
AN EFFICIENT GAUSS-NEWTON ALGORITHM FOR
SYMMETRIC LOW-RANK PRODUCT MATRIX APPROXIMATIONS

XIN LIU†, ZAIWEN WEN‡, AND YIN ZHANG§

Abstract. We derive and study a Gauss-Newton method for computing a symmetric low-rank product XXT, where X ∈ Rn×k for k < n,
that is the closest to a given symmetric matrix A ∈ Rn×n in Frobenius norm. When A = BTB (or BBT), this problem essentially reduces to
finding a truncated singular value decomposition of B. Our Gauss-Newton method, which has a particularly simple form, shares the same order of
iteration-complexity as a gradient method when k � n, but can be significantly faster on a wide range of problems. In this paper, we prove global
convergence and a Q-linear convergence rate for this algorithm, and perform numerical experiments on various test problems, including those from
recently active areas of matrix completion and robust principal component analysis. Numerical results show that the proposed algorithm is capable
of providing considerable speed advantages over Krylov subspace methods on suitable application problems where high-accuracy solutions are
not required. Moreover, the algorithm possesses a higher degree of concurrency than Krylov subspace methods, thus offering better scalability on
modern multi/many-core computers.

Key words. Eigenvalue decomposition, singular value decomposition, low-rank product matrix approximation, Gauss-Newton methods

AMS subject classification. 15A18, 65F15, 65K05, 90C06

1. Introduction. Low-rank matrix approximation techniques, such as dominant eigenvalue or singular value de-
compositions, appear in a wide variety of scientific and engineering applications. For example, principal component
analyses (PCA) in statistics use them to compute a few directions of maximal variance. Many data dimensionality
reduction methods in machine learning use them to perform low-dimensional embedding of high-dimensional data.
More recently, identifying dominant eigenvalue or singular value decompositions of a sequence of closely related
matrices has become an indispensable algorithmic component for many first-order optimization methods for vari-
ous convex optimization problems, such as semidefinite programming, low-rank matrix completion, robust principal
component analysis, sparse principal component analysis, sparse inverse covariance matrix estimation and nearest
correlation matrix estimation (see [9] for a more detailed summary). More often than not, the computational cost of
doing low-rank approximations forms a major bottleneck in the overall efficiency of solution processes.

For large-scale eigenvalue and singular value calculations, most state-of-the-art solvers are built on Krylov sub-
space methodologies, including Arnoldi methods for general matrices (e.g., [16, 15]) and Lanczos methods for sym-
metric (or Hermitian) matrices (e.g., [25, 14]). Jacobi-Davidson methods (e.g., [3, 26]), although built on a different
framework, also rely on Krylov subspace methodologies in linear system solving at every iteration. By definition, the
Krylov subspace of order p is Kp(A, v) = span{v,Av,A2v, . . . , Ap−1v}, for given matrix A ∈ Rn×n and vector
v ∈ Rn. Both Arnoldi and Lanczos algorithms generate orthonormal bases for Krylov subspaces through a type of
Gram-Schmidt process.

It is widely accepted that Krylov-subspace type methods are generally most efficient in terms of the number of
matrix-vector multiplications. Indeed, they are fast and reliable for computing a few eigenpairs. A well-known limi-
tation of these methods is the difficulty to warm-start them in an iterative setting where better and better approximate
eigenspaces are available. So far, no procedure is known that can efficiently pack subspace information into a single
starting vector v to produce Kp(A, v) that matches a given subspace.

†State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sci-
ences, CHINA (liuxin@lsec.cc.ac.cn). Research supported in part by NSFC grants 11101409, 11331012 and 91330115, and the National Center
for Mathematics and Interdisciplinary Sciences, CAS.
‡Beijing International Center for Mathematical Research, Peking University, Beijing, CHINA (wenzw@math.pku.edu.cn). Research supported

in part by NSFC grants 11322109 and 91330202 and by the National Basic Research Project under the grant 2015CB856000.
§Department of Computational and Applied Mathematics, Rice University, Houston, UNITED STATES (yzhang@rice.edu). Research sup-

ported in part by ONR Grant N00014-08-1-1101 and NSF Grant DMS-1115950.

1

2 X. LIU, Z. WEN, AND Y. ZHANG

Another limitation has to do with concurrency in algorithms. Krylov-subspace type methods incur a low degree
of concurrency in the sequential process of generating orthonormal bases for Kp(A, v), especially when the dimen-
sion p is relatively large. To increase concurrency, there exist multiple-vector versions of these algorithms in which
each single vector in matrix-vector multiplications is replaced by a small number of multiple vectors. Nevertheless,
the amount of parallelism is still fundamentally limited by two computational bottlenecks: (i) the construction and
maintenance of orthonormal bases for Krylov subspaces, and (ii) repeatedly solving p-dimensional dense eigenvalue
problems to compute approximate eigenpairs.

There exists more concurrency in another class of algorithms in which every time p matrix-vector multiplications,
say Avi for i = 1, 2, · · · , p, are carried out simultaneously as a block, i.e., AV = [Av1 Av2 · · · Avp], where the
number of vectors p is either equal to or slightly larger than k, and k is the dimension of the eigenspace to be computed.
Such algorithms are sometimes called block algorithms. Clearly, block algorithms can easily take advantages of warm-
starts in an iterative setting, requiring few iterations when starting from a good estimate of the desired eigenspace.

Classic block algorithms are simultaneous subspace iteration (SSI) methods that are simple extensions of power
method for computing a single eigenpair (see [22, 23, 27, 28] for example). In general, these methods are useful only
for special problems due to slow convergence. More recent block algorithms are mostly derived from optimization
models. The commonly used optimization model is to maximize the Rayleigh-Ritz function subject to orthogonality
constraints:

max
X∈Rn×k

tr(XTAX), s.t. XTX = I.(1)

Block algorithms based on solving (1) include the locally optimal block preconditioned conjugate gradient method [12]
and the limited memory block Krylov subspace optimization method [19]. The parallel scalability of these algorithms,
although improved from that of Krylov subspace methods, is still limited by the extensive use of basis orthogonal-
izations and dense eigenvalue decompositions of p × p matrices where usually p = 3k. Recently, a trace-penalty
minimization model

(2) min
X∈Rn×k

1

2
tr(XTAX) +

µ

4
‖XTX − I‖2F

is proposed in [31] for computing the eigenspace associated with the k smallest eigenvalues of A using a suitable
parameter µ. It enables unconstrained optimization techniques to compute approximate eigenspaces and, consequently,
reduces the use of basis orthogonalizations and dense eigenvalue decompositions. This algorithm has a higher parallel
scalability on modern multi/many-core systems. However, relying on a gradient-based algorithm that often converges
slowly, this algorithm is generally only suitable for computing solutions of low to moderate accuracies.

1.1. The SLRP Model. In this paper, we propose and study a new block algorithm derived from solving the
nonlinear least squares model

(3) min
X∈Rn×k

f(X):=
1

2
‖R(X)‖2F,

where ‖ · ‖2F is the Frobenius norm squared, and

(4) R(X) = XXT −A

is the residual of approximating A = AT ∈ Rn×n by a symmetric low-rank product (SLRP) XXT for X ∈ Rn×k.
It is well known that when A is positive semidefinite, a global minimizer of (3) spans a k-dimensional eigenspace

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 3

associated with k largest eigenvalues of A. More precisely, let λ1, λ2, · · · , λn ≥ 0 be the eigenvalues of A ∈ Rn×n

sorted in a descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and q1, . . . , qn ∈ Rn be their corresponding unit eigenvectors.
Then a global minimizer of (3), X̂ ∈ Rn×k, takes the form

(5) X̂ = QkΛ
1/2
k V T,

where Qk = [q1, q2, . . . , qk], Λk = diag(λ1, λ2, . . . , λk) and V ∈ Rk×k is an arbitrary orthogonal matrix. When
A = BTB or BBT, model (3) reduces essentially to the familiar problem of finding a truncated singular value
decomposition (SVD) of B. Replacing A by a suitable polynomial function of A, one can also in principle apply the
model to finding the smallest or interior eigenvalues as well.

1.2. Contributions. We propose a Gauss-Newton (GN) method (see [10, 17, 20] for three early references) for
solving the nonlinear least squares model (3). At any full-rank iterate X ∈ Rn×k, the derived GN direction takes the
simple form

S =

(
I − 1

2
X(XTX)−1XT

)(
AX(XTX)−1 −X

)
,

that requires solving small k × k linear systems. The next iterate is X+ = X + αS, where α ∈ (0, 1] is a step size.
With the help of properly chosen step sizes and a correction procedure to prevent possible rank deficiency, we show
that the GN method converges globally to a stationary point. In addition, after a finite number of iterations, the fixed
step size α = 1 can always be taken with convergence guaranteed — a property not true in general for nonlinear
least squares problems (see p.113 of [8]). Finally, we prove, under mild conditions, that our GN method possesses a
Q-linear asymptotic rate of convergence.

We have tested a practical version of our GN method where a fixed α = 1 is always taken, resulting in a particular
simple and parameter-free algorithm. This algorithm has empirically demonstrated a highly reliable convergence
behavior. Extensive numerical results show that this algorithm can offer significant speed advantages, especially
on so-called small-residual problems, over not only gradient methods, but also current state-of-the-art methods in
computing moderately accurate eigenvalue or singular-value decompositions. Computational tasks of this type have
become increasingly important, as is commented by Halko, Martinsson and Tropp in [9]: “In the information sciences,

it is common that data are missing or inaccurate. Classical algorithms are designed to produce highly accurate

matrix decompositions, but it seems profligate to spend extra computational resources when the imprecision of the

data inherently limits the resolution of the output.” The warm-starting advantage of the GN method is also clearly
exhibited in applications such as low-rank matrix completion and robust principal component analysis, where the
dominant SVDs are computed on a converging sequence of matrices.

As a block algorithm where all main matrix operations are applied to n by k dense blocks (as opposed to single
or a few vectors), the proposed GN method has a potential to be successfully mapped onto high performance parallel
computers. In combination with other techniques, the GN method also has a potential to become a component of a
general-purpose eigensolver. These subjects require more efforts beyond the scope of the present paper and will be
studied in future research.

1.3. Organization and notation. The rest of this paper is organized as follows. We examine the properties the
SLRP model (3) in Section 2, derive a Gauss-Newton algorithm for this model in Section 3, and analyze the algorithm’s
convergence properties in Section 4. Numerical results are presented in Section 5. Finally, we conclude the paper in
Section 6.

We adopt the following notation. The Kronecker product of two matrices M1 and M2 is denoted by M1 ⊗M2.

-

4 X. LIU, Z. WEN, AND Y. ZHANG

The inner product between two matrices, M1 and M2, of the same size is defined as 〈M1,M2〉 = tr(MT
1 M2). The

trace of a matrix M is denoted by tr(M). The symbols σmin(M) and σmax(M) refer to the smallest and largest
singular values of a matrix M , respectively. Similarly, λmin(M), λmax(M) and λi(M) refer to the smallest, largest
and the i-th largest eigenvalues of a real symmetric matrix M ∈ Rn×n, respectively. The notation M � 0 indicates
that M is symmetric positive definite.

2. Properties of the SLRP Model. The gradient and the Hessian of f(X) have well-known generic forms as,
respectively,

∇f(X) = J(X)T(R(X)),

∇2f(X) = J(X)TJ(X) +
∑
i,j

Rij(X)∇2Rij(X),

where J(X) : Rn×k → Rn×n is the Jacobian operator of R(X) at X , J(X)T is the adjoint operator of the Jacobian
which is from Rn×n to Rn×k, and the Hessian∇2f(X) is a linear operator from Rn×k to Rn×k.

Since R(X + S) = R(X) + SXT +XST + SST for all S ∈ Rn×k, J(X) is clearly defined by

(6) J(X)(S) = SXT +XST.

We observe that J(X)(S) = 0 for S = XC whereC ∈ Rk×k is any skew-symmetric matrix (i.e., CT = −C). Hence,
the Jacobian J(X) has a nontrivial null space at any X and is rank deficient. By straightforward calculations, we can
derive the following formulas:

J(X)T(R) = (R+RT)X,(7)

J(X)TJ(X)(S) = 2(SXTX +XSTX),(8)

∇f(X) = 2(X(XTX)−AX),(9)

∇2f(X)(S) = 2(SXTX +XSTX +R(X)S).(10)

It follows from (9) that the first-order necessary condition of optimality for problem (3) is

(11) AX = X(XTX).

Hence, every nonzero stationary point must span a nontrivial invariant subspace of A. This observation leads to the
specific form of any stationary point of (3).

PROPOSITION 2.1. Let (U,D) ∈ Rn×k × Rk×k denote k eigenpairs of a symmetric matrix A ∈ Rn×n so that

AU = UD, UTU = I and D is diagonal. A matrix X ∈ Rn×k is a stationary point of (3) if and only if

(12) X = U(PD)1/2V T,

where V ∈ Rk×k is an arbitrary orthogonal matrix, and P ∈ Rk×k is a diagonal projection matrix with diagonal

entries

Pii =

{
0, if Dii < 0,

0 or 1, otherwise.

In particular, X is a rank-k stationary point if and only if P = I and Dii > 0 for i = 1, 2, · · · , k.

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 5

Proof. Obviously, any X defined by (12) satisfies (11). In the opposite direction, we only provide a proof for the
case where X is of full-rank. The rank-deficient cases can be proved along the similar line, though more notationally
involved and tedious.

Suppose that X is a full rank stationary point. It spans an invariant subspace of A according to the first-order
optimality condition (11). Since every k-dimensional invariant subspace of A can be spanned by a set of k unit
eigenvectors, we can write X = UW , where U consists of k unit eigenvectors of A, and W ∈ Rk×k is nonsingular.
LetD ∈ Rk×k be a diagonal matrix with k eigenvalues ofA on the diagonal corresponding to the eigenvectors in U so
that AU = UD. Upon substituting X = UW into (11), pre-multiplying both sides of it by UT and noting UTU = I ,
we derive

DW = UTAUW = W (WTW) ⇔ D = WWT ⇔ W = D1/2V T,

for some orthogonal V ∈ Rk×k.

