEULTIS S
DO T1 I=y,NY
HCT,1+1)SHI(T) +AX®IX(T)
CALL STGMA
FX3fQ(SX)
[FCOABS(FX/SX) JLEoTLORSX LT ! D=1IRETHRN
DO 72 I=t,N
HCT, el )BH(L, To1)+D0JX(1)
AXSAX+D
CALL SICMA
AX$3AX+D
FX1aFQa(3X)
DisDaFX/(FX=FX1)
AXaAX+01=D
GO TN 209
DO RY I=1,n%
H(T,1¢8)301(1)
00 At I=§,N
H(L, 1)sHACT) AZNJZ(])
CALL SIGMA
FZaFW(SZ)
IF(DABS(FZ/82) ,LE,TL,O0R,82Z,LT,!,D=1BIRETURN
AZ3AZ+D .
DO R2 [=i,N
H(I,I)sU(T,1)+00J2(I)
CALL 3SIGMaA
FZ13FW(32)
DisDNFZ/(¥Z=F21)
AZ3AZ+D1-D
GO TO 301
END

CALCULATION OF MAGNETIZATION AND THERMUDYNAMIC FUNCTIONS

SUBROUTINE SIGMA
IMPLICIT REALOB(A<H)J,0-2)

COMMON/SHBLK/SXSZ,HX,HZ,AX,AZ,0,F,Z/0TABLK/E(IT)EXCIT),AL1T,17)
1/HAMBLK/H(17,17)/MISBLK/T,J,N,N1,N82,N6/JBLK/JZ(17),W(51),JX(16)

1,0V(42)

DINENSION XP(17),2P(17),G5(17)
CALL TRED

CALL TQL

DO 1# I=f,N

31309

S22z

DO20K= ¢, N
S13G14J2(K)RA(K,T) 082
ZP(Y)mwSy/J

DO 3@ K={,N¢§
SASB2+JIX(K)INA(K, I)PA(K+ !, D)
Xe(I)==2#52/J

St=d

32=¢%

$3s9

54%6

DO 494 1=t,N
VaOEXP((E(1)=E(T1))/T)
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arnanc

19

22

23

sx(r)-:

stasi+

32252+E(T) 0y D13.

SI=83+2P(¢ L)V

S4mS44XP(1) eV

Ts31

Uas2/31

Sxa34/51

$Z=33/51

FuE(1)=T*0LOG(Z)
LF (DABS (SX) LT o1 ,De19)SKXed
IF(UABS(SZ) oLT,1.D=14)SZx9

RETURN

g~

CALC, OF FIRST AND SECOND ORDER ENERGY CURRECTIONS

SUBROUTINE ENCOR(NXZ)

IMPLICIT REAL#Z(A~H,J,0=2)
COMMONZJBLK/JZC17),J2¢17),J4€17),96(17),3%XC16),J21P(16),0220(13),
1J66P (11)/DIABLK/ECLT),EX(1T),ACI T+ 171 /CRBLK/DIVI133),ET(23,17)/41
tSBLK/T,J, N, N1 ,82,N6/SHBLK/3X,52Z,HX,HZ,AX,A2Z,U,F,2

DIMENSION JA(193),JBC1%3),JC(153),J0(13Y), JE(IS1):JF(153).J0(153)
DIV(1})=d

DO 19 K=2,M
Mm(K8(X=1))/2

LsKet

DIV(K+M)=0

00 1@ Ist,L
DIV(I+M)SI/(E(L)=E(K))
00 2¢ Ksi, N
Me(K#(Ke1))/2

09 2t I=y,;X

IK=I+#

sS120

8299

838t

S48¢

8580

So0=i7

S7m0

DO 22 L=t ,N

PeAlL,L)*A(L,K)

IF(NXZ ,NE,1)51381+P*JZ(L)

$28524P8J2(L)

JA{IK)=32
IF(NRZHNE,1)JACIK)win3Zn51
00 2) L3i,N\

PIA(L,1)2A(L41,K)

QmA(L+Ll,T)#ACL,K)

IF(NXZ NE,2)53383+JX(L)#(P+Q)

34834+J21P(L)®(P+Q)

S$%385+J21P (L) #(Q=P)
IF(NXZ.NEL2)JP (1K) =S InInSX

JO(IK)=S4

JE(IK)=S8S

DO 24 L31,N2

PRACL,L)®A(L+2,K)

