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ABSTRACT

Full-waveform inversion produces highly resolved images of
the subsurface and quantitative estimation of seismic wave veloc-
ity, provided that its initial model is kinematically accurate at the
longest data wavelengths. If this initialization constraint is not
satisfied, iterative model updating tends to stagnate at kinemat-
ically incorrect velocity models producing suboptimal images.
The source-receiver extension overcomes this “cycle-skip” path-
ology by modeling each trace with its own proper source wavelet,
permitting a good data fit throughout the inversion process. Be-
cause source wavelets should be constant (or vary systematically)
across a shot gather, a measure of source trace dependence, for
example, the mean square of the signature-deconvolved wavelet
scaled by time lag, can be minimized to update the velocity

model. For kinematically simple data, such measures of wavelet
variance are mathematically equivalent to traveltime misfit. Thus,
the model obtained by source-receiver extended inversion is close
to that produced by traveltime tomography, even though the proc-
ess uses no picked times. For more complex data, in which energy
travels from source to receiver by multiple raypaths, Green’s
function spectral notches may lead to slowly decaying trace-de-
pendent wavelets with energy at time lags unrelated to traveltime
error. Tikhonov regularization of the data-fitting problem sup-
presses these large-lag signals. Numerical examples suggest that
this regularized formulation of source-receiver extended inversion
is capable of recovering reasonably good velocity models from
synthetic transmission and reflection data without stagnation at
suboptimal models encountered by standard full-waveform inver-
sion, but with essentially the same computational cost.

INTRODUCTION

Full-waveform inversion (FWI) estimates subsurface structure
with high precision by minimizing the differences between the syn-
thesized and recorded data in the least-squares sense (Tarantola,
1984; Virieux and Operto, 2009). However, the domain of convex-
ity of the FWI objective function for velocity estimation is generally
quite small, on the order of a wavelength in diameter, and iterative
optimization methods starting further from the global minimizer
may stagnate at physically meaningless apparent optima. The root
cause of this behavior is the tendency of the predicted data to be out
of phase with, or even orthogonal to, the recorded data in large re-
gions of model space (cycle skipped), and therefore very far away in
the mean-square sense. This problem may be avoided to some extent
by a combination of initial model accuracy, high signal-to-noise ratio
at the lowest recorded frequencies (achieved in some surveys, not in
others), and data fitting in expanding frequency bands, from low to
high (Bunks et al., 1995; Pratt, 1999; Pratt and Shipp, 1999; Sirgue

and Pratt, 2004; Virieux and Operto, 2009). The stagnation problem
is somewhat less severe for fitting of refracted energy (diving or trans-
mitted waves), as noted already by Gauthier et al. (1986).
This paper describes an alternative to least-squares data fitting

and illustrates its behavior with several synthetic examples. The ba-
sis of this approach is the source-receiver extension of constant den-
sity acoustic modeling: An independent source trace is provided for
each data trace. An appropriate choice of the source trace fits the
data trace, for any choice of velocity field. Because the mean-square
error is small for all such extended models (velocity plus source
traces), some other objective must take over the role of fit error in
standard FWI and drive the extended model toward a physical (non-
extended) model that explains the data, hence solving the FWI prob-
lem. All traces in a common-source gather should share the same
source, so it is natural to penalize the deviation from a common
source. Several penalty functions for measuring this deviation are
available. Because only one extended source matches the data for
each velocity model, any such penalty is implicitly a function of
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velocity, and it may be used as an objective fuction in an iterative
optimization algorithm. If the iteration succeeds in driving the ex-
ension penalty to zero, then the process achieves an FWI: The iter-
ates fit the data well throughout the inversion process and converge
to a physical model.
The main objective of this paper is to demonstrate two facts about

source-receiver extended waveform inversion. First, for transmis-
sion data with single arrivals (i.e., a unique raypath between each
source and receiver), the objective function of source-receiver ex-
tended waveform inversion is approximately proportional to the
mean-square traveltime error. It follows that under these circumstan-
ces, the iterative inversion as envisioned in the preceding paragraph
succeeds in finding a (physical) model that fits the data, that is,
achieves an FWI. This process produces roughly the same model
as does traveltime tomography: In effect, it performs tomography
with waveform data. The inversion converges from initial models that
are hopelessly cycle skipped for standard data-domain FWI, as does
traveltime tomography.
Second, for transmission data with multiple arrivals (i.e., more

than one distinct raypath connecting at least some source-receiver
pairs), the connection between traveltime tomography and source-
receiver waveform inversion is broken, and the source-receiver ob-
jective function exhibits the same tendency to stagnate at nonopti-
mal solutions as does FWI. This observation applies in particular to
inversion of diving wave data: If the diving waves are triplicated,
source-receiver extended inversion is no more likely to converge
to a useful velocity model than is FWI. We offer an explanation of
this phenomenon and numerical examples that demonstrate it. In
brief, multiple arrivals with certain amplitude relations among the
branches lead to slowly decaying components in the extended source,
contributing energy at large lags having nothing to dowith the overall
traveltime error between the predicted and observed data traces.
We suggest a partial remedy for this misbehavior: From the spec-

tral point of view, it arises from small eigenvalues of the normal op-
erator or Hessian, equivalent to notches in Green’s function spectrum.
As is routine with other ill-conditioned inverse problems, one can
suppress the effect of small eigenvalues by Tikhonov regularization
(Engl et al., 1996) — in other words, prewhitening deconvolution
by the Green’s function. Provided with an adequate regularization
weight parameter, this regularized source-receiver extended inversion
tends to recover the convexity exhibited by the unregularized method
in the single-arrival case, and it converges to an approximation to the
global minimizer. A large regularization weight is required to achieve
this goal, causing substantial data misfit (up to 50% in several of our
examples). We illustrate all of these claims with numerical examples.
The regularization weights used in the examples were chosen by
means of a discrepancy principle, that is, setting them, so that the
initial data misfit using the regularized extended model is within lim-
its proportional to the initial physial model misfit. The necessary pro-
portion of the initial misfit appears to be substantial — we have used
20%–50% in our examples.
Although our theoretical developments pertain to transmission

data, the source-receiver extension applies also to the reflection con-
figuration. For completeness, we include an example in which a salt
lens is recovered from reflection data via source-receiver inversion.
Rather heavy regularization seems to be required in this case as well.
The source-receiver extension concept is not new: Song and

Symes (1994), Symes (1994), Plessix et al. (2000), Plessix (2000),
Pratt and Symes (2002), and Luo and Sava (2011) investigate data

fitting via source-receiver extension to enhance the convergence of
FWI. Warner and Guasch (2014, 2016) use a very similar approach
as part of adaptive waveform inversion (AWI) and shows its capac-
ity to enlarge the domain of attraction for FWI and its practicality
for application to contemporary 3D field surveys. Of several pos-
sible choices of penalty, we use the dispersion about zero lag sug-
gested in several of these works (Plessix, 2000; Luo and Sava, 2011;
Warner and Guasch, 2014, 2016). The relation between source-
receiver extended waveform inversion and traveltime tomography
is explained by Song and Symes (1994) in the context of crosswell
waveform tomography. Symes (1994) shows that this link is gen-
erally broken when multiple arrivals are present in transmission
data, using an argument based on causal deconvolution. Neither
of these older works actually implemented source-receiver extended
inversion, as we do here. Plessix et al. (2000) and Plessix (2000) ap-
ply the source-receiver extension approach to field crosswell data.
They observe the effect described by Symes (1994), and avoided it
by using source-receiver pairs with sufficiently different depths to
avoid most guided wave energy. Tikhonov regularization is used
in many inversion algorithms, including some of the source-receiver
type mentioned above, but our use of regularization specifically to
control the slowly decaying energy produced by multiple arrivals
seems to be new. Several authors (Luo and Sava, 2011; Warner and
Guasch, 2014, 2016) have applied source-receiver extension methods
to reflection configurations.
It should be understood that many factors could lead to failure of