We now state an equivalence between solving the SLRP model (3) and computing a dominant eigenspace of A
associated with nonnegative eigenvalues. The proof is straightforward and therefore omitted.

PROPOSITION 2.2. Assume that A ∈ Rn×n is symmetric and has m positive eigenvalues. Then X̂ ∈ Rn×k is a

minimizer of (3) if and only if (5) holds, i.e.,

X̂ = Qk (Λk)
1/2
+ V T,

where (t)+ = max(0, t), V ∈ Rk×k is orthogonal and arbitrary. Consequently, rank(X̂) = min(k,m).

It follows from Proposition 2.2 that X = 0 if m = 0, and X has full rank if m ≥ k. The next proposition states
an equivalence between the trace-penalty model (2) and the SLRP model (3) with A replaced by I −A/µ. Whenever
µ > max(0, λn−k+1), the matrix I −A/µ has at least k positive eigenvalues corresponding to k smallest eigenvalues
of A. Hence, the SLRP model can be used to find a correct optimal eigenspace.

PROPOSITION 2.3. Let µ > 0. The trace-penalty model (2) is equivalent to

(13) min
X∈Rn×k

1

2
‖XXT − (I −A/µ)‖2F

in the sense that any stationary point of one problem, after scaling and shifting, has a one-to-one correspondence with

a stationary point of the other.

The above equivalence simply follows from the identity

1

2
tr(XTAX) +

µ

4
‖XTX − I‖2F ≡

µ

4
‖XXT − (I −A/µ)‖2F + constant.

Theorem 2.2 in [31] shows that the trace-penalty minimization model (2) can have far fewer undesirable, full-
rank stationary points than the trace minimization model (1). Due to the equivalence in Proposition 2.3, one could
reasonably argue that from an optimization point of view the SLRP model is theoretically more desirable than trace
minimization.

PROPOSITION 2.4. Suppose A � 0 and λk > 0. The SLRP model (3) has no local maxima, nor local minima

other than the global minimum attained by X̂ defined in (5). Namely, all stationary points other than the global

minimizers are saddle points.

When k = 1 and λ1 > λ2, according to Proposition 2.2 there exists exactly two isolated global minimizers for (2)
at which the Hessian of f(X) is nonsingular. If λ1 = λ2, however, the Hessian of f(X) becomes singular throughout

D

6 X. LIU, Z. WEN, AND Y. ZHANG

the solution set since the multiplicity is greater than one. In the case of k > 1, it follows from Proposition 2.2 that
there is no isolated global minimizer. Hence, the Hessian at any solution is singular. Then, we cannot in general expect
a linear rate of convergence from a first-order method for solving (3).

3. A Gauss-Newton Method For the SLRP Model. Proposition 2.2 indicates that the optimal solution of the
SLRP model (3) is rank deficient if the number of positive eigenvalues of A is less than k. In this case, if a rank k
approximation to A is desired, the SLRP model (3) can be applied to a shifted matrix A + µI , where µ is a constant
so that λk +µ > 0. For simplicity and without loss of generality, we will assume that A � 0 hereafter in our analysis.

The Gauss-Newton (GN) Method is arguably the most popular methodology for solving nonlinear least squares
problems (e.g., see [8] for an introduction). To derive a GN method for the SLRP model (3), we linearize the residual
function R(X), defined in (4), at a given X and solve the resulting linear least squares problem,

min
S∈Rn×k

1

2
‖R(X) + J(X)(S)‖2F,

which leads to the normal equations J(X)TJ(X)(S) = −J(X)T(R(X)). Using formulas (8) and (9), we reduce
these normal equations to

(14) SXTX +XSTX = AX −X(XTX).

Normal equations in (14) form a large linear system, with nk unknowns in S, that has infinitely many solutions due
to the rank-deficiency of J(X). Fortunately, the system has enough special structures to allow a close form solution,
presented in the next proposition.

PROPOSITION 3.1. Let X ∈ Rn×k be full rank. S(X) ∈ Rn×k is a solution to (14) if and only if

(15) S(X) = (I − PX)
(
AX(XTX)−1 −X

)
+XC

where PX = X(XTX)−1XT is the orthogonal projector onto the range space of X , and

(16) C ∈ C := {C ∈ Rk×k | C + CT = Z(X):=(XTX)−1XTAX(XTX)−1 − I}.

In particular, the matrix C0 = 1
2Z(X) has the minimum Frobenius norm in the set C that gives a GN direction

(17) S0(X) =

(
I − 1

2
PX
)(

AX(XTX)−1 −X
)
.

Proof. Post-multiplying both sides of (14) by (XTX)−1, we obtain an equivalent system

(18) S +XSTX(XTX)−1 = AX(XTX)−1 −X.

The solution to (18) can be decomposed into a component from the range space of X plus one from its orthogonal
complement, that is, S = U +XC, where U ∈ Rn×k satisfies UTX = 0 and C ∈ Rk×k. Substituting S = U +XC

into (18) and using the orthogonality of U to X , we derive that

(19) U +X(C + CT) = AX(XTX)−1 −X.

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 7

Pre-multiplying both sides of the above equation by (XTX)−1XT, we obtain

(20) (C + CT) = (XTX)−1XTAX(XTX)−1 − I = Z(X).

By substituting (20) into (19), we obtain

U = AX(XTX)−1 −XZ(X) = (I − PX)
(
AX(XTX)−1 −X

)
,

which, together with S = U + XC, gives the solution (15). Moreover, (20) implies that the symmetric part of
C is C0 = 1

2Z(X) and the skew-symmetric part is arbitrary. Clearly, C0 has the minimum Frobenius norm in C.
Substituting C0 into (15) yields (17), and completes the proof.

We note that even though C0 has the minimum Frobenius norm in C, S0 does not have the minimum Frobenius
norm in Rn×k since C appears in S(X) in the form of XC (see (15)). It can be verified that S0 is the minimum norm
solution of (14) in a certain weighted Frobenius norm. To obtain the minimum unweighted Frobenius norm solution,
one has to solve a rather complicated Sylvester equation at a considerable cost. Given the simplicity of S0(X), it
appears to be the most natural choice for a Gauss-Newton direction in solving the SLRP model (3).

Now we have the following GN method: starting from a full rank initial point X0 ∈ Rn×k, at iteration i,

(21) Xi+1 = Xi + αiS0(Xi),

where αi ∈ (0, 1]. Although, the step size αi could be selected using one of the standard line search procedures, our
numerical experiments indicate that the algorithm works fine with a fixed step αi = 1 in almost all test problems (as
long as A has enough positive eigenvalues). For the theoretical purpose of establishing global convergence, we will
use the following simple step size rule,

(22) αi = min
{

1, σ3
min(Xi)/‖∇f(Xi)‖F

}
.

The assembly of S0(Xi), defined in (15), can be carried out in three steps: for X = Xi,

(23) Y := X(XTX)−1, S0 := AY −X, S0 := S0 −X(Y TS0)/2.

The computational cost at each iteration involves one block SpMV in AY , three dense matrix multiplications and
solving one k × k linear systems with n columns of right hand sides. The main memory requirement is three n × k
matrices for X , Y and S0.

As will be shown in Lemma 4.4, the sequence {Xi} generated by (21) using (22) will remain of full rank if X0 is
of full rank. However, this does not ensure the full rankness at the limit as i→∞. As a theoretical remedy, we devise
a correction step that is invoked whenever σmin(Xi) < δ for a small positive number δ that will be defined later. If
necessary, we correct Xi by adding a correction step P i to it, i.e.,

(24) Xi
c = Xi + P i,

where P i ∈ Rn×k is perpendicular to Xi whose definition will be given in the next section. As will be shown in
Lemma 4.5, this correction ensures that σmin(Xi

c) ≥ δ > 0, while the objective function value at Xi
c is decreased

from that at Xi by a constant, which guarantees that this correction step can only be invoked a finite number of times.

A theoretical version of our GN method for solving the SLRP model is outlined in Algorithm 1.

D

8 X. LIU, Z. WEN, AND Y. ZHANG

Algorithm 1: A Theoretical GN Algorithm for SLRP (SLRPGN)

1 Input a symmetric positive definite matrix A ∈ Rn×n.
2 Initialize X0 ∈ Rn×k to a rank-k matrix, set δ > 0 (defined later).
3 for i = 0, 1, 2, · · · , do
4 If σmin(Xi) < δ, set Xi = Xi

c according to (24).
5 Compute αi using (22) and S0(Xi) using (23).
6 Set Xi+1 = Xi + αiS0(Xi).

In practice, extensive numerical results show that the correction step is not needed for A � 0, nor is the step
size rule (22). When αi ≡ 1, the algorithm becomes parameter-free. In our numerical experiments, we use a practical
implementation of the SLRPGN algorithm with αi ≡ 1 and without the correction step. Our parameter-free GN method
is given as Algorithm 2 below, which is still dubbed as SLRPGN . A concrete termination rule for Algorithm 2 will
be specified in Section 5. Unless it is in a warm-starting situation, we always start the algorithm from a randomly
generated starting matrix.

Algorithm 2: A Practical GN Algorithm for SLRP (SLRPGN)

1 Input A ∈ Rn×n and k < n.
2 Set i = 0 and initialize X0 ∈ Rn×k to a rank-k matrix.
3 while “the termination criterion” is not met, do
4 Compute Y = Xi

(
(Xi)TXi

)−1
and Z = AY .

5 Compute Xi+1 = Z −Xi(Y TZ − I)/2.
6 Increment i and continue.

7 If requested, compute Ritz pairs of A from the last X-iterate.

Ritz pairs, appearing in the last step of Algorithm SLRPGN , are approximate eigenpairs of A. Specifically, Ritz
values are eigenvalues of the k × k matrix UTAU where U ∈ Rn×k is from an orthonormalization of X , and Ritz
vectors are eigenvectors of UTAU pre-multiplied by U . This procedure is the well known Rayleigh-Ritz procedure.

4. Convergence Analysis. In this section, we analyze the convergence properties of two version of GN algo-
rithms. We first present our main results in Theorems 4.1, 4.2 and 4.3 without proofs. Theorem 4.1 gives the global
convergence of Algorithm 1.

THEOREM 4.1. Let A � 0 and {Xi} be generated by Algorithm 1. Then there holds

lim
i→∞

∇f(Xi) = 0,(25)

and any limit point of {Xi} has full rank. Moreover, there exists an integer i0 > 0 such that for all i ≥ i0, αi = 1 and

the correction step is not invoked.

The proof of the theorem will be developed in Subsections 4.1 to 4.3. In Subsection 4.1, we show that the full
rankness is maintained by Algorithm 1 throughout iterations. Then we specify the correction step (24) in details, and
show that it leads to a constant decrease in the objective function, while ensuring that the smallest singular values of
the iterates are bounded away from zero. Once such a lower bound on singular values is established, we prove, in
Subsection 4.2, that a sufficient reduction in the objective function along the GN direction can be guaranteed, which
leads to the proof of Theorem 4.1 in Subsection 4.3.

Theorem 4.2 is about Algorithm 2, which is nothing but Algorithm 1 without the correction step and with a fixing

l

l

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 9

step size αi ≡ 1. This theorem does impose a restriction on starting points. Let us define the optimal solution set of
the SLRP problem (3) as L(f∗) where f∗ is the global minimum of (3) and L(γ) = {X | f(X) ≤ γ} is a level set of
f(X).

THEOREM 4.2. Let A � 0 and {Xi} be generated by Algorithm 2 without termination. There exists a proper

superset Ω of L(f∗), i.e., Ω ⊃ L(f∗) strictly, so that if X0 ∈ Ω, then ∇f(Xi) → 0. Moreover, if λk > λk+1, then

there exists a proper superset Ω∗ of L(f∗) so that X0 ∈ Ω∗ guarantees f(Xi)→ f∗.

We emphasize that although we have not been able to obtain a good estimate on the size of the convergence region
Ω, an overwhelming amount of empirical evidence suggests that the region not be a small neighborhood, because
convergence, to not only a stationary point but a minimum, appears to always occur when starting from randomly
generated initial points. We will further comment on this region after proving our result.

Finally, we will show that under suitable conditions, either Algorithm 1 or 2 has a Q-linear convergence rate.

THEOREM 4.3. Let A � 0 and {Xi} be generated by either Algorithm 1 or Algorithm 2 without termination. If

f(Xi)→ f∗ and λk+1 < λk, then
∥∥∇f(Xi)

∥∥
F
→ 0 at a Q-linear rate no greater than λk+1/λk < 1.

The proofs of Theorem 4.2 and Theorem 4.3 are left to Subsections 4.4 and 4.5, respectively.

4.1. Correction Step. As defined in (17), our GN directions require the full-rank property of iterates Xi. We
first show that this full-rank property is guaranteed by Algorithm 1 as long as the initial point has full rank.

LEMMA 4.4. Let A � 0 and Xi+1 be generated by (21) with a step size αi defined by (22). Then

(26) σmin(Xi+1) ≥ 3

4
σmin(Xi).

In particular, σmin(Xi+1) > 0 whenever σmin(Xi) > 0.

Proof. For notational brevity, we drop the superscripts and let X = Xi and X+ = Xi+1.

Define Y = X(XTX)−1. Then we have XT
+

(
λmax(Y Y T)I − Y Y T

)
X+ � 0, which yields

σ2
min(X+)σ2

max(Y) ≥ σ2
min(Y TX+).(27)

In view of the symmetry of Y TX+ and formulas (17) and (9), we calculate that

λmin(Y TX+) = λmin

(
I − α

4
(XTX)−1XT∇f(X)(XTX)−1

)
= 1− α

4
λmax

(
(XTX)−1XT∇f(X)(XTX)−1

)
≥ 1− α‖∇f(X)‖F

4σ3
min(X)

≥ 3

4
,(28)

where (22) is used in the last inequality. Noting σmax(Y) = σ−1
min(X) and using (27) and (28), we obtain (26).