QmA(L+2,1)%ACL,K)

86856+4J22P (L) *(Q+P)

87=5743220(L 3 2{Q=0)

JB(1K)=S6

JCUIK )=57
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e Xz i eX2]

nanc

14
13
19

ET(1,K)=S82
ET(2,K)=36
ET(3,K)=54

IF(NXZ,NE,2)ET(4,K)383» 23X
IF(NXZ NE 1 )ET(S,K)23 | wJeS2Z

CONTINUE

CALL CORY (6,JA)

CALL CORt (11,J8)

CALL CORY (15,dD)

CALL COR1 (2%,JC)

CALL COR%Y (23,JE)
{F(NXZ,NE,2)CALL COR1
IF(NXZNE,1)CALL CORIL

CALL COR2 (7,JA,JB)

CALL COR2 (R,JA,JD)
{FP(NXZ,NE,2)CALL COR2
1F(NXZ NE, 1 )CALL COR2

CALL COR2 (12,J48,J0)
IF(NXZNE,2)CALL COR2
IF(RXZ ,NE 1)CALL COR2
IF(NXZ NE,2)CALL COR2
IF(NXZ,NE,1)CALL COR2
IF(NXZ,EQ,3)CALL COR2

CALL COR2 (22,JC,JE)

RETURN

END

SECOND ORDER CORRECTIONS FOR EQUAL OPFHATNRS

SUBROUTINE COR{(M,J)

(18,JP)
(29,J9)

(9,JA,JP)
(10,Ja,JQ)

(13,J8,J9)
(14,J8,J9)
(16,J0,J9)
(17,J0,JQ)
(19,JP,J9)

IMPLICIT REAL #8(A~H,J,0-1)

COHMDN/CRBLKIDIV(lS?)cET(23,l7)lHlSBLKlTuQ.N,Nl,NZ,N&

DIMENSION J(1%3)

DO 19 1=§,N

Sad

IP(IEQ,1)G0 TO t1
Lal=t

Do t2 K=21,L
MKaK+(In(I=t})/2
3a8-DIV(MK)nJ(MK)na?2
CONTINUE

IF(I,EQ N)GO TO 1)
Lsley

DO 14 Ksi,N
MKRT+ (KR (K*11))/2
SeS+DTY(MK)I#J(MK) ##2
ET(M,1)=28

CONTINUE

RETURN

EZND

SECONI ORDER ENERGY CORRECTIONS FOR UNEQUAL OPERATORS

SUBROUTINE CORZ(M,di,d2]

IMPLICIT REAL*O(A~H,J,0=2)

COMMON/CRBLK/DIV(133),ER(23,17)/MTSBLK/TeJaN,H1,H2,%0

DIMENSION J§(153),J2(15Y)

DO {¥# I=t,N
Sné

*He Y Y
AL L hgng

Lal=t
DO 12 K=1,L

" TN it
LA Al - . .
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14
13
19

MK3Ke(In(Ie{))/2
3x3=DTV(MK)#J 1 {MK)NI2({MK)
CONTINUE

IF(I,FQ,N)GO TO 13

Lslet

00 {4 K=L,N
MKsI+(K#(K=1))/2
8u8+DIV(MK)IWJL(MK) #J2(MK)
ET(M,1)n2e8

CONTTNUE

RETURN

END

CALC, OF EQUILIBRIUM SUMS

SUBROUTINE SUMCAL

D15.

IMPLICIT REAL#8CA~H,J,0~2)
COMMON/SHBLK/DA(S),U,F,Z/CRBLK/DBI1537),E2¢23,17)/DTABLK/E(1IT),
{EXC17),DC(289) /MISBLK/T ,J,N, N1, N2, N6/SUMBLK/SC(S,4),50(18,2),
18E(11,2)