source-receiver extension to yield an objective with a large domain
of convexity about its global minimizer. To name just a few such
factors, reflected waves in transmission data, or multiply reflected
waves for reflection data, or out-of-plane reflections for 2D data, or
shear or converted waves are all potentially capable of causing fail-
ure. However, we emphasize that even in the complete absence of
these other factors, with data that actually arises in transmission
through a slowly varying background, the presence of multiple en-
ergetic arrivals is sufficient to derail this approach. As our third ex-
ample underlines, this conclusion applies particularly to diving
wavefields (the principal data of conventional FWI), which may
easily contain multiple arrivals from a localized source.
In the following pages, we first review the theoretical foundation

of source-receiver extended waveform inversion, and we explain the
structure of the algorithm. Then, we illustrate its behavior with four
2D numerical examples. The first two are set in an idealized cross-
well geometry, and they illustrate the capability of source-receiver
extended waveform inversion to provide tomographic-quality sol-
utions, the obstacle to velocity updating posed by multiple arrivals,
and a partial remedy through Tikhonov regularization. The other
two examples use surface acquisition geometry. The first of these
is a pure diving wave problem, with no reflections. The target model
generates multiple raypaths in the diving wavefield, with the same
damaging effect on velocity updating via source-receiver extended
waveform inversion as in the previous crosswell example. Tikhonov
regularization, with a regularization weight chosen by trial and er-
ror, suffices for these examples to restore convergence to a useful
model. Finally, we include an example of surface data inversion via
source-receiver extension, in which a model of a salt lens embedded
in sediments is recovered from reflection data. All examples begin
with homogeneous or simple layered initial guesses. In all cases,
attempted FWI fails, whereas the regularized source-receiver ex-
tended inversion succeeds. In the “salt” example, the inclusion
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emerges from the background without any special effort. All except
the first example require regularization, with the regularization
weight being estimated by trial and error.
We end with a discussion of several obvious or not-so-obvious

capabilities and limitations of source-receiver extended waveform
inversion.

THEORY

The acoustic model of seismic wave propagation treats the excess
pressure field u as the solution of the acoustic-wave equation:

1

v2
∂2u
∂t2

− ∇2u ¼ δðx − xsÞfðtÞ; (1)

u ¼ 0; t ≪ 0: (2)

The energy source is modeled here as a point isotropic radiator with
source pulse fðtÞ. The forward-modeling operator maps the source
to the data traces, presumed to be perfect pressure measurements,
and depends on the wave velocity:

S½v�fðxr; t; xsÞ ¼ uðxr; t; xsÞ: (3)

In equations 1 and 3, the source and receiver locations, xs and xr,
respectively, define the acquisition geometry of the survey.
The standard least-squares inversion, or FWI, problem is: Given

fðtÞ and dðxr; t; xsÞ, determine vðxÞ, so as to minimize

JFWI½v� ¼
1

2
kS½v�f − dk2: (4)

The vertical bars denote the mean square or l2-norm squared, in
other words, the sum over all active values of xr; t, and xs, possibly
scaled by cell volume or other factors.
As mentioned in the “Introduction” section, the function defined

in equation 4 is difficult to minimize directly, so we will explore an
alternative approach to its minimization through models that violate
at least some of the modeling assumptions made above.

Source-receiver extended modeling

The source-receiver extension introduces a trace-dependent source
function f̄ðxr; t; xsÞ to replace fðtÞ. The extended acoustic system is

1

v2
∂2ū
∂t2

− ∇2ū ¼ δðx − xsÞf̄ðxr; t; xsÞ; (5)

ū ¼ 0; t ≪ 0; (6)

and the extended forward-modeling operator is defined by sampling
the extended pressure field ū as before:

S̄½v�f̄ðxr; t; xsÞ ¼ ūðxr; t; xsÞ: (7)

Because the extended source is trace dependent, it is straightforward
to fit the data, which is not the case in general with the nonextended
source unless the data kinematics are well-predicted by the velocity.
We denote by G½v�ðxr; t; xsÞ the causal Green’s function of the
acoustic-wave equation, that is, the solution of the system 1, 2 with
fðtÞ ¼ δðtÞ. Then

S̄½v�f̄ðxr; t; xsÞ ¼ G½v�ðxr; t; xsÞ �t f̄ðxr; t; xsÞ: (8)

Equation 8 shows that computing the source-receiver extended
forward map involves minimal expense beyond that of the nonex-
tended forward map defined in equation 3. Because G½v� ¼
S½v�δðtÞ, computing the action of S̄½v� requires computing the action
of S½v�, followed by one additional convolution per output trace.
If we denote by ðG½v��Þ−1 a convolution inverse to G½v�, then

S̄½v�ðG½v��Þ−1dðxr; t; xsÞ ¼ dðxr; t; xsÞ: (9)

That is, S½v�−1 ¼ ðG½v��Þ−1. This operation assumes that Green’s
function has a convolution inverse, of course.
In this paper, we will assume that all traces are defined on the

same time interval ½0; T�. To accommodate timing errors associated
with erroneous velocities, we extend the time interval for the (ex-
tended) source and the data to ½−T; T�, padding the data with zeros
for t < 0. Then, we regard all functions as periodic in T of period 2T,
and use circulant convolution, which of course in the Fourier domain
amounts to multiplication. So, the convolution inverse of Green’s
function is simply its reciprocal in the Fourier domain, which is a
priori available only if the Fourier transform has no zeros. Sometimes
this is the case, sometimes not, as will be illustrated below.
Assuming that S½v� is invertible, the extended source that ex-

plains the data d is (exactly)

f̄½v� ¼ S½v�−1d: (10)

Extended source-receiver waveform inversion

The extended source constructed in equation 10 is mostly likely
unphysical, in which the physics defined at the beginning of this
section required that sources are uniform across all traces; that
is, f̄ðxr; t; xsÞ ¼ fðtÞ. Because the data can be fit (assuming decon-
volvable Green’s function) for any velocity, it is only this require-
ment that provides velocity updates. A simple way to quantify
failure of the extended source to match a physical one uses an an-
nihilator, that is, an operator A that produces a zero result when
applied to a physically consistent source. Two possible choices are
differentiation of the source with respect to xs and xr (Song and
Symes, 1993; Pratt and Symes, 2002), or forcing the convolution
quotient of the extended and target (nonextended) sources to resem-
ble the delta function, for example, by penalizing the second mo-
ment of the squared signal, also known as dispersion about zero lag
(Plessix et al., 1999; Luo and Sava, 2011; Warner and Guasch,
2014, 2016). We will use the second option in the work reported
below because it is somewhat simpler to implement. Specifically,

Af̄ðxr; t; xsÞ ¼ tðf†Þ � f̄; (11)

where f† is an approximate inverse, or shaping filter, for the known
(common to all traces) source wavelet f. It satisfies

f† � f ¼ χ; (12)

in which χ is an approximate (band-limited) delta function, for ex-
ample, a zero-phase band-pass filter.
If we apply A to the v-dependent extended source f̄½v� defined in

equation 10, we obtain an index of velocity correctness: If the veloc-
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ity model and data are kinematically compatible, then all of the in-
verted sources f̄½v�ðxr; t; xsÞ are approximately the same as the
source fðtÞ; hence, signature deconvolution should yield an approxi-
mate delta function at zero lag, and that is in turn nearly annihilated
by multiplication by t. Kinematic disagreement between the model
and data should lead to larger Af̄.
We capture this idea in an objective function:

J½v� ¼ 1

2
kAf̄½v�k2: (13)

In effect, the model over which this objective is to be optimized in-
cludes the velocity vðxÞ and the extended source function f̄ðxr; t; xsÞ;
hence, it is an extended model. The optimization is treated as a
nested problem, with f̄ determined as a function of v via deconvo-
lution (equation 10); then v is determinined by minimizing J½v�
(equation 13).