Evidently, Lemma 4.4 does not exclude the possibility of limi→∞ σmin(Xi) = 0 (even though this has not been
observed by us in practice). Proposition 2.1 indicates that any full-rank stationary point X̂ satisfies σmin(X̂) ≥

√
λn.

If Xi has a singular value far smaller than
√
λn, then it cannot be close to any full-rank stationary point. Hence, there

exist directions in the null space of (Xi)T along which we can pull those small singular value back and reduce the
function value at the same time. Based on this idea, we construct the correction step P i introduced in (24).

Let δ be a positive number so that

δ ≤
(

λn/λ1

4 +
√

20

)√
λn
k
.(29)

D

10 X. LIU, Z. WEN, AND Y. ZHANG

Again for brevity, we will drop the superscript i and let X denote the current iterate Xi (and similarly for Xi
c and P i)

in this Subsection and Subsection 4.2. The construction of the correction step is as follows.

Let VΠV T be an eigenvalue decomposition of XTX , where the diagonal matrix Π = Diag(π1, . . . , πk) consists
of eigenvalues 0 ≤ π1 ≤ π2 ≤ ... ≤ πk on its diagonal, and V are the corresponding eigenvectors. Assume that
π1 < δ2 (that is, σmin(X) < δ). Let p be the largest integer in [1, k] satisfying πp ≤ δ2, Πp = Diag(π1, . . . , πp)

and Vp be the matrix consisting of the first p columns of V . We construct the correction step P as follows: find any
U ∈ Rn×p such that

(30) XTU = 0, UTU = I, P =

√
λn
p
UV T

p .

LEMMA 4.5. Let A ∈ Rn×n � 0, and X ∈ Rn×k satisfy σmin(X) < δ where δ is defined in (29). Let

Xc = X + P where P is defined in (30). Then

(31) f(Xc) < f(X)− 1

4
λ2
n.

Moreover, σmin(Xc) ≥ δ.

Proof. Let γ = λn/p. Noting that XTP = 0 and ‖XVp‖2F = tr(Πp) < pδ2, we calculate

2(f(Xc)− f(X)) = ‖R(X + P)‖2F − ‖R(X)‖2F
= ‖R(X) +XPT + PXT + PPT‖2F − ‖R(X)‖2F
= 2‖PXT‖2F + ‖PPT‖2F − 2tr(PTAP)− 4tr(PTAX)

= 2γ‖XVp‖2F + γ2p− 2γ tr(UTAU)− 4
√
γ tr(UTAXVp)

< 2γpδ2 + γ2p− 2γ pλn + 4
√
γ ‖AU‖F‖XVp‖F

< 2λnδ
2 + γ2p− 2γ pλn + 4

√
γ λ1pδ

=
(
δ2 + 2λ1

√
p/λnδ − (1− 0.5/p)λn

)
2λn

≤
(
δ2 + 2λ1

√
k/λnδ − 0.5λn

)
2λn

≤ (−0.25λn)2λn,

where the last inequality follows from the definition of δ in (29) where the right-hand side is no greater than the
positive root of t2 + 2λ1

√
k/λnt − 0.25λn = 0; hence δ2 + 2λ1

√
k/λnδ − 0.5λn ≤ −0.25λn. This proves (31).

Finally, the eigenvalue decomposition of XTX and the construction of P yield

XT
c Xc = XTX + PTP = VΠV T +

λn
p
VpV

T
p � min

(
π1 +

λn
p
, β

)
I � δ2I,

where β = πp+1 > δ2 if p < k, and +∞ otherwise, which implies σmin(Xc) > δ. This completes the proof.

4.2. Sufficient Decrease in Residual. In this subsection, we first prove a sufficient decrease property for the
objective function along the GN direction whenever the singular values of the iterates are bounded away from zero.

Let PJ(X) be the orthogonal projector in Rn×n onto the range space of J(X) which consists of low-rank sym-
metric matrices defined by J(X)(S) = XST + SXT. Namely, PJ(X) := J(X)J(X)†. Recall that J(X) has a
nontrivial null space {XC : CT = −C}.

D

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 11

PROPOSITION 4.6. Let X ∈ Rn×k be of full rank. The projector PJ(X) has the form

(32) PJ(X) = I ⊗ PX + PX ⊗ I − PX ⊗ PX .

Consequently, I − PJ(X) = (I − PX)⊗ (I − PX).

Proof. Note that any GN step S(X) can be written as S(X) = −J(X)†(R(X)) + XC, where C is skew-
symmetric, so that J(X)(S(X)) = −J(X)J(X)†(R(X)). In particular, for S0 = S0(X) corresponding to C = 0,

S0X
T +XST

0 = −J(X)J(X)†(R(X)) = −PJ(X)(R(X)).

On the other hand, it holds

S0X
T =

(
I − 1

2
PX
)(

A−XXT
)
X(XTX)−1XT =

(
I − 1

2
PX
)

(−R(X))PX ,

which yields

PJ(X)(R(X)) = −(S0X
T +XST

0) = R(X)PX + PXR(X)− PXR(X)PX .(33)

Therefore, the projector PJ(X) has the matrix representation (32). This completes the proof.

The next lemma shows that our GN step S0(X) with a proper step size will ensure a sufficient reduction of the
function value f(X).

LEMMA 4.7. Let A � 0, X be a non-stationary point, and α be defined by

α = min
{

1, σ3
min(X)/‖∇f(X)‖F

}
.(34)

Then it holds for the GN direction S0 = S0(X) defined in (17) that

f(X + αS0) ≤ f(X)− α

128

σ2
min(X)

σ4
max(X)

‖∇f(X)‖2F.(35)

Proof. Taking the norm square of R(X + αS0) = (I − αPJ(X)) (R(X)) + α2S0S
T
0 yields

(36) ‖R(X + αS0)‖2F = ‖R(X)‖2F − α(2− α)‖PJ(X)(R(X))‖2F + ψ1(X) + ψ2(X) + ψ3(X),

where

ψ1(X) = −2α2 tr
(
ST

0 (I − PX)A(I − PX)S0

)
,

ψ2(X) = 2α2(1− α)
〈
PJ(X)(R(X)), S0S

T
0

〉
,

ψ3(X) = α4‖ST
0 S0‖2F.

We introduce Y = X(XTX)−1 and the quantities

G(X) = AY −X = −1

2
∇f(X)(XTX)−1,(37)

ν(X) = ‖Gn(X)‖2F +
1

4
‖Gr(X)‖2F,(38)

D

12 X. LIU, Z. WEN, AND Y. ZHANG

where

Gn(X) = (I − PX)G(X), Gr(X) = PXG(X).

From (37) and (38), clearly 1
4‖G(X)‖2F ≤ ν(X) ≤ ‖G(X)‖2F, and therefore,

(39)
1

16

‖∇f(X)‖2F
σ4

max(X)
≤ ν(X) ≤ 1

4

‖∇f(X)‖2F
σ4

min(X)
.

Under the above notation, we have

S0 = Gn(X) +
1

2
Gr(X),

∥∥ST
0 S0

∥∥2

F
= ‖Gr(X)‖2F +

1

16
‖Gn(X)‖2F,

and we can rewrite or estimate

ψ1(X) = −2α2‖A1/2Gn(X)‖2F,(40)

ψ2(X) ≤ 2α2‖PJ(X)(R(X))‖F
∥∥S0S

T
0

∥∥
F
,(41)

ψ3(X) ≤ α4 ν(X)2,(42)

where in (41) we use the fact that (1− α) ∈ [0, 1). Furthermore, since

R(X)PX = (X −AY)XT = −G(X)XT,

it follows from (32) that

PJ(X)(R(X)) = −G(X)XT −XG(X)T + PXG(X)XT

= −(I − PX)G(X)XT −XG(X)T

= −Gn(X)XT −X(Gn(X) +Gr(X))T,

where the right-hand side has been decomposed into two orthogonal component in Rn. Therefore,

‖PJ(X)(R(X))‖2F = 2‖Gn(X)XT‖2F + ‖Gr(X)XT‖2F

≥ 2

(
‖Gn(X)‖2F +

1

2
‖Gr(X)‖2F

)
σ2

min(X),

which implies

(43) ‖PJ(X)(R(X))‖2F ≥ 2ν(X)σ2
min(X)

and

(44) −‖PJ(X)(R(X))‖2F ≤ −
3

4
‖PJ(X)(R(X))‖2F −

1

2
ν(X)σ2

min(X).

Substituting the relationships in (40)-(42) and (44) into (36) and noting 2− α ≥ 1, we obtain

‖R(X + αS0)‖2F ≤ ‖R(X)‖2F −
3

4
α‖PJ(X)(R(X))‖2F −

1

2
αν(X)σ2

min(X)

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 13

−2α2‖A1/2Gn‖2F + 2α2‖PJ(X)(R(X))‖F‖S0S
T
0 ‖F + α4ν2(X)

≤ ‖R(X)‖2F −
1

4
αν(X)σ2

min(X)− ξ1(X)− ξ2(X),

where we have dropped the term 2α2‖A1/2Gn‖2F in the last inequality, and set

ξ1(X) =
1

4
αν(X)σ2

min(X)− α4ν2(X),

ξ2(X) =
3

4
α‖PJ(X)(R(X))‖2F − 2α2‖PJ(X)(R(X))‖F‖S0S

T
0 ‖F.

We will show that both ξ1(X) and ξ2(X) are nonnegative and thus can also be dropped, giving

‖R(X + αS0)‖2F ≤ ‖R(X)‖2F −
1

4
αν(X)σ2

min(X)

which, together with the left inequality in (39), implies (35).

We first show ξ1(X) ≥ 0. Using (34) and the right inequality in (39), we derive

ξ1(X) =
1

4
αν(X)

(
σ2

min(X)− 4α3ν(X)
)

≥ 1

4
αν(X)

(
σ2

min(X)− 4α2ν(X)
)

≥ 1

4
αν(X)

(
σ2

min(X)− 4

(
σ3

min(X)

‖∇f(X)‖F

)2
1

4

‖∇f(X)‖2F
σ4

min(X)

)
= 0.

A byproduct of the above derivation is σ2
min(X) ≥ 4α2ν(X), which, together with the inequality in (43) and the fact

ν(X) ≥ ‖S0S
T
0 ‖2F, implies ‖PJ(X)(R(X))‖2F ≥ 8α2ν(X) ≥ 8α2‖S0S

T
0 ‖2F. After taking square root on both sides,

we have

‖PJ(X)(R(X))‖F ≥
√

8α‖S0S
T
0 ‖F ≥

8

3
α‖S0S

T
0 ‖F.(45)

Finally, we show ξ2(X) ≥ 0 using (45),

ξ2(X) =
3

4
α‖PJ(X)(R(X))‖F

(
‖PJ(X)(R(X))‖F −

8

3
α‖ST

0 S0‖F
)
≥ 0.

This completes the proof.

4.3. Convergence of Algorithm 1. We are now ready to prove Theorem 4.1, which is restated below.

THEOREM 4.1. Let A � 0 and {Xi} be generated by Algorithm 1. Then there holds

lim
i→∞

∇f(Xi) = 0,

and any limit point of {Xi} has full rank. Moreover, there exists an integer i0 > 0 such that for all i ≥ i0, αi = 1 and

the correction step is not invoked.

Proof. It follows from Lemma 4.7 that

f(Xi+1) ≤ f(Xi)− αiσ2
min(Xi)

128σ4
max(Xi)

‖∇f(Xi)‖2F < f(Xi).

D

14 X. LIU, Z. WEN, AND Y. ZHANG

The monotonicity in the decrease of f(Xi) guarantees the boundedness of {Xi}; namely, there exists η > 0 such that
σmax(Xi) ≤ η for all i. Hence,

f(Xi+1) ≤ f(Xi)− αiσ2
min(Xi)

128η4
‖∇f(Xi)‖2F.

By the step-size selection rule (22), we have

f(Xi+1) ≤ f(Xi)−min
(
‖∇f(Xi)‖F, σ3

min(Xi)
) σ2

min(Xi)

128η4
‖∇f(Xi)‖F.

Since {f(Xi)} is bounded from below by zero, Lemma 4.5 guarantees that the correction step (24) cannot be invoked
infinitely many times. Eventually, σmin(Xi) ≥ δ > 0 for all sufficiently large i; thus

f(Xi+1) ≤ f(Xi)−min
(
‖∇f(Xi)‖F, δ3

) δ2

128η4
‖∇f(Xi)‖F

for all sufficiently large i. The second term in the right-hand side must go to zero as i→∞, implying

lim
i→∞

‖∇f(Xi)‖F = 0.

In addition, the boundedness of {σmin(Xi)} away from zero ensures that any limit point has full rank and

αi = min

(
1,

σ3
min(Xi)

‖∇f(Xi)‖F

)
≡ 1

for all sufficiently large i. Finally, it follows from (31) that the correction step can be invoked at most a finite number
of times. This completes the proof.

4.4. Convergence of Algorithm 2. Now we analyze the convergence of Algorithm 2. It is known that a unit-
step Gauss-Newton method in general does not converge even locally (see, for example, Section 6 of [8]) unless the
residual at the solution is sufficiently small. Contrary to the general case, we show that there exist convergence regions
for our unit-step Gauss-Newton Algorithm 2 regardless of residual sizes.

We continue to assume that A � 0. Recall that L(γ) = {X | f(X) ≤ γ} is the level set of f(X) associated with
γ, and L(f∗) is the solution set of (3). We first introduce a set

(46) Ωτ :=
{
X ∈ Rn×k | ‖∇f(X)‖F ≤ τ3, σmin(X) ≥ τ

}
,

where τ ∈ [δ,
√
λk), δ is the threshold for invoking correction used in Algorithm 1, see (29), and λk is the k-th largest

eigenvalue of A. By continuity, Ωτ contains at least a neighborhood of the solution set L(f∗) where ∇f(X) = 0

and σmin(X) =
√
λk > δ. Conceptually, we could choose τ within the prescribed interval to make Ωτ as large as

possible, which would potentially lead to a larger convergence region for Algorithm 2.