-
[

19

21

29

31
39

D0 9 131,93
81m0

82w

S3m0

S4=

DO 11 X=mi,N
XwET(I,X)
YaXaX
NeE(K)
V=EX(K)
81381+VaX
S2382+VaY
S3isgieVeneX

YOIy PR T pegry
Qe TrYYTNwS

SC(I,1)m81/2
8C(1,2)382/2
SC(X,3)e33/2
8C(I,4)=34/2
00 29 Is{,14
Lules

sy

S2m0

00 21 K3{,N
X=ET(L,K)
VSEX(K)
S1351¢VaX
82082+ V4X#E(K)
SD(1,1)381/2
SD(T,2)8582/2
LL=o

DO 32 Imi,4
Ul

DO 1A K=M4,5
LL3LL et

L L

3230

DO 3t L=t,H
V2EX(L)
WRET(L,L)ET(K,L)
Stagtévew
S2=usvedst(l)
SE(LL,1)=31/2
SE(LL,2)982/2
RETURN

END



anan

SECOND DERIVS, OF INTERNAL ENERGY
Dlé.

SUBROQUTINE DERCAL

IMPLICIT REAL®B(A=H,J,0-2)
COHMON/SUHBLK/SC(S,4),80(18;2).85(IW,?I/HTSBLK/Taol(’)/SHBLK/DZ(G)
tyU,F,Z/DERBLK/D{18)

UDisi+tI/T

T2sTaT

D(L)sFi(i,1)

0(6)8F1(6,2)

0(10)=F1(19,3)

0Cl3)sF1(13,4)

DCLIS)SFL(15,5)
D(16)=2(SD(16,1)8U1=-3D(16,2)/T)
D(18)=28(3D(18,1)#U1*30(18,2)/T)
D(2)=2F2(2,1,2,1 )
D(3)8F2(3,1,3,2)

D(Q)IF2(4'1.4.3 )
D¢S)ar2(S,1,5,4)
D(?)lr2(1.2,3,5)
D(BYNF2(8,2,4,6)
0(9)=F2¢%,2,5, 7
D(11)3F2(11,3,4,8)
D(12)=F2(12,3,5,9)
0(17J'SD(|7'I)QUI'SD(17,2)IT
RETURN

END

- REALaRFUNCTION Fi(L,M)

IMPLICIT REAL®8(A=H,J,0-2)
counonlsuuabx/SC(Sy‘).SD(10.2).551|¢.2)/3u35x10(6).U.P.z/uxsebxl

\T,Jd,N1,N2,N3,N4

Utsi+U/T
T23TsT
rt '2'(30(5,1)-UI-SD(L,?)/TQ(SC(H,I)OIZOUi-SC(“,2))/T'Srle1)

1#SC(Me 3)/T24(SC(M,4)=UBSC(M,2))/(79T2))

neMmeen &
NG aUnte

END

REALSAFUNCTION F2(L.M.N,K)

IMPLICIT REAL®8(A=H,J,0=2)
COHMON/SUHHLK/SC(S.4),50(18,2),35(l?,?)/SHSLK/D(G),U.F,Z/H!SBLKI
11,J,81,N2,N),N4

Uimt+ll/T

T23TT

F2 -SD(L,1)00I-solb.2)/1’20(5C(Hc!IOSC(R.1)0U1~8F(K.|))/T
1-{3:(%,1).SC(N,))OSC(Npl)!SC(M.i))/TZ+(S€(K:2)'SE(K")'U)/T7
RETURN

END



(s Xz X1}

29

39

64

199

150
199

200

249
259

2068
279

2ea
259
300
11¢

NOTE THAT THIS SUBROUTINE WAS WRITTEN ESPECIALLY FOR MY DY

SAMPLE AND MY PARTICULAR DATA SET,

1T MUST BE CHANGED FOR OTHER MATERIALS AND SETS OF DATA,
SUBRQUTINE VEC(ELCO,T)

IMPLICIT DOUBLE PRECISION(A=H,0-%)

COMMON/DRBLK/DEP(18,25),1IEC,NXZ,NH,DF(2%),ECAR(Y, 25)

DIMENSION V(6,2%),11X(6),I12(86),13X¢3),132¢3),0FC(2%)

DATA I1X/1,6,13,2,4,8/,112/1,6,1%,2,5,9/,11X/1,13,4/,

1 132/71,1%,5/

Ke1

IFC(IEC ,EQ,3,0R 1EC FQ,4) Ks2

IF(CIEC=NXZ),EQ,@,AND,IEC LT,3) K28

K{sMOD(K, 3)+!