Remark 1
The nested design of the optimization problem defined in equa-

tions 10, 11, and 13 is essential, not merely a computational
convenience. Minimization of alternative objective functions of
vðxÞ; f̄ðxr; t; xsÞ, such as the penalty function:

Jα½v; f̄� ¼
1

2
kAf̄½v�k2 þ α2

2
kS̄½v�f̄ − dk2; (14)

over v and f̄ jointly, turns out to be very inefficient, with (in prin-
ciple) arbitrarily slow convergence. The cause of this misbehavior
is the very different sensitivities of Jα to v and f̄. A change in f̄
changes J by an amount proportional to the mean square of f̄. In
contrast, a change in v results in a change in traveltimes, therefore,
in general a shift in the events in S̄½v�f̄. The rate of change of Jα
with respect to v therefore involves the derivative (in t) of f̄, which
is roughly speaking bigger than f̄ in mean square by a factor of the
maximum frequency. Therefore, relatively high-frequency data, de-
sirable from the point of view of model resolution, yield very differ-
ent sensitivities to f̄ and v, that is, ill conditioning of the Hessian of
Jα. Objectives with ill-conditioned Hessians cause local optimiza-
tion algorithms to perform poorly (see, e.g., Nocedal and Wright
[1999] for information on this point). A problem more amenable
to solution via local optimization can be recovered by optimizing
Jα first over f̄ to create a reduced objective depending only on v,
which is then optimized over v — that is, a nested optimization,
similar to that defined in equations 10 and 13. See Symes (2015) for
an explanation, and Huang and Symes (2015b) for an explicit il-
lustration of the performance contrast between nested and non-
nested optimization for a different model extension. We will not use
the penalty function Jα in the work reported here.

Relation with traveltime tomography

Consider for the moment 3D wave propagation through slowly
varying velocity fields v, for which the associated ray field connects
each source-receiver pair with a unique ray. “Slowly varying” means
smooth on the wavelength scale, lacking embedded reflectors, domi-
nated by relatively low spatial frequencies. For such smooth single-
arrival models, geometric acoustics provides asymptotic Green’s
function approximation:

G½v�ðxr; t; xsÞ ≈ a½v�ðxr; xsÞδðt − τ½v�ðxr; xsÞÞ; (15)

where a is the geometric amplitude and τ is the traveltime, for the ray
between xs and xr; of course, both depend on v.
Assume that the data d are the image under S of a physical model

v�; f, with v� producing a single arrival, that is, enjoying the asymp-
totic Green’s function approximation 15. Then

dðxr; t; xsÞ ¼ S½v��fðxr; t; xsÞ
≈ a½v��ðxr; xsÞfðt − τ½v��ðxr; xsÞÞ: (16)

Assuming that the trial velocity v also produces single arrivals, the
extended source f̄½v� defined by equation 10 is

f̄½v� ≈ a½v��ðxr; xsÞ
a½v�ðxr; xsÞ

fðt − ðτ½v��ðxr; xsÞ − τ½v�ðxr; xsÞÞÞ:
(17)

From equations 11 to 13

J½v�≈
X
xr;xs

�
a½v��ðxr;xsÞ
a½v�ðxr;xsÞ

�
2

×
Z

dtt2ðχðt− ðτ½v��ðxr;xsÞ− τ½v�ðxr;xsÞÞÞÞ2

¼
X
xr;xs

�
a½v��ðxr;xsÞ
a½v�ðxr;xsÞ

�
2

×
Z

dtðtþðτ½v��ðxr;xsÞ− τ½v�ðxr;xsÞÞÞ2χðtÞ2: (18)

Because χ is assumed zero phase (symmetric about t ¼ 0), this

¼
X
xr;xs

�
a½v��ðxr; xsÞ
a½v�ðxr; xsÞ

�
2
Z

dtt2χðtÞ2

þ
X
xr;xs

�
a½v��ðxr; xsÞ
a½v�ðxr; xsÞ

�
2

ðτ½v��ðxr; xsÞ − τ½v�ðxr; xsÞÞ2

×
Z

dt χðtÞ2: (19)

Because χ is an approximate delta, its square is concentrated near
t ¼ 0, so the second moment of its square (the integral in the first
summand in equation 19) is small. We conclude that

J½v�≈
�Z

dtχðtÞ2
�X

xr;xs

�
a½v��ðxr;xsÞ
a½v�ðxr;xsÞ

�
2

×ðτ½v��ðxr;xsÞ−τ½v�ðxr;xsÞÞ2: (20)

That is, J½v� is approximately a weighted mean of the square trav-
eltime error. The weights are the squared amplitude ratios.
Assuming that the trial velocities v are kept safely away from

creating caustics, the ratio of amplitudes between trial and target
(v�) velocities lies between two positive numbers, the exact values
of which depend on precisely what is meant by “safely away.” If J
approaches its minimum value (zero) through a sequence of such
velocity models, then the (unweighted) mean-square traveltime
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error must approach zero also, and vice versa. Thus, global mini-
mization of J is equivalent to global minimization of the standard
mean-square traveltime tomography objective. Similar arguments
show that the gradient of J is small only when the gradient of
the traveltime tomography objective is small, and that the Hessian
of J at the exact solution (v ¼ v�) dominates the Hessian of the
traveltime tomography objective (for details, see Huang and Symes,
2015a). That is, there is a domain in model space, whose size is
independent of the bandwidth of the data, in which minimization
of J determines the same aspects of the velocity model as does trav-
eltime tomography.
It is possible to make the foregoing statements mathematically

precise: That is, the approximations indicated above are all in the
same sense (high-frequency asymptotics), and sets of models
“safely” far from generating caustics can be precisely characterized
(Song, 1994). It is also possible to justify precisely the same con-
clusions for 2D propagation. These refinements are beyond the
scope of this paper, but they are consistent in every way with the
proposition that minimization of the objective J defined here is
effectively equivalent to traveltime tomography for models that
generate only single arrivals.

Effect of multiple arrivals

The story changes dramatically if the data exhibit multiple ener-
getic arrivals, even if in other ways it conforms to the limitations
mentioned in the last section, that is, transmission through a slowly
varying material model. As pointed out already in Symes (1994),
with multiple energetic arrivals, it is possible that the (unregular-
ized) source-receiver extended waveform inversion objective may
be as nonconvex as the FWI objective. Consequently, the source-
receiver extended waveform inversion algorithm can fail to produce
kinematically accurate velocity estimates.
We present here a different viewpoint from Symes (1994), who

based his discussion on causal deconvolution. As mentioned earlier,
our work uses circulant deconvolution (Fourier division) instead.
From this point of view, the pathology is a by-product of spectral
notches that may develop in the Green’s function. Although this
argument does not yield the precise conclusion about nonconvexity,
it is simpler and indicates another manifiestation of the underlying
pathology.
For the generic source-receiver pair (not lying precisely on a

caustic), the 3D Green’s function takes the asymptotic form:

G½v�ðxr;t;xsÞ≈
XN
i¼0

ai½v�ðxr;xsÞHνiδðt−τi½v�ðxr;xsÞÞ; (21)

where ai is the geometric amplitude and τi is the traveltime, for the
ith ray connecting xs and xr. Here, H is the Hilbert transform, and
its power νi is either zero or one and is related to the Maslov index
of the ray in the ray field emanating from the source.
The S½v�−1 amounts to deconvolution byG½v�. However, the Fou-

rier transform of G is an exponential sum; hence,it may have zeros
or approximate zeros (or, as they are known in this literature,
notches). The simplest cartoon example, actually relevant to a syn-
thetic example presented later in this paper, is