The following observation is important and will be used below in the proof of Theorem 4.2. That is, if Algorithm 1
is used, then for any Xi ∈ Ωτ we will have αi = 1 according to the step size rule (22), and the correction step will
not be invoked because σmin(Xi) ≥ δ.

Next let γτ be the largest number so that L(γτ) ⊂ Ωτ , i.e.,

(47) γτ = sup
γ≥f∗
{γ | L(γ) ⊂ Ωτ}.

D

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 15

In other words, L(γτ) is the largest level set of f that is contained in Ωτ . The next lemma states that L(γτ) is a proper
superset of the solution set L(f∗).

LEMMA 4.7. Let γτ be defined in (47). Then γτ > f∗.

Proof. We construct a proof by contradiction. Suppose that for every γ > f∗, L(γ) 6⊂ Ωτ . Then for every
γ > f∗ there exists X ∈ L(γ) that is not in Ωτ . Let {γj} be a decreasing sequence such that γj → f∗. There exists
a sequence {Xj} so that Xj ∈ L(γj) and all Xj /∈ Ωτ . As a result, f(Xj) → f∗. Then there exists a cluster point,
say X̂ , of {Xj} that is a global minimizer of the SLRP model (3), due to f(X̂) = f∗. Using Proposition 2.2, we have
σmin(X̂) =

√
λk. Hence, X̂ is an interior point of the set Ωτ , which contradicts the hypothesis that all Xj /∈ Ωτ . This

completes the proof.

Now we are ready to give a proof for Theorem 4.2 restated below.

THEOREM 4.2. Let A � 0 and {Xi} be generated by Algorithm 2 without termination. There exists a proper

superset Ω of L(f∗), i.e., Ω ⊃ L(f∗) strictly, so that if X0 ∈ Ω, then ∇f(Xi) → 0. Moreover, if λk > λk+1, then

there exists a proper superset Ω∗ of L(f∗) so that X0 ∈ Ω∗ guarantees f(Xi)→ f∗.

Proof. Let Ω = L(γτ) ⊂ Ωτ . Starting from X0 ∈ Ω, which is clearly of full rank, we apply Algorithm 1 and
obtain∇f(Xi)→ 0 by Theorem 4.1. We note that all iterates remain in the level set Ω, since f(Xi) is monotonically
decreasing. Hence, as has been observed above, αi = 1 is always taken according to the step size rule (22) and the
correction step is never invoked due to σmin(Xi) ≥ δ. In this case, Algorithm 2 is identical to Algorithm 1.

To show the existence of Ω∗, let us choose τ in a smaller interval:

τ ∈
(√

λk+1,
√
λk

)
,

then Ωτ will contain no other stationary points except the global minima, since at any other stationary point we must
have σmin(X) ≤

√
λk+1 < τ . For this τ value, we set Ω∗ = L(γτ), and then the convergence of {f(Xi)} must be to

the global minimum f∗. This proves the theorem.

4.5. Rate of Convergence. Finally, we establish a Q-linear convergence rate under suitable conditions for either
Algorithm 1 or Algorithm 2, which are asymptotically identical.

THEOREM 4.3. LetA � 0 and {Xi} be generated by either Algorithm 1 or 2 without termination. If f(Xi)→ f∗

and λk+1 < λk, then
∥∥∇f(Xi)

∥∥
F
→ 0 at a Q-linear rate no greater than λk+1/λk < 1.

Proof. For brevity, we let S = S0(X) to denote our GN direction. Let us first examine ∇f(X + S) = 2R(X +

S)(X + S). Noting that J(X)(S) = −PJ(R(X)) and (I − PJ)R(X) = (I − PX)(−A)(I − PX), we have

∇f(X + S)/2 = [R(X) + J(X)(S) + SST](X + S)

= (I − PX)R(X)(I − PX)S + SST(X + S)

= (I − PX)(−A)(I − PX)S + SST(X + S)

= (I − PX)A(I − PX)∇f(X)(XTX)−1 +O(‖∇f(X)‖2),

where the last equality due to S = − 1
2 (I − PX/2)∇f(X)(XTX)−1 = O(‖∇f(X)‖). Hence, we obtain

‖∇f(X + S)‖F ≤ ‖T (X)‖2 ‖∇f(X)‖F +O(‖∇f(X)‖2F),(48)

where T (X) = (XTX)−1 ⊗ (I − PX)A(I − PX).

It is straightforward to see that f(Xi) → f∗ implies that {Xi} approaches the solution set L(f∗). In view of

D

D

16 X. LIU, Z. WEN, AND Y. ZHANG

(48), we have

lim sup
i→∞

‖∇f(Xi+1)‖F
‖∇f(Xi)‖F

≤ lim sup
i→∞

(
‖T (Xi)‖2 +O(‖∇f(Xi)‖F)

)
= lim sup

i→∞
‖T (Xi)‖2.

Recall that all global minimizers have the form X∗ = QkΛ
1/2
k V T where V ∈ Rk×k can be arbitrary but must satisfy

V TV = I . There must hold

λmax ((X∗)TX∗)−1 = 1/λk, and λmax (I − PX∗)A(I − PX∗) = λk+1,

which gives ‖T (X∗)‖2 = λk+1/λk. Since {Xi} must approach the set of minimizers (even if it does not converge to
any particular one), it holds limi→∞ ‖T (Xi)‖2 = ‖T (X∗)‖2 by continuity. Therefore,

lim sup
i→∞

‖∇f(Xi+1)‖F
‖∇f(Xi)‖F

≤ λk+1

λk
< 1,

which completes the proof.

4.6. Discussions on Convergence Results. The global convergence of Algorithm 1 in Theorem 4.1 involves a
few quantities, namely, the step size α, the correction tolerance δ and correction step P , that are computable but not
without considerable overheads. This is why Algorithm 1 is designated as a theoretical algorithm.

Theorem 4.2 is an existence result for convergence regions of the unit-step GN method, i.e., our Algorithm 2 which
is parameter-free and practical. We reiterate that such a convergence region does not exist in general for nonlinear least
squares problems unless the optimal residual is sufficiently small. We establish the existence of convergence regions
in Theorem 4.2 regardless of residual sizes, although the sizes of these convergence regions are still unclear.

The Q-linear rate obtained in Theorem 4.3 is typical for block algorithms such as the classic simultaneous sub-
space iterations (i.e., power method). It does give an indication that, when used as it is and under unfavorable condi-
tions, the GN algorithm can become excessively slow in an asymptotic sense. For this reason, the pure GN algorithm
should be used with caution when a high accuracy is required.

5. Numerical Experiments. In this section, we evaluate the numerical performance of the proposed GN method
for computing principal eigenspaces or/and dominant singular value decompositions (SVD). The test problems include
randomly generated matrices with specified singular values, and matrices from applications of low-rank matrix com-
pletion and robust principal component analysis. Most of these problems have the property that the optimal residual
of the SLRP model is relatively small. In addition, for test problems from the two classes of applications, dominant
SVDs need to be computed on a sequence of converging matrices, making our GN method a suitable choice because
of its warm starting ability.

Given a matrix A ∈ Rn×m and a positive integer k � min(m,n), a k-dimensional principal subspace for the
range space of A can be computed from solving the SLRP model with the symmetric matrix AAT; that is,

(49) min
X∈Rn×k

1

2
‖XXT −AAT‖2F.

Once a solution X to the SLRP model (49) is computed along with Y = X
(
XTX

)−1
, one can easily construct

an approximately optimal rank-k approximation of A, that is, PXA = X(Y TA). When it is required, a rank-k
dominant SVD can also be readily computed from the solution X by performing a suitable version of the well-known
Rayleigh-Ritz procedure.

D

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 17

We have implemented the practical version of SLRPGN , i.e., Algorithm 2, in MATLAB in which we make a
single call to a Rayleigh-Ritz procedure at the end to calculate principal eigenpairs whenever required. Since the
computations of the objective function value f(Xi) and the gradient value∇f(Xi) are not necessary in the execution
of SLRPGN iterations, as the default termination rule we use the following criterion

(50)
∣∣∣∣1− ‖Xi−1‖F

‖Xi‖F

∣∣∣∣ < tol,

for a prescribed tolerance tol > 0, which measures the relative change in two consecutive iterates.

We adopt this practical termination rule because of two reasons: (i) it has a low computational cost (as is evidenced
by Figure 5.1(a)), and (ii) it has been empirically proven to work well for SLRPGN when required solution accuracies
are low or moderate. Therefore, termination rule (50) is used in our application-related experiments where warm-
starting is used and low-accuracy solutions are sufficient.

A shortcoming of this rule is that the magnitude of the left-hand side in (50) does not always faithfully reflect the
accuracy in function value f(Xi) or gradient norm ‖∇f(Xi)‖F when seeking higher accuracies. As it is, SLRPGN

is generally not effective in computing high-accuracy eigenpairs (after all, it only makes a single Rayleigh-Ritz call).
However, combined with other techniques SLRPGN has demonstrated a potential to be useful in constructing new block
eigensolvers capable of reaching higher accuracies. This potential will be illustrated in Section 5.4 where numerical
experiments are performed on a set of commonly-used, sparse test matrices with a “standard” termination rule

(51) maxres = max
i=1,...,k

{
‖Aui − θiui‖2
max(1, |θi|)

}
≤ tol,

where (θi, ui), i = 1, · · · , k, are computed approximate eigenpairs.

We compare the performance of SLRPGN with several state-of-the-art SVD solvers, including the Matlab built-
in function EIGS which interfaces with the Fortran package ARPACK [16], a Matlab version of the solver LANSVD

in the package PROPACK [14]1, and the Matlab solver LMSVD [19]2 which has been extensively compared with
another block algorithm LOBPCG [12] and the classic subspace iteration method in [19]. The dedicated Matlab
built-in interface SVDS for singular value decomposition is not used since numerical experiments indicate that the
performance of EIGS (applied to AAT) is generally much superior to that of SVDS. The Matlab version of LANSVD

performs re-orthogonalization calculations by calling a Fortran subroutine via Matlab’s MEX external interface. In
all of our experiments, we provide A and AT as linear operators to all solvers instead of forming the matrix product
AAT.

All the experiments are preformed on a workstation with two twelve-core Intel Xeon E5-2697 CPUs and 128GB
of memory running Ubuntu 12.04 and MATLAB 2013b. The reported runtimes are wall-clock times. On such a multi-
core computer, the memory access pattern and communication overhead already have a major impact on computing
time. In Matlab 2013b, dense linear algebra operations have been generally well optimized by using BLAS and
LAPACK tuned to the CPU processors in use. On the other hand, we have observed that some sparse linear algebra
operations in Matlab 2013b seem to have not been as highly optimized. In particular, when doing multiplications
between a sparse matrix and a dense vector or matrix (denoted by “SpMM”) the performance of Matlab’s own version
of SPMM can differ significantly from that of the corresponding routine in Intel’s Math Kernel Library (MKL)3, which
is named “mkl dcscmm” and invoked via Matlab’s MEX external interface in our experiments.

1Downloadable from http://soi.stanford.edu/˜rmunk/PROPACK.
2Downloadable from http://www.caam.rice.edu/˜yzhang/LMSVD/lmsvd.html.
3See http://software.intel.com/en-us/intel-mkl (version 11.0.2 on our workstation).

http://soi.stanford.edu/~rmunk/PROPACK
http://www.caam.rice.edu/~yzhang/LMSVD/lmsvd.html
http://software.intel.com/en-us/intel-mkl

18 X. LIU, Z. WEN, AND Y. ZHANG

For brevity, we denote Matlab’s SpMM by “SpMM-Matlab” and MKL’s by “SpMM-MKL”. Although SpMM-
Matlab may be slightly faster than SpMM-MKL when a sparse matrix is multiplied by a single dense vector, it can
become many times slower than SpMM-MKL when it is multiplied by sufficiently many dense columns altogether on
multicore CPUs. For this reason, in our numerical experiments, SpMM-MKL is used as the default routine, although in
section 5.2 we also include side-by-side comparisons between the results of SpMM-Matlab and those of SpMM-MKL
to demonstrate their differences.

5.1. Comparison on Random Examples. The test examples in this subsection are generated as follows. Given
dimension n, let

(52) v̂i =

i−0.01, i ≤ 0.05n,

0, otherwise,
and v =

√
n

‖v̂‖2
v̂.

We first generate a random matrix A using the Matlab command A = gallery(′randcolu′, v, n, 1) that has singular
values given by the vector v defined in (52), then we add random noise to A by setting

A := A+
‖A‖F

10

B

‖B‖F
,

where B is produced by the Matlab command: sprandn(n, n, nnz(B)/n2), representing sparse random noise. It is
important to note that such an A has two clusters of singular values: one cluster of large singular values σk for
k ≤ 0.05n, and one cluster of small singular values σk for k > 0.05n. Consequently, the eigenvalues of AAT in the
SLRP model (49), i.e., λk = σ2

k for all k, also form two distinct clusters, separated at boundary k = 0.05n.

We compare SLRPGN with a gradient method for solving (49) using the Barzilar-Borwein step size [1]. We call
this gradient method SLRPBB, which is essentially a variant of the EigPen algorithm in [31] due to the equivalence
in Proposition (2.3). Let Si = Xi − Xi−1 and Y i = ∇f(Xi) − ∇f(Xi−1). We use the following BB step-
size formula: αiBB = tr((Si)TY i)/‖Y i‖2F. Then the next SLRPBB iterate is obtained by a back-tracking line search
Xi+1 = Xi − αi∇f(Xi), where αi = αiBBβ

j for some β ∈ (0, 1) (β = 0.25 is used in our experiments), and j is
the smallest nonnegative integer satisfying a loose back-tracking condition f(Xi − αiBBβ

j∇f(Xi)) ≤ 2f(Xi).