K2sMOD(K+(,3)+1

K3=sMOD(K+2,3) ¢4

DO 2964 Im§,NH

Ir( 1£C,67,3) GO TO 1¢@

ir (1eEC,EQ,3) GO To %@

Do 20 J=1,6

LF(NXZ,NE,3) V(J,[)SOEP(IIX(J), )

IF(NXZ.EQ,3) Y(J,1)=DEPCI{Z(I),])

CONTINUE

GO T0 19¢

DO A¥ Jmt,)

IF(NXZ,NE,Y) V(J,1)=0ERPCIIX(I), I

[F(NXZ,EQ,)) V(J,1)s0EP(I32¢J),])

CONTINUE

GO TO 199

[F(IEC.EQ,6) GO TO {59

Y(1,1)=DEP(14,1)

V(2,1)=30€0(18,1)

GO TO 19u

V(t,1)®DEDP(16,1)

DF(I)=2,#ELCOSDF (1)

DEC(1)8DF(I)+ELCOW(FCAR(KY,I)ECAR(K2,T1)=ECAR(K],I))

CONTINUE

IF(IEC.LT,3) GO TO 249

IF(TEC.EQ,]) GO TO 260

IF{1EC,EQ,4) GO TO 280

IF(IEC.E£Q.8) CO TO 309

WRITE(2,250) T,NH,(DF(J),DFC(J),(V(T,J),I31,0),J3],NH)

FORMAT(2G/(8E))

RETURN .

WRITE(2,278) T,NH,(DF(J),DFC(J1,(V(T,J),131,3)},J=1,%H)

FORMAT(2G/(SE))

RETURN

WBTTE(D,204) T MH (ORI NECCT, (VT 0 Pl 2, Jal aH)

FORMAT(2G/(4E))

RETURN

WRITE(2,31A) T,NH,(DF(J),DFC(II,V(1,0),J=1,NH)

FORMAT(2G/(3E))

RETURN

END v

Dl17.



Appendix E

In this appendix, the experimental elastic wave
velocities are presented as a function of the sample magnet-
ization. The format is, more or less, self-explanatory.
Each set of data begins with the frequency, polarization
and direction of propagation of the elastic wave, the
direction of the applied magnetic field, and the sample from
which the data were obtained.

Each subset of the data begins with the temperature
at which the data were taken. The data follows in two
columns. The left column contains the experimentally measured
magnetization, ¢ (=M/M0), and the right column contains the

relative change in the frequency of best overlap:

BE 4 = Elo) - £(o=0)
) £(0=0) .

f



DvB
2| lb

illa

149 ,0000
3,00008ANE=01
4.54039009E=32
7.4930362E~92
7.1830641E~41
7.2144847E=01
7.277195GE=a1
1.3119777E=91
1.3676880E=01
7.4894708E=41
7.4651811E=01
7.4930362E=-91
7.5487465E~91
7.5905292E=41
7.6844568E=41

162 ,0040
2 ,293000AE=01
4,1782730E-92
§,2172702E=92
{,0863510E=01
f40724234E-01
6.1142062E=01
ho2116992E=01

h‘521110QW-M1

b7 e

th,4066853E-91
0 +49025ATE=91
H45738162E-41
he6295265E=91

. AOOiRAA?-M1

g e~

te 7688@238-01
6.79665748-01
178 ,0069
04 00V00AAE=D1
7.1830641E-92
1.0863510E=-41
1.2534819E=-91
4,7632312E-91
1,9582173E=-Y1
5.2367688E=91

< e |
~ 11nmunn|~ —v-n
Ed

5.5431755E~21
5.6824513E=01
5.8217279E=-01
.9331477E=61
6,0445683E-01
6+1699165E=01

Pllb
f=10MHZ

14

0, 00AVNAYE=0 L

“{,5747936E=04
«3,416W9907E=13
2,0514715E=92

2.,2871848E~12

2.,3652188E=-02

2.,4118574E=12

2,4282106E=12

2.,4633406E=92

2.4679178E=42

2,4778771E=12

2,4724264UE=92

2,4572837E=12

2.4348732E=02

15

W, BBAVONIE=0 L

«1,3844413E-94
-7,0425926E=-94
“2,4197626E-93
-4,2917680E=93
«3,6236246E=43
=3,0457708E=93
- Rﬂlﬂ}‘)gf"-v)§