GðtÞ ≈ aðδðtÞ þ δðt − ΔtÞÞ: (22)

Then, Sf ¼ G � f ¼ 0 if fðtÞ ¼ cosðπt∕ΔtÞ; that is, the Fourier
transform of G vanishes at odd multiples of 1∕Δt.
If G has literal zero Fourier components, as in the cartoon exam-

ple, then equation 9 may not have a solution, that is, G does not
have a convolution inverse, and if equation 9 has a solution, it is
not unique. More likely to occur are very small values of the Fourier
transform for which the corresponding sinusoid will be vastly over-
emphasized in the solution of equation 9. If the data d are noise-free
data from the same model, that does not matter because the small
Fourier component of G is already part of the data. However, if the
trial model is not very close to the model used to generate the data,
then the corresponding data component is likely to be large, result-
ing in a large sinusoidal contribution at the notch frequency and
receiver location to the extended source. Because the sinusoid is
nondecaying, f̄½v� defined in equation 10 acquires energy at time
lags that have nothing to do with the overall traveltime difference
between the trial model and the global minimizer. Thus, the con-
nection between the traveltime error and the value of J is broken
in this case.
The more refined analysis presented by Symes (1994) actually

shows that the domain of convexity of source-receiver extended in-
version generally has diameter proportional to a wavelength, similar
to FWI: Convergence requires that the initial model predict data
event times to within a half-wavelength.

Regularized source-receiver extended inversion

To make an estimation of the extended source f̄ robust against
spectral zeros of Green’s function, we replace equation 9 with the
regularized least-squares problem: Choose f̄ to minimize

1

2
kS̄½v�f̄ − dk2 þ ε

2
kf̄k2: (23)

The minimizer (again denoted f̄½v�) solves the normal equation

ðS̄½v�TS̄½v� þ ε2IÞf̄½v�ðxr; t; xsÞ ¼ S̄½v�Tdðxr; t; xsÞ; (24)

and it depends on v; d, and ε. The matrix of the operator on the left
side of equation 24 is the autocorrelation ofG, “prewhitened” by the
addition of ε2. The effect of the prewhitening is to uniformly in-
crease the entire power spectrum of G, thus making the matrix on
the left side of equation 24 better conditioned. Of course, the normal
equation 24 is again a convolution equation, and it can be solved
exactly by means of the Fourier transform.
We define the regularized source-receiver extension objective

J½v� again by equation 13, but now with f̄½v� the solution of
equation 24.
We expect the modified J½v� to oscillate less than the nonregu-

larized version discussed above: Regularization reduces the very
large components in the extended source, arising from the spectral
notches, proportionally more than other components that presum-
ably contribute energy at time lags more proportional to the overall
traveltime error between the trial and target models. It is easy to see
from low-dimensional matrix analogs that we cannot expect the
regularization parameter ε to be particularly small.
We use a version of the discrepancy principle (control of the

data residual) to set ε. We compute the relative initial data residual
e0 and the relative extended initial data residual ē0 using the initial
velocity v0:
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e0 ¼
kS½v0�f − dk

kdk ; ē0 ¼
kS̄½v0�f̄½v0� − dk

kdk ; (25)

in which f is the known source wavelet and f̄ is the extended source
function, estimated by solving equation 24 with the initial velocity.
We adjusted ε by trial-and-error until the ratio ē0∕e0 lay in the range
of 0.2–0.5. The (somewhat arbitrary) bounds are chosen to ensure
that ε is large enough that the residual is substantially larger than
zero (the expected value for ε ¼ 0), but small enough that the data
are substantially better fit than is possible with a physical source
(f̄ ¼ f). Thus, ε is large enough to suppress the notch contributions
to some exent, but small enough to ensure that the larger events in
the data must be fit to some extent. This method for selecting ε has
only a heuristic justification, but has functioned well in the exam-
ples shown below and in other similar examples not shown here.

Gradient computation

We use a gradient-based method tominimize J. Appendix A shows
how to compute this gradient. We define w̄ to be the solution of

ðS̄½v�TS̄½v� þ ε2IÞw̄ ¼ ATAf̄ (26)

and r̄ by

r̄ ¼ w̄⋆ðd − S̄½v�f̄Þ − f̄⋆S̄½v�w̄; (27)

where ⋆ denotes crosscorrelation. Then

∇J½v� ¼ ðDS̄½v�δÞTr̄; (28)

in which ðDS̄½v�δÞT is the well-known impulsive reverse time migra-
tion operator (see Appendix A for details).

Computational cost

The computational cost of source-receiver extended waveform
inversion is comparable with the cost of standard least-squares
FWI. Each function value J½v� requires computation of the Green’s
function (therefore one modeling step), a deconvolution (solution of
equation 24), and some vector algebra. A gradient evaluation∇J½v�,
as defined in the last section, adds another deconvolution (equa-
tion 26), and two more convolutions (equation 27) and some more
vector algebra, followed by reverse time migration (equation 28).
Thus, each step of a gradient-based optimization is of roughly the
same cost as a step of the same algorithm to FWI. Concerning a
comparison of total costs over the entire iteration, all that can be
said in general is that an algorithm that produces a useful approxi-
mation in a reasonable number of steps is in a real sense infinitely
cheaper than one that does not.

FWI as postprocess

In principle, the principal goal of inversion is the production of an
explanatory physical model that fits the data. The regularization
level required to induce convergence of source-receiver extended
inversion from seriously wrong initial models has a negative effect
on data fit. However, in the examples to follow, regularized source-
receiver inversion produces kinematically accurate velocity models,
while relaxing the data fit constraint of the unregularized algorithm.
Its output should be acceptable input to conventional FWI, and the
latter algorithm should reduce the remaining data misfit. Therefore,

we shall in most cases follow inversion via
source-receiver extension with FWI initialized
on the final source-receiver model.

NUMERICAL EXAMPLES

We present two sets of numerical examples il-
lustrating the performance of source-receiver ex-
tended waveform inversion in comparison with
FWI. The first set uses an idealized crosswell
geometry, with the source locations on one face
of the rectangular scattering domain, the receiv-
ers on the opposite face. The second set mimics
surface acquisition, with sources and receivers on
the same face of the rectangular domain.
We use the limited memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) algorithm with a
backtracking line search to assure compliance
with the weak version of Wolfe’s conditions for
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Figure 1. First crosswell example: target velocity model with slow
Gaussian anomaly. The lowest velocity is 1.7 km∕s.
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Figure 2. First crosswell example: comparison of shot gathers for the center shot
zs ¼ 1 km: (a) target data and (b) simulated data using initial velocity.
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global convergence to a stationary point (Nocedal and Wright,
1999). For each example, we will apply LBFGS to solve the full-
bandwidth FWI problem and to minimize the source-receiver ex-
tended waveform inversion objective defined in equation 13, and
the FWI objective (equation 4). Forward modeling is implemented
in the frequency domain, using a nine-point (fourth order and cross
shaped) stencil to approximate the Helmholtz operator, and a direct
matrix solver. The least-squares problems defined in equations 24
and 26 are diagonal in the Fourier domain because of our use of
circulant deconvolution, so these are solved to machine precision
as well. The objective function and gradient are therefore computed
to machine precision, at the discrete level.