A main purpose of this comparison between SLRPGN and SLRPBB is to assess the effect of the least squares
residual size on the convergence behavior of these two algorithms, for which we choose to examine the convergence
history of the gradient norm. As is mentioned, the default termination rule does not give a precise control over the
gradient norm. In order to avoid pre-mature or delayed terminations, we directly use a scaled gradient norm as the
stopping criterion for the results in Figure 5.1 and Figure 5.2; that is,

(53) ‖∇f̂(Xi)‖F =
‖∇f(Xi)‖F
‖AAT‖2F

< tol,

where f̂(X) = f(X)/‖AAT‖2F is a scaled objective function so that f(0) = 1/2.

For n = 10000, we run SLRPBB and SLRPGN with k ∈ {100, 150, . . . , 550, 600}, and apply the termination rule
(53) to both algorithms with tol = 10−4. By construction, we know that the first 500 eigenvalues ofAAT are relatively
large and the rest are much smaller. Consequently, the residual is relatively large for k < 500, and much smaller for
k ≥ 500, as can be clearly seen in Figure 5.1(a). The running-time results for this test are presented in Figure 5.1(b),
where the line “SLRPGN -with-fun-grad” denotes a version of SLRPGN that evaluates both the objective function and
gradient norm at each iteration (recall that by default SLRPGN does not compute these quantities). Figure 5.1(c)
contains the scaled gradient norm values, ‖∇f(X)‖F/‖AAT‖2F, attained at the last iteration for all k. As can be seen

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 19

from Figure 5.1(b)-(c), (i) SLRPGN is several times faster than SLRPBB across the board while achieving the same level
of accuracy in gradient norm; and (ii) not evaluating the function and gradient values does save a significant amount
of time. However, by examining Figure 5.1(a) against (b), we do not see clear correlations between the residual size
and the runtime at the given level of accuracy (i.e., tol = 10−4).

100 200 300 400 500 600

10
−5

10
−4

10
−3

10
−2

10
−1

Number of dominant singular values computed

f(
X

)/
||
A

A
T
||

F2

(a) Optimal residual

100 200 300 400 500 600

2

4

6

8

10

12

14

16

Number of dominant singular values computed

C
P

U
 t
im

e

SLRPBB

SLRPGN−with−fun−grad

SLRPGN

(b) Runtime

100 200 300 400 500 600

10
−4.7

10
−4.6

10
−4.5

10
−4.4

10
−4.3

10
−4.2

10
−4.1

Number of dominant singular values computed

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

SLRPGN

(c) gradient norm

FIG. 5.1. SLRPBB and SLRPGN with varying number of computed singular values on the random example “randcolu”
(
tol = 10−4

)
In order to clearly see the effect of the residual size on SLRPGN ’s performance, we tighten the tolerance to

tol = 10−15 in (53), set the maximum number of iterations to 100, and run the two codes SLRPGN and SLRPBB again
for the given set of k values. Figure 5.2 presents the iteration history of the scaled gradient norm ‖∇f(X)‖F/‖AAT‖2F
for six different values of k, five of which are either at or around k = 500 where we know that the residual has a
dramatic change in size, as is depicted in Figure 5.1(a).

The following observations can be drawn from Figure 5.2.

• SLRPGN exhibits a smoother and more predictable pattern of convergence than that of SLRPBB. With the
exception for the case of k = 500, the pattern consists of two stages: an initial stage of fast convergence and
an asymptotic stage of slower convergence.
• In all cases, SLRPGN converges notably faster than SLRPBB in the initial stage. For large residual problems

(k < 500), this initial stage extends slightly beyond ‖∇f(X)‖F/‖AAT‖2F < 10−4; while for small residual
problems (k > 500), it extends further to the level of ‖∇f(X)‖F/‖AAT‖2F < 10−7.

• For large residual problems, the asymptotic convergence rate of SLRPGN (with α = 1), can be slightly slower
that of SLRPBB. Therefore, the latter can eventually catch up if the codes are allowed to run long enough.
However, for small residual problems, the asymptotic convergence rate of SLRPGN is either faster than or
similar to that of SLRPBB. Therefore, SLRPBB does not have a chance to catch up with SLRPGN .

• The case of k = 500 is special, for which both codes reach the very tight tolerance of tol = 10−15 within
far less than 100 iterations allowed, and both show rapid asymptotic convergence. Theorem 4.2 indicates that
the asymptotic rate of convergence for SLRPGN is limited by the ratio λk+1/λk. On this given test problem
set, this ratio is extremely close to one (> 0.995) in all cases except for k = 500 where λ501/λ500 = 0.0073

is close to zero.

We add two more comments below to reiterate an important point and bring up a less obvious point.

• The effectiveness of SLRPGN on small residual problems should be evident. On large residual problems, due
to the existence of a fast converging initial stage, SLRPGN can still be quite efficient as long as a high accuracy
is not required.

20 X. LIU, Z. WEN, AND Y. ZHANG

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(a) k = 100

0 20 40 60 80 100 120
10

−6

10
−4

10
−2

10
0

10
2

10
4

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(b) k = 400

0 20 40 60 80 100 120
10

−6

10
−4

10
−2

10
0

10
2

10
4

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(c) k = 450

0 10 20 30 40 50
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(d) k = 500

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(e) k = 550

0 20 40 60 80 100 120
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

||
∇

 f
(X

)|
| F

/|
|A

A
T
||

F2

SLRPBB

SLRPGN−with−fun−grad

(f) k = 600

FIG. 5.2. Gradient norm ‖∇f(X)‖F/||AAT||2F versus iteration for the random example “randcolu”

• For large residual problems, the step size α = 1, although performing reliably in SLRPGN , is sub-optimal.
For example, a simple experiment shows that α = 1.5 gives better convergence for the case of k = 100. An
investigation of various algorithmic options for large residual problems is worthwhile, but beyond the scope
of the present study.

Our next experiment is to compare the performance of EIGS , LANSVD, LMSVD and SLRPGN on the same test
problem set with n = 3000, 4000, . . . , 10000 and k = 0.05n − 40. Since the selected k values are less than 0.05n,
the residuals for these problems are relatively large. In addition, the asymptotic convergence rate of SLRPGN is
expected to be slow since, with k < 0.05n, both λk and λk+1 belong to the large-value cluster and their ratio is
close to 1. For such problems, we only require a moderate accuracy. Specifically, SLRPGN is terminated when (50) is
satisfied with tol = 10−4, and all other solvers are stopped using their own termination rules with the tolerance 10−2.
The runtime, the total number of matrix-vector multiplications, the scaled objective function value f(X)/‖AA‖2F ,
and the relative error in the final objective value, with respect to an “exact” solution computed by EIGS with the
default tolerance, are reported in Figure 5.3. We observe from Figure 5.3(a) that, with the given tolerance, SLRPGN

is notably faster than EIGS and LANSVD, and also slightly faster than LMSVD. The speed gaps grows quickly as
the dimension n increases. It is particularly worth noting that SLRPGN maintains its speed advantage in spite of
taking considerably more matrix-vector multiplications, as can be seen from Figure 5.3(b), revealing a great impact of
algorithmic concurrency on multi-core computing time. The scaled objective function values f(X)/‖AA‖2F attained
by all solvers are undistinguishable in Figure 5.3(c). Details on the obtained accuracy are given in Figure 5.3(d)
where we see that both EIGS and LANSVD attain an accuracy close to machine precision for n ≥ 6000 despite the

-e-
-e-

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 21

large tolerance 10−2 for termination. This phenomenon may be attributable to the fact that Krylov subspace methods
need to maintain highly accurate orthonormal bases for these algorithms to succeed. As such, these Krylov subspace
methods may not be well suited for computing approximate solutions of a low to moderate accuracy.

3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

matrix dimension n

C
P

U
 t
im

e

LMSVD

LANSVD

EIGS

SLRPGN

(a) Runtime

3000 4000 5000 6000 7000 8000 9000 10000
10

2

10
3

10
4

matrix dimension n

N
um

be
r

of
 m

at
rix

−
ve

ct
or

 m
ul

tip
lic

at
io

ns

LMSVD

LANSVD

EIGS

SLRPGN

(b) Matrix-vector Multiplications

3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

matrix dimension n

f(
X

)/
||A

A
T
|| F2

LMSVD

LANSVD

EIGS

SLRPGN

(c) The scaled function value f(X)

‖AA‖2
F

3000 4000 5000 6000 7000 8000 9000 10000
10

−15

10
−10

10
−5

10
0

matrix dimension n

re
la

tiv
e

 e
rr

o
r

o
f

f(
X

)
w

.r
.t

.
E

IG
S

LMSVD

LANSVD

EIGS

SLRPGN

(d) Relative error with the exact solution

FIG. 5.3. Comparison between different eigensolvers with varying matrix dimensions on the random example “randcolu”

5.2. Matrix Completion. In this subsection, we compare the performance of three solvers, LANSVD, SLRPGN

and LMSVD, embedded in two nuclear-norm minimization algorithms for solving the matrix completion problem
[5, 6, 21]. One is the singular value thresholding (SVT) algorithm [11] applying soft-thresholding operations on the
singular values of a certain matrix at each iteration. Another is the accelerated proximal gradient (NNLS) algorithm
[30] based on an extension to the iterative shrinkage-thresholding algorithm [2]. Both algorithms require computing a
singular value decomposition at each iteration which dominates their computational costs as the size of the underlying
matrices increases. The default SVD solver used in both SVT and NNLS is LANSVD. We do the comparison by
changing LANSVD to LMSVD and SLRPGN . The terminating rules of each SVD solver are kept as they are, but the
tolerance value of each rule is tuned to a more relaxed value than the default while maintaining the default accuracy
of the SVT or NNLS. We do such a tuning to give all solvers the benefit of achieving highest efficiency possible for the
given final solution accuracy.

The SVT algorithm [11] solves the problem

min
X∈Rm×n

‖X‖∗, s.t.PΩ(X) = PΩ(M),

22 X. LIU, Z. WEN, AND Y. ZHANG

where ‖X‖∗, the nuclear or trace norm, is the sum of singular values of X , Ω is the set of indices for given entries
of M , and PΩ is the projection onto the subspace of sparse matrices with nonzeros restricted to Ω. Starting from
Y 0 ∈ Rm×n, and using a fixed τ > 0 and a sequence of δk > 0, the algorithm computesXk = shrink(Y k−1, τ),

Y k = Y k−1 + δkPΩ(M −Xk),

where shrink(Y, τ) is the matrix shrinkage operator [11] requiring the computation of the SVD of Y . The code
SVT4 always stores Y k in the sparse matrix format. We tested both SpMM-Matlab and SpMM-MKL for matrix
multiplications involving Y k.

We run SVT code with each SVD solver embedded on a set of randomly generated problems. The test matrices
M ∈ Rm×n with rank r are created randomly by the following standard procedure: two random matricesML ∈ Rm×r

and MR ∈ Rn×r with i.i.d. standard Gaussian entries are first generated and then M = MLM
>
R is assembled; then

a subset Ω of p index pairs is sampled uniformly at random. The ratio p/(mn) is denoted by “SR” (sampling ratio).
A summary of the computational results using SpMM-Matlab and SpMM-MKL are presented in Tables 5.1 and 5.2,
respectively. In these tables, “iter” denotes the number of iterations used, “svp” denotes the rank of the recovered
solution, “time” denotes the runtime measured in seconds and mse = ‖X −M‖F/‖M‖F denotes the relative error
between the true and the recovered matrices M and X . To further illustrate the performance of the four tested solvers,
in Figures 5.4 and 5.5 we plot the runtime of SVT with fixed parameters n = 104, r = 10 and r = 50, and varying
sample ratios “SR”.

The following observations should be clear from the numerical results:

• All three solvers used by SVT give the same number of iterations, attain the same final rank, and achieve the
same accuracy, no matter whether SpMM-Matlab or SpMM-MKL is used.
• LANSVD with SpMM-Matlab is faster than with SpMM-MKL.
• Both SLRPGN and LMSVD with SpMM-MKL are faster than with SpMM-Matlab.
• SLRPGN with SpMM-MKL is faster than LANSVD with either SpMM-Matlab or SpMM-MKL. The observed

speedup factor varies approximately from one to ten.
• SLRPGN is faster than LMSVD when either SpMM-Matlab or SpMM-MKL is used. The observed speedup

factor ranges from slightly more than one to over nine.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

350

400

450

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(a) Exact rank r = 10

0.05 0.1 0.15 0.2 0.25 0.3
0

500

1000

1500

2000

2500

3000

3500

Sample Ratio

C
P

U
 t

im
e

LMSVD

LANSVD

SLRPGN

(b) Exact rank r = 50

FIG. 5.4. SVT: Comparison with varying sampling ratios on n = 104 by using SpMM-Matlab

4Downloadable from http://svt.stanford.edu/

http://svt.stanford.edu/

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 23

TABLE 5.1
Results of SVT on randomly generated matrix completion problems by using SpMM-Matlab

LANSVD SLRPGN LMSVD
m=n SR (%) r iter svp time mse iter svp time mse iter svp time mse
1000 0.20 10 79 10 7.45 1.31e-04 79 10 2.97 1.31e-04 79 10 8.87 1.31e-04
1000 0.30 10 62 10 7.08 1.17e-04 62 10 3.17 1.17e-04 62 10 8.62 1.17e-04
1000 0.40 10 53 10 6.02 1.15e-04 53 10 3.49 1.14e-04 53 10 8.10 1.15e-04
1000 0.30 50 169 69 85.77 2.12e-04 171 68 24.01 2.12e-04 500 50 179.15 5.34e-03
1000 0.40 50 110 50 34.26 1.60e-04 110 50 16.79 1.60e-04 113 50 44.45 1.46e-04
1000 0.50 50 86 50 31.20 1.40e-04 86 50 16.86 1.40e-04 86 50 41.08 1.40e-04
5000 0.10 10 53 10 58.24 1.08e-04 53 10 25.73 1.08e-04 53 10 54.62 1.08e-04
5000 0.20 10 42 10 79.48 1.04e-04 42 10 35.08 1.04e-04 42 10 74.41 1.04e-04
5000 0.30 10 38 10 100.49 9.23e-05 38 10 43.26 9.23e-05 38 10 66.60 9.23e-05
5000 0.10 50 107 50 241.42 1.59e-04 107 50 140.63 1.59e-04 500 50 1294.60 9.58e-04
5000 0.20 50 67 50 256.46 1.23e-04 67 50 128.02 1.22e-04 67 50 272.74 1.23e-04
5000 0.30 50 54 50 295.23 1.21e-04 54 50 173.73 1.21e-04 54 50 304.87 1.21e-04