«2,0224881E=¥3
~2.1428743E-03
«1,7997737E<93
-1,0533792E-a3
-6_.5610473E«04
«7,2231718E=05
2,1067585E=-04

14

# IOPAARIE=3 L

«4,9640499E=-034
«1,7979514E=13
«3,6988159E=03
-7,1974537E=93
~4,5644962E=93
«1,9977238E=43

=8 :OCQC:J?—&A

S ..asung
s

1.8766496E~44
7.02230183-04
1.15“2@463-@3
143320636 7E-63

A COLATILE 2D
i ‘Uouwl 1O

1.,8584885E=43

175,0000
0.0000000E=J1
H.0779945E-02
2.6183844E=01
3,7325905E=01
4.,2061281E=01
4.5682451E=01
4.,846796TE~11
5.0835655E=01
5 +2646240E=01
5¢4456825E=01
5¢4874652E=91
5+57103ATE=01
5.6545961E=01
5.7520892E-01
5,8217278E=¢1
18,0000
0.20000ANE=01
5¢2331762E=02
9,5379571E=02
1,3045912E-01
1.7875557E=91
2.0257382E=-91
2.7114071E=81
3.2513277E=91
3.5327631E=01
3.9377454E=01
Ae3389860E=01

CAI04TAS B4
4.J7LOL e~ v i

1.7943193E~-91
1,98589403E~41
9¢1377920E=91
n43871252E-91

o AOETAOAC 24
JIg2IW I I L7V Y

%¢3712039E-01
185,0070
3 .89000MAE=11
B8.5802196E=92
1.7123383E=91
2.5453959E-41
2.96220874E-91
3.3582393E-91
3.71142A8E=91
4o “31“2538-@1

5= sagTo

[e
1.1«!757\0'“ '15

4,4414748E=-91
1,5874699E=91
1.7983245E=41
1,8342360E-41
4.9545594E=91

. 940674736E-01

E2

15

V) BOAAAAIE-0 |

=9,3754240E=04
«4,7493924E-94
=3,0531809E~93
=4 ,88501893E=93
«2,2513354E-43
«3,0840211E=04
1,6221951E=93

2,7216024E=93

3,0963571E=03

3,3122386E=93
5.4911118E=03-

3,7069933E~43
3,8982026E=93
4,0647398E-93
18

N ,A0ABIGIE=0 |
«4,8183971E=94
“2.8726869E-43
«4,7268202E=43
=7.,5446150E~93
*6,64804403E=01)
«5,1293623E-93
=3,3789141E-93
~2,2261798E-93
«3,7814562E~94
1,5186816E=93

s 3 oo aoe A%
4.no4oculs=ua

3,8973395E=93
4,9646860E-93
5,6050939E~13
6,1784115E~93

L A0 AC /a0
A R N AF RS By 2P 2 - Rl { % 4

6,7639273E=03

15
) G BQAABAIE=N |
=7.1928171E=-94
=2,8523249E=93
=2,5918944E-93
-2.5050846E~-03
=] ,7920A36E=03
«3,4723945E-94
7.3788381E=04

Guni S F B A2
5.14 eV In=V3

2,6911957E=03
3.3111761E-n3
3,9312465E=03
4,7869437E«93
5.4876233E-03
6,1759415E-03



199 ,000¢
0 « 0900UVIE=91
1,6498078E-02
9,.6481950E=-42
1.4398173E-41
1.7835980E=-41
2.1216919E-41
2.20497A9E=91
25213353E~91
2.,8639094E-91
3.2143914E-91

3 ,5315724E-91

3.,80407A5E=91
4,9539699E=91
4,2675381E=01
4,4793744E-91
4,6755065E=91
4,7496499E=41
195 ,0999
0 ,000300ANE-D1

4.0400357E-92_~1

R,2380312E-92
1.2139435E=-91
1.5550480&-61
1,8124995E=91
2,00205A9E-91
2.2219928E-91
2.43905138E-41
2,67609A47E-41
2.8538383E-91
3,1375948E~V1
3.,4176860E-91
3,6648840E-41
3.8791290E-91
4,0962035E-91
4o 300%940E~V1
A,3745566E=~91
200,009
@ . 09009 AAE=I1
3.5317612E-¢2
7.1385509E-9¥2
1.0753043E=-91
1,4457303E-A1
1.6132506E=91
1.9364228E-91

noonaf.