Crosswell acquisition geometry

The first two examples use idealized crosswell acquisition, that
is, sources lie on one boundary face of a rectangular scattering re-
gion, and receivers are on the opposite face. The first example
shows that source-receiver extended waveform inversion without
regularization (i.e., ε ¼ 0) may converge to a reasonable solution
of inverse problem when FWI fails to do so. In this example, the
data exhibit only a single arrival (although this is partly as a result of
wavefront healing). Our previous analysis (Huang and Symes,
2015a) explains the behavior of source-receiver extended waveform
inversion in this case: When raypaths from the source to receiver are
unique, source-receiver extended waveform inversion is equivalent
to least-squares traveltime tomography, and it delivers a comparable
solution. The second example shows that unregularized source-
receiver extended waveform inversion may fail in the same way
as FWI if multiple arrivals are present in the data with significant
energy. We observe that this phenomenon may be understood as
ill-posedness of the inner (source-estimation) problem, and that
Tikhonov regularization can restore apparent convergence to a to-
mographic-quality solution.

Weak low-velocity lens

The target velocity model for the first example is a Gaussian low-
velocity anomaly embedded in a constant background velocity v0 ¼
2 km∕s (Figure 1), i.e.,

vðx; zÞ ¼ 2 − 0.7e−
ðx−1Þ2
0.52

−ðz−1Þ2
0.252 km∕s: (29)

The sources and receivers are placed at xs ¼
0.01 km and xr ¼ 1.99 km, respectively. The
39 shots are evenly spaced between zs ¼ 0.05

and 1.95 km, and 199 receivers are located from
zr ¼ 0.01 to 1.99 km with Δzr ¼ 0.01 km.
For display purposes, we synthesize a time-

domain solution of the target problem from fre-
quency-domain fields, and we show the recorded
data for the center shot at zs ¼ 1 km in Figure 2a.
The effective time-domain source is a boxcar
0.5–30 Hz band-pass filter. We use the constant
velocity v0 ¼ 2 km∕s as the initial model. The
simulated data in Figure 2b using the initial
velocity for the centered shot show a traveltime
error larger than a half-wavelength at the median
frequency of 12 Hz for the central data traces of
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Figure 3. First crosswell example: inverted velocity after 21 LBFGS
iterations with 3−20 Hz band-pass data by (a) FWI and (b) source-
receiver extended waveform inversion (ε ¼ 0). Initial velocity is
v0 ¼ 2 km∕s in both cases.

Receiver (km)

T
im

e 
(s

)

0.5 1 1.5

−1

−0.5

0

a) b)

0.5

1

A
m

p
lit

u
d

e

−3

−2

−1

0

1

2

3

Receiver (km)

T
im

e 
(s

)

0.5 1 1.5

−1

−0.5

0

0.5

1

A
m

p
lit

u
d

e

−3

−2

−1

0

1

2

3

Figure 4. First crosswell example: extended sources for central shot zs ¼ 1 km using
(a) initial velocity and (b) inverted velocity by source-receiver extended waveform in-
version.
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the recorded data. For inversion, we use the data frequency band
from 3 to 20 Hz. After 21 LBFGS iterations, FWI is stuck in a
physically meaningless solution, whereas source-receiver extended
waveform inversion produces a reasonable estimate of v (see Fig-
ure 3a and 3b for the detailed result). To further confirm the kin-

ematic accuracy of the source-receiver extended waveform
inversion solution, we display the extended sources at the initial
velocity (Figure 4a) and the final inverted velocity (Figure 4b).
We can understand this example on basis of theory presented in

the last section. Examination of Figure 2a reveals that a caustic
likely is present in the ray field of this example, but that finite fre-
quency has “healed” it and presented an effective single arrival.
Therefore, we would expect the source-receiver extended inversion
to converge even from an initial model that is cycle skipped for FWI
to a model of tomographic quality, and indeed it does.

Strong low-velocity lens

The second example (Figure 5) keeps the shape velocity anomaly,
but makes it stronger:

vðx; zÞ ¼ 2 − 0.6e−
ðx−1Þ2
0.52

−ðz−1Þ2
0.252 : (30)

Now, the lowest velocity of this model is 1.4 km∕s. We use the
same source and receiver geometry and the data frequency band
as the first example. Synthetic data (Figure 6a–6c) for three shot
positions zs ¼ 0.1; 0.5; 1 km show energetic later arrivals. For com-
parison, Figure 7a–7c shows simulated data with initial velocity
v0 ¼ 2 km∕s at the same shot positions.
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Figure 5. Second crosswell example: target velocity model with
slow Gaussian anomaly. The lowest velocity is 1.4 km∕s.
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Figure 6. Second crosswell example: shot gathers of recorded data for shot at (a) zs ¼ 0.1 km, (b) zs ¼ 0.5 km, and (c) zs ¼ 1 km.
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Figure 7. Second crosswell example: shot gathers of simulated data using initial velocity v0 for shot at (a) zs ¼ 0.1 km, (b) zs ¼ 0.5 km, and
(c) zs ¼ 1 km.
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The misfit of traveltimes in the initial data is even more severe
than was the case in the first example, and FWI indeed fails as we
expect (Figure 8a). However, source-receiver extended waveform

inversion without regularization also fails to produce a kinemati-
cally accurate velocity after 100 LBFGS iterations (Figure 8b),
for the reasons explained in the “Theory” section.
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Figure 8. Second crosswell example: inverted velocity after
100 LBFGS iterations with 3−20 Hz data by (a) FWI and (b) un-
regularized source-receiver extended waveform inversion (ε ¼ 0).
The initial velocity is v0 ¼ 2 km∕s in both cases.
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Figure 9. Second crosswell example: shot gathers of simulated data using trial velocity vt ¼ 0.8vþ 0.2v0 for shot at (a) zs ¼ 0.1 km,
(b) zs ¼ 0.5 km, and (c) zs ¼ 1 km.
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To illustrate the mechanism of failure, we simulated data in Fig-
ure 9a–9c with the trial velocity vt ¼ 0.8vþ 0.2v0, which is close to
the target velocity model. We can see there are still quite obvious
triplications present in the simulated data. Taking a single trace zr ¼
0.55 km (Figure 10a) for the center shot gather at zs ¼ 1 km, for
example, we plot the spectrum of the normal operator S̄T S̄, which
is the same as the power spectrum of Green’s function (Figure 10b).
For traces with multiple energetic arrivals, the spectrum oscillates and
almost vanishes at several frequencies, suggesting the existence of an
effective numerical null space of the normal operator.
To illustrate the effect of regularization, we plot the extended

source, estimated by solving equation 24 with the trial velocity vt,
for regularization parameters ε ¼ 10−6; 0.5; 5 (Figure 11a–11i). Os-
cillatory and nondecaying traces are present in the extended source
function f̄½vt� for ε ¼ 10−6, but they are suppressed by increasing ε.
The objective function for different values of ε ¼ 10−6; 0.5; 5 on

a line segment in model space, between the initial and target veloc-
ities, appears in Figure 12a–12c. Parameter α ¼ 0 corresponds to

the target velocity, α ¼ 1 to the initial velocity. These plots show
that the region of convexity of source-receiver extended waveform
inversion objecitive is quite small for small ε; however, it expands to
include the initial velocity for a large enough ε.
As mentioned before, the arrival time error in the initial 3–20 Hz

data (Figure 7a–7c) is too large to permit successful FWI, starting
with v0 ¼ 2 km∕s (Figure 8a). We find that ε ¼ 5 satisfies the
discrepancy criterion articularted in the “Theory” section. With this
choice, 15 LBFGS iterations produce the velocity estimate in
Figure 13a. The position and shape of Gaussian anormaly are well-
resolved. In addition, the extended source functions are almost
focused on the zero-lag time after regularized source-receiver ex-
tended waveform inversion (Figure 14a–14c), indicating that the
final velocity estimate is kinematically accurate. In view of its kin-
ematic accuracy, the final estimate from source-receiver extended
waveform inversion should be a usable initial estimate for FWI: In-
deed, 25 LBFGS iterations of full-bandwidth FWI produce a quite
accurate inversion (Figure 13b).
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Figure 11. Second crosswell example: plots of regularized extended source functions for three regularization parameters ε ¼ 10−6; 0.5; 5 for shot
at zs ¼ 0.1; 0.5; 1 km, respectively. (a) ε ¼ 10−6, zs ¼ 0.1 km; (b) ε ¼ 10−6; zs ¼ 0.5 km; (c) ε ¼ 10−6; zs ¼ 1 km; (d) ε ¼ 0.5; zs ¼ 0.1 km;
(e) ε ¼ 0.5; zs ¼ 0.5 km; (f) ε ¼ 0.5; zs ¼ 1 km; (g) ε ¼ 5; zs ¼ 0.1 km; (h) ε ¼ 5; zs ¼ 0.5 km; and (i) ε ¼ 5; zs ¼ 1 km.