10000 0.01 10 500 10 898.52 8.93e-04 500 10 173.39 5.33e-04 500 10 331.98 2.74e-02
10000 0.05 10 54 10 139.10 1.10e-04 54 10 55.79 1.10e-04 54 10 132.89 1.10e-04
10000 0.10 10 43 10 239.42 1.07e-04 43 10 88.17 1.07e-04 43 10 184.85 1.07e-04
10000 0.05 50 109 50 650.78 1.66e-04 109 50 335.96 1.65e-04 500 50 3080.68 2.32e-03
10000 0.10 50 69 50 750.31 1.29e-04 69 50 411.60 1.29e-04 69 50 769.16 1.29e-04
10000 0.15 50 57 50 906.39 1.16e-04 57 50 524.13 1.16e-04 57 50 952.76 1.16e-04

TABLE 5.2
Results of SVT on randomly generated matrix completion problems by using SpMM-MKL

LANSVD SLRPGN LMSVD
m=n SR (%) r iter svp time mse iter svp time mse iter svp time mse
1000 0.20 10 79 10 10.23 1.31e-04 79 10 2.53 1.31e-04 79 10 8.84 1.31e-04
1000 0.30 10 62 10 8.69 1.17e-04 62 10 2.42 1.17e-04 62 10 7.10 1.17e-04
1000 0.40 10 53 10 8.37 1.15e-04 53 10 2.56 1.14e-04 53 10 5.78 1.15e-04
1000 0.30 50 169 69 113.97 2.12e-04 171 68 10.80 2.12e-04 500 50 107.54 7.55e-03
1000 0.40 50 110 50 45.96 1.60e-04 110 50 7.71 1.60e-04 113 50 26.26 1.46e-04
1000 0.50 50 86 50 41.28 1.40e-04 86 50 7.35 1.40e-04 86 50 22.29 1.40e-04
5000 0.10 10 53 10 84.04 1.08e-04 53 10 21.52 1.08e-04 53 10 32.71 1.08e-04
5000 0.20 10 42 10 176.15 1.04e-04 42 10 25.04 1.04e-04 42 10 38.88 1.04e-04
5000 0.30 10 38 10 214.84 9.23e-05 38 10 33.68 9.23e-05 38 10 39.73 9.23e-05
5000 0.10 50 107 50 330.28 1.59e-04 107 50 78.51 1.59e-04 500 50 651.54 9.60e-04
5000 0.20 50 67 50 482.52 1.23e-04 67 50 56.82 1.22e-04 67 50 112.86 1.23e-04
5000 0.30 50 54 50 704.29 1.21e-04 54 50 68.07 1.21e-04 54 50 115.74 1.21e-04
10000 0.01 10 500 10 1120.59 6.57e-04 500 10 112.04 8.86e-04 500 10 222.52 2.66e-02
10000 0.05 10 54 10 279.99 1.10e-04 54 10 43.35 1.10e-04 54 10 74.76 1.10e-04
10000 0.10 10 43 10 458.86 1.07e-04 43 10 61.79 1.07e-04 43 10 94.25 1.07e-04
10000 0.05 50 109 50 1291.43 1.66e-04 109 50 171.14 1.65e-04 500 50 1315.04 2.32e-03
10000 0.10 50 69 50 1514.00 1.29e-04 69 50 199.85 1.29e-04 69 50 303.23 1.29e-04
10000 0.15 50 57 50 1738.79 1.16e-04 57 50 248.05 1.16e-04 57 50 350.56 1.16e-04

Now we turn to the NNLS algorithm5 which solves the regularized linear least problem:

min
X∈Rm×n

µ‖X‖∗ +
1

2
‖PΩ(X −M)‖2F.

At the k-th iteration, it requires to compute the dominant SVD of a matrix of the form

Ak = β1U
k(V k)T − β2U

k−1(V k−1)T − β3G
k,

where Uk, V k, Uk−1 and V k−1 are dense matrices, but Gk can be either dense (when SR≥ 15%) or sparse (when SR
< 15%). The number of singular values to be computed by NNLS is set to one at the first iteration, and then can be
increased or decreased in the subsequent iterations determined by certain rules. We examine the performance of NNLS

separately according to whether Gk is sparse or dense. SpMM-Matlab and SpMM-MKL are tested only when Gk is
sparse.

We first test NNLS with each SVD solver on random problems generated in the same way as in the case for SVT.

5http://www.math.nus.edu.sg/˜mattohkc/NNLS.html

http://www.math.nus.edu.sg/~mattohkc/NNLS.html

24 X. LIU, Z. WEN, AND Y. ZHANG

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

500

600

700

800

900

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(a) Exact rank r = 10

0.05 0.1 0.15 0.2 0.25 0.3
0

500

1000

1500

2000

2500

3000

Sample Ratio

C
P

U
 t
im

e

LMSVD

LANSVD

SLRPGN

(b) Exact rank r = 50

FIG. 5.5. SVT: Comparison with varying sampling ratios on n = 104 by using SpMM-MKL

A summary of computational results for the dense cases is presented in Table 5.3. The results of the sparse problems
using SpMM-Matlab and SpMM-MKL are reported in Tables 5.4 and 5.5, respectively. We further present the runtime
of NNLS using the three solvers in Figures 5.6 and 5.7 with parameters n = 104, r = 10 and r = 50, and varying
sample ratios. We can make the following observations:

• On dense problems, SLRPGN is about one to three times faster than LANSVD.
• On sparse problems, all solvers give the same number of iterations, attain the same rank and achieve the same

accuracy for either SpMM-Matlab or SpMM-MKL.
• LANSVD with SpMM-Matlab is faster than with SpMM-MKL.
• Both SLRPGN and LMSVD with SpMM-MKL are faster than with SpMM-Matlab.
• SLRPGN with SpMM-MKL is faster than LANSVD with either SpMM-Matlab or SpMM-MKL. The observed

speedup factor varies approximately from one to four.
• The performances of SLRPGN and LMSVD are very similar. Being block algorithms, both have the advantage

over LANSVD in their warm-start ability, which appears to be the main source of speedups in the NNLS

experiments (also see the remark at the end of this subsection).

TABLE 5.3
Results of NNLS on random dense examples

LANSVD SLRPGN LMSVD
m=n SR (%) r iter svp time mse iter svp time mse iter svp time mse
1000 25.0 50 55 50 9.66e+00 7.60e-04 55 50 3.35e+00 1.18e-03 50 50 3.48e+00 1.21e-03
1000 35.0 50 42 50 6.21e+00 5.42e-04 49 50 3.13e+00 4.40e-04 42 50 3.01e+00 5.41e-04
1000 49.9 50 39 50 5.76e+00 1.81e-04 39 50 2.61e+00 1.81e-04 39 50 3.33e+00 1.80e-04
1000 25.0 100 100 150 6.71e+01 3.55e-01 100 150 1.17e+01 3.87e-01 100 150 1.60e+01 3.54e-01
1000 35.0 100 64 100 2.08e+01 1.45e-03 64 100 5.96e+00 1.48e-03 64 100 7.38e+00 1.44e-03
1000 49.9 100 54 100 1.68e+01 4.70e-04 48 100 4.71e+00 1.05e-03 54 100 6.68e+00 4.70e-04
5000 25.0 50 36 50 5.38e+01 1.41e-04 36 50 2.75e+01 1.42e-04 36 50 2.81e+01 1.41e-04
5000 35.0 50 34 50 5.60e+01 1.60e-04 34 50 3.15e+01 1.61e-04 34 50 3.17e+01 1.60e-04
5000 50.0 50 32 50 6.08e+01 1.46e-04 32 50 3.68e+01 1.48e-04 32 50 3.72e+01 1.46e-04
5000 25.0 100 49 100 1.34e+02 2.83e-04 49 100 5.37e+01 2.88e-04 49 100 6.75e+01 2.83e-04
5000 35.0 100 45 100 1.27e+02 1.74e-04 45 100 5.87e+01 1.76e-04 45 100 6.82e+01 1.74e-04
5000 50.0 100 43 100 1.21e+02 1.43e-04 43 100 7.11e+01 1.44e-04 43 100 7.81e+01 1.43e-04
10000 25.0 50 32 50 1.53e+02 1.17e-04 32 50 8.88e+01 1.17e-04 32 50 8.97e+01 1.17e-04
10000 35.0 50 32 50 1.86e+02 1.16e-04 32 50 1.13e+02 1.16e-04 32 50 1.11e+02 1.16e-04
10000 50.0 50 31 50 2.08e+02 1.39e-04 32 50 1.44e+02 1.15e-04 31 50 1.36e+02 1.39e-04
10000 25.0 100 43 100 3.54e+02 1.59e-04 44 100 1.61e+02 1.74e-04 43 100 1.55e+02 1.59e-04
10000 35.0 100 42 100 3.63e+02 1.32e-04 42 100 1.96e+02 1.33e-04 42 100 1.93e+02 1.32e-04
10000 50.0 100 39 100 3.68e+02 3.70e-04 40 100 2.38e+02 1.18e-04 39 100 2.23e+02 3.70e-04

The next experiment using NNLS is on low-rank matrix approximation problems based on two “real” data sets: the

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 25

TABLE 5.4
Results of NNLS on random sparse examples by using SpMM-Matlab

LANSVD SLRPGN LMSVD
m=n SR (%) r iter svp time mse iter svp time mse iter svp time mse

10000 2.0 10 45 10 1.72e+01 1.86e-04 45 10 1.58e+01 1.54e-04 45 10 2.03e+01 1.86e-04
10000 5.0 10 35 10 2.66e+01 1.30e-04 35 10 2.52e+01 1.30e-04 35 10 3.36e+01 1.30e-04
10000 10.0 10 30 10 4.33e+01 1.03e-04 30 10 4.35e+01 1.03e-04 30 10 5.14e+01 1.03e-04
10000 14.0 10 28 10 5.10e+01 1.07e-04 29 10 5.71e+01 1.09e-04 28 10 6.68e+01 1.07e-04
10000 2.0 50 100 77 1.84e+02 3.42e-01 100 50 1.47e+02 9.88e-03 100 50 1.35e+02 1.09e-01
10000 5.0 50 50 50 1.10e+02 2.50e-04 48 50 9.49e+01 2.52e-04 50 50 1.16e+02 2.50e-04
10000 10.0 50 37 50 1.32e+02 1.66e-04 37 50 1.35e+02 1.67e-04 37 50 1.34e+02 1.66e-04
10000 14.0 50 35 50 1.61e+02 1.29e-04 35 50 1.57e+02 1.30e-04 35 50 1.59e+02 1.29e-04
50000 2.0 10 38 10 3.67e+02 1.09e-04 38 10 3.57e+02 1.09e-04 38 10 4.29e+02 1.09e-04
50000 5.0 10 31 10 7.00e+02 9.62e-05 31 10 6.16e+02 9.62e-05 31 10 7.48e+02 9.62e-05
50000 10.0 10 28 10 1.26e+03 1.09e-04 28 10 1.18e+03 1.09e-04 28 10 1.44e+03 1.09e-04
50000 14.0 10 28 10 1.70e+03 1.03e-04 28 10 1.50e+03 1.03e-04 28 10 1.79e+03 1.03e-04
50000 2.0 50 49 50 1.06e+03 1.96e-04 49 50 1.42e+03 1.62e-04 49 50 1.25e+03 1.96e-04
50000 5.0 50 37 50 2.06e+03 1.74e-04 37 50 1.79e+03 1.77e-04 37 50 1.80e+03 1.74e-04
50000 10.0 50 32 50 3.39e+03 1.17e-04 32 50 3.26e+03 1.17e-04 32 50 3.14e+03 1.17e-04
50000 14.0 50 31 50 4.26e+03 1.10e-04 31 50 3.97e+03 1.10e-04 31 50 3.81e+03 1.10e-04

TABLE 5.5
Results of NNLS on random sparse examples by using SpMM-MKL

LANSVD SLRPGN LMSVD
m=n SR (%) r iter svp time mse iter svp time mse iter svp time mse

10000 2.0 10 45 10 1.86e+01 1.86e-04 45 10 1.01e+01 1.54e-04 45 10 1.09e+01 1.86e-04
10000 5.0 10 35 10 3.25e+01 1.30e-04 35 10 1.69e+01 1.30e-04 35 10 1.72e+01 1.30e-04
10000 10.0 10 30 10 5.37e+01 1.03e-04 30 10 2.73e+01 1.03e-04 30 10 2.73e+01 1.04e-04
10000 14.0 10 28 10 6.58e+01 1.07e-04 29 10 3.48e+01 1.09e-04 28 10 3.26e+01 1.07e-04
10000 2.0 50 100 77 2.32e+02 3.42e-01 100 50 5.21e+01 9.88e-03 100 50 6.10e+01 7.09e-02
10000 5.0 50 50 50 1.45e+02 2.50e-04 48 50 4.17e+01 2.52e-04 50 50 5.26e+01 2.50e-04
10000 10.0 50 37 50 1.70e+02 1.66e-04 37 50 5.44e+01 1.67e-04 37 50 5.42e+01 1.66e-04
10000 14.0 50 35 50 2.11e+02 1.29e-04 35 50 6.68e+01 1.30e-04 35 50 6.54e+01 1.29e-04
50000 2.0 10 38 10 5.33e+02 1.09e-04 38 10 2.07e+02 1.09e-04 38 10 1.96e+02 1.09e-04
50000 5.0 10 31 10 1.02e+03 9.62e-05 31 10 4.15e+02 9.62e-05 31 10 3.55e+02 9.62e-05
50000 10.0 10 28 10 1.95e+03 1.09e-04 28 10 7.27e+02 1.09e-04 28 10 6.10e+02 1.09e-04
50000 14.0 10 28 10 2.40e+03 1.03e-04 28 10 1.00e+03 1.03e-04 28 10 8.43e+02 1.03e-04
50000 2.0 50 49 50 1.73e+03 1.96e-04 49 50 4.34e+02 1.62e-04 49 50 4.18e+02 1.96e-04
50000 5.0 50 37 50 3.21e+03 1.74e-04 37 50 7.11e+02 1.77e-04 37 50 6.54e+02 1.74e-04
50000 10.0 50 32 50 5.26e+03 1.17e-04 32 50 1.23e+03 1.17e-04 32 50 1.07e+03 1.17e-04
50000 14.0 50 31 50 6.86e+03 1.10e-04 31 50 1.55e+03 1.10e-04 31 50 1.36e+03 1.10e-04

Jester joke data set and the MovieLens data set, which are also used in [30]. The Jester joke data set consists of four
problems “jester-1”, “jester-2”, “jester-3” and “jester-all”, where the last one is obtained by combining all of the first
three. The MovieLens data set consists of three problems “movie-100K”, “movie-1M” and “movie-10M”. The results
of using Matlab’s own implementation and MKL are presented in Tables 5.6 and 5.7, respectively. The advantage of
SLRPGN over LANSVD can be observed on the Movielens data set. Since the number of computed singular values can
become larger than min(m,n)/3 in the Jester joke data set, LMSVD is not suitable for these problems since it amounts
to computing full singular value decompositions for these matrices.