4./:63‘oo¢

PR e L= Ll

2.51099464E-41
2.7934148E-91
3.92544856E-91
3.25143428=91
3.,4769142E-91
3.,6945144E=-91
3,98186A3E-91
3,9797221E-91

17
0, 00ANANAE = L

=9,2997342E=95

-7 ,.2537896E=04
-1,5809541E=93
-2,8521405E=03
«2,3931306E=43
«2,4489294E=03
=2,3993304E=43
=2,8273412E=93
«1,3763601E~03
«5,0218544E-04
3,5338975E-94
1,2399644E~23
1,9715428E-93
2,7093214E-03
3,1247994E-43
3,3417031E=43
18

¥, JOPRINIE=D L
~1,2405486E~-44
2 =5, 27233143-@4
«1,0296553E=03
-1.5134693E-03
-1,78G31872E=¥3
«1,9538644E=93
-2,8282969E-43
-1,9848777E=93
-1,82980491E-03
“1,6127131E-93
-5,9864164UE=44
-4,7144845E-94
2,2950148E=04
9,1184319E=94
le 62511862-@3

35135=4
L.xaz:a; £=91

2,37565A5E=93

17

N UOPAQIAE=IL

-1,4895730E=-v4
=4.44458?8?-@4
=8,2547174E=04
‘1=11ﬂ97322-¢3
1 ,4158943E-913
-1,5888778E=-43
=1,5385323£-22

~1.5888778E=43
«1,4957795E=43
=1,1916584E=13
-8,068520u3E=-44
=4,1583913E-44
1,6137941E=-0%

8,5029791E=-04

1,421 30949E=13

1,6571499E-03

213 ,0000

2 033GGANE=91
2.8976760E=32
7.6113411E=92
9,9414869E=92
1.3128337E=91
1.5371338E=41
1.7829674E=91
2,0160352E=-901
2,2187898E=-91
2.4655218E=41
2.6483873E-41
2,7625626E=01
2.8829699E=01
3,2764981E~91
3.2668353E=91
3.3253546E=41
229 ,0000
0.00000ABE=-d1
4.5399431E=42
9.3374744E-92
1.26453ASE=-91
1.,4791176E-91
1.6694674E=91
1.8760084E-41
2.8555517E=41
2.2462198BE=91
2.4198123E=91
2.59351A7E=-91
2,7656931E=91
2,8299628E-91
240,040
2,090080A0E-91
2.9890669E=42
63937¢ATE=¥2
9,0860172E-42
140923599E=91
1.2732726E=081
1.4434570E=91
1.8247142E=41
17803598E=¥1
1.9523639E=-91
2.,1014055E=91
2.2583795E=¢1
2,4095257E=-91
2.4667519€E=91

E3

16

1) VOPINIIE=-I |
-1,8643731E=05
-2,672268 LE=04
-4,5987869E=04
-7,8846176E=04
-8 ,7004077E=04
-1,00#5469E=03
-1,8751218E=23
-9,9433231E=-04
-8,5761162E=04
-6,8981803E=04
-6,1524312E-04
-3,8530376E=04
-4,9716615E=05
3,2315800E=94
4,288458 1E=04
13

7, A0PRAAIE=0 1
-8,71#2593E=-A5
-3,1730231E~04
-5,1017234E=-04
-6,2216139E=04
-7,0926398E-04
-7,590¢3688E-04
<7.0926398E-04
-7.2792882E-04
-6,8971815E=04
-4,6662104E=-014
-3,608536AE~44
-2,2397810E=04
14

1) ,0020002E=-J1
-3,1146053E=05
-1,1212578E=014
-1,9310551E=-04
-2,67856@3E=04
-3,4883576E-04
-4,5473233E=-04
~4,4227391E-94
=4,6096154E=04
-4,983368AE=04
-5,1782443E-94
-4.0489864E=04
«3,3637734E=04
=2,8654356E=-94