R162 Huang et al.

D
ow

nl
oa

de
d 

09
/1

4/
17

 to
 1

28
.4

2.
22

6.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Surface acquisition geometry

In the remainder of this section, we apply regularized source-
receiver extended waveform inversion to waveform inversion to
two examples with surface acquisition geometry; that is, the sources
and receivers are separated by a hyperplane from the scattering
region.

Diving wave inversion

The predominant contemporary use of FWI is to invert diving
wave energy (Virieux and Operto, 2009; Vigh et al., 2013). This
example examines the use of source-receiver extended waveform
inversion, with and without regularization, for a model generating
diving waves with triplications. The model is smooth on the wave-
length scale, hence, transparent: The data consist only of direct and
diving waves, with no reflections.
The target model (Figure 15a) consists of a low-velocity Gaus-

sian anomaly embedded in a linearly increasing background veloc-
ity. The 100 receivers are placed at a depth of zr ¼ 0.04 km from
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Figure 12. Second crosswell example: objective function evalu-
ated at velocities ð1 − αÞvþ αv0; 0 ≤ α ≤ 1, for various choices
of regularization parameter ε: (a) ε ¼ 10−6, (b) ε ¼ 0.5, and
(c) ε ¼ 5.
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Figure 13. Second crosswell example: (a) inverted velocity by
regularized source-receiver extended waveform inversion (ε ¼ 5)
after 15 iterations and (b) FWI result after 25 iterations using the
regularized source-receiver extended waveform inversion in (a) as
initial velocity.
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xr ¼ 0.04 to 7.96 kmwith Δxr ¼ 0.08 km. The 67 shots are placed
at a depth of zs ¼ 0.08 km from xs ¼ 0.04 km to xr ¼ 7.96 km,
with Δxs ¼ 0.12 km. The frequency band used in the inversion is
5–11 Hz. The choice ϵ ¼ 10 gives ē0 ¼ 6.45% and e0 ¼ 20.95%,
satisfying the criterion explained earlier.
The initial model in the iterative inversion is the linearly increas-

ing background (Figure 15b), which produces diving wave arrivals
without triplication.
Comparison of the data for target and initial data in Figure 16a–

16c and 16d–16f shows that as expected, first-arrival times differ by
well over a cycle, and of course the triplication structure does not
appear in the initial data at all. Therefore, one would expect FWI to
stagnate far from a useful model estimate, as indeed happens (Fig-
ure 17a). Unregularized source-receiver extended waveform inver-
sion (ε ¼ 10−6) also fails. This is a pure transmission problem, and
precisely the same phenomenon occurs as in the strong lens cross-
well example (Figure 17b). On the other hand, regularized source-
receiver extended waveform inversion with the choice of penalty
weight ϵ ¼ 10 explained above produces a satisfactory model esti-
mation in the same number of iterations (Figure 18). Examination of
extended sources at the initial and final regularized source-receiver
extended waveform inversion model suggests that the kinematics
of the data have been adequately captured in the final model (Fig-
ure 19a–19f).
The output of regularized source-receiver extended waveform in-

version also performs well as an initial model for FWI because it has
already matched the data arrival times. The FWI with 50 iterations
of LBFGS, starting at the model shown in Figure 20, produces the
slightly more refined model shown in Figure 20. The simulated data
(Figure 21a–21c) generated by the final-inverted results show the
best match with the recorded data in Figure 16a–16c.

Pluto

We modify a portion of the Pluto model (Stoughton et al., 2001)
to create the target model in Figure 22a, mimicing an isolated salt
pillow, gridded with a cell of 0.01 × 0.01 km. The velocity in the
salt inclusion is 4.5 km∕s; the background medium is layer-like
with velocity averaging 2:2 km∕s. Source depth is zs ¼ 0.02 km.
Sources range from xs ¼ 0.06 to 2.94 km. Fixed-spread receivers
range from xr ¼ 0.02 to 2.98 km placed at depth zr ¼ 0.04 km.
The maximum time in the recorded data is 4 s, and the frequency
band is 4–10 Hz. We choose the regularization parameter ϵ ¼ 1, for

which initial relative errors are ē0 ¼ 3.2% and e0 ¼ 6.6%, respec-
tively.
Note that in this example, positions of the sources and receivers

permit “undershooting,” that is, transmitted and reflected raypaths
that transit the region under the inclusion. Therefore, the data should
contain adequate kinematic information to determine the velocity
throughout the model, except for the poorly illuminated edges. On
the other hand, the large velocity contrast between the salt and sur-
rounding “sediments” implies that FWI will likely fail to reconstruct
the inclusion from an initial model (Figure 22b) in which it is ab-
sent. Indeed, 200 FWI LBFGS iterations method locates the inclu-
sion top, mispositions the bottom, and grossly underestimates the
velocity in between (Figure 23).
Regularized source-receiver extended waveform inversion, in

contrast, comes much closer to locating the top and bottom of the
inclusion and filling it with approximately correct velocity values
(Figure 24a). The focus of the extended source estimates at zero
time lag is much improved (Figure 25d–25f) over the initial model
(Figure 25a–25c). In fact, the model depicted in Figure 24a appears
to be a reasonable initial guess for FWI, providing approximately
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Figure 14. Second crosswell example: extended sources after regularized source-receiver extended waveform inversion for shot at
(a) zs ¼ 0.1 km, (b) zs ¼ 0.5 km, and (c) zs ¼ 1 km.
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Figure 15. Diving wave example: (a) target velocity model with
Gaussian low-velocity lens embedded in the linearly increasing
background velocity and (b) v0ðzÞ linearly increasing initial model.

R164 Huang et al.

D
ow

nl
oa

de
d 

09
/1

4/
17

 to
 1

28
.4

2.
22

6.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



correct kinematics. A further 50 LBFGS iterations of FWI with fre-
quency band 4–16 Hz data results in an accurate reconstruction of
the inclusion (Figure 24b).
The final data residual in Figure 26d–26f implies that the inverted

model has fit especially the refracted energy in the data quite
well, in comparison with the initial data residual (shown in Fig-
ure 26a–26c).