TABLE 5.6
Results of NNLS on real examples by using SpMM-Matlab

LANSVD SLRPGN LMSVD
name (m,n) iter svp time mse iter svp time mse iter svp time mse

jester-1 (24983, 100) 26 93 1.01e+01 1.64e-01 27 69 9.01e+00 1.76e-01
jester-2 (23500, 100) 26 93 9.93e+00 1.65e-01 26 79 1.08e+01 1.72e-01
jester-3 (24938, 100) 24 83 7.43e+00 1.16e-01 27 74 7.83e+00 1.24e-01
jester-all (73421, 100) 26 93 2.74e+01 1.58e-01 26 82 3.32e+01 1.62e-01

moive-100K (943, 1682) 34 100 7.90e+00 1.28e-01 35 100 1.60e+00 1.26e-01 51 100 4.47e+00 3.56e-01
moive-1M (6040, 3706) 50 100 4.04e+01 1.42e-01 50 100 2.56e+01 1.43e-01 50 100 6.11e+01 1.42e-01
moive-10M (71567, 10677) 54 100 5.31e+02 1.26e-01 57 100 3.82e+02 1.27e-01 54 100 3.69e+02 1.26e-01

We conclude this subsection with the following remarks:

• The advantage of SLRPGN over LANSVD is obvious on either dense or sparse problems. On sparse problems,

26 X. LIU, Z. WEN, AND Y. ZHANG

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(a) Exact rank r = 10

0 5 10 15 20 25 30
60

80

100

120

140

160

180

200

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(b) Exact rank r = 50

FIG. 5.6. NNLS: Comparison with varying sampling ratios by using SpMM-Matlab

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(a) Exact rank r = 10

0 5 10 15 20 25 30
40

60

80

100

120

140

160

180

200

220

240

Sample Ratio

C
P

U
 ti

m
e

LMSVD

LANSVD

SLRPGN

(b) Exact rank r = 50

FIG. 5.7. NNLS: Comparison with varying sampling ratios by using SpMM-MKL

however, the magnitude of the advantage can vary with the efficiency of the code implementing sparse-dense
matrix-matrix multiplications on multicore CPUs.
• The main computational cost of LMSVD lies in computing dense eigenvalue decompositions in subspace

optimization and orthogonalization for stabilization. The cost of these operations is relatively low, compared
with that of SpMM, if the number of singular pairs to be computed is relatively small. However, as the
number of computed singular pairs grows these operations can become a bottleneck, making the advantage
of SLRPGN more pronounced.

• Compared to the results with the SVT algorithm, the advantage of SLRPGN over LANSVD, although unmis-
takably present, appears less pronounced with the NNLS algorithm. This difference can be attributed to a
strategy used by NNLS that gradually increases the number of computed singular pairs from one to a larger
number. Therefore, the number of computed singular pairs only becomes sufficiently large near the end.
This situation is not favorable to block algorithms like SLRPGN and LMSVD which derive their advantage
over Krylov subspace methods from a high level of concurrency in SpMM when there are a relatively large
number of dense columns involved in SpMM. Nevertheless, the two block methods still enjoy the advantage
of the warm-start ability.

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 27

TABLE 5.7
Results of NNLS on real examples by using SpMM-MKL

LANSVD SLRPGN LMSVD
name (m, n) iter svp time mse iter svp time mse iter svp time mse

jester-1 (24983, 100) 26 93 1.21e+01 1.64e-01 27 69 8.04e+00 1.76e-01
jester-2 (23500, 100) 26 93 8.58e+00 1.65e-01 26 79 7.76e+00 1.72e-01
jester-3 (24938, 100) 24 83 7.06e+00 1.16e-01 27 74 7.20e+00 1.24e-01
jester-all (73421, 100) 26 93 2.88e+01 1.58e-01 26 82 2.30e+01 1.62e-01

moive-100K (943, 1682) 34 100 8.45e+00 1.28e-01 35 100 2.20e+00 1.26e-01 53 100 5.31e+00 3.67e-01
moive-1M (6040, 3706) 50 100 4.61e+01 1.42e-01 50 100 1.16e+01 1.43e-01 50 100 2.92e+01 1.42e-01
moive-10M (71567, 10677) 54 100 5.90e+02 1.26e-01 57 100 1.78e+02 1.27e-01 54 100 2.14e+02 1.26e-01

5.3. Robust Principal Component Analysis. In this subsection, we test the performance of SLRPGN on robust
principal component analysis, also called matrix separation. Given a matrix D ∈ Rm×n, the problem is to compute a
low-rank matrix L0 and a sparse matrix S0 such that D = L0 + S0 (or D ≈ L0 + S0). It has been shown in [4] that,
under suitable conditions, the separation can be found by solving the convex optimization problem:

(54) min
L,S∈Rm×n

‖L‖∗ + µ‖S‖1 s.t. L+ S = D,

where µ > 0 is a proper balancing parameter, ‖L‖∗ is the nuclear norm of L and ‖S‖1 =
∑
ij |Sij |. Model (54)

can be solved by the so-called inexact augmented Lagrange multiplier algorithms, and the accompanying Matlab code
IALM, given in [18] (see also [33]). The main cost is again the computation of the dominant SVD of certain matrices
related to the nuclear norm term. Hence, we study how the performance of the IALM solver changes as its default SVD
solver LANSVD is replaced by other SVD solvers.

We first generate test matrices of the form D = L0 + S0, where L0 is rank-r and S0 is sparse. Specifically,
L0 = XY T, where X and Y are n × r random matrices with i.i.d. standard Gaussian entries; S0 = τ S̃, where
S̃ is a sparse matrix whose nonzero positions are uniformly sampled and nonzero element values are independently
chosen from the standard Gaussian distribution with variance 1/n, and τ is a scalar which makes S0 roughly the same
magnitudes as L0. The sizes of the test matrices are m = n = 500, 1000, 1500, ..., 4000. We test two groups of test
problems, characterized by different parameter pairs (τr, τs) = (0.05, 0.10) and (τr, τs) = (0.10, 0.05), respectively,
where τr = r/n is the rank ratio and τs = nnz(S0)/n2 is the density parameter. In all tests, the balancing parameter
µ is fixed as 1/

√
n.

We run IALM with four SVD solvers, LMSVD, LANSVD, EIGS and SLRPGN . Since all solvers achieve a very
similar accuracy, we only summarize the runtime results in Figure 5.8. We observe that IALM using SLRPGN is about
10 times faster than using LANSVD, while it is about twice as fast as using LMSVD.

We next consider a video separation problem in [4] by applying IALM with different SVD solvers. It aims to
separate a video into a static background and one with moving objects. The frames of a video are reshaped into long
column vectors and then collected into a matrix. As such, the number of rows in the matrix equals to the number of
pixels and the number of columns equals to the number of frames in a video. The information of nine test videos6 is
summarized in Table 5.8, for instance, the example “bootstrap” gives a 19200× 3055 matrix separation problem. The
average number of dominant SVD computed at each iteration (denoted by “av.sv”) and the runtime are presented in
Table 5.8. We observe that IALM with SLRPGN requires the least amount of runtime than with all other solvers.

5.4. Comparison on Achieving Higher Accuracies. There exists two main difficulties for SLRPGN to achieve
high accuracies: a) it is often asymptotically slow, especially on large-residual problems; and b) a single Rayleigh-
Ritz call is often not enough to reach a high accuracy. In this subsection, we will demonstrate that by adapting some

6Downloadable from http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

28 X. LIU, Z. WEN, AND Y. ZHANG

500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

size of square matrix

C
P

U
 ti

m
e

τ
r
 = 0.05; τ

s
 = 0.10

LMSVD

LANSVD

EIGS

SLRP

(a) group 1

500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

size of square matrix

C
P

U
 ti

m
e

τ
r
 = 0.10; τ

s
 = 0.05

LMSVD

LANSVD

EIGS

SLRP

(b) group 2

FIG. 5.8. Runtime results on randomly generated matrix separation problems.

TABLE 5.8
Numerical results on video separation problems

LMSVD LANSVD EIGS SLRPGN
name (m, n) time av.sv time av.sv time av.sv time av.sv

bootstrap (19200, 3055) 72.96 152.50 321.27 152.50 206.15 152.50 64.51 134.10
campus (20480, 1439) 34.68 76.50 87.40 76.50 68.59 76.50 28.81 63.89
curtain (20480, 2964) 76.04 143.67 341.30 143.67 226.21 143.67 64.11 119.55

escalator (20800, 3417) 91.49 179.62 474.39 179.62 316.06 179.62 78.35 151.38
fountain (20480, 523) 10.35 25.61 18.87 25.61 14.57 25.61 9.55 24.17

hall (25344, 3584) 131.73 189.43 599.34 189.43 455.22 189.43 98.07 149.55
lobby (20480, 1546) 32.11 61.16 129.54 61.16 71.20 61.16 23.75 39.32

shoppingmall (81920, 1286) 124.83 67.00 283.86 67.00 224.42 67.00 93.19 50.65
watersurface (20480, 633) 13.27 30.11 27.73 30.11 19.36 30.11 10.99 27.39

existing techniques from numerical linear algebra, it is possible to alleviate these difficulties.

Specifically, to compute the k largest eigenvalues of A, which has been made positive semidefinite, we apply
SLRPGN to a suitable polynomial filter of A, say ρ(A), to try to suppress the magnitudes of ρ(λj) for j > k where
λj is the j-th largest eigenvalue of A (thus turning the least-squares problem into a small-residual one); and whenever
necessary we make multiple Rayleigh-Ritz calls to progressively reach for high accuracies. Each call of the Rayleigh-
Ritz procedure orthogonalizes the computed basis at hand, projects A onto the subspace spanned by the basis (whose
dimension is greater than k), and computes the corresponding Ritz pairs by solving a small dense eigenvalue problem.
The process is restarted, with a warm start, if a prescribed accuracy has not been reached. In addition, a deflation
scheme is used to reduce unnecessary computation after some eigenpairs have “converged”. We call this algorithm
the Restarted SLRPGN or simply RSLRPGN . We terminate RSLRPGN when the maximum relative residual norm,
as is defined in (51), is smaller than a given tolerance tol. The algorithm is also stopped if most of the Ritz pairs
have relative residual norms much smaller than the tolerance tol and the remaining a few have residual norms not
exceeding ten times tol. In our experiments, we set tol = 10−6 (hence upon termination the worst eigenvector error is
smaller than 10−5). Since the algorithm checks the termination rule only after each Rayleigh-Ritz call, it often returns
solutions of higher accuracies than what is prescribed by tol.

The aforementioned techniques used in RSLRPGN have been studied in numerical linear algebra over the years
(e.g. [24, 34] on polynomial filters) and are relatively well understood. However, it is not a simple matter to integrate
all of them together with the SLRPGN procedure to form an efficient and robust eigensolver. For example, effective use
of a polynomial filter involves the choice of polynomials (types and degrees), the estimation of relevant eigenvalues, the
updates of these eigenvalue estimates after each outer iteration, and so on. Beyond the simple sketch in the previous

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 29

paragraph, any meaningfully detailed description for such an algorithm would surely exceed the amount of space
reasonable for this side topic of the paper. Therefore, we refer readers interested in further details to a forthcoming
paper (which studies a broader framework than SLRPGN) currently under preparation [32].

We select a set of twelve symmetric sparse matrices from The University of Florida Sparse Matrix Collection7.
The dimensionality n and the number of nonzeros nnz of these matrices are listed in Table 5.9. Many of these matrices
are produced by PARSEC [13], a real space density functional theory (DFT) based code for electronic structure
calculation in which the Hamiltonian is discretized by using finite difference. The number of eigenpairs to be computed
is roughly 1% of the matrix dimension.

TABLE 5.9
Information of Test Matrices

matrix name n nnz density
Andrews 60000 410077 0.01%

C60 17576 212390 0.07%
cfd1 70656 948118 0.02%

finance 74752 335872 0.01%
Ga10As10H30 113081 3114357 0.02%
Ga3As3H12 61349 3016148 0.08%

OPF3754 15435 82231 0.03%
shallow water1 81920 204800 <0.01%

Si10H16 17077 446500 0.15%
Si5H12 19896 379247 0.10%

SiO 33401 675528 0.06%
wathen100 30401 251001 0.03%

Since it is impractical to carry out numerical experiments with a large number of solvers, we choose to compare
RSLRPGN with the Matlab built-in solver EIGS (i.e., ARPACK) and a Matlab version of the solver LANEIG in the
package PROPACK8. Two recently developed solvers, the filtered Lanczos algorithm in [7] and the FEAST algorithm
in [29], are not included because they are designed to compute all eigenvalues (and eigenvectors) within a given
interval. A commonly accepted interface for computing k extreme eigenpairs does not yet exist for either solver, to
the best of our knowledge. In addition, the performance of these solvers is strongly affected by the quality of an
estimated interval containing k extreme eigenvalues, making it difficult to accurately evaluate their performance if
interval estimation is used to compute k extreme eigenpairs. The Chebyshev-Davidson algorithm in [34], another
potential candidate, is not included in our experiments due to unavailability of a robust Matlab implementation.