243 ,0094
0. 09800AAE A1
3.5355122E=92
7.0645750E=42
9,5992051E=92
1,2658979€E=01
1,5609369E=91
1.7124285E=01
1.,8459444E-41
1,9921176E-01
2.,1259524E=91
262 ,0000
0.0000000E =41
2,7920893E~92
5¢5951897E=92
7.6184105E-92
1,2872480E=01
1.,2463962E=01
1,4752301E=01
1,7825035E-01
286,004
0,00908900E=-41
2.2878108E=92
4.3116249E=92
he2637326E=92
4, 3879953E=02
1,0322050E=91
1.2280458E=-41
1,4215865E=91
3090 ,0000
2 ,09000A3E-a1
1,4745348E=02
2.,9643593E-02
4,4178803E=92
543487166E=92
7.0842423E-¢2
§,7852845E=02
1,0454650E-91
1,2112529€E=41

10

), B0AVAARE=V L

«2,4951656E=05
-8,1092881E=05
-2,8585116E=04
«3,3060944E~44
«3,1813361E~14
-3,5556110E=04
-3,4932319E-04
«-3,3684736E=~-94
~3,1813361E=04
8

¥ ,00AV¥INIE=0 |

=4 ,06364A3E~45
«7.,5643787E=05

‘=1 4,30042916E-94

] ,9755344E~¥4
«2,7569993E-94
«3,3946293E=44
«3,4509196E=94
8

N ,00BNIRBIE=9 L
4,7629761E-05
«2,7578999E =15
9,4019938E=96
«3,4474677E=95
«6,4559074E=95
-] ,0905514E=-94
-] ,6671928E=04
9

9,000V ANIE=0 L
1.,3598483E-15
«2,1641635E=95
=2,9684788E=45
-3,5868112E=05
=1,2057482E~-44
e1,0388468E=¥4
-1,545831|E=94
=1,7194125E=44

DyA
v|b

Al

195 ,0080
0, 20000AAE=1
3,7349896E~92
$,3917753E#02
7.3864512E=92
9.2810074E=92
1,1198593E=91
1 ,2805394E=d1
1246028 30Ewd]
1.9179648E=91
2,1506785E=91
2,4822437E-91
2,3014505E=a1
3.1118773E=d1
3,3803362E-91
1,5126184E=4d1
3,645881E=01
3,7706358E=91
3,8870427E~-91
4,2002882E«01
4,2833995E~d1
202 ,0000
0,220000AE=01
3,32989540E=42
S.3352878E=02
§o5735935Em42
Re1820971E=92
7.8411349E=02
141433487E<91
{,29664572=91
1,6116771E291
1,9213026E=21
2.7270883E7d1
2,5111216E=91
2,7921270E201
3.9552885E=91
31, 1727846E=91
3:.296986%8=9¥1
3,4162751E=01
3,54086908=41
31.6492061F=01
3.7306641E9ﬁ1

E4

plb
£=20MHZ
20

9 ,0000000Eed |
4,821252|Ewp5

2,29A0947E=04

4 ,0980642EwA g
6,0265650E»04
8,7987851Ee04
1,1571005Een3
1.5428007E«03
2,4045995Ewd3
3,2181857Ewa3
4,4295253E%63
5,7372899E«¢33
7.9571977E»03
8,3196332Ew03
8,8650773Ewa)
9,5219727E=03
1,0136682E202
1,0697153E=02
1,1227491Ee02
1,1685510Ew32

20
?,0000004E=n1
1,8226445E»05
1.4581156E=04
2,8554764E=4
4,2528172E04
5,5286884Ee04
8,2019003Ew04
1.1118132E5a3
1,7558142E#03
2,6428346E+03
3,58453435=03
4,5687623Eed)
5,7838586Cap3
6_6344261Ew03
7 . 1690685Ena3
7.8434469E+03
8,3720139Een3
3_8884297E=a3
9_3987703E~03
9.7146953E=03



2i9,0000
D VR000AVNE=IL
2.,6676768E=92
4,0089912E=92
5¢3869792E=92
5.70132475-02
8,9501529E292
9.3143142E=92
{1 2630514E~91
{,3244108E=91
1,5760435E=91
1.8292050E=31
2,2772660E=94
2.3064822E-¢1
2.35347668E=91
2.,6488488E=431
2.75643737E=01
2.,8630276E-01
2.9695285E=94
3,2726233E-91
3.14973693-61
226 ,0000
0,299Q0AVE=J1
2,3806628E=42
3,3657537E202
4.,5376839E202
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