DISCUSSION

We have already mentioned in the “Introduction” section that the
source-receiver extension used here is the basis for several other
algorithms, for example, adaptive waveform inversion (Warner and
Guasch, 2014, 2016). Other source extension concepts have also
been productive. Waveform reconstruction inversion as described
by van Leeuwen and Herrmann (2013) is roughly equivalent to
introducing artificial sources “everywhere” (for discussion of other
related algorithms, see Huang and Symes, 2016a; Wang and Yingst,
2016). Contrast source inversion, described, for example, by Abu-
bakar et al. (2011), may also be regarded as a source extension
approach. Other extended modeling modifications of FWI have
been motivated by wave-equation migration velocity analysis
(WEMVA) (Biondi and Sava, 2004). These WEMVA-like exten-
sions add parameters to the velocity model itself, for example, sub-
surface offset (space shift; Shen et al., 2003, 2005; Khoury et al.,
2006; Shen and Symes, 2008, 2015; Biondi and Almomin, 2012;
Shen, 2012; Weibull and Arntsen, 2014; Lameloise et al., 2015),
time shift (Yang and Sava, 2011; Biondi and Almomin, 2014), scat-
tering angle (De Hoop et al., 2003; Shen and Calandra, 2005), shot

coordinates (Symes and Carazzone, 1991; Kern and Symes, 1994;
Sun and Symes, 2012; Chauris and Plessix, 2013), and surface off-
set (Chauris and Noble, 2001; Mulder and ten Kroode, 2002). The
common feature in all of these extension-based modifications to
FWI is their tendency to produce the same sort of long-wavelength
velocity updates as does traveltime tomography, that is, to extract
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Figure 17. Diving wave example: inverted velocity after 200 iter-
ations using 5−11 Hz data by (a) FWI and (b) unregularized source-
receiver extended waveform inversion (ε ¼ 10−6).
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Figure 16. Diving wave example: shot gathers of recorded data for shot at (a) xs ¼ 0.2 km, (b) xs ¼ 2 km, and (c) xs ¼ 4 km. Shot gathers of
simulated data by initial velocity for shot at (d) xs ¼ 0.2 km, (e) xs ¼ 2 km, and (f) xs ¼ 4 km.
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kinematic information from the data. We have shown here that
source-receiver extended inversion accomplishes this goal in the
special case of single arrivals. Similar computations show that sub-
surface offset extended waveform inversion and reflection slope
tomography have proportional Hessians at a global solution
(Symes, 2014; ten Kroode, 2014).
We have addressed a major difficulty in source-receiver extended

waveform inversion, its tendency to develop apparent multimodality
in the event that energy arrives in the data along multiple raypaths.
This phenomenon presents a real impediment to using source-
receiver extended waveform inversion for crosswell tomography, for
example becausewaveguides are quite commonly encountered in that
application. Multiple arrivals are also common in diving wavefields,
and they can be present for many other reasons. We have advanced an
explanation in the context of periodic convolutional modeling,

namely, the presence of spectral zeros and near zeros of the Hessian
and partly recovered convexity by Tikhonov regularization, a stan-
dard technique for selecting solutions of ill-posed problems. Our jus-
tification for rather heavy-handed regularization is only heuristic, but
it does seem to be effective in many settings, including cartoon ex-
amples of crosswell tomography and diving wave FWI, as the exam-
ples show.
The other extension methods mentioned above show strong par-

allels with the observations made here. In particular, the failure of
convexity caused by multiple arrivals echoes the similar failure of
the surface extension in the presence of source wavefield caustics
(Nolan and Symes, 1996; Stolk and Symes, 2004; Symes, 2008).
For instance, this better analyzed pathology arises from the impos-
sibility of distinguishing arrivals by midpoint slowness in individual
offset gathers. A consequence is the failure of the inner problem to

Distance (km)

D
ep

th
 (

km
)

0 1 2 3 4 5 6 7 8

0

1

2

3

V
el

o
ci

ty
 (

km
/s

)

2

3

4

5

Figure 18. Diving wave example: inverted velocity using 5–11 Hz
data after 200 iterations by regularized source-receiver extended
waveform inversion (ε ¼ 10).

Receiver (km)

T
im

e 
(s

)

1

a) b) c)

d) e) f)

3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Receiver (km)

T
im

e 
(s

)

1 3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Receiver (km)

T
im

e 
(s

)

1 3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Receiver (km)

T
im

e 
(s

)

1 3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Receiver (km)

T
im

e 
(s

)

1 3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Receiver (km)

T
im

e 
(s

)

1 3 5 7

−2

−1

0

1

2

A
m

p
lit

u
d

e

−1

−0.5

0

0.5

1

Figure 19. Diving wave example: top row: extended sources by initial model for shot at (a) xs ¼ 0.2 km, (b) xs ¼ 2 km, and (c) xs ¼ 4 km;
bottom row: extended sources by inverted velocity after regularized source-receiver extended waveform inversion for shot at (d) xs ¼ 0.2 km,
(e) xs ¼ 2 km, and (f) xs ¼ 4 km.
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Figure 20. Diving wave example: inverted velocity by 50 FWI iter-
ations, beginning with following regularized source-receiver ex-
tended waveform inversion velocity (Figure 18).

R166 Huang et al.

D
ow

nl
oa

de
d 

09
/1

4/
17

 to
 1

28
.4

2.
22

6.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



have a unique solution. Just so, arrival slowness cannot be inferred
from a single trace, so the source-receiver extension does not permit
separation of arrivals by slowness, and consequently the inverse
ðS̄½v�Þ−1 does not, in general, exist. For medium-based extensions,
the remedy is to use so-called subsurface offset instead of surface
offset, leading to a well-posed inner problem and consequently a
smooth and stable reduced objective (Shen et al., 2003, 2005; Khoury
et al., 2006; Shen and Symes, 2008; Stolk et al., 2009; Symes, 2014;
ten Kroode, 2014). Other source extensions, in contrast to source-
receiver, allow similar conclusions to be drawn and lead to extended
inversion algorithms that avoid cycle skipping and maintain data
fit, and they do not require strong regularization (Huang and Symes,
2016b).
In the examples presented here, we have used a very large num-

ber of LBFGS iterations (hundreds in several examples). The need
for so many iterations may be linked to the rather small amount of
data used (in almost all cases, 5–10 frequencies), which of course
also makes the iterations rather inexpensive. We believe that such
computational largesse is appropriate for a study designed to ex-
plore the source-receiver extended waveform inversion concept.
However, it certainly begs the question: Can reasonable results be
obtained in a more reasonable number of RTM applications,
say Oð10Þ?
Our use of circulant convolution to model the relation between

source and data traces is computationally convenient. In particular,
it enables an inexpensive and machine-precise solution of the nor-
mal equation 24 because the matrices involved are diagonal. Be-
cause our examples are both computed and inverted entirely in
the frequency domain, this is an appropriate methodology. How-
ever, this methodology is commonly termed as an inverse crime;
that is, the same tools are used for modeling as for inversion. Field
data come in the form of time-domain traces, with finite duration
and are not necessarily amplitude decaying. A time cutoff is neces-
sary, either implicitly or explicitly, and that operation does not com-
mute with convolution. Therefore, an appropriate version of problem
24 applicable to field data will need a different solution mode, either
the Gaussian elimination or the Levinson algorithm, or (more likely)
an iterative solver, such as conjugate gradient iteration.
An inexact solve of the inner problem via an iterative method

would bring to the fore another difficulty. The velocity gradient
(equation 28) involves reverse time migration, the transpose operator
of the derivative of the modeling operator S½v� with respect to veloc-
ity. The S½v� amounts to convolution with Green’s function G½v�. In

the simplest (single-arrival) case, ignoring amplitudes, G½v� ¼
δðt − τ½v�Þ. The derivative of S½v� with respect to v is the convolution
with the derivative of G½v� with respect to v: From the chain rule, the
directional derivative in the direction δv in velocity model space is
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Figure 22. Pluto example: (a) target velocity and (b) 1D initial
velocity.
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Figure 23. Pluto example: inverted result by FWI method after 200
iterations using 4–10 Hz data.
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Figure 21. Diving wave example: shot gathers of simulated data with final source-receiver extended waveform inversion + FWI inverted result
(Figure 20) for shot at (a) xs ¼ 0.2 km, (b) xs ¼ 2 km, and (c) xs ¼ 4 km.
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DG½v�δv ¼ −
dδ
dt

ðt − τ½v�ÞDτ½v�δv: (31)