Summaries of computational results on computing the k smallest and largest eigenpairs for the twelve test matrices
are presented in Tables 5.10 and 5.11, respectively, where “maxres” denotes the maximum relative residual norm (51)
at the final solutions, and “time” is the runtime measured in seconds. We observe that at this moderately high accuracy,
RSLRPGN is still able to maintain a clear speed advantage over the other two solvers, and often returns smaller residual
errors than tol = 10−6.

5.5. Further Discussions. Theorem 4.2 does not guarantee that Algorithm 2 converges from any random starting
points, but our numerical results strongly suggest that convergence occur at least with overwhelming probability. In
addition, so far we have not noticed convergence to any non-optimal stationary point. Evidently, this phenomenon has
to do with the fact that beside global minimizers all other full-rank stationary points of the function f(X) are saddle
points (see Proposition 2.4). These saddle points appear to have an extremely low probability to attract SLRPGN iterates
(that contain components from all the eigenspaces when started from a random point, even though some components
are gradually fading away as the iterates converge). How to rigorously verify and quantify such a behavior remains a
subject of further study.

7 Downloadable from http://www.cise.ufl.edu/research/sparse/matrices
8Downloadable from http://soi.stanford.edu/˜rmunk/PROPACK.

http://www.cise.ufl.edu/research/sparse/matrices
http://soi.stanford.edu/~rmunk/PROPACK

30 X. LIU, Z. WEN, AND Y. ZHANG

TABLE 5.10
Comparison results on computing k smallest eigenpairs

Matrix Information EIGS LANEIG RSLRPGN
name k maxres time maxres time maxres time

Andrews 600 4.90e-07 447.08 1.20e-05 552.48 1.74e-08 174.38
C60 200 7.86e-12 12.45 7.23e-06 20.70 1.14e-07 13.13
cfd1 700 4.45e-09 4354.05 1.93e-07 24532.30 1.31e-06 925.57

finance 700 7.44e-10 1644.88 6.01e-07 5849.13 2.52e-06 424.52
Ga10As10H30 1000 4.57e-12 3027.94 4.67e-07 15224.21 5.57e-06 4609.16

Ga3As3H12 600 1.85e-08 572.32 5.86e-07 2394.25 8.33e-06 1016.70
OPF3754 200 1.18e-14 5.07 9.14e-06 3.79 9.61e-13 13.66

hallow water1s 800 2.67e-07 1626.18 2.12e-07 7374.38 2.18e-07 356.05
Si10H16 200 2.17e-12 18.85 2.46e-07 35.15 6.98e-09 18.17
Si5H12 200 4.51e-11 22.69 3.20e-06 42.00 2.45e-10 22.47

SiO 400 2.20e-10 121.24 5.62e-07 268.98 6.85e-09 62.12
wathen100 300 4.68e-09 144.99 1.78e-06 494.74 2.09e-06 92.02

Geometric Means 2.89e-10 200.74 1.13e-06 512.51 5.84e-08 138.04

TABLE 5.11
Comparison results on computing k largest eigenpairs

Matrix Information EIGS LANEIG RSLRPGN
name k maxres time maxres time maxres time

Andrews 600 1.01e-07 224.77 3.17e-06 218.53 1.84e-08 104.60
C60 200 2.88e-07 14.18 1.68e-07 23.66 2.32e-06 9.86
cfd1 700 4.72e-14 295.23 9.32e-06 239.47 2.11e-07 110.71

finance 700 1.92e-14 282.55 2.13e-13 165.40 5.32e-12 69.68
Ga10As10H30 1000 4.15e-14 1531.19 6.67e-07 5050.30 3.15e-06 361.34

Ga3As3H12 600 1.37e-08 343.61 1.00e-06 848.46 1.92e-06 122.38
OPF3754 200 9.94e-07 5.11 1.42e-05 5.33 6.40e-09 11.44

shallow water1s 800 4.39e-09 794.54 2.10e-06 1524.05 7.63e-07 393.44
Si10H16 200 2.76e-10 13.78 6.75e-07 16.75 3.78e-06 11.35
Si5H12 200 1.98e-11 15.65 2.40e-06 27.07 2.52e-06 11.80

SiO 400 3.00e-10 78.62 9.47e-07 103.04 2.67e-06 37.99
wathen100 300 9.61e-07 39.42 1.93e-06 41.63 1.35e-10 27.16

Geometric Means 4.65e-10 92.25 4.46e-07 124.50 1.14e-07 49.55

As is indicated by Theorem 4.3 and the numerical results in Figure 5.2, SLRPGN could become asymptotically
slow on large residual problems when higher accuracies are is required. This is the main reason why we only require a
moderate accuracy in our numerical experiments. Numerical results in Section 5.4 indicate that SLRPGN can be com-
bined with polynomial filtering and multiple Rayleigh-Ritz (RR) calls to achieve higher accuracies on more general
eigenvalue problems. This topic is currently under further investigations.

6. Concluding Remarks. The purpose of this paper is to study a Gauss-Newton method for computing domi-
nant eigenspaces which forms the backbone of principal eigenvalue or singular-value decompositions. The proposed
algorithm is a block algorithm that updates a basis matrix X using AX plus some additional dense matrix operations,
as opposed to updating a basis piece by piece via a sequential process as in Krylov subspace methods. Moreover,
the proposed algorithm does not require basis orthogonalization at each iteration or even periodically if high-accuracy
solutions are not required. We list four main motivating factors behind the study of this Gauss-Newton algorithm.

(a) Block algorithms like SLRPGN can easily take the advantage of warm-starting in iterative settings, while
Krylov subspace methods have difficulty to do so.

(b) Many low-rank approximation or principal component analysis problems are, by their very nature, small-
residual problems for which the proposed Gauss-Newton methodology is known to be effective.

(c) The Gauss-Newton algorithm derived for the SLRP model has a low iteration-complexity. In particular, the
unit-step version is parameter-free (though it may be sub-optimal for large residual problems).

We have analyzed convergence properties of the proposed Gauss-Newton method, including global convergence
with correction and step-size control, convergence regions of the unit-step algorithm without correction, and the
asymptotic rate of convergence, as are given in Theorems 4.1, 4.2 and 4.3. In particular, we recall that a conver-
gence region does not exist for the unit-step Gauss-Newton method when applied to general nonlinear least squares

A GN Algorithm for Symmetric Low-Rank Product Matrix Approximation 31

problems unless the residual is sufficiently small.

We have conducted rather extensive numerical experiments on both randomly generated matrices and matrices
from recent applications in low-rank matrix completion and robust principal component analysis (PCA). Our numerical
results show that, when a low or moderate accuracy is sufficient for large residual problems, our new Gauss-Newton
algorithm either outperforms, or is competitive with, a number of existing algorithms. Most notably, in iterative
settings such as solving matrix completion or robust PCA problems where (i) residuals tend to be small, (ii) warm-
starts are used and (iii) high-accuracy solutions are unnecessary, the Gauss-Newton algorithm can provide multi-fold
speedups over some state-of-the-art Krylov subspace algorithms which remain methods of choice at the present time.

So far in this paper, we have treated the Gauss-Newton algorithm almost entirely in an optimization framework. In
particular, when highly accurate solutions are not necessary, as is the case in solving various application problems, we
only make a single call to the Rayleigh-Ritz procedure to calculate principal eigenpairs after a basis matrix is returned
by the Gauss-Newton algorithm. Such a “pure” optimization algorithm should not be directly taken as a general-
purpose eigensolver for computing highly accurate eigenpairs of difficult matrices. As is suggested by the results in
Section 5.4, however, it does have a potential to become a building component for a general-purpose eigensolver in
combination with suitable techniques from numerical linear algebra.

Acknowledgements. The authors would like to thank Prof. William Hager and two anonymous referees for their
detailed and valuable comments and suggestions.

REFERENCES

[1] JONATHAN BARZILAI AND JONATHAN M. BORWEIN, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), pp. 141–148.
[2] AMIR BECK AND MARC TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on

Imaging Sciences, 2 (2009), pp. 183–202.
[3] MATTHIAS BOLLHÖFER AND YVAN NOTAY, JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric

matrices, Comput. Phys. Comm., 177 (2007), pp. 951–964.
[4] EMMANUEL J. CANDÈS, XIAODONG LI, YI MA, AND JOHN WRIGHT, Robust principal component analysis?, Journal of the ACM, 58

(2011), pp. 1– 37.
[5] EMMANUEL J. CANDÈS AND BENJAMIN RECHT, Exact matrix completion via convex optimization, Foundations of Computational Mathe-

matics, (2009).
[6] EMMANUEL J. CANDÈS AND TERENCE TAO, The power of convex relaxation: near-optimal matrix completion, IEEE Trans. Inform.

Theory, 56 (2010), pp. 2053–2080.
[7] HAW-REN FANG AND YOUSEF SAAD, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput.,

34 (2012), pp. A2220–A2246.
[8] R. FLETCHER, Practical methods of optimization, A Wiley-Interscience Publication, John Wiley & Sons Ltd., Chichester, second ed., 1987.
[9] N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, Finding structure with randomness: Probabilistic algorithms for constructing approx-

imate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.
[10] H. O. HARTLEY, The modified guass-newton method for the fitting of nonlinear regression functions by least squares, Technometrics, 3

(1961), pp. 269–280.
[11] CAI JIAN-FENG, EMMANUEL J. CANDES, AND SHEN ZUOWEI, A singular value thresholding algorithm for matrix completion export,

SIAM J. Optim., 20 (2010), pp. 1956–1982.
[12] ANDREW V. KNYAZEV, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method,

SIAM J. Sci. Comput., 23 (2001), pp. 517–541.
[13] L. KRONIK, A. MAKMAL, M. TIAGO, M. M. G. ALEMANY, X. HUANG, Y. SAAD, AND J. R. CHELIKOWSKY, PARSEC – the pseudopo-

tential algorithm for real-space electronic structure calculations: recent advances and novel applications to nanostructures, Phys. Stat.
Solidi. (b), 243 (2006), pp. 1063–1079.

[14] R. M. LARSEN, Lanczos bidiagonalization with partial reorthogonalization, Aarhus University, Technical report, DAIMI PB-357, Septem-
ber 1998.

[15] R. B. LEHOUCQ, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 551–562.

32 X. LIU, Z. WEN, AND Y. ZHANG

[16] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK users’ guide: Solution of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods, vol. 6 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998.

[17] KENNETH LEVENBERG, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., 2 (1944), pp. 164–
168.

[18] Z. LIN, M. CHEN, L. WU, AND Y. MA, The augmented lagrange multiplier method for exact recovery of a corrupted low-rank matrices.
UIUC Technical Report UILU-ENG-09-2215, 2009.

[19] X. LIU, Z. WEN, AND Y. ZHANG, Limited memory block krylov subspace optimization for computing dominant singular value decomposi-
tions, SIAM Journal on Scientific Computing, 35-3 (2013), pp. A1641–A1668.

[20] DONALD W. MARQUARDT, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963),
pp. 431–441.

[21] BENJAMIN RECHT, MARYAM FAZEL, AND PABLO A. PARRILO, Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501.

[22] HEINZ RUTISHAUSER, Computational aspects of F. L. Bauer’s simultaneous iteration method, Numer. Math., 13 (1969), pp. 4–13.
[23] H. RUTISHAUSER, Simultaneous iteration method for symmetric matrices, Numer. Math., 16 (1970), pp. 205–223.
[24] YOUCEF SAAD, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Mathematics of Computation, 42 (1984),

pp. 567–588.
[25] DANNY C. SORENSEN, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations, in Parallel numerical algo-

rithms (Hampton, VA, 1994), vol. 4 of ICASE/LaRC Interdiscip. Ser. Sci. Eng., Kluwer Acad. Publ., 1996, pp. 119–165.
[26] A. STATHOPOULOS AND C. F. FISCHER, A davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric

matrix, Computer Physics Communications, 79 (1994), pp. 268–290.
[27] G. W. STEWART, Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices, Numer. Math., 25 (1975/76),

pp. 123–136.
[28] WILLIAM J. STEWART AND ALAN JENNINGS, A simultaneous iteration algorithm for real matrices, ACM Trans. Math. Software, 7 (1981),

pp. 184–198.
[29] PING TAK PETER TANG AND ERIC POLIZZI, FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection.

arXiv:1302.0432, 2014.
[30] KIM-CHUAN TOH AND SANGWOON YUN, An accelerated proximal gradient algorithm for nuclear norm regularized least squares prob-

lems, Pacific J. Optimization, 6 (2010), pp. 615–640.
[31] ZAIWEN WEN, CHAO YANG, XIN LIU, AND YIN ZHANG, Trace-penalty minimization for large-scale eigenspace computation, Journal of

Scientific Computing, (2015).
[32] Z. WEN AND Y. ZHANG, Block algorithms with augmented rayleigh-ritz projections for large-scale eigenpair computation, Tech. Report

TR15-01, CAAM, Rice University, 2015.
[33] X. YUAN AND J. YANG, Sparse and low-rank matrix decomposition via alternating direction methods, Pacific Journal of Optimization, 9

(2013), pp. 167–180.
[34] Y. ZHOU AND Y. SAAD, A Chebyshev–Davidson algorithm for large symmetric eigenproblems, SIAM J. Matrix Anal. and Appl., 29 (2007),

pp. 954–971.