That is, the derivative of S̄½v� involves convolution with a multiple of
dδ∕dt (in this simple case), that is, a shift of the derivative of the input
trace, whereas S̄½v� shifts the (undifferentiated) input trace. The Fou-
rier transforms of the two results differ by a factor of frequency. The
same is true for the migration operator, that is, the transpose ofDS̄½v�,
and the conclusion remains true in the high-frequency asymptotic
sense with the proper amplitudes and without the single-arrival
assumption. Iteratively, computing the extended source f̄½v� (solution
of equation 24) and auxiliary field w̄ (solution of equation 26), using
(for example) the conjugate gradient algorithm, results in small mean-
square errors, as follows from standard theory (Nocedal and Wright,
1999; Golub and van Loan, 2012). However, the derivative of a root-
mean-square (rms) small error trace is not necessarily rms small: It
can be as large by a factor of the highest frequency present with sig-
nificant energy. Therefore, the convergence of the gradient obtained
by iterative approximation of the expression in equation 28 can be
arbitrarily slower (with sufficient bandwidth) than the convergence of
the extended source. See Huang (2016) for an explicit illustration of
this effect using a different extension, and see Symes (2015) for re-
cent theoretical progress in using special accelerators for iterative sol-
ution of the inner problem (equations 24 and 26) to accelerate
convergence of the gradient.
Note that the use of circulant convolution and the consequent

machine-precision solution of the inner problem by regularized de-
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Figure 25. Pluto example: top row: regularized extended source functions with initial velocity for shot at (a) xs ¼ 0.06 km, (b) xs ¼ 1.5 km,
and (c) xs ¼ 2.94 km; bottom row: regularized extended source functions with regularized source-receiver extended waveform inversion
velocity for shot at (d) xs ¼ 0.06 km, (e) xs ¼ 1.5 km, and (f) xs ¼ 2.94 km.
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inversion velocity in (a) as initial estimate.

R168 Huang et al.

D
ow

nl
oa

de
d 

09
/1

4/
17

 to
 1

28
.4

2.
22

6.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



convolution eliminates the source of the outer gradient inaccuracy
just described.
The sharp-eyed reader familiar with Warner’s AWI algorithm

(Warner and Guasch, 2014, 2016) will notice that our definition
of the objective function (equation 13) lacks the normalization by
the mean square of f̄ used in AWI. There are excellent reasons to
normalize such an objective. The principal reason is the amplitude
trade-off that occurs in reflection: Data fit to a reflection are not af-
fected, to first order, by scaling the reflectivity up and the source
down by the same factor. Therefore, one would not expect an effec-
tive velocity update in the reflection case without normalization of
the source. The reader might well ask how we got away with it.
The answer is that transmitted waves do not suffer from this scale
ambiguity, and all of our examples contained transmitted waves. In
particular, the data in the reflection-dominated example (Pluto) con-
tained direct wave energy because the boundary conditions used here
are absorbing in all directions, so the dipole effect of the free surface
is absent. Clearly, this device is not one to rely upon, and a modi-
fication of our algorithm to normalize J following the model of
Warner and Guasch (2014, 2016) (and many previous works on joint
source-model estimation, such as Minkoff and Symes, 1997) is in-
dicated. As pointed out by Warner and Guasch (2014, 2016), the
additional computational expense from normalization is minimal.

CONCLUSION

We have presented an extended modeling approach to overcome
the tendency of FWI to stagnate at uninformative models. The key

ingredient in this approach is the addition of parameters to the model,
in the form of unphysical source parameters, which allow the model
to fit the data at every stage of the inversion. Specifically, we allow
the source pulse to depend on the source and receiver coordinates.
Other choices of source extension are possible (see below). To elimi-
nate the unphysical additional parameters and recover an FWI sol-
ution, we have imposed a penalty on the variance of the extended
source across the source and receiver. Because the extended source
is uniquely determined by the data and the velocity model, the pen-
alty is a function of the velocity.
We have analyzed the use of this penalty as an inversion objective

function. We find that in the simplest case, single-arrival transmis-
sion data, this objecive is closely related to the mean-square trav-
eltime error, so that its minimization yields a tomographic-quality
result, even starting from initial models that would be grossly cycle
skipped for straightforward FWI. For more complex data with
multiple arrivals, the link to traveltime inversion is much more tenu-
ous, and strong regularization is required to produce global conver-
gence. In either case, an iterative local optimization method applied
to source-receiver extended waveform inversion produces a se-
quence of models approaching a kinematically accurate model,
even starting with a grossly inaccurate initial velocity estimate.
The approach is close enough that convergent FWI iteration can
be started from a source-receiver extended waveform inversion sol-
ution. Thus, in a sense, the combination source-receiver extended
waveform inversion + FWI appears to globalize the convergence of
FWI, at least in some cases.
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Figure 26. Pluto example: (a) data residual between recorded data and data simulated with initial velocity for shot at (a) xs ¼ 0.06 km,
(b) xs ¼ 1.5 km, and (c) xs ¼ 2.94 km. (b) Data residual between recorded data and simulated data using source-receiver extended waveform
inversion + FWI velocity (Figure 24b) for shot at (d) xs ¼ 0.06 km, (e) xs ¼ 1.5 km, and (f) xs ¼ 2.94 km.
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APPENDIX A

COMPUTATION OF GRADIENT

In this section, we show how to compute the gradient of the in-
version velocity analysis objective function via trace-based extension.
The directional derivative of the objective function J with respect to
velocity v in the direction (velocity perturbation) δv is given by

DJ½v�δv ¼
D
ATAf̄½v�; Df̄½v�δv

E
: (A-1)

Using the normal equation 24, we have

ðS̄½v�TS̄½v�þε2IÞDf̄½v�δv
¼ðDS̄½v�δvÞTd−DðS̄½v�TS̄½v�þε2IÞf̄½v�
¼ ðDS̄½v�δvÞTðd− S̄½v�f̄½v�Þ− S̄½v�TðDS̄½v�δvÞf̄½v�: (A-2)

Let us introduce an auxiliary extended source w̄½v�ðxr; t; xsÞ, such
that

ðS̄½v�TS̄½v� þ ε2IÞw̄½v� ¼ ATAf̄½v�: (A-3)

Then, by combining equations A-2 and A-3

DJ½v�δv¼
D
w̄½v�;ðDS̄½v�δvÞTðd− S̄½v�f̄½v�Þ

E

−
D
w̄½v�; S̄½v�TðDS̄½v�δvÞf̄½v�

E

¼
D
ðDS̄½v�δvÞw̄½v�;d− S̄½v�f̄½v�

E

−
D
S̄½v�w̄½v�;ðDS̄½v�δvÞf̄½v�

E
: (A-4)

Note that ðDS̄½v�δvÞf̄½v�ðxr;t;xsÞ¼ f̄½v��ðDS̄½v�δvÞδtðxr;t;xsÞ, and
that

D
S̄½v�w̄½v�;f̄½v��ðDS̄½v�δvÞδt

E
¼
D
f̄½v�⋆S̄½v�w̄½v�;ðDS̄½v�δvÞδt

E
,

where ⋆ denotes crosscorrelation and δt is the delta function of t for
every trace. A similar transformation of the other term above shows
that

DJ½v�δv ¼
D
r̄½v�; ðDS̄½v�δvÞδt

E
; (A-5)

where the “residual” r̄½v�ðxr; t; xsÞ is (note that this is a trace-by-trace
computation)

r̄½v� ¼ w̄½v�⋆ðd − S̄½v�f̄½v�Þ − f̄½v�⋆S̄½v�w̄½v�: (A-6)

Therefore,

∇J½v� ¼ ðDS̄½v�ð·ÞδtÞT r̄½v�: (A-7)

The transpose of the impulsive Born simulation operatorDS̄½v�ð·Þδt is
the well-known impulsive reverse time migration operator, that is, the
zero-lag crosscorrelation between the incident Green function G and
the adjoint field with the residual r̄½v� as the adjoint source.
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